{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Universidade Federal do Rio Grande do Sul (UFRGS)   \n",
    "Programa de Pós-Graduação em Engenharia Civil (PPGEC)   \n",
    "\n",
    "# PEC00025: Introduction to Vibration Theory\n",
    "\n",
    "\n",
    "## Test P1 (2021/1): time and frequency domain analysis of sdof systems\n",
    "\n",
    "---\n",
    "\n",
    "**NAME:** <br/>\n",
    "**CARD:** \n",
    "\n",
    "\n",
    "#### Instruções\n",
    "\n",
    "1. Entregar a resolução da prova em arquivo único, com no máximo 10Mb, até as 17h de hoje, 25 de abril de 2022.\n",
    "2. Recomenda-se verificar atentamente se todas as folhas da resolução foram incluídas no arquivo gerado, pois não serão aceitas entregas posteriores.\n",
    "3. Na primeira folha do arquivo deve constar claramente o NOME e o cartão de MATRÍCULA.\n",
    "4. A consulta ao material de estudo e o uso do computador para cálculos são LIVRES.\n",
    "5. A prova deve ser realizada INDIVIDUALMENTE, sem recorrer ao auxílio de colegas ou outras pessoas! Caso se verifique o descumprimento desta regra, todos os envolvidos na fraude terão a nota da prova zerada.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing Python modules required for this notebook\n",
    "# (this cell must be executed with \"shift+enter\" before any other Python cell)\n",
    "\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "from MRPy import *\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Questão 1\n",
    "\n",
    "Um adepto do \"bungee jump\" se atira de uma plataforma no instante $t=0$ preso ao cabo flexível de comportamento elástico linear. O arrasto aerodinâmico pode ser desconsiderado ao longo da queda. Demais dados do problema são:\n",
    "\n",
    "* A massa do saltador é $70{\\rm kg}$.\n",
    "* O cabo distensionado tem comprimento de $20{\\rm m}$.\n",
    "* A rigidez axial do cabo é $70{\\rm N/m}$ na tração e nula na compressão.\n",
    "* O grau de liberdade considerado, $u(t)$, é o deslocamento vertical a partir da superfície da plataforma, sentido positivo para baixo.\n",
    "* A aceleração da gravidade no local é $9.81{\\rm m/s}^2$.\n",
    "\n",
    "<img src=\"resources/tests/PEC00025A_211_P1Q1.jpg\" alt=\"Question 1\" width=\"360px\"/>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Pergunta-se:\n",
    "\n",
    "1. Qual a frequência natural de vibração livre do sistema saltador-cabo (com o cabo em carga)?\n",
    "2. Qual a maior deslocamento atingido durante o salto, $u_{\\rm max}$? Em que instante de tempo, $t$, este deslocamento máximo ocorre?\n",
    "3. Qual a maior aceleração total à qual o saltador é submetido?\n",
    "4. Qual a maior força de tração à qual o cabo será submetido (e que portanto será aplicada à perna do saltador)?\n",
    "5. Se o amortecimento histerético do cabo é 3% (razão do crítico), quantos ciclos de oscilação vertical ocorrerão antes que a  amplitude (da parte flutuante) seja reduzida à 1/3 (um terço) de seu valor máximo? \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "m1 =  70.             # massa da pessoa em (kg)\n",
    "L1 =  20.             # comprimento do cabo sem tensão (m)\n",
    "k1 =  70.             # rigidez axial do cabo (N/m)\n",
    "g  =  9.81            # gravidade local (m/s2)\n",
    "zt =  0.03            # damping ratio of critical (non dim)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 1.1:__ aplicação direta da fórmula da frequência de um sistema massa-mola:\n",
    "\n",
    "$$ f_{\\rm n} = \\frac{1}{2\\pi} \\sqrt{\\frac{k}{m}} $$\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Frequência natural do sistema saltador-cabo é aproximadamente 1.00rad/s = 0.159Hz.\n",
      "\n"
     ]
    }
   ],
   "source": [
    "wn = np.sqrt(k1/m1)\n",
    "fn = wn/(2*np.pi)\n",
    "\n",
    "print('Frequência natural do sistema saltador-cabo é aproximadamente {0:3.2f}rad/s = {1:4.3f}Hz.\\n'.format(wn, fn))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 1.2:__ pode ser resolvida por balanço de energia, ou considerando-se a resposta a condições iniciais de velocidade (da massa) superpostas à uma carga impulsiva a partir do deslocamento $u(t_0) = 20$m.\n",
    "\n",
    "A velocidade do saltador no instante que o cabo começa a ser tensionado é dada por:\n",
    "\n",
    "$$ v_0 = \\sqrt{2gh} = \\sqrt{2 \\cdot 20 \\cdot 9.81} \\approx 19.81{\\rm m/s}$$\n",
    "\n",
    "Já o instante em que o tensionamento do cabo tem início é dado por:\n",
    "\n",
    "$$ t_0 = \\sqrt{\\frac{2h}{g}} = \\sqrt{\\frac{2 \\cdot 20}{9.81}} \\approx 2.02{\\rm s}$$\n",
    "\n",
    "A amplitude total do delocamento é a soma da amplitude devida à velocidade inicial com o deslocamento \n",
    "devido à carga impulsiva. \n",
    "O formato retangular da carga impulsiva implica que o fator de amplificação dinâmica, $A$, da resposta\n",
    "estática, $u_{\\rm est}$, é igual a 2. Portanto:\n",
    "\n",
    "$$ u_{\\rm max} = u(t_0) + \\frac{v_0}{\\omega_{\\rm n}} + A \\, u_{\\rm est} $$\n",
    "\n",
    "Substituindo valores:\n",
    "\n",
    "$$ u_{\\rm max} = 20 + \\frac{19.81}{1.00} + 2 \\cdot \\frac{70 \\cdot 9.81}{70} \n",
    "               = 20 +  19.81 + 19.62 = 59.43{\\rm m}$$\n",
    "\n",
    "contados a partir da plataforma, ou 39.43m a partir dos 20m de cabo. \n",
    "\n",
    "O tempo até esse deslocamento máximo é aproximadamente 1/4 do período natural de vibração livre, \n",
    "contado após o instante $t_0$ em que o cabo começa a ser tensionado. Podemos dizer que o tempo total \n",
    "até o instante em que $ u_{\\rm max} $ é atingido pode então ser calculado como:\n",
    "\n",
    "$$ t_{\\rm max} = t_0 + \\frac{T_{\\rm n}}{4} \\approx 2.02 + \\frac{1}{4 \\cdot 0.159} \\approx 3.6{\\rm s} $$\n",
    "\n",
    "O código abaixo apresenta esses resultados na forma de uma simulação. Contudo, o tempo $t_0$ é definido como sendo\n",
    "zero para poder aplicar a velocidade inicial na função que integra por Duhamel. \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Pico de deslocamento é 30.4m.\n",
      "Tempo até o pico é  4.0s.\n",
      "\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAADmCAYAAAA5g5cgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAe7klEQVR4nO3de5wcZZ3v8c83ATZKuDPEEJINYBwEhEBilA3iDCAbQlZ2FRVcFRAdddHFPfoC3D27oOd4XujB66JglAiuCGRR5BaByDJcznqBxAAJIRAxQEhIBBQZiUDI7/xRz0jRUz3TmZnunqn+vl+vfnXXU09V/eaXy2/qqep6FBGYmZlZuYxpdgBmZmY2/FzgzczMSsgF3szMrIRc4M3MzErIBd7MzKyEXODNzMxKyAXeWpakUyT1NDuOkUxSSDqh2XEMhaRzJS2vtjzMx9o95ayjHvs32xou8FZK6T/Z/l6XAFcC+zQpvktysbwoaaOkWyWdLmnbZsRUxUTguuHYkaRDJL0k6f8Nx/6G4Hzgrb0L6c/i+ibGY1YXLvBWVhNzrw8XtJ0REZsiYmOT4gP4aYplKnAMWSH9LHCHpO2bGNefRcQTEfH8MO3uw8A3gQMlvX6Y9rnVIqInIp5q1vHNGsUF3kopFaYnIuIJ4PeVbRHxTOUQfe/QraSTJa2R1CPpu5K2k/QPkh6T9JSkL0sak9tuO0lfkLRW0h8l3SXpr2sI8/kUy+MRsSwivgx0AIcCZ+b2v4ukSyX9TtImST+VdEBu/Skp1mMlPSDpOUnXStpJ0gmSHpL0jKT/kPSq3HZzJN2R9vu0pJsqC29+iF7S1LT8TkmL03Hul/S2gX7QdNz3At8GrgJOq1jfu+8TJd2Wfs5fSTpI0oGS/jvl9k5Jexf8mX1I0qNpux9L2r2fWP48RC/pXOBk4LjciEpHLp6Z1fKRlt8oaYmkP0n6FfCmguPtL+kGSc+mkZrLJb1moJyZDZULvNkrTQWOB+YB7wTeBVwDvJHsLPtDwCeAv8tt812yId/3Am8ALgWuk3Tw1h48IpYDN6Zj97qErHAcD8wCngNuzBdr4C+ATwF/DxwFzCQrpCenff1t+pn+IbfN9sBX0z47gGdS3NsNEObnga8DBwN3AVdIGj/ANicAj0TEvcB/AB+ocinis8AXgEPIfjH7AfDvwL+kOMelY+dNBd5Hlp+jgWnAggHi6XU+sJCXR1MmAv9dy4ZplOUG4GGyfJ+d9pfvMxG4HVie4j8aGA9cm/8l0awuIsIvv0r9IisuUdB+CtCTWz4X2ATslGu7CvgtsF2urRu4IH3eF9gCTKnY94+Bb/YT0yXA9VXWnQc8lz5PAwI4Ird+J7Ji/KHczxFAe67P+cBLwO61HDOt3z5tc3iuLYAT0uepafkjufWTUtvh1fab+t0GfDp9FrAGeGdufdG+56W2dwzwZ/ZSPv/A4Wm7abk+yyu2yS/3yUsunpkV7fl8dJH9EjI+t/59qU9HWv4ccEvFPnZJfWY1+9+GX+V++TdIs1d6NCKeyS1vAB6MiBcq2vZInw8lK1j3p2HynjTsfxxZ8R8MkRUAgNeT/QLxs96VKb77gP1z2zwfEasqYnwiIp6sEjeS9pX0A0m/lvSHtH4MMGWA+O7NfV6X3vco6piO81pgNtnZOBERwGVkoyH97XtDer+vom17Sa/OtT0eEY/mln9BlrN6X+d/PXBvROS/ifGzij4zgCMq/m48ltYN9u+HWU22aXYAZiPMixXLUaVtbPo8Ji2/saDfpkHGsD/ZsC9kxb6a/FSQmwvWFcWd/6X+OuBx4CPpfTNwPzDQEP2f9xsRIQn6v9z3IbJ8PZr6Qvq5JE2OiMdyffMxRz9t9T452ZLeXw647yWF/v5seo0hG8b/dMG6DQVtZsPGZ/BmQ/Mrsv/oXxMRqytej2/tziQdCMwhuzQAWcEdAxyW67Mj2bX++wcbtKTdyM5A/09E/DQiVgI7MMy/9Evahuw+gM8A03Ovg8nO1k8dhsNMkjQ5tzyLLGcra9z+BV7+ha3Xb9P7xFzb9Io+9wNv0Cu/8fDmij5LgQPI7j+o/PvxbI3xmQ2KC7zZEETEg2TDzZekO9b3kTRT0qclvWOAzf9C0msk7SnpYEn/g+z6/hLSzVoR8RDZTX7fkvQWSW8Avg/8gTTkPUi/A54EPizptZLeClxE35GAoToO2B34dkQsz7+AK4APDsPNZpuASyVNl3QY2c9xQ8pdLdaQfXWvXdmDaraNiE3Az4GzJB0g6a+ouIGOLP+bgQWpz9vIbgbM+wbZPRNXSnpT+vtxtKT5knYY3I9rVhsXeLOhO5XsTvovAg8A1wNHAI8MsN3RwHrgUeAW4O1kd5EfERF/rNj/L4Fr0/urgTmpCA1KRGwB3gMcRHaH9zeAfwWG6zvvvU4Dbo3i753/J/CXZHkYijVkvyxcB/wX2eWNrRkZ+DbZ2f7dZGfus1P7B9P7XcC3gP+Z3yhde59HdiPkUrJfAM6q6LMu7W8L2bcjVpDl+nmGP9dmr6Dsfhczs9EnfY/9hIg4sNmxmI00PoM3MzMrIRd4MzOzEvIQvZmZWQn5DN7MzKyEXODNzMxKyAXezMyshOpW4CVNlnSrpJWSVkg6I7XvmqaafCi971Jl+zmSVklaLensesVpZmZWRnW7yS5NkzgxIpamJzYtIZuy8hTg6Yg4LxXuXSLirIptxwIPAm8D1pI9aOKkiBj0oznNzMxaSd3O4CNifUQsTZ+fJXtS1CSyOZsvTd0uJSv6lWYBqyPi4TSL1xVpOzMzM6tBQ67BS5oKHEI2jeOEiFgP2S8BFE8zOYmXp1SE7Cx+Up3DNDMzK426TxcraTzwQ+CTEfGH3HSR/W5W0FZ4LUFSF9AFMG7cuBlTpgw0lXVr2bJlC2PG+F7KSs5LMeelmPPSl3NSrNF5efDBB5+MiLaidXUt8Gn+5B8Cl0XEj1LzBkkTI2J9uk6/sWDTtUB++se9gHVFx4iI+cB8gPb29li1atWwxV8G3d3ddHR0NDuMEcd5Kea8FHNe+nJOijU6L5KqTmpVz7voBVwMrIyIL+dWXUs2PzTp/ZqCze8CpknaW9J2wIlpOzMzM6tBPccRZgPvB46UtCy95gLnAW+T9BDZXfLnAaQ5sRcBRMRm4OPATWQ35y2MiBV1jNXMzKxU6jZEHxF3UnwtHeCogv7rgLm55UXAovpEZ2ZmVm6+Q8LMzKyEXODNzMxKyAXezMyshFzgzczMSsgF3szMrIRc4M3MzErIBd7MzKyEXODNzMxKyAXezMyshFzgzczMSsgF3szMrITq9ix6SQuAecDGiDgwtV0JtKcuOwO/j4jpBduuAZ4FXgI2R8TMesVpZmZWRvWcD/4S4ALge70NEfGe3s+SvgQ808/2nRHxZN2iMzMzK7F6ziZ3u6SpRevSXPHvBo6s1/HNzMxaWbOuwb8F2BARD1VZH8DNkpZI6mpgXGZmZqWgiKjfzrMz+Ot7r8Hn2i8EVkfEl6pst2dErJO0B7AY+ERE3F6lbxfQBdDW1jZj4cKFw/kjjHo9PT2MHz++2WGMOM5LMeelmPPSl3NSrNF56ezsXFLtPrWGF3hJ2wCPAzMiYm0N+zgX6ImI8wfq297eHqtWrRp8wCXU3d1NR0dHs8MYcZyXYs5LMeelL+ekWKPzIqlqgW/GEP3RwAPViruk7SXt0PsZOAZY3sD4zMzMRr26FXhJlwM/A9olrZV0Wlp1InB5Rd89JS1KixOAOyXdA/wSuCEibqxXnGZmZmVUz7voT6rSfkpB2zpgbvr8MHBwveIyMzNrBX6SnZmZWQm5wJuZmZWQC7yZmVkJucCbmZmVkAu8mZlZCbnAm5mZlZALvJmZWQm5wJuZmZWQC7yZmVkJucCbmZmVkAu8mZlZCbnAm5mZlVA9Z5NbIGmjpOW5tnMlPS5pWXrNrbLtHEmrJK2WdHa9YjQzMyurep7BXwLMKWj/SkRMT69FlSsljQW+ARwL7A+cJGn/OsZpZmZWOnUr8BFxO/D0IDadBayOiIcj4gXgCuD4YQ3OzMys5Oo2H3w/Pi7pA8DdwKci4ncV6ycBj+WW1wJvqrYzSV1AF0BbWxvd3d3DG+0o19PT45wUcF6KOS/FnJe+nJNiIykvjS7wFwL/C4j0/iXggxV9VLBdVNthRMwH5gO0t7dHR0fHsARaFt3d3TgnfTkvxZyXYs5LX85JsZGUl4beRR8RGyLipYjYAnybbDi+0lpgcm55L2BdI+IzMzMri4YWeEkTc4t/Bywv6HYXME3S3pK2A04Erm1EfGZmZmVRtyF6SZcDHcDuktYC5wAdkqaTDbmvAT6S+u4JfCci5kbEZkkfB24CxgILImJFveI0MzMro7oV+Ig4qaD54ip91wFzc8uLgD5foTMzM7Pa+El2ZmZmJeQCb2ZmVkIu8GZmZiXkAm9mZlZCLvBmZmYl5AJvZmZWQi7wZmZmJVS1wEvaSdJ5kh6Q9FR6rUxtOzcwRjMzM9tK/Z3BLwR+B3RExG4RsRvQmdr+sxHBmZmZ2eD0V+CnRsQXIuKJ3oaIeCIivgBMqX9oZmZmNlj9FfhHJJ0paUJvg6QJks7ilfO1m5mZ2QjTX4F/D7AbcJukpyU9DXQDuwLvHmjHkhZI2ihpea7t/6Zr+vdKurratXxJayTdJ2mZpLu35gcyMzOzfgp8RPwuIs6KiP0iYtf0en1qe7qGfV8CzKloWwwcGBEHAQ8Cn+ln+86ImB4RM2s4lpmZmeXU7WtyEXE78HRF280RsTkt/hzYq17HNzMza2XN/B78B4GfVFkXwM2SlkjqamBMZmZmpaCIqN/OpanA9RFxYEX7vwAzgXdEQQCS9oyIdZL2IBvW/0QaESg6RhfQBdDW1jZj4cKFw/xTjG49PT2MHz++2WGMOM5LMeelmPPSl3NSrNF56ezsXFLtUvY2A20s6dXAp4ApEfFhSdOA9oi4fjDBSDoZmAccVVTcASJiXXrfKOlqYBZQWOAjYj4wH6C9vT06OjoGE1ZpdXd345z05bwUc16KOS99OSfFRlJeahmi/y7wPHBYWl4L/O/BHEzSHOAs4O0R8VyVPttL2qH3M3AMsLyor5mZmRWrpcDvGxFfBF4EiIhNgAbaSNLlwM+AdklrJZ0GXADsACxOX4G7KPXdU9KitOkE4E5J9wC/BG6IiBu39gczMzNrZQMO0QMvSHoV2Y1vSNqX7Iy+XxFxUkHzxVX6rgPmps8PAwfXEJeZmZlVUUuBPwe4EZgs6TJgNnBKPYMyMzOzoRmwwEfEYklLgTeTDc2fERFP1j0yMzMzG7SqBV7SoRVN69P7FElTImJp/cIyMzOzoejvDP5L6X0c2XfW7yE7gz8I+AVweH1DMzMzs8Hq71n0nRHRCTwCHBoRMyNiBnAIsLpRAZqZmdnWq+VrcvtFxH29CxGxHJhet4jMzMxsyGq5i36lpO8A3yf7qtz7gJV1jcrMzMyGpJYCfyrwMeCMtHw7cGHdIjIzM7Mhq+Vrcn8CvpJeZmZmNgrUMtnMb0hPscuLiH3qEpGZmZkNWS1D9Plp6MYB7wJ2rU84ZmZmNhwGvIs+Ip7KvR6PiK8CRw60naQFkjZKWp5r21XSYkkPpfddqmw7R9IqSaslnb01P5CZmZnVUOAlHZp7zZT0UbIZ4QZyCTCnou1s4JaImAbckpYrjzcW+AZwLLA/cJKk/Ws4npmZmSW1DNF/Kfd5M/Ab4N0DbRQRt0uaWtF8PNCRPl8KdJPND583C1idZpVD0hVpu/triNXMzMyorcCf1ltse0nae5DHmxAR6wEiYr2kPQr6TAIeyy2vBd40yOOZmZm1pFoK/FVA5cQzVwEzhj8cIHvefaU+d/H/ubPUBXQBtLW10d3dXaewRqeenh7npIDzUsx5Kea89OWcFBtJeelvNrn9gAOAnSS9I7dqR7K76Qdjg6SJ6ex9IrCxoM9aYHJueS9gXbUdRsR8YD7AxL1fF6vHThlkaOX06yd/zb47OSeVnJdizksx56Uv56TYSMpLf2fw7cA8YGfgb3LtzwIfHuTxrgVOBs5L79cU9LkLmJYuAzwOnAi8t5adj99WvPuNkwfu2ELu/NMjHO6c9OG8FHNeijkvfTknxRqdl/6KcdUCHxHXANdIOiwifra1B5V0OdkNdbtLWgucQ1bYF0o6DXiU7Dv1SNoT+E5EzI2IzZI+DtwEjAUWRMSKWo45RrDjuG23NtRSe/W2ck4KOC/FnJdizktfzkmxkZSX/oboz4yILwLvlXRS5fqI+Mf+dhwRfbZJjirouw6Ym1teBCzqb/9mZmZWXX9D9L0zxt3diEDMzMxs+PQ3RH9der+0ceGYmZnZcOhviP46+vl6WkS8vS4RmZmZ2ZD1N0R/fsOiMDMzs2HV3xD9bb2fJW0H7Ed2Rr8qIl5oQGxmZmY2SLXMB38ccBHwa7KnzO0t6SMR8ZN6B2dmZmaDU+tkM50RsRpA0r7ADYALvJmZ2Qg14HSxwMbe4p48TPEjZs3MzGyEqOUMfoWkRcBCsmvw7wLu6n0+fUT8qI7xmZmZ2SDUUuDHARuAt6bl3wK7kj2fPgAXeDMzsxFmwAIfEac2IhAzMzMbPrXcRb838Algar6/H3RjZmY2ctUyRP9j4GLgOmDLUA8oqR24Mte0D/BvEfHVXJ8Osqlkf5OafhQRnxvqsc3MzFpFLQX+TxHx9eE6YESsAqYDSBpLNuf71QVd74iIecN1XDMzs1ZSS4H/mqRzgJuB53sbI2LpMBz/KODXEfHIMOzLzMzMkloK/BuA9wNH8vIQfaTloToRuLzKusMk3QOsAz4dESuG4XhmZmYtQRFVJ4zLOkgPAAcN9/Pn0/Pt1wEHRMSGinU7AlsiokfSXOBrETGtyn66gC6Atra2GQsXLhzOMEe9np4exo8f3+wwRhznpZjzUsx56cs5KdbovHR2di6JiJlF62op8FcCn4iIYX16naTjgdMj4pga+q4BZkbEk/31a29vj1WrVg1ThOXQ3d1NR0dHs8MYcZyXYs5LMeelL+ekWKPzIqlqga9liH4C8ICku3jlNfihfk3uJKoMz0t6DbAhIkLSLLJH6j41xOOZmZm1jFoK/DnDfVBJrwbeBnwk1/ZRgIi4CDgB+JikzcAm4MQYaKjBzMzM/qyWJ9ndll+WNBt4L3Bb8RYDi4jngN0q2i7Kfb4AuGCw+zczM2t1tZzBI2k6WVF/N9nDZ35Yx5jMzMxsiKoWeEmvI/sa20lk17+vJLspr7NBsZmZmdkg9XcG/wBwB/A3vfPBS/qnhkRlZmZmQzKmn3XvBJ4AbpX0bUlHAWpMWGZmZjYUVQt8RFwdEe8B9gO6gX8CJki6UNKA3103MzOz5unvDB6AiPhjRFyWJn7ZC1gGnF3vwMzMzGzwBizweRHxdER8KyKG4zn0ZmZmVidbVeDNzMxsdHCBNzMzKyEXeDMzsxJygTczMyuhphR4SWsk3SdpmaS7C9ZL0tclrZZ0r6RDmxGnmZnZaFXTs+jrpLOf+d2PBaal15uAC9O7mZmZ1WCkDtEfD3wvMj8HdpY0sdlBmZmZjRbNKvAB3CxpiaSugvWTgMdyy2tTm5mZmdWgWUP0syNinaQ9gMWSHoiI23Pri555H0U7Sr8gdAG0tbXR3d097MGOZj09Pc5JAeelmPNSzHnpyzkpNpLy0pQCHxHr0vtGSVcDs4B8gV8LTM4t7wWsq7Kv+cB8gPb29ujo6KhHyKNWd3c3zklfzksx56WY89KXc1JsJOWl4UP0kraXtEPvZ+AYYHlFt2uBD6S76d8MPBMR6xscqpmZ2ajVjDP4CcDVknqP/4OIuFHSRwEi4iJgETAXWA08B5zahDjNzMxGrYYX+Ih4GDi4oP2i3OcATm9kXGZmZmUyUr8mZ2ZmZkPgAm9mZlZCLvBmZmYl5AJvZmZWQi7wZmZmJeQCb2ZmVkIu8GZmZiXkAm9mZlZCLvBmZmYl5AJvZmZWQi7wZmZmJdSM2eQmS7pV0kpJKySdUdCnQ9Izkpal1781Ok4zM7PRrBmzyW0GPhURS9O0sUskLY6I+yv63RER85oQn5mZ2ajX8DP4iFgfEUvT52eBlcCkRsdhZmZWZk29Bi9pKnAI8IuC1YdJukfSTyQd0NjIzMzMRjdlU6834cDSeOA24PMR8aOKdTsCWyKiR9Jc4GsRMa3KfrqALoC2trYZCxcurHPko0tPTw/jx49vdhgjjvNSzHkp5rz05ZwUa3ReOjs7l0TEzKJ1TSnwkrYFrgduiogv19B/DTAzIp7sr197e3usWrVqeIIsie7ubjo6OpodxojjvBRzXoo5L305J8UanRdJVQt8M+6iF3AxsLJacZf0mtQPSbPI4nyqcVGamZmNbs24i3428H7gPknLUts/A1MAIuIi4ATgY5I2A5uAE6NZ1xLMzMxGoYYX+Ii4E9AAfS4ALmhMRGZmZuXjJ9mZmZmVkAu8mZlZCbnAm5mZlZALvJmZWQm5wJuZmZWQC7yZmVkJucCbmZmVkAu8mZlZCbnAm5mZlZALvJmZWQm5wJuZmZWQC7yZmVkJNaXAS5ojaZWk1ZLOLlgvSV9P6++VdGgz4jQzMxutmjEf/FjgG8CxwP7ASZL2r+h2LDAtvbqACxsapJmZ2SjXjDP4WcDqiHg4Il4ArgCOr+hzPPC9yPwc2FnSxEYHamZmNlo1o8BPAh7LLa9NbVvbx8zMzKrYpgnHVEFbDKJP1lHqIhvGB3he0vIhxFZGuwNPNjuIEch5Kea8FHNe+nJOijU6L39ZbUUzCvxaYHJueS9g3SD6ABAR84H5AJLujoiZwxfq6OecFHNeijkvxZyXvpyTYiMpL80Yor8LmCZpb0nbAScC11b0uRb4QLqb/s3AMxGxvtGBmpmZjVYNP4OPiM2SPg7cBIwFFkTECkkfTesvAhYBc4HVwHPAqY2O08zMbDRrxhA9EbGIrIjn2y7KfQ7g9EHsev4QQysj56SY81LMeSnmvPTlnBQbMXlRVkvNzMysTPyoWjMzsxIqRYEf6NG3rULSAkkb818VlLSrpMWSHkrvuzQzxkaTNFnSrZJWSloh6YzU3up5GSfpl5LuSXn5bGpv6bz0kjRW0q8kXZ+WWz4vktZIuk/SMkl3p7aWzouknSVdJemB9H/MYSMpJ6O+wNf46NtWcQkwp6LtbOCWiJgG3JKWW8lm4FMR8XrgzcDp6e9Hq+fleeDIiDgYmA7MSd9YafW89DoDWJlbdl4ynRExPfc1sFbPy9eAGyNiP+Bgsr8zIyYno77AU9ujb1tCRNwOPF3RfDxwafp8KfC3jYyp2SJifUQsTZ+fJfsHOAnnJSKiJy1um15Bi+cFQNJewHHAd3LNLZ+XKlo2L5J2BI4ALgaIiBci4veMoJyUocD7sbb9m9D7DIH0vkeT42kaSVOBQ4Bf4Lz0DkMvAzYCiyPCecl8FTgT2JJrc16yXwBvlrQkPUEUWjsv+wC/Bb6bLud8R9L2jKCclKHA1/xYW2tdksYDPwQ+GRF/aHY8I0FEvBQR08meFDlL0oFNDqnpJM0DNkbEkmbHMgLNjohDyS6Hni7piGYH1GTbAIcCF0bEIcAfGWGXKMpQ4Gt+rG2L2tA7E19639jkeBpO0rZkxf2yiPhRam75vPRKw4rdZPdvtHpeZgNvl7SG7HLfkZK+j/NCRKxL7xuBq8kuj7ZyXtYCa9PIF8BVZAV/xOSkDAW+lkfftrJrgZPT55OBa5oYS8NJEtk1spUR8eXcqlbPS5ukndPnVwFHAw/Q4nmJiM9ExF4RMZXs/5L/ioj30eJ5kbS9pB16PwPHAMtp4bxExBPAY5LaU9NRwP2MoJyU4kE3kuaSXTfrffTt55sbUXNIuhzoIJvNaANwDvBjYCEwBXgUeFdEVN6IV1qSDgfuAO7j5Wuq/0x2Hb6V83IQ2Q1AY8l+0V8YEZ+TtBstnJc8SR3ApyNiXqvnRdI+ZGftkA1N/yAiPu+8aDrZzZjbAQ+TPVZ9DCMkJ6Uo8GZmZvZKZRiiNzMzswou8GZmZiXkAm9mZlZCLvBmZmYl5AJvZmZWQi7wZi1G0m5pRrBlkp6Q9Hj63CPpm3U65iclfaCf9fN6Z7Qzs+Hhr8mZtTBJ5wI9EXF+HY+xDbAUODQiNlfpo9RndkQ8V69YzFqJz+DNDMge7JKb//xcSZdKujnNA/4OSV9M84HfmB7/i6QZkm5LE5Dc1PuIzgpHAkt7i7ukf5R0v6R7JV0B2ex2ZI/LndeQH9asBbjAm1k1+5JNm3o88H3g1oh4A7AJOC4V+X8HToiIGcACoOgpkrOB/OQtZwOHRMRBwEdz7XcDbxn2n8KsRW3T7ADMbMT6SUS8KOk+skfa3pja7wOmAu3AgcDibISdscD6gv1MBFbmlu8FLpP0Y7JHKffaCOw5fOGbtTYXeDOr5nmAiNgi6cV4+YadLWT/dwhYERGHDbCfTcC43PJxwBHA24F/lXRAGr4fl/qa2TDwEL2ZDdYqoE3SYZBNyyvpgIJ+K4HXpj5jgMkRcStwJrAzMD71ex3ZDGVmNgxc4M1sUCLiBeAE4AuS7gGWAX9V0PUnZGfskA3jfz8N+/8K+Eqajx6gE7ihnjGbtRJ/Tc7M6k7S1cCZEfFQlfUTyKYgPaqxkZmVlwu8mdWdpHZgQkTcXmX9G4EXI2JZQwMzKzEXeDMzsxLyNXgzM7MScoE3MzMrIRd4MzOzEnKBNzMzKyEXeDMzsxJygTczMyuh/w/HKt6JGRFLSgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 576x216 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAADmCAYAAAAnSqeTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABCPElEQVR4nO3dd3xcZ5Xw8d9Rr5YsS7Zl2XKVe9xTHKe4xMEhJhUWyLIEFsiyywK7Cwvh5d132ZJ3w74QQl0IEAhLIGSBkEYSO8XpJLFjx022JHfZKpas3jVz3j9mlEzkkTTl3pmRdL6fz3ykuXPnzuPHks69zz3PeURVMcYYY8zYkBTvBhhjjDHGORbYjTHGmDHEArsxxhgzhlhgN8YYY8YQC+zGGGPMGGKB3RhjjBlDLLCbcUdEPiYi7fFuRyITERWR98e7HdEQka+JyP6hnjv8WYX+PlvvxvGNCYcFdjOm+P+4Dvf4OfAbYE6c2vfzgLb0iUi9iDwnIp8RkdR4tGkIxcCjThxIRFaKiEdEXnbieFH4BnDlwBP//8VjcWyPMa6wwG7GmuKAx6eCbPu8qnapan2c2gfwtL8ts4Cr8QXQfwFeFJHsOLbrbapaq6o9Dh3uU8APgKUissihY4ZNVdtVtTFen29MrFhgN2OKPyDVqmot0Dx4m6q2DB6KHxiiFZFbReS4iLSLyM9EJE1E/kZETolIo4jcJSJJAe9LE5Gvi0i1iHSIyBsi8p4Qmtnjb8tpVd2jqncB64FVwJcCjj9RRO4TkSYR6RKRp0VkScDrH/O39RoROSQinSLyiIjkicj7RaRSRFpE5L9FJDPgfVtE5EX/cc+JyFODA27gULyIzPI/v1lEtvs/56CIbB7pH+r/3FuAHwO/BT4x6PWBY39IRJ73/zt3i8gyEVkqIq/4+/YlEZkd5P/skyJy0v++P4hI4TBteXsoXkS+BtwKXBswgrI+oD1rhuoP//MLRWSXiHSLyG7g4iCft1hEHheRNv/IzK9FZOpIfWZMtCywG+MzC7ge2ArcDHwAeBi4EN9V9SeBzwI3BrznZ/iGdm8BLgDuAx4VkeXhfriq7gee9H/2gJ/jCxjXAxcBncCTgUEaSAe+APw5sAlYgy+A3uo/1g3+f9PfBLwnG7jbf8z1QIu/3WkjNPMO4DvAcuAN4AERyRnhPe8HTqjqXuC/gY8OccvhX4CvAyvxnZD9Cvgu8FV/OzP8nx1oFvARfP1zFVAG3DtCewZ8A3iQd0ZPioFXQnmjf1TlceAovv6+3X+8wH2KgReA/f72XwXkAI8Enhwa4wpVtYc9xuQDX1DRINs/BrQHPP8a0AXkBWz7LXAWSAvYtgP4nv/7uYAXKB107D8APximTT8HHhvitTuBTv/3ZYACVwS8nocvCH8y4N+hwIKAfb4BeIDCUD7T/3q2/z2XBWxT4P3+72f5n/9VwOsl/m2XDXVc/37PA1/0fy/AceDmgNeDHXurf9tNI/yfeQL7H7jM/76ygH32D3pP4PPz+iWgPWsGbQ/sj9vwnXzkBLz+Ef8+6/3P/xV4ZtAxJvr3uSjevxv2GNsPO3M0xuekqrYEPK8DKlS1d9C2yf7vV+ELVAf9w+Ht/uH9a/EF/UgIvj/8AIvwnTi8OvCiv337gMUB7+lR1cOD2lirqg1DtBsRmSsivxKRIyLS6n89CSgdoX17A74/4/86OdiO/s+ZB6zDd/WNqipwP77Rj+GOXef/um/QtmwRyQrYdlpVTwY8fw1fn7l9H38RsFdVA2dWvDpon9XAFYN+Nk75X4v058OYkKTEuwHGJIi+Qc91iG3J/u+T/M8vDLJfV4RtWIxveBd8QX4ogUsy9gd5LVi7A0/iHwVOA3/l/9oPHARGGop/+7iqqiICw9/O+yS+/jrp3xf8/y4RmaGqpwL2DWyzDrPN7YsRr//rOw0+/9bBcP83A5LwDdd/MchrdUG2GeMYu2I3JjK78f2Bn6qqVYMep8M9mIgsBbbguwUAvkCbBKwN2GcCvnv5ByNttIhMwnfF+X9V9WlVLQdycfgkX0RS8N3n/wqwIuCxHN/V+ccd+JgSEZkR8PwifH1WHuL7e3nnRG3AWf/X4oBtKwbtcxC4QN49g+GSQfu8CSzBl18w+OejLcT2GRMRC+zGREBVK/ANK//cn4E+R0TWiMgXReSmEd6eLiJTRWSaiCwXkX/Ad/9+F/4kLFWtxJe89yMRuVxELgB+CbTiH9qOUBPQAHxKROaJyJXADzn/yj9a1wKFwI9VdX/gA3gA+EsHksi6gPtEZIWIrMX373jc33ehOI5vCt4C8RWYSVXVLuBPwJdFZImIXMqgxDh8/d8P3OvfZzO+JL9A38eXE/EbEbnY//NxlYjcIyK5kf1zjQmNBXZjIvdxfJnx/wkcAh4DrgBOjPC+q4Aa4CTwDHAdvqzwK1S1Y9DxXwce8X/NArb4g09EVNULfBBYhi9j+/vAPwFOzVkf8AngOQ0+b/x/gJn4+iEax/GdJDwKPIvvNkY4IwE/xnd1vxPflfo6//a/9H99A/gR8L8D3+S/t74VX4Ljm/gC/5cH7XPGfzwvvtkOB/D1dQ/O97Ux7yK+fBZjjBk9/PPQ36+qS+PdFmMSjV2xG2OMMWOIBXZjjDFmDLGheGOMMWYMsSt2Y4wxZgyxwG6MMcaMIRbYjTHGmDEk7oFdRJL9yzQ+5n9e4F8astL/dWK822iMMcaMFnEP7MDneXcJyNvxrYpUhq94x+1xaZUxxhgzCsU1sIvIdHylJ38SsPl6fOta4/96Q4ybZYwxxoxa8b5ivxv4Eu+sqAQwRVVrAPxfh1wW0hhjjDHvFrdlW0VkK1CvqrtEZH0E778NuA0gIyNjdWnpSEtJjz9er5ekpHifuyUe65fgrF/OZ30SnPVLcLHul4qKigZVLRq8PZ7rsa8DrhOR9wIZwAQR+SVQJyLFqlojIsVAfbA3q+o9wD0ACxYs0MOHD8eq3aPGjh07WL9+fbybkXCsX4Kzfjmf9Ulw1i/BxbpfRCToglNxO+VS1a+o6nRVnQV8CHhWVT+CbyWrW/273Ypv6UpjjDHGhCARx1LuBDaLSCWw2f/cGGOMMSGI51D821R1B7DD/30jsCme7THGGGNGq0S8YjfGGGNMhCywG2OMMWOIBXZjjDFmDLHAbowxxowhFtiNMcaYMcQCuzHGGDOGWGA3xhhjxhAL7MYYY8wYYoHdGGOMGUMssBtjjDFjiAV2Y4wxZgyxwG6MMcaMIRbYjTHGmDHEArsxxhgzhlhgN8YYY8YQC+zGGGPMGGKB3RhjjBlDLLAbY4wxY0jcAruIZIjI6yLylogcEJF/8W8vEJHtIlLp/zoxXm00xhhjRpt4XrH3ABtVdTmwAtgiIpcAtwPPqGoZ8Iz/uTHGGGNCELfArj7t/qep/ocC1wP3+bffB9zgxufvrW7mh88foaWrz43DG2OMMXER13vsIpIsInuAemC7qr4GTFHVGgD/18lOf25FXRs7Dp/lA6unc9e2w3i96vRHGGOMMXEhqvEPaiKSDzwEfBZ4SVXzA15rUtXz7rOLyG3AbQBFRUWrH3zwwZA/74FDPXxgfhrJSUJVk4fGbuXi4pQo/xWJp729nZycnHg3I+FYvwRn/XI+65PgrF+Ci3W/bNiwYZeqrhm8PSGimao2i8gOYAtQJyLFqlojIsX4ruaDvece4B6ABQsW6Pr160P6rJONnVyWcZZNl8wEYD1wx+MHWb9+cbT/jISzY8cOQu2X8cT6JTjrl/NZnwRn/RJcovRLPLPii/xX6ohIJnAVcAh4BLjVv9utwMNOfu4f99dw7QXF79o2b3IOxxo6nPwYY4wxJi7ieY+9GHhORPYCb+C7x/4YcCewWUQqgc3+545p7epjYnbau7ZtXjyVbQdqnfwYY4wxJi7iNhSvqnuBlUG2NwKb3PjMutZupuZlnLe9IDuN1m7LjjfGGDP6javKcy9XNXDp3MKgr2Wnp9De0x/jFhljjDHOGleB/cjZduYWZQd97eLZBbxx7FyMW2SMMcY4a1wFdkEQkaCvLZuez55TzbFtkDHGGOOwhJjuFguN7T3nJc0FSk1OwpOghWpau/v4/rNVeLzK1uXTWDEjP95NMsYYk6DGTWDfe7qFFTPyht0nOUno93hJSU6sgYzvPVvFX185l/ysVO584hAzC7KGPUkxxhgzfiVWBHPRwTOtLC4ePrDPn5JLZX37sPvE2psnm1gybQITs9MQET595Vx+8eqJeDfLGGNMgho3gb2nz0NmWvKw+yybnsdbCXaffduBOrYum/b284nZaShqGfzGGGOCGjeBPRTTJ2Zyurkr3s14W0tnHxMyU0hOenfC3w0rSnj0rTNxapUxxphENi4Ce3NnL3lZI9+THipjPl6Clb8FmFWYzclznXFokTHGmEQ3LgJ7RV0786eEtuKOiCTMMq7VTZ3MnBR83n1+ZipNHb0xbpExxphEN04Cexvzp+SGtG+iDMf39HtIHSY7f8PCyTxfcTaGLTLGGDMajIvpbvWt3UzOTQ9p3wVTcjlU28aMgiyXWzW8ncebuHBWwZCvl03O4eE9p2PYotAdONPCQ2/62nbDyhKWlgw/G8EYY4xzxsUVO4R+/9w35a3N5daMbNeJJlbPnDjk64mWDzDgbFsPf9h9mq9eu4ivXruIR986Q31bd7ybZYwx48a4CeyhykxLprvXE+9m0OfxkpE6/PS80oIsTjYmVhLdL149zmc3lSHiK9/7txvn8bOXj8e7WcYYM26M+cDe0N5DwSir0tbv8ZIUwhX52jmF/OloYwxaFJozzV3kZaYyISP17W25GalMyU3nlGXxG2NMTIz5wF5V3868yaElzg1ITkqi3+N1qUUjO1TbxqLiCSPuN6Mgk1NNiRMwH95zhptXTT9v+82rp/O7N6vj0CJjjBl/xnxgP9HYwazC8BLhfAEzfpnxu040sWpm/oj7JdJ9dq9XaenqC1rDPjcjlT6PN64nS8YYM16M+cB+prmb4rzMsN4zpyiHYw3xqxnf0N7D5NyMkPbNTEumIwHKy+4+1cyaYZL9Lp1byCtHEue2QSCvV3n92DmqEmydAGOMiUTcAruIzBCR50SkXEQOiMjn/dsLRGS7iFT6vw4dLUKgqueVZB3J7MJsjp7tiOZjoxJOa5eV5LPvdItrbQnVy1UNXFZWOOTrl8yZxGvHEi+wd/V6+NfHDtLe08frx87x4xeOxrtJxhgTlXhesfcDX1DVRcAlwGdEZDFwO/CMqpYBz/ifx1ReZiqt3fG5Cu7u85A+QjZ8oGUz8thb3exeg0LU3ecZNot/4OQqUar6Dfjec5X8zfq5bFw4hVsuLmV2YTZP7q+Jd7OMMSZicQvsqlqjqm/6v28DyoES4HrgPv9u9wE3RPEZEOl9aI1PADpcG3qVPIAJGam0x+kkZMDJxk5mTho5j2FxcR4Ha1pj0KLQ7DpxjvlTcpk84Z3bHlctnsLuU810JcCUR2OMicSQgV1E8kTkThE5JCKN/ke5f1u+k40QkVnASuA1YIqq1oAv+AOTIz3u2baekCvOJYqDNa0smTZyRnwiefVoA5fOHXoYfsBlZYW8VNUQgxaF5sn9tbwvYEncAR+5eCa/fv1kHFpkjDHREx3iylREngKeBe5T1Vr/tqnArcBVqrrZkQaI5ADPA3eo6u9FpFlV8wNeb1LV8+6zi8htwG0ARUVFqx988MHzjn34nId+LywpDH1oe8Afj/ayoTSVzJTYZp7/vrKXG+elhpXx/tjRXjaXppI+qK3t7e3k5IS2+E00flfRy01lobX5dxW93Dw/vnUF2tvbadYsjrV4uHx6atB9/uew798Ubn7GaBarn5fRxPokOOuX4GLdLxs2bNilqmsGbx+uVvwsVf164AZ/gP+6iPylE40SkVTgd8D9qvp7/+Y6ESlW1RoRKQbqg71XVe8B7gFYsGCBrl+//rx96t84xaXzJjF9Yvh133uKainJz4x5nfM3ew+zYcOCsN7jnVrHxKw0Vpa++/xnx44dBOsXJ6kqb/QcZsOGhSHtv89TySXr5oxYVc9NO3bsoKp/Gl98z1wy04K3I3vWOZo6etm0ZGqMWzc8j1f5xavHOdfRi8er/PklMynJD2/Wx1Bi8fMy2lifBGf9Elyi9Mtw99hPiMiXRGTKwAYRmSIiXwZORfvB4ru8+ylQrqp3Bbz0CL5RAfxfH470M860dIU91W3A3KJsjpyN7fQnrzeynIBFxRPidu/61LkuZhYEX1o2mOUz8tlbHd8sfo9X6fN4hwzqAGtmTuTNk82xa1QIVJW7th/mkjmT+MLVC/j8VWX89MVjnEmA1QiNMYljuMD+QWAS8LyInBORc8AOoAD4Mwc+ex3wF8BGEdnjf7wXuBPYLCKVwGb/84h4lYiHUmfEoQ77mZYuSvJDm78eaOqEDOpa4rPQyp+ONnLxnKFXoRts1cyJ7DxxzsUWjexAo4d184bPCRARcjNSaO3ui1GrRvbwnjOsm1v4dlXC9JRkvrRlAT98/kjCzTYwxsTPkEPxqtoEfNn/cJyqvsTQU7Y3ufGZ4UhPSaYvxpXSjjV0MLsw/Psz8axAd6qpkw8UnF9Gdig56Sl09sQ347yy2cvfDLMk7oDNi6fw9ME6bgpSJjfWOnr6OVzXxg0rS961PSM1mZtWTeeh3ae5eXX822mMib8xXXlutKU9HT3bwZyi0Ie130Ukbldt4Z5YJCdJzE+aBqgqqpCSPPKPvm8J38SoRver107ykUtmBn1txYx8Kura6O1PzJK9je09vFh5lrpWW77XmFgYs4G9tbuP3IzhcgMTT2N7D5MiXIluxsTYLwjT1Tt8UZqhLJyaS0VdfNa8P1jTSmlu6D/2manJdPfFd4Shp99Dc1fvsElyN6ws4ZG3zsSwVaF54PWT/Oq1k6SnJPPwntP85MWjDDUTxxjjjDEb2E83dUWdLZyRlhzbQiX+NcwjMX9KLpV1sb26PFjTwuII5twvn5HPW6fik0D3QkUDS8OY/njx7IK4L4375P5arllaPOw+i4oncLi2NaGC5oM7TzFlQgaf3VTGRbMLuO2KuawszecnLx6Ld9OMGdNGDOwikiUi/yQiP/Y/LxORre43LTqnm7oomRhdYJ8xMSu2V8FR/FGeOzmHqhhn8e851cLy6flhv684L4Oalvhkcrf39JGVGvrJ06oEyI4/cKY1pGmXq2cWsOdUs/sNCkFVfRstnX1sWPju+lKrZxZQkJ3Gqwm6IJAxY0EoV+w/A3qAtf7n1cC/u9Yih5xujv6KfeakLE7EKDM+3Brxg/mS0mJbWra5s5eCCG4dxCvZr6vXQ0ZKeH2cmpwU1+VmT53rpLQgtDoMGxdO5tlDQcs+xJSq8qvXTvHxdbOCvn7TqhKeLq+LW57FcLp6PfzmjZPctb2Cpw7U4k2gERBjQhVKYJ+rqv8J9AGoahejIC+tsSOyoBOotCCLk+diE9hPhFhvfayIx3Kzb55sYvUwS8sOpbQgixON8Vnt76kDtWxZGlqRnLSUJATinhPwUlUD6+ZNGjJBUUT40IUzeOCNqMthOOpQbStff/IQa2YV8HebypiYlcb95b00d/bGu2nGhCWUwN4rIpmAAojIXHxX8AlNiP7KMD8rjZau2MxjPtbQzuzCCDPiB8QwM76lq48JGcHLsYbigpI89sd4udk3TzSxKoLAvm5eYdyGjhs7einMCX29g02LpvBcnK/adxw+y8aFwy/xUDYllzPNXfT0J8ZiOycbO3lo92n+z9bFzC3KISlJuGh2ATeXpfGNbYfp7I3vQkvGhCOUwP7PwJPADBG5H99Sql9ytVUOGG0DaMcaOqMO7NPzMzkdoypkh2paWVgc+ip0gy0riX0Fuu7+yLL4p0/MpLop9jkBJxo7Qh6GH7Bseh77YnzCFGjPqWZWluaHdFJ9/YppPLwn/pn8/R4vP3npKF+8egFJgwpaZaUKn9tYxneeqYpT64bX3tPPo2+d4Zd/OsGBM/Gt6GgSx4iBXVW3AzcBHwN+DaxR1R3uNmv86ertJystuul586bkUFkfm2lkh2rbWDg18lXo8rJSY1rVrTOK/h0IUrHOOH+mvJ7Ni6eMvGMAESElOSluV8JPHajlPSHW1184dQKVdW1xz+S/79UTfHTtTFKHuHUweUIGF86ayLOH6mLcsuE9tvcM/7WjinmTc9i8eAoVdW3822MH7daBGXbZ1lUDD2AmUAOcAUr92xJWV6+HTIcWGREYNeU6503OidmUt8b2HopG0ZK4b57wXUlGqnRS7PItBpwLcxh+wGXzCnk5DsvjNrT3kJeZOmSADObSuYW8dix+JYYb2nvo7Oln3uThR582LZrCS5WNcc9fGPCr106SkiT843sWsqh4AlMmZHDjyul8/qoyvrmtgob2hL9balw03G/gN/2P7+NbJ/0e4Mf+77/jftMid7q5i2kR1FwPZmpeBrWjpGLWhIzUmCWkOXGqMyEjlZbO2Fy1v1XdzIoZ+RG//5LZk3jtaOwCUJ/HG/E6B6tnTmTn8SaHWzSyJ/fXsnXZ8PPtB7tifhHPV5x1qUUj+8WrJ/jo2lkh7XvrpTP51Wsn3W1QCJ47VE9WWjJbgtQ2mJCRyu3XLOTbT1cmTP7CgPrWbr79dCXf3HaYu7ZX8M1th6mMU6GqsW7IwK6qG1R1A3ACWKWqa1R1NbASSMwbTn7VTZ0RLdUazMwYZMY3dfSSlxXfNcrD4fWqI9MilkybwIGa2NwX7O7zRHWrY0ZBZkyv2AfuVUciOUkQif1I0+nmrrB/75KTfIvtxGP4uKali9z0FPKyQksCnTkp23eFH8dEutqWbnaeOHfemgGBstNT+Ksr5/DDHUdj2LLhbTtQy/2vneQTl8/mC1cv4B82z+ezG8t45Ugj971yPO63Y8aaUMbMFqrqvoEnqrofWOFaixzg+wPjzBrVsVjl7VhjFDXig3D7l6S6qYsZYSZ1BbN42gQOnnF/uVkn+iPW99lfP3aOi2aHvmreYBeU5Mc0ia6po5f8zMhmSVy3fFpcyuH+dmc1f7ZmRljv+fBFpfz69fhN07v35WN8ZsO8EfebPjGL6RMzeS3OVRMB/rD7NB29/fz95vnkpL9zcp2WksStl85iybQJfOeZqoQL7scbOvjes5Xctb2Cu7ZX8JMXj1I/SkZvQ7mEKReRnwC/xDcC+xGg3NVWRelsWw9FEdybDGZafiZnXK6SdvRsBxfOCn8aVjDF/sx4p0YsgimvbX176dBoxGo6oa9GQPQnTjMKMjl1rovSGNQb6OqNboRh3bxJ/OLVEyyP4vZDOJ4ur+OqMBP9BkyfmMWZ5tj+wezo6afPqyFfrQ+YUZBFQ3sPvf1e0lJiW5H7hYqzrJ45MeSfi5tWlfAvjx5k1cyJYeU9OOmlygY6ez3ccnHpkPusmVWAAve+fJxPXDY7