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Abstract
We present a novel technique for computing a center-based approximation of a drifting distri-

bution. Given k ≥ 1 and a stream of data, whose distribution is changing over time, the goal is to
compute, at each step, the best k centers representation of the current distribution, despite possibly
having only a single sample from the most recent distribution. In data mining, this is traditionally
attempted through the sliding-window mechanism, where the analysis is performed on the most
recent fixed-size segment of the data. The problems with this approach are twofold: (1) setting the
correct window size is challenging; and (2) a fixed window size cannot effectively track changes
in the distribution happening at variable speed. In this paper, we propose a new methodology that
dynamically adjusts the window size based on the recent drift of the data. The challenge is that it
is not possible to explicitly estimate the drift, as we may have only a single data point from each
distribution. Our main contribution lies in providing a rigorous mathematical analysis, establishing
both an upper bound via a dynamic window size algorithm, and a lower bound that shows the
tightness of our approach.

1. Introduction

We study the problem of approximating a drifting distribution using k points. Given a sequence of
independent random vectors (Xt)t∈N from Rd, where Xt is a single sample from the distribution
Pt, the goal is to compute, at each step T , a set of k ≥ 1 centers that best represent the current
distribution PT using only the samples X1, . . . , XT . This problem has been extensively studied for
a fixed distribution P . Given an integer k ≥ 1 and a real z ≥ 1, the objective is to represent P using
only k points, dubbed centers, such that the expectation of the z-th power distance between a point
drawn from P to its closest center is minimized. Formally, the goal is to solve (or approximate) the
following minimization problem:

min
C⊂Rd:
|C|=k

Wk,z(C,P ) with Wk,z(C,P ) =

∫
x∈X

min
c∈C
∥x− c∥zdP (x) , (1)

whereWk,z(C,P ) can be regarded as the cost of approximating P using the set of centers C. As
an important special case, the optimal center for k = 1 and z = 2 is the mean of the distribution P .
Throughout this paper, we refer to the optimization problem (1) as the (k, z)-approximation problem
for a distribution P .
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The problem has been studied (mostly for z = 2) under the name of vector quantization (Bartlett
et al., 1998; Linder, 2000, 2002; Levrard, 2013, 2015), or clustering of a distribution (Biau et al.,
2008; Maurer and Pontil, 2010; Maurer, 2016; Foster and Rakhlin, 2019; Li and Liu, 2021; Bucarelli
et al., 2023). Indeed, for a fixed distribution P , the (k, z)-approximation problem is related to the
popular problem of (k, z)-clustering of pointsets (Gupta and Tangwongsan, 2008; Huang et al., 2018;
Borassi et al., 2020; Cohen-Addad et al., 2021b). Specifically, a (k, z)-approximation of a fixed
distribution P can be obtained by (k, z)-clustering a sufficiently large sample from P (Biau et al.,
2008; Liu, 2021). Vice versa, the (k, z)-clustering of a finite pointset S ⊆ Rd is equivalent to solving
the (k, z)-approximation problem for the uniform distribution over S. Note that for z = 1 and
z = 2, this amounts to computing a solution to the well known k-median and k-means problems,
respectively.

In this work, we study the (k, z)-approximation problem in the context of streaming data with
concept drift that evolves over time. Specifically, the goal is to solve the (k, z)-approximation
problem for the distribution PT at time T based on the input points {X1, . . . , XT } observed so
far, which have been sampled independently from a sequence of unknown distributions P1, . . . , PT .
Since we have only a single sample XT from PT , a solution to this problem must rely on previous
samples. However, unlike the static case, where the distribution remains unchanged, using a (k, z)-
clustering solution over all the past samples {X1, . . . , XT } from a drifting distribution can result in
a poor approximation of the distribution PT . In fact, since the distribution of the data can change
over time, it may be the case that only the most recent data is relevant, and the old data should not
influence the current solution. In the learning community, this phenomenon is referred to as concept
drift, which has been identified as “a major problem in online learning caused when a model based
on old data fails to correctly reflect the current state of the world” (Babcock et al., 2003).

Several approaches have been proposed to address concept drift, all sharing the underlying
principle of assigning greater relevance to more recent points, typically by applying a decaying
weight to older data. A particularly popular framework in this context is the sliding window model
(Braverman, 2016), where at any given time, a solution is computed solely based on the most recent
w points, where w is an integer representing a fixed window size. The parameter w plays a crucial
role in determining the quality of the solution. Intuitively, a large w may include outdated points due
to concept drift. Conversely, if w is too small, the solution may be based on an insufficient number
of points, leading to poor generalization. Ideally, the window size should be large enough to contain
sufficient data for robust analysis, yet small enough to exclude points that are no longer relevant.
This optimal window size may vary over time, particularly in cases where the magnitude of concept
drift fluctuates.

Recognizing the importance of the window size, the data mining community has developed
several adaptive algorithms that dynamically adjust the window size (Bifet and Gavalda, 2007; Deypir
et al., 2012), and these techniques have also been used for clustering (Zhu et al., 2010). However,
despite their success in practice, a formal theoretical understanding of the selection of the window
size and its relation to the quality of the obtained solution remains largely unexplored. The aim of our
work is to bridge this gap. Our main contribution lies in providing a rigorous mathematical analysis
of the (k, z)-approximation problem with drifting data, establishing both an upper bound through a
dynamic window size algorithm, and a matching lower bound for the problem. Our algorithm adapts
to changing drift, computing a near-optimal window size at each step.
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Our Contribution We address the important question of how to approximate the current distri-
bution of the data from a sequence of samples whose distribution is changing over time. Our work
makes the following specific contributions:

1. We introduce a formal theoretical model to analyze the (k, z)-approximation problem for data
streams with concept drift.

2. We introduce a novel technique to dynamically adjust the window size w in response to the
drift of the underlying distribution, and provide a theoretical analysis of the quality of the
solution (Theorem 2). This is a challenging problem since, as we will see, it is not possible to
quantify the drift from the input data. Despite this, we demonstrate that our method can adjust
w as effectively as any algorithm with a full knowledge of the drift.

3. Through a minimax lower bound, we establish that our approach strikes a near-optimal trade-
off on the window size w for the (k, 2)-approximation problem (Theorem 4). This lower
bound also demonstrates that a properly implemented window size strategy can provide a
near-optimal adaptation to drift, justifying previous empirical clustering approaches based on
this strategy (Zhu et al., 2010).

Furthermore, we provide preliminary experimental evidence of the ability of our algorithm to adapt
the window size according to the drift of the distribution.

Organization of the paper The rest of the paper is structured as follows. Section 2 defines formally
the problem setting and outlines the challenges in adapting to drift. Section 3 discusses our main
theoretical contributions. Section 4 provides an account of the relevant previous work. Section 5
presents the algorithm and sketches its analysis, while Section 6 presents a sketch of the lower bound.
Section 7 reports the results of the experiments. Section 8 concludes with some final remarks. Details
of the proofs are deferred to the appendix.

2. Preliminaries

For a point p ∈ Rd and a set S ⊆ Rd, we abuse notation and define the distance from p to S
as ∥p − S∥ .

= infs∈S∥p − s∥, where ∥·∥ is the Euclidean norm. Given an integer k ≥ 1, a
real z ≥ 1, and a set of k centers C ⊂ Rd, we remind that the definition of the cost function
Wk,z(C,P ) for the (k, z)-approximation problem is given by Equation (1). We also recall that the
(k, z)-approximation of a distribution P requires finding a set C of at most k points minimizing
Wk,z(C,P ). Also, the (k, z)-clustering problem of a finite multiset of points S ⊆ Rd is equivalent
to the (k, z)-approximation problem of the uniform distribution over S.

We adopt the following data-generating model that has also been used in previous work on drift
(Mohri and Muñoz Medina, 2012; Mazzetto and Upfal, 2023b). The input data stream is a sequence
of random variables (Xt)t∈Z+ where Xt, with t ≥ 1, is sampled from a distribution Pt over Rd,
which represents the current state of the world at time step t. We assume that the random variables
{Xt : t ∈ Z+} are mutually independent, and that the support of each distribution is contained in the
ball of radius 1/2 centered in the origin (i.e., Pr(∥Xt∥ ≤ 1/2) = 1 for all t ≥ 1)1.

Let C be the family of all possible sets of k centers, that is,

C =
{
{c1, . . . , ck} : ci ∈ Rd, ∥ci∥ ≤ 1/2, for 1 ≤ i ≤ k

}
.

1. Note that by a simple rescaling, our results can be extended to any finite radius r ∈ R.
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We letW∗
k,z(P )

.
= infC∈CWk,z(C,P ) be the minimum cost attainable for the (k, z)-approximation

of P . Let C∗ be any optimal solution for P with costW∗
k,z(P ). We remark that the valueW∗

k,z(P )
can also be interpreted as the quantization error of representing the distribution P with the points
C∗ (Graf and Luschgy, 2007; Gersho and Gray, 2012). For instance, if we want to represent the
distribution P using a single point (k = 1) with respect to the squared error (z = 2), then C∗ is the
mean of P , andW∗

k,z(P ) is the trace of the covariance matrix of P .
Let T denote the current time. Our goal is to find a set of centers C ∈ C which minimizes

Wk,z(C,PT ), thus providing an optimal solution to the (k, z)-approximation problem with respect
to the current “state of the world” distribution PT . One of the main challenges is that the distribution
PT is unknown, thus we cannot directly compute the costs {Wk,z(C,PT ) : C ∈ C}, needed for
the solution of the minimization problem. Since we have only one single sample XT from PT ,
those costs must be estimated from past samples, provided that no or minimal drift occurred, i.e.,
the distribution of those samples closely resembles PT . Nevertheless, accurately estimating drift is
unfeasible, as one sample per distribution is available.