do0bQm+/lx89f4TcjBQ+vm422f6TkYb2Hn7zximy05L56NpZ582gSCSh/G9/HDgAfB74O+Cgf1vC8iqOdXpykuD2iKaTtw7KJudQ5fKKZJV1bcybHP7ysvGy+1RTVIlzAy6aPYnXj7t/n729p//tPyaRyo1hvgXA0YYO5hZF/jMR6yJAD+0+zU3DDGcP59oLinlsb2xHGFSVHYfPcnUYJ08iwi0Xl/LA6/HJC6hv7eaVIw3DBvUBF84qoDAnLa75FuD73fv3xw9y/YoSPhYQ1AEKc9L5zIZ5rJlVwB1/LE+YRMpgQpnu1q2q31LVG/2Pb6lqQo9HOH4e5fIQkderESdKDTYvBoG9p98b0XzwYDJS3V9o59jZDmY7cMU+a1Jsgs/rxxqjGoYfUJCdRmMMsqPbe/rJTovu5+GapVN5Yn+tQy0anqpyqqmTWRHWjVhaksfBM7FdcGeg6E+4RbfmT8nlbFsPTR2xzWFQVX6w4wh/u3Hk2wYDrl9RwqtHGjnbFp+M/s7efu58opy/u2r+sKNyS0vy+MRls/mPBA7uoSwCc0xEjg5+xKJxkUqsOzWxFYvhbSdPnBZOzeVQrbv32RVnRnBExO1zPGBgcZ2RF30ZyZXzi3ix0v1pb88eqj9vsZdwTcxOo6mzNybB8s2TTawuje7W10WzC3g9htP0XvaX6Y3Ex9bN5pd/OuFwi4b38J4zvG95cdi3kz67cR4/fP5IzO+3e73KN7dV8LlNZSGVIp+Wn8lfXTmXb247HLfcgOE+N5Sh+DXAhf7H5fimuv3SkZa5oLffS1qys9fsORkprhVT8Xo1bouiRKKrN7rFagZbWpLHfhcT6CJdM34oRbnprifQeL06ZJ31cMybHJuCReU1rSx2IOdicfEEymvcb+9zh85GfSKyadGUmC24s+vEOVbNnBjx34mC7DSSkiRmc9u7ej2U17Syemb4o07Z6SmsX1DEkzEavRnw05eOcdOqEibnhj5Nelp+JluXTePHL8b+Orezt587Hh861S2UofjGgMdpVb0b2OhE40TkXhGpF5H9AdsKRGS7iFT6v4Z1al3T0kVxnjMZ8QNKC7Jdy4w/0+LcnPsBgnvZ2xV1bcyfEnkp2cEm56Zz1sVAue90S0hLnobqotkFrt5nr2/rpjDHmamPIkKSCB4Xk0S6+zykpyQ5cnK6efEUni53t7pbZ28/KckSdTJZcpIwNS8jJiWcnzpQF3I1v6H8+cWl3P+n2Nxr/+WfTvCRS2ZG/P7Ly4p4q7olZut07KtuITMtmSXTwv87sXxGPlMmZLDjcOzWZ+jp93DnE4e47co5Q+4TylD8qoDHGhH5NODUX/afA1sGbbsdeEZVy/DVpb89nAM6sQ77YKUFWZxyaQ7zsYYO5kSRdBRMYW46Z106Oz9c28bCqc4FdrdHK/acaoqqMM1gC6bkUlHr3lXlK1WNXFZW6Njxlk/P563qZseON9gLFWe5Yn6RI8fKSkuhq8/j6tDmE/tquSZIYZdI3LRyOr/fVe3IsYZSUdfG3KLsqHNw8rPSSEkW10eb6tu66e7zRD0d9lOXz+YnMbgS7un38Ls3q7nlopET/IZy/YoSXjt2jroYTIVTVe7aXsGnLp8z7OhCKKet3wx4/AewCvgzhxr5AjD48ud64D7/9/cBN4RzzOqm6NdhH6x0UhYnXArsR892RL+q2yBuJtD5Mvid7d+kJHFtbe627n7yIpxfHUySy7Mkqurbo8ouH+zSeZN4xcXysntONbNier5jx1tVOpE3T7pXNa+ivo0FDp2Y5mWl0tPvdTWB6qHdp4ctRhOOj1wyk/tdrpx33yvHuXXdrKiPMyknndKCLHa7+LMA8OMXjvKJy2ZHnYPz2Y3z+MFzVXhdvt/+i1dPsHnRlBFPnEIJ7J8YqEKnqptV9TbAzRTLKapaA+D/GtbNsNrWborznB3azklPodOlqUON7T1MinLd+MHcDOyK81fZZZNzXc/kd1JeZqorldIGrlSd7N+Bq2A39PZ7SUkSR+fzXjG/kOcr3DkROdnYyQyH6ztsXV7Moy4V16lu6qQoJ530FGdyRPIyU8lMS3btyrK8ppXpE7OiWs450M2rpvPwnjP0u3TS/+bJJopy0x0ptpWVlsItF8/kqePuTTF97nA9uRkprJk1cu6CjDTsJSJvquqqQdt2+cvLRk1EZgGPqepS//NmVc0PeL1JVc+7zy4itwG3ARQVFa1+8MEHAXiospcby5wvzzqajquq/L6qj/cU95KT49zV38Bxb3a4vXUdXiqbPVxW4tyVNUBTt5fd9R42lr77uO3t7VH1y5FmD629ysrJ0c01H6y2w8uRZg/rHO6Hp473sbY4hQnpwwfgcPtl39l+UpKERZOcS04E+G1FLzfOS3VsCuiAx470sqE0lezU0I8bSp88cKiHDy5Ic/yE96HKXrbMTiUzxbnjdvYpTx3vi/pvzuB+UVV+faiXDy5Ic/T/7VSbl4omD5tKnf2d6PUo/1PRyy0Lnf1/217VzoyCTBYWOPs7Udvh5bWafq6f9+7/tw0bNuxS1TXnvUFVgz6AhcDNwBF8y7YOPD4GHBjqfeE+gFnA/oDnh4Fi//fFwOGRjjF//nwd8M1th9UNo+64Tx3S5557ztFj1rV06S9ePe7oMVVVPR6vK/3wxL4a3VfdfN72aPult9+j39rufHt/8coxrWnucvy4lXVt+rtdp0bcL9x++X9PHtK+fk+ErRraCxX1+mLFWUeP2e/x6n/8sTzs94XSJ0/sO6M7jzdG0KqhNbb36HefqXD0mAN+9HyVnmnujOoYg/vl2fI6ffZQXVTHHMp3nq5w/Pfi7u0Veropuj4I5tlnn9V/e/SANrb3OHbMtu4+/T9/2Bf0dw3YqUFi4nBD8QuArUA+8L6AxyrgU+Gfc4TsEeBW//e3Ag+7+FkhSxZxfEhoIKN4tCivbWORg4lzA5KSxJUiQIdqWx27nxooNTmJfo/z7a1r7WGqw7eRAOYWZXPkrLO3OjxeRXFmWt5ga+dM4tWjzg7Hv3KkgUvnRjYPfCRXLZrCtoPOZvM/8MZJPnhh5Aldw/nwRaX82sF77f0eLy9WNrDeoSTKwT5x+WzuffmYY8d7/dg5SiZmMs3hXCzw3Ub73FVlfPfZSkeSQFWVu7f75teH87s23OpuD6vqx4GtqvrxgMfnVPWVqFsMiMivgVeBBSJSLSKfAO4ENotIJbDZ/zwk/R4vyS5lWU/Lz3C8nrWvhrk7dccnZKbS3uts8DlU08p8FwIlACKOr0bm8aprNbIz05IdLdnq8SpulZ52Y9rbzuPnQrrXF4mU5CSSRRxddvTlqkbWzXNutkGglOQkCrPTHbt33dHTT1evh6JcZ9a7GCw3I5XcjFTOODRV78Gd1fzZhdNdm+GSlZbCmpkTHZlS1tHTzxP7a7h5lTMJicFMyEjlhhUl/LcDRYHuffk4168oYVKYa58M+VdPRL7k//YWEfnO4Ec0jR2gqh9W1WJVTVXV6ar6U/XNl9+kqmX+ryFPGq5r62HKBHd+GUpdWL71WEO74xnxA8qm5FLT4ewIQ3tPv2OJMYPNLszimIPlWp1aWnYoq0onsvtks2PH23e6hQsczC4fbMWMfPacanbseC8faXTtChh867S/6FASXUtXHznpyY7fsw908+rp/NahqW//s/NU2KvOhevDF5fyawdqyLd09XGmuYuFU6MvUDScq5dM5cXKhqhnIPxgRxV/vX6u69Nsl8/Ix+tV3orid277wTomZadxQQRVKIe7nBkoa7MT2BXkkXBON7m3qtnMSdmcOOdsnfBjDZ2uBfZ5k3M43e5sYHfzV+GCkjz2O7jM6NGGdua6uFDNytJ8R6fivHa0kYvnuHMFDLB27iRePeJMoFRV+j1ex7K1g1lVOpFdDvXv43tr2LpsmiPHGkpBdhodPf309kf3O9fb76WmtduRTO3h5KSnkJeZSnVTdBcrP3/5OB9zYHpbKD6+blZUQ/LPHqrjgpK8sKrLReOja2fx2N4zEfXxmyebONbQHvFUx+GG4h/1f70v2COiT3NZdVOn48VpBkzOTaeu1dmiL1190S3NOZxpeRk0dTs39Nrn8ZKc5F4+wOzCHI6ede7Eac+pFkcL0wyWkZpMT5R/xAO1dbs3GgLOTnvbW93CMgdq2Q8nKUnISEmmszf62x0nznVEvOBLON57QTFP7K+J6hh/2H2aGx2atz6SD19Uyq+iuNd+5Gw7EzJTKHRoieyRTJ+YRWZqckRrS9S3dfP6sSa2OFScKBRJScIX37OAe144GtYiPAfOtPBseT2funzoynIjfvZQL4jIoyLyyFCPiD/RRTUtzs9hH+BWgpdbRMTRxXCOnu1gTpF7fxx9y+M61+KTjR2UunzVk5qc5Mh94K7e2CRRTspOd2TlrOcrznLl/OhqrYdi06LJPFMe3X3Vqvo2Rwv+DGdplKNO/R4vVWfbXR/WHpCdnsKsSdnsjaAyoaryq9dO8ucXR146NhIfXTuLB14/RVsYa3f09nv53rNVfG5T6CvNOSU9JZkvvmcB33q6gtqWkXMwdp04x1P7a/mHzfOjul0w3F+Tb/DuqnODHwnHyeVEY2IUnSgcqm1lUbFLiXN+4mACnRuFdAZbNiOPfdXR3z7YeeIcFzqwTOtIrlxQxAtRrnetqnT1eciMcpnWUCyZNoEDUS4Q9PjeWq69IHZXaUtL8iIKlACP7a1h67LYtRXg/aun87td1WH/3r1e62HjwsmkxXhWT3KS8LlNZdy1vSKkZFBV5VtPV/DJy+a4Njo6kgkZqfyv9y7iZy8f46UhVlvs93i575XjHDzTyt9vnh910afhhuKfH3jgy1xvwlf+9VX/tnHJiSkMAE0dveRlOV/wJlBGsi/hzQnHGjqY5cCa5sNxKoGuu89DmkvZ8IFWz5zIzhPR3wd+80QzK0vzo2/QCOYUZnO0Ibppb+U1bSxyYCW3UIhIVFX+evo99Ho8ZKfH7g/6NUuLI1pX3uNV9p9uYZmLCZTBJCUJN62azm92ngr5PWfbejjV5nVtlsFICrLTuOWiUr6x7fCwJySqyneeqWLLkqnDrq8eCxmpydx+zUJauvq44/GDPL63hsq6NvafbuEXrx7nzicOcdHsAv5i7SxHLkhCWQTmWnxFar4DfA+oEpFrov7kUSg/K43mTmdWHDrW6O7QNkBxThJHHCrV6tRSosNxKoHuYE0rS0rcDz4TMlJp747+xKnP5US0AQPT3qKpx/BMeR2bolzyNBzXr5jGQ7tPR/ReJxd8CVVaShKTc9M5GmbdgN/tqnasJny4ls/Ip7Wrj8q6kRc38niV7z1bybVz3MsHCUXZlFyuWz6Nf3v8YNBV4Fq7+7jj8XI2LpzMchdzbcIhIly7rJivXLOIWYVZlNe2Ud3UxVWLpvC/ty529IQ51EVgNqjqelW9EtgAfMuxFjjE7elN4OyUt6NnO5jjckLPtOykUVWD3akEurdONcfsyidJiGp++Nm2HiY5tExrKC6cFfmys6pKR29sr4Cn5WdS29Id0S2aA2ecXbI3VB++KLypZB09/Rxt6IhLWwd84rLZ/PJPJ0ZcKvW/dlRxy8UzHS1zG6lFxRP47MYy7nnhCD/YUcVrRxt57WgjP3z+CD/ccYRPr58b0VQxtyUlCUum5XHd8mlsWTrVlUI5oQT2elWtCnh+FIjd4rMhamjvodClgg4DZjq4yptvlTR3h4eKssSRE5Hmzl4mOLhC2lCSk8SRWx3nOnpjlqm7eNoEymsivw/8clUDlzu4TOtIfNPeGiN678GaVhZPi80wfKBL5xXySphtfutUs6t1AYaTkZrM0pI83gjxBOrel47x0bWxTUIbLCU5iX/YvIBvPHU4aHBXVe554QjLZ+S7Us0xUgXZafzjexby5xfNpM+j9HmUD66ZwZe2LIzZ34BEFEpgPyAifxSRj4nIrcCjwBsicpOI3ORy+0JW3dzl+HKig81wcF12r+JqwQyAJHEmUB6qjd19VScq0MUyJ/HCWQW8diyyK2BwfpnWkaQmJ6FKRMPxz5bXx3QYfsDl8wp5oTK8pL/H99WwZclUl1o0suuWT+PxvTUjFlR561Qzk3LSXblqC1deVipfuHo+dz9dwY7D9W//Hh5r6OBfHzvI6pkTubzMnbKx0crLSuWyskIuKytkosOrZY5GoQT2DKAOuBJYD5wFCvDVjd/qWsvCVN3UxXSXfzkyUpPpcXHt5UR1qKaVhTE6S482ga6+rZvCGA5tT8pJ51xHZFPIVBUR97P3B7tkzqSwT0a83tgPww9IShLmFeWEPDJSUdfG7MLsmGdsBxIRbrtizrA1w5s6enlo92k+dKG7VebCkZ+Vxv/ZupgkEe5+uoK7th3m1SONfHnLQlbPdH/mhnHGiL+l/nrxCe90UxdXLYr91UQkYpEPMCA9NZnuPk9U0wDPdfSGXas4UheU5LOvuiXiq9hdx5tcq2E+FEH8QTq8/9VDtW1xGda8ZE4Bdz9dGVZW8ytHGlk3z70SsiO5YWUJ39x2OKSRo9/uquYLV8+PQauGNy0/k8vLivjpS8f4xGWz3/Xz0dLVxze3H+bLWxY6up69E0SEK+YXcYVLi7oY94WSFT9bRO4Skd8ncoEaN6u4Oe10cxclMRp6m12YzbEGZ0vhumlOYXbYGcWBymvbYja6MGDe5JyIkhRfqmxg3dzYTxlKSU4iOUnCqur28pEGLo1DWwekpSSxYGouu0aYXvj6sXMsmTYhJrMMQnHJnEksLcnjjsfLqahro6Onn20Harn76Qr+8eqF5LpYbdCMX6GMVf0BOA58lwQvUBMLTlQbO9rQwdzJ7pe4BCibnENlFJnxHq9CDIeKk5Kiq5gXi2l5g62bV8gLQxSeGE5zV2/c7ge+b3kxj+0Nrfxpc2cvOekprueEjOTGlSU8+taZIfMDuvs8/HFfDdctd7cufLgumTOJf7h6PgfOtPDffzrx9nB3XpYFdeOOUC5xu1XVkdXcxoLpBZmcbupiThQJT0fq22NWD3rmpOyICmYMOHmuk5kul2YdLDs9hbbuvrCvZjp7+2NSEW2wotx0GtvDu89e39pNURyzdudNzuXBnaGtRvbgzlO8f/V0l1s0MhHho2tn8v3njvD5q8re9Zqq8t1nK7ntijkxz1kIRVZaCjeujH8fmvEhlEubb4vIP4vIWhFZNfBwvWUJqrQgO+opb82dsbtSS0tJoi+KgiTlNa2xy4j3i3SJ0T2nml1d+GU4+VmpnAtjoYeny+vZtGiKiy0a2bLpeew6MXwSXXefh5auPqZMiM2KWCOZU5TDytJ87nnhyNtZ230eL3c/Xcn6BZMTIrvcmHgL5Yr9AuAvgI3AQIRQ//OE4FWYGKNhrdKCrKhXcBpNKura2Lw4tgFo+fR87n35WNhTa/acaubWtbPcadQINi6czHOH6rk5xCvbU02dri/NOZJrlhbzf/9YPmy28//sqk64K80r5hcxKSeNrz91iPTkJHo8Xj6wegbzXFym15jRJJTAfiMwR1UjK9gcA/1eXC/2MqAwJ40GB1bIiqW8zFRaOvsiuqfn8SqpMb5nnZmWTFdv+HkMHT39cZmOBTC3KIff7gqt9OnZth4KXF4nIBTJScLqmRN5paqBS4NkyLd09lHf2p2QAXPJtDyWTEu8qmLGJIJQ/mK/BeS73I6o9Hk1Zlnm0d6/a+3uIycjtsFncfEEDtSEX4PdqQVvIpGUFF5N865eD5lxXNlPRMjPSg3pXvtje8/wvgRJ8Lpm6VS2l9edlyGvqnx/RxUfXzc7Ti0zxkQqlMA+BTgkIk8l6nQ3jxdKXK4655SjZztiWmkMfGVPD0aw/GV1k/vV/IayYkYeb4Wx/OXrx89xYYznrw/2vuXTQso0r2vtYWpeYtyzFhH+ev1c/vPJw/R6fCdyqsq9Lx9n48LJFFgVL2NGnVAuHf/Z9VYEISJbgG8DycBPVPXOofb14htujpW0lKSIi74cPdvOytKJLrRqaPlZaSMu7hDMvtMtXFCS73yDQnDx7En8/JXjIVe7evNEE5/ZMM/lVg2vJD+T081dwxar2XWiieUJtjDF5NwMPnXFHP7tgWr2ew7T3uPhPUumcPGc+BWkMcZELpTKc+9ae11E1gG3AK6tyS4iycD3gc1ANb7a9I+o6kG3PjMcswqzOdHYGVHVsJPnOuMyzzaSGwiVde0xT5wbkJ2eElYBlT6PN64lRAesnTuJFysbhqzate1ALV/asjDGrRpZSX4mH1qYzpVXzk/I6WLGmNCF9JdQRFaIyH+KyHHg34FyV1sFFwFVqnrUn7T3AHC9y58ZsrlFORyJsDqaJw4FVMBXWjbchLR+rzfmiXOBcjNSQxppqG7qTJhpTuvnF/F8xdmg+QkHzrQwpyg77oVehmNB3ZjRT4ZKkBKR+cCHgA8DjcBvgC+qquvrC4rI+4EtqvpJ//O/AC5W1b8N2Oc24DaA/MnTVj/0m/vdbtbbej3KU8f7eN/c8O8//q6yl5vLYnPfsr29nZwc3/38PfX95KQJ8/JDu33gVeXhqj5ujFFbgznR6qGuQ7moePiBpe0n+lgzJZmJGaGdhAT2ixsONnpo7313u72q/Kq8l1sWpZGUoMHT7X4ZjaxPgrN+CS7W/bJhw4ZdqrrmvBdUNegD363r54F5AduODrW/kw/gA/juqw88/wvgu0PtP3/+fI21bz51KOz39PR59O7tFS60Jrjnnnvu7e8b2rr1py8eDfm9B8+06KNvnXahVaHzer165xPlI+739RD2CRTYL265a9thraxrVVXfv+PbT1doeU2L658bjVj0y2hjfRKc9Utwse4XYKcGiYnDXQrdjO+K/TkReRLfcHisLjWqgcC1DKcDZ2L02aGJ4KrryNn2uM0JnpSTTlNn6KUIdp5oYnOcK6OJCJmpyXT29g+5wE9dazeFcSzNOpTPbSrjB89V0dN/hu4+D1uWTmXh1NhW8DPGjE9DBnZVfQh4SESygRuAvwemiMh/AQ+p6jYX2/UGUCYis4HT+E4wbnHx8yKiYS7Vebi2jaUl8cuIVg29zXUt3QkxJWvToslsP1jH9SuC19Z/ZM8ZbohR3f1wJCcJn91UFtFyrsYYE40Rb0qqaoeq3q+qW/FdOe8BbnezUaraD/wt8BS+RL0HVfWAm58ZruK8DGpbu8N6z/HGDmZNil8Z0RkFmVQ3dcXt8yOxZFoe+08HL67j9SoNHT0U5SbeFfsAC+rGmFgLK+VZVc+p6o9U1fU68ar6R1Wdr6pzVfUOtz8vXPMm51BRF15mfDyWFA20emYBO0dY9AOgpqUrIa7WBywtyWNf9fnB/ckDtXG/XWCMMYkm/hN/R6mFU3M5XBt+Nbd4mluUzZH6jhH3e7GigcvLzq8dHi/vvaCY3++uftcUst5+LzuPN7EmztXmjDEm0Vhgj1BuRirt3aEXUGnp7GNCDKvjBSMiKPquABnMiXMdzJyUHaNWjSw1OYmrF0/lwZ2n3t72gx1VfHSt6zMvjTFm1InPUljj0OG6NuZPCb9SndPKJudSWd8+ZFv6PV6SE/C+8Nq5k2js6OE//liOx6tsXDSZWYWJc/JhjDGJwgJ7FNJTk0OuGb/vdAs3JkD29hXzi/j9m9VDBvbdp5pZUZof20aFaOuyaVx7QTFgSWnGGDMUG4qPQtnkHCrq2kLat7mzNyFWyirITqOhfej57C9WnOWyecHrnCcCEbGgbowxw7DAHoXF0yZQXjO6EugASguyON5wfhJdv8eLRzUhFlMxxhgTGfsLHoWS/NDmhTd39sZ0WdmRXLusmMf3nb9u+LaDdWxcaNPHjDFmNLPAHgURYYQEcwD2VrdwQRwrzg2Wl5lKd5+H9p53svpVlZ3Hm1g9M7ZrxRtjjHGWBfYoZaen0NY9/NKi+063xLWUbDAfvqiUn7987O3nD+85w9VL7GrdGGNGOwvsUVpZms9bp4KXPB3Q2dtPdnpiTUCYlp/J7MIcfvzCUX67q5qzbT1cMmdSvJtljDEmSokVbUah5dPzufflY1w2RKW2nn4PacmhrYEea9cuK+ZEYwddfR5becwYY8YIC+xRykzzLSs6lN0nm1mZoPPCgYSqMGeMMSZ6NhTvgJz0VFq6gt9n33n8HGtmWUKaMcaY2LDA7oDLywp5qbIh6GsdvR6y0mxgxBhjTGxYYHfAkmkT2BdkzfCq+nbmWD1zY4wxMWSB3QEiQm5GCi2d7x6Of3J/DVcvnhqnVhljjBmPLLA75Lrl03hod/Xbz7v7PHT3ecnLSpyKc8YYY8Y+C+wOmVGQxdn2Hs51+BZYufflY3zwwhlxbpUxxpjxJi6BXUQ+ICIHRMQrImsGvfYVEakSkcMi8p54tC9Sn75yLt9+uoI7nzjEjIlZzCjIineTjDHGjDPxStfeD9wE/Chwo4gsBj4ELAGmAU+LyHxV9cS+ieHLzUjla9ctod+rpCbbYIgxxpjYi0v0UdVyVT0c5KXrgQdUtUdVjwFVwEWxbV10RMSCujHGmLhJtAhUApwKeF7t32aMMcaYELg2FC8iTwPB5np9VVUfHuptQbYFXRhVRG4DbgMoKipix44dkTRzTGtvb7d+CcL6JTjrl/NZnwRn/RJcovSLa4FdVa+K4G3VQGAq+XTgzBDHvwe4B2DBggW6fv36CD5ubNuxYwfWL+ezfgnO+uV81ifBWb8Elyj9kmhD8Y8AHxKRdBGZDZQBr8e5TcYYY8yoEa/pbjeKSDWwFnhcRJ4CUNUDwIPAQeBJ4DOjJSPeGGOMSQRxme6mqg8BDw3x2h3AHbFtkTHGGDM2JNpQvDHGGGOiYIHdGGOMGUMssBtjjDFjiAV2Y4wxZgyxwG6MMcaMIRbYjTHGmDHEArsxxhgzhlhgN8YYY8YQC+zGGGPMGGKB3RhjjBlDLLAbY4wxY4gFdmOMMWYMscBujDHGjCEW2I0xxpgxxAK7McYYM4ZYYDfGGGPGEAvsxhhjzBhigd0YY4wZQ+IS2EXk/4nIIRHZKyIPiUh+wGtfEZEqETksIu+JR/uMMcaY0SpeV+zbgaWqugyoAL4CICKLgQ8BS4AtwA9EJDlObTTGGGNGnbgEdlXdpqr9/qd/Aqb7v78eeEBVe1T1GFAFXBSPNhpjjDGjUSLcY/9L4An/9yXAqYDXqv3bjDHGGBOCFLcOLCJPA1ODvPRVVX3Yv89XgX7g/oG3Bdlfhzj+bcBt/qc9IrI/uhaPSYVAQ7wbkYCsX4Kzfjmf9Ulw1i/BxbpfZgbb6FpgV9WrhntdRG4FtgKbVHUgeFcDMwJ2mw6cGeL49wD3+I+1U1XXRN3oMcb6JTjrl+CsX85nfRKc9UtwidIv8cqK3wJ8GbhOVTsDXnoE+JCIpIvIbKAMeD0ebTTGGGNGI9eu2EfwPSAd2C4iAH9S1U+r6gEReRA4iG+I/jOq6olTG40xxphRJy6BXVXnDfPaHcAdYR7ynuhaNGZZvwRn/RKc9cv5rE+Cs34JLiH6Rd65vW2MMcaY0S4RprsZY4wxxiGjPrCLyBZ/+dkqEbk93u2JFxG5V0TqA6f9iUiBiGwXkUr/14nxbGOsicgMEXlORMpF5ICIfN6/fbz3S4aIvC4ib/n75V/828d1vwCISLKI7BaRx/zPx32fAIjIcRHZJyJ7RGSnf9u47hsRyReR3/rLo5eLyNpE6ZNRHdj95Wa/D1wDLAY+7C9LOx79HF8Z3kC3A8+oahnwjP/5eNIPfEFVFwGXAJ/x/3yM937pATaq6nJgBbBFRC7B+gXg80B5wHPrk3dsUNUVAdO5xnvffBt4UlUXAsvx/dwkRJ+M6sCOr9xslaoeVdVe4AF8ZWnHHVV9ATg3aPP1wH3+7+8Dbohlm+JNVWtU9U3/9234fvFKsH5RVW33P031P5Rx3i8iMh24FvhJwOZx3ScjGLd9IyITgCuAnwKoaq+qNpMgfTLaA7uVoB3eFFWtAV+QAybHuT1xIyKzgJXAa1i/DAw57wHqge2qav0CdwNfArwB28Z7nwxQYJuI7PJX/YTx3TdzgLPAz/y3bn4iItkkSJ+M9sAecglaM36JSA7wO+DvVLU13u1JBKrqUdUV+Ko7XiQiS+PcpLgSka1AvaruindbEtQ6VV2F77bnZ0Tking3KM5SgFXAf6nqSqCDBLoVMdoDe8glaMepOhEpBvB/rY9ze2JORFLxBfX7VfX3/s3jvl8G+IcPd+DLzxjP/bIOuE5EjuO7pbdRRH7J+O6Tt6nqGf/XeuAhfLdBx3PfVAPV/pEugN/iC/QJ0SejPbC/AZSJyGwRScO3lvsjcW5TInkEuNX//a3Aw3FsS8yJr6zhT4FyVb0r4KXx3i9FIpLv/z4TuAo4xDjuF1X9iqpOV9VZ+P6OPKuqH2Ec98kAEckWkdyB74Grgf2M475R1VrglIgs8G/ahK9iakL0yagvUCMi78V3bywZuNdfuW7cEZFfA+vxrS5UB/wz8AfgQaAUOAl8QFUHJ9iNWSJyGfAisI937pv+L3z32cdzvyzDl9iTjO/k/kFV/VcRmcQ47pcBIrIe+KKqbrU+ARGZg+8qHXxD0L9S1TvGe9+IyAp8iZZpwFHg4/h/n4hzn4z6wG6MMcaYd4z2oXhjjDHGBLDAbowxxowhFtiNMcaYMcQCuzHGGDOGWGA3xhhjxhAL7MaMIyIyyb9C1x4RqRWR0/7v20XkBy595t+JyEeHeX3rwApzxpjo2XQ3Y8YpEfka0K6q33DxM1KAN4FVqto/xD7i32edqna61RZjxgu7YjfGICLrA9Yg/5qI3Cci2/zrcN8kIv/pX4/7SX+ZXkRktYg8718Y5KmBUpqDbATeHAjqIvI5ETkoIntF5AHwrTaHr6zt1pj8Y40Z4yywG2OCmYtvCdPrgV8Cz6nqBUAXcK0/uH8XeL+qrgbuBYJVfVwHBC6scjuwUlWXAZ8O2L4TuNzxf4Ux41BKvBtgjElIT6hqn4jsw1d69kn/9n3ALGABsBTY7htJJxmoCXKcYqA84Ple4H4R+QO+kscD6oFpzjXfmPHLArsxJpgeAFX1ikifvpOM48X3d0OAA6q6doTjdAEZAc+vBa4ArgP+SUSW+IfpM/z7GmOiZEPxxphIHAaKRGQt+JbHFZElQfYrB+b590kCZqjqc8CXgHwgx7/ffHwrhhljomSB3RgTNlXtBd4PfF1E3gL2AJcG2fUJfFfo4Buu/6V/eH838C3/evAAG4DH3WyzMeOFTXczxrhKRB4CvqSqlUO8PgXfUqCbYtsyY8YmC+zGGFeJyAJgiqq+MMTrFwJ9qronpg0zZoyywG6MMcaMIXaP3RhjjBlDLLAbY4wxY4gFdmOMMWYMscBujDHGjCEW2I0xxpgxxAK7McYYM4b8f2jf9MRmTGgbAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 576x216 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "Td = 64\n",
    "N  = 4096\n",
    "\n",
    "t  = np.linspace(0, Td, N)\n",
    "F  = MRPy(g*np.ones(t.shape), Td=Td)                          # força dividida pela massa do sistema\n",
    "\n",
    "u  = F.sdof_Duhamel(fn, zt, V0=19.81)                         # solução por Duhamel\n",
    "\n",
    "F.plot_time(fig=1, axis_t=[0, Td,   0, 20], figsize=(8,3));   # peso do saltador aplicado em t = 0s\n",
    "u.plot_time(fig=2, axis_t=[0, Td, -20, 40], figsize=(8,3));   # resposta dinâmica\n",
    "\n",
    "imax = np.argmax(u[0])                                        # posição do pico de resposta\n",
    "\n",
    "print('Pico de deslocamento é {0:4.1f}m.'.format(u[0].max()))\n",
    "print('Tempo até o pico é {0:4.1f}s.\\n'.format(t[imax]+2.02))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "O resultado numérico mostra que a solução não é tão simples quanto foi considerada na estimativa manual. \n",
    "O pico de deslocamento, descontado os 20m de cabo, deveria ser 39.43m. No entanto, o cálculo numérico\n",
    "resultou num valor um pouco acima de 30m. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 1.3:__ A aceleração é a segunda derivada da resposta em deslocamento. Considerando uma resposta harmônica (parte\n",
    "flutuante) com amplitude máxima 30.4m, amplitude média 9.81m, e frequência 1rad/s, isso dá uma aceleração:\n",
    "\n",
    "$$ a_{\\rm max} = \\omega^2_{\\rm n} \\, u_{\\rm max} = 1^2 \\cdot (30.4 - 9.81) = 20.6{\\rm m/s^2}$$\n",
    "\n",
    "Portanto o saltador será submetido a aproximadamente 2g de aceleração. \n",
    "Este resultado também pode ser comprovado por derivação numérica:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Pico de aceleração é 20.6m/s2.\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAADmCAYAAAAnSqeTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABDwklEQVR4nO3dd3xcZ5Xw8d9R79VqrnKvsRPb6c3phjQgCX0JLBDYZVmWZd9Alnd3Yd/NwgaS3aUusAtkQwmBkE6aEzshiVNsJ3GTZcldLuq9S3PeP2YUxvJImnLv3LF0vp/PfKS5986dR4+kOfc+5TyiqhhjjDFmckjyugDGGGOMcY4FdmOMMWYSscBujDHGTCIW2I0xxphJxAK7McYYM4lYYDfGGGMmEQvsZsoRkY+LSJfX5UhkIqIicrPX5YiFiHxNRHaO9dzh95oWqLN1bpzfmEhYYDeTSuDDdbzHz4HfAPM8Kt/Pg8oyKCINIrJRRD4nIqlelGkMFcBjTpxIRM4SkWERedmJ88Xg28ClI08Cv4vHPSyPMa6wwG4mm4qgx6dDbPuCqvaqaoNH5QPYEChLJXA1/gD6deCPIpLtYbneoaonVLXfodN9GvgBsEJEljp0zoipapeqNnv1/sbEiwV2M6kEAtIJVT0BtI3epqrto5viR5poReRWETkoIl0i8jMRSRORvxSRIyLSLCL3iEhS0OvSROTfRKRORLpF5A0RuSaMYvYHynJUVd9S1XuAdcBq4Pag8xeKyL0i0ioivSKyQUSWB+3/eKCs7xKRPSLSIyKPiki+iNwsIjUi0i4i94lIZtDr1ovIHwPnbRGRp0cH3OCmeBGpDDy/SUSeDbzPbhG5aqIfNPC+HwZ+AvwO+OSo/SPn/qCIvBD4Od8UkZUiskJEXgnU7UsiMjfE7+xTInI48LqHRWTaOGV5pyleRL4G3ApcG9SCsi6oPGvHqo/A87NFZKuI9InIm8C5Id5vmYg8ISKdgZaZX4tI+UR1ZkysLLAb41cJ3AhcB9wE3AI8ApyN/676U8DngfcGveZn+Jt2PwycAdwLPCYiqyJ9c1XdCTwVeO8RP8cfMG4EzgF6gKeCgzSQDnwJ+AhwBbAWfwC9NXCu9wR+pr8Mek028B+Bc64D2gPlTpugmHcC3wFWAW8A94tIzgSvuRk4pKrbgfuAj43R5fB14N+As/BfkP0K+C7w1UA5MwLvHawS+Cj++rkSWAj8dILyjPg28AB/aj2pAF4J54WBVpUngP346/srgfMFH1MBvAjsDJT/SiAHeDT44tAYV6iqPewxKR/4g4qG2P5xoCvo+deAXiA/aNvvgEYgLWjbJuB7ge/nAz5g9qhzPwz8YJwy/Rx4fIx93wR6At8vBBS4JGh/Pv4g/Kmgn0OBxUHHfBsYBqaF856B/dmB11wUtE2BmwPfVwaefyZo/4zAtovGOm/guBeAvwt8L8BB4Kag/aHOfV1g2/sm+J0NB9c/cFHgdQuDjtk56jXBz0+pl6DyrB21Pbg+bsN/8ZETtP+jgWPWBZ7/M/DcqHMUBo45x+v/DXtM7oddORrjd1hV24Oe1wN7VXVg1LbSwPer8Qeq3YHm8K5A8/61+IN+NAT/Bz/AUvwXDptHdgbKtwNYFvSaflWtHlXGE6raNEa5EZH5IvIrEdknIh2B/UnA7AnKtz3o+2OBr6WhDgy8zwLgQvx336iqAr/E3/ox3rnrA193jNqWLSJZQduOqurhoOev4a8zt/vxlwLbVTV4ZsXmUcesAS4Z9bdxJLAv2r8PY8KS4nUBjEkQg6Oe6xjbkgPfJwWenx3iuN4oy7AMf/Mu+IP8WIKXZBwKsS9UuYMv4h8DjgKfCXwdAnYDEzXFv3NeVVURgfG78z6Fv74OB46FwM8lIrNU9UjQscFl1nG2uX0z4gt8/VOBT+06GO93MyIJf3P934XYVx9imzGOsTt2Y6LzJv4P+HJVrR31OBrpyURkBbAefxcA+ANtEnB+0DF5+Pvyd0dbaBEpxn/H+a+qukFVq4BcHL7IF5EU/P38dwBnBj1W4b87/4QDbzNDRGYFPT8Hf51Vhfn6Af50oTaiMfC1ImjbmaOO2Q2cISfPYDhv1DHbgOX4xxeM/vvoDLN8xkTFArsxUVDVvfiblX8eGIE+T0TWisjficj7Jnh5uoiUi8h0EVklIn+Lv/9+K4FBWKpag3/w3o9E5GIROQP4BdBBoGk7Sq1AE/BpEVkgIpcC/8Wpd/6xuhaYBvxEVXcGP4D7gT93YBBZL3CviJwpIufj/zmeCNRdOA7in4K3WPwJZlJVtRd4FfiyiCwXkQsYNTAOf/0PAT8NHHMV/kF+wb6Pf0zEb0Tk3MDfx5Ui8mMRyY3uxzUmPBbYjYneJ/CPjL8L2AM8DlwCHJrgdVcCx4HDwHPADfhHhV+iqt2jzv868GjgaxawPhB8oqKqPuADwEr8I7a/D/wD4NSc9RGfBDZq6HnjvwXm4K+HWBzEf5HwGPA8/m6MSFoCfoL/7n4L/jv1CwPb/zzw9Q3gR8D/DX5RoG/9OvwDHLfhD/xfHnXMscD5fPhnO+zCX9f9OF/XxpxE/ONZjDHm9BGYh36zqq7wuizGJBq7YzfGGGMmEQvsxhhjzCRiTfHGGGPMJGJ37MYYY8wkYoHdGGOMmUQssBtjjDGTiGeBXUQyROR1EXlbRHaJyNcD24sCS0PWBL4WelVGY4wx5nTj2eA58SePzlbVrkAu5peALwDvA1pU9Zsi8hWgUFW/PN65jDHGGOPn2R27+o2sjpQaeCj+tZXvDWy/F/960sYYY4wJg6d97CKSLCJvAQ3As6r6GlCmqscBAl/HXBbSGGOMMSfzdNlWVR0GzhSRAuChwApXYRGR24DbADIyMtbMnj3RUtJTj8/nIynJxkeOZvUSmtXLqaxOQrN6CS3e9bJ3794mVS0ZvT0h1mNX1TYR2YR/2cp6EalQ1eMiUoH/bj7Ua34M/Bhg8eLFWl1dHbfyni42bdrEunXrvC5GwrF6Cc3q5VRWJ6FZvYQW73oRkZALTnk5Kr4kcKeOiGTiX+lpD/6VrG4NHHYr/qUrjTHGGBMGL+/YK/CvpZyM/wLjAVV9XEQ2Aw+IyCfxL2t5i4dlNMYYY04rngV2Vd0OnBViezNwRfxLZIwxxpz+bPSDMcYYM4lYYDfGGGMmEQvsxhhjzCRigd0YY4yZRCywG2OMMZOIBXZjjDFmErHAbowxxkwiFtiNMcaYScQCuzHGGDOJWGA3xhhjJhEL7MYYY8wkYoHdGGOMmUQssBtjjDGTiAV2Y4wxZhKxwG6MMcZMIhbYjTHGmEnEArsxxhgziVhgN8YYYyYRzwK7iMwSkY0iUiUiu0TkC4HtRSLyrIjUBL4WelVGY4wx5nTj5R37EPAlVV0KnAd8TkSWAV8BnlPVhcBzgefGGGOMCUOKV2+sqseB44HvO0WkCpgB3AisCxx2L7AJ+LIHRYzIw28eZefRdmYVZXHrBZVeF8cYY8wUlRB97CJSCZwFvAaUBYL+SPAv9bBoYWnq6udwSw//97plpCYnUXW8w+siGWOMmaJEVb0tgEgO8AJwp6r+XkTaVLUgaH+rqp7Szy4itwG3AZSUlKx54IEH4lXkUzx5YJDzpydTkJ7EkE95qGaQWxaneVaeEV1dXeTk5HhdjIRj9RKa1cuprE5Cs3oJLd71ctlll21V1bWjt3vWFA8gIqnAg8AvVfX3gc31IlKhqsdFpAJoCPVaVf0x8GOAxYsX67p16+JR5JBe69vDe65Z8s7zPdSw5rxKcjNSPSsTwKZNm/CyXhKV1UtoVi+nsjoJzeoltESpFy9HxQvwP0CVqt4TtOtR4NbA97cCj8S7bJE42tbL9ILMk7ZdvqSMjdWNHpXIGGPMVOZlH/uFwJ8Bl4vIW4HHu4FvAleJSA1wVeB5wnqhupHLFpectG1pRS57rJ/dGGOMB7wcFf8SIGPsviKeZYnF8fZeZhZmnbRNREhOEnw+JSlprB/RGGOMcV5CjIqfjBaW5VLT0OV1MYwxxkwxFthj0N47SG5G6EaP8+YW8er+5jiXyBhjzFRngT0GO+raOWNGQch9pXkZNHb2x7dAxhhjpjwL7DGoru9kSXnumPslwbvX23sH2VHXjte5DIwxxjjHAnsM2nsGKMweOxFNSW46DZ19cSxR+Oo7+rj7mWr2N3Xxg037vC6OMcYYh1hgd9HKmQVsP9LudTFC+ulLB7jjXUu58cwZzCjIZMvBFq+LZIwxxgEW2KMUTvP1kvLchMwbf6SlhxmFmWSmJQNww6rpPL3rhMelMsYY4wQL7FFq7OynJC9j3GMyUpMZGPbFqUThe/TtY9y4asY7z5OShDnF2Rxu7vGwVMYYY5xggT1KNQ1dLCqdONm/EN7dfTx19w+Rn3VyHvt3rSi3u3ZjjJkELLBHaV9jF/NKJg7sJQk27e1wcw+zi7JO2V6ck05Lz4AHJTLGGOMkC+xRauoaYFrOxEuzLinPZc+JzjiUKDwv7G3g0lG57UeU52VQ35GYo/iNMcaExwJ7DCSMieqLy3OpTqDAfqKjj4r8zJD7LlwwjZdrm+JcovANDvvYUddO3+Cw10UxxpiEZYHdZXkZqXT2DXpdDMDf1580zsXI/JJs9jd2x7FE4esdGOafH9vN0bYe/uWJ3bR2W7eBMcaEYoE9Cok2GC5c+5u6mTste8z9Iy0Qifjz/ejFfXzusgWsX1HB7euX8F8vWFIdY4wJxQJ7FFp7BikcNap8PMlJSQwlwLS3bYdaWT27cNxjZhdlUdfaG6cShedYWy856SmU5/unF+ZlpLJseh5vH2nztmDGGJOALLBH4XBL6JHlY6mclsWBJu+buA+39DCnePxynzW7gK2HWuNUovD8dksd7z971knb3n1GBU/utOl5xhgzmgX2KBxp6WFWBIF9aUVewoyMn2jA3/ySHPY1Js468sM+pX9omLyMk1tIUpOTyM1Iob0nMcYvGGNMorDAHoXDLT3MKgw/sM+d5v2gtIEhH6nJE/+6k5KEROpi37yvmQvmTwu575rl5Ty92+7ajTEmmKeBXUR+KiINIrIzaFuRiDwrIjWBr+N3Cnugf3D4nTzr4UhNTmLY520fe21DF/PDSKgDkJmWTM/AkMslCs9rB5o5f35xyH0LSnM8v2AaT11rD/+5oYZH3jqakAMSjTGTk9d37D8H1o/a9hXgOVVdCDwXeG5itOdEB0srxl47PtiKGfnsOub94jWqiiokJ43dfZCbkUJXf2JchATb19jF/24+xGcuncf0gky+v7HW6yIZY6YITwO7qr4IjF4v9Ebg3sD39wLvmeg8bf3K3z+0I6HnNqcmJ9E/5F1ilUPNPcwpHnuqW7Dl0/PYddT75Wb3NXYzr2T8Mp83r5hX9zXHqUThGfYp920+xO3XLCYjNZmzK4tYUJrDC3sbvS6aMWaSeOjNujH3jRnYRSRfRL4pIntEpDnwqApsK3CjoAFlqnocIPC1dKIXFKQLX75mCT975aCLxYpN5bRsDjZ5t3qaqo575xtsWk46zQlwkfTHmkYuWhi6f33Eqpn5bK9ri0+BwvTwm0d53+oZpASNaVi/ooIX9zbi81mTvDEmNnvrO+nqG7ulUsbq+xORp4HngXtV9URgWzlwK3Clql7lRAFFpBJ4XFVXBJ63qWpB0P5WVT2ln11EbgNuAygpKVnzwAMP8EjtAFdXppKZEl4Ai8bAsPL0wUGunz9xnvhgRzp9HO/2cU55ikslO1VXVxc5OTmoKr+vHeSmheGX+cGagYiOd8Pv9g5w86KJyxDucSNG6sUNqspvqgf54JJTy1PVPEzfsHJWafz+BiLhZr2crqxOQrN6CS1e9fK7vQO8Z0EqV11x+VZVXXvKAf5+zFMfQHU0+yJ9AJXAzuBzAxWB7yvCea9FixapqmrV8XZ9aFuduulQU7c+8MbhiF/XNzik331urwslGtvGjRtVVbWho0/vfeVARK/9zoa92jc45HyhwjQ87NO7n94T1rH/u/mgHmvrCfvcI/Xihj/ubdRN1Q0h9/l8Pv3XJ3a79t6xcrNeTldWJ6FZvYQWj3pp6xnQ7z1fo6qqwBYNERPH62M/JCK3i0jZyAYRKRORLwNHnLjqGMOj+FsFCHx9JNwXLinPo6bB3fni9Z1972RAi0R6SjIDQ96MjN/fGP6I+BGLynPZe8K7+ew1DV0sLAtvsN85lUVsOZgYSXVe3tfExQtCdx+ICKV5GZxoT8wV9N44McS/PbWHb/yhilcSeDEgY6ay5/fUc83ysnGPGS+wfwAoBl4QkRYRaQE2AUXA+50ooIj8GtgMLBaROhH5JPBN4CoRqQGuCjwP/5yIq1OL6jv6KMuLPLB76cAEOeJDWT49j13HvBtAt+VQC2vmhDfTcWFpDjX13icA6u4fIis1maRxxjJcv7KCJ3cej2OpwvPAliMkCXx5/RLuePdSahu7eKnGgrsxiaamfuIbtTE7+1S1Ffhy4OEKVf3QGLuuiPacC0pzqI3gbi9S9R39XLwg9HrmExERhn3hD2JzyvH2PsojvBiZUZDJsTbvcsYfb+tjekHo5WVHS0oSEmFM2oaqeq5cNv6VdGleBg2d/XEqUXh2H+ugs2+INWV/+jj42PmVfOPJKs6YkU9+BOsiGGPc0z80TEpy0oQZRL2ex+64NXMKefNwm2vnb+8dJC8zusFPs4uyONIS/5HxCuPeRYYSzlrzbor07XMyUujweHncquOdLCmf+IKyODuNpq7ECO6qym+3HuHjF1Sesu9TF83jfzcfjHuZjDGhvXm4jbVhtGROusA+szCTulZ3g2e0QW9BaQ41DYmTh30iIuLJ9Kymrn6KsiMbkb9mTiHbPFy8pm9wmIzUia+kAa5aVsaG3fVxKNXEnqtq4PIlpSFbkUpy00lKEpoT5CLEmKlu2+FWVk/FwO71neZ45pfGf4GVYZ8Sbcv/jMJMjnrQHL+9ro1Vswoies0ZM/LZ6WFSndcPtHDO3KKwjp1TnM0Rly8+w/XagWYuXjh219LNa2by+21H41ii8Ph8yn2bD/JvT+3h7meq+dbTezxvsTHGbT39w+SkT9xiPGFgF5EsEfkHEflJ4PlCEbnOgTK6JilJEmL989Fy0lPoiXP602NtvcwIs696tCXluZ6sSld1vJNlFXkRvSYj1btZBwBbDrWydk54gR0gOTDewktvH2lj5cyCcY8py8ugqbs/of6ffD7lrqerOWt2IV9ev4QvXb2YT100j7ue2pOQ6YWNcUIkN2nh3LH/DOgHzg88rwP+JaqSxcm8khz2J8D654lgf9PEaVnHsrA01/Xpg6H4m7XDX2QnmJszIsYzNOwjLSX8BrDlHrcwADy16wTrV5RPeNwlC0t4JYHS9v74j/u5bmUFK2bkv7OtMDuNL165iO8+X+NhyYxxT/WJThaXh3fDE84n0XxVvQsYBFDVXiBx27vxT3+qdaEvu6t/iOwIVnUbSzyDz4HGLuZOiy4TUmZaMn2DiXOnNpEZhZnUtca/6+BISw8zI1jGF/w57jfv9y5YtvcOkpOeEtZSvufNK+ZVD8sabOuhVoqy0k4K6iOKc9JZM7uQjdUNHpTMGHdtOdTC2srwpgCHE9gHRCQT/+BqRGQ+/jv4hDV3WjYHXLhjb3BgDnt5fibH45igpKVnkMJYpivF+Q64uaufwqzoUtmunFnA2x7kjX+xppFLFo2f0360/MxUOnq96xP+w47jXHtGRVjHJicJKclJ9A16t4gRwMCQj8fePsYta2eOeczVy8t5qaYpIXPy7z7WwXeeq+GeZ/fyoxf20dCZmImKTGJq6OgPO/6EE9j/CXgKmCUiv8S/lOrt0RfPfRmpyfS78CFU39FPaV56TOdYWOZOa8J4YhlQGO9V6XYe6+CMmafejYXDn6gm/rMOjrf1RXzHDv6/U6+C5aHmHiojSFp02eISz1en+82WI3z0vNkT/j2vX1HOM7tPxKlUExsY8nHPs3vZcbSN2y6Zx99etYj3r53FLzYf8rxOzelBVVHCv1idMLCr6rPA+4CPA78G1qrqpijLd1pr6Iz9jn1Byek15W2BS90aY9l9rIOlEQ6cG5GSnIQvzi0MsXSrrJyZz/a6+PezH2ruZnZRZBciq2YWeLqKXlf/ECfae1lQOnGegLMri9jmYi6LSHT1D/EvT+zmljUz+cDZs98ZO1KYncbfXr2YfQ1dbE6g8QsmMR1t643o5mG8ZVtXjzyAOcBx4BgwO7AtsbkwB9uJdLKF2Wm098RnSdRBn5KWHNtwiMXluVTHcWR8z8BQWNM5xiJxHm1+uKWH2cWR362Df+79Vg/m3j+58wTvPmPiQXPBRhIcedXE/avXDvHR8+aEffzy6XmeD04cHPbx7aer+cIVC5k1xoXUJy6sZNPeBhoTLBuhid1zVfXc9dQe7nmmmu4YZ2u8cbCFsyvDn3Uz3ifo3YGvGcBa4G38g+ZWAq8BF0VZxriYWeCfgz3WP1Q0usKcQ5goGnqUObOiGxE/Yk5xNo+8dcyhEk0s1lGZ80uy2d/oXkrh0V7b38J584qjem1uRmrM//DR6OgdpCCKcQyrZhbwVl0bq2eHN4DHKb0Dw3T0DlGRH/60zfUryvnuc7UhB9nFy3eeq+ETF1ZSnDN2952I8PnLF/Ld52u4411L41i68bX3DvJSTRN76zvfaQCeOy2Lq5aVn1afgV7ZvK+Z4+193L5+CU1d/Xzr6Wr+8bplEWcAHbGvoZv3nDkj7OPHvGNX1ctU9TLgELBaVdeq6hrgLKA2qtLF0eziLA57kL41XPEYGX+i2xfx4i+jJSe5u6hOsPaeQXIzYstLvmpmAW/HsXn7cEsPs4qiyxMAkCTEtYWhrrUn7Bz8o120cBove7AwzIPb6rhpzdgD5kJJT0kmNTnJkwsn8A9OXD27kDnFE///5aSnsHx6Pm8cbIlDycZ3qLmbu57aw32bD1I5LYu/vmIhf3vVIr545UKWT8/nh5tqefTt+F3on44GhnxsqKrnI+fOBmBaTjrvWz2D326NbVHUSMZKhTN4bomq7hh5oqo7gTMjL1Z8zS5K3MBeEqeFQOodCOzxtOtYO8tnRNe/PmJOcRaHm+ObwyCWwYlLKvKoOt7hYGnGt2F3PVdNsFDNWLLSUuiL40BK8OcHONLaE9Xf8dXLy9hQFf/UvUdaeqip7+KyJaVhv+b6lRU8tdO7AX+Dwz5+uGkfG6oa+OsrFvJXl/sD+UiqYRFhUVku/+eaJeSkJ/OHA/HpTjwdPbDlCB86Z9ZJnwsrZxZwoKknqsGybT0D5GdGdsMTTmCvEpH/FpF1InJpIANdVcSli7PyBF73Ol6jt/uHIduBZrO8zFTae9yfmrXrWAfLK2JrOo1nSuFY7n5HnF1ZxJY43qk1dIY/ZSaUkpz0uE7TemrXCdYvj2w8wIgl5blUHY9vgiVV5acvH+Cz6+ZF9DoR4ezKQl7zIF9Ac1c//+/x3Vy9vIxPXjR3wuRQly8pozIvmftePRSnEp6so2+Q1w+08EptEwebuhNqaqNPlSMtPSEHeX7g7Fk8uK0u4nNuOdjKmjDnr48IJ7B/AtgFfAH4G2B3YFtCS3K4CdnJcy0qy2VvAqwfHq7F5bnsOeH+XWVH36AjS4QmJyUxGIcUqK8faOHceeEPaAmlJDedpq743P00R7G4zmgXLSzh5dr4NcfvqGvnrCj79EWEgqxUWrvjd3f5hx0nuGppGekpkSeyunpZedxbGI639/Kd52q4ff2SCdf4DrasOBnBn5Y4Xjr7Brnn2b3ct/kQ/UPDJCUJWw+18h/P1XD3M9X8+7N7eXz7MbbXtbG/sYtjbb00dfXT0TcYt2mlu5uHuXBB6JwWc6dlc6i5J+JYsvNYOyumR3bDM+HtnKr2Af8eeExZHX1D5GU4M2ikKDuNtjiNjHfC4vJcntp5gnOjHCQWb4vLc6g+0en6wKn9jd2896zwB7SMR1Vdb214rqqBK5ZG1ww/Yn5JNg+9GfldRzT21neyoDS6rIkj3rWinCd3nuDDgf5ON3X2DbL9aFvUg+CSkoTKaf7Bn/MiCLLR6ugb5Ieb9vHVa5dGdSHykXNn8/XHdrOkIjeq10eiqauf/9iwl7+5chHTxhiMODTso7axi6Otvexv7KZvcJiBYR8DQz76h3x09g1RlpfOh8+d7Vp5q5p9/OUYgR3gvHlFbN7fzAXzw09oNTSsEaWrhjACu4gcgFNnxqtqZG1Npzknss7FU2ffIBkpzgSKkpx0mlweE9A3OExaGOlNw7FyZgGbqhvjMiLaiWA8pziLg83R9SNH4mBzN+8/e1ZM5xARBInLhcjj24/zF5fOj+kcc4qzuf+N2AYtheveVw7yyYvmxnSO95w5gx+/uJ8vXrXIoVKF5vMp9zyzl7+9alHUQU5E+PgFlfzi1cMx/9zj6R8a5jvP+WcNjNe1mJKcxJLyPJaMk0/9QFM3//J4FZ+/YgGluc5+nvcNDpOSxLgj3y9dVMpdT+8JO7D3DAyRGUUa83A+SdcCZwceFwPfAX4R8Tt5wMm+4foI0vmFy83R5gebeijPduaDNx791rUNzk1Rq8jP4Hi7uznjGzr6Ys5COOKcuUW8ccDdfvau/iGyHFjnAAK5DVzuSuoZGEIgqg+10QoyU11vITvR3kdSksQcLLLTU1BwfTT/fa8e4uY1M6Oa9hisclo2Pf1Dro67+K9N+7ntknmOjBeaOy2bv3/3Ur77XC2dDi/z+3JtEyumjf/3mpwkFGal0dwV3o3SW4fbOCvCJawhvMxzzUGPo6r6H8DlEb9ThERkvYhUi0itiHwlmnPMLspybN3r+o4+yh0M7CW56a4mpdjf1EVZljN3wCPcvBDZfayD5dNjGxE/Ih4XIq8eaOHcuc50TcRjBscL1Y2sWxz+KO3xXLhgGi+5PO3t8bePc/2q8HLZT+SKpWVsqHJ3YZj7Xj3In0WQQGc8N6yq4Ikdxx05Vyh7TnQw7FPHWrQ+dn4lv37NnVaRHXXtlOenR5WyeSyZacl88apFfO95Z2dtv3m4jfkFE3/mvufMGTwcZm6QN4+0RTXGJJz12FcHPdaKyGcBV7N/iEgy8H3gXcAy4EMisizS