To further proceed with the discussion, we introduce additional notation. To quantify the drift,
we define the following problem-specific distance τ between distributions. Given two distributions
P and Q over Rd, we let

τ(P,Q) = sup
C∈C
|Wk,z(C,P )−Wk,z(C,Q)| . (2)

It is easy to verify that τ defines a pseudometric2. In the domain adaptation literature (Mohri and
Muñoz Medina, 2012), the distance τ(P,Q) from P to Q is referred to as the discrepancy induced
by the family of functions {x 7→ ∥x− C∥2 : C ∈ C}. The discrepancy provides a measure of the
drift that is problem-dependent. It is possible to upper bound the discrepancy τ using more common
metrics between distributions such as the Wasserstein distance (see Appendix A.2).

Let δx be the Dirac function centered at x ∈ Rd. For a window size 1 ≤ w ≤ T , we define

P
[w]
T =

1

w

T∑
t=T−w+1

Pt, P[w]
T =

1

w

T∑
t=T−w+1

δXt . (3)

The distribution P [w]
T is the average of the distributions of the most recent w samples. The dis-

tribution P[w]
T is the empirical distribution induced by the latest w samples, namely, the discrete

distribution where each point x ∈ Rd has probability cx/w, where cx is the number of realizations of
XT−w+1, . . . , XT equal to x.

Our goal is to identify a window size w for which the empirical distribution of the samples
P[w]
T is representative of PT , that is, τ(PT ,P

[w]
T ) is small, thus ensuring that the empirical costs

computed from the last w samples closely approximate the expected costs of solutions under the
true distribution PT . If we can find such a window size w, then we can obtain a solution for PT by
using an algorithm for (k, z)-clustering over the most recent w samples. To evaluate a window size
w, we upper bound τ(PT ,P

[w]
T ) based on an error decomposition into statistical error and drift error,

which was used in previous work on drift (Mazzetto and Upfal, 2023a,b). The bound is stated in the
following lemma (proof in Appendix B).

2. For a pseudometric τ , it could be that τ(x, y) = 0 even if x ̸= y.
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Lemma 1 For any 1 ≤ w ≤ T , the following inequality holds

τ(PT ,P
[w]
T ) ≤ τ(P [w]

T ,P[w]
T )︸ ︷︷ ︸

statistical error

+max0≤t<w τ(PT , PT−t)︸ ︷︷ ︸
drift error

.

The statistical error quantifies the error caused by the stochasticity of the data-generating process,
while the drift error is due to the non-stationarity of the data-generating process. Intuitively, there
is a trade-off between those two errors: larger window sizes w yield smaller statistical errors but
may incur larger drift errors since we use samples from distributions that are further away from the
current distribution.

There are different challenges in the solution of this trade-off. As previously noted, we cannot
estimate the drift error since we only have access to a single sample from each distribution. Thus, it
is not possible to analytically solve the trade-off to determine the optimal window size. Additionally,
it is computationally hard to calculate the metric τ from the data. The computation of the distance
τ between two empirical distributions requires evaluating the supremum over all possible sets of
k centers in C. This is a computationally hard problem: for k = 1 and z = 1, this is equivalent to
the Fermat-Weber problem with attraction and repulsion, for which only approximate solutions are
available (e.g., Brimberg (1995)), and no solutions are known for k > 1.

A further obstacle is that even if we can determine the window size w to use, there is no efficient
algorithm for computing an optimal solution to the (k, z)-clustering problem (this problem is known
to be NP-hard at least for z ∈ {1, 2}, see the work of Dasgupta (2008) and Cohen-Addad et al.
(2022)). Instead, we assume that a β-approximation algorithm to the (k, z)-clustering problem
is available. Such an algorithm computes a solution whose cost is bounded by β times the cost
of the optimal solution to the problem, where β ≥ 1 is also referred to as approximation factor.
We aim to ensure that, despite the algorithm facing multiple complex decisions to tackle drift, we
can still achieve the same multiplicative error of the best-known approximation for the considered
(k, z)-clustering problem in the no-drift scenario.

3. Main Result

Our work has two primary contributions. Firstly, we show that there exists an algorithm that provides
a solution whose cost guarantee is nearly as good as that of a solution computed using a window
size that minimizes the trade-off between statistical error and drift error (Theorem 2). Secondly, we
exhibit a lower bound for the special case of k-means (z = 2) that demonstrates that our algorithm
provides a guarantee that is near-optimal in a drift setting (Theorem 4).

3.1. Upper Bound.

The next theorem characterizes our algorithm’s effectiveness in adapting to drift.

Theorem 2 Let δ ∈ (0, 1), and assume that we have access to a β-approximation algorithm for
the (k, z)-clustering problem. There exists an algorithm that observes X1, . . . , XT and outputs a
solution Ĉ such that, with probability at least 1− δ, it holds

Wk,z(Ĉ, PT ) ≤ βW∗
k,z(PT ) + β ·O

 min
1≤w≤T

√z2k log4(w) + log(1/δ)

w
+ max

0≤t<w
τ(PT , PT−t)

 .
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To appreciate this bound, suppose that we fix a window size w ∈ {1, . . . , T} arbitrarily, and
that we compute a β-approximation solution C̃ [w]

T for the (k, z)-clustering problem over the latest
w samples XT−w+1, . . . , XT , i.e.,Wk,z(C̃

[w]
T ,P[w]

T ) ≤ βW∗
k,z(P

[w]
T ). The following lemma (proof

in Appendix B) provides an upper bound on the cost of such a solution with respect to the current
distribution PT .

Lemma 3 For any 1 ≤ w ≤ T , the following inequality holds

Wk,z(C̃
[w]
T , PT ) ≤β · W∗

k,z(PT ) + (β + 1)
[
τ(P

[w]
T ,P[w]

T )︸ ︷︷ ︸
statistical error

+ max
0≤t<w

τ(PT , PT−t)︸ ︷︷ ︸
drift error

]
.

The upper bound of Lemma 3 is interpreted as follows. The first term β · W∗
k,z(PT ) represents the

multiplicative error introduced by using a β-approximation algorithm, and it is independent to w (we
remind thatW∗

k,z(PT ) is the cost of the optimal solution for PT ). The other term depicts the additive
error introduced by the trade-off between the statistical error and drift error (see Lemma 1).

The tightest upper bound of Lemma 3 is achieved by choosing a window size w that optimally
solves the trade-off between statistical error and drift error. Theorem 2 shows that we can successfully
approach the optimal solution of this trade-off (min in the upper bound), where the statistical error is
upper bounded by Õ(

√
z2k/w). This upper bound to the statistical error can be proven to be tight

up to logarithmic factors (Bartlett et al., 1998) for the k-means problem (z = 2). The additional
O(
√
log(1/δ)/w) term is due to the high-probability guarantee. We remark that our algorithm does

not require any prior knowledge of the drift, and it overcomes the challenge that the drift error cannot
be estimated from the input data.

Additionally, the proof of Theorem 2 also requires a novel upper bound on the statistical error of
the (k, z)-approximation problem for arbitrary z ≥ 1, extending existing results that only hold for
constant z (Bucarelli et al., 2023).

Significantly, our result also features a multiplicative error term proportional to exactly β, with β
being the best approximation algorithm for the (k, z)-clustering problem. Although our algorithm
involves multiple steps and invocations of a β-approximation algorithm, the final approximation
factor remains unaffected.

We emphasize that our algorithm dynamically chooses the window size in order to minimize the
trade-off between statistical error and drift error. If the distribution changes arbitrarily and drifts
significantly every few steps, learning becomes infeasible, and even the optimal trade-off would yield
a poor solution. Also, note that our algorithm makes no prior assumptions about the structure of
the drift and can handle arbitrary changes in the distribution. An important special case is gradual
drift, where the change in distribution between consecutive steps is bounded; this case is discussed in
more detail in Section 3.2. Another important case is abrupt drift, where the input sequence can be
divided into long distinct segments, with the distribution remaining constant within each segment but
potentially varying significantly across different segments. In such cases, the optimal solution of the
trade-off between statistical error and drift error, as outlined in Theorem 2, would lead to selecting
samples only from the latest segment. A visual representation of the window sizes selected by the
algorithm across these two different drift regimes is provided in Section 7.
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3.2. Lower Bound.

We show the tightness of our upper bound for the classical (k, 2)-approximation problem (z = 2).
We consider a classical setting where there is a bounded drift at each step, which is widely used in
the literature on learning with drift (Bartlett, 1992; Mohri and Muñoz Medina, 2012). Formally, we
assume that there exists ∆ > 0 such that τ(Pt+1, Pt) ≤ ∆ for any t ≥ 1, which immediately implies
that maxt<w τ(PT , PT−t) ≤ w∆. Thus, by choosing w = (k/∆2)1/3 in Theorem 2, we have that
with high-probability (e.g., ≥ 0.99), our algorithm returns a solution Ĉ such that

Wk,z(Ĉ, PT ) ≤ βW∗
k,z(PT ) + β · Õ

(
(k∆)1/3

)
. (4)

We remark that our algorithm achieves this guarantee without knowing the value ∆ a priori.
In our lower bound, we show that the upper bound (4) is tight up to logarithmic factors, and it

cannot be improved without further assumptions. The following result follows by combining lower
bound techniques for vector quantization (Bartlett et al., 1998) and learning with drift (Mazzetto and
Upfal, 2023b).

Theorem 4 Let k ≥ 3, z = 2, and assume ∆ ∈ (0, 1/k1+1/d) and T ≥ (k1−2/d/∆2)1/3. Consider
an algorithm that observes X1, . . . , XT , and outputs k centers Ĉ ∈ C. For any such algorithm, there
exists a sequence of distributions P1, . . . , PT such that τ(Pt, Pt+1) ≤ ∆ for any 1 ≤ t ≤ T − 1 and

EWk,z(Ĉ, PT ) ≥ W∗
k,z(PT ) + Ω

(
k

1
3
[1− 5

d
]∆1/3

)
.

A sketch of the proof is provided in Section 6, while the full proof is deferred to Appendix C. For
β → 1 and d→∞, we observe that the upper bound (4) matches up to logarithmic factors the lower
bound in expectation of Theorem 4. This result highlights the tightness of our approach in a drift
setting.

We wish to remark that, aside from polylogarithmic factors, there remains a polynomial gap in
the dependence on k between the lower and the upper bound, for constant d. This gap is not unique
to our analysis, and it also appears in the best-known lower and upper bounds for the setting with
independent and identically distributed samples (Bartlett et al., 1998). Indeed, bridging this gap
remains an interesting open question.

4. Related Work

The (k, z)-clustering problem, along with its popular variants k-median and k-means, has been
extensively studied in the data stream model (see surveys by Silva et al. (2013) and Aggarwal (2018)).
A first line of research focused on obtaining good solutions with respect to all the past points in
a streaming setting (Ailon et al., 2009; Charikar et al., 2003; Chen, 2006; Braverman et al., 2011;
Barger and Feldman, 2016; Cohen-Addad et al., 2023). Different methodologies have been proposed
to tackle the concept drift. A line of work developed efficient algorithms that maintain a solution
over a sliding window of fixed size (Babcock et al., 2003; Braverman et al., 2015, 2016; Borassi
et al., 2020; Epasto et al., 2022; Woodruff et al., 2024). Another alternative is to use a decaying
weighting of the past samples (Bidaurrazaga et al., 2021). These works focus on the computational
efficiency of maintaining such solutions given an arbitrarily fixed window size or decay parameter.
In contrast, we theoretically characterize the quality of the solution for a given window size and
propose an adaptive method that adjusts the window size based on a simple statistical interpretation
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of the data points. While beyond the scope of this paper, it is worth noting that the literature has
explored several clustering variants beyond center-based methods (we refer interested readers to the
book by Hennig et al. (2015)).

The idea of using sliding windows of adjustable length to adapt to time-varying drift has been
empirically explored for clustering (Zhu et al., 2010), and for other data mining problems (e.g., Bifet
and Gavalda, 2007; Deypir et al., 2012; Jiang and Zhang, 2004; Kumar and Satapathy, 2014). Unlike
these works, we provide a rigorous analysis of the quality of the solution obtained by our algorithm.

There is a vast literature on the problem of concept drift in learning and data mining (Agrahari
and Singh, 2022; Gama et al., 2014; Lu et al., 2018). We review the work that is closer to our setting,
where the input is modeled as a sequence of independent samples each originating from a different
distribution. This drift setting has been widely studied in the learning theory literature, and a first
line of work addressed the problem of learning a family of binary classifiers (Helmbold and Long,
1991; Bartlett, 1992; Helmbold and Long, 1994; Barve and Long, 1996; Long, 1998). This analysis
was later extended to handle arbitrary family of functions (Mohri and Muñoz Medina, 2012), and to
relax the independence assumption using a mixing assumption (Hanneke and Yang, 2019). These
works all assume that an upper bound to the magnitude of the drift is known a priori, which is used to
quantify the drift error. In the binary and realizable setting, an algorithm that is adaptive to the drift
was proposed by Hanneke et al. (2015). More recent work extends this adaptive result to a general
learning setting (Mazzetto and Upfal, 2023a). The latter work does not apply to our setting as it
requires the computation of the discrepancy (the distance τ defined in (2)), which is computationally
unfeasible for the (k, z)-approximation problem. The drift setting has also been considered for other
important problems such as density estimation (Mazzetto and Upfal, 2023b; Mazzetto, 2024), weak
supervision (Fu et al., 2020; Mazzetto et al., 2025), or model selection (Han et al., 2024).

Another rich area of research for adapting to adversarially changing environments is online
learning, where the goal is to minimize regret over a long sequence of predictions with respect to
the best solution in hindsight (e.g., see Shalev-Shwartz et al. (2012); Hazan et al. (2016); Orabona
(2019)). Recently, the regret of the k-means problem has been studied in this setting (Cohen-Addad
et al., 2021a), where at each time step t, the adversary can choose the point Xt after the algorithm
determines a solution Ct.

Finally, it is important to note that the statistical error of the (k, z)-approximation problem has
been widely studied in the literature for the setting of independent and identically distributed samples.
A first line of work established upper bounds for the statistical error of the (k, 2)-approximation
problem, which is also referred to as vector quantization, or simply k-means (Bartlett et al., 1998;
Linder, 2000; Antos et al., 2005; Biau et al., 2008; Fefferman et al., 2016; Liu, 2021; Appert and
Catoni, 2021). An almost matching minimax lower bound for the statistical error is also known for
the (k, 2)-approximation problem (Bartlett et al., 1998). Subsequent research provided an upper
bound to the statistical error of the (k, z)-approximation problem for a constant z (Bucarelli et al.,
2023). Additionally, the statistical error in other clustering variants such as kernel k-means (Liu,
2021), spectral clustering (Li and Liu, 2021), and projective clustering (Bucarelli et al., 2023) has
also been explored.

5. Sketch of the Upper Bound

In this section, we present the algorithm that attains the guarantee of Theorem 2. The formal analysis
and a more detailed discussion are deferred to Appendix B. As previously noted, the major difficulty
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is that it is not possible to obtain an accurate estimate of the drift error max0≤t<w τ(PT , PT−t) from
the data, as we have access to only one sample from each distribution, and it is computationally
intractable to evaluate the metric τ . Thus, our algorithm needs to choose a window size that yields an
optimal solution of the trade-off between statistical error and drift error without explicitly estimating
the drift error. Another challenge is that the algorithm can only rely on approximate clustering
solutions whose cost can deviate from the optimal arbitrarily within their approximation guarantee.

Our algorithm employs a lazy strategy, iteratively increasing the window size until evidence
of drift is detected. The key intuition is as follows. Let T be the current time, and let C̃ be an
approximate solution for the (k, z)-clustering problem over the latest w samples. We compare C̃
with another solution C̃ ′ obtained using w′ > w samples. If there is no drift, the costsWk,z(C̃,P

[w]
T )

andWk,z(C̃
′,P[w]

T ) should not differ beyond the approximation error and the statistical error due to
finite sample size w. If these costs are similar, we prefer the solution C ′ since it exhibits a smaller
statistical error, and we continue to increase the window size. Conversely, if the costs are significantly
different, it indicates that the data are not all sampled from the same distribution, providing evidence
that a drift occurred. In this case, we can establish a lower bound on the drift error using w′ samples,
which is sufficient to stop iterating. On a high-level, Theorem 2 is derived by carefully determining
the threshold for comparing the solutions C̃ and C̃ ′.

Formally, the algorithm operates as follows. Let T be the current time. Our algorithm considers
windows of doubling sizes 1, 2, 4, . . . ,, and we let wj = 2j be the window size considered at iteration
j, starting from j = 0. There is nothing special about using powers of 2, and this choice is made only
for ease of presentation, since our algorithm can be easily extended to consider any power of γ > 1
Let δ ∈ (0, 1) be the failure probability of our algorithm. The algorithm uses the following upper
bound G(wj) to the statistical error with wj samples: with probability at least 1− δ, it holds that

∀j ∈ Z+, G(wj)
.
= c

√z2k log4(w) + log(1/δ)

wj

 ≥ τ(P [wj ]
T ,P[wj ]

T ) , (5)

where c ≥ 0 is a universal constant. The above upper bound is obtained by extending existing results
on the statistical error known for constant z to an arbitrary finite z ≥ 1 (Biau et al., 2008; Maurer,
2016; Liu, 2021; Bucarelli et al., 2023) (see Appendix B.1 for details). We remark that our approach
does not require the use of this specific upper bound, and it is trivial to adapt the results to any upper
bound on the statistical error, as long as the bound is polynomially decreasing with w.

The algorithm has access to a β-approximation algorithmA for the (k, z)-clustering problem. At
the beginning of iteration j, we compute a solution A(P[wj ]

T ) ∈ C for the (k, z)-clustering problem

over the pointsXT−wj+1, . . . , XT , such thatWk,z(A(P
[wj ]
T ),P[wj ]

T ) ≤ β ·W∗
k,z(P

[wj ]
T ). For technical

reasons, we define C̃ [wj ]
T as the solution that minimizes the cost computed with respect to the

empirical distribution P[wj ]
T among all approximate solutions computed by A on windows of size

wi with 0 ≤ i ≤ j. That is, C̃ [wj ]
T = argmin

{
Wk,z

(
C,P[wj ]

T

)
: C ∈ {A(P[wi]

T )}0≤i≤j

}
. Note that

since β > 1, it is possible that a set of centers computed with respect to another smaller window size
wi < wj provides a better solution for P[wj ]

T . This definition of C̃ [wj ]
T is used to reduce the effect of

the error due to the approximation of the algorithm when comparing the solutions across different
window sizes.