8zg5l72+07k7NICFZbnsdXFk/JGWHkqznAtwMwuzXF05ra61h5mFsY0wD5ae4u6iJTX1nSyMsf93RDwuRHYda3fswqkoO41Wl++A9zV2hZU+NhwLSnPY3+je/1ptQxdleRkx52AYsaA0l30ulVdVuf/1I3zsfGcuQgDys1JJSRaawrwLDZeq8uC2Om5ZE1v3UShF2WmcP7/YsSmGQ8M+RCApjP/l8vwMGjr6wrpRcrMp/u6gxzeA1cD7I36nyJwD1KrqflUdAO4Hboz0JLMKnQvs/YO+qNcID2VRmbtrnQ8MKylRZjkKZWlFHrtdnG+tOBvglk13ubw6fl9apKblpLnWnDkw5CMlOcnR+k1PcW8Bmx117Sx3eHxEZmoyPQPuNG//bmsdH4hx7MJoc4qyOejCCpWPvn2Ma1dWkOLQeJYRHzpnNr967bCj59y0t5ErlpY6+n8WbN3iUrYcbHHk7/j1CFO+njO3iNcm6H7r7BskKy267odwfrufHMlCp6pXqeptgNtDumcAwW07dYFtEclOT6FnwJkPH6cboYuy0+I6DSdWC8ty2OtSzng3mvjPmFHADpcy0DkxbWy0s+cWseWgO3njN+9v5nyHZzSsrSx0rbxPxzB3fSzrFpfyQrXzK6kdbOpmekGG46Osr13pfHN83+Awu493RBSAwlWUncawTx3tt365pomLxhlh7oSPnjeHX78e+wXJq/uaI0otfemiiVdLfGVf85hT5yYiE32oisg2VV09atvWQHpZV4jILcA1qvqpwPM/A85R1c8HHXMbcBtASUnJmgceeCDkuR6qGeC9C2P/EHbqPMF+XzPA+xw+J/gD5cO1g1xVMUBOjnPTZh6sGeAmF8rb2OOjqmWYS2Y605Q5Yqz67erqiqletpwYYlqmUJnv3Ie5L/A7c+Pv4cGaAd4zP/WdLGJjiaReBn3KE/sHec8CZ8vbM6hsODzIDfOdPa+q8mDNIDcviuy8E9XJ7/YOcP38VNJjXGwplN9WD3DTotSwmnfD8fzhQZYVJ1OeHfvdeqh6aezx8XbjMFfOif3/uLZtmJZe5ZwK9/PS/27vADfMT416wSyfKr8P/G1F8j/0+L4B1s1KJSct9Ps+WDPAexeM//u/7LLLtqrq2lN2qGrIB7AEuAnYh3/Z1pHHx4FdY73OiQdwPvB00PM7gDvGOn7RokU6lnueqR5zXyTudug8J53z6T3q8/kcP29jZ5/e+8oB3bhxo6PnvfvpPY6eb8RTO4/rjro2x887VnljrZe7n6nWoWHnf2/fesr5+h0e9uldT1WFdWyk9eJGee/bfFAPNXU7fl5V/++tf3A4oteMVyfH23r1Ry/Uxliqsb24t0H/uLfRkXP1DgzpN58M7+8gHGPVy78+sduR/407HTpPOGobOvUXrx6M+vXbDrXoUzuPq2pk/0N1rT36s5f2h9w3FOb/LbBFQ8TE8S7dFgPXAQXA9UGP1cCnx3mdE94AForIXBFJAz4IPBrNiZxo5PX5NOZVx0IpyU2n0eEBJ+Cfq+nGnOjs9BTHp4gA7D0ReyKSULLSU+hyYdqQqk549xsNN+r3zSOtnDXLndXYyvLSHU3brIF0nNEugzuRC+YX88o+50bz3//GYT5wtnuJby6YP42XHSrv77bWcXOEC+lE4/IlpTy/J7YZCLUNncydlu3K/1go80tyONzcE/ViTC/ubeKShSURv25GQSbH20MPont1f3NMs27GW93tEVX9BHCdqn4i6PHXqvpK1O8YBlUdAv4KeBp/XvoHVHVXNOfKSkuOeU5oa8+A432q4B8Z70bO+ANN3VSGsapUpJZU5LHHhX72gWFnByaOWDE9n10Or8nd3jvo2rKVa+YUsu1wm6PnfKmmmYsWutNPecmiEl6coJ8wEm8daePMKObshuvsyiK2HnJmXEBr9wApSRLx4hyRSE4ScjNSYs7F0T80TF1rb0QpY6N1ztwiXj8QW77732876lhGx3BdtSy6BYNUlb6h4ajzLayeU8i2w6f+Tb5U28QF810I7CJye+DbD4vId0Y/on7HMKnqH1R1karOV9U7oz3P9ILMmJOV+JPTODfVbcTC0hxXcsYfa+uNeXGSUJZW5MZ1JbJYnTEjnx0OB/ath1pY68LgI4CVM/Mdzb2tqvQPDbty0QT+rG6HWpwbub2hqp4ro1x5Lhz+JYidWSb3/jeOuHq3PuL6ldN5dHtsy6Q+uPUoN6+JT6AUEZaU57HrWHT/d8fbeynKTnPtb3Ysa+YURnXRV13fyeIYEmtdvqSUZ3adfEFR39FHYVZqTDMXxnvlyApuW4CtIR6nhRkFGRxti6250D+H3fl0ssU56a6MjPcprjRjleZmOJ5Up713kDyH5v+Olp+VSkevs03b2+vaOcOlVLUZqckMDDm3eE11fSeLy11NOUGyCEMOLLjT0TdIZqp/DXU3nTO3KOYV1Lr6h+gdGKIk1/mL/dFmFWVxNIb8Ef1Dwxxq6XYsJ0A4rl81nce3Rzei/4E36mJOexyNkWVpI13syr/+QvSJn1KTk1g2PY9Xg/4m733lIB9YG9tF43hN8Y8Fvt4b6hHTu8bR9IJMjrXFdsd+uuWJP51UHe9gaYUziVPiIZoFGSKRmpxEv0Nrnj+/pyGiNcGjcebsAt6ua4v5PI+8dYwbVrl/V+nvZ48tsD/wxhFuWRu/4LNseh47o2x5+v22o9y82v2+9WBpKUkUZ6dF3FLa1jNAkuDahf5ErltZweNvR3ZB0tU/FHNiohtWTeeFvY1s2F3Pf/9xP6tnF8a8yuV4TfGPicijYz1ietc4Ks3NoL4jtjv2ho5+SsZYUShWIuJI0+CIYZ/i5piTJIfLu/tYB0sr3LubyHMwT3h3f3RZoCJxxszoP8RH6+obcv1D8rx5xWyOMVCqKnUuDpoL5k/UQ9QtI32DwzR29TOryP2yjrh6WRnP7I68/3dgyMfBpm7H1mCIxC1rZ/HbLZGtAvibN444nugnEhmpyWSmJYfdilpT38kCB8YtiAi3X7OYvMxULltS6kh31HijgL4d89kTQHKSEGscGvS5d5c2d1o2B5q6HRsV7lb/+giny9vSPUCxSxdN4F/pbcfRdi6OYtTqaFsPtbJmjjsjzEesmVPE/a8fZs2c2PrxDzf3OJpfeyxZabEngXJ70NxoFy8s4aXaRi5fEvkH6ENvHuWm1fEd2JWR6l/7vG8wsvESD26Lz0j4UPIzUxkKJKwJ5462u3+I7v4hV7o8I3HT6pk8uK2OT1088eKlG6oaHFsOWEQ4Z65zY3fGa4p/YeQBbAZagRZgc2CbccDSijxHB6Tta+xifol7y386nVrW7TTpy6fnsfOoM+XddriVs2YXOHKuseRnptLhwJS3J3ce510rnM3eNpbS3NimvT27291Bc6OtnRNd1ryhYV/gojb+d8DXrqzg0TAXDgF/3/rBZm/u1kfcsmZm2Hftv3njiCd966OV52fQ1DUwYXeYqtLWO+DqrIhYhLMIzLX4k9R8B/geUCsi73K7YFPFvJJsRxd82N/Yzdxp7k1rWVCaw74GZ8obj6Ztf1phZ+ayDw77HE8dGkpGSjK9Md4Ft/UOUujCFM1QrllRzjO7o1tMo7Gzn7zMVNcHzQVLShLSU5IjznHwxI7jXHuGMyvORWpkbQlfmM2Pv91Sxy0e3a2PmFWURXN3/4QXqt39QzR398elhSkc7zlrOo+8Of5F1BsHWzk7xlY1N4W7CMxlqrpOVS8FLgP+3d1iOStJCPsfIt5Sk5Mc7bNuc2nO/YjkJOf62Hcd62DFdHdGmAdzYhxDU1c/Rdnuj4IGOG9+Ma/GMBe4+kQni8rcn7M8oiI/M+o79nglThnthjOnR3QH7PMpO+raWRXHLoPRLl9SFlbyl+7+IY609njSsjDax86v5L7Nh8Y95t7NB/moQ0veOmFJeR41DZ3jfmZsqm5g3eLYu/fcEk5gb1DV4IVr9wPuLm7ssOKcdJq6o5um5fZgNMfFYQnQpCRnpjhtr2tzbepYsGUOdHe8XOv+ghQjzpxVwJsxJKp5ZtcJrloWn2b4EcU56RFPhewfGqazb5BpLo6xGMvcadkcau4OewGix7Yf490rvblbH3HevCJe3tc04U3Kz185yMcvqIxPoSZQlpdBarKMuWzuoeZukkWoyHdvXFA01q+o4PEx8gecaO+jIMZ55m4Lp2S7ROQPIvJxEbkVeAx4Q0TeJyLvc7l8jphRkMGxKOeyN3f1u/7BU5Sd5txaxi6slDbaorIcah3oPmiPU3Px2ZWFvD7BEokTqanvittdsL8VJ7oLJ1Wle2DYtex4Y7lmeRlP7YqsOf6xt49z/arpLpVoYqvnFLIljKQkA0M+dh5tZ/VsdwdOTkREuGHVdB5+6+iYx+xv7CItOSmhAuUnLpzLz185eMpMhIEhH//z0gE+ceFcj0o2tjVzCtl1rCNkN96vXnc3lbATwgnsGUA9cCmwDmgEivDnjb/OtZI5aHpBZtRJHvxZ59wdqenEHSVAz8AQGS73WQOsmlngaIY0txXnpNMaw5Q3VUVRR9czn8jMwiyOtPRE/LrN+5s5d178+/5mFmZR1xp+eYd9yh6PcxhcubSMp3dOfDFy/xuHeX8c562P56zZhexr7ArZOjIw5PPfrV9YGf+CjSM1OYnbLpnHN56seidQ9gwM8Y0nq/j0xfNczQsRi09cWMkPN+07aduuY+2U5KYn7KC5ERPW6Kg88aMffx6PQsYqlrSy9R19rqSTDbbEocB+oKmbeS4s/jLazMJM6mLIhgX+u/XcjPjeVYbb7DranhOdLC6PbwC6YmlpVHOXo12Qwgkrpuezoy68OfiPbz/GdR7erYN/vMiZswvYcnDs1pzmXh/tPYOeji4f7S/XLeA7z9WcNMBy2Kfc/Uw1n754XlwHIoZrZmEWf3HpfH6wcR93P1PN9zfW8tlL58c1H0CkKvIzObuyiJ+8uJ9hn7K/sYvfba3jw+ck9t06jD+PHQARmQt8HqgMPl5Vb3CvWM7Ky0iloy+6kdH1nX2cMdPdfuD8zFQ6oyxfsP2N3a6nEAUcuXPdebSdFXHoXx+xsCyX6vpOlkQRoDdVNzo2XzVcpbkZEXfPtHYPkJeZErdVsUa7enkZ332udsL/l+HAQLQbz4zvfPBQ3r2igq8/totVswpOCYjDPuUPBwb53qcmntMcT9npKXz+8gV848kqLllYQkqysHFPAx89b05CB8rSvAz+7prFXhcjIpcsKqE4J43/3LCX4px0/v7dSz37/4pEOLdMDwP/g79v3blE1qeJps4BTwb3RONQczdXxWk+cHpKEr0D0a9q9NaRNj4RxybDixdM48FtdVEF9s6+QU+a3qYXZHKkpSfsD+uH3zrqabBMT0kmJyMl0Mo1dvfV/W8c5n1xTnM6lqQk4dYLKvne87V88apF72xXVb73fC2XzUp1fUpmNErzMvja9ct580grQ8PKP16//LQIOKej5dPzWR6H2TtOCqfNpk9Vv6OqG0clrZkShl1ae3u0fAdSn/YPubP8aSirZhXwVgz97H2Dw2Slxa8pvjA7Lap+9hPt3q0TsH55OU+HOSBtcNjHiY4+ZriYdTAcHz53Nr987fCY+5u6+qnv6GfZ9MRZH2BeSQ7nzivinmeqae7q53h7L998cg8XLChmZm7iNWuPSEoS1swp4tx5xRbUzUnC+av9TxH5JxE5X0RWjzxcL9kUs3JmAdvD7J8cSzz/tdeMsY5wOIaGfXEdiDYiOz2Fzgizuj1bVR/T6k2xKMn1TyELJwfDE9uPc90Z3vZZg7/bqyQnLeSynSN3wZ+6OPFGQV8wfxofOW8OD791jGd31/OZS+dztkvL8xrjtnAC+xnAp4Fv4k9WczenYR759JQk+gadWTXLDStm5MW0dvjgsI+kOF61Z6WlRJ0dbc+JTpbGYSzAaBctmMbLtU0RveZoa6+nGbEuWjiNlyYo87BP2Xm03fWxIOH6yLlzeOCNIye1QKkq399Yy02rZ3q2etdEyvIy+ORFc/nY+ZWuJnkyxm3hBPb3AvNU9VJVvSzwuNztgjlthgPLt7opKy0lpguPQ83dzI3DiPhg0S4xuvVQK2sq4z8neMX0/IhaRQ439zCryNum7QvnT+OFvY3jHvPgtjrec5b3A9FGJCUJX7pmMf/+7F6e31PP1kOt3PlEFefNK06Yiw9jJrNwAvvbQIHL5XCdf132yJLU9A0Okx7nOZbRTsmqPtHFojhPyVk5K7JAOaKxs5/S3Pj3W4/kCO8fCq+O/7DzOO9e4W22saQk/6pPr+wLfdfe2j3AwabuuM4wCEdeRir/dP1ystNSaO8d4EtXL2atNW0bExfhRK0yYI+IPH06rsc+YnpBRsR37BON7nXa9IJMjkWZc3t/YxfzHVgbOBJr5xTyxjhzgENxMi9+NK5cVsqbjRO3Mgz7lNaegbgtpDKeq5eV8cyu+lO6PlSV722s5TOXzveoZONLShLOnVfM5UvKEnJkuTGTVTiB/Z/wN8f/K3/qY787ljcVkVtEZJeI+ERk7ah9d4hIrYhUi8g1sbxPsPK8DE50RBY0T7T3UR7HwB5LRrfBYV/cMzjlZqTSFeH8+13H4jt/fbRlFXkcbJ941uZzVfVcEcV63W4QET5z6Ty+9XQ1g4Ec/cM+5Z5n9/Les2YkfBYsY0x8hZN57oVR09yGgPfH+L47gfcBLwZvFJFlwAeB5cB64Aci4silfkoUq6id6OijPD9+c9gXleWw50Rn3N7PCYVZabR2hz+N7OXaZi5YUOxiicYnIlTkCLUN49fz6wdaONuDcQBjqcjP5OMXVHLXU3u455lqvvGHKq5fNT3hmuCNMd4LayKxiJwJfBh/QD8APBjLm6pqVeC8o3fdCNyvqv3AARGpBc4BNsfyftGq7+jj8iXxm+qUkpwU1fKyfYPDpMdp/vpoly4u4YW9jWEP3urqH/R8VPT5FSk89OZR/s81S0Lu/2NNI+fNK/ZkSt54Zhdn8dVrl3ldDGNMghszsIvIIvx3zx8CmoHfAKKql7lYnhnAq0HP6wLbQpXvNuA2gJKSEjZt2jThyQ8eHGDTpvDXYN5VM8BW35Gwj3dCw9EBntxwjMyU8INKbdswgwPKpk11J23v6uoKq15ioapsqBmkoL1mwmM7B5SmY0Ns2hTZKmBOG+jtprPlCPc9doxZoxKQDPmU31QP8OElaWxqqPKohN6Ix9/L6cbqJDSrl9ASpl5UNeQDf/rYF4AFQdv2j3V8iNdvwN/kPvpxY9Axm4C1Qc+/D3w06Pn/ADdN9F6LFi3ScNzzTLUOD/vCOlZV9e5nqsM+1ilvHGjW5/fUR/San720Xxs6+k7ZvnHjRodKNb57nqnWnv6hCY/71WuH9GBTVxxKNL6NGzfq4NCw/sPDO7Rv8ORyf2fDXj3Q6H0ZvRCvv5fTidVJaFYvocW7XoAtGiImjtfHfhNwAtgoIj8RkSuIILmZql6pqitCPB4Z52V1QPD6iDOB8G+xJzAtJ43mCPqDvXDGzHy2H4lsCllz9wAlud7ls79qWRnPVk28Etnhlh7mFMd3rv1YUgJLSf7rE1W09QwwMOTjB5tqWTEjn8o45wMwxhgnjRnYVfUhVf0AsAT/nfUXgTIR+aGIXO1SeR4FPigi6YFV5RYCrzt18ukJnqQG/AtpDPlOr7V2lk/PY/ex8Zedre/oozgBpo4Fm1mYxReuXMSvXz/CDzft4+pl5VwWxzEVxhjjhnBGxXer6i9V9Tr8d9BvAV+J5U1F5L0iUgecDzwhIk8H3msX8ACwG3gK+JyqOpYHNpLA7vNpXHOvB8tMS6arP7xpZF39Q3FdTCUUEaEiP4MjLT1jHvP7bUcTZkWvYEXZafzFuvl84cqFLCiNbx4AY4xxQ0QTn1W1RVV/pDGmlA20BsxU1XRVLVPVa4L23amq81V1sao+Gcv7jDa9IJOjYQb2lp4Bz/JFXzB/Gq+EmdPcv6659ytl3bxmJr/dEnqgYd/gMB19g5Z/2xhj4iBx1yR0QV5GCh1hJlQ53tbHdI+WwFw5Iz/sBWG2Hmpl9Wzv51tnp6eQm5HK4eZT79p//fph3r92VohXGWOMcdqUCuyRzEuua+3xbG3rpCTB96eZAePqHRgmO93bpvgRf3b+HH768oGTEgEdaemhs28o7gvUGGPMVDWlAnskjrb1MqPQu5W9FpfnTZiFrn9omNTkxPkVZqQm86FzZvPNJ6vo7BtkX2MXP/njfj5z6Tyvi2aMMVNG4kSFBNPRN+RpDu5LF5Xw/J6GcY9563Abq2YlVkrRxeW5fPKiedz36iFeP9DCV69dSnqKLQBijDHxkhhtuHGUnpJE78Bwwq82lZ+ZSmffEKo6ZhfC5v3NfDYBV/Yqz8/gL9ct8LoYxhgzJU25O/Y5xVkcHmdaViI5c1Y+b42x2puq0j/kI8OjHPHGGGMS05QL7JXF2Rxs7p74wDAGrrntsiWlbBgjo9ueE50sLsuNc4mMMcYkuikX2OcUZ3FogsDe3jtIXgKscZ2ekkx2egpNXf2n7Hty5wnWryj3oFTGGGMS2ZQL7LkZqXRNMJf9aGuvZ1PdRvvA2ln88tXDJ21r7R4gJUmsGd4YY8wpplxgD0dda4+nU92CFeekk5+ZclIu9v9+aT8fOXe2h6UyxhiTqKbcqPhwHGzu5rz5xV4X4x1/dn4ldz21h4PN3Rxs7mb17EKKc7xbzc0YY0zimpKBPS0lib7B4TGbsrv6hsjL8L6PfURykvCVdy1he107q2YVJEw3gTHGmMQzJZviZxdnj7sSWSISEQvqxhhjJjQlA3tlcRYHmsKY8maMMcacZqZkYF9QmkNtY1fIfZ19gwmzqIoxxhgTqSkZ2LPSUugdGA6570BTN/NKcuJcImOMMcYZUzKwA4y1gGtNfRfzS2yJUWOMMaenKRvYR0bGj3aopYfKYgvsxhhjTk+eBHYR+ZaI7BGR7SLykIgUBO27Q0RqRaRaRK5xqwwLSnOpbTi1n11VSUoa637eGGOMSWxe3bE/C6xQ1ZXAXuAOABFZBnwQWA6sB34gIq7kTV0xI48dR9tP2qYJsPCLMcYYEwtPAruqPqOqIwnbXwVmBr6/EbhfVftV9QBQC5zjRhlmFGRyrK33pG0Hm3uYXZTlxtsZY4wxcZEIfex/DjwZ+H4GcCRoX11gm+NETm1uf21/M+fNS5xUssYYY0ykXJuwLSIbgFDrin5VVR8JHPNVYAj45cjLQhwfsn1cRG4DbgMoKSlh06ZNEZex48Qgv/3DUUqy/Nc3L+0doLwnjX0RnykxdXV1RVUvk53VS2hWL6eyOgnN6iW0RKkX1wK7ql453n4RuRW4DrhC/9S5XQfMCjpsJnBsjPP/GPgxwOLFi3XdunURl3FZZx+PvX2cWy6aS//QMNsG97Fu3aKIz5OoNm3aRDT1MtlZvYRm9XIqq5PQrF5CS5R68WpU/Hrgy8ANqhqctP1R4IMiki4ic4GFwOtulaM0N4P6jj58PuXZ3fVctrjErbcyxhhj4sKr3KnfA9KBZwN93a+q6mdVdZeIPADsxt9E/zlVDZ0iziHXrazgrqerGfb5uG7ldDffyhhjjHGdJ4FdVReMs+9O4M54lWXlzAIq8jMpzEqcZVqNMcaYaNlqJ0BJbrrXRTDGGGMckQjT3YwxxhjjEAvsxhhjzCRigd0YY4yZRCywG2OMMZOIBXZjjDFmErHAbowxxkwiFtiNMcaYScQCuzHGGDOJWGA3xhhjJhEL7MYYY8wkYoHdGGOMmUQssBtjjDGTiAV2Y4wxZhKxwG6MMcZMIhbYjTHGmEnEArsxxhgziVhgN8YYYyYRTwK7iPw/EdkuIm+JyDMiMj1o3x0iUisi1SJyjRflM8YYY05XXt2xf0tVV6rqmcDjwD8CiMgy4IPAcmA98AMRSfaojMYYY8xpx5PArqodQU+zAQ18fyNwv6r2q+oBoBY4J97lM8YYY05XKV69sYjcCXwMaAcuC2yeAbwadFhdYJsxxhhjwuBaYBeRDUB5iF1fVdVHVPWrwFdF5A7gr4B/AiTE8RpiGyJyG3Bb4Gm/iOx0oNiTzTSgyetCJCCrl9CsXk5ldRKa1Uto8a6XOaE2imrIuBk3IjIHeEJVVwSCPKr6jcC+p4GvqermCc6xRVXXul/a04vVS2hWL6FZvZzK6iQ0q5fQEqVevBoVvzDo6Q3AnsD3jwIfFJF0EZkLLARej3f5jDHGmNOVV33s3xSRxYAPOAR8FkBVd4nIA8BuYAj4nKoOe1RGY4wx5rTjSWBX1ZvG2XcncGeEp/xxbCWatKxeQrN6Cc3q5VRWJ6FZvYSWEPXieR+7McYYY5xjKWWNMcaYSeS0D+wisj6QfrZWRL7idXm8IiI/FZGG4Gl/IlIkIs+KSE3ga6GXZYw3EZklIhtFpEpEdonIFwLbp3q9ZIjI6yLydqBevh7YPqXrBUBEkkXkTRF5PPB8ytcJgIgcFJEdgTTgWwLbpnTdiEiBiPxORPYEPmPOT5Q6Oa0DeyDd7PeBdwHLgA8F0tJORT/Hn4Y32FeA51R1IfBc4PlUMgR8SVWXAucBnwv8fUz1eukHLlfVVcCZwHoROQ+rF4AvAFVBz61O/uQyVT0zaDrXVK+b/wSeUtUlwCr8fzcJUSendWDHn262VlX3q+oAcD/+tLRTjqq+CLSM2nwjcG/g+3uB98SzTF5T1eOqui3wfSf+f7wZWL2oqnYFnqYGHsoUrxcRmQlcC/x30OYpXScTmLJ1IyJ5wCXA/wCo6oCqtpEgdXK6B/YZwJGg55aC9mRlqnoc/EEOKPW4PJ4RkUrgLOA1rF5GmpzfAhqAZ1XV6gX+A7gd/zTcEVO9TkYo8IyIbA1k/YSpXTfzgEbgZ4Gum/8WkWwSpE5O98AedgpaM3WJSA7wIPA3oxYgmrJUdTiwuuJM4BwRWeFxkTwlItcBDaq61euyJKgLVXU1/m7Pz4nIJV4XyGMpwGrgh6p6FtBNAnVFnO6BvQ6YFfR8JnDMo7IkonoRqQAIfG3wuDxxJyKp+IP6L1X194HNU75eRgSaDzfhH58xlevlQuAGETmIv0vvchH5BVO7Tt6hqscCXxuAh/B3g07luqkD6gItXQC/wx/oE6JOTvfA/gawUETmikga/rXcH/W4TInkUeDWwPe3Ao94WJa4ExHB3wdWpar3BO2a6vVSIiIFge8zgSvxp3WesvWiqneo6kxVrcT/OfK8qn6UKVwnI0QkW0RyR74HrgZ2MoXrRlVPAEcCGVQBrsCfMTUh6uS0T1AjIu/G3zeWDPw0kLluyhGRXwPr8K8uVI9/tbyHgQeA2cBh4BZVHT3AbtISkYuAPwI7+FO/6d/j72efyvWyEv/AnmT8F/cPqOo/i0gxU7heRojIOuDvVPU6qxMQkXn479LB3wT9K1W9c6rXjYiciX+gZRqwH/gEgf8nPK6T0z6wG2OMMeZPTvemeGOMMcYEscBujDHGTCIW2I0xxphJxAK7McYYM4lYYDfGGGMmEQvsxkwhIlIcWKHrLRE5ISJHA993icgPXHrPvxGRj42z/7qRFeaMMbGz6W7GTFEi8jWgS1W/7eJ7pADbgNWqOjTGMRI45kJV7XGrLMZMFXbHboxBRNYFrUH+NRG5V0SeCazD/T4RuSuwHvdTgTS9iMgaEXkhsDDI0yOpNEe5HNg2EtRF5K9FZLeIbBeR+8G/2hz+tLbXxeWHNWaSs8BujAllPv4lTG8EfgFsVNUzgF7g2kBw/y5ws6quAX4KhMr6eCEQvLDKV4CzVHUl8Nmg7VuAix3/KYyZglK8LoAxJiE9qaqDIrIDf+rZpwLbdwCVwGJgBfCsvyWdZOB4iPNUAFVBz7cDvxSRh/GnPB7RAEx3rvjGTF0W2I0xofQDqKpPRAb1T4NxfPg/NwTYparnT3CeXiAj6Pm1wCXADcA/iMjyQDN9RuBYY0yMrCneGBONaqBERM4H//K4IrI8xHFVwILAMUnALFXdCNwOFAA5geMW4V8xzBgTIwvsxpiIqeoAcDPwbyLyNvAWcEGIQ5/Ef4cO/ub6XwSa998E/j2wHjzAZcATbpbZmKnCprsZY1wlIg8Bt6tqzRj7y/AvBXpFfEtmzORkgd0Y4yoRWQyUqeqLY+w/GxhU1bfiWjBjJikL7MYYY8wkYn3sxhhjzCRigd0YY4yZRCywG2OMMZOIBXZjjDFmErHAbowxxkwiFtiNMcaYSeT/A4Wl8uwfWDHrAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 576x216 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "a = u.zero_mean().differentiate(band=[0, 0.3]).differentiate(band=[0, 3])\n",
    "\n",
    "a.plot_time(fig=3, axis_t=[0, Td, -30, 30], figsize=(8,3));\n",
    "\n",
    "print('Pico de aceleração é {0:4.1f}m/s2.'.format(a[0].max()))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 1.4:__ A maior tração no cabo é simplesmente o maior elongamento vezes a constante elástica:\n",
    "\n",
    "$$ T_{\\rm max} = u_{\\rm max} \\, k \\approx 30.4 \\cdot 70 = 2.13{\\rm kN} $$\n",
    "\n",
    "Isso corresponde a aproximadamente 3 vezes o peso do saltador!\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 1.5:__ Este cálculo pode ser feito utilizando-se a expressão de estimativa de amortecimento por decremento\n",
    "logarítmico. Considerando-se um decaimento de 1/3 da amplitude inicial (parte flutuante apenas) tem-se:\n",
    "\n",
    "$$ \\zeta = \\frac{\\ln (3 \\, / \\, 1)}{2 \\pi \\,N} = 3\\% $$\n",
    "\n",
    "Portanto $N \\approx 6$ ciclos. Este resultado pode ser conferido no gráfico do deslocamento simulado na solução\n",
    "da questão 1.2, correspondendo ao pico que ocorre próximo aos 40 segundos desse gráfico.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Questão 2\n",
    "\n",
    "Uma placa de trânsito é sujeita à força dinâmica do vento (na própria direção do vento). \n",
    "A placa pode ser entendida como uma viga engastada na extremidade inferior e livre na extremidade superior. \n",
    "O poste que sustenta a placa tem seção tubular. Demais dados do problema são\n",
    "\n",
    "* A massa oscilante da placa, já considerando uma parte do poste, é $50{\\rm kg}$.\n",
    "* O comprimento livre do poste é $4{\\rm m}$.\n",
    "* O amortecimento do sistema placa-poste é 1% (razão do crítico).\n",
    "* O grau de liberdade considerado, $u(t)$, é o deslocamento horizontal do centro da placa na direção do vento, medido a partir da posição sem vento.\n",
    "* O poste tem diâmetro externo $40{\\rm mm}$ e diâmetro interno  $35{\\rm mm}$ (considerar seção constante).\n",
    "* O módulo de rigidez do aço do poste é $2.05\\times 10^{11} {\\rm N/m}^2$.\n",
    "* A flexão no poste ocorre dentro do regime linear elástico.\n",
    "* O valor médio da força do vento é $100{\\rm N}$ e o desvio padrão é $10{\\rm N}$.\n",
    "* A parte flutuante da força do vento pode ser considerada um ruído branco em banda, de 0 a 10Hz (densidade espectral constante neste intervalo e zero fora dele).\n",
    "\n",
    "<img src=\"resources/tests/PEC00025A_211_P1Q2.jpg\" alt=\"Question 2\" width=\"240px\"/>  \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Pergunta-se:\n",
    "\n",
    "1. Qual a frequência natural do sistema?\n",
    "2. Qual o deslocamento médio da placa?\n",
    "3. Qual o desvio padrão do deslocamento da placa?\n",
    "4. Qual o pico do deslocamento da placa esperado para um intervalo de 10 minutos?\n",
    "5. Quantas oscilações a placa sofrerá em média neste mesmo intervalo?\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "m2 =  50.             # massa da placa e parte do poste (kg)\n",
    "L2 =  4.              # comprimento do poste do engaste até o CG da placa (m)\n",
    "zt =  0.01            # amortecimento (razão do crítico)\n",
    "E  =  2.05e11         # modulo de elasticidade do aço (N/m2)\n",
    "\n",
    "De =  0.040           # diâmetro interno do poste\n",
    "Di =  0.035           # diâmetro externo do poste\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 2.1:__ Inicialmente precisamos calcular a rigidez à flexão do poste:\n",
    "\n",
    "$$ EI = E \\, \\frac{\\pi (d_{\\rm ext}^4 - d_{\\rm int}^4)}{64} \\approx 10660{\\rm Nm^2}$$\n",
    "\n",
    "A rigidez vista de um grau de liberdade correspondente ao deslocamento transversal no topo do poste é dada por:\n",
    "\n",
    "$$ k = \\frac{3EI}{L^3} \\approx 499.7{\\rm N/m}$$\n",
    "\n",
    "Considerando-se a massa da placa dada e desprezando-se a massa do poste tem-se a frequência natural do sistema:\n",
    "\n",
    "$$ f_{\\rm n} = \\frac{1}{2\\pi} \\sqrt{\\frac{k}{m}} $$\n",
    "\n",
    "Observe que a massa do poste é da ordem de 10% da massa da placa e portanto está sendo desprezada.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Frequência natural do sistema placa-poste é aproximadamente 3.16rad/s = 0.503Hz.\n",
      "\n"
     ]
    }
   ],
   "source": [
    "EI = E*np.pi*(De**4 - Di**4)/64\n",
    "k2 = 3*EI/(L2**3)\n",
    "\n",
    "wn = np.sqrt(k2/m2)\n",
    "fn = wn/(2*np.pi)\n",
    "\n",
    "print('Frequência natural do sistema placa-poste é aproximadamente {0:3.2f}rad/s = {1:4.3f}Hz.\\n'.format(wn, fn))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 2.2:__ O deslocamento médio da placa, na direção do vento, depende da força de arrasto média:\n",
    "\n",
    "$$ \\bar{u} = \\frac{\\bar{F}}{k} = \\frac{100}{499.7} \\approx 20{\\rm cm}$$\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 2.3:__ Para o cálculo da resposta dinâmica é necessário levar o problema para o domínio da frequência, \n",
    "de tal forma que o espectro da parte flutuante da resposta em deslocamento, $S_U(\\omega)$, é dada por:\n",
    "\n",
    "$$ S_U(\\omega) = \\lvert H(\\omega) \\rvert^2 \\, S_F(\\omega) $$\n",
    "\n",
    "onde $\\left| H(\\omega) \\right|^2$ é a função de admitância mecânica:\n",
    "\n",
    "$$ \\lvert H(\\omega) \\rvert^2 = \\frac{1}{k^2} \\; \\left[ \\frac{1}{(1 - \\beta^2)^2 + (2\\zeta\\beta)^2} \\right]$$\n",
    "\n",
    "e $S_F(\\omega)$ é o espectro da força do vento.\n",
    "A seguir vamos construir estas funções numericamente para efetuar o cálculo.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf4AAADUCAYAAAB9L0HBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgaElEQVR4nO3deZwlZXn28d/FIDPIgKIMyCqLQyvysggCBmN6QBRGXjC+LhBFUJOJCwaMCxiTaExeQ6LBqAg4spoQcBQIiCNKwAb0lXVkdVhGFh0HGXGBaUGGmbneP6paD8053ae7T/XpU319P5/z6VN1quq5b3ro+1TVU88j20RERMT0sF63A4iIiIjJk8IfERExjaTwR0RETCMp/BEREdNICn9ERMQ0ksIfERExjVRW+CVtK+m7kpZKulPSceX650m6QtK95c9NW+x/sKS7JS2TdGJVcUZEREwnquo5fklbAlvaXiJpY+Bm4PXAMcCvbJ9UFvRNbZ8wbN8ZwD3AQcBy4EbgSNs/qiTYiIiIaaKyM37bD9leUr5fBSwFtgYOB84tNzuX4svAcPsAy2zfZ3s1cEG5X0REREzApNzjl7Q9sCdwPbCF7Yeg+HIAbN5kl62BnzYsLy/XRURExASsX3UDkmYDFwLH235MUlu7NVnX9J6EpAXAAoBZs2bttd1224031Clt3bp1rLdefftiJr/elvx6V51zg/rnd8899zxie85Y9qm08Et6FkXRP8/2ReXqhyVtafuhsh/Ayia7Lge2bVjeBljRrA3bC4GFAH19fb777rs7Fv9UMjAwQH9/f7fDqEzy623Jr3fVOTeof36SHhzrPlX26hdwJrDU9skNH10KHF2+Pxq4pMnuNwJzJe0gaQPgiHK/iIiImIAqr3/sDxwFHCDplvI1HzgJOEjSvRS99k8CkLSVpMUAttcAxwLfpugUuMj2nRXGGhERMS1Udqnf9vdofq8e4MAm268A5jcsLwYWVxNdRETE9FTfHg8RERHxDCn8ERER00gKf0RExDSSwh8RETGNpPBHRERMIyP26pe0DcUz9H8MbAU8AdwBfBP4lu11lUcYERERHdOy8Es6m2J8/MuAf6EYYW8WsDNwMPAxSSfavmYyAo2IiIiJG+mM/99s39Fk/R3AReWIevUcGD8iIqKmWt7jHyr6ko6StHHjZ5IOtb3a9rKqA4yIiIjOaadz3xeAayW9pGHdJyuKJyIiIirUTuG/H3gn8HVJbyrXtTW3bkREREwt7YzVb9tLJP0JcL6kfYEZFccVERERFWjnjP8hANuPAK8FDOw62k6SzpK0UtIdDeu+2jBT3wOSbmmx7wOSbi+3u6mtTCIiImJUoxZ+269reL/O9odtt/OF4RyKx/4aj/UW23vY3gO4ELhohP3nldvu3UZbERER0YaRnuP/BsXZfVO2DxvpwLavkbR9i2MLeDNwQHthRkRERCfIbl7by3v6UHTk+zLw542f27561IMXhf8y27sOW/8q4ORWZ/OS7gd+TfHF40u2F47QxgJgAcCcOXP2WrRo0Whh9aTBwUFmz57d7TAqk/x6W/LrXXXODeqf37x5824e65Xxlmf8jYVd0mA7hX4MjgTOH+Hz/W2vkLQ5cIWku1qNEFh+KVgI0NfX5/7+/g6GOXUMDAxQ19wg+fW65Ne76pwb1D+/8Wh3kp6Wl/zHStL6wBuAr7ZszF5R/lwJXAzs06n2IyIiprOWhV/S84ZewAxJmw5bN16vBu6yvbxFuxsNjRQoaSPgNRTDBEdERMQEjfQc/83Dlpc0vDew40gHlnQ+0A9sJmk58HHbZ1LM9nf+sG23As6wPR/YAri46P/H+sB/2b589FQiIiJiNCMV/p1tPzXeA9s+ssX6Y5qsWwHML9/fB+w+3nYjIiKitZEK/w/KM/XLgcttPzA5IUVERERVRurVv7ekFwKHAP8uaWvge8C3gKttPzlJMUZERESHjNir3/aDtk+3/Xrgj4BvUHTOu1bSNychvoiIiOigdibpAaC8339V+aK8AhARERE9ZKTH+TaR9M+S/kPSnw377FTbP6s+vIiIiOikkS71n00xXO+FwBGSLpQ0s/xsv8oji4iIiI4bqfDvZPtE2/9dTsizBLhK0vMnKbaIiIjosJHu8c+UtJ7tdQC2/2/5eN81QH1nPIiIiKixkc74v8GwaXNtnwt8EFhdZVARERFRjZGe4/9Ii/WXA3MriygiIiIqM+rsfEMT5kRERETvG7Hwl8/qXzaeA0s6S9JKSXc0rPuEpJ9JuqV8zW+x78GS7pa0TNKJ42k/IiIinmmk5/hfSjFO/wnjPPY5wMFN1n/W9h7la3GTdmcAX6QYKngX4EhJu4wzhoiIiGgw0hn/d4EFtq8bz4FtXwP8ahy77gMss32f7dXABcDh44khIiIink62m39QjMW/1PaHxn1waXvgMtu7lsufAI4BHgNuAj5o+9fD9nkjcLDtPy+XjwL2tX1sizYWAAsA5syZs9eiRYvGG+6UNjg4yOzZ9X2KMvn1tuTXu+qcG9Q/v3nz5t1se++x7DPSc/yHAadJ+tdWPfzH4TTgHwGXP/8NeOewbdRkv+bfTgDbC4GFAH19fe7v7+9IoFPNwMAAdc0Nkl+vS369q865Qf3zG4+Wl/ptr7W9ABjsVGO2Hy6Puw74MsVl/eGWA9s2LG8DrOhUDBEREdPZqI/z2f5kpxqTtGXD4p8CdzTZ7EZgrqQdJG0AHAFc2qkYIiIiprO2p+UdK0nnA/3AZuVQvx8H+iXtQXHp/gHgL8tttwLOsD3f9hpJxwLfBmYAZ9m+s6o4IyIippOWhV/SKv5wb33ovrvLfTawPeKXBttHNll9ZottVwDzG5YXA8941C8iIiImZqQhe582Yl85gt97Kc7SL644roiIiKhAO0P2Prd8DO9WYGPg5bY/WHVgERER0XkjXerfjGImvrcAZwF72n50sgKLiIiIzhvpPv2DwC+As4HHgXdJf3jE3vbJ1YYWERERnTZS4f80f+jclxn6IiIiamCkzn2fmMQ4IiIiYhKMNDvf30radITPD5B0aDVhRURERBVGutR/O3CZpN8BSyju988C5gJ7AP8DfKrqACMiIqJzRrrUfwlwiaS5wP7AlhSz6v0nxXS9T0xOiBEREdEpow7Za/te4N5JiCUiIiIqNuoAPhEREVEflRV+SWdJWinpjoZ1n5Z0l6TbJF0s6bkt9n1A0u2SbpF0U1UxRkRETDftDNn7vHEe+xzg4GHrrgB2tb0bcA/w0RH2n2d7D9t7j7P9iIiIGKadM/7rJX1N0nw1Dt03CtvXAL8atu47tteUi9cB27QfakRERExUO4V/Z2AhcBSwTNKnJO3cgbbfCXyrxWcGviPpZkkLOtBWREREALI9+lZDG0vzKB7n24hitr4Tbf9ghO23By6zveuw9R8D9gbe4CYBSNrK9gpJm1PcHnh/eQWhWRsLgAUAc+bM2WvRokVt59NLBgcHmT17drfDqEzy623Jr3fVOTeof37z5s27eay3xEd9nE/S84G3UZzxPwy8H7iUYhCfrwE7jKVBSUcDhwIHNiv6ALZXlD9XSroY2AdoWvhtL6S4IkFfX5/7+/vHEk7PGBgYoK65QfLrdcmvd9U5N6h/fuPRzqX+HwCbAK+3/TrbF9leY/sm4PSxNCbpYOAE4DDbj7fYZiNJGw+9B14D3NFs24iIiBibdgr/39r+R9vLh1ZIehOA7X9ptZOk8ym+NPRJWi7pXcApFDP9XVE+qnd6ue1WkhaXu24BfE/SrcANwDdtXz6e5CIiIuLpRr3UD5wIDL9x/lGKy/wt2T6yyeozW2y7Aphfvr8P2L2NuCIiImKMWhZ+SYdQFOOtJX2+4aNNgDXN94qIiIipbKQz/hXATcBhwM0N61cBH6gyqIiIiKjGSLPz3QrcKum8hkF3IiIiooeNdKl/ke03Az+U1PjYnQCXw+5GREREDxnpUv9x5c9DJyOQiIiIqF7Lx/lsP1S+fQT4qe0HgZkUPe5XTEJsERER0WHtPMd/DTBL0tbAlcA7KGbei4iIiB7TTuFXOcreG4Av2P5TYJdqw4qIiIgqtFX4Jb0CeCvwzXJdOwP/RERExBTTTuE/jmKkvott3ylpR+C71YYVERERVRj1zL2cDveahuX7gL+qMqiIiIioRjvT8u4MfAjYvnF72wdUF1ZERERUoZ179V+jmH73DGBtuweWdBbFGAArbe9arnse8FWKLxEPAG+2/esm+x4MfA6YAZxh+6R2242IiIjW2rnHv8b2abZvsH3z0KuN/c4BDh627kTgSttzKR4NPHH4TpJmAF8EDqF4euBISXmKICIiogPaOeP/hqT3AhcDTw6ttP2rkXayfY2k7YetPhzoL9+fCwwAJwzbZh9gWdmXAEkXlPv9aLRAf/Ok+fyV9462WU+6//7V3La2nrlB8ut1dc5v1rPWY7s1Hn3DiB7RTuE/uvz54YZ1BnYcR3tbDI0IaPshSZs32WZr4KcNy8uBfVsdUNICYAHABi94ESdfcc84wuoRy2qcGyS/Xlfj/P7iJWbWwEC3w6jE4OAgAzXNDeqf33i006t/h8kIpIGahdFqY9sLgYUAfX19/tGn5lcVV1ddffUAf/In/d0OozLJr7fVNb+7f76K+Z+/lg1mzqK/v7/b4VRiYGCgtrlB/fMbj3Z69T8b+GtgO9sLJM0F+mxfNo72Hpa0ZXm2vyWwssk2y4FtG5a3YQxzA8xYr9n3ht63nlTb3CD59bq65lfHnCLa6dx3NrAa+KNyeTnwT+Ns71L+cOvgaOCSJtvcCMyVtIOkDYAjyv0iIiJigtop/DvZ/lfgKQDbT9D8cvzTSDof+AHQJ2m5pHcBJwEHSboXOKhcRtJWkhaXx18DHAt8G1gKLLJ955gzi4iYIJV/6dK1L+qknc59qyVtSPlvX9JONPTub8X2kS0+OrDJtiuA+Q3Li4HFbcQWERERY9BO4f84cDmwraTzgP2BY6oMKiJiKvj9pc2c8keNtNOr/wpJS4D9KP4/OM72I5VHFhERER3XsvBLetmwVQ+VP7eTtJ3tJdWFFRHRfUqn/qihkc74/638OQvYG7iV4ox/N+B64JXVhhYRMTXkSn/UScte/bbn2Z4HPAi8zPbetvcC9gSWTVaAERER0TntPM73Ytu3Dy3YvgPYo7KIIiKmjOJaf874o07a6dW/VNIZwH9S/Pt/G8Xz9REREdFj2in87wDeAxxXLl8DnFZZRBERU8TvO/fllD9qpJ3H+X4HfLZ8RURERA9r5x5/RMS0lBP+qKMU/oiIiGlkxMIvaYakT3eyQUl9km5peD0m6fhh2/RLerRhm7/vZAwRERHT1Yj3+G2vlbSXJNnuyNUu23dTPg4oaQbwM+DiJptea/vQTrQZETEeUh7ni/ppp1f/D4FLJH0N+O3QStsXdaD9A4Ef236wA8eKiIiIUbRT+J8H/BI4oGGdgU4U/iOA81t89gpJtwIrgA/ZvrMD7UVEtC1D9UcdqUNX8MfesLQBRVF/qe2Hh322CbDO9qCk+cDnbM9tcZwFwAKAOXPm7LVo0aKKI++OwcFBZs+e3e0wKpP8eltd83v4t+s44donePvO5oAd65cf1Pd3N6Tu+c2bN+9m23uPZZ9Rz/gl7UwxYM8WtneVtBtwmO1/GmecQw4Blgwv+gC2H2t4v1jSqZI2azYdsO2FwEKAvr4+9/f3TzCsqWlgYIC65gbJr9fVNb8Hf/lbuHaAmTNn1jI/qO/vbkjd8xuPdh7n+zLwUeApANu3UVyin6gjaXGZX9ILVPaqkbRPGecvO9BmRETEtNbOPf5n275BT5+Yes1EGpX0bOAg4C8b1r0bwPbpwBuB90haAzwBHNGppwoiIiKms3YK/yOSdqJ8okXSG4GHJtKo7ceB5w9bd3rD+1OAUybSRkTERCnd+6KG2in876O4h/5iST8D7gfeWmlUERERUYl2Jum5D3i1pI2A9Wyvqj6siIjuG7rDmfuMUSejdu6T9GNJ5wFHAdtWH1JERERUpZ1e/bsAX6K4J/8ZSfdJajbEbkRELaVrcdRJO4V/LcWjfGuBdcDDwMoqg4qIiIhqtNO57zHgduBk4Mu28zx9REREj2rnjP9I4BrgvcAFkv5B0oHVhhUR0X3K03xRQ+306r+EYna+F1MMs3s88BFgw2pDi4iYGnKLP+qknV79F0r6MfA5YDbwdmDTqgOLiOg25ZQ/aqide/wnUUyms7bqYCIiIqJa7RT+W4D3SXpVuXw1cLrtpyqLKiJiChg638+l/qiTdgr/acCzgFPL5aPKdX9eVVARERFRjXYK/8tt796wfJWkWyfSqKQHgFUUYwOssb33sM9F0adgPvA4cIztJRNpMyJirJRT/qihdgr/Wkk72f4xgKQdKQr2RM2z/UiLzw4B5pavfSmuMOzbgTYjIiKmtXYK/4eB70q6j+KW1wuBd1QaFRwOfMW2geskPVfSlrYnNB1wRMR45IQ/6kRuYxBqSTOBPorCf5ftJyfUqHQ/8GuK/5++ZHvhsM8vA06y/b1y+UrgBNs3NTnWAmABwJw5c/ZatGjRREKbsgYHB5k9e3a3w6hM8uttdc3v179bxwcGnuDIF5nXvqh++UF9f3dD6p7fvHnzbh5+u3w0o57xS5pFMWrfKykK9bWSTrf9u/GFCcD+tldI2hy4QtJdtq9pbLbJPk2/oZRfGhYC9PX1ub+/fwJhTV0DAwPUNTdIfr2urvn9/NHfwcCVzJw5s5b5QX1/d0Pqnt94tDNk71eAlwJfAE6hmK3vPybSqO0V5c+VwMXAPsM2Wc7TpwDeBlgxkTYjIsYq4/dEHbVzj79vWK/+706kV7+kjYD1bK8q378G+OSwzS4FjpV0AUWnvkdzfz8iImLi2in8P5S0n+3rACTtC3x/Am1uAVxcDoW5PvBfti+X9G4A26cDiyke5VtG8Thf1Z0JIyKe4fdP86V3X9RIO4V/X+Dtkn5SLm8HLJV0O2Dbu42lQdv3Abs3WX96w3sD7xvLcSMiImJ07RT+gyuPIiJiCssJf9RJO9PyPjgZgURETDnp3Bc11E6v/oiIiKiJFP6IiBaUU/6ooRT+iIhR5B5/1EnLe/ySVjHCv3fbm1QSUUTEFJEBfKKOWhZ+2xsDSPok8HOK0foEvBXYeFKii4iIiI5q51L/a22fanuV7cdsnwb8n6oDi4iYKjKAT9RJO4V/raS3SpohaT1JbwXWVh1YRES35Up/1FE7hf/PgDcDD5evN5XrIiIiose0M4DPA8Dh1YcSETG1KL37ooZGLfySZgHvopiad9bQetvvHE+DkralmOr3BcA6YKHtzw3bph+4BLi/XHWR7eEz+EVETIrc4o86aedS/39QFOnXAlcD2wCrJtDmGuCDtl8C7Ae8T9IuTba71vYe5StFPyImXc73o47aKfwvsv13wG9tnwu8Dvhf423Q9kO2l5TvVwFLga3He7yIiMrllD9qpJ3Z+Z4qf/5G0q4Uz/Rv34nGJW0P7Alc3+TjV0i6FVgBfMj2nS2OsQBYADBnzhwGBgY6EdqUMzg4WNvcIPn1urrmN7i6qPhPrn6ylvlBfX93Q+qe33i0U/gXStoU+DvgUmB2+X5CJM0GLgSOt/3YsI+XAC+0PShpPvDfwNxmx7G9EFgI0NfX5/7+/omGNiUNDAxQ19wg+fW6uub3m8dXw1VXMHODmbXMD+r7uxtS9/zGo51e/WeUb68GduxEo5KeRVH0z7N9UZM2H2t4v1jSqZI2s/1IJ9qPiBiLXOmPOhn1Hr+k50j6rKSbytdnJD1nvA2qeD7mTGCp7ZNbbPOCcjsk7VPG+cvxthkRMR6ZnS/qqJ1L/WcBd1AM4gNwFHA28IZxtrl/eYzbJd1SrvsbYDsA26cDbwTeI2kN8ARwhJ1BMyOiO/LHJ+qkncK/k+3Gsfn/oaFgj5nt7zHKUzK2TwFOGW8bEREdkRP+qKF2Hud7QtIrhxYk7U9xFh4RERE9pp0z/ncDX2m4r/9r4OjqQoqImBoyYm/UUTu9+m8Fdpe0Sbn8mKTjgdsqji0iYkpID6Ook3Yu9QNFwW94zO6vK4onIiIiKtR24R8mF8Aiovbyhy7qaLyFPxe+ImLayB+8qJOW9/glraL5v3cBG1YWUUTEFKH07osaaln4bW88mYFERERE9cZ7qT8iovZyvh91lMIfETEK5y5/1EgKf0RExDTSlcIv6WBJd0taJunEJp9L0ufLz2+T9LJuxBkR09vv+/blhD9qZNILv6QZwBeBQ4BdgCMl7TJss0OAueVrAXDapAYZERFRU904498HWGb7PturgQuAw4dtczjwFReuA54racvJDjQipjele1/UUDuT9HTa1sBPG5aXA/u2sc3WwEPVhhYR8QdDl/ovvPcpvvn3l3c3mIqsXbuWGVfVMzeof37j0Y3C3+wr9PA7aO1sU2woLaC4HQDwpKQ7JhDbVLYZ8Ei3g6hQ8uttya931Tk3qH9+fWPdoRuFfzmwbcPyNsCKcWwDgO2FwEIASTfZ3rtzoU4ddc4Nkl+vS369q865wfTIb6z7dOMe/43AXEk7SNoAOAK4dNg2lwJvL3v37wc8ajuX+SMiIiZo0s/4ba+RdCzwbWAGcJbtOyW9u/z8dGAxMB9YBjwOvGOy44yIiKijblzqx/ZiiuLeuO70hvcG3jeOQy+cYGhTWZ1zg+TX65Jf76pzbpD8nkFFjY2IiIjpIEP2RkRETCO1KPyjDQHcyyRtK+m7kpZKulPScd2OqdMkzZD0Q0mXdTuWKkh6rqSvS7qr/D2+otsxdYqkD5T/Lu+QdL6kWd2OaSIknSVpZeNjwZKeJ+kKSfeWPzftZowT0SK/T5f/Nm+TdLGk53YxxAlpll/DZx+SZEmbdSO2TmiVn6T3lzXwTkn/Otpxer7wtzkEcC9bA3zQ9kuA/YD31Sw/gOOApd0OokKfAy63/WJgd2qSq6Stgb8C9ra9K0Vn3SO6G9WEnQMcPGzdicCVtucCV5bLveocnpnfFcCutncD7gE+OtlBddA5PDM/JG0LHAT8ZLID6rBzGJafpHkUo93uZvulwGdGO0jPF37aGwK4Z9l+yPaS8v0qiqKxdXej6hxJ2wCvA87odixVkLQJ8CrgTADbq23/pqtBddb6wIaS1geeTYvxNnqF7WuAXw1bfThwbvn+XOD1kxlTJzXLz/Z3bK8pF6+jGDelJ7X4/QF8FvgIPT7dUov83gOcZPvJcpuVox2nDoW/1fC+tSNpe2BP4Pouh9JJ/07xP+S6LsdRlR2BXwBnl7czzpC0UbeD6gTbP6M4u/gJxXDaj9r+TnejqsQWQ+OIlD8373I8VXon8K1uB9FJkg4Dfmb71m7HUpGdgT+WdL2kqyW9fLQd6lD42x7et5dJmg1cCBxv+7Fux9MJkg4FVtq+uduxVGh94GXAabb3BH5Lb18q/r3yXvfhwA7AVsBGkt7W3ahivCR9jOLW4nndjqVTJD0b+Bjw992OpULrA5tS3Ar+MLBI0oizS9Wh8Lc9vG+vkvQsiqJ/nu2Luh1PB+0PHCbpAYpbNAdI+s/uhtRxy4Hltoeu0nyd4otAHbwauN/2L2w/BVwE/FGXY6rCw0Ozg5Y/R72U2mskHQ0cCrzV9XrGeyeKL6a3ln9ntgGWSHpBV6PqrOXAReVstjdQXD0dsQNjHQp/O0MA96zym9uZwFLbJ3c7nk6y/VHb29jenuL3dpXtWp0x2v458FNJQxNpHAj8qIshddJPgP0kPbv8d3ogNem4OMylwNHl+6OBS7oYS8dJOhg4ATjM9uPdjqeTbN9ue3Pb25d/Z5YDLyv/v6yL/wYOAJC0M7ABo0xK1POFv+yUMjQE8FJgke07uxtVR+0PHEVxNnxL+Zrf7aBiTN4PnCfpNmAP4FPdDaczyqsYXweWALdT/D3p6VHSJJ0P/ADok7Rc0ruAk4CDJN1L0TP8pG7GOBEt8jsF2Bi4ovz7cvqIB5nCWuRXGy3yOwvYsXzE7wLg6NGu2mTkvoiIiGmk58/4IyIion0p/BEREdNICn9ERMQ0ksIfERExjaTwR0RETCMp/BE9RtLahkc7bymHcq4FSXtKOqN8f4ykU4Z9PiBp7xH2v0DS3KrjjOhl63c7gIgYsyds79Hsg3IgHdnu1bkP/gb4pwnsfxrF3A9/0ZlwIuonZ/wRPU7S9pKWSjqVYjCdbSV9WNKN5Rzr/9Cw7cfKebv/R9L5kj5Urv/9mbSkzcrhTZE0o5yvfehYf1mu7y/3+Xo5l/t5Q+ODS3q5pP8n6VZJN0jaWNK1kvZoiOP7knYblsfGFFOLjjqZiqTDGq543C3p/vKja4FXl7MFRkQT+Z8jovdsKOmW8v39wAeAPuAdtt8r6TXAXIopqwVcKulVFBMEHUExw+P6FF8SRpsg6V0Us+69XNJM4PuShmbg2xN4KcXcGN8H9pd0A/BV4C22byynJX6CYtrlY4Djy2FFZ9q+bVhbewN3DFv3FkmvbFh+EYDtSymH5pa0CLi6XL9O0jJg9zZyi5iWUvgjes/TLvWX9/gftH1dueo15euH5fJsii8CGwMXD43HLqmdOS1eA+wm6Y3l8nPKY60GbrC9vDzWLcD2wKPAQ7ZvBBiaSVLS14C/k/Rhiqlfz2nS1pYUUxg3+qrtYxtyHWj8UNJHKP57fLFh9UqK2QJT+COaSOGPqIffNrwX8M+2v9S4gaTjaT1l9Rr+cOtv1rBjvd/2t4cdqx94smHVWoq/J2rWhu3HJV1BMY3vmynO7od7YljbI5J0IPAm4FXDPppVHisimsg9/oj6+TbwTkmzASRtLWlz4BrgTyVtWN5P/98N+zwA7FW+f+OwY71HxdTQSNpZ0kYjtH0XsJWkl5fbb9xwv/0M4PPAjbZ/1WTfpZSX8kcj6YXAqcCbbQ8v8jsDdZqoK6KjcsYfUTO2vyPpJcAPyv52g8DbbC+R9FXgFuBBio5wQz4DLJJ0FHBVw/ozKC7hLyk77/0CeP0Iba+W9BbgC5I2pDjzfjUwaPtmSY8BZ7fY9y5Jz5G0se1Vo6R5DPB84OIyxxW250vaguLS/0Oj7B8xbWV2vohpStInKAryZyapva2AAeDFrR43lPQBYJXtM8bZxgeAx2yfOe5AI2oul/ojonKS3g5cD3xslDEGTuPpfQfG6jfAuRPYP6L2csYfERExjeSMPyIiYhpJ4Y+IiJhGUvgjIiKmkRT+iIiIaSSFPyIiYhpJ4Y+IiJhG/j+A5jyZsMUEMAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 576x216 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fs =  32\n",