9
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Algorithm 1: Adaptive (k, z)-approximation at time step T

C̃
[w0]
T ← A(Pw0

T )
S ← {A(Pw0

T )}
for j = 1, 2, . . . , ⌊log2(T )⌋ do
S ← S ∪ {A(Pwj

T )}
C̃

[wj ]
T ← argminC∈SWk,z

(
C,P[wj ]

T

)
for i = 0, . . . , j − 1 do

ifWk,z(C̃
[wj ]
T ,P[wi]

T )−Wk,z(C̃
[wi]
T ,P[wi]

T ) ≥ 6G(wj) + 2G(wi) then

return C̃ [wj−1]
T

end
end

end

return C̃
[w⌊log2(T )⌋]

T

The pseudocode of the algorithm is reported in Algorithm 1. The proof of Theorem 2, provided
in full in Appendix B, follows the key intuition presented at the beginning of this section. First, we
will show that if at iteration j the if condition is false for all i = 0, . . . , j − 1, then the guarantee
provided by the solution C̃ [wj ]

T is up to constants as good as the one provided by any of the previous
solutions. In this case, our algorithm keeps iterating. Second, we will show that if at iteration j
there exists i < j such that the if condition is true, then a sizeable distribution drift occurred
from PT−wj+1 to PT . This is the crucial technical result that allows the algorithm to lower bound
the drift without explicitly computing it. In particular, we will show that when this occurs, then
max0≤t<wj τ(PT , PT−t) ≥ G(wj). Since the drift error is monotonically increasing with w, the
drift error will dominate over the statistical error for any w ≥ wj : this is sufficient to interrupt the
iteration loop of our algorithm. Then, the proof of the theorem will be constructed using those two
results.

Running time and memory. At every time T , under the assumption that all points of the stream
X1, X2, . . . , XT are available in memory, Algorithm 1 must compute at most the O(log T ) solutions
and O(log2 T ) costs. For concreteness, let z = 2. If the solutions are computed using k-means++
followed by a constant number of iterations of Lloyd’s algorithm (Arthur and Vassilvitskii, 2007),
the overall running time would be O(kT log T ). It is important to remark, that when T grows very
large, the performance of the algorithm can be drastically improved by limiting the window sizes
to a maximum length L, which would then replace T in the time-bound. In this case, it is easy to
argue that the upper bound of Theorem 2 stays the same, aside from an extra error term O(βG(L)),
where G(L) bounds the statistical error with L samples. Thus, if we want to ensure that this extra
error is O(ϵ), we can limit the algorithm to consider window sizes up to length L = G−1(ϵ/β). In
this case, it is also sufficient to only keep in memory the most recent O(L) samples at each time
step. Further performance improvements can be obtained by leveraging the techniques presented
by Epasto et al. (2022) and Woodruff et al. (2024) for k-means clustering in the sliding window
setting, by maintaining only a sketch of every window, incurring, however, a slight worsening of the
approximation.

10
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6. Sketch of the Lower Bound

In this section, we provide the main intuition behind the proof of the lower bound of Theorem 4.
The full details of the proof are deferred to Appendix C. Let T and ∆ satisfy the assumption
of the theorem. We remind that the goal is to show that for any algorithm that takes in input a
sequence X1, . . . , XT from Rd and outputs a set of at most k centers Ĉ, there exists a sequence of
distributions P1, . . . , PT of the random variables X1, . . . , XT such that τ(Pt, Pt+1) ≤ ∆ for each
t ∈ {1, . . . , T − 1}, and

EWk,2(Ĉ, PT )−W∗
k,2(PT ) = Ω

(
k

1
3
[1− 5

d
]∆1/3

)
.

We provide a sketch of the proof for the simpler case where d = 1 and k = 3. To establish the lower
bound, we reformulate the problem as a decision problem based on two possible distributions of the
input sequence X1, . . . , XT .

In particular, we consider distributions with support over four points {x1, x2, y1, y2} ⊆ R,
where x1 = 1/2, x2 = 1/2 − γ, y1 = −1/4 and y2 = −1/4 + γ. Let ξ ∈ {−1, 1}. We
consider two distributions over X = (X1, . . . , XT ) parameterized by ξ: the product distribution
P [1] =

⊗T
t=1 P

[1]
t and the product distribution P [−1] =

⊗T
t=1 P

[−1]
t . Fix w ∈ {1, . . . , T}, we let

P
[ξ]
t (z) =

{
1
4 + ξ∆

2 [t− T + w]+ if z ∈ {x1, x2}
1
4 −

ξ∆
2 [t− T + w]+ if z ∈ {y1, y2}

,

where [x]+
.
= max{0, x}. For both sequences, the distribution of the first T −W random variables

is uniform over {x1, x2, y1, y2}. For the last w random variables, if ξ = 1, their distribution will
have increasingly larger probability mass to {x1, x2}, and vice-versa for ξ = −1. It is easy to see
that for any t, the drift is upper bounded τ(Pt, Pt+1) ≤ ∆ (note that all distances are ≤ 1).

By construction, the optimal centers for P [1]
T are C [1] .

= {x1, x2, (y1 + y2)/2}, whereas the
optimal centers for P [−1]

T are C [−1] = {y1, y2, (x1 + x2)/2}. Additionally, if γ ≤ 1/16 and
w∆ ≤ 1/16, one can easily verify that for any set of k centers C, there is a Ĉ ∈ {C [−1], C [1]}
such thatW3,2(Ĉ, P

[ξ]
T ) ≤ W3,2(C,P

[ξ]
T ) for ξ ∈ {−1, 1} (To check this, it is sufficient to consider

solutions C constructed as follows: partition {x1, x2, y1, y2} into 3 sets, and find the optimal center
for each set). Thus, to establish the desired result, we need only to provide a lower bound to the
following quantity:

Ψ
.
= inf

Ĉ
sup

ξ∈{−1,1}
E

X∼P [ξ]

(
W3,2(Ĉ, P

[ξ]
T )−W∗

3,2(P
[ξ]
T )
)

= inf
Ĉ∈{C[−1],C[1]}

max
ξ∈{−1,1}

E
X∼P [ξ]

(
W3,2(Ĉ, P

[ξ]
T )−W∗

3,2(P
[ξ]
T )
)
. (6)

Equation (6) shows that we can obtain a lower bound by formulating a decision problem of de-
termining ξ given the observations X1, . . . , XT . Let ϕ̂ be any estimator that observes X and it
decides whether ξ = 1 or ξ = −1. The optimal (3, 2)-approximation solution C∗ for P [ξ]

T has cost
γ2

2

(
1
2 − w∆

)
, but if this solution is used to approximate P [−ξ]

T , the cost is equal to γ2

2

(
1
2 + w∆

)
.

Therefore, it holds:

Ψ = γ2w∆ · inf
ϕ̂

max
ξ∈{−1,1}

E
X∼P [ξ]

1{ϕ̂(X )̸=ξ} . (7)
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where 1A ∈ {0, 1} is an indicator function that is equal to 1 if and only if A is true. We can use an
information-theoretic lower bound as Le Cam’s lower bound (Lemma 1 of Yu, 1997) to obtain

inf
ϕ̂

max
ξ∈{−1,1}

E
X∼P [ξ]

1{ϕ̂(X )̸=ξ} ≥
1

2

(
1− 1

2
∥P [1] − P [−1]∥1

)
≥ e−KL(P [1],P [−1])

4
(8)

where KL denotes the Kullback–Leibler divergence, and the last inequality is folklore (e.g., Tsybakov,
2008). By direct computation, the KL divergence between the two distributions is upper bounded as

KL
(
P [1],P [−1]

)
=

T∑
t=1

KL
(
P

[1]
t ,P

[−1]
t

)
= O

(
w3∆2

)
. (9)

By combining Equations (7), (8) and (9), we finally obtain that:

Ψ ≥ γ2w∆e−O(w3∆2) . (10)

Note that the value of w represents a trade-off: for a larger w, we incur a larger error proportional
to γ2w if we decide incorrectly, however, it is easier to take the correct decision since the two
distributions drifted apart for w steps. By taking γ = 1/16 and w = (1/∆)2/3 to maximize the
lower bound of Equation (10), we finally obtain that Ψ = Ω(∆1/3).

To generalize this proof to an arbitrary k ≥ 3, we construct a decision problem that contains k/3
rescaled instances of the decision problem for k = 3 formulated above. These instances must be
sufficiently separated in space so that they can be treated independently. The dependency on the
dimension d arises from a covering argument, which determines the scaling required to ensure that
all the instances fit within a ball of radius 1/2.

A similar construction to formulate a decision problem to lower bound the error of the (k, 2)-
approximation problem with independent and identically distributed samples was used by Bartlett
et al. (1998). The extension of the lower bound to take into account a drift in the distribution is
inspired by previous work on learning with drift (Mazzetto and Upfal, 2023b).

7. Simulations

We study the behavior of Algorithm 1 with a proof-of-concept implementation, limited to the case
z = 2 (related to the k-means objective). We consider synthetic datasets generated using a mixture
of four multivariate Gaussians in two dimensions, where drift is implemented by changing the mean
and covariance matrix Σ = I2σ

2. Initially, each coordinate of the means is sampled uniformly from
the interval [−10, 10] (data will be rescaled later). We consider two datasets. SEGMENTED is a
dataset where the stream is divided in four segments of length 256, 512, 128, and 256. Each segment
maintains σ constant (σ = 1, 2, 1, and 0.5), and the means are moved at distance 10 in a random
direction at the beginning of each segment. In this setting, the optimal window length at any time
step t extends from t back to the beginning of the segment containing t. In the STEPWISE dataset,
the stream is divided in three periods of 4096 points each, with drift occurring at each time step. In
the first and last periods, σ = 1 and at each time step the means of the Gaussians are shifted by 0.05
along the first coordinate. In the second period, we set σ = 2, but the means are shifted by 0.001 at
each time step. After generating the stream, we rescale all the points so that they are contained in the
unit-norm ball. For both datasets, we report the length of the window selected by our algorithm at
each time step, chosen among window sizes with geometric ratio γ = 1.1.
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Figure 1: Window length at each time step on synthetic data: SEGMENTS (top) and STEPWISE

(bottom).

For the SEGMENTED dataset (Figure 1, top), we observe that our algorithm (solid line) closely
tracks the optimal window length (dashed line) across all segments. Vertical bars mark drift points.
For the STEPWISE dataset (Figure 1, bottom) the vertical lines mark the boundary between the
different periods. In this regime, we expect the window size to grow until we reach a good solution
to the trade-off between statistical error and drift error. This behaviour is confirmed in all three
segments. As expected, in the first and last segments, where considerable drift occurs at each time
step, our algorithm uses short window lengths. The middle segment has a smaller drift but higher
variance, resulting in a statistical error higher than the drift error. Therefore, our algorithm selects
longer window lengths.

8. Conclusions

We address the (k, z)-approximation problem for a stream of data whose distribution can change
over time. We present a variable-size window algorithm that adjusts its window length to provably
adapt to the concept drift, and we show the tightness of our approach through a minimax lower bound
for the important special case of z = 2. We believe that our framework is of more general interest,
beyond the (k, z)-approximation problem, and can be applied to other important data mining and
machine learning problems. As an example, it is possible to extend our work to other clustering
variants such as spectral clustering or kernel k-means (Schölkopf et al., 1998; Ng et al., 2001; Li and
Liu, 2021).

More generally, the framework works for any real-valued family of functions F , where the cost
W(f, P ) =

∫
f(x)dP (x) is defined as the expectation of the function f ∈ F , and τ(P,Q) is the

discrepancy between P and Q according to the family F . (For the (k, z)-approximation problem
in this paper, we used F = {x 7→ ∥x − C∥z : C ∈ C}.) There are only two requirements. The
first is that one can compute the function with minimum cost, i.e., the empirical risk minimizer
over a set of samples, but an approximate solution to this minimization problem also suffices. The
second requirement is that we can provide an upper bound to the statistical error, i.e., a sample
complexity result for the uniform convergence of the expected costs of F . Our result improves on
previous adaptive work on learning with drift that requires an exact computation of the function with
the minimum cost, and also the additional assumption that the computation of the discrepancy τ is
tractable (Mazzetto and Upfal, 2023a).
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Appendix A. Auxiliary Results

In this section, we provide technical results that are useful to prove the main results of this paper.

A.1. Useful Inequalities

Proposition 5 Let a and b be two real numbers, and let z ≥ 1. We have:

(a+ b)z ≤ 2z−1(az + bz) .

Proof This result is folklore. It holds:

(a+ b)z = 2z
(
a

2
+
b

2

)z

≤ 2z
(
az

2
+
bz

2

)
= 2z−1(az + bz) ,

where the inequality is due to the convexity of q 7→ qz for z ≥ 1.

Proposition 6 (Neta (1980)) Let z ≥ 1, and let a and b be two real numbers. We have:

|az − bz| ≤ max
(z
2
, 1
)
· (az−1 + bz−1) · |a− b|

A.2. Relation between discrepancy and Wasserstein distance

Let P and Q be two distributions over Rd. A joint distribution ϕ over (Rd)2 is a coupling for two
distributions P and Q over Rd if

∫
ϕ(x, y)dx = Q(y) and

∫
ϕ(x, y)dy = P (x). The Wasserstein

distance W (P,Q) between P and Q is defined as

W (P,Q) = inf
ϕ

∫∫
∥x− y∥ϕ(x, y)dxdy .

We say that a coupling ϕ∗ minimizing the above expression is an optimal coupling for P and Q.
Intuitively, ϕ∗ is an optimal way to transport the probability mass from P to Q with respect to the
Euclidean norm. The Wasserstein distance is often used to describe the distance between distributions
for the (k, 2)-approximation problem (e.g., Zhuang et al., 2022).

Lemma 7 (Relation between discrepancy and Wasserstein distance) Let P and Q be two dis-
tributions over Rd with support within the ball of radius 1/2 centered at the origin. Let τ be the
discrepancy as defined in Equation 2 for the (k, z)-approximation problem. The following inequality
holds:

τ(P,Q) ≤ max(z, 2) ·W (P,Q) .

Proof Let ϕ∗ be the optimal coupling for P and Q. Consider any C ∈ C. We have that

Wk,z(C,P )−Wk,z(C,Q)

=

∫
∥x− C∥zP (x)dx−

∫
∥y − C∥zQ(y)dy =

∫∫
(∥x− C∥z − ∥y − C∥z)ϕ∗(x, y)dxdy

≤
∫∫

max(z/2, 1)

[
|∥x− C∥ − ∥y − C∥| · (∥x− C∥z−1 + ∥y − C∥z−1)

]
ϕ∗(x, y)dxdy

≤ 2max(z/2, 1)

∫∫
|∥x− C∥ − ∥y − C∥|ϕ∗(x, y)dxdy ,
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where in the second equality we used the fact that ϕ∗ is a coupling, the third inequality follows
from Proposition 6, and the last inequality is due to the fact that P and Q have their support
in the ball of radius 1/2. For a point y, let yC be the closest center of C to y. We have that
∥x−C∥ − ∥y−C∥ ≤ ∥x− yC∥ − ∥y− yC∥ ≤ ∥x− y∥. With a similar strategy, it is also possible
to show ∥y − C∥ − ∥x− C∥ ≤ ∥x− y∥. Thus, it holds:

2max(z/2, 1)

∫∫
|∥x− C∥ − ∥y − C∥|ϕ∗(x, y)dxdy

≤ 2max(z/2, 1)

∫∫
(∥x− y∥)ϕ∗(x, y)dxdy

= max(z, 2)W (P,Q) .

We can prove the same upper bound forWk,z(C,P )−Wk,z(C,Q), and we can conclude by observing
that the inequality holds for any C ∈ C.

A.3. Discrepancy Inequalities

In this subsection, we will prove inequalities involving the discrepancy, including Lemma 1 and
Lemma 3. We first need the following auxilary result.

Proposition 8 For any 1 ≤ w ≤ T , the following inequality holds

τ(PT , P
[w]
T ) ≤ max

0≤t<w
τ(PT , PT−t) .

Proof We use the definition of τ and P [w]
T and write

τ(PT , P
[w]
T ) = sup

C∈C

∣∣∣Wk,z(C,PT )−Wk,z(C,P
[w]
T )
∣∣∣ = sup

c∈C

∣∣∣∣∣Wk,z(C,PT )−
1

w

T∑
t=T−w+1

W (C,Pt)

∣∣∣∣∣
= sup

C∈C

∣∣∣∣∣ 1w
T∑

t=T−w+1

[Wk,z(C,PT )−Wk,z(C,Pt)]

∣∣∣∣∣
≤ 1

w

T∑
t=T−w+1

sup
C∈C
|Wk,z(C,PT )−Wk,z(C,Pt)| =

1

w

∑
0≤t<w

τ(PT , PT−t) ,

where the inequality is due to the triangle inequality. We can conclude that

τ(PT , P
[w]
T ) ≤ 1

w

∑
0≤t<w

τ(PT , PT−t) ≤
1

w

∑
0≤t<w

sup
t′<w

τ(PT , PT−t′) = sup
t′<w

τ(PT , PT−t′) .

Proof [Lemma 1] We apply the triangle inequality and obtain that

τ(PT ,P
[w]
T ) ≤ τ(P [w]

T ,P[w]
T ) + τ(P

[w]
T , PT ) .
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We conclude the proof using Proposition 8

Proof [Lemma 3] The following chain of inequalities holds:

Wk,z(C̃
[w]
T , PT )− βW∗

k,z(PT )

= Wk,z(C̃
[w]
T , PT )−Wk,z(C̃

[w]
T ,P[w]

T ) +Wk,z(C̃
[w]
T ,P[w]

T )− βW∗
k,z(PT )

≤ |Wk,z(C̃
[w]
T , PT )−Wk,z(C̃

[w]
T ,P[w]

T )|+ βWk,z(Ĉ
[w]
T ,P[w]

T )− βW∗
k,z(PT ). (11)

Let C∗ be an optimal solution with respect to PT . We have thatW∗
k,z(PT ) = Wk,z(C

∗, PT ) and

Wk,z(Ĉ
[w]
T ,P[w]

T ) ≤ Wk,z(C
∗,P[w]

T ). Therefore, we can upper bound (11) as

Wk,z(C̃
[w]
T , PT )− βW∗

k,z(PT )

≤ |Wk,z(C̃
[w]
T , PT )−Wk,z(C̃

[w]
T ,P[w]

T )|+ β|Wk,z(C
∗,P[w]

T )− βWk,z(C
∗, PT )|

≤ (β + 1) · τ(PT ,P
[w]
T ) ,

where in the last inequality we used the definition of the metric τ . The statement follows by an
application of Lemma 1.

Appendix B. Upper Bound (Theorem 2)

In this section, we provide the full analysis of the algorithm that attains the guarantee of Theorem 2.
As a preliminary step, we formally instantiate and prove the upper bound to the statistical error.

We remark that this error is due to the fact that we use the empirical distribution P[w]
T to approximate

the cost of a solution with respect to the underlying distribution P [w]
T . This error has been extensively

studied for the special case of (k, 2)-approximation in the case of independent samples from the same
distribution (e.g., Biau et al., 2008; Maurer, 2016; Li and Liu, 2021), and recent work generalize
those results for the (k, z)-approximation problem for constant z (Bucarelli et al., 2023). We provide
an upper bound to the statistical error with an explicit dependency on z.