    "f  =  np.linspace(0, fs/2, 9601)  # domínio da frequência\n",
    "SF =  np.zeros(f.shape)           # aloca espaço para o espectro da força do vento\n",
    "\n",
    "kF = (f <= 10)\n",
    "SF[kF] = 10.                     # ruído branco de 0 a 10Hz, desvio é 10N\n",
    "\n",
    "plt.figure(4, figsize=(8,3))\n",
    "plt.plot(f, SF)\n",
    "plt.grid(True)\n",
    "plt.axis([0, 16, 0, 20])\n",
    "plt.xlabel('Frequency (Hz)');\n",
    "plt.ylabel('Load power density (N^2/Hz)');\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A admitância mecânica pode ser definida como uma \"função lambda\":"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "H2 = lambda w: 1/( (1 - (w/wn)**2)**2 + (2*zt*(w/wn))**2 )/(k2**2)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Podemos calcular o espectro da resposta em deslocamento como:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAADfCAYAAACEersUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyu0lEQVR4nO3deXxddZ3/8dfnZt/3bkm60VIopUCh7EtRQVBAwQVQVMQRnXFB9DeODjOKMyo6LqNsKjtuCG4IFUQcaNmhtJTSlraUrumapU2avUk+vz/OTZqmWU6T3CQ3eT8fj/vIPeee5fP1WO7nfldzd0RERGRsigx3ACIiIjJ8lAiIiIiMYUoERERExjAlAiIiImOYEgEREZExTImAiIjIGKZEQEREZAxTIiAiIjKGJfb2oZmVAFcAZwGTgAZgJfBX4HF3b4t5hCIiIhIz1tPMgmZ2L1AMLAReBXYDqcCRwLnAicDX3P2ZoQlVREREBltvicAcd1/Z44lmycBkd18fq+BEREQktnrsI9CeBJjZx8wsq/NnZnaRuzcrCRAREYlvPdYIdBxgthfYBFzp7m9G9y1z93kxj05ERERiKsyogY3ANcAfzOxD0X0Wu5BERERkqPQ6aiDK3X2ZmZ0DPGBmpwAJMY5LREREhkCYGoEdAO5eAbwbcGBOLIMSERGRodFnHwEREREZvXpsGjCzRwl+/XfL3S+JSUSHxpEB3A40A4vc/TdDcV8REZGxoLd5BM5pfwvcCfxT58/dfXG/b2p2D3ARsNvd53TafwHwU4I+CHe5+/fM7GPAXnd/1MwedPfL+3tfEREROViPNQKdv+jNrHYgX/zduA+4Ffhlp3skALcB5wFlwBIzewQoAd6IHtY6iDGIiIiMeWEXHRrUjgTRaYmruuw+GVjv7hvcvRn4HfA+gqSgJHqMFkkSEREZRL31EcjvtJlgZnl0mj/A3bt+kQ9UMbC103YZcApwM3Crmb0XeLSnk83sWuBagNTU1BMnT548yOGNHG1tbUQiozcnGs3lG81lA5Uv3ql88WvdunUV7l7Un3N7m0dgaZftZZ3eOzC9PzfsRXeTFLm71wGf7Otkd78DuANg1qxZvnbt2kEOb+RYtGgRCxYsGO4wYmY0l280lw1Uvnin8sUvM9vc33N7SwSOdPf9/b1wP5QBpZ22S4DtQ3h/ERGRMae3OpIXzexhM/usmU0dgliWADPNbFp0ZcMrgEeG4L4iIiJjVm+rD54EXBfd/ImZLTGz/zWz880sZSA3NbMHgBeBWWZWZmafcvcW4PPAE8CbwEPuvmog9xEREZHe9brWgLtvBn4O/NzMkoCzgAuAb5tZubu/tz83dfcre9j/GPBYf64pIiIihy/MokMARPsLPBV9YWbFsQpKREREhkaPTQNmlm1mN5nZr8zsI10+u93dt8U+PBEREYml3joL3kswpO+PwBVm9sdOfQNOjXlkIiIiEnO9JQJHuPvX3P3h6AJDy4CnzKxgiGITERGRGOutj0CKmUXcvQ3A3b9jZmXAM0DmkEQnIiIiMdVbjcCjwDs673D3+4GvECwJLCIiInGut9UHv9rD/r8BM2MWkYiIiAyZPldfMLOsoQhEREREhl6viUB0roCFQxSLiIiIDLHeliE+Bvgd8OmhC0dERESGUm+jBp4G3ufuLw1VMCIiIjK0emsaWAJ8YKgCERERkaHXWyJwCZBtZv8zVMGIiIjI0OptGeJWd78WqB3CeKQPL75dyUs7WoY7DBERGSX6HD7o7v81FIFIOFfe+RI/f71puMMQEZFRItQyxGaWB5R2Pt7dl8UqKOlbQ3MrackJwx2GiIjEuT4TATP7b+Bq4G3Ao7udLtMPy9Cqqm+mODltuMMQEZE4F6ZG4MMEKxFqfYERZE9dM8W5SgRERGRg+uwjAKwEcmMch4TQuL+1431VnfIyEREZuDA1AjcBr5nZSqCjl5q7XxKzqKRbnb/899QrERARkYELkwjcD3wfeANoi2040pvOiYBqBEREZDCESQQq3P3mmEcifarsXCOgREBERAZBmERgqZndBDzCwU0DGj44xKrqDswfUKWmARERGQRhEoETon9P7bRPwweHQWVt8OWfnWzsqds/zNGIiMho0Gci4O7nDkUg0requmYSIsa4dKOyTrMLiojIwPU4fNDMrjKz3j4/wszOjE1Y0p2qumby0pNVIyAiIoOmtxqBAoJhg0uBpUA5kArMAM4BKoCvxTxC6VBZ10xBRjKZSa1srVYfARERGbgeEwF3/6mZ3UrQF+AMYC7QALwJfMzdtwxNiNKuqq6Z/IxksryRPXXNuDtmNtxhiYhIHOu1j4C7twJPRl8yzCprmzi2JJf0RqOlzdnX1EJ2atJwhyUiInEszBTDMkKU72uiMDOZ7ORgW3MJiIjIQCkRiBMNza3UNbdSlJVCZnLQHKDZBUVEZKD6TATMbNgXvTez95vZnWb2FzM7f7jjGQ4VtcFwwcLMFLKSgkRA6w2IiMhAhakRWG9mPzCz2f25gZndY2a7o4sWdd5/gZmtNbP1Ztbr6AN3f9jdPw1cDVzenzjiXXk0ETi4RkBDCEVEZGDCJAJzgXXAXWb2kplda2bZh3GP+4ALOu+I1jLcBlwIzAauNLPZZnasmS3s8hrX6dT/iJ435pTviyYCmSlkRRMB9REQEZGBMncPf7DZ2cADQC7wB+C/3X19iPOmAgvdfU50+zTgRnd/d3T76wDuflMP5xvwPeBJd/9HD8dcC1wLUFRUdOJDDz0Uulzx4MnN+/nNm83cfG461lzHl14wLpiaxIdmJQ93aIOutraWzMzM4Q4jJkZz2UDli3cqX/w699xzl7r7Sf05t88phqO/3t8LfBKYCvwI+A1wFvAYcGQ/7lsMbO20XQac0svxXwDeBeSY2Qx3/3nXA9z9DuAOgFmzZvmCBQv6EdbI9dzC1aQmbebi8xewePFiCjJbyCwYx4IFc4c7tEG3aNEiRtvzazeaywYqX7xT+camMIsOvQU8DfzA3V/otP8P0RqC/uhuFpweqyaiyyCP6aWQy/Y0UJKX3jGBUH5GstYbEBGRAQuTCHzc3Z/rvMPMznD35939i/28bxlQ2mm7BNjez2uNCdv2NlCSl9axXZKXRtmehmGMSERERoMwnQW7+yV+ywDvuwSYaWbTzCwZuAJ4ZIDXHNXK9tQflAiU5qeztaqew+njISIi0lWPNQLRDn2nA0Vm9uVOH2UDoecWMLMHgAVAoZmVAd9097vN7PPAE9Fr3ePuq/oR/5hQ29TCnvr9FOemd+ybnJ9OXXMrVXXNFGSmDGN0IiISz3prGkgGMqPHZHXaXwN8MOwN3P3KHvY/RtDZUPqwobwWgGmFGR37SvOCpGBLVb0SARER6bfeVh9cDCw2s/vcffMQxiRdrNsVJAIzxx8Y9jK54EAicMLkvGGJS0RE4l9vTQM/cfcvAbea2SEN0e5+SSwDkwPe2rWP5IQIU/IPNA2U5qVjBhvK64YxMhERiXe9NQ38Kvr3h0MRiPTsrd21TC/KIDHhQN/OtOQEpuSns27XvmGMTERE4l1vTQNLo38Xt+8zszyg1N1XDEFsErVmRw0nTc0/ZP+sCVmsVSIgIiIDEGb1wUVmlm1m+cDrwL1m9uPYhyYAu2sa2V7dyHGluYd8NmtCNpsq6mjc3zr0gYmIyKgQZh6BHHevAS4D7nX3Ewmm+5Uh8NrWvQAc310iMD6LNof1u2uHNigRERk1wiQCiWY2EfgwsDDG8UgXy7fuJSnBOGbSoQs+HjUxGNW5ekfNUIclIiKjRJhE4L8IJv5Z7+5LzGw6wfoDMgSWbd7D0ROzSU06dA6naQUZZKcm8tqWvUMfmIiIjAp9JgLu/nt3n+vu/xLd3uDuH4h9aFLf3MJrW/Zy6vSCbj+PRIx5U/JYurlqiCMTEZHRIswyxEXApwmWIO443t2viV1YAvDyxiqaW9s4a2Zhj8ecODmPRWvLqW7YT05a0hBGJyIio0GY1Qf/AjwL/ANQ9/Qh9NxbFSQnRpjfzdDBdidOCWYVfG3LHhbMGjdUoYmIyCgRJhFId/d/i3kkchB358nVuzhtekG3/QPaHVeaS0LEeHljlRIBERE5bGE6Cy40s/fEPBI5yKrtNWypquc9x07o9biMlEROnJzH4rXlQxSZiIiMJmESgesIkoFGM6sxs31mpvFqMbZwxQ4SI8b5s3tPBADOmVXE6h017K5pHILIRERkNAkzaiDL3SPunuru2dHtQwe1y6BpbXMefX07p88oJC8juc/jF8wqAmDxOtUKiIjI4QkzxbCZ2VVm9p/R7VIzOzn2oY1dT6/Zzba9DVwxvzTU8bMnZjM+O4UnV++KcWQiIjLahGkauB04DfhIdLsWuC1mEQm/fnkz47JSOG/2+FDHmxnvOXYii9aWU9O4P8bRiYjIaBImETjF3T8HNAK4+x6g7/pq6ZcN5bUsXlfOFfNLSUoI83gClxw3iebWNp5YuTOG0YmIyGgT5ptmv5klAA4dEwy1xTSqMezWp9eTkhjhY6dNPazzji/NpTQ/jUde3x6bwEREZFQKkwjcDPwZGGdm3wGeA74b06jGqE0Vdfxl+XY+esoUirJSDutcM+PS44t5bn0FW6vqYxShiIiMNmFGDfwG+CpwE7ADeL+7/z7WgY1F33t8DckJET5z9vR+nX/FyZMx4LevbBncwEREZNTqMREws/z2F7AbeAD4LbAruk8G0XNvVfC3VTv53LlHMC47tV/XmJSbxnmzx/Pgkq007tds0CIi0rfeagSWAq9G/5YD6wiWHy6P7pNB0ri/lW8+spLJ+en801n9qw1o97FTp1JV18yj6isgIiIh9JgIuPs0d58OPAFc7O6F7l4AXAT8aagCHAu+9/ga3i6v4zuXzul1XYEwzphRwOyJ2dy+6G1aWtWnU0REehems+B8d3+sfcPdHwfOiV1IY8videXc98Imrj59KmfNLBrw9cyML75zJhsr6li4YscgRCgiIqNZmESgwsz+w8ymmtkUM7sBqIx1YGPBxoo6vvjAa8wan8XXLjxq0K57/uzxHDUhi5ufeku1AiIi0qswicCVQBHBEMI/R99fGcugxoLqhv186v4lRAzu/PhJA24S6CwSMa4/70g2lNfxwJKtg3ZdEREZfRL7OsDdqwhWIJRBUtvUwjX3LWFrVT2//tQpTC5IH/R7nD97PKdNL+DHf1/LxXMnkpuuySBFRORQ4eewlUFRF00Clm/dyy1XnsAp0wtich8z4xsXz6a6YT8/+cdbMbmHiIjEPyUCQ2j3vkauuOMlXt1Uxf9efjwXzJkY0/sdPTGbj54yhV++uInXtuyJ6b1ERCQ+9ZoImFmCmV0/VMGMZmt21nDZ7S+wfnctd378JC45btKQ3PerF8xiQnYqX/n965pkSEREDtFrIuDurcD7hiiWHplZhpktNbOLhjuWw+XuPLRkK++/7XmaWtr43bWn8s6jwy0vPBiyUpP4nw8ex4byOn74xNohu6+IiMSHME0Dz5vZrWZ2lpnNa3+FubiZ3WNmu81sZZf9F5jZWjNbb2ZfC3GpfwMeCnPPkaSitokvPPAaX/3jCk4ozeOvXzyT40pzhzyOM2cW8tFTJnPXcxt5eu3uIb+/iIiMXH2OGgBOj/79r077HHhHiHPvA24Fftm+I7qk8W3AeUAZsMTMHgESCBY26uwaYC6wGujfBPzDwN3507Jt/PdfV1Pf1MpXzjuSfzl3BgkRG7aY/uO9s1m6eQ/XP7ichV84k5K8wR+pICIi8cfcPbY3MJsKLHT3OdHt04Ab3f3d0e2vA7h71ySg/fzvABnAbKABuNTdD5klx8yuBa4FKCoqOvGhh4anAuHNylYeWtvMxpo2ZuRG+OScFIozB7dPZm1tLZmZmYd93q66Nm58sYEJ6RG+fkoqyQnDl5j0pr/liwejuWyg8sU7lS9+nXvuuUvd/aT+nNtnjYCZjQe+C0xy9wvNbDZwmrvf3Z8bAsVA51luyoBTejrY3W+IxnE1UNFdEhA97g7gDoBZs2b5ggUL+hne4XN3XtxQyc8Wvc2zb1UwKSeVH35oFpedUEwkBrUAixYtor/ly526k8/8aimP7Mrh5itOiEl8AzWQ8o10o7lsoPLFO5VvbArTNHAfcC9wQ3R7HfAg0N9EoLtvnj6rJdz9vn7eL2Ya97fyt5U7ufu5jbyxrZqCjGS+fuFRfOL0qYM6U+BgevcxE/j6hUdx0+NrKM5L4+sXHj3cIYmIyDAKkwgUuvtDnarwW8xsIOPQyoDSTtslQNysmevuLN+6l98vLePR17ezr7GF6UUZ3HTZsVx6QvGITQA6u/bs6ZTtaeAXizcwMTuVq8+YNtwhiYjIMAmTCNSZWQHRX+1mdipQPYB7LgFmmtk0YBtwBfCRAVwv5ppaWnl5QxVPrt7FP97cxY7qRlKTIlw4ZyIfOrGEU6cXjMgq9p6YGd+8eDa7ahq58dHVJCVG+OgpU4Y7LBERGQZhEoGvAI8AR5jZ8wSLDn0wzMXN7AFgAVBoZmXAN939bjP7PPAEwUiBe9x9VX+Cj5W6phZWlFXzysYqXt5YybIte2jc30ZqUoSzZxZx/XlHcsGcCWSnJg13qP2WmBDhlo+cwD//ehk3/HkliRHj8vmThzssEREZYmEWHVpqZucAswja99e6+/4wF3f3blcpdPfHgMcOJ9BYqK7fz9Y99Wytquft8lpW76jhzR372FRZhzuYwdETsrli/mTOnFHImTML46LqP6yUxARu/+g8PvOrpXztT2/QuL+NT5w+dbjDEhGRIRRm1MCzwDPAs8DzYZOA4bSv2bn3+Y00t7Sxv7WNhv2t7Knfz976ZqrqmtlTt5/t1Q3sa2w56LwpBekcPSGb9x9fzJzibE6akk9Oevz+6g8jNSmBX3zsRL7wwGt885FVlO9r4ivnH4lZ/DR1iIhI/4VpGvgEcCbwAeAHZtYEPOvuI3YNgspG51uPru7YjhjkpSeTm55EfkYykwvSOWV6PqV56ZTmp1Gan86UggwyU8L8zzH6pCYl8LOPzuM//7KSW59eT/m+Jr596RySErQmlYjIaBemaWCDmTUAzdHXucCIHnNWmhXh1W+cR1JChOTECIkR0y/cPiQmRPjupcdSlJnCzU+tZ0tVPbd9dB75GcnDHZqIiMRQnz/5zOxt4GFgPMHcAXPc/YIYxzUgCQa56clkpCSSlBBREhCSmfHl82fx4w8fx9Ite7jk1udYvb1muMMSEZEYClP3ezOwBbgS+CLwCTM7IqZRybC6bF4Jv//MabS0Oh/42Qv8aVnZcIckIiIx0mci4O4/dfcPAe8ClgI3EswuKKPYcaW5PPKFMzi2JIcvP/Q61z+4nNqmlr5PFBGRuBKmaeBHZvYy8DJwPPANYGaM45IRYFxWKg98+lSuf9eR/GX5Ni66+VlWlO0d7rBERGQQhWkaeAm4xN2PcfdPufv97r4h1oHJyJAQMa5710x+d+1pNLe0cdntL/Cjv6+lqWUgs0yLiMhIEaZp4PfAKWb2w+jr4iGIS0aYk6fl8/h1Z/O+44u55an1XHzLcyzfune4wxIRkQEK0zRwE3AdsDr6+mJ0n4wxOelJ/OjDx3HvJ+ezr7GFy25/nu/8dbX6DoiIxLEwTQPvBc5z93vc/R7ggug+GaPOnTWOJ64/m8vnT+bOZzfyjh8u4i/Lt+He52rSIiIywoSdOi630/ucGMQhcSY7NYmbLjuWhz93BhNyUrnud8u5/I6XWLNT8w6IiMSTMInATcBrZnafmd1PMITwu7ENS+LF8aW5/PlfzuC7lx7Lul37eM9Pn+Xf/rCCndWNwx2aiIiEEGaK4QfMbBEwP7rr39x9Z0yjkriSEDE+cspkLpwzgVueWs+vXtrEw8u3cc2Z0/jsOUeQkza6F24SEYlnYZsGTgMWAOdE34scIi8jmW9cPJunvrKAC+dM4GeL3ubs/3maXyx+m/pmdSgUERmJwowauB34LPAGsBL4jJndFuvAJH6V5qfzkytOYOEXzmRuSQ43Pb6GM7//ND9b9LZGGIiIjDBh1t09h2ChIQeI9hN4I6ZRyagwpziHX33qFF7dVMXNT63n+39bwy+eeZtPnTGNT5wxlexUNRmIiAy3ME0Da4HJnbZLgRWxCUdGo5Om5vPLa07m4c+dwYmT8/jRk+s443tPcdNjb7KjumG4wxMRGdPC1AgUAG+a2SvR7fnAi2b2CIC7XxKr4GR0Ob40l7uvns/KbdX8bPHb3PnsBu5+biPvnTuRT581nTnFGpkqIjLUwiQC34h5FDKmzCnO4baPzGNrVT33vbCJB5ds5S/Lt3Pq9HyuOWMaiZqYSERkyIQZPrh4KAKRsac0P53/vGg2171rJg++spV7n9/Itb9aSn6qcXXbW1wxv5Rx2anDHaaIyKgWdvigSMxkpybx6bOns/ir5/Lzq05kYobx4yfXcfr3nuKff72U596qoK1NtQQiIrEQpmlAZEgkJUS4YM4EUivSmDpnPr99ZQu/f3Urj6/cybTCDD54YgmXzStmYk7acIcqIjJqhJlH4Low+0QG09TCDP79PUfz4tffyf9efhxFmSn84Im1nP69p/jY3S/z8GvbaGhuHe4wRUTiXpgagU8AP+2y7+pu9okMutSkBC49oYRLTyhhS2U9f1xWxh+XlfGlB5eTmZLIe4+dyAdOLOGkKXlEIjbc4YqIxJ0eEwEzuxL4CDCtfahgVBZQGevARLqaXJDO9ecdyXXvnMkrm6r4w9IyHl2xnQdf3crEnFQumjuRi+ZOYm5JDmZKCkREwuitRuAFYAdQCPyo0/59aEIhGUaRiHHq9AJOnV7Aty45hidX72Lhiu3c98Im7nx2I5Pz0zuSgqMnZikpEBHpRY+JgLtvBjajRYZkBMtISeT9JxTz/hOKqa7fzxOrd/Lo69v5xTMbuH3R2xxRlMF7j53I+cdM4JhJ2UoKRES66LOPgJldBnwfGAdY9OXunh3j2EQOS056Eh8+qZQPn1RKZW0Tj6/cycIV27n16fXc/NR6inPTOG/2eM4/ZjwnT80nMUGjZ0VEwnQW/B/gYnd/M9bBiAyWgswUrjp1CledOoXK2ib+b81u/r5qFw+8soX7XthEbnoS7zwqSArOnllEWnLCcIcsIjIswiQCu5QESDwryEzpqCmob27hmXXl/H3VLp5cvZM/LisjJTHCaUcUcO6scSyYVcSUgozhDllEZMiESQReNbMHgYeBpvad7v6nWAXVmZlFgP8GsoFX3f3+obivjE7pyYlcMGciF8yZyP7WNpZsrOLvq3exeF0533xkFQDTCzNYEE0KTp6WT2qSagtEZPQKkwhkA/XA+Z32OdBnImBm9wAXAbvdfU6n/RcQzEOQANzl7t/r5TLvA4qBKqAsRLwioSQlRDh9RiGnzygEYFNFHYvW7ubpteX8+uXN3PP8RtKSEjj9iAIWHDWOs2YUMqUgXR0ORWRUCbPo0CcHcP37gFuBX7bvMLME4DbgPIIv9iXReQoSgJu6nH8NMAt40d1/YWZ/AP5vAPGI9GhqYQZXF07j6jOm0dDcyksbKnl67W6eXrub/1uzG4Di3DTOmFHAGTMKOf2IQoqyUoY5ahGRgTHvY8lXMzsS+Bkw3t3nmNlc4BJ3/3aoG5hNBRa21wiY2WnAje7+7uj21wHcvWsS0H7+VUCzuz9kZg+6++U9HHctcC1AUVHRiQ899FCY8OJSbW0tmZmZwx1GzIy08rk7u+qd1ZWtrKpsZU1VK3X7g89KMo3ZBQnMLkhgVn4CaYm91xaMtLINNpUvvql88evcc89d6u4n9efcME0DdwL/CvwCwN1XmNlvgVCJQDeKga2dtsuAU3o5/k/ALWZ2FvBMTwe5+x3AHQCzZs3yBQsW9DO8kW/RokWofMOntc1Ztb2a59ZX8ML6ShZvquLvm1tIjBjHleZy6vR8Tp5WwIlT8shMOfif2Egv20CpfPFN5RubwiQC6e7+Spd20ZYB3LO7n0w9Vku4ez3wqQHcT2RQJUSMuSW5zC3J5V8WzKBxfyvLNu8JEoO3K/n54g3c9vTbJESMOZOyOXlakBjMn5o33KGLiBwiTCJQYWZHEP2yNrMPEkw93F9lQGmn7RJg+wCuJzKsUpMSDup0WNfUwrIte3hlYxUvb6zi/hc3c+ezG4GgKeEd1SujyUE+47JShzN0EZFQicDnCKrcjzKzbcBG4KoB3HMJMNPMpgHbgCsIFjcSGRUyUhI5a2YRZ80sAqBxfysryqp5ZWMljy9dzx+WlvHLFzcDUJqfxrzJeZw4JY95k/M4akKWZjwUkSEVZtTABuBdZpYBRNx9X9iLm9kDwAKg0MzKgG+6+91m9nngCYKRAve4+6p+RS8SB1KTEjpqAOZEtnHGWWezansNr2ysZNnmvbz4diV/WR5UiqUlJTC3JId50cRg3uRcCjI1MkFEYifMWgO5wMeBqUBie18Bd/9iX+e6+5U97H8MeOww4hQZNZISIhxfmsvxpblAMCph294Glm3Zy7LNe3htyx7ufGYDLW1B15mpBenMm5zHCVPyOK4kh6MmZJOcqFoDERkcYZoGHgNeAt4A2mIbjsjYY2aU5KVTkpfOJcdNAg40Jyzbsodlm/fwzFsV/Om1bQAkJ0Q4amIWc0tyop0Wc5g5LouEiCY6EpHDFyYRSHX3L8c8EhHp0Lk5AYJag7I9DbyxrZrXy/ayYms1f3ltO79+aQsQNCnMKc7m2OJcjisNEoQp+elElByISB/CJAK/MrNPAws5eK2BqphFJSIHMTNK89MpzU/nPcdOBKCtzdlYWceKsr28vrWaFWV7+c3Lm7nn+aDiLis1kbklORwzKYfZE7M5ZlI20woz1BlRRA4SJhFoBn4A3MCB8f4OTI9VUCLSt0jEOKIokyOKMrn0hBIAWlrbWLerlhVle1mxrZo3yqq57/lNNLcGyUFKYoSjJmZ3JAazJ2Vz9IRsLcMsMoaFSQS+DMxw94pYByMiA5OYEGF29Av+iui+/a1tvF1ey+rtNazaXsPq7TX8dcV2HnglaFaIGEwrzAhqDiZFE4SJ2RqtIDJGhEkEVhGsPigicSgpIcJRE7I5akI2l80L9rWPVGhPDFZtr2Hp5j088vqBub0KM1M4akIWs9pf47M4cnyWag9ERpkwiUArsNzMnubgPgJ9Dh8UkZGp80iFdx8zoWP/nrpm3txRw+odNazZuY+1O/fx65c209TSFj0PpuSndyQGsyZkM2tCFlML0tX3QCROhUkEHo6+RGSUy8tIPmi6ZAgWWdpSVc/anQeSg7W79vHk6l1EpzogOTHCjKJMcq2JtfY2R47PYsa4TIpz0zRyQWSECzOz4P1mlgZMdve1QxCTiIwgCRFjWmEG0wozuGDOxI79jftbWb+7tiMxWLNzHys27+OFx9d0HJOaFOGIokxmjMtkRvTvzPGZTCnIIEk1CCIjQpiZBS8GfggkA9PM7Hjgv9z9khjHJiIjWGpSAnOKc5hTnNOxb9GiRRx/8um8tbuW9Z1er27a0zGNMkBixJhSkB4kBuOC2oMZ44IREOqDIDK0wjQN3AicDCwCcPfl0QWDREQOkZuezPyp+cyfmn/Q/rqmFjaU17G+fB/rd9fy1q5a3tpdyz/e3E1r24GVyEvy0pgxLpPphZlMK8pgerQ2YkJ2qpoZRGIgTCLQ4u7V7WsMRHlPB4uIdCcjJZFjS3I4tiTnoP3NLW1srqwLkoNOtQgvb6iiYX9rx3GpSRGmFmRwRFFmR1NFe6KQm5481MURGTXCJAIrzewjQIKZzQS+CLwQ27BEZKxITowwc3wWM8dncWGn/e7OrpomNlTUsrGijo3ldWysqOPNHTU8sWpnx6JMAHnpSdHkIJPpRRkdicLUggw1NYj0IUwi8AWCWQWbgN8SLB/87VgGJSJiZkzISWVCTiqnH1F40Gf7W9so29PAxopaNpTXsSGaKDy/voI/Lis76NgJ2alMLkhnSn46UwszmJyfzpSCdKbkZ5CTnjSURRIZkcKMGqgnSARuiH04IiJ9S0qIdPzqf8dRB39W19TCpsqg9mBDeR2bK+vZXFnHonXllC89OEnISUtiSkE6k/PTmVqQ0ZEwTCnIYFxWivokyJgQZtTAk8CH3H1vdDsP+J27vzvGsYmIHLaMlESOmRQsttRVfXMLW6rq2VxZz5bKejZV1rGlqp4VZdU8vnLnQZ0WUxIjHbUHk/MzmFqYzt7yFiaX1zIpN43UJDU5yOgQpmmgsD0JAHD3PWY2LnYhiYjERnpyYsd0y13tb21j+96GjhqEzZX1bK4KEobn1lfQuD+YXfHHSxcDMC4rhdL8dEry0ijNC/6W5KVTmp/GxJw0khM1T4LEhzCJQJuZTXb3LQBmNgWNGhCRUSYpIcKUggymFGQARQd95u6U72viz/94nqKps9ha1UDZnnrK9jSwdPMeFq7YcVBtQsSCvgkl7QlCl4RhYk6qpmSWESNMInAD8JyZLY5unw1cG7uQRERGFjNjXHYqs/ITWDCv5JDPW1rb2FHdSNmeIEHYGv1bVtXASxsq2bF8G97p51NCxJiYk9opOUhnUm4qxblpTMpNY0JOqpoeZMiE6Sz4NzObB5wKGHC9liQWETkgMSFCaX46pfnpQMEhnze3tLGjuuFAolB1IGF45q1ydtU0HXJOYWYKxbmpTIomB5Ny0yjOTWViTvC+MDOZLvO7iPRLmBoBCFYg3A2kArPNDHd/JnZhiYiMHsmJnZsdDtXU0srO6ka27W1g+95Gtu9tYPveBrbtbeCt3bUsWlt+0ORK7declHNootCxnZOmORQklDCjBv4JuA4oAZYT1Ay8CLwjppGJiIwRKYkJvSYK7k51w/5uE4Xtext47q0Kdu1rPKj5AYKJliblBp0XJ0bnZJiQndoxP8OE7FQyUsL+HpTRKsz/A64D5gMvufu5ZnYU8K3YhiUiIu3MjNz0ZHLTk7sdFgnBqIed1dEkoTpIGNoThbI99SzZVEV1w/5DzstKTYwmCWl4XRPL9q8LtqMJw8ScVHLSktQMMYqFSQQa3b3RzDCzFHdfY2azYh6ZiIiElnRQP4XuNTS3srOmkZ3VjeysaWBHdSO7qhvZUd3IzppGtlS08txTbx1Ss5CSGGFiTirjs1M7koYJ2SlM6FTTUJiZQoImYIpLYRKBMjPLBR4GnjSzPcD2Xs8QEZERJy05oWNGxu4sWrSIM846m/J9TUFyEE0QdlZHk4aaRl7dvIddNTvY33pwtpAQMQozkxmXlcr47BSKon/HdflboIRhxAkzauDS6NsbzexpIAf4W0yjEhGRYZGUEOnocNiTtjanqr45SBSqG9lRE9Qs7N7XyK6aJrbtbeS1LXuprGs+5NyIBSMixmWnMD4rlXHRJKHz9vjsVAoykjXXwhDpMREws/xudr8R/ZsJVMUkIhERGdEiEaMwM4XCzBTmFHffZwGCYZMVtU3s3tfErppGdtc0Hni/r4nt1Y28XraXitruE4aCzBTGZQWJwbisFMZF/47PTqUoK4WirBQKM5NJSdToiIHorUZgKcEMgt3V4TgwPSYRiYjIqJCc2HftAgQdHStqm9hV08TumkZ27WuivCaoXdi9L6h1WFFWTWVd0yH9FwCyUxMpzEqhKLM9OQj+tm+37+u8dLUc0GMi4O7ThjIQEREZm5ISItEhjuESht01TZTva6KittPf6PtV22so39dEbVNLt9fIe+7vByUHRZkp3SYR+RnJY6YvQ6gBpGZ2GXAmQU3As+7+cCyDEhER6SpswgDBCInOCUJFbRNL3lhLRsHEjgTitS17Kd/XdMhkTRA0TeRnBE0P7YlDUWYKBZnJFGQEfwszg4QhPyM5rqeEDjOh0O3ADOCB6K7Pmtl57v65mEZ24P6TgVuBCmCdu39vKO4rIiLxKy054ZDhlMUNG1mw4NhDjq1rajmohqG8tomKfe1JRDPltU1sKK+jvLaJ5pa2bu+XlZJIQWaQFBRkBglEe8KQnxEkDe1JRF560ojqCBmmRuAcYI570DJjZvdzoNNgr8zsHuAiYLe7z+m0/wLgp0ACcFcfX+5HAn9191+Y2S/D3FdERCSsjJREMlISmdrDsMp27k5dcyuVtU1U1DZTWdtEVV0zlXXNVNQ2UVnbTGVdE1ur6lm+dS9Vdc0HrUrZzgxy05IoyEyhIONAzUJBZjSJiCYTQQKRTHZqEpEYNlOESQTWApOBzdHtUmBFyOvfR/BrvuML3MwSgNuA84AyYImZPUKQFNzU5fxrgNeAG8zscuBXIe8rIiIyqMyMzJREMlMSe5wOurO2tmBq6Mq6IHGoqms+kETUtScOzazZWUNlXTN76w+d+REgMWIdTRBBDUOQQHTsy0geULnCJAIFwJtm9kp0ez7wYvTLG3e/pKcT3f0ZM5vaZffJwHp33wBgZr8D3ufuNxHUHhzEzP4f8M3otf4A3BsiZhERkWEViRh5GcnkZSQzY1zfx+9vbWNPXfOBpKHuQM1De21DZV0z2/YEczTsa+y+Q+ThCpMIfGNQ7nRAMbC103YZcEovx/+NYDKjjwCbejrIzK4Fro1uNpnZygHGOZIVEvSZGK1Gc/lGc9lA5Yt3Kl/86vfU/2ESgVeBBndvM7MjgaOAx929+zqMvvU0L0G33H0l8MG+LurudwB3AJjZq+5+Uj/jG/FUvvg1mssGKl+8U/nil5m92t9zw3RbfAZINbNi4P+ATxK0/fdXGUE/g3YlaO0CERGRYREmETB3rwcuA26Jrj1wzADuuQSYaWbTzCwZuAJ4ZADXExERkX4KlQiY2WnAR4G/RveFmjnBzB4AXgRmmVmZmX3K3VuAzwNPAG8CD7n7qsMPvVd3DPL1RhqVL36N5rKByhfvVL741e+ymXc3cXPnA8zOAb4CPO/u3zez6cCX3P2L/b2piIiIjAx9JgIiIiIyevW2DPFP3P1LZvYo3fTq723+ABEREYkPvfURaJ/F74fAj7p5DTszu8DM1prZejP7Wjefm5ndHP18hZnNG444+yNE2RaYWbWZLY++Bnu+h5gys3vMbHdP8z3E+bPrq2zx/uxKzexpM3vTzFaZ2XXdHBPPzy9M+eLyGZpZqpm9YmavR8v2rW6OiednF6Z8cfnsOjOzBDN7zcwWdvPZ4T8/d+/zBRQBRWGOHaoXQYfFt4HpQDLwOjC7yzHvAR4nmLvgVODl4Y57EMu2AFg43LEOoIxnA/OAlT18HpfPLmTZ4v3ZTQTmRd9nAetGy7+9wyhfXD7D6PPIjL5PAl4GTh1Fzy5M+eLy2XUpw5eB33ZXjv48vx5rBKJZxY1mVgGsAdaZWfkIyp46pip292bgd8D7uhzzPuCXHngJyDWziUMdaD+EKVtcc/dngKpeDonXZxembHHN3Xe4+7Lo+30Eo3+KuxwWz88vTPniUvR51EY3k6Kvrk2/8fzswpQvrplZCfBe4K4eDjns59db08CXgDOA+e5e4O55BFMBn2Fm1x929IOvu6mKu/5jDXPMSBQ27tOiVWCPm9lA5nYYieL12YU1Kp6dBWuJnEDwy6uzUfH8eikfxOkzjFYrLwd2A0+6+6h6diHKB3H67KJ+AnwV6H495H48v94SgY8DV7r7xvYdHiwUdFX0s+EWZqriw5rOeAQJE/cyYIq7HwfcAjwc66CGWLw+uzBGxbMzs0zgjwTDiWu6ftzNKXH1/PooX9w+Q3dvdffjCWZ1PdnM5nQ5JK6fXYjyxe2zM7OLgN3uvrS3w7rZ1+vz6y0RSHL3QxZncPdyguqW4RZmquJ4nc64z7jdvaa9CszdHwOSzKxw6EKMuXh9dn0aDc/OzJIIviR/4+5/6uaQuH5+fZVvNDxDd98LLAIu6PJRXD+7dj2VL86f3RnAJWa2iaDJ+B1m9usuxxz28+stEWju52dDJcxUxY8AH4/2dzgVqHb3HUMdaD/0WTYzm2BmFn1/MsGzrBzySGMnXp9dn+L92UVjvxt4091/3MNhcfv8wpQvXp+hmRWZWW70fRrwLoI+YJ3F87Prs3zx+uwA3P3r7l7i7lMJvheecveruhx22M+vt9UHjzOzrtVhEFQ7pB5G7DHh7i1m1j5VcQJwj7uvMrPPRj//OfAYQQ/K9UA9wYJJI17Isn0Q+GczawEagCs82mU0Hlgw/fQCoNDMyoBvEq1piudnB6HKFtfPjuBXyceAN6JtsQD/DkyG+H9+hCtfvD7DicD9ZpZA8AX4kLsvHA3/3YwKU754fXY9Gujz08yCIiIiY1iYRYdERERklFIiICIiMoYpERARERnDlAiIiIiMYUoERERExjAlAiJxzMxa7cAqasujU+KOCmZ2gpndFX1/tZnd2uXzRWZ2Ui/n/87MZsY6TpF419s8AiIy8jVEp1M9RHTSFHP3nuYkH+n+Hfj2AM7/GcGc7J8enHBERifVCIiMImY21czeNLPbCeZULzWzfzWzJRasTf6tTsfeYGZrzewfZvaAmf2/6P6OX9pmVhidzrR9MZcfdLrWZ6L7F0TP+YOZrTGz33SauW2+mb1gwQIvr5hZlpk9a2bHd4rjeTOb26UcWcBcd389RJkv6VQjstbM2tdHeRZ4l5npB49IL/QPRCS+pXWa/W4jcD0wC/iku/+LmZ0PzCRY2tqAR8zsbKCOYIrSEwj+O7AM6G0hE4BPEUxXOt/MUoDnzezv0c9OAI4hmNP8eYJVSl8BHgQud/clZpZNMJPbXcDVwJfM7Eggxd1XdLnXScDKLvsuN7MzO23PAHD3R4hOwW1mDwGLo/vbzGw9cFyIsomMWUoEROLbQU0D0T4Cm6PrkAOcH329Ft3OJEgMsoA/u3t99Lyu63R053xgrpl9MLqdE71WM/CKu5dFr7UcmApUAzvcfQkEi71EP/898J9m9q/ANcB93dxrIlDeZd+D7v75TmVd1PlDM/sqwf8et3XavRuYhBIBkR4pERAZfeo6vTfgJnf/RecDzOxL9Lw0aQsHmg07rytiwBfc/Yku11oANHXa1Urw3xbr7h7uXm9mTwLvAz5M8Ou/qwYOY00TM3sn8CHg7C4fpUavJSI9UB8BkdHtCeAaM8sEMLNiMxsHPANcamZp0fb4izudswk4Mfr+g12u9c8WLNGLmR1pZhm93HsNMMnM5kePz+rUXn8XcDOwxN2rujn3TaJV/30xsynA7cCH3b3rl/6RwKow1xEZq1QjIDKKufvfzexo4MVo/71a4Cp3X2ZmDwLLgc0EHeva/RB4yMw+BjzVaf9dBFX+y6KdAcuB9/dy72Yzuxy4xYIlYRsIloWtdfel0dVN7+3h3DVmlmNmWe6+r49iXg0UAH+OlnG7u7/HzMYTNBXExRK6IsNFqw+KCGZ2I8EX9A+H6H6TgEXAUT0NbzSz64F97n5XP+9xPVDj7nf3O1CRMUBNAyIypMzs48DLwA19zHHwMw7ue3C49gL3D+B8kTFBNQIiIiJjmGoERERExjAlAiIiImOYEgEREZExTImAiIjIGKZEQEREZAz7/+Z6grxPc+fFAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 576x216 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "SU = H2(2*np.pi*f)*SF\n",
    "\n",
    "plt.figure(5, figsize=(8,3))\n",
    "plt.semilogy(f, SU)\n",
    "plt.grid(True)\n",
    "plt.axis([0, 4, 1e-8, 1e0])\n",
    "plt.xlabel('Frequency (Hz)');\n",
    "plt.ylabel('Displacement power density (m^2/Hz)');\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "O valor r.m.s. do deslocamento, $\\sigma_U$, pode ser calculado integrando-se a função acima:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Valor r.m.s. da parte flutuante da resposta em deslocamento é 3.98cm.\n",
      "\n"
     ]
    }
   ],
   "source": [
    "sU = np.sqrt(np.trapz(SU[kF], f[kF]))\n",
    "\n",
    "print('Valor r.m.s. da parte flutuante da resposta em deslocamento é {0:3.2f}cm.\\n'.format(100*sU))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 2.4:__ Considerando-se a \"fórmula de Davenport\" para processos gaussianos banda larga, \n",
    "podemos estimar o fator de pico, $g$, a partir dos momentos da densidade espectral:\n",
    "\n",
    "$$g = \\sqrt{2 \\ln (\\nu_0 T)} + \\frac{0.5772}{\\sqrt{2 \\ln (\\nu_0 T)}}$$\n",
    "\n",
    "onde $T$ é o tempo de observação, adotado como 600s (10 minutos) na NBR-6123, e $\\nu_0$ é a taxa de cruzamento \n",
    "do nível zero para o positivo (_zero upcrossing rate_), calculada a partir do espectro como:\n",
    "\n",
    "$$ \\nu_0 = \\sqrt{\\frac{\\int_0^\\infty{f^2 S_{U}(f) \\; df}}\n",
    "                    {\\int_0^\\infty{    S_{U}(f) \\; df}}} $$\n",
    "\n",