Lemma 9 Consider the (k, z)-approximation problem, where z ≥ 1. Let δ ∈ (0, 1) and 1 ≤ w ≤ T .
There exists a constant c > 0 such that with probability at least 1− δ, it holds that:

τ(P
[w]
T ,P[w]

T ) ≤ c

[√
z2k

w
log4 (w) +

√
ln(1/δ)

w

]
.

The proof of this result is provided in Subsection B.1. The guarantee of our algorithm is conditioned
on the event that we obtain a good estimation of the costs with respect to P [wj ]

T by using the empirical

distribution P[wj ]
T , for all j ≥ 0 (we remind that wj = 2j). This is formalized in the following

corollary, which follows by carefully taking a union bound over the events of Lemma 9.

Corollary 10 Let δ ∈ (0, 1). There exists a constant c > 0 such that with probability at least 1− δ,
for all j ≥ 0, it holds that:

τ(P
[wj ]
T ,P[wj ]

T ) ≤ c

[√
z2k

wj
log4 (wj) +

√
ln(1/δ) + log(logwj + 1)

wj

]
.
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Proof Let δj = (6/π2)δ/(j + 1)2. Lemma 9 implies that for the window size wj , we have that with
probability at least 1− δj , it holds

τ(P
[wj ]
T ,P[wj ]

T ) ≤ c

[√
z2k

wj
log4 (wj) +

√
ln(1/δj)

wj

]

= c

[√
z2k

wj
log4 (wj) +

√
ln(π2/(6δ)) + 2 log(logwj + 1)

wj

]
.

Note that
∑

j≥0(j + 1)−2 ≤ π2/6. By taking a union bound, the above event holds for all j ≥ 0
with probability at least 1−

∑
j≥0 δj ≥ 1− δ.

The function G : N 7→ R is defined as the right-hand side of Corollary 10 (compare to Equation (5)):

G(w)
.
= c

[√
z2k

w
log4 (w) +

√
ln(1/δ) + log(logw + 1)

w

]
.

We remind that C̃ [wj ]
T is defined as the solution that minimizes the cost computed with respect to the

empirical distribution P[wj ]
T among all the approximate solutions computed by A on windows of size

wi with 0 ≤ i ≤ j,

C̃
[wj ]
T = argmin

{
Wk,z

(
C,P[wj ]

T

)
: C ∈ {A(P[wi]

T )}0≤i≤j

}
. (12)

To prove Theorem 2 we must show that the solution returned by Algorithm 1 exhibits the quality
stated in the theorem. As sketched in Section 5, the argument revolves around two lemmas. The
first lemma shows that if at iteration j the if condition is false for all i = 0, . . . , j − 1, then the
guarantee provided by the solution C̃ [wj ]

T is up to constants as good as the one provided by any of the
previous solutions (Lemma 11). If that is the case, we can keep iterating.

Lemma 11 If the following condition holds for all i such that 0 ≤ i ≤ j:

Wk,z(C̃
[wj ]
T ,P[wi]

T )−Wk,z(C̃
[wi]
T ,P[wi]

T ) ≤ 6G(wj) + 2G(wi) ,

then we have that

Wk,z(C̃
[wj ]
T , PT ) ≤ β · W∗

k,z(PT ) + min
0≤i≤j

[
(β + 1) · τ(PT ,P

[wi]
T ) + 6G(wj) + 2G(wi)

]
.

Proof Fix an integer i such that 0 ≤ i ≤ j. We have that

Wk,z(C̃
[wj ]
T , PT )− β · W∗

k,z(PT )

=Wk,z(C̃
[wj ]
T , PT )− β · W∗

k,z(PT ) +Wk,z(C̃
[wj ]
T ,P[wi]

T )−Wk,z(C̃
[wj ]
T ,P[wi]

T ) . (13)

Now observe that

Wk,z(C̃
[wj ]
T ,P[wi]

T ) ≤ Wk,z(C̃
[wi]
T ,P[wi]

T ) + 6G(wj) + 2G(wi)

≤ β · W∗
k,z(P

[wi]
T ) + 6G(wj) + 2G(wi)

≤ β · Wk,z(C
∗,P[wi]

T ) + 6G(wj) + 2G(wi) ,
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where C∗ is a solution such thatW∗
k,z(PT ) =Wk,z(C

∗, PT ). By plugging the above inequality into
(13), we obtain that

Wk,z(C̃
[wj ]
T , PT )− β · W∗

k,z(PT )

≤
(
Wk,z(C̃

[wj ]
T , PT )−Wk,z(C̃

[wj ]
T ,P[wi]

T )
)

+ β
(
Wk,z(C

∗,P[wi]
T )−Wk,z(C

∗, PT )
)
+ 6G(wj) + 2G(wi)

≤ (β + 1) · τ(P[wi]
T , PT ) + 6G(wj) + 2G(wi) .

The second proposition shows that if at iteration j there exists i < j such that the if condition is
true, then a sizeable distribution drift occurred from PT−wj+1 to PT . When this happens, we can
interrupt the iteration loop of our algorithm (Lemma 12).

Lemma 12 Assume that the event of Corollary 10 holds. If there exists i and j, with 0 ≤ i < j,
such that

Wk,z(C̃
[wj ]
T ,P[wi]

T )−Wk,z(C̃
[wi]
T ,P[wi]

T ) ≥ 6G(wj) + 2G(wi)

then max0≤t<wj τ(PT , PT−t) ≥ G(wj).

Proof The proof of this proposition relies on the following inequality

τ(P
[wj ]
T , P

[wi]
T ) ≤ τ(PT , P

[wj ]
T ) + τ(PT , P

[wi]
T ) ≤ 2 sup

t<wj

τ(PT , PT−t) , (14)

where the last step is due to Proposition 8.
Let i and j be the indexes defined in the statement of the proposition. We divide the analysis into

two cases: (a) when inequality

W (C̃
[wj ]
T ,P[wi]

T )−Wk,z(C̃
[wj ]
T ,P[wj ]

T ) ≥ 3G(wj) +G(wi) (15)

holds, or (b) when inequality (15) does not hold.
Case (a). We are assuming that (15) holds. In this case, we have that

Wk,z(C̃
[wj ]
T ,P[wi]

T )−Wk,z(C̃
[wj ]
T ,P[wj ]

T ) ≤ τ(P[wi]
T ,P[wj ]

T )

≤ τ(P[wi]
T , P

[wi]
T ) + τ(P

[wi]
T , P

[wj ]
T ) + τ(P

[wj ]
T ,P[wj ]

T )

≤ τ(P [wi]
T , P

[wj ]
T ) +G(wi) +G(wj) .

The second inequality is obtained by using the triangle inequality, and the third inequality is due to
Corollary 10. By combining the above inequality with (14), we obtain that τ(P [wi]

T , P
[wj ]
T ) ≥ G(wj).
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Case (b). Inequality (15) does not hold. In this case, we have that:

Wk,z(C̃
[wj ]
T ,P[wi]

T )−Wk,z(C̃
[wi]
T ,P[wi]

T )

≤ Wk,z(C̃
[wj ]
T ,P[wj ]

T )−Wk,z(C̃
[wi]
T ,P[wi]

T ) +G(wi) + 3G(wj)

≤ Wk,z(C̃
[wi]
T ,P[wj ]

T )−Wk,z(C̃
[wi]
T ,P[wi]

T ) +G(wi) + 3G(wj)

≤ τ(P[wi]
T ,P[wj ]

T ) +G(wi) + 3G(wj)

≤ τ(P[wi]
T , P

[wi]
T ) + τ(P

[wi]
T , P

[wj ]
T ) + τ(P

[wj ]
T ,P[wj ]

T ) +G(wi) + 3G(wj)

≤ τ(P [wi]
T , P

[wj ]
T ) + 2G(wi) + 4G(wj) .

The first inequality is due to (15), the second inequality is obtained by using the definition of C̃ [wj ]
T

(12), and the last inequality is due to Corollary 10. By using the assumption of the proposition, we
have that

τ(P
[wi]
T , P

[wj ]
T ) ≥ 6G(wj) + 2G(wi)− 4G(wj)− 2G(wi) = 2G(wj) .

We can conclude the proof by using inequality (14).

The above lemma provides a lower bound to the drift error when the stopping condition is verified.
This is the crucial technical result that allows the algorithm to lower bound the drift without explicitly
computing it. The proof of the theorem is constructed with those two lemmas.
Proof [Theorem 2] Consider the function Φ(w) defined as

Φ(w) = β

[
G(w) + sup

t<w
τ(PT , PT−t)

]
.

Let w∗ = argmin1≤w≤T Φ(w) be the optimal window size according to Φ. The algorithm returned
C̃ [wj ] for some j such that 0 ≤ j ≤ ⌊log2 T ⌋. To prove the theorem, it is sufficient to show that

Wk,z(C̃
[wj ])− β · W∗

k,z(PT )

Φ(w∗)
= O(1) .

We assume that the event of Corollary 10 holds, otherwise we say that our algorithm fails (with
probability ≤ δ). Let ℓ be the largest integer such that 2ℓ ≤ w∗. We distinguish two cases: ℓ ≤ j and
ℓ > j.