    "Esses cálculos podem ser feitos com o auxílio do Python:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.03978063761835978 0.15150366616027375 3.8084775717710198\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAIZCAYAAAAbVqESAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZgl2VUdiq8T997MrKknqaXW3EhqtaSWaKk1dAtNxTPGwvAeNmADfjagB8gYG9sP87Pxs/lsMCDMjIxAE0JCAoSEQQOSWlK3unqs6nmqnkvV1TVPWVlZOd4h4vz+OLHP3ufEiXtvZt3MvNW11/fVl5V540aciDjD2nuvvY+x1kKhUCgUCoVCoVCMD7KNboBCoVAoFAqFQqEIoSRdoVAoFAqFQqEYMyhJVygUCoVCoVAoxgxK0hUKhUKhUCgUijGDknSFQqFQKBQKhWLMoCRdoVAoFAqFQqEYMyhJVygUzwoYY37CGDO/0e0YZxhjrDHmhza6HWcDY8x/N8bsrvt9xNd6bvnMtq/F+RUKhaIflKQrFIqxR0mU+v37BIC/AvDyDWrfJ0RbusaY48aYm4wx/9oY09qINtXgBQC+NIoTGWPeaIzJjTG3j+J8Z4HfBvBu+qV8F3+3ge1RKBSKkUBJukKhOBfwAvHvpxN/+3fW2iVr7fENah8A3FC25XIA3w1Hhn8ZwK3GmC0b2C4Pa+1Ra217RKf7aQB/BOB1xpjXjOicK4a1dt5aO71R11coFIq1gpJ0hUIx9ijJ5VFr7VEAp+O/WWtnY7kLySCMMT9ujNlnjJk3xvypMWbCGPOzxpgDxphpY8zvGmMy8b0JY8z/NMYcNMYsGGPuNsb8gyGa2S7bcsha+4C19ncBbAdwDYD/KM5/sTHmk8aYGWPMkjHmBmPMVeLznyjb+j3GmMeNMYvGmC8aYy40xvyQMeYpY8ysMeZTxphN4nvvMcbcWp73lDHmazF5lnIXY8zl5e8/aIz5RnmdR40xf3/QjZbX/WcAPgrgrwH8ZPQ5nftHjDE3l/d5vzHm240xrzPG3FE+29uMMd+WeGc/ZYzZX37v88aY5/Zpi5e7GGP+O4AfB/C9IrKxXbTnzXXPo/z9LcaYe40xy8aY+wFcm7jea40xXzbGzJURk780xlw26JkpFArFSqEkXaFQPJtxOYDvB/B9AH4QwD8B8AUAb4Hzdv8UgJ8D8I/Fd/4UTj7xzwC8HsAnAXzJGHP1Si9urd0N4Pry2oRPwJG/7wfwVgCLAK6XhBvAJID/AOD/BvD3ALwZjgz/eHmuf1Te08+K72wB8PvlObcDmC3bPTGgmb8G4AMArgZwN4DPGGO2DvjODwF4xlr7EIBPAfixGlnPLwP4nwDeCGdc/QWA/wXgv5TtnCqvLXE5gH8O93y+C8AVAD4+oD2E3wbwWXBU4wUA7hjmi2W048sA9sI9718szyePeQGAWwDsLtv/XQC2AviiNPQUCoViFGhudAMUCoViDdEA8F5r7SyA3caY6+EI+IustR0Aj5Wa6u8E8L+NMa8A8KMALrfW7i/P8YfGmO8C8C8RkuJh8SgcmYMx5goA/xeAd1trbyn/9i8A7Icj5B8rv9ME8K+ttU+Ux/wFgP8XwPOttSfLv32hbPfvAIC19n/Lixpj3gvgDByZvK1P+37PWvul8jv/H4AfA/CGAd/5KThyDgA3wxka/xeA/x0d97vW2q+U5/4dOAnQD1prbyr/9ocA/jD6ziYAP0bP3xjzL+EkQ1dYa5/q0yZYa+eNMUsooxr0d2NMv68R/m8AE3D9ZR6uv/yauE8A+FcAHrTW/idx7h8DcAqO2N81zIUUCoViGKjlr1Aons3YXxJ0wjEAT5YEXf7teeX/rwFgADxaSk7mSwnN9wJ4xSrbYADY8v+vAVAA2Ekflu17GMBrxXfaRNBFG48SQU+0G8aYVxhj/sIY8y1jzJny8wzASwe07yHx/8Plz+elDiyv80oAb4fzisNaawH8ORxx73fuY+XPh6O/bTHGbBZ/OyQMJAC4E+6ZrbXu/TUAHioJOmFndMybALwr6hsHys9W2z8UCoUiCfWkKxSKZzO60e+25m+N8v9Z+ftbEsctrbINr4WTUACOsNfBiv/3Ep+l2i0dLV8CcAjO43+oPMejcN7hfvDntdba0uvcz4HzU3DPa7/wUBsAMMa8xFp7QBwr22z7/G2tHUZF+ZMbXJXnDONuz+AkMb+Q+OxY4m8KhUKxaqgnXaFQKBj3w5G1y6y1e6J/h1Z6MmPM6wC8B05PDjjSnAF4mzjmAjjt+6OrbbQx5jlwnuBft9beYK19DMA2jNgRY4xpwuni/zOcJIb+XQ3nNX/vCC7zImPMS8Tvb4V7Zo8N+f0O2OginCh/vkD87Q3RMY8CeL0JK/FcFx1zH4Cr4PT4cf+YG7J9CoVCMRSUpCsUCkUJa+2TcNKNT5SVVF5ujHmzMeYXjDE/MODrk8aYy4wxLzTGXG2M+XkAOwDcizIBsdRUfwHAh40x7zTGvB7Ap+G0439xFk2fAXASwE8bY15pjHk3gA+h6pE/W3wvgOcC+Ki1drf8B+AzAP6fESRQLgH4pDHmDcaYt8Hdx5cH6dEF9sGVhbzSuM2IWtbaJQC7APwnY8xVxpjvQJQUCvf8ewA+Xh7z9+ESXCU+COBCAH9ljLm27B/fZYz5iDFm2+puV6FQKNJQkq5QKBQh3gtX4eU3ATwO4O8AvAvAMwO+910AjsAlgd4Il0j5ywDeZa1diM5/F4Avlj83A3hPSSRXBWttAeCHAXw7XOWRDwL4JQCjqolO+EkAN9XUJf8cgJehTJI9C+yDI/xfAvBNOKnQSjz0H4Xzut8D50F/e/n3/6f8eTeADwP4r/JLpRb9++CqydwHR+L/U3TM4fJ8BVzVnkfgnnUbo3/WCoXiPIdxOT8KhUKhUGwsyjrnP2Stfd1Gt0WhUCg2GupJVygUCoVCoVAoxgxK0hUKhUKhUCgUijGDyl0UCoVCoVAoFIoxg3rSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYsygJF2hUCgUCoVCoRgzKElXKBQKhUKhUCjGDErSFQqFQqFQKBSKMYOSdIVCoVAoFAqFYszQ3OgGrCcuuugi+8pXvnKjm6FYJRYWFrBly5aNboZiFdB3d25D39+5C3135zb0/Z3buPfee09aay9d7ffPK5L+/Oc/H/fcc89GN0OxSuzYsQPbt2/f6GYoVgF9d+c29P2du9B3d25D39+5DWPMM2fzfZW7KBQKhUKhUCgUYwYl6QqFQqFQKBQKxZhBSbpCoVAoFAqFQjFmUJKuUCgUCoVCoVCMGZSkKxQKhUKhUCgUYwYl6QqFQqFQKBQKxZhBSbpCoVAoFAqFQjFmUJKuUCgUCoVCoVCMGZSkKxQKhUKhUCgUYwYl6QqFQqFQKBQKxZhBSbpCoVAoFAqFQjFmUJKuUCgUCoVCoVCMGZSkKxQKhUKhUCgUYwYl6QqFQqFQKBQKxZhBSbpCoVAoFAqFQjFmUJKuUCgUCoVCoVCMGZSkKxQKhUKhUCgUYwYl6QqFQqFQKBQKxZhBSbpCoVAoFAqFQjFmUJKuUCgUCoVCoVCMGZSkKxQKhUKhUCgUYwYl6QqFQqFQKBQKxZhBSbpCoVAoFAqFQjFmUJKuUCgUCoVCoVCMGZSkKxQKhUKhUCgUYwYl6QqFQqFQKBQKxZhBSbpCoVAoFAqFQjFmUJKuUCgUCoVCoVCMGZSkKxQKhUKhUCgUYwYl6QqFQqFQKBQKxZhBSbpCoVAoFAqFQjFmUJKuUCgUCoVCoVCMGZSkKxQKhUKhUCgUY4YNJenGmPcYY54wxuwxxvxi4vNXG2N2GmPaxphfiD7bZ4x52BjzgDHmnvVrtUKhUCgUCoVCsbbYMJJujGkA+CCA7wHwWgA/aox5bXTYKQD/FsBv15zmO621b7DWvnntWqpQKBSjwX//4iN46tjcRjdDoVAoFOcANtKT/lYAe6y1e621HQCfAfD98gBr7XFr7d0AuhvRQIVCoRglHj40i9NLOp0pFAqFYjCaG3jtFwE4IH4/CODaFXzfAvi6McYC+LC19iOpg4wx7wPwPgC49NJLsWPHjtW1VrHhmJ+f1/d3jkLfncPcmSXcd9/9WNjX2OimrAj6/s5d6Ls7t6Hv7/zGRpJ0k/ibXcH3326tPWyMeR6AbxhjHrfW3lI5oSPvHwGAK6+80m7fvn1VjVVsPHbs2AF9f+cm9N05/NETO3H1G16F617+nI1uyoqg7+/chb67cxv6/s5vbKTc5SCAl4jfXwzg8LBfttYeLn8eB/C3cPIZhUKhGFsYAIVdiS9CoVAoFOcrNpKk3w3gCmPMtxljJgD8CIAvDvNFY8wWY8w2+j+A7wawe81aqlAoFCNAZszK4oUKhUKhOG+xYXIXa23PGPNvAHwNQAPAx621jxhjfqb8/EPGmMsA3APgAgCFMebfw1WCeS6AvzXGAO4e/sJae/0G3IZCoVAMjSwDCiXpCoVCoRgCG6lJh7X2KwC+Ev3tQ+L/R+FkMDHOALh6bVunUCgUo4WBUbmLQqFQKIaC7jiqUCgU6wRVuygUCoViWChJVygUinVCZtSTrlAoFIrhoCRdoVAo1gnGAFZJukKhUCiGgJJ0hUKhWCdkxqAoNroVCoVCoTgXoCRdoVAo1gmpHdwUCoVCoUhBSbpCoVCsMb70YLhP23y7h7v3ndqg1igUCoXiXICSdIVCoVhj/Nxf3h/8vu/kAv7bFx4BABydXd6IJikUCoVizKEkXaFQKDYQ173/xo1ugkKhUCjGEErSFQqFYp1hrdt9VKFQKBSKOugyoVAoFOsICyC3FpnRNFKFQqFQ1ENJukKhUKwTiJcXStIVCoVCMQBK0hUKhWIdIDcxstYiU46uUCgUij5Qkq5QKBRrhM/ffwgAkBmgEBuNFhbqSVcoFApFXyhJVygUijXCv/+rBwCUO42WnnRrLYrCQjm6QqFQKPpBSbpCoVCsMSRJB5wn3ShLVygUCkUfKElXKBSKNYYxruyi+7+Sc4VCoVAMhpJ0hUKhWGPEcheFQqFQKAZBSbpCoVCsMThx1HnRLSzUn65QKBSKflCSrlAoFGuMWJMOi0ri6Pd+4Nb1bZRCoVAoxhpK0hUKhWKNYQxgC/d/ouoGJpC+PHL4zPo3TKFQKBRjCyXpCoVCscYwpSedvOdEzYuER12hUCgUCkBJukKhUKw5jGFiDrhKL8YAhbVoKEtXKBQKRQJK0hUKhWKNYRBWdbFwXvW8sLrzqEKhUCiSUJKuUCgUa4xUbXSnSQcynYUVCoVCkYAuDwqFQjEC3L3vFD55xz4AwL3PzFQ+j+UugJO7GC3GqFAoFIoElKQrFArFCHD49BLuKcn5D/7xHcFnTu7i/m+tI+ykU1e1i0KhUChSUJKuUCgUI4AxpnY3UUfIeQMjK3YfVY6uUCgUihSUpCsUCsUIQN7yokgR9ai8C1inLvXqdSRfoVAoFOcflKQrFArFCEC7ivYKi2YW+sdDSYv1fD2m5MrRFQqFQkFQkq5QKBQjQFbWPc8Li2ajKmIJ9OeWPe/0p7iWukKhUCjObyhJVygUihHAadKBXlGgGdVVrCaO8u6jxNKplvrn7jmA42eW16vZCoVCoRhTKElXKBSKEcDtIEobFFU/c4mjBhbCg27lMe6zT9+5HwdPL61fwxUKhUIxllCSrlAoFCOA2znUOgIe1VWkjYuMYY+6I+Vc3SWWvygUCoXi/IaSdIVCoRgBDJwnHajWPqffyaNuIw86wImnCoVCoVAAStIVCoViJMgypymvo9kW7FF3/4+quQhir1xdoVAoFErSFQqFYgX4ysNHkn83MChseoMiSgqlcunW2sqOo0TadRdSxTjg+/7XrRvdBIXivIeSdIVCoVgBfvbP70t/UBJrR7LjOunG6815wyIjv+alMEVh0VCWrthg7D50ZqOboFCc91CSrlAoFCNEv+RPIu9+MyOhawmSS9e2iQqFQqE4B6AkXaFQKEaMusRRgiTjRNz97wjJu0KhUCjOTyhJVygUihGiLnWU5S7uqMqOoyCtulFPukKhUCiUpCsUCsVqUOvttkAsePGbGRkm8bIso/tpfNKoetIVCoVCoSRdoVAoVoF/8Pu3VP5mka7O4vXmKCu4WDpeatJjb7tCsfH41M59G90EheK8hZJ0hUKhWAWePDYf/G5q/g+E+nOuk24Cr3u5YanKXRQbin/xJ3cGv//SFx7ZoJYoFAol6QqFQrFKpGQpKS94oDsHJ44CodylsBaZUU+6YuNw61MnN7oJCoWihJJ0hUKhWAUamUGvSJD0Unte+TttZmRZkx5sOGrYw14oS1coFIrzHkrSFQqFYhUgj3fsTXdcPLGZEfjvpEVPVXeBetIVCoVCASXpCoVCsSqQPOXnP/sgHj446/+eThyVyaIhka9Ud0F9GUeFQqFQnD9Qkq5QKBSrABHvI7NLmFvuVj6r/sH65FDKF01WdyHhukIxBjAGKBKyLoVCsfZQkq5QKBQD0M2LwFsOAJkxsLDIjAFxGGttMpk0TBx1x3DJRbnjqC3Pq1CMBxomnXuhUCjWHkrSFQqFYgBOL3bx3k/cFfwtM0BhmaybUrdiyzKKMchLThyejuFDTVmCEZo4qhgbZJkmMisUGwUl6QqFQjEArYZBp1cEf8tKTbopyXq/XUJl4qg8qq66i3IixbigYQxy9aQrFBuCDSXpxpj3GGOeMMbsMcb8YuLzVxtjdhpj2saYX1jJdxUKhWJUiMk1UJLqgsk6bVZEn4XfDz3pvLOo9VIYqhYTl2ZUKDYSmUZ2FIoNw4aRdGNMA8AHAXwPgNcC+FFjzGujw04B+LcAfnsV31UoFIqRwMJWkkGN8KTbchtRWcUlPDasny7/74k96HwG1lo8M72AHU8cX7N7UiiGge6Aq1BsHDbSk/5WAHustXuttR0AnwHw/fIAa+1xa+3dALor/a5CoVCMCimdeVZ6vDPj5ClEvFObGcm66VTRJSb0LHdxf3/40Cw+e8+BNbkfhWJY1BmeCoVi7dHcwGu/CIBcgQ4CuHbU3zXGvA/A+wDg0ksvxY4dO1bcUMV4YH5+Xt/fOYpz/d3NdSx6va6/hx07dqDX6+K2227Hqek2Hnp4FgbAqVM97Np1J5aXloNjFxYWcffd9+DI4S5a88cw2QCOncyxa9cMlpfdse12Gzt37sTMqQ4efOgMlnvA9IneWDy3c/39nc9YzbsL+nnew2233YYtrcQ2uoo1h4698xsbSdJTI35Ye33o71prPwLgIwBw5ZVX2u3btw95ifHCUifHponGRjdjQ7Fjxw6cq+/vfMe5/u6m59uY2HWzu4frv4zt27dj8rYbcN13vA1fOrYbr73qxWhmBg8t7se1174Wmx+9Kzh26wO34E1vegMe6z2DK15wATa3Gji55ySuvfZV2PTwLmzfvh2bdn0T1157Hb58dDde//qXYW65hyPZcWzf/saNvv1z/v2dz1jxuyv7LP1s7fga3v72t+OizRNr1URFH+jYO7+xkXKXgwBeIn5/MYDD6/DdcxJv+JWvb3QTFIrzFjIplEBJoJQAKncUTZ+j1LVTkqk4T3here6iGB9of1QoNg4bSdLvBnCFMebbjDETAH4EwBfX4bvnJNpR+TeFQrF+IDIuQdVYHIzQk6eTTCuVW+IdR8vzkdbdGNUCKzYemRk+xK1QKEaLDSPp1toegH8D4GsAHgPwWWvtI8aYnzHG/AwAGGMuM8YcBPDzAP6rMeagMeaCuu9uzJ0oFIpxw/G5Zfznv3kYALDY6Z31+VLJoFR60R9DlV6Q8Lr7n2WSafm91I6jEFVetPSdYqOh/VCh2DhspCYd1tqvAPhK9LcPif8fhZOyDPVdhUKhAID55R52fuskAODdv7UDd/+X7zq7Eyaru0jyQmIWk/S6E6hcI21aRH8DmMAHHnXlRooNhlZ3USg2DrrjqEKheNZBerNPzLXP+nxFgnh7TTrVPhf/jw+W+nVqYLxpkSzBCNhyAyVlR4qNhYlkWQqFYv2gJF2hUDzr0M+bvarzpWqfV3ZitJ5gx5BEx4L97uGOo24To0zo1wtNRVFsOFSUrlBsFJSkjzEW2j187Na9G90MheLcxAhZutSOE7JE1YuKx9w3hYh36ju042jpsTfsuVcPpmKjEUd8FArF+kFJ+hhjdqmLj9369EY3Q6E4BzFaWkHVViSkJt0lg8pjq+Ua5bkqlV6AktnLXUu19J1i46GadIVi46AkfYyRFxaNTHd5UyhWisICjZhVnwWSZRVBHm8Wufhk0NQ5UE0clV53IkP096z0qOeFxQ/80e0juxeFYiVQTbpCsXFQkj6GWOrkWO7mKKxFpm9IoVgxevloDVySqgQoPd/hMWmvI+vPTXAsn6eUwkAkkBoneCmsxYMHZ0d2LwpFHWyi86ZkXYT3/dk9a9wiheL8xoaWYFSk8Yc3PYWpZgP/59UvRDZCb6BCcb5gPaJQsQzABlKV+GBTkcyYiOR7T7pPIHX3MeokWIWiDnUGZl2d9K8/emxtG6RQnOdQP+0YorBAlpUbmmx0YxSKcxC9okCzMbrpLfB8lyDPd3CMl7AY8XcbEHprRaUXKXchgo8q+VdjXbEeiA1JazU3QqHYSChJH0PkhUUzM8kEtH/4B7duTKMUinMINIZGhWQJxtSBXroivisIPlVscaQnHOPBZkblMZ4gKUdXrAPi3Asl5wrFxkJJ+hiC9LSpMPejR85sSJsUinMJvcKeVeLox297GodOL/nfUyUY6e/+/4m/hU1gop+qFiPLNzpvu0wmVSjWHoHRaLifKllXKDYGStLHGtZXg1AoFMOjsAldeIlOr0Av779L0BceOIRjZ5b977WkOkgctcna5pJsQ/ysI+CUqOelBimNu0KxBqhWG+I8i7nlLvJC1yKFYj2hJH0MkZWei6Jm8xOFQjEACQ054YM37cHHbuu//0A87mgn0OAYpDcmkpVgmOiwtMW6E5bNDAm4hWNJhbV+Y6M6L75CMWrI/uj7bNnP/91nHsCOJ45vaPsUivMNStLHEJQ06kPfqCccCoUijTpia63Fcjdf0bmKhMc7lgHEXkh3jKnIVryUxevUDR9LyafujDr+ExgUBVGsHtIg5GpDrg82M4Nurh4jhWI9oSR9DEHbglshd4m9eDc/eQIn5tob1EKFYrzRj0oYYzAoal/YuIRjWhgeyF0CL2T5E5GelzTpohJM9BHK8uii7rpWeZK47v03bnQTnt0QfZgqC1lr0Wpk6KqBpFCsK5SkjyFou3G366CpePGstfjwzd/Ck8fmNqyNCsU4I1UykZCtIhMupR2PKy9JTzkfExrbABN7L2WRpEhcx0sNEtc6n3FyvrPRTXjWIowGcfECkl7V1UtXKBRrAyXpY4Af//hdwe+ZAYrC+gkxrpNsrWbbKxT90C/ZMjNAPmAA0YZCfL40UfbJoPJ7gpSzdCDU96aSwWNtutzBVCm6Yj0QjJvgp+1rKJ5aUMNJoVgLKEkfA9z85AkAwGfu2p/YOjysk5wZQQjWv6kKxbrjP3z2wRXrkFPJlh+48SkAlPPR//vkPQzPVz0GYCItq7f4a5PTPvKae516pRKM5fMRYdI66Yp1QlKTHv1M4Zr/8Y31aqJCcV5BSfoY4f/724cr5CEu02ZKKQzh6ZML+Nite9etjQrFeuOru49guZcm6ftOLiT/nkq2/N1vPAlguLrPmaGz0PkSmxkJ4m1Luh0T94y5elSuMVUJJkwc5f+rJl2xPggSmr1Uy/XHzFSNSoVCsbZQkj5GaGTG16GlRTrLQrlLJrxsAHBkdgnfePTYRjVZoVhzNDNT60nf/ts7gt+PzC7h+Nxy370FskjKUndM1ZMelWAkEiMlLCLSZcE1z8NE0pDqBMQeEJ50CA+80nTF2kMWKZCadOqDheaNKhTriuZGN0DBIJJO63FRSl+KYJEXnvQyFK7rt+LZDFdVYjgP3p/v2o+JZobXv/jCWmKbGQzclMWUeSGf2vUMXnHpFly0aaLqSQdL0SxEoidtalQSHk/Jo7FaPV+4eQxvjqRjXLE+kEUKAqNRlANVKBTrB/WkjxEaxiAvq7oA0qtmg4lTgrx1CsWzFc2GQW9IF54fCn2SLYfZGIhC/I8ensXTJxeSYX5PYlB60UVNaXhvJF/Te9hF4mhQhYY2OhKlGcnrr2P83IK1FmeWuxvdjJVDaLYCQ9PnVShNVyjWE0rSxwiNzCAXHkPpSWO5i/Ck22iRVyiehWhmGXpDetILP2bqq7sMg6wsN5cZg6KwPtwvSYrMEwGEt5EkAuVBYZUWJuu8iVF8PvfdovSqpzZSUow3jp1p4x/83i0b3YwVQ+Y/+N1xwWNBKbpCsb5Qkr7OOD63jH/9F/clP2tkzpMuK0DAGNgCwQYThS2JS2G9JlaheLbCedKHowekJR+mbKG1trZ0HElZZJ5IqroFS1vK78mkOwtPbGS9dCBMOA3PRxXv5I7DZ2dwjBqnFjo4Mru07tc9l7y4tM/FuYYwkTlKcMa59Q4UimcDlKSvM9rdAg/sP538rJGFYX0Xagy9GxT+Zm+betIVz26shBxQnfJhki3PLPfw7t+8KflZljHJ9qRfaHTLiwVVL7iJwtvu5WrcliClxMYe9ZjIe/3MUPe/HvjCA4fwoR3fWvfrfvc55JnOC4tmY3ze2bAI+zcC2dgq9gBTKBRnCSXp64xmw9QmrQXVXYQ30FV5Ye9GIULv6tlQPNsxTF1zf2yZ8AkMprW9vKglUiQr87v/iu3RAw4jql5w4ih7wKVEQP6dPOiSFEmPPCeihsf86Ed2Dfcg1hCFmI/WC9ZaPHV8fl2veTbo5gVajXNvea30b1G3n6RaC+0eDpxa3MBWKhTnD869WeQcR1CdJfGZDNO7xdl4nS0Av7lJHHq31uKBA6fXrN0KxUZhJZ70Bnm+az4vBNvv5AUmmvVTYFFGsgprfcSKxiQgPN/gkqnyGKqTLv9ObDsuywj6Dnge8CUdxZywc+/0UM9hLVEU65/I2s0tWueQZzovLNbZjhkJwv5tRN+1Prq0a+80fukLuze2oQrFeQIl6esM8s6l4BfyEjIBTU6cRB7IH5cZg8VOjh/5yM61br5Cse5YScJallGFpKqOm3I+CN2erfV20jVddCvUnseedKp6IbXjfGkpcxFRMvRLROVa6n4zozEifIW1aKyAgZ5NtO+2p07iT29/Gp1zzDNd2HOz6lbQv31fpmpDxr/7QSVMFQrFaHDuzHrPEgSavwhykxWqk5wJj5w7hqu9FEQeDLDczbGp1ViXe1Ao1hNBRaNhji1ITBIOtIYJyUWvKNCsIZuZEZ5sEqeYkDAHO4UCnsjIpvrIV1SSkf4vvetAVBmGvJhCtz4OWCk9izecWgmOnVnGQwdnnTTpHHJNj5thNSzidnPSM/9sZKUETKWWCsWaQ0n6OkNq/tKfwy/ahfDS0fLu5S+GKwjQon4uem4UikFwGwsNfyyQLk2a2mOgLrmUdOZEjmV+SJAECibinshY1vHKrdTjKJm/lmif+67xuwrHmvRxgJQf3fvMzMDjn5leuX75yOwSlrt5KbFwcqOVeO83GpR0fM5BJCnTe6aID91NwzuINqiNiiS+/4O3b3QTFGsAJenrjH5VJ+LseblIB550ShyFrEBxbnpuFIpBIMN0GMgKK/FwIMNWHls3ZChixecU4ytK9KQEO/83sEyFImGlfJ2vDdab+/bJDY/AY3uQYb9eaPdyAFzxBgB+8I/vCI4pCotenrao6krPpvCL//th7PzWtL9WUZLFcwXD9tdxQ5DI7HMkECRuG1NKyjBexuP5jgcPnNboxrMQStLXGa5SS/ozWTfZWvhwd0jAw23H/WfCA6JQPBvwU5+8BwBWlYCX9KRHUpSgvlwFoeEbetLLIyKveco9XucJZ498SP59op5MVk0Y9n96+9ODHsHI8Q9+7xacmGtXjB2Jz95zAL/5tSeSn335oSNDXysvWPcuI4bnCvo5Y8YZqZwLSpAmkBRspcbjf/jsg6NrqKICV8JZSfqzDUrSR4CisPhHQ4aaXKWWOh1stboL/82Ux4R/J//d+erVsNZiuZsPPEZx7uGGx44BqHrA+8GTalR13DR2yBDul9xHESuCT/QMkkNFNRYwGfdlFCOiFm9cVKnu4n8af3zdmP7lLz2a/mANMd/uiYhB2LDFTg/WWnTyAoud3llfi945JfC6ZxFe86/vPXjW11lLnEPqHI8w50JEcy3TdEocjSWWg+bZLz54yEdjFKNHq2GG3plZce5ASfoIUFiLhw6eHupYKV35+iNHg88MQjJCnrxQ7lJWd8kQbrJyjnmaRoWde6fxrz59b99j/sNnH8S9z5xapxYpRg0prxgG5NSuatLNCuQuocwkqUk34fijz2ItebwradDW6G/xrqSUiDoOBni/qh4/9Mc78fTJhZFdq5lxJMOSJz16Br/wuZV7Zn/ra4/j+NzyiFpZDxmF+fht6x/1WC3CnAvjk54t/6UcR+E9ZgYDK75MNDJ0ekMmlyhWjFaWoVMjNVOcu1CSPgKQl20YSG3l+z4VkkuvM6fzlhNmUfB3nIcJot662JV0DBby9UanVwwM8Z2Yb2O+rR6ccxUr0aRzFKo6HuJKKf3GDI0zHotsMFc84OX482UfBaHk74RSG0/cgWBs0wXJc0nnHockxGaW1XrqCmuxNCCiBYR16vuhUV7LRwxH5IT46u6jmF3sjuBM/SH72a/83fpHPVaLUJNOEalIyRVIwKjvDi6TmmVm6ARwxcrR6LNRouLchZL0EYDqlg+DfotNPBmmJCzew1dOoETYz9lqAmeJYaaklZTwU4wfYunJMIirsABhVRI6pv+eBeJY0DgLdbhUzdyT6ujYWMIWtE/q1ksZHJ/DMVMXXRsPT3qzUa95bQgCVifna0Z16vuhkTnPLEUXR+WEWK85UkY/CcfOrL0Hf6X4/P2H8Bd37ve/p3fUrUpZ/G8mPLYfVvL+FSuHLOGsePZASfoIsLIkof7eO0CG2Lkcm0w29dVdRBi4iMjDsx1zy11082KoRVduFT8K7J9exD37VD6zXpCLz7DvsVSKBIi92f0Mt8ruvyV7Tnm+yWCW84D0QgZtEv/315CeSymfAROkcRjbTu6SdoWGEp1+3x9+HBrD72xUmwNlBiuSTg3CNx49ltTgF+WLlKTp2l+/cXQXHhH2n1rE4dNL/vdqH2bjkW4lloABtPlX/wfrEhvPTVf6zEIHAPArG5ALMixG3bcV4wEl6SOA88gNd2zRh9CT1k+elzxJPnE04+u5hdyKxX0clvL1wS987kHc8OixobysbvON0V37/gMz+MQd+0Z3QkUtbBmlKiyw44nj+K8r2I48Hg2yrKI7d58xI46l3USzgESHnm/ZCWXiKJGXlDeSq8PEZJ1Jkb/GGIztVpahWyN3IS1+PzRXUX2C3n2dobJSz+Goo2rv/+pjAcklyByGcUanV2CiyTQgjPBEui46BhztyfjggfdKG/Cdi3jj//gGAODjG1BVaVjEOxgrnh1Qkj4C9KvYQrj3mRk8fvSMINjVwSQndQtBwBFOnFT1wJcmG4MFfKW45ckTOFV6J1aDwjqN4zDkwJjRavUmGhm6mqCzLvB5GdbizHIPs0uD9cRUHi5GStveT3rmvhO2A0S8hcfbe9Lp+lFZxZRbP9D4yr/LahpWGOAD7nk9YPoQMU6erY8UNjKDfAXVJ6oRw0i+tAoZFLC6Gub/rcY4nGw2sNxNzQXWG4XjPD2T8Xn8zDJ+6pP3VGRF0uDksUCb6cWSrf7XUrnL2kI96c9OKEkfAVL6wxg3PHYMNz523BP61Fzlw4sBMSBvYulJF2F0n2GPcBI9F/CHN+3Bk8fmVv39pi8DNnhWaozYexZHPBRrg8yICkfWSV0aAzq5/Dj2LMVEIpaRxaDv+sTFaHwGcoAKqRaEns4nzx1XgAHLX1Cel+Uy48HSByXwkqFS19RY7jC71MVP/9k96WtRQiL4uaXyc1ZK+sjAWgmstfjkzmcAAL/x1cej86W/QxFTOXePA2LjlSonLXVzPHlsLkoGDb3mfA6ZR8HnGTQXZys00hQrg+ZePTuhJH0EGGY3vKKwoQcO1Qk+XkAoXF6INZoWSklA4vrN5wLOVifeLL3Z9Iz6Xisb7Q6AjUzDiusBIrikSZcb3AxCSm5gIiLRLwLmdblRJRiWsISacj8WA4IjkvAir68t2bk/n7UVss6e5LHg6H0dEUTagPrIXqWUpgV27Z3ue012SFTnt8YqImSNbOVEpi0kIR+6+VvBZ5QPFIOliuPx7gjv/M2bgt/p2eZF1fPviXhpKckor9+NVOjXB72KhnrS1xRK0p+dUJI+AgzlxS4XbSLYdcSeJCz0f0om9fLAQBcb6tNjwjHO5ZhIrrJatDK3ccNGTEq0+CrWFvGeAPmQXklra6RiMVFGddze9Phxdywi6ZllfTjJ1QIyAzEuxfn6yVXIQxnKC/h3uU9Caq5Yb0OxjpC6z0TEoO8xFtPzbRw+veRle0A6Ic8CwiFBxgufezXG9zBkMka7W2CykV4q6zzzvrLPmDlPDs6E+nmKCnZzi1YjC7zjwXMX3wnXnPJYDO6PK00cHhf08uKc2JhqtfIvxXhDSfoI0C+k+cGb9qDTK9zmHAV523iik5DVJzjMG5ZXZPmLIP1Il4F82/vHr5oAYSVe0RTI0KkjMGuJUXvmFWlI6Qg977pXHe86mwrJV+Uu1WTE937ibr62lJ759tiQkILHLevJrW9DKAOoIa99kkPjKjOEYTaPGTX6SUUoMiblKaljrAW+/PAR/NGOPUE0MU7IowT5OPIoHSKNVcjOVkMUC2vRaNREXJCeC4oyBEDRkHGCjGBSVLBXFO7/qNf+03vwESjxLoapk76ayMc4oJOHybXjCvWkPzsx/j3vHEC/OsYfuvlbWOrkaBhX2YB0sKlQe3wKmhhlyFSG2nnH0fTkenyuPYrb64unjs2tKgF0JbXl+yJh7Kw1VroDpmJ1oEWHSZoJCIb03H3Hb3zTE3Vj0uMi1s32M/ACT7oVxBvhOJV/99dGlbTUermiuYPOL8urpryxGyEdiAmpfP5UQakfIaX3OVUmW/aTCbL+nar7sHEk58IVy11W8R3y+NclI6dfq8gVkufa4Ikj7jf0TlPSqiACRdItivSKd+KPqbm1f/qhnXztc3Di7PZclGHcoYmjz06Mf887B9DPkz7ZzNDOczSyDHlhA3Ief4W8R+LM3mOeicmQJADOe4fkYrBe+P0bn8Jte06u+HtnS3QDScCgY0f8ZLTU1fqADNTYQ2StxZ7jc8FY6fQKvyV23biIpQ51lUhkWUT/NzCJ4dySUDMvj09JBlKwiMiRZcITEr3Yu7nyBMiVgvTXVMkoJqTSqz1MBSUiEVnGlanqDGx653KzNh8ZIaMrMysmvdmqPOlCX16293i5MRFFVyoQURT6zkZWNzky62QusZFCDh9+F+FCYuXzLw1QX44UVf16CneVe0qsZOfgcUJhzy7qu17gim/VZ3zngNwPxfhCSfoI0C85KK6BTGHbVCKUDOvzeV1tWTpWEgQakG7R2hiW3ssLtFYxgY1igyELlhSsJ+j9KdYWRH69Brz8e7tX4B/+wW2BXKLZcDkKPtGzZHVk4PLun7x7ZcqwbTUMunnC8COSKAznKqkuPcneA89kpjw0CToveyxFnfRI4sHPZu31p1TJ5K2/doNrZ0RIpYHcEIZrXbtMGQkhw8OSS1aADAIaYxR5hMwxoGuugvTSu1sJ6N1IDf1by42J6iRAhXx3YKNiozzJb3v/N8s2VOcuGa2Jjdogt0MmNCPcfZfWuadPLlSkZ4RzgOcGOLPcxZ7jc+fMRoE0Pj966178zX0Hg89++CO7NqhVirOFkvQRwE1k6WEsy/9ZK3eiS3nHwoVchrv5GCPKLtpwIR/1ja0hVlM+TYIIUsrYWQ+M2juvqMJLvUy4Ccp8u4etU80g3N7MMvTIk47IQ5ixB92NwXqJWDPjGviSEHqPqJQFCLJuYdnbK4mNlAykHK7SGy1+l6Q/RSpjg34tMbPYDdpHoCgC4J5xPmAs+o3YsnLuQtX4ePOvOoOANr6hyGMRPXc+ZmXPoK78bT+kpCB8vrTEINUHVrOZ09nid7/+RPB7rOO3Ylxk0ZiQz0oay9KrzlIy9/u//6sH8OiRM8m2kKFzrmDXt6bxG199POjnhJ/65N1D7dmwnqDo9JHZ5bPag0QxXlCSPgL0D9u6BC+5kNdtchGHDOOyb3wMT6hhveX1J45x5v+waGRnt/ucjEyst3lyDq0z5zQCT7r4e6dXYKKRBaSp1TDolnXzpYdbnseTXyvHkTvmk+UOsuSRh/AahwSca6sHHkdbGtMmPj9fOwX29EtyFF1TnIefTb1nfq1AJICemzSQh5Gv+Wo9xiC36XmTiI8P3QPhM4XYfdmsXINblRQORmFF9KQS0UgbS1KmFSf9ryc+8M09we8pHb8zNKoaeknE6Wdh43WJjuXIbl1kk/r5RuvyhwUVN0jlTuw+dAYL7d4GtSwNMoLW0oHU6ekmfusNJekjQD9vbpaFchUKERaJySyt+Yy8Rxl724oi9KRvRDhxNYseMJrEN2n0rCdSBpZi9CASJvXO5CWPSZMj12Xd/MwEeu6g3jpI7mKCBe2/ffERAFxH2xuf5QVCbyq/fP93+j8ShJu8kTW0WnYlW3auCuk3oSZ6vSs5sJFj/XwXSDmEV7vuPjkRmPTm9YSC5DyylKGXlsjoxApNldVEINhIqjpCGjW6eCn9oW9kZnUOjVEi1vHT85NRGxnZ8T99H46NxrCf54VFs2ZCpnXvN65/HF99+Mhob2wN4I0SW53vvTE/RgiiT2u0QL3pV7+xJudV1ENJ+gggPd0x5OYZFMKWmxpJ0CJI8N6NYOJk7wwTFlO74K2152a1YffVhKrj6wJMHgbBWuDAqUXc8uSJVV+Tz7V2k6CCwf0agBgDRSFqZ5dkgcL44cZfkda2JLrSsI2HjKwow9ry0DDgUoAyoZGvCbDXl/5QJ7OQ84CPiInPZPJhUDLSAHadnFrOoBbGCERkzxsNoTc2BXr+WXmj9ExT4CS4ktwVSJDHlUtXyDu8EqS8zL6dGZISFv+M5Ptdx3dWhzrnSGW33PjvCI00IHRWEMHPi3pPOvWfY2eWsdxL69bHCVQ2OeUIapa75+6fXsT1u49uTAMjcLK1RU3F0LPG3PJ4RQ/OByhJHwH6JZaQ9ppInSMY0YJbIrXAyYoS7nzsuXekJCQh4XfXoSTTKsPuoyrHJQnDINy3fwafu/fg4AMHXTOxWCuquOHRY7jr6VOr/j6Fb2VyHu9q6X4ncs7yCPY+u+MF0QVpaqPkTwHvvUf4eVEy+sr5gKAzCG4PyMW9Zpx4D6Y3HISXMyCH/ctJriWaVF4R8CQAJowgBns81AwOev5k2JOxlQLlEchEXSAyalYx96ymwoiMzsRzTZ133Po5OqpGs47RjxTqkt6lsRkSbwR9EIj6LOhYNlwLa9Hu5X5jMATH9DfkxgmNMocg5QBrNjL0Cos9J+bwmbv3b1ALQ8io9rBOpIcOnsYd31p5dTbF+kFJ+giQCoMSZBUT8kJxQpusiBBukuLPi8gI8BOnLPuWXrDXY/MIWnhXirMN19OisJLE0VGRayIOiv64bc9JPHxodtXfp0opsbEpiTtrRoX8C2KMgDZsYUJFVZOQiICRZ9572kt4Eg1JSISsATYay+X5MLjfGfG/yviPr1l+tp41kZulJ508w1L+EeitIZ5tAiw7qkYeJIi8OyIfOipCTfrKS6GSF38lkE6RqiMkbMM9+07hpsePCw19GAHYeJKeyAUShm5QpABRxIjemzRio37eyJzkZXq+g//8Nw9Xrk3r3rlQL53GXiri08wMunmR1PhvFGTkcdhxcfe+GXzj0WNr2zDFWWFDSbox5j3GmCeMMXuMMb+Y+NwYYz5Qfv6QMeYa8dk+Y8zDxpgHjDH3rG/LQ7iJJ/0ZbfIhj/UeFvquCX/6YyGS5uRiKCZMuejFhsJ6eG5WW/7wbMsYBtKFQdTbT7ajqQRTFKu/7/MNZ/OUfF3tkjywp46lLNT35TiLSbQfV4Y86aglXexJ5w+IhrPXkMi0NJhDUk2fSeKTWjircgLxmT93Vfa2npr0ZiNDXsgxx3k1wTOxFtJAefrkQnAeqUnPrU0a2DQv+EoiqM559BkwvEeWql2shiizURJGXmQ5ScKdT5/Crqenk98ZB006yV3+8JtP4fY9J4MIlfSGAwCJ0b2xgdIYFeNOyp4sLJpZhtxaLHZ62DzZCK7tnj0bz+cKUhGfViNDLy/vd0xIuhHji5p042MhAY/noGY2ftp6RYgNI+nGmAaADwL4HgCvBfCjxpjXRod9D4Aryn/vA/DH0effaa19g7X2zWvd3n7onwAVbR7hF2WetGWyWlAnPfAiSQ+drBZTTfQhrIsnfZVk28ldzua6lARYH15PYRS8Zi0Tc55NOFsi6b9P5BBhyLwQnnS5kYcktO47YeIhJY4OqtYh+5Yk/UxMw59EqulvsXQgBT8PJLztAen33kw+/1qQ9F5e4J99NKypLD3pnKwdleuT76j83nf+9o7gPC7aIRwMCQObjC2qFsM7jYp5MxOG2pCP4Jr/4RLe6uqa94PMAUrJDsMSufDzuJzn3Wfu7zc/eQKHTi+trBEjAuUCfevEAo7OlhsyAeG7LI8NjSMm8bQuSSNNRrbywiIvUEkgHVTpaNwgu0llnqB5p4wcjANkdM3CvbOf/GTov/yHH7gNy90cX3/kKPYcn3MJsEO0/2uPjIfu/nzERnrS3wpgj7V2r7W2A+AzAL4/Oub7AfyZddgF4CJjzAvWu6GDIMNhtz7lEhPbZWJMsOhbnrRZSy5kLklPmjumIUO+lhcqWuhS3vz12Do89iQNwkducbsYnj2BE169cgb90oOHg2NoUw25mc0onkfKAzsu+K2vPb7RTfBoNs7OSJQl7HxVEYjQvLVeysIl4CQRkwYue/Lo/ymSGI5N/rv0mEuZBZ8rrLTkviMSXOtustKXhEEPK9oZyl1ICnRwZnGkJCG3FnfvC/MIJEn2ybmxEUItLt9FXvQ3gJjAhscYExpdkNcCj2MZgeiHX/r87uj8KzdufI5C4W/Uz62xfMTLEMvfQt2+u49P7XwGu89CBnY2IBJNxJyeBBFu3s1aOiJkVEiuSyGxp505aWftSrRRkMhxcKX/188/3P8AKyM78TxROgnWMaI1CDQPEa/wSdoCR2eXsNDu4X/fdxBPHZsvPemDvWX/8lP3rk2jV4GlTr5imdu5jOYGXvtFAA6I3w8CuHaIY14E4AjcMP+6McYC+LC19iOpixhj3gfnhcell16KHTt2jKTxEkfmCywtLWPHjh34iesX8In3bMG/umEBf/xdW7C4sIS777kHT0/nWOwC9y8cwunTHdxx+x3odLrYcfPNQFHg5ptvxuzpZTzwwAPYd8qRy/ljBsdOFbjv/mmcOdPBjpt34MzsMu69734cOJFjpgVMNAyOLhS4+95jmJ/rBPeX5z3ceutt2NJaO0Z57PgyHstPYseZPYMPBvDr1y/gVcUBnDixjEcePQV79Al85ekufuTVEwO/Oz8/7+/vyOE2MHsUm1sGJ070sGPHDvzc9QvYNvOkP/4Xb1nEf3zrFE4c7+ARO43MACeO9866D+w+2sOp6bM/z1rggzct4C2T6+v1mFkucPFU1d4/dKCD6Sawwx4I3t0gfOrRNv7FayexvLyMnTt3+ffXKyyOzxS4865pLC0t49Zbb0Ov28XNt9yCxYVl3H33Pdh7IkfPAmcmDY7MFbjttpPodjq45dZbsbi4hLvuvhv7jroKBc3T+3F6ht/jjh070G67ax450sXkwjHMdhzx7E1nOHmyh127ZrG42Matt96G6ZNt7N59GvvPFJhoMIG1pzJMn+xh586dmD3dxq4778Tx8h6OLYQLYnY6w4kTPdxy662Ynm7j4d2ncXAuPOa+hYOYO9PBLbfcAlsU2LFjB7qdDm6/4w788s5l/NJ1U3jOptH4Wzq5i0bIZ9LtdjA/X2BmpoMHH3wQT8+6Upe34jDynnt+09PLeHj3aZxatji5VOAb3zyOVobgPAsLS7jnnnswvWwxfbKHXbvu9PMmHWOLAjffcgsOHeqgfSrDVBM4NlPgnntPYn6+g1tvvQ1Fz82b7eVl7Np1J57eUn/vn9q1gL930Ul/ftfOWUycGN6YPVzO77fedpu/X1iLHTffUr6zWTSPPwYAePrpDs60gYm5Qzg13eN5Xryz6ekOdu8+jckVtGE1IPI4Pz8PwLj+vbyEXXfeiWPHunisewInlxypmzxzAGdmO7jn3nuxMNfBTTt2YGlxCXfddbdv74HTBaZbwOLRDNPTPezatQvLy8vluGlj585dmJtt4777H8CWFrCw0Ane7ZnZJTzwwAM4drSHx9rHsWPhW2t6/4Pw6V0L+K6Lpms/f/B4DzOneti5605/n4C7l7kzS7jvvvsAADOnw3V31Bh27pw7s4T77r8fh472sHQyw03dZ3x76Wfe6+LW22/HqekOHt59Gu3c4vCpAjt2zAw8P53nmzfdtKFyz9+8ewn/6JUTeNXFjcEHPwuwkSQ99ZZj86jfMW+31h42xjwPwDeMMY9ba2+pHOzI+0cA4Morr7Tbt28/iyansef4PLY8cQ+2b98OXP9lbN++HUvlzwt334Y3vPEqLO89hdOLHXz7K5+LO2f34rq3XY2pe2/Du971bjR3fB3vfNe78Cd77sbVV78Sy0+fggXw4os3YfbpU3jDG16CG48/gXe961r88RO78IY3XIlTTxzHhZta2NRqoDW9iGve+CJ8/sBubN/+DvzC5x7Eb/+TqzFx89fx9re/HRdtHkyAV4svHn8AV77iudj+phcP94XyufzNkfvxmtc8D69/8UX4nYfuwjDvZceOHf64m2Z34/LnbsGFm1o4np3A9u1v9OcmZDtvxFuvvQ63nH4Cr7nyUjSyDAfsUWzffk36AkNi8eEj+FbvMLZvf9NZnWdNED2D9cDlv/hl7PuN7638/d7OE2hmGbZvvyJ4d4PwE9d/GX/ys/8Am+/6Jq699jrcfsa9v3a3wPz+GbzlLS/H1ifvw9vf8R2YuvsWvOOd78QFj+3CNW96HU4/fhxFYXHptknkR+fw9rdfiU333oZ3vOMd2LZ7J9785jfgZFky7XUvvQh3z+3D9u1v9c9t81034S1vfSvuW96LK154AU7Ot1EUFq+6bBv25Udw7bWvwban7sXb33EdvnD0QVx11YuAw2cw0XTaVAvgNZdtw1PdQ7juuqvw2f0P4Nprvx07557Ea668FJtOLgb3+vqXXIgnu4fwznd+O75w5EFcddUL0Tw6Fxzzxiuei68eeQzveOe1aNx8A7Zv346pO27Etde9DVse2Im3XnsdXnLJ5lW9uxiLnR5aO24I5rKpO27Ali0ZnnPJVrz+9ZcjP3AaAPD277gcE7vce/2rg/fiqqteiMOnl7Dp9DLect0rsOWOm4PzXLj7Nrzxmtfh8OklPNU5jLe89crKvNm48at45zvfibuWnsQLLpzClskmFvefxhuveQm+eOhRvP0db8XknTvwzne9C5vvvQVveetb8PJLt9bfEI2H67+Md7/73fiL/ffiqqtejO2vu2zoZ/LksTnX397+NrR2uvttffN6vP0d78TnDj7gzneVO9+T2bdw/Ewbr33ZxXiycwhv+47XYere27B9+3Zs2nkjrrvubfjq8UdW3IbVoJcXaHzjemzdugXAArZv344t9+7Am9/yJty9sBdXvvwSbDm1iCwz+PaXXYLbTu3BNde8Gl84+Aje9a63YduDt+HNb3kjbp55Aldd9SJ0D8xi21QTr3zeVjzWPohrr30tNj28y93bnd/Eddddhy8eeRhXvf7leM6WCXx230PYvv2d/h18+Mld+ParX4mn7SG8+mUXY/tbXrqm9z8QA+bK7qPHsHtpP9761tdgy2NhP/3Dx+7A1W94NTIDXH/0cWzf/h1r1sxh584/enwnrr76VTjWOobLLpjCu77jcmQ3XB+0e9MdN+Da696Gm2YexxVXXopebjGzdxrbt7+h/8lpfH79K3jnu96NxXaOCze3RnF7K8b/euwOvPGNr8ZbLr9kQ66/3thIuctBAC8Rv78YwOFhj7HW0s/jAP4WTj6zIajbZc1aW0neZL0rh2tl3fQwydQGYUQfcqefVm53zvrAvy7LDK5HBYjV10nncm6NVVjlgdyn5vuyKkRR+Dyos0YylKuowIXUz17uYsr3F0vFYKUmnaUsMKSXhpeB0TgI+mpChiKrxdA4A4TcAk4OACvGopC4eH2vlAiIsRlDymdiiY1oppfEUbejhPKzlRTFSIXIWWIUvs8wcRRebmQMsNwrMNWKEgcN1XGu6vsJXFLTaX3p/Xmpj+VxHVfD6gdXjYOlACsBV3fhqk6U7xPP2aEkJJS7xHX/1xqpd+naHf6N+jU9m1DbXC3xK/M+ZOJovFFVRSIiSgSeC2oFmYQp76QiuRqTm6G+SOO0KPmHBCW6NrOsHA9mRV2R+v3bfuPGs2rrXU+fwsGZxcEHJtArd4IdFR49fKb2s+/7X7eO7DqrxUaS9LsBXGGM+TZjzASAHwHwxeiYLwL4sbLKy3UAZq21R4wxW4wx2wDAGLMFwHcD2I0NQjyIAa6xGmyXbcSCK7SzNJcRaS8PjSoa8G57Vky+MhE1FoGupibwSkFkaaXwu6MltKvDoGFY+1n3fU9gzGiT7AoSZSrWFLzHgOtiUivud6HMnFZY9nU/dgRRluQOID1ute/RQucIoRXHwo+9SnIoqsZIOKbLa9Z0QU/sa/qU1L0zKXYJgA0zXOLXsKjT3/I1RbsgSzByUm5mgDy3aDaq5+Ha52EiJh/Dhhm9c3pCRD4oP4fe829e/zj2HJ+v3ot4LrJ8o4XT8k/Pt4d6JtzfomomnrSHz9/nRmRhf5HnWo9cw1SCu9SMS+dIfI+B88g7hsLcC5mbw/kaACzKTY3C9nijBaOt7vKxW/fiyOzoE3Hl+w3Gc8KhthH4F39yZ/A7Gw5cbSp+B5Toyu9tZaA+3ekV6PQK7Dk+7xOQV4I/27kP9z4zs+LvAWUi+wgf/j/8QEjE9xyfw5/t3AcA2H2onsCvFzaMpFtrewD+DYCvAXgMwGettY8YY37GGPMz5WFfAbAXwB4AHwXws+Xfnw/gNmPMgwDuAvBla+3163oDAI7MLuGxI2cCjwJhopGh0yv8QuIrwFhRGaA8NpgMQ0df6OUQC5UxvAj5rcij9sUlHdcCq/WW8qYXBSaaK9eWkeemX2UdaSj1I0ErRV3kRDFaSLLNXlpB4iRZjzxa0sslj6meO0RdBQr2HiIYg7SraDBurfwOkbp0VRFppAPpscT3IKqLlIvlqDYF89cqquOEvIm+HGyJoISiN6TC5E8JTgCWntf4WmUbgJL0S0IoEoE9cbK4fc9JzC13K/fSLQq0GqFB5aIqFh+79Wl8/oE4cJuG9BBTezkBMyTc1EZJRr0nPeP3vR7O17ooJe0M2myYMuokdhG1vG5IYko//TtBGCEiY9SA5mVUvLj+mBHf/9ceOYr906vzyvaDrDIkNxELk9k3rhzvrU+FmxBRxJDmqdQYDEpGhj+GAjlONrUaWOrm+PSuZ/Dlh4+suO0TZQnL1YBq1K8Vjp1pj80ussDGetJhrf2KtfZV1tpXWGt/rfzbh6y1Hyr/b621/7r8/PXW2nvKv++11l5d/ruKvrveuH3PND56y95gy2pCs8GbHRB5iLfOpgk9DrET/ERpq0SeFgCeTBOeC3HttUKqpFlcUSEFmqg7eYGJpuuGK9md0nujEt6CX/7SIwB462Zfc3lEHvCUh2KcMC7h17OG9GJZQZTFQkRkKfZOMmEISYeMqBDJl6iUMUO1FrgRY9E3UyCWCKSMAdnOOiOdQJEbWV2EDJdhSPqxM8N7ulIhcp6XosichW8QzXN0rymCQO+D5QKhlxng0nY+MmK5Jrc3kjImTvLW59u9gKzL/QzYKBBz7pDGjX9/4n59dRch4XDPIXw00qAPKgdtkNyF7p92wZbGUFYONGlkscEZrjlZRoQ7fP++zGnq/UeGzqiwmsjEMHOkrDJEz9Hv3VAS4qLYGIdNqv2yZC0Ziqn5jav7rPxdkNyl1czQy4uhq8PEaDWyVRPtUUv8CJ+8Yx/2Ty8m14WNhO44ehaYaGZo5wWo1JoElYaD4cHsvTm0QAXe8ao8hes5y5BzuPhLPW7cBloU1xKpsN+ndj0z8HvkDev0Ckw2XDf8px/eOfR1aTFPTfp/evs+AM5r0MvZ2yWjF2eDcdakr5eXbiic5TPy5UbLviK9cOQRbQgPc0y6gvroqJLg9GY6IiRvy2fpCaX0pDvUescFeaWj616LEf9JHeNLMQqDYSWa9Gt/fXj9aJ0H3F8z4uh+/wYQ2bN+zks9WyqlGXtrCUzwqT3stQ2JYHUjoY/f9jQ+fPPe5L14jyhEqcAhB4okpUzWKM8lnLPp/JKwyvuXOud2L8eTx8Ik4VEiTxBI2f505CkybkXESK45cfSWviPzDipSCx4KI0V8L8Mg1b7UMXLNBoShgTC/Yq0x3+4FspLk2Cm93BR9T8lwabMp+d2VPLusNG59lDpbnXQpy1Yv06N1fZQoCosvPngYx+aWWWI5JgupkvQRIOVZlYsNEYzYk8JkXYQOAxKBWmIfbuZTJ3cxa+6xMau8ht+sZIgkEGut14j568J9l8hXCkRgyNs1Kgs5NfmNC0ZVC35UOJum+IUf3FdiEl2fdE3/CZNLZXOsv4q4phyjlo+Id1m05LHq13iIhbRm0qfzgH4kWb80zpmoOrKZoVfZ5331SPVterbxwuUT2sW8JJ+PHGtEAt17lM+5ahB4OUxBZFdEE8AbHsm5sLAlKRVzCbUP4HrWsVd7uGdig7kbYE+6ifqA1AOTEUHfof7cLInOnuPz+Ld/ef9QbVgNqHCBfGcUUaCoLh8batJl1EESclpzgihX9Lt3iCSdRu5FjnJdSjmKBmEYR4scZ4QwYdhW+vla4a6np31d9+t3H/GRQmonwEaQd9SkDOWMdxhNEf1BoH7fKkm2S0Jd+f2fzSOLE9jPFq2GQbcoXDWkcmzSPDQOEXMl6WcBItUpj5yfxCE0iuTRkwuR8AYa0fksAFjhQTMi8UksAH6BTHoFN8aT7pre/8KBx2VAL+wVFr/8pUeDv2ViMaz7fsNb66WmOSEJWg3kRh90n5+KjIiNwkZurvGxW/cGv8tH/eW9nRWfzxuzZGRBEgn6LPSuEgRH92QDcaQqtYgJb6J8ikQsJTGpI9X+2pKo1Zh1fE9VUkOfkyFKBFWO+VEnURGxk+CIRug1o79JCR9XpKpG/7wkBvzc41yCOPrhteiwIekV5LGZsfRHRlOCxEYDr7f3JHXAc+vlhff8xxInitykJIWB5xlhBRSAk32LAt6IOJsqEl+v2Q2SkjfD513KfUyYBCyNMzYI6Q9ln/ZzLr/jUO5C75yjJRKBo2mEU9QwURFbEmpCP5J+0+PH0ekVQcQnSBgGj8Nh1q9RYKLRwGLH7Z/yM5++L2j/d/+eqzxNRhDdVbq6i9wszP1tJa+CxmCj4WQueZGet4bBartAFvXdswWdr9nIOKk6SzsRNgJK0s8C9P5SHlo/aQkvLi3q9DMgHJa/AzBJ4AVOEHJxnSBBKeUVXGOWntGoFWBy3P975HEZ5IlIJUDJ79f5tcnrQQuV1KgSTswNV+FBghcj4D2/7xbXX/rCIys+z1rAeSA35tq/+uXHgt9lD/jck9XEPgD4ysNHgi3S5ULK44ENOkB46WhcgDWi8jzB2BGecNnCFJGQpEzeC5NENrZTiEvUSYMhhX69XxJT6dkjQ7+RudKCo0Jax8xzkTRyvCcdodHMRNj4e3CEIRzz5NyQZJrnOTKsS3gjgROB6f02ykSyeIvzQA8uyAl9Z9DU+EtfeARff/SYJ7A0VwNRdCbppAijAgD/TpIBY3hL+bOpIvG+mt0gqX/Q2gMIIlcxWEM5pn/e0bpFkJ/xefkeU2ui7D+jXJWGqWL2V3cfwB/fzJsnpQx0wv/vrx/CzGLHrxfyWLl2k9xyLT3pnV6BbsH9jOZHed2nyspGQVSxqCuD6cYI3086DwZw1/qBP7o9+BsZzK0sC86zUpzNExt11TofHWgYdHsFujlHCNWTPoZ46tic305+GFBmfPwuZVheTky8iIWLPoW745B9bMGnOqj3TCQW17VGXN0AGM6bK/Wpg5BKzIVhuU/dQJLExl8rOvYtv3bDwOtX2lMuaL28wJPH105TuhoQedgoDKvjo2TGT+18Bs+cXBDfD9+1lKlU6hMj9PLG3jRf11yMr9CbVjVsKbEKCImElLcE3vaa2zVy3NI91ZA5M+B87JUVRgkR1IQn92wgK1f4e0EUkRBt9/2tJGDkLJBeKM6roSo9VekQvYWUZz4gu5ZrqdNc2GpkPuwuk9gCbz7Yy0jfHRSBaHdzzC33QMYcec5dOzkBLya7dO2Y3BJJbRiWyqylp84nOSPUVFP/CfOf6P2WxkPQ7rCNUrIZzLFe7mIrenjZllHfccMMjoosdnIcP8MOmX7ketNEhuVuLqLftub5pWU9o8Qn7ngaX9nbZaNVzBep9V467ZIGN3iOGSQZ6eQFHj40G/zNzzulbKZxNo7AVc5bo1YIEF8hsk5ziXy3q63pPgooSY/w8599EI8fHY54cW3g6kTGyZy8NktvA7MGSkqqJiv4xQrRYhYslNJrF7ZvJbrLYbH3RFiPOG4z/W2QN5cWPRrw/ZCaUOUinmqDa0esbx2NJp3ex1I3x+bWeG1NvBbvfFi0GqFXt9+Tvu79Nwb1egm55agJb1pD4epYOoFqNZAS4bGChIhryXMTuHJI2C4in/7a6O9F4sXQ8O/JRVGWaUwfYy1fmz24JvBOjwqyUo5MMmQnQngxNlhE5Q/53AUhD5MKTWV+o/PFjgpJCKU2nh4/Re5igyvw5gtib8s+NmicTDSzUvaQiJRGnnkJbwyKfkfP0VonFaCNmtbSj5ILAzdw9lhbiSRYW11rfD9HyKekQenll+IdWxtKLUKnFFVrGl2nHabCUathgtyNfnpjKi9IfTgl3aLonu1znlHAedJ5TMmxH0eXYwPMlkw+jE4CNJs57lI/j6Uiz3TtZsPlwqwkATts64q/ErRhlI4J4geZ4T0EssiT/o7/edPIrrdSKEmP0OkVmGyu7LHQQiRBUpN0xRZBNGC9ZwhIkQg5YVYXcklYqnIXlKHHsEOfnG/j33/m/hXdI+H/+J2bAbDnghb0A6cW8Z//5iEAw3lzadEcVu6SCsED4UIhweSAn13KkKFQeT/89J/dU2mPKUl6vKviRmMYA2mt4HaxCy9e1ws2txpY7PR8/yGEyX0of/KCkskFH0xCGoJs07v2pKNGmiCJX3it8jzhwQFZlOeIwZ4qltr0JfRE5oAkd/HjPiKFcaRuFLAWvnJOUBsa1QU7ThxFOZ5BBFzMc/L5sycWwbHu19AzV0nYRTQX2rLUakLyE99DOPcO5olZSUCCylzl0uB37jRVjzT9rEglBLnKy6S7Ue6cGIOMC0udK2hT1aiVunI2htJrjjSgAw0viCBWx5SMeq3GsLxnX7pE7zCOiUZZEaTTK/DLX3qk77pDx0pCTC+RDI2gL6/8VoYG3Ra9LzK8Uo4EWu988jJSRoZMuk4T8ZufPIHb95x0DpOof9J8SWPubKQnq521Ru2YICOP+nDgBBmBU+9soSQ9ghli8o6PlQk0BL/QAZHnWwwUyMkxRSL4Z+xBJMSTadCG8rz//E/uxIFTHK5Z6uS4e9/McDdZg+2/vYOfAYClbu7rnKekBzH8JDGEJ6IoUEmA8UTIT1o8oVAoWi7mhZVRDEYq8S6uJPONR4+F7bF8jXhXxY3GRspdmo00WZIgOYJL8oMPrRMkESICQAt/YcMFv7As95DJRN7LFxHbmNBKslKVMUT9TXgUQ/lM9R4lKZfzSfJYYYj307i780JoJWVVldEhXKDkPbCUQbY9IOBlS9z7CsPIgJS7MMmTXna+lmxPSCitDaMJFras4lT4ZxS2D+W1BTkf8omZ8iRuDmH5IhDW54+vKat1hVIebr/02I0CKc9iIdoXyn44kumPjYyJwDGE6rrkx6YxlX7pzifkMuL8tO6tZo76oQ+FJXppO/dh8guaZbSl3cvx2bsP9N3pupGJ+SYL+1GwiZo3Rlb/DusMDwl6Xll07Wp0Oe3wiPNDeNyldeu79k7jgQOnHXGNeY3gKv1yMgbf0+qf2Vpp0snwZkN1bQ2wYaEkPUIzCov1A71AOYgJ5B2PFwUO8cbe8Wro3Q/EiBgEYUrw+eLv06R44NRSQER7IyCXB2YWPZmx1nkoaOdQY+A2XukDqRMfpOmTC331MzdoycMAiI1GxMLK1wq/Hye5dvMCvxJVkokhy8mldvTbSAxjIK0VUqHP+OlQzW4ZLqXQrCcufkExgvSQlzaUPFBY0kT3TcSKiZlrjI0WMblo+WuiShaZ9HNYOdZoB8eCCJoJzls5FqFxnSb98b1YQR5Gu2BJMpDSlMfPjxJHUwTBEzhB5Cmy571+4OcFukbstZXPAOW7EqTPRXD4OwdOLeLDN38risrIHCFu5/G5Zfzu159IPgt2JFSrpADScAv7nW+34XbT+SRxGsZBMQzqEvVJDiWJJM27FbkL2Ojh5x16ZuV55UZesq8QuaGkVX9NeX6zOk96DNrOnWQKw8An7tqq44dAkQ7fh6XBUb5TmQR9Npr02PCIQfMWrV38M+GUy+L5jd9H5f0bllzFj6Hbczv1FkXViJRzIDlNVltdarXT1qjnPCmdlGuQHLsbCSXpEdxOWMN3AE4crVqcXisbEVby+qU8fVWvjAj5Joi4LWdT/31xAlpAJpoZOkKGsNzNMdU8O5nGRMPpNWnQLndzbGq57jSMTk3q5gZ60hPWPkESKjrGb9lteKJyJK866JqZQS7e92Inx+aJ/s/Gk6Ni9RP0+7/y2OCDVgF6rt2yPNZaIt58qjHEhD294Eox8rbqro9++eEj+B9/92iQcCaNVw6hi8RR8W6TpLr8P3sGq17U2JPuFyGExxIRlfILIjMxfDvBC2ddN5FGRN35INoTSgaY7I4KMjInva90vyGxi3ZLDp6/8LZlNC+FmnQm3qHEqeKE8I4KQRrB85vsJwAwu9TFFx44HIX5iaCF7Tyz1MPfPZTe1lxuaCU3VAK12/ICH953aNTEsq1GhopBuho8frT0JNeMOx9pgjCW/ZwYfqcQHVBKWYBEvxR9JFifiLwVEXmlvkGOjWy0VcdIztYXZVO4fGTVSxyfj+eMqpET5leM7FYq6OVFKeXjiIGMHoa3GD4HLhEqHIAmNFRSfXC5l2NTqxFE0wheD58Z7yRZDWE+G+6b8t6fzRxIY6Eh3qkxztG4lu926PZtdAPGDa2ErrYONFEFgyD4jAc5gfWYYea91EsS5A6D7M2IiDykp4kmFPcZLRZEqD+96xnsPjRbaqnP7tVPNl0GPBGf5W7h9dnDVncpLJAnNHExpJf8L+/aH3xG3krpJecNJ2SZN/ei6EpUWoo8uoTFTg+bBpD0IIy4ysf44Vv2Dj5oFSAi8Ac3PIVPD7Hz62qwa+80AHh5EyFVM7oOFH52E6Tr9yfm2rVhd0B4XhEaZByWlKTaenLApDomVGH4111TEL/4WGEM8vlr7jcglNafI32oCb4TI9BSR9pfKfMZBWR5OU9MvPwofL+SpNKcRpB66EzMSz6iBZJjhF7B2EtG55ZRD64oI8lw+IwtEFVjIWIYnp/6YQrUF6xlz6mfj8UxRdRPfKjct5uJvfTSFQk5wUpA5V9jw4OQkkhIYy98znJsIWhn3C+r0Vue82kNks4XlhpJL/7oSHrDYGiHhNQe1zlYSPZAfVhKY8hQZenW2uqWe4X190dkktbOmEDSswfoHcDLbqkCko/ElfdFhqtEXjhdPmnSU9F5P27B/X+lhpe1FnuOz63YYZXypFOu3GogNenSeB6lHO1soCQ9wjC62hiBNzxYbIB4UQgWNggvm1z8xbGhZ6/qMTT+WBssAtwG50lv9wrcvucknpledJ70FSY8xtq5VoPqpLr7JOkCQN6U+mcYeiKqk9w//qPb0ekV4ngmZf/5bx4OE8usnDgEcSMr2D/X8Jj79p/2zyiQAuUWzQTzrpTuI6/QGk7QqwHdTzcv/OYXo8aPfGRX8u+NDENLbbymN5ogaREHeAEgQkr9QHpuA8lYhYCXidmkl43IDCeiVmUplUowCBdqOjYFS+exIZlLJpkKolMriRH3ybILbudo5S5VPWZmXOJo9RnzIl6RRIiISFiRhj2u/j78/JmKFIZeWkCSvpAUE2JyDSDQFsunVfde6L7dvEH3wi+UIyThnB1HDuSa4Ptz5LE7W9RJ3HzCK1xFGT//iWdXud9gjNVHeOWx8lnRd6XzxTtREM7XowJ5hYcBefKlYZ46X53sgfqLjM6u5WZGRNK5X7HxF6+b0lilOZPkXVKWJg1dN27SD4KSSqVBEEcSCN86MY8f/9O7hr4v4jOzS13cPYQuHwDaPbeepfrP06KM70rh54YoghI/41FGLFfUvg256gbjvv0ztZ81Gxm6Q7qmfOjOTzwhQfaWqw2/4713GVu15LGIw8mxPtQNlsRiL8iMXxSMG2jkSSev8WpIeqyd49J3HE3wW3APyL6WxkdsrVprsefYPJZErXopgaAtfP3xgmgRYXYazSJYbNggCNvSLKU5uw/N4n/83aPBwi6PkRIo6b1fSy/KakCTb7MR1oxeLXp54SfHgdc2g+UuWekVYk86gklRGlKm7OvcV6rebNaMVglu5dhKOJjJol+EMh5LEiHpYkKaJtVSw8yELYXwXtLPzBsqhfSMyueW/t5qIIkJk6w0GbYQNctRZ8iKNmdizBsmblKSxs4Nee9S3iIIPoTBL7p6XjjPYVKTHhkBqeS48HnwPUtSKqN3lfYaETkQfZTmbrrXlBd2dim96Vc/9JW7lIS0mYXtpco1fGw12ZnaS/ZJfI8x8ZbJspJUZtHzWAtN8bBe3JQzK4aUPQCck+BARg6vKWupW+7lYSI3S1Wq8wW9EwI988Jy3W8pv8tt/T4jFtZ70uWzYodYZBgDQXGKYeA4QzZ0FOTNv+r2NFmL/uMSR0mGxvOQdLIUFvh//+qBkV136Pat+xXHAD/wR3cAcEmCZ5bdpPgf//pBAEArG96TzgtaNQQVktiQ4MFPcG7Ay5B9uNBZmhP8opzaPAiIPHJ+QLm2NRumDHkZdHoFerlbxM4GVBWFFquKgVIziOLQt/Ro0CQ02Wqg3c0hkwnJAGg1suD9kGeKtvwGOFQnQ+lM8sIZiTZlODHXxlPH533CadjmVDREeKo2yMJOgQyzZpahOwL29jf3HcJvXZ9OrJOgJKNBj8LlfBSlt6oQ44bkTzJMLkL1YMIjvXyN6B3HkESZyFPwGULjOth8rGIwCy8aUCEv4bG8sPq/93s2tCCkzicWZOm55vte2XumOS8F/2zFeGJSHBpCvOjb6rMV5Ny3GVzdhaJc9Ay9py8mGoIQsH6dyRY9a5pvLKzffTRJ0iENrP4VVujZ8vuMIyN0H+GcHUYFnNNCGiCmnDtyW5XLveFXvr5i2QDtYBpDGlxxRZz0nBZ+5gk4wmiD3FwLhqNVUuIUGmdhftZZbYCTQMMMzoGi8SXXhTpPehzVs2QoWusdUETa1tpRQ3MNPTdvVCbWMnreBP8OCgT3QQ6tokjLdehXcgrE40iObcA919i4HgRqez+5WQy3sRhzhxROLXSGdioR/M7kIoJCcw21k4752/sPrejco8B5SdIJNzx6DL/wWUfOP3vPQQDDbYxAkMmJRiwkAHuGKqFC8N+kZWwTg05ODnVh/fBY6QEJvVM0uIms9pNaDTOBykgBEJ6zn2dDDvp4kqNzTpbynC8+eBi/+bXHg5Axkbzgvk3okafELJIasUFQnZCa5cYi7V6BidL7Vik7lYXEga4lIyljIF0DECbyUUc5myTV00udGjFA9ZqxdCiFVsMlMXtPeiCFsJ58ASwPIKNW9nEi142S7RkTEQlh9IZe7arBHBJSIh+J84nxJPW9KZCxFJO6GFZ8Fsvd5DHkxQ896WzA1CG1mG3/rR21i5wkxTSeWG4SGS6i/8d6f5IBSLJG9+m9rOD5ICCREdGA/L6VhEOSYO433dxtWy7lJDRPM8F3f8+LwZI1mXQcGC626jQJ5DkkLZBzXsFzuYwaESabWRBFHAZ1ifqUl2OtM9qpWIGMXBBkhNdEfSv13n1UCeyxp3FIkiYf4czC9y+jP7c+dWJF95oCkat+4GpfbCTUecB9fXz5Lg3LG2VUTq63awGKRuREHMXaE1/XiOcKcD+XnvRgrrFExKvXtZb1+3L9pfcdG3mpKHU/+DV7iDUjRj+D4L9+/mHseGJlfYrWIBlB4fk1PGYjcF6T9FR9VanrGgReMHgyDIiq5fASf4dD++SF8CQCVQLuB5UIU9XuSii8RfRdJpQh4ehn/f+Xz+/GTY8f73vvRG69V0hMejGpje8nlKDwBEDtdGUwLRY7Oc4sdStyl06w9XdVeiKjGtby76kJlcqXkZdELuD+mGgiiUP54yR7yaI+0M0LfPTW1Sep8gJc/p6YHWnRHbaqj6XEJOmpkbWJJWFOELfQm12VoACISIEg1cF5pAyCxoyQz8TnI+NajsUa5i09MURmUggSNWsSAOW4l/ct+18d5PgizC/30O6lpVBxnw6qqURGBBM5NoTj8/jnBX4PXr4jSIN8j/H9mPKhOhooJYDy+fHxvdzNIXKeC7W0fGy/DYVoDHltbqCzDkm/fN7sbSzfGa0zhqN5cfSR0MqyoTyL8pp1fcAbMJDGOz8XOafF7zmQvyQcTVIKI9c/6iPy/TejSApEe//Fnzgd87DFGmIUBc/b/UCeUlnxpE5L3ijXNElGeYyKdd6y5Gc1GIZnZMblg0gvvjeio75TkfOJ9lNOgpReOSdZ1TnI36/KXaQ0T3bTfhGpFMhhuBrIOeKnPnlP+TdOHl5pX5L7ObgiBtV1fRgp51rhvCbpKUKerSD5LQjpRQMnM7wpSjKsaKXnO5zU+dhQC0cWfHIhB8QiJu+vqh9LhVklFtq9gdrIhuHqHDZqa78ObaJ7j5+ZtSKsV0pR+sld3DnTnnxJzlg/GBJNL9sxxk9aFblLZMwRCZYVZDaapM8uuvdlond9ttKmmITkQZ90YCNpcBSGvFT03OW4ocgKeTZj7THBa8ltqIkOxhnYkynlKUlvO4RhACbFEjKpcXDtcyk9E9esmVfYeKjzikvtr1xkq4tljFRkqNWoDzEzCah67eW1LHgRZ3IdXjd8R+zVk8YLjVFZS73OUAmNhiqpJHQLl38Tzglh2+mc/cYuvUM2JmzwGZAm/SxF4vsPyuiW1w7nd/c7OT8GoXJvBfDeP70rkDJJQ4tyb3jNqXrH2eiJDaeqo4n+5uU0Juw7VUeGkDiV5+nlhR9nb3v/jQPvOYbcD2PQMys8ybVBhKf2vIHsge+FZFlE4lLrRYxf+dKjeOjg6USbqvNMDPk8KwZDvE7RZCbumcZsM8u8QWHLG6ozFGnOl9+XjhNOKBXrwhARKQD42T+/110jW52mP87DueExt9EgVeVbTQ1+Ivhyh+Esum9ZkWi95a3nN0lPeHxX8pJZ7sJE0BNOCgObYNyIgcmTIS+C1ZCxJBpInI+QyvqmxatReoHcVQdPLHFd9RTibaClx7Vftj0TEm63JNe5tUH4Kbeht73ZMJHcJdSoyrb57YPL50qTaycvMNGkmu4snzEIk1TvfWbGtysmn96gGFAHe71w9a98HQCTVsDdb7cozoqkpzapSW0Vbe1wO/9Jr0U3575J5FNGZOSYCvoM2JNHyddJqZgfZzWe9IhIsLa6mh/ijQVE0phaQhkZ5DXj1p8HCeIUtdOiKi8ZFPmT/ZnQambo9vGkEwkmUiMTN6mBdEZZblW2gp+B9D6W49CTOVteM9z4JuUVlnMpy0k4zB570lsJD6B8z/L50LWppCglh7n3zTuO0j3Q+eR7+cIDh3xpUsmVisT987Xl+eg5ZENtptcrCl+Fisjqgwdn0e6673Z6BUskgMADbMuFJDRq2SNMfZ/n1di45XmBSb8YP4L8WSs86eKdW7hdqjeXBQxOzncG3jMQjkmvJTYGg9LIuA522BdSYOldKNmRenpaW+S6U4cDM4s4Mrtc+XuvKNAaUBqGjOC4BGNqzZHPF2Ay7bX1Bb9/+qrnFvKa5XWIeKfHEWrHUT985eGjvq0kKRp2eWo13JqRmvPIuF2JEoIQv1sf7ZJrUWmcxEUk1gPnNUlPEXLaKODpkwv4139+X9/vW8thG/IW+AUcMgwYTYaBpyWhwRXnD4gGUDkfn7f8rAjbQNfJLXs/BsldYt13CuTlJgIsLeJ+IfhYdysNBk/gTLpuaaptRFhiz5KMYhh/rGtjJ3f6c3cf7u95wQm2FLb7wT++w99rUAlByjQGTPj9MAqL/Prd4UYssVcpz4ebPGN4wyUijjLkT1iJJp0jDzw+3IJIXgoOQxthmNZ5aUmGUCHgwmOZmTRJcsQzDmPXeQ9DojbIMIv7Xm25xmBBiM8RtjOUUIRkd9feaTx8cLbm/OHfmn32gpCa6maWcQQiYWjI50bkLPjMCE+ytX4+CrerN/5+UoSb7r+uJjcEQaTr90TiqJQxSU89/Z2cAgBvzkXJYY2GDH+Hz9LPreV7ufeZGTx+5Ez0HMnLHEYS4ucH8LilCNMgSFJETgSXy5Pj0cNn8JOfvLuMUCCUnIjxEr53BO+kEL+jIv2SMheUY1S8T/+OpdxSno8dIiuZm2he979nkkD3f2aFBULtcf34JdmDjMaSw8i//4jIp/C733jSP4fUXJ8X/SPafJ3I2CPjObqufL5AyDVYk84OO/dcEufJnNHjNelxzo6Yd+V5VrIGEm8aVF1JguatVMSWZKt1kbgU/vsXH/HfpUo2lV2vDYJj6hyYX3n4CI7PVQ2xUeC8JulsMYuBX04si50evnVivu/3JUmjSSu0OKveMe8REp/5Y6LBHBIN9h6lOqGUdcTlGr3WmjSWtipZkGhmxnvafj5Rcogs85gAx2Q79b14EQ4XUvgqITFJp4E8Ee0IK4lK/OxjUuGfo9hJjAwCKtmYmnRjT3ohrmnEe14J4gWHcPOTJ3DszPCD/Wc+HRqScWlM50lfOUm/7tdd+FlKCe59ZsZPZoRQqtBfHw1EHmbxeyH6FOt+67TQkT6ZCFzk7QNdI2MjNvAelgueJ5IIyZeEHJWZuFZdoidLBkKPeAp0pdiAle0kQyUrT8jzjlssv/DAITyYDKlXidBEw9RW/pGexrAiSMLIsVVPW3ieUCJADgaeF0Pi7Q2W6EHRnGdKRhhXm5GLdmbcvTUbWTCW+Ryxt9ER2eozJ8JcMBmHjchKaNBICREbLhAGVZXs+miDeObDVBfrlYQeEHsOlH1hqdvDfLvnPfXWhgnuqbN70ireQZ1xxuOOx6Yc1zKySgSRdcx8ppWS9NhZIp05g+Yd71gpqmt1DE4clRFTvhavx/13jf3oLXux1M0r0Uh5/6k9OSTC9TU0fuPryrFjEa6NPJar7zKOBDQz8iiHWnxAzrex3KX6LhfavVpHFL0Lee5BoGIDKecqV5urqiPq8Ik79nFbxL2mOAX1tYlmFuzh8hd37seBU4v49K5n8OTRedyz75SPwI8K5zVJJ8Rl34bdwY+03UwA2PKKdwb0kGQaPMnKsLI41BMN1mHWEAMxmQb3YslLw8emvKHBucAD52+ikkNEFshy9ecUxN/UEFCeuKuEl58De7dpYiRZEVCVuxTljVelRtXQF03Q0nsmtXHNLE044rrv4TVX7kWge03lPnz27gO4M9rJsw6pCdARFp7c6zZnGoTphY4/H13nB//4jorno7DlRinFcJWRgglRRCQKEVpt+PfIUrKYHEryUWe8SnKXWqBcP5QkJox8hWMx0uFa+O/GCK8ZygAqx4oFLyZx4THuf7wvgyBSACabjWDxIMiSor/3jScBDJC7+HdC3lfhSUdEcK0Nnn/8WZBwKggPjR/53upK1gbnA4LzyA2FvLfROE96Re4iibJ8PkXVE+t2Uy583k2VaAsJUDn+Y50/SwqkIycmNtV+PKwmPc9dMiAQ7o2QW4vY+xrOuzUOFG/8iKiBz72I30X5HcvOBrkzJV3b92vfj6pyzpWSdLk2ZxlJ5QbnkXHN78EVuSRJhRHf8REgjhoWFrXe8MmWq1JG46fSphUYKb4EoyTOFZJeXafo2GZGxDZefxOa9HJtlwZQLMuKnW1yTSX88Ed24qhwOMXO0NyypGYYZOIdxH2YZGJ1c2jf85ZGPlWFC6M/4trW+j1nCJ9/4BAOn17CplYDS90cX919FPc+M9z6PXT7Rnq2cwxyQeLwhhsIwyTc+RAeEYC4Mxe2MjF5L4RY/NgrgYqbgxemdMhenjeucmIMe6aDxcGy9zq1IParYxtLUfhZ8mCjBSdGLjxcvt3BMwvlLnTvtIi5c1erH/BCH3p2Y8+Nja4BkAVebhpRM3lnZZ84cGrRbxDkSEnpARThwGERLziEbVNNzPWpYy0hvWmyrdKIo0oXq0UlhBpNxqFxM9iLQYs6LSik7ZSLOj3LuiRpMoYlsY3HmW+vWFCTchc6j8gtkNEuCW9EC2M0dbdx4ih9JXlsdK3aY6QGPZLypPq6/66IGv3BjU8BIF1lnSa9Om+EUjtupwUiuYtsM5O9hgjPUxvj9lMko98iS6Tfl/sT8x15b/187r3L9PzLObBsAxlOPvHQRsnpBSehBX0Tcq4REaFoPmTDg2vAZ9EzIjKQlySf2jBMdZeeMJbpuTbI81+EYxII+0k8BuR7l+cz0iEk51HxmXze/P5s+P4DgywkiCtJGnRGE/dbIpDD1F0PKknVkNyf/MTd4jqyn4Z9pLA8nlP38L4/u0dEYuojjL2VkHTLDgQiyPKyPrdLjK84EiDfCX+vut5xKcLqmhg7H3z7EhGp+eUeljrhpoRGnMcKQ3IYcKKwa3cvLwQvKB2DQ6xBqfP6OcNyDlzsSXfGeJgzQlyIxn8rivSPAuc1Se/JyUy8bGttuSvnAJIuSH6si2aPVzW8St4imui47FvaSw4wIaDBF8PacHJ135EaQ/clCzGg4UoYHZwJdwojS1pm38vPJJH29yUmq8ykvUFE6OLBHUwAghykdjxr9PG0NcuyfsYgScpCImj85NsrCt82ri0srX7Xrh/5yK4gASjQpq/AIwRQeLxKlJqNwQsOgTZtkSASTHAJZqsn6fGELIkPfU6VA+pqybLe3EakznqjmEm+NJirpJUWRilN8qQ10X5HEsKFSn5oyvNx/WN3lXgsSiLqSSt9kLhm5i1uJrgp8D2QlCVxPriLkVEh71s6B1JrU8rDRbXq0+0JF6bwXcXRhfLZCgkKQTowAgIeHMPnlIltdfMbe9B5biXyS6QiLE0JMSeFDhJP6IuQ7AEi3wYcIfD9SxgKVpD+KgFlQ8Qb8qhGG2iupB1SV6NJd3OxcDgUnJBNz7xZPgD3lfQDlh5034dtehyGTiNpLCN4vlIamXr/QVRuUBQu9qRHxLkfpKdUrgESN5Zlh+PNoYjAFSJiQCQzrtADADc9cRydkkAScUw1ryhWRtLl/BjLdei9xZ50ivg2xb4B1fU3XkOkNpvnaUDIvKLosuyP1H+3TjUx3+7xMdH75usP9Qj8OkzrjDRymhlXfVspRY4jmcGa541c4VwSfZAKINC4WoHNOTTOa5Iuwzk+xF5O7u1egaky8zzG3HI36sTsxQ2Iqk1IWCC8LwHRSHvv3Hd4sMS6dXkM8QLqzCwfYG8heZyocx86vVQpt9hqZH6Dn6kmPwPy0KQ86XQfAGrJWhh2o7/xQkqyElp05C5g0iOU4heFhT+33IBBXovGnLUuU5xD3eTVyMSiEhpcpEeT9aUpkSjllekHmthTi7H04gxCNxHtiSvr9MroxWoRGj0cNpaJnj6MXL6b//K3D+PRwzKJDsECIxdsSiosLCoGWSpJ2lPfkhxK+UdyXIhrVkgmxBjMokhVRHplxRdeuOoXBDKmpecqNbbdsWEEoXoP7MGVz4hLoTFpjxETISBdxpSPZ5lRIAECkTcmr2R0pSIP8h1zfWomqRb0HkMZQUqTTucjw0kaJHK8SoMiEz9dg6UnnAm9J3kiGpYqUSnn6uDeInLq3xl4rg7ld/K98vmaDeP3DximuguVMQVCTXqv9KSH71AYNhGRo/FEn/FaJtalKKIlIwrSUJJlJqWhxDkJIRGX8/pEI0N3wH2TJ5X6IK1zxgy3mREZnQ1xf8nrmFiKWG4ZL8eC4bU0nvtJEtEMJBjV9qUiof6K0fHx/MhzC8v4PEfw5+B5t05SWySeA625XN1FXosjl3F0np7Dd/yGy2faNtnC/DKT9KJAxWEQ5zj1QyOTa244t0keR07Wz9y1f6jz0hgMd2ENHUZkIFIf/OcfuxOAk8a5ZFYRYbEW+6cX8YUHRrM76XlL0mkDnmYjHc6hHShT+Ld/eT9u33NSTH4WsSddhqYQTHD004oJjsKBVUIPCO9d4hiIY2Qmd7coRJKL8fpH0toRMW42qrKLrCSKzlDJ/MCX0oaK3EUMUur0v/v1J3BjWccUKI2iRuRJD75XzbL29XczMVhqFvG4ykhdmJHDVtYPurzgzSIMqiXOCmuxZbKBxQ5POpKg0rMdBoV1ZS6TJD3jv0/Pt/uep5tXyyvGC0I3Z0/6b3z18f7tKixmFjpBWNJaNhxo10L2UgqCIcjIU8fnA8MvMBQrZB1hkpKYyIkIxJCeLK6Q5I6ND5cVDiqRlSKVuMh9ILwmwvEK1uxW2oeQmMq/p46lNtBim4IkYlY8e+kVTHW/1M6KzQQJvevpU7jxsWMBCZBzo2ynbDtXbgnHmuwfQd378hBazKhl0jBOjSN+15IQcpSCJCxh/5KlHcN51JbvmAwESRbScxu3l+YaOodMypft9W2I2kmQZfVajaxsQ9p4jyE16TSWaC73Y1XO8zQ3xpvryXfh33NoVJDhE74Lfgee4Ih7Dt5/Jg2x6BmRJ7QxuLQdRW///u/dUr4n+NrvgyCJZZ3chRBLl1w/ynz1HXq37rPqeSZbLj+E+lE8j/3V3fux81vT/v2n8I8+eHtQ854iAGHZZxqnWXIOkAnJXLmsakyjHMOX/+KXAfDcR04y8sRL0h+vrURgrbU4dsatW1smm5gb4Env9wxiyJKbhWXNPMBJpc2yIlO7W+DXhtxpOzTAZbRCOB6Dfm5x256TKAqnUW/3Cv85zZF7Tsz5KlFni/OSpBMx6xUF5M6HAL8o6qAp0AInJx4aOPI8cjElSGuUw1YAhUrkAKKr08SJ8jqplZy8G4W1ZekwlhZ4iUpmRCekZ1H13JC3vN3LMdlsiAnXeeGkRUmQGyTRhH3sTBvH55hoFhZ+u25+HtFAKJiks048ej/JRZxDxqQto8Wn+qzgJy1aQCjT3n9fTAD0DrdMhOE7GRZrlefr1cgIJPJycOeFxS987sFgQWhkrn8VhcWbfvWGvudxJD2W5rj7o78QAQCAD938rco5vvcDt/r/Hzq9hH/64Z3o9ApMlnXkZd166Z2TdYdjghXXzs4Dks6TWSEMS7n4yJ1f65Kkuc8IotHn2FQVCPqeJ13oc02EXlN5/tRFaZia8n916xAbHPWSFbk4BFEG8Pum+6h+1/UpiWZmKv300cOzuPnJEwHxp75NJCP21hcFzynx/VXnuTpPn/FjTiZkVp4TIrmRII8010ryEEsaJBGV04eMCnKeSlTmteDnTYZCI3hG3EZ5/9QnOSIRXlsaRDR3pXJuUkg5EUizHcoEq55U2U/kGiPXo6K0QFJSMvkcfP8zofxHSgFljlL87DP/zKt9MgbNQ3uOu6prK90FkuaiVEWuIpqDQ4OzdOAUbJTSM0pdnogb5RfE42bnt6ZxZHbJOwkB4EsPHg7Ocej0Epa7rOcOczy4/5PhwP0rNC5ozLFRWXVcGTjlAO0dQmNZzju03suN6+RpqM/NtXvYOtkEwImz4XMMJ4rU3+pA3my6p0DyJZwYeVGsSObpDY7yZzB/gM/vn3HBpRiJK/j1rJy/yqEwEtSSdGPMhcaY3zDGPG6MmS7/PVb+7aIRXX9DwMX6WSMtSwyRZ68u63iq1cBiJxcTULiw+fPQJC6+GxN3abXFpeb4OzwpNGqOAXghaQqrX3oryWsT6k6rnhvqeMvdApOtTBAyriBASUoEug+691S5Iqnp4++JZ5/xJOQ3OiDibsRgrCUjtNiGJKFybGG9sUBe4jCxKEzqIRnHpolGMHHKwUnturYsXfiH33yqtpRiYS1aTec5+/JDR4JzEqlY7ObYPBHKrWKDg5KbgwQ54WXIsnLDoD6T1SNClgIAi528zMdo+LbS+2wKg5beWyW6YkNjkwie3PSJE6r5XPTeiajIcZF6fvQZj7/6ibFOE0tjLvCM9rmmJy0RSYwRkxhP4lInBktj+kl2PDkU9cT5vrlNjx4+g5ufPIHFTg+7D80GcxIhLhcIOO9fu1sEZFpG4uieAgMb1F9TmmwhBRObIoUklYk3R8zShg99X3pv2XgII4TeYLShTM6/F9ELfLUM4ZSpSPkQRTssfKIkG5uRh5oMFwvhaKCz8THesBVjaaWadDJCfS5PzhIe8uJLYpc6u7wkb14lDMLEvRGx97XA6bs2jDbwjqth/5a7F/fbQO/DpXMhJuWxRn3viXl8aue+2mdGfZQcBjLC1CusL1UbJ6LKNYnum/pZrA3399Ljet5UJtW3u/wurTHWWvzcX94fnKOZhZFWaYDGP+U4lZDjQRL51PufF+SawFV7IPYdCJ0t/lrluiDXjslGhrZY21L685VUd+HEUXbsSJLuKpkxt2sMWdWMjB1vsFp2elDT5DpfWJR7EhRB/flgHYoM8rNBv7v4LIAZANuttc+x1j4HwHeWf/vcaC6/MaBFw8sdChssTHEoJQZnP0sPupiYIT0MkScdYkIrZ3HpjapZx33HrNvN03esst29PBzEsi2S1DUT2ch0186THiYFEimkJCW+Pi929Axpsrr3mVP4xO1P84QirsX3bcMSU0WpiYs8dfQcYsgFzk1w9J7Tz8q/dzGoKVycGRNsAtQQ541rtNPEQREGKl34+QcO48xSukoLPcdebjHVygKSTlhs97AlmjS/5w9uDX6nTZlkqJ4mF/p/L6+vk94V2fH0O+nuSepFEyv1GUm6MgOvo5Vk3kSeI/ld6XWXpEd6Ff3Eh/T7I8+x1CfXeWB93xVjnCBJViO4Zg1RLjPAiGyVHCyJgDyjvzSGnlfdAurJnDBOWJcaeqnvPzCDrz58BEdnl/Fzf3l/MpyckrvQ85SSGuk9ovklJmskEatKiRCcxxG6+PlHiaOJxV8+qJgox95cbmP4nAAmk/E9UEKh9OjFzyeIAIHJNL/fquSCCKxFmLgclMKlMWNZRkFz9yBIPbM0lnu5Dcr0mfIBx2Si8njpmaEaoaD7ke1ObQIGy++4CN6XNGqja5b30K8qxvtLmV5sPMUOm70nFnDTEyf6PjfuqyFhDCOnsTHJc1tg7FjujwDw1YePlPdifKSjVyTGtWFPMEVUY1A/oKErIz5sKEL0xWo0jSMpg3N3Fto9bJkMnUKSlDej9xyT0CAiVbLKyVZoeKU4lXTSDYKs+lZY7ueA2HE0c2O3K4yuQahzBtF45GO4H9DGYXQ9es48j2JV+5Mk29fns8uttf/TWnuUG22PWmv/J4CXjuTqGwBPBgv2pBeWwo3c+fp1HpKTVBdNuSDKSZG/SwOFJzSazOvlGUDVGKjcl5DLeH2W9/aYIHGGyD5AmwOlPRjdnpCQGJZO8KRV+MnHkznrvMQUliqsxaHTy7i73AiHLHJ+HoKc+ZBv+X4sE/54sY1RFLy4yt0GUwu+I8kuvDpRXpMMNukRDidt65NNK20v2JtMoGeRAvU3svblcfSeFzqhJ72bF3jy2Fz4fmhnxXj7Z3FZ0qemMLvUxYWbWuJ85UIvQoVEYGNZQGHZWJUTuCSQ8jnFW3LTREvSJCl3Cbw+NYTCiGsxsajeoyRx8bOxvl1MpvvpI2mxDSJfA64pPTFJkIFh68OjdE1alNi4EJpTMeZJv2ot1/iWYyYlLaDnJ8cj78xYGkCR8UXPj0hLitgAsQQlfE6BtAaoHbPk3KDzlc0p21X16snnQwenDD4fFRSkjcaAvE/phCEJGL0zJrLh3CD7eI+Mn9iLn3H4PC+qc0wdAi+iMd6hQWMpiKKCo5uNPuMkJtX0TmIPePnI/RoWSOLKd1zx9KIql5JeVOe0GCR3YRIq13H5ed36KZ9baOBa/PCHdwbyoZShKNcGGc2RPOFflTuUk8yFiGMsMaHnS2QvJW+K6+XLZxs/64aQaYbzWylvKcBSzpr3v9DOsWWi6b9nEZJ7vkbo1ffPVRBYeqeTTRedk8dUSLpwGA6Cz0cjHlOwlI9kuzSf067DwyCWQfq2WTaSaD6n+6bkYIq6OB4AP9HnRVG519WiH0l/xhjzH40xz6c/GGOeb4z5TwAOjOTqG4DCus088sIG4Saqf0kDlya0FGghZP0th6zJk+DD+4i8R8LipUXGiAUgNcUwIahO9PIY8kR7MlXqlb2OLuPseL+ARt4ICXmuVpk06L3VjdgrVBoDhfUbidDiPtnMfCidpAzcbrZCvfSovA/pla9L6uLrW1+GiXTmdUZPYa2PINBkKCU9dB9cPYEnrG7kGaBJryk82i5Zs76ChvOgsAdNHkeDvhMlLk/Pd/CcrZPBebzcRUymZOj4Y4r6OunL3RybWqEh4HdqzGiy4echF4N4EZbGFT1/ft4IQswp45b6b1FQIqoghxGYFJJWdBgtOXs95XnIY9Uw4Xmr1wzlFVacP30sGd5Cs1zDH2JylDqf12yb0EghciyNFpfPUfg+Kd8TkI6eEWgOc2NEOg+q7bPghZM8SPLZSi9ean4rxDOVkYzUMyiEMZPJ+cVWvdi8mIaRzbh/WAjSJjZ4o2dYuTa4b1fm4cgKs+XELvt1bCT6OdNKydjgKidAKMeLd2jm/AuId86exjojyJT/oz4lI2bhvfH7JgIqK6ZYG87rDfG+6gw5uUldHdHmxEF2NMl7kXr+Dyfyb/w1MwTv486nT1XkQzbRTh+dLnhdl32MIL3u7j2F9zTRzNDOCy8JTb2PuMIME+wwSuLXTTAH4ffE71CuianrSX08ynNxdRd2ZkpJaMhr3H0S7wDcui896dKZ5K+bIO51iI0ymYgaVp0r5UtDyl2oP8WgOc8dE651k62Gl7uQd5/egbUrq4E/sH19PvthAM8BcLMx5pQx5hSAHQAuAfBPR3L1DYAMMeVUy9SWiX+ili1NaCnQ4JOknEsFUsg+40VVfFdqWrPoZ93mLeRFKmx1AvHHWJ6sabMSrpUbbuYgJ17aXa3uWdGk1Gq6xaPZYF1yryj8AilJGxFHvwAb53WXOQDw34sHADzxks+TF9uaRcaSJ73wURFJpiTc+zG+Oop837TQBNtuk/HRqNcJtsoSapvLfIVWsz5CIT1nsceEJhkizHPLXfz4x+/CQqeqGeyU7Q9yBrJwIezl9Qk03Wijo25eOOMhItoGNJkS4TbCW8kTJBlXcRlJLykQRo0JJvvIU0SLEGo86UIyJj2wtQTXnzcKt0MudFnp1R7gaRQ9Kl6c+byxnKdKYuN78c+iz/mIdMmxFi96FE2iqAhFMaSnOOWtJYNIkoCKJr38nL5J55aEFOIzL3cx7u5THtk4ApQi0/Hz5z5Us7iCjS0m8un+kYqckZ67cm0b570kXpZ8pmVbwghURGxovSiN437zsUTsSbclwacIb9xPiMBS1KvyzMr1g963fHYpD61fu+KdXP0aI4+RBqUgWWKNnRCG49/73ZuT9ywrjfj1TZJ0QeLeX1PJiu8PQVQ3JR+y4jspTzrNW7GUrdmQhNEVp5BG8WQpAyWZZMrplK4ww/NYYUN5qyTt/B1upyTZqfdPXmgJXhP5GnTeOL+EqsfJyO1E6Zzzx1jr1+bgGsbg7n2n8LFb91Yb1ueZBLvuGoOeeOY9IVcdFJnqW/a1fCbkqCIuRZ50z/vE87Gg8Tmauiy1Z7HWzlhr/5O19tXW2kvKf68p/zbafU/XEZJE5qLjTzTLcElJkmgBSoFIpwy9yF0u+aUlvE82WkA84egX3o8mzpr7okmKiDRZ2HLXsKIIa7vSwKp7VjKhyXluQ71qeGwpiWlmbqEp78vJXFjKEi/mJphIeNGUHgBub9oTQG30k2NJSuoqwRCZmWhmlY1LMuM06WHZx6peNCY0uXXnI7Jb760Mtf3y+dOE0Suct32pm+ORw7OBZ5/Q7RWlcSkro7jf6YyOiIfD/LanTgIgvTp/RjXVc1sNw7LWX4ZZjX+W0mCNox2ub7JRE3jDSsLvQ/9WaCxriFBMAPoTepYo0Fjn98fVdNhrWGcoC0+uOKY2vC7mg/LXJNx9SvlM+uL83MpnLzzEcjyQodQrXH4BJURKbXqyFnd5ikIQLzmn0XO0lmU5ch5IerPpmWYy2hj2Czq3NDpSjmQp55NGQ8qsYU06k2mKzkgE3sLg+SS8mILASoM+vG613fTd1KZSfhwULHNpZPXzcfxdJpVcQclFUaKoluUCAfWhfX6v9J4cCawap+Q0kX3WR6vEfUtPL1A1lGj8kdOim7sa73tPLCTvmeZKujdaa1cCzrmgyKD4e0aELHweNNfJyCkdQx5kCVmusSeMZQLlauU0RhO3EEdYZUSTctloDqUa+7Evxq9lfo62pewrvX6m9OLeiMzoGsQpIoOLxrkwHmOHWlHQulKt+HL8TBv37Z+pPojguSKYa6QnndY9ypUjJ9dTx+bwE396V9/z0rpVfSb8TH2kSPBFkrukuEZqvV4tzrsSjL2yoxSF0w2R58JXySgHFGn8AFSK0svEIk/sMk4uZI9mNbzk9Y2AJ7XsSa8LnxPBZmJUOQblZF2wJzOQJYgJmwf6YE+6TIykmts0eOUkwoQLpdwF3svmNZIFKhMW/ZcJJi+EclEJ5S7VttIx3ZzLIdbWjrZcZo0SL+U9ZybcqVN6y2UomokllZYU8qBGWNkmeK6CpDviz8fRsKZJpt0tfN4APYPjZ5ZhSyLfioyfViN8vi6yEE4W//xP3EYMncjLTqTfWlup456XRJaJBG/gQFEjGWKvhiUlYWODlBYa33/84kmSkfS7dt239A4TaUgcK8lm7MmlPurHYPkC6iI1TCg51F85DsKDjlCyU8fn3fdsPZEHLwKSJMrog0RmjBirIbkB3PiMDchu2U+k0SwdDWQoyG+5OSfdaOlQIGJT55GV/Tf2tvL5EJ3P9jHirJ8vA/KfOq94lpJcyP5L5DPwukfnq5u7YdkIiL9TWCTXjWGIJzmUqL1u3JURYvE8eYO3TOjiU80U76vsvNKACt4bxPMwMvoljvFGWVV6RPA6Zmsx1WygmxeVqlZExuk+Kfroc4jEFCufSR2k0SjXIiePqCGXop1kyJGDzY8PAWkQ0buQa+VkuTaQXJHW3zgiVom6ZGH0RcpqaP6Iq9K4/lQMnFOl51k+e7n+cuQzkWsneId0btrofFRggf9GXvCi8hxjVOQuwrAi41ZWN2uVzqOjs+kqa/RcU3Oo/AyoziNeytQIjWECjbVR4Lwj6V62YEmTnoE8m76mqbWB5+PffeaB4BxxeSQLEfIXC2KR6syWPHIixOsXqKrmk37G8oAKogWPyLr3bFruwDKzvc5zY8GEn3TC3psqBi3fl/X6SklAu3lRScqM229AmrgsmBBkMgq1t34zI/gIQiPLAu9y9Vg3gDu9omKkFNFzBHhyiHXmdKwnqAV7xpuN+p0DHZnOfF9MPX8iWZ3c7XzbE9KU9/zBrTiz3GO5i5XPNwu8QJ4AJK5Bi4S/pjdW4XM0EJ/HukiJrGHPYdgwkiHvV07y/rkB3uPM1YHgJ9e6cnxyrLBXNe0BByI9d/BJeA+sJU+dhb31MnyfbB+4XwQex+R5Q7lb8g4EYW7EHv+oj3dz60k4jadmg/W0AIXjw77pPH6cFO4dDeWcVl6qMuZj4slt5rlKettlN6R+Ksl6HYmEDZ9/0IciyDEsS9Clj+UQtpwTA4IE4UEMiBHD0I3EzS4NLJlsGj4jIbe09fNxDBqPgJyvwM4NE45NGWVMPQjZn40Jn2H8Fdfv2GCiY+qjGsJwTZHfwmKy5SQhc8vdQNbXzQuvLSZSHkdM5fkGkXRqR7wWdXuF2Bwq8qxa9vjHuRPUxyS4BHIWlAUk+GR5a72TqBkZzhXJoDB2SFNPcwyVE47HAxkk1Aa699T7TyZ10lgrizLI3XnjZ8TyHj4PzRnyGq1mOkpFfaEO0skov9sq1zbpGLJgg402vCJYazG76Kquxf3cHyOeObXIl+r1XCD8nbgPwDIk9aSvEkXhOkpRuHqy0tskPVOyNneM2DKWlpWfQIwRE15IWDLDCzcTlz4LFOLksrrFQHoaiooWkCcWjhLUhT+JOEtPeq8o/O6SsUeb7iun52vZQKGIhUyQqrwXy15gqlbA5dFCeU4dKfA6c7GIp+AIiCPHVK9cnifW1mXRBB0f6wyEcpFtGN+v6jxieWEx0QxDt1968DDmxA5zRKDb3aKUYnF7JpsZFto9IXcRXqaojT70HU3C1lq/GRLBnS8Tkx9PWFKi0sqI9LE8RU62pAuUzzuL+q/UnYfnDwlz3bumtYbJWDpk6fu/2IhEfiZJV9FnEZPExJMZhDIAgHXbbqLmhMO66VqOzzoDXN4nGTLSmya/QxImSQ4amaucwSS0mjjKSfQhiXGeMXH/oZVT2+Yietc038XVYeCvxclr/WRL9CyAtBFuIaUWgkSWfTM+c1BBKjLK/b0I540kiPLSgwysXMxl/Iyk3CVLjp06BImjJiQx5Cyi51mINvSbPx0ZF+UVo/cnUTGuEs4Xd48QCcgRySq4z9P26vPLPWydYpLeE32C5zEu8iDvJVVze6mTV8hkYISWP10SYJb0rEoylq6gEoIijn4+jEp60nfcOpD59y9zmOJ+IImgjEzI/htrq21knNE8mXr/0plDj1Byk0ZpcIQeZfF9G/IPoPpcpGJB/k1y2eNzy9g/vVhtn+UxIttMa2MresbOWSH327D4/P2HML3QwXf//s0A+NkQWY8hZVy09hkxnwSysmhtIS/7KDCQpBtjNhtjfskY89Hy9yuMMd83kqtvAJzW171YkoTIMIwMl8Rhe0JMwHixL7xHtdHgzixRlKtyYRGFCnkhIBh/fkFqIiJv/THshSFrN070k20g6z82OCTI+0Pkj7xzecHeAH+smPxoIFL7XWd2E2CzkdXIEtgLTNq2XBArrxc1aR2iM7Sy4L1lNROSLck0lWAM9dNukqUBKGUcJrq2vAYbIZzbsBJN+v/65lM4fHrZPxuSqVCtelnvfKrVwFI393KXoLpLxpOFRdrDQTvi8fu0+JUvPeqvSYZWvKNsIOXJC794h6HQqiQpL4TchSZEExMWjpL45Ne00y/wPg+UiqE/kQgm2RriRyBnIW/yUhPVAtj7XDasLrGVzmv9d9L9lfqZX6gzXjzknEFlOSnJ25JRJd4/lR+VoP4lF2AZKrdILLrUjsQ9SacDheNjQi/fI/ehutCzfOdEdPqRR0TzRrozsYSICV5csrIQ70+OpdiYSD8Hmn+rRmLu5Thx+dnEiSKQIwCQchITlGC0lkrvUe5F0SeiIHMu2Cgq/NhKjy7aqKdWRiMMy/j9F/Q8rcVk00ULl7tFWHq23AmT7kmuRfE7YBLNf/uhD93hdyh117SVPtdsuE14JnwZ5kQkhQyEPo40AkWb6X5pHMUgLuKrfIk+l1qXTdB+kbjfEHNgbFxk7Dz0hDXR5rywmGo10C0Kf464ugtp2+Wc6q9VGqH9ZB68n0i8rvBOp19+6Ag+fvvTyfalJJjesSeeMRlAPoG3NB5+/rMP4PRix5ea5Ch92Geo9dQ/ee5hbhVWk+FonBVtG3aTpkEYxpP+pwDaAN5W/n4QwK+O5OobgMKGL5s8XxTOkWGszLjEPVmmDkDCMuaShM1oUNDAkqBJz73YgkMpWfqlukHBHie5iJngmHBAxSFPbi9/r84QASiaEMkzyDuQIP6BwRNNnpTQEVd34e+LxNFysbGlMJK03wCH/avfFzW+GzJsnz62lTkpCfUFKz6jBB1K6qGQtK9kIdrsiWUjDLv186QXhayT7gjTZLOBdo83Ner0uEwkSWLIkz7VamCpk3N1GjHRxO+a2i0nDdpAiUh5Ny/wF3c9g05J2mlxjydEkoZRkpfvbw2eyPjeZZ1pKsEos+Rjr7ZcPPn9JfuKMI4aGRGKNAmWBLcSDvYEzXodbr9oFsDjVmp4a48VRgl9J3U+igLUkX5Zl5nLgUpPJh9L/aXbcxElqYllSVZVYkUSLU/K/HiGf8apZ1snd5FepyCqGM2boUe2Ghng83GJQJZK1RDjgse+zKOQkRuCXGiDMRyRNGP4XaX6Uu2780SpqBiJcs6UOTvDetK9oRbNybEeOieyXjAxrbaTNePBPdrhxhb1yxie6JRzebwu0HxAnvROngelZ7tFUerVw2hDp0cOhfB5suOL2xhuTc9t9nukZM5pMdnKfMWy+D3R+0kZZzFkXXxqU0rC5KP6tloXPe6D/MyZnDcy4zfd67em5gU7Dft50jdNNCo7hEv9fi6cbbH3OZRc1pD0olqQgMg9O+TSz5RzCd0BFiFxj+c0yuGiuZ36z1KnwKaJBkcviqJ2reaiCEzC5T0GeyyIdZfaNkh6NSyGIemvsNb+JoBu2fAlVJ0q5wQKK5IX5GSRsvDIMkzs2BhvBkKLC03ETBD7LLyWCaeXdCQ8fe7gSLOZHJAcMiarkr159YSxWTMZ8DPgEBZ1fLZc5YLLFmw1eZEniZQmndtvBDlgI4rIHVA+h9SEZ1l76yUf/UJ7jbRekJ6x93LQZFsO9mrtWvJY8U/yWtZp0qkKjG+HeL7kVSUCTV55We98U0myO70iKPdFkz3dM72PTEwoALB5oonlbuFJPhkAPrJgqYpPdTzQ+w0rSIRa5lhX60P9hRWRkXBcSG8EVayJj+HnLjTpgnSkiaTwlEZEwgJes8gb99R70t35Qu99v2Mc4TWCiA86X503Ep4wBxIE2MrYJm+pTCqmxch77RpV0sAyMfaOe+OuhgRY1M9ZFZlLwgDiv4lQeV8SKd55wtAjSCJGm4XVzTu5mFtlJCGc20Lvq5QG8TXDsH38jLyxgvi8CK7dSBhQKRTWes9vZtgYKGxYgjG4J3q3qfcljE7vqQXPcek2hFr9/vN6dbz4JEhBttq9qOJUuSuzLDdLc2XKGUTzLs11sv46tYfGJhHORulJn4w8tcF9EhmrcfxI+FwOE85VMfwYTawXsZMEKKVcBY8Zkv3EZXeD5xuU3qzmyMlnt6kVyuCko48ktGEpx5BsZ8YEEejKcyyQfGdyfSXOVGmfN9Lc7wahBCbmI73AqIOf/8iJ5yUyOUvCKu0V83gcrSKOxZ50dw/UdJrLRoFhSHrHGLMJ5RpojHkFnGf9nMP+ucJbc+Q9pY4fLw40oZG3VSLeaEBqFUPNYr3O3E8WspPWyTMorGjrddZy8ZIJK7IsVgpk9acgLcZWxhOkrJoQtlNKOfhvVKubF+H0tbgSgfudTi/zA+oT1djgkAOnjuQRAaaBzCEulmaQtj4YiNF7D+qzimPr6t/SNWSYM9VWn8hXUOiTK7Fsnmh6uQudx4duo82ivJfLk17nMVnq5t67kJf68q54T7LWPRB60psZ1cwP+zyR6tiQYg+X9dVwKuFSQbjD0HKaHJJnM3P/qdekIzZwwz6TGeGNKkUdfTi69x7K36vX5OozRM5rNcvgpNKaoc1kRhgcbASEIAkT70Yr+qSQDcRyFybBrJP2G+D0mcPqvXhS/oQgcZ2PYQ+09Hql50CpSeeKQSk4A934sUzvN2XMyVwTOX+E7WTCJQ2XcC5gR0L4XCmSxeV+5f2zjnel1V14IxzqE6Y0cjlRn6JSnCwcS26C9gMBkZPPuzYPisri9esjdcSwnA+o5Gu3KDdxa8YkvVHpz+mkf+sTHWmdnGo2Ik96+L4L6wjxUjd3Cfppthus0XXiHwIZcnX1t/39C+OEZBTxOSSImIZyNDl3heBjCsiCAvQuZXd1JD30pEv5EJF9KW1MGUjEr1KPkZw/QYRWrAUyKTP13XijPp/LUVTlQUF+YOYii+ScIGfEZJP6VXpDKdlXfKTaSL6Xng8MRruZUXPwIfhvAK4H8BJjzJ8DeDuAnxjJ1TcAKQLFxDLsAA3DYZIAwpomT6+s6iI1gXXeXCDUpNPgSx1JxIC9R4ljIGQZAxY8Pq+tTHQSrG8n74WsAFESaYgMaMgyS/GAybyUITmh0CJW8GD1n1n2UtGkXvk+TSSilnvt4lISzU7PTZLLy7m/j6LU23eF5yaYmOQEU/Di1xKLLHvSa0h6QZMVe8mlht0AwsstPeksd1ks5S6TzThJMOEBF0Sgkxe4YKop5DIsEermjshR7kBF7mLAmf5FaKCQtyWlryyo/4q+TuMmfMfh4tPPS2tKrUNYXjF1rEwujfM5wnCl7zPJt0bfEZ6xOgmL73thcngdXL+jSEL6mtJbyu+5eqx/p8Lz1GqE/Tl+PxLSa0TevWZ0LRortnz+aXImFt9MyDEksYUVz8fw+fq8c3qfVhh1dc+U5pt4bpWvQs6XJPUiUh3ci5xTCyaw/WAhoyDV/uzlHtZy2dqIbNQhF/kjWfR8mfSR4cHndYSuP+RY9XKaRH+JDbs68k+e3/jZ+D5SuB0ce3mBTs9J/wA3JrqFnOPYsdHuEbkKn2fDhOVzJ8uoI4ENQ1vKVt2eFu1yh+c88exj46y/ER87LQaQdO+sCatp1a3Lbg5gAslrcvX8ZLR4+W0RVrgK+qIt30EgU6Rrcd126UkPnr2Y20m6FLc7xb1kQjBJWlPGLkWWY8OgJarOSF7QE04k1yesT6in9ZRqnddJcC3CvAU2qjmxl8a2MSEvobV9FBjoSbfWfgPAD8AR878E8GZr7Y6RXH0DIEMkBqwZpxJY/jjhwYxJOn2PYFEO4jwmyPVhQDd5p8PCKXhjoIYYwDJpIo9Q3bUBuTlD/YLN3mMub+hr1JZ6wLgbyhArtZu+56u71NQ5J+9tarc1v7GQSU9efsCWlnNeVKsJyPNxyDQMUxHR7pSTNpF+JhvVNsdJpr6aTR8iNCHIdU+QZfoG1XtnzyfLbyZbnPg52WJvgPQeyOdCzyMzBsudAhdtnnCe+NwGhghJHlhygug8JqiZLw1SacA1RKjWIoxO+B0ghUfPIvT0eyJaE1qWZJo91TWEmTTk5XcgrukJfDmR8/n6G7a0htSXfYTve3Rt1HgwYcMNfep325Tnq3pyw2djgkWNCJqPjvSZF+gdhdGPOudBPYGj8wD8jOM1yxMmsHe8X/IsvZswryF9H9TviJw0svR7lREyLw2JxhARd3omvRqPdHx2A7E2EFGKvkMGWpg4Opik93Irqj7JiB/E2GFyEXj8+pzfjSUT9IM6g4TeG52/bp1rNGoimsKZQUS8UzoeAODdv30TemKOm2jy/E6a9Ip0QhixAPwcLq8pnQF0/uVujslWlnQAeQmmGAvxukek3Cfzi+vUgUi6k3qERQnqnDzSeAoqt6QIPeLqLvV8pG7O9/NjdK1KtKngtW8yEZF492/tAEu0oncmHJD9nlUrC4tOeIegra573qgrOPIiK9TlOedWkZETPxY6LyUpy7nBR0vAYzw0wDEyuUutJ90Yc030pyPlz5caY15qrb1vJC1YZ1CIKfb0VUIp5SRFYbYU6K8y8TQuNSjDSxKhhEWEh2vC+2GSULUtfsIUA6pOWgJwYko/T7pcNFqZqxhBshfavCcG1dgOrVrhTWvUheZkRYLqBEADOLWIcchYEG/L5Cx1LRqwUpoDlLKZ0qs80aTEkqwMJyfkLtJTYeGlRmTgpRBMLoEmvOoJoFr+vaKsl156ltrd3GvIO+UOpxzWD6/lddcZsNzLcfHmltO0lxMUtb/na2uj8n65Ri5r+aRGNJzAwwWHJDdSiy7fDRmgJCNjT3p67HjiSIsO+lRasYg8jeHHkhwWRXVXxMTphHym/hhDRsmgEoxgR0F9gh7rpFkb2d+TS0nAMlGU+kg/FFbUYs9ESFcc4+c9wBs31TZLXTh7m+KDaH5kEoCkEc8Ju4JwDuHUaIgxVE8UaVHNxLwZ9l8Z3aF7Sl0z9Rxo/NXLhuClHHGOEEnQYu+iI3gNkTjI85N0EjUzg7YFJjKhpU8/Mr4PMUa9BrqOvJIBVmNcpSIo8h7IyTFR5k10esbngB2bbWO+3cNkM/NzFROnwnvW42tRVARIa9JltJOike1ujslmI2kgubmJo+up9bJb7mfREdVoUpJQgMc8lQCmdSMm6am2MHF2x3RF1KByHWGgkxOJ5pq6dxFW9EJo0JTXoj4ZkFJhJE42qxGJ/acWk5506ZSTa1evdDzt2juNhXYPV162Da1mFCW2bOTERg3lcNG4o99preWy0pwcmnp+crMxLh4ROqIMmIMA7CBIRQRWg36e9N8p/30QwJ0APgLgo+X/PzCSq28AiKTHSaKxVgpwD7/Ts5UyfTFYF1hNnugfhhc6uj5WLk/Agzzz3Nn7TRIAbwxBndtaG4QF3XPhyYKsTypdSItKjFjuYsFJFLQI1bW/KTxZoRFluTxaYqEjD4a0nKUuNUYQKkwkEdNERF4YapdwxJbnqW5VLTXp/bT+nLDJnmuZONoVJHiy6TznUy3+vVNuEkUeeZmpHt+PnGiWOrnzpHfy0hvHCcGUnCWlK/F7Za+9kOFknIjjSB5P9hRJoeouMqE6JkIkI6OoTT9SQ55zetf9NgsyplqezU+fgvBRX+rvSWcvfj15qRoP/by+pmTc/Yh8Q2h/abHoZ030xH4BzQZHBGNP4RceOIST85xiRFIwlsUUtSF+KWWpfFbw3OclTtGixc8wNqTSRIkTUIWhVvsEwKSXyH/iYJkcx5toxZ50Sc4R1IseBD+/F7wmVNpQOj3kmCf85vWP43P3Hqx8xxE8E1SniBOji9I4cWOyvyzM36uPPFlhaNYcK0hcXXekPhJ/JCPYndxVVskLG8hdtk01cXqxE2jSaU2ipPm4pKWchwH4crHcHh4P5CWdbDndelx5hJ8JO7XqjByKBkiSTvNODB+1FaQ1JuV1uWKF6IvsWKlf5+JcsIFJrFbUSRd9VioEyAiKOZTjQO79dROWNlezCfuolNBQVPm7f/8WzC518fDBWez81rRfv2JPP0WKXPUZ/pDerzdmxP4RFLWeFHKX1NxAuYo+GT/ndbERvVspvRsNNWfUknRr7Xdaa78TwDMArrHWvtla+yYAbwSwZ8TtWDd4HVg0CaeyqQHn0dwy2axorCRsRNak186Y9OLgrHNBWIp+njnWgGc13na5wAUTVc2E7MO2ZXt37p3Gz/3l/eE5C/ZwEDFzHvWq1S3bIaVDRNIGGRlSTlIt7wihV6s+T1nGjCeb/tU3WuXAjWuZFmVf8PWm86I2asCeCibHcsvqermLqBwjJpCUJp3kLculp8ctBg2/rTTp/9ibnQULF3t/nIdjvt3DxZsnsNzLy4mq4ScqmsBiQwvgcUM7WspjKcxJiaWNDIEnxYq+ngmynlq4fRjX1pOaIApFXkSkSQJd2xKRQDgkMsOTvTSG6yF11DXXBJdVpPutlQwEpL8m6iYWV0oCjiMmMSgq4kswFtU6wwDw8dv34RmxeUgY2uY+mnwSlg2MuClFZMyQjjs4phDl5AKPbM21EHq3YlIaQ86FzUQujBX3UIg+X9HOi/5L0Z5B2mR5jUF6Zp43Cm90E6ZaDRw+vVT5jlzHvFSmvI4Fk2AphXHOo/7PTI4BqjZUK8MS/bwuqkEGQu19l1FCmltkoYatU03MLHa9FKYljMcOzcsBaRM5PoblLrJiCUmLKLpCnnRf3SURaZKe0zpjpJcXLvFS7L3Rr49YhMm/cZnGek06jyvapKxWky6ccOzMqL5/C17ri4ILNsT7b/iIa2L+kXXSp1phHyaQ9zrcQyPMK6L3stTJMbfc9UZcLp6Vv6aVmyxGJRiLcP4j739PyDQnKELTyHyUIXh+9F7KXC1ydLg+Hc6ldevPKDBMdZdXW2sfpl+stbsBvGFtmrP2oJcTewlpkY7Rzd3mCv3KYhFZCBY48r7WTXA2TJriEH54rBGkpp8nhLxRYVZzvbeHEqB8opIF5pd7wTFEeKnmMiUvUkfvN/GmohK0CNV5yljTHCZuSS9cyntpDJd5JMNjUOSjWd5XzD/Y08Le7katp0JMXpR0Jp59r7BJyYuM3DC5DxOHZEUcShSdamVeS9fuFf57HU/yi0o5KZ9bUT77hXYPF29pYanjSjhOlV6kuHRoq8aTLidEmVgYJK+WRIa+7cm5kAzVVT6QhKJ/ZEmSA1ufxAm+p5TcxSCMOg2SkVgr+mBNOJOP4cS6eoPR+ohPXXiUiFLYznAcxG2m6juFdeRGamUlNpd6XILs0yRbqtUbo1qxhM/D9yXlHqn7ksljtdVHwNESIhp1GxSl7iWlD5atkdUj4vmD5ve8COfNoUi6uLc677uUfcRe0Qs3tXB6sVv7HSk9iKWQRJDpOZDh1b+9TMqlR712zTFGXKeO4KbfqZxrZeIokfQtE+xJb/eKoNqWLz8bzVFy/rW2upOnGw88X5GjY7lbVBIn5XdoLDSz9HreieUufd43t7fAZI0nPS6eINsiNem9ot/z5b7XFPN7Ct6Ij54nJ39nvv+kJGFyPw6qmhJfiriXfMZ5OU+Q0Q24cbltqom55R4mSieSjAbw+SC845GMhiKJ5T2QfFVKS2XRhTpNv5T7ygTcYaowjYqzD0PSHzPGfMwYs90Y8+5y59HHRnT9dYUB65jiSbjOM9zNXWmibq+PJx0c/oj14LUePrDkJPAuJkhEoOWt9S5KgigniXSbyVspSVPc6WRNZVlXvJvbigfaf6foE36jxS3xvUJM5hTS9/cmFu8s4QmgMFsrKj1ZB784JLyEPPlReIwGe/U87M2QYUUmsHlh8cMf2YUDp8JtjgsLTJRecZowWuVzpVaTFKdXuP631OESYRONzJfKahi3K19ciUY+V3rHE80MC50eLto8UW5m5Lwe7Z57dvI7lUmvcN6Ebs7a/1heJLWxJW/23/U65yCUXn2mlHDjF9rE+/PjASKBtEZLTlyax1dImKk/eXkK+vcdCzle6ydi6bGyYI9/8lgID1nyHixr5w0bQvL5xaORdL60+zF5gXp5qA3fMtnAQpuN8yASJ50HqWdB4zKhubfyvsqFjaRcfK3ICZEoU8jXYkkFVV+pc4DIe5EylUGVNqThHK4PZR8vyONZ1JLSVLszQUJSX6HSdJ0yshcfUieRmaDxKOf7IkqCbxiu7lKQ7Kx/u+mdeI96X2NU5FMkjvHjLvEZRQMoWbRXuDrpRNI3TTQwt9zDVCurzDcUaQw1yvysqcxyq5TzWdEeKddz1274nZ1TxEu+w7pxTIm85El3JRjDOe7Rw2dw19On3DMGfPvkTs+EeE8O+cx89KnBThIpU5