(Case ℓ ≤ j). Since the algorithm returned the value j, we have that Lemma 11 holds for j. As
ℓ ≤ j, we obtain

Wk,z(C̃
[wj ])− β · W∗

k,z(PT )

Φ(w∗)

≤
(β + 1) · τ(Pt,P

[wℓ]
T ) + 6G(wj) + 2G(wℓ)

Φ(w∗)

≤
(β + 1)G(wℓ) + (β + 1) supt<wℓ

τ(PT , PT−t) + 6G(wj) + 2G(wℓ)

βG(w∗) + β supt<w∗ τ(PT , PT−t)

≤
(
1 +

3

β

)
G(wℓ)

G(w∗)
+

(
1 +

1

β

)
supt<wℓ

τ(PT , PT−t)

supt<w∗ τ(PT , PT−t)
+

6

β

G(wj)

G(w∗)

=O(1) ,
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where the second inequality is due to Lemma 1.
(Case ℓ > j). Since the algorithm terminated with j < ℓ, it means that there exists a value of i

such that the iteration of the algorithm terminated with indexes (j + 1, i). Due to Lemma 12, this
implies that

sup
t<w∗

τ(PT , PT−t) ≥ sup
t<wj+1

τ(PT , PT−t) ≥ G(wj+1) . (16)

We have that

Wk,z(C̃
[wj ])− β · W∗

k,z(PT )

Φ(w∗)

≤
(β + 1)G(wj) + (β + 1) supt<wj

τ(PT , PT−t)

βG(w∗) + β supt<w∗ τ(PT , PT−t)

≤
(
1 +

1

β

)
G(wj)

supt<w∗ τ(PT , PT−t)
+

(
1 +

1

β

)
supt<wj

τ(PT , PT−t)

supt<w∗ τ(PT , PT−t)

≤
(
1 +

1

β

)
G(wj)

G(wj+1)
+

(
1 +

1

β

)
= O(1) .

The first inequality follows from Lemma 1, and the third inequality is due to (16).

B.1. Upper bound on the Statistical Error (Lemma 9)

In this subsection, we prove the upper bound on the statistical error of Lemma 9 for the (k, z)-
approximation problem. The statistical error of the (k, z)-approximation problem has already been
studied by Bucarelli et al. (2023) for arbitrary k and constant z. In particular, we will use their main
result for the case 1 ≤ z < 2.

Lemma 13 (Bucarelli et al. (2023)) Let 1 ≤ z < 2, w ∈ {1, . . . , T}, and δ ∈ (0, 1). There exists
a constant c such that with probability at least 1− δ, it holds that:

τ(P
[w]
T ,P[w]

T ) ≤ c ·

√k log4(w)

w
+

√
log(1/δ)

w

 .

Proof This result is a straightforward adaptation of Theorem 5.1 in Bucarelli et al. (2023) to our
setting.

Lemma 13 shows that Lemma 9 is true for 1 ≤ z < 2. In the remaining of this subsection, we will
focus on the case z ≥ 2. Compared to the previous work, our goal is to provide a characterization of
the statistical error with an explicit dependency on z. To obtain this result, we extend the argument
by Liu (2021) based on the Rademacher complexity for (k, 2)-approximation problem to an arbitrary
z ≥ 2.

Consider the family of functions F : Rd 7→ R defined as:

F = {x 7→ ∥x− C∥z : C ∈ C} .
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The empirical Rademacher complexity of the family F (Shalev-Shwartz and Ben-David, 2014) over
the last w steps is defined as:

R̂w(F)
.
= E

σ
sup
f∈F

(
T∑

t=T−w+1

σtf(Xt)

)
,

where σ1, . . . , σT are independent Rademacher random variables, i.e., σt = ±1 with probability
1/2. The Rademacher complexity of F over the previous w steps is Rw(F)

.
= EX R̂w(F). The

following result provides an upper bound to the empirical Rademacher complexity, and it will be
proven at the end of this subsection.

Lemma 14 Let z ≥ 2, and let X = {x : ∥x∥2 ≤ 1/2}. There exists a constant c > 0 such that for
any set of samples {XT−w+1, . . . , XT } ∈ Xw, we have that:

R̂w(F) ≤ c · z
√
kw log4(w) .

The above upper bound to the empirical Rademacher complexity can be used to prove an upper
bound to the statistical error through classical learning theory techniques (Mohri et al., 2018).
Proof [Lemma 9] If 1 ≤ z < 2, the result immediately follows from Lemma 13. Let z ≥ 2. We can
observe that ∥f∥∞ ≤ 1 for any f ∈ F since all the points are contained in the ball of radius 1/2
centered in the origin. We can use McDiarmid’s inequality, and show that with probability at least
1− δ/2 it holds that:

1

w
Rw(F) ≤

1

w
R̂w(F) +O

(√
log(1/δ)

w

)
. (17)

We use Lemma 14 to upper bound the empirical Rademacher complexity. Thus, we have that:

1

w
Rw(F) = O

(
z

√
k

w
log4(w) +

√
ln(1/δ)

w

)
. (18)

Let A be the random variable of the statement of the lemma

A = τ(P
[w]
T ,P[w]

T ) . (19)

By a standard symmetrization argument (Vershynin, 2018), we have that

EA ≤ (2/w)Rw(F) . (20)

We can use McDiarmid’s inequality again and show that with probability at least 1− δ/2, it holds:

A ≤ EA+O

(√
ln(1/δ)

w

)
. (21)

By combining (18), (20) and (21), and taking a union bound, we obtain the final statement.

The remaining of this subsection is dedicated to the proof of Lemma 14. The first step is the
application of the ℓ∞ vector contraction for the Rademacher complexity (Foster and Rakhlin, 2019).
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Lemma 15 Let X = {x : ∥x∥2 ≤ 1/2}. There exists a constant c > 0 such that for any set of
samples {XT−w+1, . . . , XT } ∈ Xw, we have that:

R̂w(F) ≤ c
√
kR̃w(F) log2

(
w

R̃w(F)

)
,

where F = {x 7→ ∥x− c∥z : c ∈ X}, and R̃w(F) = sup{XT−w+1,...,XT }∈Xw R̂w(F).

Proof It is a straightforward adaptation of the proof of Lemma 1 in Liu (2021) to our setting.

Lemma 15 shows that in order to upper bound the empirical Rademacher complexity of F , it is
sufficient to evaluate the worst-case empirical Rademacher complexity R̃w(F), where F is a family
of functions that is restricted to consider a single center. To this end, we show both an upper bound
(Proposition 16) and a lower bound (Proposition 17) to R̃w(F).

Proposition 16 (Upper bound to worst-case empirical Rademacher complexity) The following
inequality holds:

R̃w(F) ≤
3z

4

√
w .

Proof Let X = {x ∈ Rd : ∥x∥2 ≤ 1/2}. Consider an arbitrary input {XT−w+1, . . . , XT } ∈ Xw.
We have that:

R̂w(F) = E
σ
sup
f∈F

(
T∑

t=T−w+1

σtf(Xt)

)
= E

σ
sup
c∈X

(
T∑

t=T−w+1

σt∥Xt − c∥z
)

.

For t ∈ {T − w + 1, . . . , T}, let ψt : X 7→ R be defined as ψt(c)
.
= ∥Xt − c∥2, and let h : R 7→ R

be the power function h(a) = az/2. It is possible to observe that ∥Xt − c∥z = h(ψt(c)). Note that
0 ≤ ψt(c) ≤ 1 for any t and c ∈ X , and h is (z/4)-Lipschitz for a ∈ [0, 1]. By using the Lipschitz
contraction inequality for Rademacher complexity (Ledoux and Talagrand, 2013), it is possible to
show that

R̂w(F) = E
σ
sup
c∈X

T∑
t=T−w+1

σth(ψt(c)) ≤
z

4
E
σ
sup
c∈X

T∑
t=T−w+1

σt∥Xt − c∥2 . (22)

We upper bound the expectation of the right-hand side of (22) as follows:

E
σ
sup
c∈X

T∑
t=T−w+1

σt∥Xt − c∥2 = E
σ
sup
c∈X

T∑
t=T−w+1

σt
(
∥Xt∥2 + ∥c∥2 − 2⟨Xt, c⟩

)
≤ E

σ
sup
c∈X

T∑
t=T−w+1

σt∥c∥2 + 2E
σ
sup
c∈X

T∑
t=T−w+1

σt⟨Xt, c⟩ . (23)

We have the following upper bounds:

E
σ
sup
c∈X

T∑
t=T−w+1

σt∥c∥2 ≤ E
σ
sup
c∈C
∥c∥2

∣∣∣∣∣
T∑

t=T−w+1

σt

∣∣∣∣∣ ≤ √w , (24)
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where the last step is due to the Khintchine inequality (Garling, 2007). Also, it holds:

2E
σ
sup
c∈X

T∑
t=T−w+1

σt⟨Xt, c⟩ = 2E
σ
sup
c∈X

〈
T∑

t=T−w+1

σtXt, c

〉
≤ 2E

σ

∥∥∥∥∥
T∑

t=T−w+1

σtXt

∥∥∥∥∥
≤ 2

√√√√√E
σ

∥∥∥∥∥
T∑

t=T−w+1

σtXt

∥∥∥∥∥
2

= 2

√∑
t,t′

⟨Xt, Xt′⟩E
σ
σtσt′

≤ 2
√
w , (25)

where the first inequality is due to Jensen’s inequality. By plugging (24) and (25) into the right-hand
side of (23), we finally obtain that:

R̂w(F) ≤
3z

4

√
w . (26)

The statement follows since inequality (26) holds for any choice of {XT−w+1, . . . , XT } ∈ Xw.

Proposition 17 (Lower bound to worst-case empirical Rademacher complexity) The following
inequality holds:

R̃w(F) ≥ 2−3/2√w .

Proof Without loss of generality, assume that w is even. Let e1 be a canonical standard vector.
We set half of the w points to be equal to e1, and the other half to be equal to −e1, specifically
XT−w+1 = . . . = XT−w/2 = e1/2 and XT−w/2+1 = . . . = XT = −e1/2. We have that:

R̃w(F) ≥ E
σ
sup
c∈C

 T−w/2∑
t=T−w+1

σt∥c− e1∥z +
T∑

t=T−w/2+1

σt∥c+ e2∥z


≥ E
σ

max
c∈{e1,−e1}

 T−w/2∑
t=T−w+1

σt∥c− e1∥z +
T∑

t=T−w/2+1

σt∥c+ e2∥z


= E
σ
max

 T−w/2∑
t=T−w+1

σt,
T∑

t=T−w/2+1

σt

 .

Let A =
∑T−w/2

t=T−w+1 σt and B =
∑T

t=T−w/2+1 σt. Note that 2max(a, b) = a+ b+ |a− b| for any
a, b ∈ R. Thus, we have that:

R̃w(F) ≥ E
σ
max(A,B) =

1

2
E
σ

∣∣∣∣∣
T∑

t=T−w+1

σt

∣∣∣∣∣ ≥ 2−3/2√w

where the last step is obtained by an application of Khintchine inequality (Garling, 2007).
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Proof [Lemma 14] The proof follows as an immediate corollary of Lemma 15, Proposition 16
and Proposition 17. By Lemma 15, there exists a constant c > 0 such that for any set of samples
{XT−w+1, . . . , XT }, it holds that:

R̂w(F) ≤ c
√
kR̃w(F) log2

(
w

R̃w(F)

)
.

By using Proposition 16, we upper bound R̃w(F) ≤ 3z
4 . Additionally, the statement of Proposition 17

implies that
√
w/R̃w(F) ≤

√
w23/2. Thus, we can conclude that there exists a constant c′ > 0 such

that:

R̂w(F) ≤ c′z
√
kw log4(w) .

Appendix C. Lower Bound (Theorem 4)

This section is devoted to the proof of the lower bound of Theorem 4. For ease of notation, we denote
with B(0, r) = {x ∈ Rd : ∥x∥ ≤ r} the ball centered at the origin with radius r ≥ 0. To simplify the
computations, without loss of generality, we assume that the supports of the distributions P1, . . . , PT

lie in a ball centered at the origin of radius 1 rather than 1/2.
Let k ≥ 3. Without loss of generality, we assume that k is divisible by 3. Let m = k/3 and let

z1, . . . , zm be a 12∆-net of B(0, 1−4∆) for some later defined ∆ > 0. Let w = (∆, 0, . . . , 0) ∈ Rd.
We define the sets Ui,−1 = {zi − 3w, zi − 2w} and Ui,1 = {zi + 3w, zi + 4w} for i = 1, . . . ,m,
and we let U = ∪mi=1 (Ui,1 ∪ Ui,−1). By construction, the points U are contained in the unit ball
B(0, 1). Following the volume argument of Levrard (2015), a sufficient condition on ∆ to guarantee
that the points z1, . . . , zm exist is

m ≤
(
1− 4∆

18∆

)d

,

and observe that ∆ = m−1/d/18 suffices.
Let δ = ∆/(3∆) and let r = ( k

48δ2
)1/3. Let ξ ∈ {−1, 1}m. We construct a sequence of discrete

distributions P ξ
1 , . . . , P

ξ
T parameterized by ξ. Those distributions are defined as follows. If t ≤ T −r,

the distribution P ξ
t is uniform over the points U :

P ξ
t (x) = 1/(4m) , ∀x ∈ Ui,±1, i = 1, . . . ,m .

For t > T − r, the distribution P ξ
t is drifting away from the uniform distribution with a drift structure

described by ξ:

P ξ
t (x) =

1± ξi(t− T + r)δ

4m
∀x ∈ Ui,±ξi , i = 1, . . . ,m .
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Proposition 18 For any ξ and 1 ≤ t < T , it holds that

W (P ξ
t , P

ξ
t+1) ≤ ∆ .

Proof If t < T − r, the Wasserstein distance is trivially equal to zero. If T ≥ T − r, then we
can transport the excess mass of P ξ

t+1 generated due to the drift in Ui,ξi to the set Ui,−ξi . With this
transport, we obtain the following upper bound to the Wasserstein distance:

W (P ξ
t , P

ξ
t+1) ≤

m∑
i=1

2δ

4m
6∆ = 3∆δ = ∆ ,

where the last equality is due to the definition of δ.

We denote with C̃ the collection of all set of k centers C ∈ C such that for each i = 1, . . . ,m,
either:

1. C has centers Ui,1 and zi − 5w/2 (average of the points in Ui,−1)

2. C has centers Ui,−1 and zi + 7w/2 (average of the points in Ui,1).

For ξ ∈ {−1, 1}m, we denote with Cξ ∈ C̃ the solution such that if ξi = 1 (resp., ξi = −1),
then the case (1) (resp., case (2)) above applies. Let h(ξ, ξ′) be the Hamming distance between two
strings ξ and ξ′. The following proposition holds.

Proposition 19 Let ξ, ξ′ ∈ {−1, 1}. Then:

Wk,z(C
ξ, P ξ′

T ) =W∗
k,z

(
P ξ′

T

)
+ h(ξ, ξ′)

rδ∆
2

4m
.

Also, for any C ∈ C, there exists C̃ ∈ C̃ such that for all ξ ∈ {−1, 1}m, it holds that

Wk,z(C̃, P
ξ
T ) ≤ Wk,z(C,P

ξ
T ) .

Proof The first statement can be immediately obtained through a direct computation. To prove the
second statement, we can notice that the set Z = {zi ± 3w : 1 ≤ i ≤ m} contains points that are
distance at least 6∆ from one another. As each point in U can be written as z′ or z′ + w for some
z′ ∈ Z , Step 3 of Bartlett et al. (1998) shows that the statement is true if

6 ≥
√

2

1− rδ
+ 1 .

It is possible to verify that this is indeed the case with our choice of r and δ.

Let P(∆) be the collection of all the sequence of joint distributions P1 ⊗ . . . ⊗ PT over
(X1, . . . , XT ) ⊆ B(0, 1)T , such that W (Pt, Pt+1) ≤ ∆ for all 1 ≤ t < T (Due to Lemma 7,
this also implies an upper bound to the discrepancy τ .). For ξ ∈ {−1, 1}n, consider the joint distribu-
tion P ξ = P ξ

1 ⊗ . . .⊗ P
ξ
T over (X1, . . . , XT ), and observe that P ξ ∈ P(∆) due to Proposition 18.
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Let Ĉ ∈ C be any solution that is decided based on the data (X1, . . . , XT ). To prove the theorem, it
is sufficient to show a lower bound to

inf
Ĉ

sup
P1⊗...⊗PT∈P(∆)

E
[
Wk,z(Ĉ, PT )−W∗

k,z(PT )
]
.

We have the following chain of inequalities.

inf
Ĉ

sup
P1⊗...⊗PT∈P(∆)

E
[
Wk,z(Ĉ, PT )−W∗

k,z(PT )
]

≥ inf
Ĉ

sup
ξ∈{−1,1}m

E
[
Wk,z(Ĉ, P

ξ
T )−W

∗
k,z(P

ξ
T )
]

≥ inf
ξ̂

sup
ξ∈{−1,1}m

E
[
Wk,z(C

ξ̂, P ξ
T )−W

∗
k,z(P

ξ
T )
]

=
rδ∆

2

4m
inf
ξ̂

sup
ξ∈{−1,1}m

E
[
h(ξ̂, ξ)

]
, (27)

where the last two steps are due to Proposition 19.
For two distributions P and Q, the square of their Hellinger distance is defined as

H2(P,Q) =

∫
(
√
P (x)−

√
Q(x))2dx .

When P = P1 ⊗ . . .⊗ PT and Q = Q1 ⊗ . . .⊗QT , we have the following factorization property
(Tsybakov, 2008):

H2(P ,Q) = 2

[
1−

T∏
i=1

(
1− H2(Pi, Qi)

2

)]
. (28)

Proposition 20 Let ξ, ξ′ ∈ {−1, 1}m be two strings that differ only in a single position, i.e.
h(ξ, ξ′) = 1. Then:

H2(P ξ,P ξ′) ≤ 1

2
.

Proof If t ≤ T − r, then

H2(P ξ
t , P

ξ′

t ) = 0 ,

else if t > T − r, then

H2(P ξ
t , P

ξ′

t ) = 4

[√
1 + (t− T + r)δ

4m
−
√

1− (t− T + r)δ

4m

]2
=

1

m

[√
1 + (t− T + r)δ −

√
1− (t− T + r)δ

]2
≤ 1

m
[2(t− T + r)δ]2

=
4r2δ2

m
,
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where the inequality is due to the fact that
√
x−√y ≤ x− y if x > 1 and 0 ≤ y ≤ x. By using the

factorization property (28), we obtain

H2(P ξ,P ξ′) ≤ 2

[
1−

(
1− 4r2δ2

m

)r]
≤ 8r3δ2

m
.

The statement follows by substituting the values of r, δ and m.

We use Assouad’s lemma as in Theorem 2.12 of Tsybakov (2008) to lower bound (27). Let
α
.
= supξ,ξ′:h(ξ,ξ′)=1H

2(P ξ,P ξ′). We have that if α ≤ 2, then

inf
ξ̂

sup
ξ∈{−1,1}m

E
[
h(ξ̂, ξ)

]
≥ m

4
(1−

√
α(1− α/4)) .

By using Proposition 20 in the above inequality and combining it with (27), we finally have that:

inf
Ĉ

sup
P1⊗...⊗PT∈P(∆)

E
[
Wk,z(Ĉ, PT )−W∗

k,z(PT )
]
≥ rδ∆

2

48
.

We conclude the proof of the Theorem by substituting the values of r, δ and ∆.
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