Htpn4rI45ellEez9KjVOUVGelhKWick0HzvpRjEkcgAkwR5HgtJV4m55mtk03Mt3tuXPQKb0SH8iYuuCDzDC0oD07mW4WJo3S/PgpdM+/KSESvKHwZ236lq0eNYUj6ewE8AuDfAfj3AB4t/3ZOwnvSC57eZaZ0jG4+nNylIS1iYe3WfykkCN5jFR1mSikMZdwPWsj9xEyLQs0ilpWdjoaa64CR9KMgiQMNBg7L1szbKKytney41FiKwFO7q9VznEXPE2x86swgKK00yMr1er6i6lnICzZE/M9GvdzFb/LgJwvjiX0vt5hZ7AR1eun6VFXGe2ga1URTN5EXfofQqRYvLnR/pK1vNbjN8a1TKdGJRoa55R4u3txyddK9Jz0HbfdsUWrxGpxoZ8EkhuQ/sUEqq0xUnzc8OZBVT1Id2XttBFmsyCTKRRPCsI0jIv4dgTXRKdkGh1jJQOwftvTew6K/vjfYwMeT9bRxTYS+3w6mUhvqSWd9M4UXDN4AnGgadPI8MLA3lTX35f1Jr6s3euueRQ2pNv4Y9rBVPOlWGAKGSXW/+S3cfdUEfTT1nUHlPOW9tLLMh8mrjgAZ/mcjcRB8mc+C251uJyecS3TyAlMT4Y7Xtzx5whvrRFSk15RAScOF5ZJxgyIAbFyJqE2fY4Mk6lqikx5TtFZ1S2LezXmDNcD1wyWS+UVVtrj6lThfwWsAVRghYu8dBp6cMXlzcsJ6TTo9v36RbKrnTlVEiuh9WwB3Pj2NLz902D8m9w4b6PSslzL+wQ1PAahKPvl5sjyEIgEUeY73YpB9z3vS5ZgRp5eliwlSikL9J8vSY9mfp3DPYbmb+/mWJUBVZyjPEwjmpW1TLcwv9zz5J0eWfCJ5AW+oTkRGjqyORvvdsKQz8zlntJ7VRXq8nLXBzjQZmeiHunGzUgxTgnHZWvt71tp/XP77PWvt8oiuv64wJqysQZBlGWN0c7eN7KHTS4HHSYI9LNYPrkEvkRebMJku/grNfdT2Oq8EQIkXoVygjquSTpnQ7nLCDoHJIy0ihQh7pbtgYYF6jVzVGpbfi7XfNGYLS54FJEP2JFlgQyJLWsYEXhTr5C6lB70ZWt7VNkutZ+aJcK90EZLnoN1zJOjo7DJ27Z0G7bBH1j55CbpiMaGr5YXbkMNvtpHzJlwAAk07y5DCtjYy148nWxkW2jku2jSBpU7hk53apSY9WMgiQ4ciUJQ0HNZmz7zEq7aGPXlMa7azD9+NJME2WHwsJKFlTykZs6nzZYbGaMKLKCJgZDz0887y1vD1x8oqCjSm64xaT+RRn3xHCxVdk8ZDXydACRmqbjXc3gDSWNky4aRU8nhODhuspR7kobbgpDtjwoXLWhn9Y7lLmsiGSYreu10emvLku0WWw/N1RhIQGsoTEfkDQk+qk5CFVlLdE7CWnTF1z9GRF2fkZyakWp2ek0QAwI98ZCcA4Mc+fpcj5yVB4b4bR9HgjfawOk1NY8HknPpsvy4mSV+dbr0QpDL1fa4uVZbBo3FlrZfneU96I/Skp5L+iUzTLqWxjMRaqk5VoFE6NqaajlSmcjYASXbhI0cxuqUzheQuvYKjhoQ4iZXWLEqcLazF793wJIB6TzrryqOiDkU1p02+d7mZUXJttmHOCs2zzcCgkc6t6jkAN88Ga4qBzzOgOSjpwCvnezrttqkm5to9t1NoKXNqNavv22/cKM5Lzi1at0lXTu9lU6uB5W7BkagBibdUFMHnuxW87scYxnBfKQaSdGPM08aYvfG/NWjLuoA6US/n8Gth4T2bMbq5xZaJBn79K4/hyw8dqXwO0ELEHUMu+v0m73gjj5SnJQgH+wksfT6pve2XeAew3IVA2e3ynigkRES1W7Aso86S7id3IU98/YJfX+qrVRLviUb1GOO9XJTckX6X/loFvOc55d2TO5N1cyo3yc+Fj+Xsb/Kc+8z+8hjyKiy0e3j86Bl88KY9gVHoq7tkoSedpSLOSFzspMOxDcM1YFOhevd8uFrNQruHzZMN/36amUG7y+FL8qI1hcfDh2YbXIGi66MHbMi1+pa5C72JdV5FufgQIU2FcTPjyA15NCnJLQaRxDovLUsR+Jj+JIZlFvUlEwXxBnsc6wiPKRvaL0GPiF6/GuGp01OEiuRbRFwImyZiuYsgdBSBqHEMyPusg9xRuVrdhaVtgyqg+Dkw6kuD5C5etxs5JQhJD2uN9JGjAkVg8PW7fysMhUaNoZCXjoVOr15G8Ll7DmDX3lM+otsrLCaFBFEao9Qmb3DZMF+pvxHKRpAfW31c6TICUmd015e/BMt8hJPAV11pugTCyWajTBSVSfaJSlYFV1ebKr3v9P75mtIwcNVxaN+JOkcd9fO8Zg4BhCfdE9IicEQY8RyDPldWGCFOQqAE8fhacl1vGLcm10ccWfLhE4ZrHAs+MlNx8MjiAOHPFFwUI/NrirXwhouPICceoDQyLBxJn1/uuShLg3NqZB8jZ1e3qBaA6OY2GHc+cbRwO24vd3Pv2Kqt7kLjRpRUlsmogzTpo8Iwcpc3A3hL+e+dcOUXP72WjVorGIgECWF1kYc3rUkvsGmiicwYLPfyyudAJFkRHot+Xgi3cLM3KqUpAzjxzG98VOsREtZ+sOClr59lJshkb/fyYDtmgIlZhxIzfNinqK34IMtKxZd2ZLTqZacoQd1g4ecayl3oUHr2ssJJSsri22g5UTO+D1rYvSZcVE6pnkdoPRPaOIAID3Dtr98oklQ44YUscgqnxaDwody2WsqBsnKhIUu/kXi+LtHK9fv5dg+bWg3/7BoZ1yDm5101Wpmky0RRngSlDCe+C+dNE2WxbFWvKa8jDV1p8AAh6WUvbx+ZijeGiVyHIAPEe2f7kGmAxy15GutgyoYOIxnwcpe6Y2w4pqmdw2iifR8lzWwvrKtMBIiPD5PD+mmp2fjoT/q8Bzx5X0TkpawgdR4pNWEjrp/hExh82WBjoiWMmdjIjz3p8nxyPFbOa1nSJkmbjY7xHsry3Xzmrv246Ynj/tg9J+YBuGgcPzsad1kwR1KbACrdiUByVLsmGI5g+fHSt+/KaHCdpAW10RaKIFLVGUKrdCZsnWxioePmKyLnRPhkuVh/rYKftaswUvWk55Zrp9N28VTdZaJmO3svMyvqxx1VieESjOyEI8gkdcBVwJpshGUbCfWJo2zw+3LIGW9SFh/L1X2yIEpSeRfl/B6XqDUG3qCR+u66PAUnd3USSiLytDGglBonIc65dbKJueVuUJa0VSm5Wa7VvT58xFIFNetJ+VTpSZ9scXWXOhka5aCQAT/REImjie/EkfBRYBi5y7T4d8ha+/sA/o8RtmFdQR0lrsNN5CkGVXcBkCRRgJww2YvtyUhNO9jzLSpe1BzLnsd+JQw5RBZWNEi3eZAn3Rs0wtpk70M63NUoP6vThJMGMZ6wPeHqU0WllRn0xHMNv4/Aa0LhzJpxGxCX+JjCitJWIsRVqa8Nt0gFYUA/oXBHooV0vt3D7FIXF25qBR4FGbLsih1HCXlhsXmigXaXveXBMzfGJ47yFu7sTfPH5AUmmo0yfMyyJudJ5wkVkPKvsB0uySnccVRO4HVeEvLKVXTOdRNjFlbDSE3A5PH3oXlUPUTsEWTPU6XvZDz+h/HOhlrddAeTBvhguQt75PuObUFMfVQg8UxiyM2hKOFYGq8TDRdJ8dfyZJVlL41opz9uV39HgLs/uZlP9b7kxkTS6Eqdh/oQEcK6xGL+zvBGjSSMyT0zjCN4NL/3I7s2+r/fwTXxrIxBOTZLUlm+m4cPzeLgzFLgiADgpXOA67u8GUuVFNL3pF69X3SVDCVjqF8iGQHx92Y56bBe7tI/8Zi840GfLJ0JW6eavqoVyVvapfyn2yvvO6oCRu/H1ermeTm4pkgQppK2S93c74aZcjIEyb+JeyFnCsmTnCc9dER0ejkMjM/9os2MOnm5kZJ4LxQBST0zX4FL5DGkPOnk1Ovl1P953oyRl23JC74/doYUoA31ZCJlCi6i4N5TI3Nyl3bgSa8awAR5xk0T7t13ck7WpOpvQZsbLC0K7h0cZW6YsKQx5XhReU4al3GryBDivsJkvc5xl7qXs8UwcpdrxL83G2N+BsC2UVzcGPMeY8wTxpg9xphfTHxujDEfKD9/SO6COui76evBZ5LLB1xY+BB+7H0luYsFcHqp66tqxAgqqxRsudZBlriS3p5Um4ch8taGtYZjzWYMtwDzvchNJPxzKYQmvcG7c8nFJDgneUsbLJ2QIL143KZMWOv9wnZU+YMeq/Qme49uSR67Nc/TPStOtIzD9WSxO2kPk9G0hwUinJj5KE3gSRcLyemlLi7aPOH03WJL71xMuDFIQ0ch4TiBmZOoeMKuElHeWW+h4zSe8tm1e+GuuiT5CTxQguSFVTC4VKSsICBBmnQi8jw+qs+UvD9SghKDQsfeaHXu8ioBEkmqPnyfOEbKIQZFwICQzKRg/XhNe+9T91OkHhydL8pfcdrYUF9vo5/cFre4UbSlk4cGWdw+MmDlhh2NPlGKfnkvdH1f3SUhd/GlP4WXvN7RZjzp9SUd+7ysILmuYfq6t8gR0E14aAH2MrtxUfSVjQR36Q2RUJvtPd2Gx29HeJTJ60fHXriphde84IIgCT0zvMNyncfbPas4EpN+BqFRG+YA1D0z8rbX10lnAyw+D0VG42ohrUaGM8tdbJtqlTK/hk8EJDmJrGriH7WlCiOF96THhgvp4Imc+R1He1wtJjl/kdPNpPtRLy8wRbKcZhltiaJMy6XHd0KEDRqZQbdHxRbcu2z38trEUTJSOYLJ8tKqdJOdcanEV3l4LuZmeZbMoKJJ94Zy9TEgL42e5dLxQ1ERX22nRrEgQZEpi5JcC0eW/CrJhVLVZgzc2tspo/5UQYeq9ZFT0u9QXqTfexBVL/h6ddp6YPS69GHkLr8j/r0fwDUA/unZXtgY04DbzfR7ALwWwI8aY14bHfY9AK4o/70PwB+v4LvVawLJncW8RRaF3QCWu7QaBh+48Sm89ddvqLufQPtFYUagRitqIRYmJMPBrs1MzuskMe4aPHj9wtQnFE0LB4FKUMn2ckJj4TXT5G1KSUkorJTaWRCADxNVPZ5CppIo7+gXR+uq6FSekWEPL2f0Vw0ufz4Lf0zK+0CfxQmSMbh6ROEt7bi8Z2ZYBnNyvo1tU02XFNWQIWou6RS3OC8spiYa6PRyX11Ftpky12X1Hbq8J+LCWzffzjHVDD3psRaWxkOcpJOsk55bNBqU45F+3uSBCj0xiSROhHILX7UgcVq/82a5jXzqyux55UWzeh6Ehm2fMQOEuSS1BjMo34W3va97NnQvFvXeF/IiS7LQz5iIjU7qx07uUjVe5W/e65oXaJR9oM4TGueR1PB4IbWo3ldMYOv6BX8n1MX2MxACD+gAT7rc5CblJXOedNGXBlyb2yAiQwmnQUbzakbRP3cMSSeIrGyZbOK9b78ci53cy5W4UEA9YZBRB4qu1j0GuUmX/Nmvn/uk1T4REBkZi59Ns1Et6TvRyDC/7OQui50cky0mRpR/k5K7EEgf3k04PfICfmMar31vZWj7xNHEfVrKOavPK6DzdIS2PTMIiPZyN0dm4KvXAO4dtn0kxRFIVx+8X6UZzmfqCSdJnXGRF6y7JucG3ZdEPEYMQlmhi3azlLQuckf7eDQzg1bDYL7dE4mjg7XcdD0DNgTJSSS/6v5mavkI5Vs1S0OI5KubWqEmPSUR9c/ayJwxjiL3I+mjxjAk/SdtufuotfbvW2vfB6Azgmu/FcAea+1ea20HwGcAfH90zPcD+DPrsAvARcaYFwz53QqMgdB/8Wj0yYIJrVW3V25mVA74xXZal27A4XzK/o+9JgHIa1SwlybFRshZxGH9+tCj3LJ3kC4+1uq1S41WfE4v4xCe325Cyw2wrCIm2fQbGRBxm9xiwzVP6dx0XGGp+gFqPfh+tzlh9dc40tlCTkw2hbhnv8tqzWJAXkdZOzze4Y5I1eYyQY8WeVnXnJKY4+ZSKHxzueA0MlcqTE7y9MwlcY7b2sgMOmXlGanfsxCedPGw6HkH0SZhyFKtXOpnVFaz7nkTGevmbNTUSyjCxMU6WQmH5Os91XRM4K2tkC8miWQ81JOYUD5TZzDTeSW57ud1z8S91EF6N61og79e9JPg+3NhPbmp2+NAXiveXTDZdrDmOXVtd30mqfFDoHdDBFbqdVPg6ImMjAzwpDeEzKPPPXvJWTmGY28fJ+xyMuzAkAt4jOV54fX3Et4bHnkEiejQ0e1ujgummji10MHW0tAnKZ3c4TmGgXNuUP5I3wgAkUryoKOcq2veiY3fRfQ5S7TSnv7CcolfuZ6Q3GXbVBNLnZ7zpPdCTTqRrtR955ZIenpjopbo193SA77cLby0M23MGy+nqZPFkofW7+kRGXLWwhM9AkkyJks5yHO3TeL2PSfLSl6pRGKWozUabKQVibEjxz7n7tS//2QU1pBzLtSk9yscQZGJzBhfrIDkLhM1a6mE3HVWnjcuSEHymV6NQ66RcVIyGXUyx8vlNtRX4qM1o1cUZc4ZRXPq50RgtFIXAGgOccxfw3nP47+96Syv/SIAB8TvBwFcO8QxLxryuwAAY8z74Lzw2PT8y7H70cfwvM0Zji0UON12L6Z7MkPPOovl1HIBycOPNQ3ObDWYnnG7vr3n8gb27dtXuU53OsOhucJNiLMHUQA4NFdfW316wmCxZzE7abDUAyYbTvM42w47y1TTkcnFY65DFRY4uVTtUM0MOD1lcLptMVl2pIumMpxuF0hWjpzJcHTSYN/x0OjYseMontnHNtjcJtc+AJjvWMxtNji1bDGzyeD4YtiOTU2D6UmD6S3V8wLA/DGDRmZwfMJg3wx/PtkA8pMZTi65+1vsWXSjr29uGVy+qY2jp5/Aqej+Z8v77p3MsHemwMSZA9h3MsfsVIalXvVZtU9kmGwCB47leAjHse8kX8wYd8/PnCnQmc5wuGmw0LVo58ByL57AgIXNGY4vFrhoyiADMNd1pJKOnTlT4MGHziAreti7/xCeM2VQnMrw3E0G3zqWNvgIjQzo5MAFCwcwPdPBIw8/hF5hcXCe32k+nWHfGae7600bTDYMjiwUkKqsmUmDiQZwbN7i2EKBHTt2YF/5jvPpDIfnC8zMFXimOwNrgblj7jybmsC+0+5EJ1sGBYCTSwXs6QaOzBdY6Fk8On8UrQyY61hsnTCYTvRNM5Oh12njoYd34+hMjt5MhsWeI8Txe55qGlw8ZdA0wIkl63SlBoht44kGcHoqw6am65d1Y2LxmCttOb1scXrK+D5G6J7McGi+QCsDps7sx76ZHHmRTmo1Blg45ozFY5MGRxdspU8QFo4ZLOduYd7UBOY6SPbFqabBiUmDVga0c4sTi9VjGhlwatJgrmMx2TQgZdKZjk16/pzX181n88cMFnvufnqFxfwxR9pOLVns2HHY9wOJ05MGS7nFtpZBOwdaGbDcblfmvdkpgxNTBp0cOFAz17Vm9+PQvMVUw7XhtJjfMuPOPXskw+nlArNHMix0LHq2OtYAN0/MHXHz4HIPaBcWk5nBfDf9DpoZsLVlcOqAwYlF6+bIdvrY+WMGC12gOGlwZMFiqRc+25lJd53JhsGRhtPyL3Yt5jr9CcfslMHmlsHMssWFEwbHFougb001DTIDzG3L8NSpHHNbMhxdqD7LVgPoXNjA8cUCU+hhz9PPwM442dps22Kha9FNvILedIbldgePPfoInp4tgJkM+8+k39VkwxGbiZIfdcpxMNmorkv0TBa7FvPHHFmOn0dm3PVnli1mDxscnAvnpZMtAxh33JmtGfZNu0Henc7KMWgxM9/Fk4/txqF5i60t4NC8I8FLuYU9nSXXzNbsARyfznHnXUcr61AjA2amDJ45XWBivoGlnkUGYGaui8cfdRurPzNbVMZV47SbZycbBvNHDfbNikpcBjAz+3F0tkB72mDbhMHTs44LLJ00wbg/sWSxrX3Mj/P7lg7g8ZM5lnvAQ2cO41VbCvzBVx/CWy5rYqln0cqATqfjx95U02C+Y7F40qBdRi87ucXE7H4cnLPBtTY1DbaUz2zbwiHMtm1lzZbYNn8Aiz3r53wA2DrhJptmOadMNoD9swUmF47iWKKfNjJgaraBPacLbJswaPcsjjxjsDjXxWOPP4ELJ9355POLsdizmN+UYUGO6xnXx+a71q//J1oGF0w6F85ybiu8YOsEj9Hds8cwvVxgftqgW/bJvJQvnN6cHhNnjhnMti3sqQxHF9wYO7PJzSVbJ0zt3C+xY8fhgccMQi1JN8a8GsBVAC40xvyA+OgCAFNnfeW0wRHfdd0xw3zX/dHajwD4CABc+OIr7Mte/kq87kUX4rEjZzA97xaoVzxvKwycNXxyvo2FkhGYMjT1lssvwTeOPgqcnsXll1+ebNyrL9uGxpEzMACuvOwC992jc6kmwRjgok0tLHZzPGfLBJY6OVql5Xj8TDs4lkJ+V162DfPtHqy1ODizVDlnq2Hw4os349DpJVywqYUzS1285JLNODSzFGz7Tbj6JRfiki2TmHn8uP/b/lOLuPDlL8Pl3RP+by++eBOmFzqYamY4eqaNV1+2DXtPzOMVz9uKvScWgnNesKmFbVNNXPXCCzDzyDF+B+XPF1w4hW1TTVww1UL7mRn//LZMNnDF87fhxJk2Fjs9tHtFULsZAC7e3II9uRevfcWrKvf/woumcHBmCW+8/BIsPHUCV19xKU49fhwvuWQzzixVt9S+/LmbcfHmCex/4DDedM1LsfDkyeDzl1+6Be1nZnDViy9yRLlXYGaxi6VOXul8Vzx/K548OoeXPmcLunmB5W6OpW7uk/GWjpzBa177Ilx84AlceMkFuPx5W/Hqy7bh8uduwcwjRyvOOHn+yVaG2aUu3vaGF+Gv9j6Aa954FU4vdrHl9JK/r6teeAE6z8zggqkmnrdtChdvmcDkkTNBqPSyC91w3Xx6CcuHZrF9+1txf9fV433tCy+APXAanelFvOx5W/3xF29uuYjTgVkAriTWZDPDk8fm8e0vvwTm0Cw6vQKXP2cLLtjUxOHTy3jetslk33ztCy/A9L0P41Wvfg16h8/g0m2TXlsb53hsnmjgpZdsRmGBi2aXsNB2iWNxf9g00cClWydx8ZYWTs51sPV09boTzQwvuWQzisJi/6lFvPSSzXhmejHwmrzq+dtgjsxi21QLV7/0YuT7Z7DczZNO0swYvPCiKVgLXLS5hW2nFjG3nN474fLnbsaZpR6Mcdubzyx2ksdumWzgedumMFGWm9sS7U4LOG/Yiy7ehKNnlnHBVAsWwGQjw+FZd89xWyeabtOqyWaGF1w4heVujsWuk0lsnXTv9cCpRbzzXVfgwZ4rCSr79GUXTmFmsYPnb5vCmeUutkw2cfdDj+GFL7k8uM6l2ybxsudsxtxyD42aue51L70IW08uoNnI0MiMr05Cz3PzRAOXbJnA9EIbz9kyiYVOD4udHEud6py1eaKByy6cQje3OL3Y8bKs2cQYp+f2vAsmccmWSRyZXYIxBifn2slj6Tm99DmbcfHsMk7MtYPn+vwLpnB8bhkXbmqh2chw4aYWTs23MbOYvrZ8Rs/dOoEDp5bwgoumMHV8PjjvtqkmeoXFNS+9GPNPHMdrXnABpo7PV+6jkxd4+2uej9v2nMSL54/jshdehNe//BL0Cou55S6On2kjt1yyj+aR17zgAjx9+0O4+ttfj+6+U3j9yy5GdvhMsq2bJxpoZAabJ5rIrUWn5zYX2jbVrKxLAPDcrROYb+d44UVufplZ6ATPo9UwePmlW3FqoYPnbp3ExIn5YLxfsKnlZT1Xv+RCLJbz8FUvvADH59p43rZJ/OWTD+It17wRzQMzeMGFU+jtP40LN0/gxNwyrnrZJVjq9HByPjQ0r3rpRegdOI3XX3EpTj15ItJYG1z+3M2Y2zON113xXJyYa+PCTS189cDjePM1b8RipwdzZK4yL139soth95/GhZuaeOFFmwDxDJuZwSuetxWtkwvYOtnEiy7ahO4zM2hmBhdsamKhnbPk8+QCXv+a5/m189rXX4bTu48hM8BLn7MZrRMLeO5CG696/jYcPu362+NPfcvzjqlWA4udHp6zZQK9wqKTF7DWzbGbTiwE692WyQYu3TaJ4uAs3via5+Pw6SVsPb1c68l+86ufh1MLbT/nA8Bztk6g03N9YL6d46JNLSzsO4WrXvEcbIrWf8Bxm+te+3wsP3ECL754E7q5xXI3x/OWjuIVV1yGl16y2Y3tI+k+CAAn5tt4zQsuCMbqa15wASaaBsfOtP0csm2qiRdfvMltzJc7XiTf9XO3TeLY7DK6RYEtE01cXM7rV7/0Iuw5Po9N5bO88rILkB2aRYwXXDiFmcUuvu25W3DR7BKOzC7jiudtxRNH5/CCizYluUWM7dtfNfCYQegnd7kSwPcBuAjA/yn+XQPgp8/6ys77/RLx+4sBxGZH3THDfLeCzLjQ/kRU7o43OAhDRg3jKl9snnChsx9604sB1GjHjaiI0Cf0777PSWAkmaDwYhy14RA7hc3TJyZdoCyd1m9DpVjHaAHcvuckPnPXgei4snoI6fjKpMpUO1yZvXTImuRAtHthPHHmVI6wJrzOm4ikQ5G8ZTGHwWvlLlQCseY+jIl38ayXLjVMGAacaGZBaUvSVW+eaGKx40gaV1lIt4/QzNxzIZlCM3NJRXIHSFdekeUuqTKWmYFvW6xzbBhOHCXpAIURpTeJM+nLkl+5FRKR+jwFdz5wEmIUfk0eSyHGjMs1xjDlc+wXvpVyF5J/pSoDkdyFtMv95C627LyD5IhOKmBZv95HMmDMAEkMRNm1jKU2tBNxDOqLQBnybrj31fSJ0O6cJB2Iz0CSDq9DrXkmFhjqefk2V74v58uwok//84X6/LpjSTtLUrh+A87n3+RpSR5LbahM4XAJYvTuejXPUUr9ktutwxnrSx1XgvXUQgeXbJnwJe66ZQk+ku7FoHVDVvyqg6+mZFDKMUmT3mdcB+8ifmY81lOJjVRJKFXdZa7UpC+VOy13e67/UuGHTq9e31yUkoZeXlRaTomjcs5mjXK9vjkzcrOk6LNyDqbqLqQDjytkAfB1vwkN45K5J1vMSbo93k02TsGK25/7sr4pOVFqb4HKrQVtkVIeC/kORZ5WHwlcYVFu4Of6JUmXJpuZf98D5S5iAy9qB1V3kV+lNanbc2MrbhEZt1PNhi/l6ZNzu3lZWaeahyjvhXIRKMFZVpMZZvyPArUk3Vr7BWvtewF8n7X2veLfv7XW3jGCa98N4ApjzLcZYyYA/AiAL0bHfBHAj5VVXq4DMGutPTLkdyswKDtAKySo1AE60WTRKGUjVALqt//J1bXaT2NEre8a8iePjYl3P42r1KDWnZX0gZII9athnKrDmlogM8OVTmQFlpSuVZIrgDsxHUkTTHwNT7Ipu7yGOPdsDUkHAuOEFvz6iYQrwdRNyD0akHk1qzxuFz1zX2WlsAGJzq31GxK566eTGOWzcu2gcmKZJ+JLndxXYrHgyi1em0f63+g8nTxdo7ZRVhPY1HIlywDWnwdjJCIxpIn0NWOLAlntZGe9ARcakOljZbWCuqRLv/j0I4lg0lFntPlkuT4GAZ8Pgmz0H+MAezP7Tea0EJZS4PQxlucXqYkuyjEfgww2gEsw+nJvPZcPAITJ4sF9CnLlqyok28VGSAphbfF09QlpEMifaUM/rADTj3DKko6cmJo+ltpJJC31Xv1zz8SmQEOx9KgySNzOzPh9KOTmavLQqVLrPNHMcGqhg+dsnfCaX5qfYv0y/c/NIezA6du/pSFi60uC8q25sfn/b+/N42y7qjrx7zr33qp688vLyzyQl4GEzPNIQoVBmUFRG7ARhxbFoUXtRpzttgfbbn+2bdsDtgO/ttXmp22rqCAiDwIJISRMiYBEjBASMryML3mv6t579u+Pc9Zea+2zz61bVbfqVr23vnxCvbp17jn77GHt7xo351U13OA8ttRetUsUR0XSOwUOLvQx2+tUyYF1mUI+MZfj2JmspnJ+UAbMdW1ukG6bTmLnEssLg1IMbVmjgK2cpuceEWqSXqhqIjaGmur/WFbLdylWVmO5Lfk+zTmuK291OoU5zChtdwiwCklpk5dzBsHGYUZky1WO2jcZ3U5Rl/WtxvLZhUHMiZjpNA1FKbjIgUbuVPh4AFmy9+i9d6E/xJaZDg4t1ntcvdYO9Yf1YWCja75z6UmuMJNynPVAK0knorfX/3xjXQbR/LfaB4cQBgB+AMD7AHwOwLtDCPcQ0ffWZR4B4M8BfAnAvQB+HcD3jfruUs8kqg/tURNFkuCatbX5dDku2TQK6YY0aghrQ4URhrr+r20zZ8/XJyy2jFiAVDDg8k2jSzDCkDAC8GvfehnO2LvNTECuPsCTk4VqG+FhSzbfU4M3lFSaN5WL5r0rq22epHP/8cmKerNp9lPVx1KCse1ZtjbqqOoJbHWPVkf17mxV2TnXxZcerdyD2hI3atNkhY8P7+gWVFl8CrF+xhro0QqUeZ/a0qPnfVDPWOiX0fJUkCTCmiSdSGLKmGDXU5vkUodHVWUxpTpQmxWUFdLBUKysWUs6idW9bY5XJEGUnbYE1KqiEB9qtJRyrUowtl4p19Z8fgx5MKruelAyoiJdUdHPDDhbJwHe1CXBlxNHCXWlq54k8PLPuJ60sp9rV+z/Fms2dO1qZDtBK9RlkLXXNuY8Rm3yMt63kDK0vKm2GizqkDZWdHMGiCoBM8Q9YZTFX4MV6ZSkxr4uKJISfRos35qAOhGvSnQ7UFvSFwdSWi7O71z/Fs1k7DZwv/LcIsJo4xGswant/AtdxUxDSujZdvW6VXUXViA5uV6XYIx7dma/GNaW9H4mwzN6NmICfGVAYQNdqyeXdHUf+8zKG1mfjFon4Zc1IU2nCNf9jt8tJHGU95jDtdGE5699N6nUw54AOSDOGsekuksYS0ljBZlBYIMVV3xa2iNDqPeU2hhQlf0dxjNQZrrtddJjHw0SRQbsCbZrWBczyLWnKmdZYq4+rIqNs926AAPPo7ZEeq7exu/P85SVp7JlrkwaoxJHP1f//MRaPTyE8OeoiLj+7L+pfwcA3z/ud5cCoVndpSik8gXXueb9hK0wHOoxCkw0uS7pSLdifU2vrqXOBfOzJALichzleqysbZqsjg53YbKt8byTduLWew+Yyi8FyYEZupxbrswiWyZGkbVep2jEyHOZQq5b2im6mZAY2fBTsMLRVWEXbdY4bke3aM8K1yUd2XKc9qOdI/XpdbVGX5YhlvnkEnP79m7Dx770WKzYwt+bqbX71OsAiDDWhwctDErs3ELxWqkuU+Bwv6oek74Rj8vurb2mJZ2qe+7dUVkb2MqUlpIc1O/UV4JRl/dqCx2q+tuGuyz0h1krXYCUx5T6yhhp6WDrD+UUXIjlu81SzWQrWjuzT6rvR81aw6NgDj5qIzqKyLffR0JGtKW5ba/jdQDAkO1eRw4ZCagrOqlynGJ9RbS6jTq5uGqP7uPUQ6b6IFmPvH5Emalk4kxdqaLbJaRR6aZiTt2uxRa5zPcF2sMx9H35DIfK05C8J9+vDLX7O28syEFbko31tf5ZkIRA9DPPBlDXna6uefyZRRyzdQb3PnwwKjQxFEqRNL5/NPKMUH50m8Q7AnQpf+4BP4MNTfwzBe+JvW5+7wpBatPr/ux1qnCXubraGFeGYisuk6ue8byK8YErePRVXHkqV/mZbNnmedVqWWX5xTKgkAnGYbTHbJOqJlwJ5LBKfgxAFbakSTqJ4vH04UEk7XKehG0Ly8W+krudDp9wat9VSgTnyXVUBJXBI+eF1TI+p6To+RZQ1SevwrEqBfPZxYFqx9KlC5mj6T3xUH+IrTNds4a5j5lzRJnCfVtU63nLjIQhcTUkVnpTBdH2NaIiPNvtxPAjfeBeWiVvLdBK0kMIf1r/fNeatmAdQSQTgC2KHHPNrvy5ngwYk5C5boHHnq2SU0LtAsmWKmKrRhlaLd6MqlSRWIZCi6WJSDaJpcq+iaIgNcDbyESnAA4lVRHmuh0cXBzgmK0z5r1YkHF8ds7dQ6itYEuUZ2qPmQ7YNlO0WjOjBttiSdc1uIV4NdtQETdEZWNUuIt2I7OrM+1PDgfi+EAW0FtV7F5ZBmyZ6eIjP3Yzfv+Or9T1cjnGvkB/KHTEWuGLaH1gC83hvu37ohbyXBozb4GsN7eMq5E3hbluB08d6sda9/qoZOlfe/qs1GbnOul5sOeArVfPsuUNdsozqY4hCgVbmPPvFE8RjRbmHElUZRBz9wGMtW/U+gJkDS4ZGqMIzigRzlbywVL3gw5FqJUSZEJIgHh6LaA23zqeVNfE53CX9LEsw8zpmpk2cXsiQch4AXnNpsmp+hq2iHG8vBxxnownhKRI2UZk5RyHSrFnqNcSsgOovJuC8OywRK9jD3Wj+C4iW8ZW1CDeBk1k4hpn+dotsgaOALGkz/YKHDi4gL3bZ+uTYxG9Z21Wclbm+BCm0WU+xUPE4WFtym18N2rPD+CDwuaKiiSl9+FY39R6PdMp8MShPrbMVPTEeAxKOfiJlVE+wZPBMemskJZBEmop3s/GdnNftXlyU0+5eU9CjH2WmPR8iUg+STXet+CzWzp4pL+Abodiu9qMfdz+6GHg9ZVcWwY5MZPJdvu7Sf+SmgdUK+w69G1UTDpQGQkW+tV+MdOtkv45DHSmu/RhRunp50Cl3Gyf7Zo5xsYLvc/qM3C6RVWDfq4+DJAPDKwMWtV+WIUn5dtR7S/V/bYp4yQrKaxE5ahbC51bEUZVd/lTjNhfQgivnlAb1g2EagL0VAJCpyYgEu4i+j6TkWO2zuCafccCQD3RgLJh5rFx0YT2A0rEKiMHObRuYrDWwDawG2+orD0jrfnUrBmtjxDW15lY4hFhIuyVaFvAHNeci0lP753egUiO5U5BSngP4gJqt8AOg8RCprFsBGWdLgpF+oFeTaYAZQkrJOm1r4RhtyAsQIQIAdi9dQZztfuPT3xlRYKAhkWiU1Sb8ExHLOmHB0NbZ7cmGJywmhvzyloTjAeJ1PcXBkNsmRHX36H64CTejCrLiCLaHBZQFFgYDKKngZ+dzvvKc2EPM6KaWRWJwsuCt0rw6bSS4UhMRljAdQxzaCEbRaFCMpZYM7x5RaLceqVdt7lDqnLXjqpfrhUD3uRYAUnBsdWAClMq5cTYTiGyMB+TXm9AypqXtaRDXOQFIWP55mQ7Hiv7zvyzCk8ADvfFnZxXNsXqXgY5fCWnoGniOixLzHa7reEuBaFStOsY323UlN1FfBfVJ2OkjvG8azPcsMzk8DtDVrvVyZtMOLf0Onj04CKO2VbHpBd8uJmy7mbarZWpUQ4AuU/d7hHeWybynZqI5pSWOP6Uz9Pi/BNWOABJlH3smUVs6VXKElvSeX+bUUUMhmWJWRIaQ2BLeoEnDy3W3iNrBInneRRWaY1hdrk9BupQtrTAREFYOFzG2uw839MkSUJVlWqu1zHf5XCXw/0S22Y7eMsLzsQJO+fw4b99xJxfwWCjgw7lGpZtSbJU77siA3L3Y+LJfMQaaDQ5b68lz+/IYSYdIsx0CzyzMMQJO7vxDIJcuIteb4f7w9hH/Nmzi1UBj3SOSYx8fTq38nBI33bEE1OPC9dJ7w/aw13KUHHAwwNJztaGi7bcvG69T3eXstSOiVHhLv9hIk/YQOjWsYfaGtspCIf6pToCXiaMPgTlXd95NQBO/OgZ6yegCHJNQitDUJOE8LVcISUEXcUiT0CDJgYt1hK2nA+DZGKPssy1uZ1SF1s1+cto6eK45LxFm92F+WcO2aLFlkDlbtMnhbYnpbbFpMOEX/Bmkz/4iOIJpqn7j9Q1rLjxQRvxxMBUsSEJB5LY/WoMgGF0i/G35nodPPZsPyoSfB2AhiWAK/DwBs6hQl0zfyUZqa3CA8fc8ql2ab9WFRM60SLBMYES8iRWJPYaxEOjStks2ghAJcyqDWD7bCcqE5Xi06yUEkkiW0oz96yIrSXr6Y0iqY6HyOQ239oDsgxLulicRl8c6oaOV92lCi9og5ywygoHE5/0fThZjC3p4mLudqoEPD5IqopJ7+SfVerxHd0X8n5NS2oMzSlHJACr+2gLeKNdUAn35r5N8PyK67NF0eBrI+lTnjOdaM3yyljuxrCk6/7n99ftlZwSOWiKZ+px22fx159/GC8457h4QuKiSnRMrYitVtLAMemjE/50v/IJ1oHdQRnEeRg9OxZEFA9xylU8C4ENYbZd22e7ePTgArbO1CS9oGhQYaIZD47LvPewrAjzMwvDmjDav7MFOk0CrMImW/a2Qs9TK+s43GWuPnG0iOunuXB+/y3XmhAz9lTPdAscHgyxa0sXl59+TP0e+ZwTVkRibHonb2AIweZXDYcBVHsdtDTkQ5eknwlUhqiE84FJ2otqElD1MyGGn05BtSV9gJnulphHkAupGSgvT79+J31fTnxnLlUZJbn/RH50C4onbbJhkcNoec/nsL8Yk57rY60IDSUfi9eaVtbTb3c7BQaLA2TsHyvCqOouH+L/ANwG4HEAjwG4rf5s06FTAAv1RAvxMy5hJxY+7vTccfBMllLwZtBR2njZYr3Tmw27l9pkIUXB2UxWC/qaoAho0Z4oJ31BcSMP6l5MTvV1VbkrPm1SrMupUNabRg5iibIChS1hOlwlBWv0eZIupIIt8bmkm+raesFHi0CznZoksju5LcY9EvpCW/Gl1GSVcCNWjrleB88uDMSDoxrAFVMAtujDuDE7RRXu0u1QFBIc7sJHHKebh7j8S6MAMNg1WRSEgigKak1q2DLUUfeLJRJL8bJwO9Ne4s2CN51BKWPUpuwNgwoTaFFe22KhNfj7oxJQR1n7zLUQ4rd0uIuO2V2K/I+u3FRdIXMwJk0ib/lnpQ6QOcUWpEVlOWqr7sJzOPbJiDyYYkTfFmodjez/SHpVKFHmeToZNIa7tM4huZ/2uOTAsoXDwQoSWaWvieEupTUy6HdJf6+Ivcj55jtxaF3z5M1LTtuNpw/3MdurrKwM9oiwUYT3hqXIxrBlP9IXl8pTEfewlss53EqqjyXvVq/jqNRm7sHWa247Adg228WBg4smcZRDgarwv8r7wAnR6fwcloinSnK8eXxF6P2mKneoLeltXmKC9syk+xdXd+lE0pfbqwJgCDo/UyzpQ5NU2p6DxXJXHWvfMr8qRUk8erpJfH26T+h2V+vHxqTnkoD1fXp1OEmnqE4cfXZxGA1E3U7Tg895LdxHOfC4aX7A8oeVPJ5HmtsxKV+sreGsaLDS2x/m5UcItRLZkb2uP2RPJuL+q/uKn8sK0aSwJNcnolcA+DsA/wnAfwZwLxG9bGItWEcQUMdKqQVWSDJBShB5Umhw/GAKTRSjRQgtC5443slWd2kn9GxRb78mICTxY6Ndm6yU8PcZaVJUDN9QsWi5ck987WKL+4iVjbhhm+8BwxgD3nzHAJjF0XyuTW4d1Z8cZsKhNW2eCSaW/dqy3xbjrpUH3kjY0jCsk2H1ep3rFXi2P5TYNvU+w4S061r2333jvroSyzDWn+VqEH1VM1i/T6eQWtGDssTWmW50/TIp4pjIgmyoT68jsYO8qel+jaXfEmVGj1l8r1qoD5L1wXM/hViJR8x5TT5awlR03Hq7Ekyt87LtmawUjybVEhKzlLgmWipu3RInJiapAiObRCFenWGlkMZ6+7UFliDhLumz9ZweVREiQMuD/JofpQCxNUzmlqy9Vku6Isqd2kPSpiBwEqSuupRDNNQUyiqXeadoZOA5ldyxSVIlVjgXM8zX8LpggsRXbZvt1FVOOvHwL6AioJzXoolTVpmFWEmrkIj2WStjUZMmGt8LlItJL9TaalfIqVH6eGtNsLVxgg1fVfhflRTabZmfw7KMB9WkBjWeczw3+qUNd2mfy2KpTRXOoqgsx7EEY1QCRvW1JIIvDiuPFlfuYrRVD9HnglQGJ0LOUwHImLI3h98t3X95fDjcha9hr7/e98syH3ZakHhH2JI+W48De2pzHnzOLWFr9U++/Hk4a+/2/LuUNhxWe0V4P2CZy3JwtlfEs0CiJb1fGSi09yqFDlesPMsqPy0zxqZN5VJSf3yMY5D/JQA3hxDmQwgvAHAzgF+eWAvWEYRq8hQkoorj3bpFM7M/p/W1aZFMkHWpIybXuXaIpWL0RocogKXKi9xHnq1djyyQR7GI1EvAl6ZEkQiSGKnIre5DBlvns/WAFdHjJEx5hg6bUFYVqjfraGVvJ2PsXoyZ3iMsS7q8Yj48RIikJIvkn83WrFg/vhDLyEJfiDH36Uy3wOHFYRSMqSVdP0PXsv/JV5xfWdIHVZ10sabV1QFinWX9HkUUJIuDgN1be/FvsfZ6Pe/LULnp2Jqiw11i+TZ1cElfCdx0A7D9wxsKTDgQz+c2ZS+6aEdY0nlM2hKiWMEdRWIiMSnaPV/6frzOQhh9Mf8prs2W62JoR5vXrX5o9S4c7iKWXP3eXPlCl6bTeQB8uAdbm7i6S0oGqs3QJmLn266sxJm/67Wekghe12n9aR6z7CNJxkjHomfDaAoyimWOROr3HcTyoKX6jhhUWJnTxHOEA6dqLqxHIjdHtazpD2xf79rSw/fdfHYdRiHhlVvrMxdEPjXXEre7oLQE46j2Sgx69AJhlCV9tFepuSfmZa22pANokHmWSUzSYp3wln2TY9KrhMX8M/l7TEr/4z+6FAWhqtDV8i4xcTRRKni+9JRM5nKFuq/0baOBg6Q87uF+aZJgub59Cu4HnTMyyHgUuC9ZdqeWdJ6/rCBz6JV+Jr9LNGKOkMn8N94DtSWdS0zGcqzmfSqZxknEV+/bg11qr2JPf1SiElnFFu60oAX3y5ZeVbmM10Csk94S7hLUz8oTbqvjRNnTkn/H8xMA3nfP1xp/Xy7GIekPhxDuVb9/CcDDbRdvaBDqk7D0QIp1PCVtOUs6W7SatxbrDmvaOeElVuFgBClvvOn1BclG3rZ5US1M4+ItOJa3XSK31X5vEMVCqt9IRryUPErbGl1OIblPR+KLG5o0a6uZpBSx7tAIS7rEkLOCNIo0Djn5MUmSBWR82Moc49BC/n7a7cXKy+FaACwMqvjRSvgWsd8XlZWT3ydAwmTSezO4vmuvU9TWATl1kOcvkXb3IcZbLw5L7N0+i/f/8AsAILaP5z+h2si5XbpOut7USkWMWdGJZE5Lk3o+F1R5STokJbOGI6yVQBoO1mIBhxC1tnWhLS+jvD+8WY4q2wlYcjiKeEsXqHCcUfdFUwGXv5Gq7sSkSH9HwGFKc71ODGHSNe+rEoPiEeKKIeyFkvek6FHjcc+F1mjLflu/iZJk5RGRkHEmCDGMBG1WYUXOS6ifzefKM1UVhhZSzZa8biFWQ263GBeSsxyK9rrr+h11ubY2eVSWkhui5duOuR7+8bXPiSUYAeAdLzsPO+d6eN0Vp9bKcin3SPauMjBxUmM5gqUXrFAagt/uSdHrj0PhGOL90cUU8s9sM5YAwG99+1XipSwkRFArrOkrVYnIHTy7MDSH4rBiyH3CBpZOQXjtZadEpad13yjVvDIKp8yNxWFp5oh0iO1HLTOr+GiKRpPYv2V7XhX3gw4hGSUDpeJbyxys97sqkdJ+v18XCWBjCM9phswXMYawUYCru8zW8eSSH6T6gnS4qi2pGlCV6eQS2IPkPTl5mjkPGyAIiN5l9jzFUM46cbRKKLXFQlB/l2V9NEipanCxOEfIj482RN3z1Sebg7JMjEPS7yGiPyeibyeiNwP4UwB3ENE3EtE3rroF6wgCGkmPndr62ivEasrInY7JkzSFEAEhIRjlzjcEo5lMIW1O4mBz17BwhcSetlkX47t1ZOJrsKWCW5O6Y+XoZFQCL9kY2JqbJpzxISD8rg0izgtBLcIQZANlss6JvRoiiJrabgpuW/osAEroCxnlxKQ0/kz6XtxhPLe4pNbh/hBbZ7sm2bNbWxm0Gx6o5mZ/GBoHXRiS3qEobPjoZe2qTy0l0SVHVNdgppg1P9NlwVWRtG+64lT82MvOi6REW/EbscCEmC2vLVta1PHGrWPQYwJSyVb5NnKtLW/tVrpQC/2lXNREIxRcIFpEmEi0Ua9lxaRD3m8Ul9MhA+3vackwW7J4fTB4kzptz1a89rJTzME7wzJIcmJRoCBEZTLAjh0rYTEESJE303bojTn9m5p/BRqW5EKR8VgBRr/XiL5gT+Eo5Zmtc7F6zwhSrRVGTnzn+0YPSwwb0fkZzXvpj5ohSvlny5rKu95newW++sQhAMD3vuAs7Nraw4+85LmRVOaUAL1WK0t6gSWrDFGS/9Qy7vFdg+q7RAki8H7LYZ0t41RUXr62Qhg3n3e8qQdfye7CvBsl771Qx4c/27cVNuIeosZbW1IL9ZxG34BJGxrvEhWVSBibXlLeExhMsAsScp6eRspkMNcWMQxJPlS7x3GpfC8Jv+0PS3TqhwaIJV6fhZEaPLQiy3OAnznbLfDMwiAmYfO8tG203p4UXDI7NewQSXW+KLOSuTAoq8OqOD9hWBsDDy3WiaOD/L4egkpsjn3M+R/Wo5aCow64X1aLcUj6HICHALwAwDyARwDsAfAqAK9cdQvWGTwJtLWxPwixTrodZDSqYbSRNZnMRYxtzbnzWXhVG6yUXmNhk44pbxix7nKWaIhFoVTCbFQSHJ8KlpZ4ksok9XuRDX/QCU4pseBwF3F7pYRTNgJribDVQtLNRrRzmHvqPpLY6DL2a26j5w2zG69tKgs6vo0Pt2i/n3gPmIxypv/CoMT22U5MUgEg/aeUBUYqpLuJQOsUcuLobF2WTd5HSjCS/n6pCIB6gW5H6quXobI2bJ/txqQkXQ9Yn1bIsYtSRz4fu8zXkSL0bP3RJzbqsWbizePJ66RxCAoUaaL2MAYhuGhNgNRVUyLRaSHgmrylluG2a9mz0aZcRzKEFgUc1d8kPljWTzMmvfr9lN1b8MZrTo9rTivBi4MhOkTodQocXKisSbwW9DN11ZCqfc13EMJsiRLVAyekrzk/hMA2K7W0Jo5GBcVa8fOKnpxBIUpY3mgiB9TYmtCdghQx0GMv1vbceGnosIw4F0hc+NLHKiyhNoYwjt8xh7/5l1/ffMcCVqkwskzdN0i97JGJ0akCSEt7C4pCK2vJ35i8ZfYKfU3ulNdXXHRS/HenI+Eu8XC5kj08NTnkawsJNzy0ODD9qKuY8Lzh+/G7DJMj5s27qLmcGkNifLk6zIitukB1GM+WXroflsb63k/GvVF9jGzYRy96t9vDqWL/Fs12p/1SUFVXPI1Jt7lo4qHJfZ/3DJ732pgkXrDEkl7/rU1OShiRDdnhOapPAu0Uev+rrP9b6hwH7SVeqEswLg5VRb/k4Xof1DKB51CaHCxzkA1RVZtWi1ElGOuOCN+x+sdsDPDmA0i5OyahnMVrNMSMJX2hjh9LwRMoWo2K9o1cb16lIuttmzRvZm1ClhcvCHW5raJBKtMF0K3rx3LpOn5Ljr+SzdMmCWrCxgKSoyW1u5DvY99VLIG6bUQSA8s/4xiwxsqLkJo9yptKKkhGWb5j32thWyjiELT1tz3xSZNPDps4XLvSFgZDzNUuNSbjLJRzYQJcVozHKz04gw8z0jHpkVwWTVegdnFzjVf9rNlu0XhGdOMVQn7FwmSVQIlJb8b386YcrTOGrEtSqFlvRBgoK0UMK0k2RC4vGiu3tFiImPDFd2kj3iVbgTSpbq+Dzc/OzS/99DKwQt6W8E3Rit3GhVjRSN+F5YK+bdNarXIr6jKqPGc6BeHZhQFme0Usr8qypYiWwMIQhbTMZYgELOPBgXYNN+NYZfzQUJLa1hr3gVjoR+UaCNEcqDZ0NaNTbeFns/ubyaWuzMLKsFS3WoLARkLP5zagVl4KoFbKdGULvv/hfok922bMvbbONLfqKrFdrxf1t8IqFaNi0nlviOsN0qax97Ba0bTvr+V6/tm6ZjnfFwB+7VsvT64RTwcntTNhst5vwsGhJAH3uoXxRuk+iePNJF3tX7pvuF0m/ltdw94ayWuTfYyv0rW/AcTw0WhJV0mNjFTGaNnHCid7FlLZr8eAw6nS0zWjbOH11KHaspyMoTGgtXgSSpEFgPQV9y17ZlkptW3MG1pYbnFoZ3x/2L7nkCXuc+0JHAwlJr3XETn4LJP0AeewBRSFPWiJjUCSQyV7spZB8fqyKtvKXhK9h64GS5J0ItoH4AcBnKGv34yHGYHEkj4oq1MhOeaIT6PKVcfQ+KYrTsVJu7bg/se/2rh5NQkL4/ppsx6IxUKSkrIbuSIPulqEvpSJgHbBcEIRX5vW/a20ySqWmTdbQDbMDhH6QWn4hRwF34+LlQVkTeYiAZVkPH0fdvmmVk2dOJoK87iBFpxIk+9PEbohKjRtrr0YApATNkGsTwUl4S4tZCBa0mui88zCANtmqzjS2V7loeGs/VgGrxCBwWPElnQTwqI8OZUrtxI2s3VNXn3kuM4VqAiAuBgXB0PTd5ysxMJXnqESfEp5rq6AUtSEOypuHUvmABUuQJychegCjNbtRJGScwlE4UgtzFFYKnLdVt4PJJt4Smj1+OnSoL2OWrcZ+SrKQ94yr9vJ1uRRcpqflbPkVPdh66uEYOl1lypGOS+UWN7EatctCI8vDjBbbyqHhmWs005xTktSaJl5h8Cb2DA05JFOdpdSjoKifmmtkLFi16JPxb9F6zPstVoustzQxL4sA4oONQ5dqkJhYOQmGwa0rI4hFmU+xj0da35/Sw7t2QAsawAJ53t2cZAl5Sn4ILWcUYIti0VC6EaXGNU5F3klWa4V+RmNNjnlp5Qxzic2wpTBy62Vos6bEVIqayHmctXXsuzkfWsmHrbEYR2ihEYDnSLpKZHl8Y4kXc1X3ddM6LR3U49HWro5LTQQZb6ypOeSJO34LJ0zJQq6EPwUnE9QJZYPG+8WrcKqHnkaccD7dtBz2SgyYmSLsj3ov4WoMDB6XcKhQ6EyePVFOdHvYPboeg3w4XschjnXK/Dr33ZltHBzrDon0mujppYNAeJx133MRoQ0cZT3kZjYTPnwneViaUkA/F8Av4EqFn0CxvvpgYkQIISBj7LvdZo1QnUJPMb1Z+3N3jsSudpqUlnSWix8ahOIC7/NYgFFznkShwBSm4S2gOhwDYDqRJkCi4ooA4gTdK7XwcKwxO6Zmbpfakt6IW7sqGUPuX623Xhif5FO4rD3Sast2IVmy7ClMYbsth11mBFbStjb0GaN01bhuBGBLUkyLuy+5ERW1qLb7sdVbzoF4dGDCzhuxywefnoBx++Yi6Eh/D58RDYfVz4YVgmmi3UpRSbDafyeKDOFWK8LGMWMN8SZbqGEp1QwYpx7wg7smOuZOcFjyG53kzgaCZVYdLgN2kqnlcIOkbJAcaWHpDKHGmsm4KNOCi0icVfW1BaFTEiHKLqNa0jWzDAEzFLRUAx0/zMRLlvIi0ao50ca862fHUpR1vPUVEJ2LClCPRZyXdOiLVZgXS+4U1Qu5EOLQ8x0inrzksM3jNdLEYX0fQNUuxJlS1tk2/JQtNWNw6xEYWmRhaVul31n/Q0m0Xlrfojt5/flPuXQC56zViEIypIm789LtEFSIYooj0OUS/WaY9IHiAL47OIQ22abh0ylqAiKGEWMdVeNYQBGhkTwRzG/o9AJv+3epJio16Ikm2pjLdewdZwJ87bZFo/BMESy3mNSpcY4XlvIHsBGD7aSRiOWGt9FpSDEcJekH4dK3uTyWyJx7aT7n8hb7U3ldvI+xERxUNoTQVMyrJ8tHjLeQ0aNk1zbZriKycsDy4FIr4kQ4rin769lE9AMC5aQsupnT1mt+W9puA8XkpjrVQc96Vw+3Y/9+oBKa0m3YWY3Pfc43P3VJ03ZZfGkNA2OvBdJTpUl3rpaXRyv+jrZm9ePpB8OIfynVT9pg4D7jE9gZDeQXjSMUZpQuqXKxCgSYtD8LgtvFq7its08SBFQPvCkera4W/WEsocCQSw3yQLtFkU8WnqhX2J2RyUc2KItmqNVKHR4QYNAFVxhooj3iZn4JJtww11IlVZKJAkscQz4nUh+ppujbEiQagchvyExcdFuWia18llqmW8ngpXV1yaWPPTUAo7dNosHnjiEU3ZviYcNAXV83VBZcZJY/149J7WQ0eDYfdRzQIcJxDJlgcdQ3MLpQUfXn10pm48/s2jikXViHJMHTYQlJl1VyCkk6bpSbooo0JlIdAjxGr0+cp4MTS55rsflUI8RSIhEumnItUnVgeYlolyTkI1266G1EI+0pPO1GJEUCqvUtL5DTRLKRFakMiNVJPUpiRKTXiWOstyjelMZDkPcDQpSJwDzWKFpRAj189Ia6CyPbJUY2we6DK1OVCZqJ30y5qLMheSd47snc6kYMa66n9iqy2tKry9L9lm+F6PDoniDDyKPdRv0Gue1eigJjWhDPDivoKzcjOFEJeKBVjkZJt0rxqKllNsivtuIkBiIvGo7KCzuv0R48lAfJ+2ay17DRJ5DL8W4JXI+8LX1IX2LQ21NJeWVFW8Ul8+t3qnJAfSat5V6dF9QPNRNV3fRYSPZfCPeT9lDXe8HjJTopooXKzi5cDL9HfEUBuNN1ftnGq6j+55lh+z70i7u8ygLlOKduw//bbarw2QrJWGu18HJu7fE77DhlI0LVZuVUk56zMQwyH1bVWuSva1bexN0m7igQtMYJKRfDtJKFNnSJgfzM8UbjSVzOsbBOCT9V4joZwH8JYAF/jCEcNeqn77OIIglfXEoJD1WHVFWI6BZXWMU2K2ks7Z5ITUbImSHJ8coK4dozzqODMYdH+PDS3uwTSRVyYTig3E6xMeDV6uXJ6aJIQuycbNQLgq7YLgPqlq/Yt1lAqdjOytNWgsfSZLhcAd9z2EpP8VyUyRKStPKmD9USceY2Q00krl6Y+OSX2LZbo4Pb5RSS5zwuX/5Usx0C1x2+m7s3trDx//+Mdx4znHV9UUdelJ/r1ewlVsEi+77BkkvrbDvqH4ZqDEnsm7INiHe6ZAJZTBW1FAfDU3SD1oZ6vFmpPqdBbAWYINhQGdGEsR4g0wtwfrQGyFsMNpwnP9IYrRzY22IYJvlO6N8wlpV7LOVq7ad78S2x2tbEK9puR2h+iPfp1AKQkqc05Jt2ivCVTZ4vNiDAwAn7ppDURCeOtQHoAwOHVae8xVXWPnmsBLdZu4njslOlVwtx9ITlVPrKENb7KyylOt/yeGJMeSJYkXxvqn8kPAurQSa0A3VJ7x+0rHWilV1AmGzNC2/QzV+YowZRab1dznELV1LqTGirXJGej/rzWjmPci1KjSwRcFkoqNlbO4atmbed+AZXHjKruyzdAWcbkcIE8sS3n9ZIQTqBNyoaJKENalxZgLGbUlDXrW1XjzltpShPtSNY5yr+SNy+lC/8pYyWF4DHM9O0bPKSEM2taLJXKDa76U8Yq5/ORytbFtXWq43wn1kL4r5GqpdpK7Ra6GhYBTiFY6et2GQ3KsQ8G3XPce0q9Mp0C+DqaKiDRG8/rgqEreL+5aNSHGcCvt7QZUixwaanKevIJWXpjhKlKXqHTksKMbvq3deDcYh6RcBeBOAF0LCXUL9+6YDCypOAOWaqUAzIUIvpBTpVOcFk24g+YUjwi9aqVt2fW1Zihp9I06XQ19koupFE9uWLJp+PZEX6kRHQCZkSnzZfcgkWVuddX8xGeQJnJI+3vSUvKqvZzJcvw9EAMT4u6Dd2CIQRMtV7z/CstA4nKQWGkz45B0Ry022CbhY4qojQmxL/XK//R1XAwC2z3Zxzb49ACoXHsft8wEqHDrC1qFC/TtnSe8UhK0zHZx9/PYoYLlEZlSQSDR67vMc0meIxUWFUxWsKInVOVrSS3FhRgskk/dOAYQQrQpReVVEq0lYNMFoWttJEZ0ymevNseHwgnbLNwtjXWO/Ta7qja6NHKbXVnO5nUjK0eot91EEXkgRaquyXdNpbWYZt4R8digm/QLAqy45GQDwy+//29h2TeordaVJxNgI0YzRtVUoeD3qTmjIBaVs5eQm90EIMuY6Xj+F9vTxezLxTNGJJFd7oyAeRb05F2QMCqO4NBN7bX1N301XJ0qNIkuBrdA5Jdx4UYJNqs+B+5HHIAT9e/75olTZ/Cdpg6oS1ObFUCTr4lN34+nD/Xz72PJdBgl3UeuwU6CKQy7EWsrecimGoJSm0hKw2JakcEF8T5LKZ2mVoJnaC8phOdGSrq55+YUn4kx1iiZXHgGkj1JrO7eVQQS7Z6nnDVvORdEKaHvcuvRv2oaUB3BCskkuLWRvD8lcBir5koZ1pRVkcoYW/m1ReRjS68SLKxWsWJanimmaf6WNmCZsjsRjW3mCZY3xXNZcwYwX2bW2LtVdAHwDgDNDCIurf9x0wQsNYOtxx0ye1Fo0jiWdBRPVg6jdQmXLriCWJiGXLAhSkkDxGeKKDKxN1m3jJ/CCjFZViPWIJ5AGC6/D9ZHGAOLplY0QB6WEaGVEQ38mrh/rLhPiRLH/ZNPNhbuIgsEnjqYbhxYO0TKZLCC5trJYxWsLERr6HVlb5qoXreEupE4wTUp4Mg4uDLG9jrXsdMRaw8mX/ZrQLgyqjHPe9HJKIsftXfGcPbjiOXvw+DOL0j9DIXENb0jLPE7nuFZagWpuxbKJcZ5KHD5bcHTehHY9DkvehBNPDGVimZWwHgZtLbb9ra18kaC0uNtZ0I6KmxVLa/VZjpDytTZWfjST0gS87X7MXdu8AayoUDKWhfouI41h1eEAbHFl8sDzLodoudQ1oYMlAURVPD2UQqX/xnHcaZvN9wNfA0OcypZniexAJL1tVmfx+ugxa1Pm5H1TqxnPbVaKuE+jXCb+VyYmXckqtr5nDRulWBg7RXWwznkn7cyOTfqOrSEIteJBqt1puINpK2DWJo9NOhbybrxOZF/i/CfeAzQpbpOfOtz0h150zgiFQMUDq3AXTj7Wfcsys197y1lmRvmu5gaXoQW0kUeeW3nWRMGSswfkGq6OxKVpWfHQp4e+/urTG+/NVl0OuVlMKselITPi5eP8CA61bA/v1J5jnYPFxFyPE/eZKVtJwk0Gag4boqzWlpnL9TW/+obL8N67H4x/Y5IrfYHs/sSyf+tMF6fv2Rq/a2WNGPgGcc3aQhSM3NkwEjYl61I4hIQUGaNC3Q/m4MaC52YRDWaj9t3lYByS/mkAu7FZTxlNwIOmq1voWKlGPPQSnSwEWcJcdPZym4VPb86F2tTy18oi47hMDb2RpyeQaYLdKSzpEQ1eMs+fOtTHri09sf4UQvz5+F3WpENobjil7stCXE/WqivvyptDTHqsF4Lu1zQmNN0clb5iFlKu740iEa+t2m5LMIqA0zHiGgEwf+u3bIIHF/rYPlctNQ4Rqfq/jMkxvYLw9peeh3NO2IFPfeWJRn8y2I0X36eQDSs9bEG3LVWoGI1a7NR8JhN3Q/pUmTPZPHRbWIDJHIwKDxPmZH0I6ZIQiJRcs+VWCBvFa1PojalsObmUn6Vjj1NCqsEb3JKWdL3Gy/b4dd3T2fUP2SSjrIgKkZ1vTReztr6HSiGtv9Ot510ORRybNARIX0N1mcVmdR0hAqkXrXlN6tFiI4S+XyxVGUmkMj605CMUqr/M4VmZXtbewRg+ElS4i9mcmx5TBudj8FpryjA01iHLHECspK+uPRtLgeKaaipK9pl2LIB8eJXxUsVr20NZYBTM6jldEcuGyLTto5r0jIrDF8uxTRzl+cwyjvc+oNrjq4pGlczkNnbU2Gllm/fupjJZ9U4MHUuu6dWlC6t2QnJ22jQiWKsuk1ZWKuI7N9pijQSaXLaHHMk7ckgUJ9KWCHGt8fikZSCbHksxYLEsLMyaqL43HFbKlLkP77ulGCSikS43Peoxesn5J+DFzzu+/sjKUvEm1eGjnSLKh9Ryzs/T0KUj0zw5Vnw5T0WflyAhsNXPHklVtGrfhoqQWB3GIeknAPg8Ed0BG5O+6UowEhA3Jo7D1hm4bdascaAtzrwpt1l5Kmug1W7bLWmyQYoFxy5IsSJIvdahEkJCcK3QGJZl1C7ZmvB3jzyDXVt7kbyaBBdVQi/nltZkWZN0jk9mcq4XKb9jGqbD6KjFwW7bdHMkJQD4b8MAY6WVay2hF+IpB5cwcegoy0guNCMkwos17hSH+9WBCvw+8YjjpIzhtWceCwCYreu3pgQ6fke9lynlNQxqrIWk87zIId1AcxuqLjtmXfLWaxSFtVIcSgpxc4hKVlDWSz0PFFEeVIyqQQ55/KJHacQGpRPglkysUvfhzadxPxIZwcS5Dby2+X5tCDVbagsrsGRf2qsJK2NBecTiu5XSn/yzWxSxGlEOacIpxXFQ8x+qL5JNN65HtXkPE0WlIL1WRZHUBgd9LY91GuLEVs7Yn2DPpowRl45Lyb++f7qGtKKryz3y+iClyDDKAMwUQDnUY6dkHqTUox4jll1p3tBSiImjvP7q7xKPYWnnqvYA5KAVrup+aFVuU3JOvKdl7ic/M+tvhAFBg5UxKcFovS6i2AsxWxxW1VKGdQnCMogRYFjavuf28uFQ+jMxHOhqY3JNrz4UBxBDX7+sjIA5ZQhA9AbE/iSK4TmMtA63rAMth0RxbJNvdm9UPKV+vDbipGUgdb199oRq701RMIeyHu20BKPeV9irXxB7JfJzQBsPo3xJDDuSLyXee+ZH6V527LZZ/D/fcql5Bvdxel8tn3R1m2j4SvfCuA/XigN7nluU0+VgHJL+s6t+ygaCWNKHmK3DOpjA6IHixTXbbdeGNbTFQlug02VT3VcLTp6siBuBhiYlJWv9iUVIBCTZSizqOTyBdHvYwq0TIO77hVcA0LWxi7ghptbukBBh3jy5n/WGE0NwlGCRF0iTUsWFJPGMqgRjsjlqgaM387a65ixIWPBHUktiQWMh0zfvbO8zRJC2KkKUAwsZjuMGxLXYIN51wkuuhBOHI+l+1RVcmPRwAktMtGsRFqlgz5J0JvuFdtuLYsJkRKwsEh84LDl0RY+xEAtK+jSui1LmWFrdhYWwCY/Is/T4t9aKIZCSYqxct1ZaQbpJ5u9XXSuKDBPxxjWaXI4g/RJWoJQcyMbGt/8P33xJVAYBHfLBJFFIhI7dTRHfD6rKTrCvwJ+lBIxMP1GDgMv3pX+0zEKcH/ZZmmgwyYrjm+lcrXBrK7ZRNHieKaWTTyzmHAzOkymSeadJLyMt8cj/0lb31HCjc0K4LeOCLf86tIfnAh9Kpj0WWtFiwqdh95oWWa2ujbI2iAKiwzCNUt+ypnRM/iiw5Zz3Fbb4shLPc62rPBmLdfggW7UHZWkt8A2SLpZ//RnLEE7wTBV+jkkHhPT1B/Y06RS5RN7K8q+ru6T7nB4Xq7xq7zRDz72qD62XWDzREuqXloHUz2IjVGAFrl5XUl5RjEFNr55Yy/lvBQGLQeZHitddfioWBvZUg5yxLIaP1kbHqgkUx5yxZaaD68461txPwl1SBVPLhBAV1rjPq/LGtoITxXneUf2xGoxz4uiH9O9EdAOANwL4UP4bGxdEiHGYrLWyKxiwmisBuOiUXfjN77hq7HvHha8IRrrIhrVpQm+07G5t3aSD3RRYMMVnQzZ5rmkeJ1awE0iDBd7OLb2Ga06XPGQSz2E8ZtPT31EaeeoS5EMBhFw1yT2TKdbat/U6UTh2CqoSRzMLir8HaOtO830DRLjwtaJUUfPd6pg/0ZKVcIAIKRZiVRxafgxtP2jLWREJbdr3vUKEv0YjjruUxCNNenS7xxUWuWu1IhAFfXymVdzi8+oxFlciW6nIEN10HsSwrVITDGmLzHUm/yMSM2HDvXLXyDNVPC7yxA9mbS8RwsIkKLNO7LVKmc5cpavEiEIfYjuja7dTYMdcz3xXVzzQG0qnQ0ZZzD3TGBxy4xAJoRgYpE9VTHNtHGACrrpSrMyq/7Vy03gWt0uT0tCcH4C1AFbyXcip7p94wm1I1lCQcJcYXhU9GUJsjCU9Q0y4fcbirdrAmz3QtJwuhaKQxNEYghAqw4p+ljVgSLhDus41KWelrE1q8JwAQfonpNdISGVu/wlgL8bS78rvx+3UYXza46FjvV98/gmY63Wqwwq7BYb9UIU2qjWk26w9TumzWYZooxWjp0i6WPPFIp1VTgoyBBIAFoalMQo25pPmACGRu5n+5WdLDpasmep3uS/PwbQMpJbJ2kuqlZdO8hnQJOkmcbRewza8tDnTdm3tAbAyLTXs8JqVKmtF9HzouZDin3/9ufX9Ql2pzu6rLHcr71qpFBHluR5U48UG0LLex1l+aaPlajCOJR1EdCkqYv4tAP4ewB+u+slTAnfawqDEbLeDYQhxgvAkZBQFYWey8TFS41i0cBMnsjUnlGxE1eYslr52d6CudGIJgrkobqJMvMW9yq66pmbPAvQ//qNLG25W3gg7HSEm4t7WYTgJYYx9WUoSbSGx6SxQ0k1dymcFI9wl1ELGp6n8iMAZlmxNqTbAoP5OsY0yhpFw1osqWof4dLShSizJbMDxfahJLhjPOXZr/He3I8K5X7sW9al3AHDG3m11reTqiPBRsJZ0TZTFWsPv04Yrn3OMGUNeI2KVU2QvIetiKVOKaiFWx9Tao8l5tuwVh8ZEsmCFnCaAnKORelb0u/BGJ9YjCyEkCUHJcXTIek3Xtrlf7L/R4QWmvGLLVfwI6bd6Q6N0o25+Vw4kE+tvLME4YgOLMqawCnVqwYoKcW1Zkr9RXH+6fGpTIROSqsPamgpBmsMjinr7IVVJCFZGWYoyjuRnX60hllsS8iOKR24ONDwAaIYl5GNfq3+zVW9cSNus3JzriXIRyXTalsz9NPmTPkx3Ovu+BJXEi9TKSVVsMhM69V02WI0d7pIoNzyPub0s17UnkEMb+oMq56fP1xfiZdHyJSrzWoki67nSIUYMPkUaEEWLc97KMqCb8cbr6kqMfuIlTZU2vcfEfYoViKFtN48ae3qrPmRCmvcWABLHr/uE+z6GuwSrIEW5r/f/YOeyCXcp9Zjxemt0URa5szV0KB+HrPUyp2lrfP/NZ1ftLMX7kgvnK0hOddVW9w5RLPSgQzQLouhNHJULthy0knQiei6A1wN4A4ADAP43AAoh3Lzqp04JBCHpBVHM/LaxUuMJyfQqIbESH5aNrWRBFqxQTC1N5jkJMUhJREqEmLjxd/SpWRpM6HsZ868mr+kxvizoGq5bZRXSyaL8DLZmNku2WcuGJN5QvCdbsIRwNftenptYPE1Nda1IWFIbg6J/wAAAd+RJREFUBY8SQHyiX84yLwJTCcHM/Pngj87Hf/NBT4DETLJFnXH1vj24et8ePHW4j8P99BDz5jiFgHhwAwtRFoK6RGIb/uCt18d/a8GirXKpa4+FWto/KdHQY1MGuT8Rx3jCXKvDc4SwNTcq/r4oBs33ivNfrc1m/9XVG1SS5cjDaRJrVOMaZdmPymQrkZR/t3EhiopKEoIArRjlFRCdb6HLBnK+QmrJk3eQfpPTeZtrzholmnLOnhzbVMzjewQts5py09RdTxV2WPIGJCEmkLkbGtYyFTNdKxqxKkMQxX0Y2ylWXJ43up2pIsLGE1EUqCEjtOeqbR63oSAo7xlUcluiXCjLadwrWNia+6WKNOIYpxAPj4QX5OaIlsfpXtgP44e75JSxQhkHdCnaRh5PXeq2KIZmrqVdUJCtm169p3iyY5hDooxVlnSWmdW78Wne/LwUfAKzfUc7P/U+yXOak8W1DM3l9/C/9Dvy/E2VSb2HpeEuWvabWHQlozVhN5XyEkVA10nnamp6nx4H6RqpSLQoH1SvidluMVboGCsgWgkkUh4nUomj+tr6YpbzkcQXhMtOPwa/8earcOvfPToRS/ookfB5AC8C8KoQwvNDCL8KYDRj2ARgi+VvfcdVOOf47UKQ0XTRLAc8eLIpoLGBpEk8mlSHPEdXVjZlPYJ1jeskVbuQrPWE342nTVqMX4NjMfUClM1ErJ5Nslz9m8maPsFUTgZDw/U9SAQAl5bie1af1eWeks2RiUp8biHvG4IdA96k4u+FCLgoiBXxk7KGTfKpD5DiZ2ctuqoB3CYAeO4J27F9rhuToVLMdTtLknRdmaA/YE9H9e76ZL5xhYWJkQ2J8kJqcwh28w3KctopKM5PPTZibdHEWW1CisBXGxhFZTb2ZUIAmVC2lYlL3ff5a2TdstDNkmpNFkcQb/6+9FWbLVIsXg3vWHymWJZTr4UuDZebd5ycpslXPAm4Pvk21x5tqTaH2yTt0huzebySc9poYAgy7DXcxtxY8fO1Emes48mrE5T3LCHI+lJOgucNWLxRNvE9lm4M1tqatjMlZHou8WFajQO8imT/yTHiFjCpNLk0pa0JnlrSCzU2KeJcVd9ts7pHQgO9xvKKmB7b+De9r4whm9IQEwavAZHZzftxqdto6FH7pFYQdCiHvAM11p8OnwJsuEvVj4Q//YHnY67XaVQ+0vdd6r05Br6oJ5LsueLZNaUPW54jRhIrf7ldOgQ0F+4SDVZJJSG+jyRR5sNWAFupjHMvqr7Mh1i2IZX1WmkGFP9aBo/TYbYAjExI15guivBNV5yG3Vtn4vPZ2NYpqCq+UYzvIRiFUeEur0NlSf8gEb0XwO+jfa/ZNLj1HdUZTHu3zwJoCsm4KJd532g1iidrWiFJSEgDrCWnddNXForIWxIhS5RuSExERfuzx8mjft+ytUwUb75Mrs2hG/G9rOBsbDgFgQ/qiYkyGVKhhTj3R78umxWFRIG6Yktzc9SaeAz3SUilea9EIAQWNpHUi3teDouwSg73OVv2432WYQn73e++FgCXM2x+sddpd9elqFx7nDiKmJjDfTeu283EyNYbQqwBrwQUzyttBawEZH3glUpK0p4L3sxTq6IhVtCW9DwB5GdLvHLzXeQ+oyzpOudDyPkoQq+JT/OZ8pPfZVQoi63vnyP9osAHJhiGbElfpZBwJ6mTzkrrU4f62DlnxX8178s4t2VdNkPbNElNvXRCkO3G1iDeTGBLqwg2wiagYtzjBloJQ26nRiT0avMUmWvlTpwfpRAR/V0h5aJUxlyIYPs9lWvVP5lchThn9RkRcz1RxFlRGBcxJ0RZd9lzpgmylk+Ifdl8jraOijEJMv56/GAVdp6fqVzXBh5tFY5rqaVGdgrum596xfMan5MiirmETA4j0XsJtzV9djPExIZy6JBMRlXm0bKxc07YUb1rvWZTnHviDvzsq84f+c6852i5I6G0lii3GYgibzDfSY1cFJM6B8mpp3G/JRjZr73O+vyMtqHUSZRVH/O8Ei/FOMjJeq0cEwFff8EJS4aJpuAxjX1cty3yHzb8kXCBt86fFd+Ha+T3ktyyNQ13CSH8EYA/IqJtAF4L4IcBnEBE/xXAH4UQ/nLVT58Cjt85Z37Xk0esr7YW9TjQG5teQMRacB02AN641c+4GY64r2xUzU2fYK1qLFSZgOTcrAAiAc1BE9Om29SSBEaqtXc7BD6QplNIOcP0XQtSpcSSo7FNPHRpE0Nyz9WeCbGCVD0EiMVFg8c99UTo2uOapBPUeCTPzgnKpdBmSScifOifz491D04i48M2eAPvFUUUrOOgGe6irHKqX8WKWn2P5xsrCEA1v4lgXaCKZPPP+A5q7Ujog7WcCAG0ccptVm3eUFLrl7oqEtdIElsIffWeMj/aRprXJ6/JVKnW7at+Uqu1nRRp5XUYrduKuOZd6qy4WUsmEeGGs/fiyjOOMdcXVIUgaKXGehf0tSRkOKMIS9tU9YREVmhvXyfOJWpYm1m54Hdmi2KOcLCiod/BWHrVfYmEMLAM6Ks46U5NQIaBPTg6dKUZZpTtoyBhH1DhP5zwtrXXwTMLA9Wm8eVHJTc5PEfGzZ56KJ7TGKYIeR/zNL1/sLLM8zwEUCFeQHuNmsNJ//KyS88B0aR3HNnE7fonN55pPo8x6YXyhqTEOypcyuMcAqiwXlW+No0D53FlY1Uq53vdojW/o21P2DrTxRXPqU6hfvf3XNf+3YLiOmIDHd8v9SylT+H1qauZRe+RurijrllMThzVsj6GzJUyR/g+bUqPuU9iDGXlVXuXl0KOx2hvKQCcffyO8W5m7lGNNRsICcLf0oIXvI7id0uJGtC8URstV4Nxqrs8A+B/AfhfRLQHwDcDeAeATUnSU6STh2PF5nqjhaVslvWCKWRj0qEbLLy6lLgG+R5KUBHBTDZACHgj876x4VVX83d1mEtKMhnDFnLI99R1QfXzhGQlFrRC+pL74JWXnITBMODJQ32TOMqGY7vxiUCY6RZYHAyNW3QQN+b0/ZNYeEO2ZeNgwp6uGyYwVsGqSQqXQqw387TPWdBwn68kXErXqU/xnGO3jX0frtzBXpOzjtuOb7329CjEx4FOtuFNvtdRFkY1B01SUslhQdYroF2gMtetp4nBm7ooS23Ep9r54waYbDqmT4yS2iQmQmJ0gmAbnbdzP3ctqTa3kReNSD5HWttTWWEtl21KCien6bYwZrqFqckMqNAvZWkcRM+IVZa4b1kOppZvHcog3kXbT+x9iWstIdX22urOtlZ8M0xQFI2MN0ARHEBCz9iS2KEqZEy77zlxndtlvQt5D0baD4BY0llm8BzaOtvBoSVC2tpQUJXX0jjHoFNE0goSb02cu3HdWOIdDS8AkCiYWiHjZ0fDECtySRii7IHiBdVt14R5KaTEksHt5X08R4x47bNy1xbuAognVrczKkDq/vpdZjr5Klzx2UvsCVfvq8j6nm0z5nMu0avlIivs0UtfKxu5MB19MBcghg/5rlzL1wwUSee9WXMIq1zJfQqysj6FDmnhdci8ZzkW59zJtWzh/6VvuQT79o6/X2pwHpEOf9Ux6XGNZXISIm8cBvT03CnGf69RWJa5OITwWAjhv4cQXrjqJ28Q6ES+dDGOQmqd1OSRhQRPXombk02BN9q4+ELeBRk3fdjYVtM8EgEsVhP1HSKzKPmaUTH40aOQEXqGACd9Er0S9b1P2rUFp+3ZaizyXI86bhQEmNMyi6o+/cKgNOWymGSnmyN7DuJYKEtY2q/assAIwYaHsDVGJ+Q0T38TCyZ3zygyNgqH++XI0/Y0PvbjL2p89ovfdDEAOQyleocCx+2YxWsuPcUoT0tBK608N7fOdvHs4lAd+EP1takLk8NiOHbSKkWph6msiX76bLEMSRImg4mPJnNl69qxVntS8808k4mEInPt8eaieLeWTAR7yZjItxFwsus1qxno+ykipdZKG4HReSDjJGYZD4nqE573TNb4Wi3L2izf8dCYXHUXiIId8xtgw1Ji/6BJlEW2NjdGUe61m17mEpNOtuKzdUwqWAiR0PMCsJb03KBxP7Hs1koFt5/n0IxKOlwu0nAiHY5miFx9vQ5/IWq2XStXEvtsQ1r0S7IS0LYfWI+brNFIqoOVN6PQZpHmREr2iOdI+n96w2W49PTdIs8LkV85g41VOMX4NlR9bRTeToGfe/UF2Xa3haLlcPtPWNnO+0LB76mUvFIZrNjKrbtHSpCqcJdSk2utfImRK63uQmqc+sOyUgjiffVPmdMA8POvvdC8S7VmpY87ykOgOdNSyMk63ocvPGXX2Pto88ZVG42hrlQlHlmhKOrwPNXZUt2lNHxqUuEuy4vpOAKhY+K0oFtqYaVakrYI6U1CuwOZmBAQTXCpFakJibnVFsiUuGhrOyCbl15AMS4wyPu2WXC15py1TBSSaW6/U/17YWBrvnYLG+9JZMmT/tkhiVPVtd5ls4HZYAp5JWmjsoryKxLygplJFC/ErTMVKY3vSlLTPPZ5VBaUYhLyG8lSWEyOgx6FE3fNNT77litPAyDjlZ5cuJzEnEa1CSJsn+ni4MIgEsJ4rRLKmgh1igILg2GVYa8IIo8xhxKlG1gMtYmEud1rpK0/bSSVYMO9mAA2la30mvxa5Ioq2pKeG20mqEGt9TYFXLcze426n94UwXJFhVCk0DHp4+yBhgQEmdukPkeUJ9ZCa3oikgcJZUnLrrIsZBloLXMhEjnEz7R7X/pLkmjtfVmBJJKQNb6Hft9UxunKVTEEjueFlutM7Mm+E2CNLix/0ljvnAfk+uSglXGg1x1b/bodangTeZw0MWqOf7KHxTlsPZL1ECfhLjacSN67ulZ7qaq+sqFtS75nyBuUtBFK9g57v5N2bcFstxONNun7pv3ZTUoQRmW0BHq1Uc8oIwXhDVefDgANOb6c2vdplbXD/SHmup24RvScacisxvrSe6o2pKSGuyBeF1TnyOh2dNScsPlI9v5FYfvzTdc+x7yLThxNz17QIZZLITd308pBGv/k+ftG3u9XXn9pvG/1DiIntGHAGOyUogfInOE8OoZWflaDo56ka1JiE0eXXlhiLRFLb+qqNxu6InZcoYI3g9QdzMgJypS4UC39NFmNm1ckMLzxiVBkDTEHjsXM1RqV97KbXq8jJ3ylJN0kldaT3h5KIsSQiHDxqbvwvJN2GiscNyMlZTlhy8ImrTyRu1bGrPo505UatkZx07WgoRazavtyqjMwXn7RSdgxN9aRBSPBFXFSD8lyNHrub0DI0/a5Lt71nVcbhQTgjat+97p/WEG48JRdOGnXFkMQU0KRksucdabhnSBFNlQJxiypztwnVXCj1RAy9yK5btxQKYwt11RLMcT76Yo1OXB3JnqnuR84uSqIJY/lDW+erZb0oVXeR0GsmuLCHg6tTOR+ZIWH36FhSQcrErrNVmZZqzjFCii8rjSpldr42jItXkpuj650xd+VxE8AJAQyVnAo1BxN2sTkQlv+dUlavU9wF/PYQ8lqKeMY4rvx9b9XJ5BzIvlyYNZSffhar0MxxIjnCV/LcoHHS0+LSKpJiFx8DzSVZZ6XMfkZyI6xJjpI3n/ceORcmAO/E6lnjYoDTpVVIjSe3ZynypBWy7hRxhguTCHtQ+u1S+Hfve7iKtyFPRBmPSSex4S8aouwVtIiMU/mIE8SPqBHK8gNxSAqf0oWkniiczDGnzKYdTWuEUHeIf2s3aj6U68cnZz7mktPUfeV8wV4n9GGKBNSpvpalBa773KJ0NVi9cxgk4OttoAIsdRqkIMmAEOIZSWSB2VZZ1cKbzKkhWFMlBQibp8jbvM2S5/eoNJFokkKJ0Jp0tRW3UVisPKCMUd2t8xIpYKF/hCzyvXEYUWyyK3Vyy4E4LWXVYvnjvseM3GyQNPqSBnhwBn9zY2jqd2aUJz6Pnf99EtiH3VyC1ApZ+kiXi5+5CXPXfZ3cuAx1pV8AJln46BZ7aj67PLTj0FZBtN32gKiXc1FQfjRr6tOdHvoqcMNhaeNXGvXqrhvm6TaWDiip6nZ75FU1t6ynEVQ9xEfBR/4g8b9VKhOi1Kdkjb+Thvsu+Tvx7IhrVHflsDNMMmDY2yCej1yn0p8JmqyJrGbZj1SujaSUJZkrItaaLG81Js2E04r8xKZq8gkIImY2liiN9UiEvrq867y8uiQC04C4xOpFwZDSzShSYolDIM6H0MnWOsyrUxoDRkAGkeVLwesHDOhYI+fJk88/7iKVPSucr/GCaDWlJJtet8yc8Uot3Y9k5kHKoQgAD3KexJGIbVIb52RvUWPI5edzSH1CqdGB36OlZ0U+0hbUtuazVXjGCvdEwDgdVec2mi/eJVDTHwlNb/kWtv3ui3sDWTiHdQk2DHbBVF1PsnCIMRxBkT2xcOMtFcReS+GaTuvsXou9OtzQnJlM9uQq5dfjdnq7M08F3XpRW1E4GuinFJzxFToUvdcjgd7FJyka6JRWwHbYkg1eDNmAawty/qgBO2SYmIXiTaslp7f9MUSYmJm1TW6kL/eOKU0EnDSrjnsmOuZRZsmQ6b90rZwjMdBNXq2KydkHuoPbbhLR4gwk3WzSbIgCUjIMJnnVe+WsaQnJLQ/KNHrFg3ynnOtfc9NZ2Hvjhl84WtPx/7jJB5uT6o9a0Ipi7gihNMEx/cZS/oyhIUNd0Hj8BcN7c7Tx22bxKtCj20w3pPUyqSJlSZCxmsEHf4BQ3yafSHeDV5nPGeJQny/GJoQf7aEz/DmCJ6LLZtvJLR5a52+H79VXLfJXfn7/L5cBcXKjnzisZQiXYYlPbMe+daRmBaq4gRsSBm3WVvfJJch86xC5KN+ZlUZSGSMGfNCxpzHynhfSiEyIp9FbvJmmyoR8dmFVLngpFL9LBuTKy/FynFsJ3SohAoZKORdVgshTHVoT52E3ilkH+Khr5JKZS2Y/YLHNxk/3n0ahhGwgilKYrpWCyVLOMeEnz3K6ppDuibZiKLDfHoc5tNyX0qemVsXg6TiGc8XK5vyZRVz4PFeDXQ5W608sVKm90jzbqVdy3quR0UxVHOd9+o7furF1fd5/hSkSGjIrAO5n87bSGEiFmoZwqUNx5VPQN5qPiq3blw05QiirEtl4cLQRgnw2uE8OkY/ie9fKTzcpagEGyAlj4C8ZaqBOIg2no+TDq07CEqg2QmQJjVpMAnRm3XgP/A1SVwgoEIC6jb8q9deiKv37akmYb07VK6tfKJFKtDMawdk64HrPvu++bOxfVZ0QA6b0UqLJhrRGp1sfBxHyAIF6ju6rSlYaLM1Qd8vVT7OP3knjt8x17C06PdKBUG0zKnPxg13+Z/fdfWS16wG1Ql76p2XIQRTq2LqvtbQQpkJV1vNbCAJd8kcT83JTkRQ4QxtCqkmd1aZje2DJbjcTiK2UKvvK2W7LT4cqB4iJKb5Z2mzsnij3WKoSRI32JJZa6lMTxtkq3JbCca0isVlp+/Ovxe0d0iuj30N6St+Uf5numbNRl7K+k5JnibnvPZEkdKWc0TlSH9HZKMkrcVnkXg0zUFphcwtURRhyKS2pLNHEeD71iFEkPAZhiTEqaRho8gIoV0OMRkFXe0metGSEnr8FK58Zch0kL4hqL0mjpGyJicyN+i1AFmH8my5ny5jqcdrOdBriBME2ZrLntNRxqU0tCYXaqPlPI8Zr3lOKl6uB2CllnSNGE7CJ4yWIZ6YXpAKwYrXw6wHwHrVWVEKIVRe75oHcL/qnCEbDiztYZkfAnDs9pmRipe2srNRodDtHbMf4pgojDqUcVxo7xJgFSL9SkSEm87Za0l6Pcf/yY37cMaxW+Pnh/pDbFlpIqvCUW9JN+EfQYTY2N8nEcixVBdbTeKmKjGWvGGzEDRWnsxiJiXYous3EYZ8jbE2K9cua7mArUZyuG81QoOQJ7+A3ZTblsZ332Tr2caQEohHQDZzSwxTkqL7sW6atdhkNrzFYYleXVNd34/L0uUwauPkTTDWSM1sMm0VCFLceM5xS16zGjSsKpnNqA1p4ugopSP1QkVLeic/NkyIokVYb9ywSmwMPUkVMlZIIZtlmsAcr40EQhS9GHpGwYQk8HqFIh+N+0E2FV6DqRJhiE4QwprrRf5Mt5Pfka1nknyoY7eDbXeZzy2pQsxKs1H/0ffdkGlJBe150y7uon5RivLLKl8pWa0+C3EcxUVsx5plHisoISjliSiOF0i3S7yJLO8KknmW/iRWFDhhrvZacAUUbUjhdleWWUv6jJyPRNauM1aihIzKfNFKRdwLJkDSoyU96FrNFOdh+m5SU13mWZyrSk7I3FXkXT1X72GyH7SHr0mcr/WirhZlvbjYMFZVNMrH9o2jGOlwFwKUUqzDzPKetmz7JkAgeRLF3IZ6XhnDFxPoEEBFUt1HyfNCeaF4Lh8elJjtWQGqq5gMlSzQ78L98NpLT8ErLz4Zn7n/iVbFSxfo6A+qMBdez/2kNvsosBww3bOM8Wi/r8xvq1g2lb7/8earGs8nEF564Unm8+VUbRuFo56kWw1PWdLH/L7WrJk8ivUqib0jIRgi8MW1lCcG1k1LGWEINC1gokVbd5sud7QwGLZWFUmrmWhIlZjm366pa76m6BaFOhRAW8qEKHG7m+Eu6TW1JV59P0e85eAOuR+XpQOA//zGy+z1IywBOnm1S5JfoFFtdNmvryv6w5XH6DUTfO3frztT4me1lYXj9FKPA6k+NeENZtOrKsLojWVYlgBaLHjQ60yFR6h26muYhAgZZoKtrLyRTHNISxNMsoSoUdwUeS7wswAYgpMDJQ3OLqlIXoU4iWWMFY68EtbpkCR+jkGIrHVMjRmpceBnoukGZ8j1ieW7fpnqYDdr6WMlSZ8oLN9TYSPmfpr0yWbNHhp+FxueJ0qsLlEp1V2qNbxQW9I12ef+13NKk4Nep8BCv4ykSecYlWrsCrLGodUgeqdKtvbWJzx3imhdZcrKSd3sKeIhE0+FjJP2cOp3j3MFsgZsfyTzIIhhphGeNIGkOpbvW3sdELFCmL+Wxx4A/uKHbgQA/NMXndPoTxPiZ7zU1Wc8r8aBPtxttdCeLkQuIFZ+lpc8t9kLFY2QpfVk8vycP/c4XHbabvOsVD7rzxlx7RWEmYLid/JtF+PPwrAKRb3iOXvwzMIAW3qdeELrUsjFpKftWgl4D5A+JSNHRrcpryRcd9axOO+kHfhvq2qZk/R81nFoxj2lEAFHyuqXxjTJ5sWCiTebUJuPjNsWySZfXaLiBGWzbtT+VtcAstHx0e6x3eodrtm3B1tn8lOgP6IsYNwME0sSAPzvltPTOh2pPY7ke7rduXAXia3jBmiiUBpBxLjiOcfE++kmahL6yotPtm0csXGyhdhuRvbitO3TAlvMVoI0cTS1cPzeW6QChR4TnTiqre8FyabJf5N1IqRntqvXkE14TOd6StyyRL6UawAh5EzW9b+5PeaZme7TCkJsA/KW7/g3tX5zkJAb/U4Q65lqu4S5ZGRG5t7dgtAvQ3Z95CBjotZjqWVYml/D72A3qSw5U/fnxEFNOCL5hSh62tMGFW5jx6HqpDhnlKW4bIyrVRZ79SE0aQJ0QVV44M65Lr5mSL6NRReLevWcn3j58zDbK/C7t3/ZtJP7iNR3x624Mw70uRDc1jOP24Yff9nzjCW9UkCalmATVw5LyoW0p2uMomJpPFtA9DaKIqZyI0odarT69+c59NrLTsErLzkJjz/Tb7Wkay/5807aCaCZtJ/m1Mj4porreO1bTeJovAdYZlnZKW3U60vWZxrqxgbBMq6pCjvnetg51zPP5L8WlJctfD/9agWJtTwFW+aBKlZ7plPgwlN2xb//22+8aOmOAMz+MpnVU0F7PLgv9Zod+d2EYzD2bJtpHFC1EjhJTyyH7DLsjOl+MaWJ6p+DUqwR+nMdB6uFofyeCIdShJ6Nc8yQEvW3CspK2SIkUreNxqjyjPG9y3bykWKuW+DlF1XuoDKkm7rdQFNSza5cTeQpUXrSJfuHb70egP57hdzhTPqd2v42KG0/VmTJXjOp+MPVIg05WQ60Z2mpWD8dpqTDXRqeEKUEp2U32RrPlnQdEhXDt9rmej3mqXVF3PjWCqpDR2RjE8tiPMUSVjEw942ExBJ9cUnzz8STlr2frHu9D+grmQwBZEIbYoJrQVHWpEgrpiwF3RcSk44YKhJ/p6aHpFFtqVTvrhWMmsDFzyAkT9zM2h0v9xPFRMiKdt3zWjeeGuiYdN0nVTK7LqfI79IhiqXZOiqGnT02+n68BrrdAsfUG7LOQ9Cx/azUsuyahCWdwetlptvB4rDEzrkerjvrWAyGZeM52pgQknHVhDt6NdRaYzB543Fjj080GCE9GEZ5jtXYrhbcn52C0Ck6KIp+JIMpxjkBsmFJj/NIG5IAZNZz2/0mEe4SvUXIKzgsA6NMSBSuqt06iZ7q98s/kj9v81Lz/VKDWlvSrm7z4cEQc72VeXolpIy9rZNB9kRxWN7R+t1y9dVlRsFJupqEZSmxU+Nmb3cUaYiLuaxjIFWJIm1Jj8lv0NpuQrwV0QBgNonGiZuRPGht37qQl4vrztyLs4/fDgD41mtOb71uXPHT7RT4D998Sd02IeLaQsDtti7T6h1mugU4cZpdiKT6lhfS7yW1hlkhYO14qcSi1nAXJheqXenGlVqopoXVbAwcgwlUNbLbDrsCbH+x8EwVhE4hCpgmmQVVSW46nlKTOjlEx4aeaHKkCYYmDVr5jYQWllhakigW6mghzrw28+VUUUgvjcRGEd0c9LyPZD2ZU0LkEy9DkcqV5kM4ZtUq7+0wXsD6M70RawVGKtzkLOmp9Z9qq6tseDoc0IQdAdHNLNV0xGunS6VKiFL6DmLVY4uijHf13FhVomyGu5B5F1LzIsQj2GXeiBXbvD+3SxEk7T2QAoiTAa+/3Vt6jSpUzWtruaveMXpFQ9pX1msl99Xvj9ivIK0oiSVd5lX1nXFDsJYCK/qMKueoLSZ9aavoIKmUVNTDpMMteS8ZB5Mw3LA4Sq3i5hplPACUwq2enYYcLVXFLg2hbfs7Y6ZbYHHQ4sVQe0W3IOzZNpu9bimw8l8Q0F8DJVfkrDxrqfKQC5mY/kniqCfpRUE4ZfcWAGJJH7dsUoB1H7Eg4xPqhkqIgaixUWhhhoSMaKJhCIci6+m1enPVlStWIiR2be1h19bKBfavvyHvihqnVGX2e4nA14JgUCd8mr+VlqTrZNjUspDWHNZeiKIosoczybPahXijBCPyGvZqY+MmgfTE0eVgeZb0ZrzjoCyzpSr1NWwVZULPxEh7RoKat2m4libXgKwpUtfYeHNZD3z/Kj7ahopJdZF8TDog84krh6SkDoDZzDWxTxEVVcjaTu/HbdeeBy1DACml1hifgknteHPBhD0oMqCJL7dPE/8yZcoQ4qav0WRQSJ7dDHWugX5eSkI00UjjoNl1zfI3JSfxMDWS0DC97puyqXonnpMSbmS9KvL2ajwh/UgQBXqlsrMNZajW7r/9xotMslouXEGTNxMGBph35THisc0bhuy7EhDlQJHMI+lDawx46QUnruq99eSb6xW4Zl++7ny1N4++nyZronyILAGa5HRk+yZgSWf5wW3Q/frBfzZfPSfIvGJZmuoqUlM/ZGWrRlTgklOm7f3snJjrdmIJ5hR6X3nPD9449gnbKdjQo8t7TgLcf3qnGTf34OUXnYTT92xd8rqV4qgn6QBwy9tvBrA8C2QkBIpos2DjWqtsEWLBZCoZQBNwSbTS948CFJU01BsUCJlrVWxlaU/1mgS2zdhM5ZRsjwttnQEyZM9YYsXNz0syljojEThtsXBRK2ar4whLuo6fTjGok10Au7FtJHB5vdw8/vbrzxjrHjouf5iUckxhk4jku1qwNWI5ubpAQdFqVajv6TAL/mmVV4rzX19jCIQhdzq8jOo2WfLMSX6lWpz63Xi52c+CrGPiJ0j7qvkt5JrUfTRSktS8n3xPFHv5nN8lp1yOCu3KwYQnNMi19nRwsqqMlc1DUCQ63kfkHctC/X78LCKpoywEUOSmCZ+BKHwMloX8XCI5l0Gs7yFWd+G+bLUWQiklyTjE06MT0sZx31pJ0VbJSerxfC8ml9tmu8nfmw/T80bGSZQofQ2/B8ts/Vyt3GoPFx+Eo40nfD+eT1qx/G9vumLF75/GkG+d6bber6Pm7FL30/lOUXFO1sRY7QsTqJMe+7UK8dDEed/ebXWbpI3Sv/ZdrSdzXO/aiPNSgjUAcEnIHLodigc9rZSgA02L96RgS2/m83jSJGPGG0dEGkwCG6AWxfSRxqDxoT9LQVu2dOy5tnRpAcibjriiEgsaqp8s/HhxisDPW/p0QokhLiq0QK5deT/dWR8gwUgtSMtB1OSRWNIToZsjzkMl6BEQT17LQcak6qdRxGWUa+/woMScEi5p1vtGAJfX69cnC2r83KsvGOseWuhWlvTxRQQRxWOlGZbwSYw6hyF0igK9DqE/KKOVExAi3zhdl3TYF983iUknCcsQy7CQMYKQaB27qUM9zPqC8lCZNjTnnSjvUHHU/OXkXQBD4nJrSVvrTQw+RK5UibfNUl8znerEzHEh5DqJSafk3fja+vfU4hQVM0V+05KwmgCm4YKRRBei8Og4/LRPdL+xvORTCFPFg+edVm5GxZ3umOvie246y5DxaB0v7f3imCkybpTNQvo3l6OwEvzl227KjsEosExsrhM9Z6u/iLKLxhqzY8Jrlv9u1z6vNe6X5SbOXnjKzuznXHJyHIyTm8HGBkAUcx36A6ChGI7CuGV5R4Hl0UynQD9RfmK7tSKKWnlKrwlS+lbGPg+Ts9Pi9WEjJGOu18EFJ+fHadtsF+//4ZvGet9RiKFwmOz+K5VvpDxr6oOa1Mngy4Vb0jN4x8vOWzJc4Pids1gclM0TAJHEQKpNIpJKiLCWuqf801rdxZokG1Vq6dPEJVrSteIwIVWsWfOzPSxgFFJrkt7MUitwLoacXYi6z9tjyWEk0aiYdO2CTVGFZiiSjqYbeaPg0OIQW2ZWX591sERMeg6H1cEYgLXEpIKQFbJep8DisDTWNU2C0+ouqC0dPACaSALKMpoQv7juCp1oCEsElQKt78dJ3EivzSgR9b8QTyc1RFdtelFRtfHdGiwTjFUWlgj+zKvOz1qnup0Cv/Ht7cnhKYyhobRyhEkaGyZiH0OUG91mbYEHhNgwGdSyKcpCE+5iLenQShaJEpcL/StDdWz8qy45OZJoGVfx2ohnpV0m7N0+izdeczrue/QZZXVHfG+dIBzbABUeBN1HNoxrEuDSdbFO9gh8/QUn1G0RIs6ETpQe7S2Q92nMcyCOiex3MhY8X7Syp8PZxrXkMt7zgzdmP68Oxhm3yANak0rtdbJG+b0aSumYY5jmK6wE3Ge9biUnc/tdOr9yBzWVah0UenAz0HOizbvM/cLYs21mZDGK7mpdCkA08CxHKR3rvqV4GYjInMsybThJz2Acd8w3XHYqQgj4/z5xf9YlrBOOWHiZTSZaY1ILUQBRIcRVkQhOGMtZ+oAqqUm75FiBmOSmoHHFc/Zg395t+JsHn1rWhGZBoo87NnHQqr0pAQDEhaiFUtvj05hVPuAlh3EyuXmnGkXopw2iiqSsFsMVbDCH+zZzP7X6cA1uJmOdojrKux+kvjRgw0BsLKwO+7BWWrmGFJlW5ENZmvR61RbpaEk3zxQyHsNcgiIqyU5nzkCIZDY/Ry05b5J+fT9jlSVZRzuS8mkaN597fOvfUjDhgnoWyxHuE+77tAZ4GsfNMsrWWBZiKwq2rZ4RLdOFtuYhjpUkbeqkPu5L8VKetGsLfuQlz8WTh/pqnnCsbnXdNfv24Ozjt49V9YPlFSnlUIfKpHHxLKVTpVO8NZOVHeOs1f/+pisBKA9S3X5J0NWKDIdoCclujrE1HqXrpkjmkfYuj2PVHgfLOW2SQ1DHQahfhseyoXBk9uEc0lymlYDn/kynSsyM4V8K2ltELf0r4S52bEZhVDGFSXgJlot4ZkqGF6zqvkFCYdnTtVH2dw93Ufg/33f9sq6vYjO1ZQIA6eOD5ehhXjjaKpZ+V/+Uco0Srx7d/A1Ln0pqitYt2UAmdZhCirfOn4VzTtixbNeTtqRXm4TdtLSGvKXXweuuOBUAcPK26vM0uWeUwA+JQOIKJDlwf+XwL19ThYvwJq9JykbDLW9/4dgnuOVwTJ0wPCpH490t9fDf/b3XYbuKi80lHvEmwZZ0TTjNoVY8rnrjLxRpVfez60FIuSEkqL9TX6zJoSEbCfGO61L9rVRtSC2MmnibGPK0nYCSA0IA7bOF/OjDg3S7JwWdP5OGu+jxkTXL75ls1rwuC03kJSQpegp5bUIrUNXnnTgvMmGB2hCiLGoEaijPWrnR3+kUlWfwlN1b4poeBSJAl5Ws39yE0zAKaoY6BXWtkN3JDd5yjDGm3+vZFomnUW7JzmF1D+6PKAcTZSUlijKPJNxpEiQojUkfheUqBoTEK5LMI6TzPoOqYtwqSXr9fI75zhHswOst8QBomMOMSNZM63MhJalzWE2p35VCDhiarPGRK/pxX+f6b1pwS7rC5acfs+zvpIJXu1d1/LkllbCbPRLiCk00oEJk8sRAx9FGy01NZIdhshpnDpQRGqOQuqh1mEOKY7fP4ke/7lwAwL9+/pb6+0mJthELSmv7RGxJz188auF/23VnAKhOFXy6PxhJ6KcNrsqzUtzyYy8EMNpKdXXLybIXnLzL/J6Nnwxiue4UVTmubqdvXKsmXjwhraVaD3xtam3X4S1A0zKvFVu2IkZihdz6ssnhRmFW75YmjqYKaEp0pE/kbymR5/A2oYZKAZkg0dNeQD1iOvSOSZtJUm+QVOmXNNyB71+YvgxKbtqcE6scJYqV+p3vn8qS1HABkuO+GaPqO0sf1D/VO2nLf+6U3eoTazQZBqyJPF4cVgfEjAOjjLLCFZRXQyuE4HfP5FMgVaDkmqbRyOYdELXL/OWAizSMAx0j34aTd80BkP1UjALyjBjWGgJ6Szw6Lem4EvAY8OFbo2Qq93vumsGwItXiXWzvjJg7kmn7d96wD8DSZ6msBfQBTZOspMZrOFaPoY2Tc+YkfZXIle8yYS68CRViAYISbIZEKne3IRqKiMaNMrH0yeYqQnEtNE4AKz6IICKxTHQLwmCMYEFelGwRkM25fUFFK2TdL6Ni0sdxTVaJp9blyEdMHylgS3i5DCtVG3IWM94ABnWC6xuvOR0hBHzuwaeF+HGMbWItFoVWJ47CCGxNpo27XnmnNCEuA6r618Zq26IYwCrVIW1fJPQqMUt9twmh3jk3drwfbLgLr59JnqGhSXQ6ZgGIcZqk3gtoWnF17LGMkZBAVpJsvLmyupfW2qoVJzFmqD5m5aKwyoN+p6rfbIK/XLM0YTRGF/1OUb7b+SKKFMyztSVwwmJ5bIttnD9IQ79g5l+q7DY8PFHxyMfba6Ub/BxFIidBggZLVKDS4L15FD5SGygQAqjgsAd7jcy5pft8OMY144CI0OtQHe6Si0nndReiFyPt38VhldSvPV9tc7CaD9Uf/8u3Xm7+9jOvOh9AZcRZjcd2JeBQVx0Pf/1Z+ZKby4GWe6QMBADw3BO2r/r+q4GHu6wSvMkzhJyT2hRqVyyTjhjC0gxzEUuV2uiCsrqrDSu2IQmfAVQ8bCZubLXC8ZM//XXZfhgXmgRxQsygLmA7jgLALkQWSmzNyiG1goyq7nLsthm89MLRNXu7nSKGM/GOxkdMr7dVYa2xnHjPNuQsZoFJcSnlNokoORwJUvcXQh705sL3TcMt4vqCJknWamssf2yVLVVidvIemoyLFVtCBuTZOmQgLf3Xvm75Ow3LPKzFH0gJ7+TmnA7NyY5Z/caRBKj2pP0vBLb+PpQlk+T0RO4n1O/O9Y87iiAJ8da/a1krP7Uyo/uP3yEnEwsiU5EoB6MwmDlFDeVeh8BYRVLNiQkowBof+/EXjX2tno8gnStlK5novYb7jiFGI1FgSzV3iST/RJ6pY6YnE04wkRM9FYyyBYp9oNE2j/LtK1cdk859NtMtsDgMhkDKNaJAVooXGgmfXPxAW93b2y1eET4p/JvrsFNGZWRZ3z0v9rlq/O8mBxiuBPrMDgl3qZ7xvretvirNauAkfZVoJMap3/XR5tUGIsIPQf9uwzb42igggdr6Xv2jQbI1cdcbFHH8pSwkLnu3Gqy2cghv2IxeUWWtA8CnfqapAKSIm3jcrNsTR9N40U7RHmN3/M45/PASZZaY5OcSSz71My9p+dbmRH9YLmkpuf0nKnLwLVeemv17h5r9xJa3fpmW29RKpia2achYTQYUodeEKFV6q0ut5TtN9CaieDpvrmKLtsjHn+p+5mLINXqTZwtc5lJLLNXnNizE3leToklAh+alMsaSNTJW0hCsRb9Q1/GLxZKM7AWjnGVayF5HGyrqBljSa+OCSzU/NPQc0OREX9frED7woy8AgHjKcgpRqOSLEraVkjs7Rvz+FTlfm7E7sQ7TGAfaCkmwVvHYbh1vrvctyPdYYbNri7A4rPaYIpmzen5NMnG0N+Z+NiiXlmcpKLMW0tyGURiWqzfesJyaqcNdEo5atalU4Xz13tgWwqUPIWprWVy/Cv++PjGcUeUUrS+FZONNtyOGvUkghtGUdp8B7JqfBjzcZZXIbmhqU+ioE7705qVLLvJ3YrgL7AYlQlC+wwuINWcdU6iRulXHPU11OViurE3DFXodIc7NMo9NmAMNELJCS7dNWzpHhbuMgxN2zuLgwsCE6zBGVdnYjHji2T52bxn9TifsrMjBL37TJdm/y2ZMeNUlJwMQErZ9tms2zWzJNljyICSLsoSNVMiDIdeQ75hKS0jjnJuJo4XSlGW9ob5vcy5p5VrHU+fAz0qttNInNu66+ZwJWhHJxlnbdtqqH4Xq24ZFn2yf8ntKHoK1fscxZ0NFTWS18SKGELFiFmNTxQuS40JND4SEecTmEuH4HdU8bqvlnIaC8DtppSJeW4g8lr3AhhN1x4iDXyvYfA/EcdJ7WcOSjsRjRGTeX1duOePYrfGsER2Trr0RYnRaHYZDe/jdKAyGYex8HW5aTs7z/jMcI1m37fyD5WBxGDDbLaoD4Fpj0iX0ljC6ko31ZOefuXW2gx1zo+khV2FaT3Df9zoFnlkYTO6+QWLSObdlSsuzASfpq4Te0P7Fqy8wm0KrFZA3KEjoCQtDHYOribwmEzrubFgfv8xtSedV6pKrrIXT1Qz15ky0fOLM3gFtad2zbSZ7LZM9oNpk9PHE4yC1jr/0wsr19967H5yIJWgjo1MAu7fm+3VcaIvrr77hMgAy/rf/xIuMlanKTbDErxn+IRu+JkBaeaV4LRmSqC2c/G9jUVfWqNRqmMagMzGp3jFjRYVUYWol4FDENCrplgyxYhDNybCWy0kuZROak/277hvpW97YAiR5k/s0Jcj2IDLrdud+MyEMQSlmSEJNaq+HuPnZcCGtT625Syk1rX8nNEgPPzsNuYgx7ok81snKVbm3kU1ZM/A4iVJbfRoVVT1XtYKoukYU6Oo9xIhE+MbLK6/aw08fbvQ9z4vhCs5gyCE9/G4UzjtxB965jNNNeY9t5GcoGbAUSdd5CSvFq87s4ebLT8X2mS7+z/fdYBRbhgl3ITLznvHXtbcoGkBGNOwNVy19iuY0iKzJ/5ig7FvoyyF8vU7hJP1IAh+oAQBvvv4M9IelcdlrF6etkpAmv9lyXrK4VRmsUlswbPlHHVOo0U9cfJMSjhrLthTU78ptWa41UCeOcl+3xWTq5DRg+Uk87SS1PcTmSMEtb3/hqo5wBmxcKoOV1tT1PNOt6gAD6aYj16Q5Gvp+TASFMCCOu3hc6vmg7s2brtRJTy2tKuwCYjXMEm8mPJqcw7bBXpu2L31fTfpR940l1JMCy5Oc9dAoEUTm3bUxgog3OLGKV+8nm3qnoAZ5lmtECY/tgu5Lq8SxbJ3p5i1rOe/MSpCNAy5trLrtLzGopJ8XBFx/1l6cd2L+dMa1hiaXVa5UUulIG5ogHo1GUmiQNcXX6v5NLfPR80HLq0YzCsuJSe92irGNDjxsPPfs34I6zXv0ff7lay7A6cduHeuZbdg9V2BX7dE898QdeOgpUX4YIo/EgJe2+8zjttfXKkt6C9MdZ58887htptzueoC9Vju3dCfKY55dHGDrTAdvnT8LBMJn7n9iwxjhnKSvEmm4ixVM4hYuovVOVyWwG11MhFJLJ02walgDIW7V3Oa6OLDC8GUXnTgRN6PGcucyexEqF9PyBTW72QrFwtrIZJnZmHdMQLAsZYk4ErBagg7UnqYGUcmTJS4xxtfI+pBYY01khbTaWGOeFbw+AEV06zbJOpKGcFhO05KeVOvgzTD+Pbk2tdyq+6WbYnxWy1RixUB7yXTN7Ylb0st24h8JKeza440z9r8m4PV32UuRHhailbgYtx6aykxeUREP5I65Lg4erki6DVVK5knRjC0fBzmyVtbtZQVE9yOT3hTDWv7v27sN+/ZuW1YbJgVt5ef1Ej288fRsq5yKklpBh3HZsnhyjQ130V4wqvJdJiBf+ss4cXQ5YEU9ZwnXoUtLKQhXnZEvVbsa5IwDkktiDXhAVRDBXIs8V1gu/vMbL1/6ogmDDSlvvHppS/9y8B037MM2FX6Z81ZMC1NJHCWiPUT0fiL6Yv3zmJbrXkpEXyCie4noHerznyOirxLRp+r/Xr5+rbdI4zdZwAFaeLELylZh0ZaWBtGIWrFYpSI5iQLEEpbcxrM4KA3ZOvv4HXhufZT0JLGcLY9JxkqOnQeklJS21LU+K2Nt/OA/n1/2M1NMwo15NCC6/hXa3MTGkl7mLekmnCzez7rfbcIp4rXa6skWb9tOTYat1TCSFVjPVfNgsZziLVVjNJj865akMe76XQzhIa57PDkRrvs2BRM71G3Rck68Hvl66fx+kpxLRgbakKRmtRRddaapmFV9+4arTs8mfadKGD9vuWInl5zO5DytLqRzjnKhEtOuApX3PCWeHW1tjXuR/J3UerOhYFZBEmVNjRdV+1JvAgfhXHzq7jXrT9mH7ee8nofl8pW9SSCXB6f5g8RUV9dwcr++dqmY9I0K5jMs5yeFH37Jcxv5URtle59WdZd3APhACOEcAB+ofzcgog6AXwPwMgDnA3gDEZ2vLvnlEMKl9X9/vh6NzmG228HCQJhiKujYUpSrTJELdwmKIsR9kTevBpHXFWDyU2pxWE7EIjoKyz3iml3U41QPyaE/LDHT6UQvxei2qZj0+ufe7bPLfmaKXPy/owm2zmqkhIAx2y2wMJRwl05t7jEWPIIibKLgEiUKLoePxGfWVs9gXfz6vnwIWcOSnlgJjaURqYVRtzOJuUby3vF+7UQnlQO6/5YTjzsOcmXb7N8lXI+TIwGoiiV1X5W6zKVtM1d30eTWhlZIEpzuAySkV4wdtVetoCXJGpNKYPlhQtx2cz8mu2U6X5BURxFM2vuxEjCR0/tIHDu2qEel1I4Nw5QhVVZyu1aVYqlOYC2IcO2Zx07EGvrH33/Dqu+RA49bTnEVS/RkS6COi1woC1uYefz0Nakin1bD2kxYDz4D5I1L08K0wl1eA2C+/ve7AOwH8GPJNVcDuDeE8CUAIKLfr7/3N+vTxPEw1ytwuD+Mv2vhP4gLB9FFzBtFuvFqQW+tgUI4pAoCAGjS3z6hUkv6RgALkm+7/gxsqau5/MrrLx37+4M6o3/Ue+tn5axgq0XOSuZoom0zyJGkmU6BH3vpeQCa1nHAWqb15iikI8RQMXHTK1IHUWqZVMT2qO8gjUlX/06rnOQ8WDoELT6HmveK7YoyghrXaCumDgshUCMpfNUYMadZXnEMsE3KlTASQMi6TaLXSZZM8uXd9TUcchMVFJaFqmes5XC8PuA5tXNLL8b4jt01GRmShjMyYl7DCCvsNMFtGJSVJ4bJeCTuSLy3aPazzH1rmbUeBa2k2Tju0/ZsxWl7VhervZbgeafnZ/xbyCvz6wU2Etg21fk/4LU3+uyQgmgi52CsN/rDMJFchqWwkcJZp0XSTwghPAgAIYQHiej4zDWnAPiK+v1+ANeo33+AiL4NwCcA/GgI4fHcg4joLQDeAgDHHXcc9u/fP4HmC770xBCPP7HYuO/+/fvx7OEF3HH7x/DogQXcffeTKAh49MAAn7zrTjz11CI+/vHbcejQYezfvx+HDh/Gx2//GO6/v4/FA1UoxwMHS9xFD+Hppxfx4Q9/GM88cwi33/4xPProIu655wl87ZkSB/vApw89gCdUG/TPHd0SH7/1ljXV+O+7bxFlAPbvf3Cs6w8efBZ33XknTtshi20XgP37v7jE9w5i//79+NFLCZ+/62P4wgMDPPhYif37s0MPAHj0wGF89rNP4csHSjwxA+wPX2m9djm4+5EBDhwYTHw+HWk4uBiwsLiIgwcXTF+19dtZAPbv/wcAwIc+9CE89dQh3HXXnbjv4SG6BGw7+GU8+eQiPvGJT+Dpg9XaeebZZ3HHxz+Of/jKAI/PAHNdwlefLvFJPIwnn6zWxeLiIm679VY89NACPocDWBgGPPi4zJ0Pf/hDOPjsIXz847fjkUcXcc89T+K+Jyuz8vYe4WvPlvjs4Qdx4MAAt9xyCx577DA++clP4qsPDBCeLPD0YiXQn9pCePDxEnfeeQBPPLmAW2+7FY88uojPfuYJfPnAEE/MEji/8eBDhK89VuKOjx/AQw8t4s47H6/W/2MFnunXqvjjBQ4cGOCjH/0o+oOBvMttt+Lw4iJuv+1WbJ9Zem1/3yWzS87VvzkwjP314tO7Ro4MhkN8+tOfwtce6uPzOICtXeDAY4Mo527/2G348pcH2NYD6LEOnnpyEZ+44w4crMeoPxziI7fcgocfWcDf3PMEHt1a4OlnDuO2227FwkI9Rv0+bv3oR3GoP8Dtt34En//aAF87MMTd9CgePTDAnXd+It5vWAbc8uEP4eAzh3DHHXfgge2VLLnnwQEefqS5Lvfv34+nnjyET951F151XIFn/+EJ1NNsLDzbD+j3B6ZPnnjiED75yU/ikUf6uPvuJzD36BeqNjxUteHTn37S7A3VXD2MOz7+MXxpy/oZTr71nGD647HHD+Ezn/k0Hn9yCMwVOBACvnagxMduewyHFxZw22234smnFvCx227D008v4M47P4GvPdTH58IBPPhMtSZmnvwKHnt8EbfffjueefYwPvSh/Tjw2GF89jMHUT5QGV4OD0Kcs4fqOfLwI9XexX21UfEP/7CIrV1g5ol/iGsCqMZwYaFafw88uIithx7C/me/tKZt4X2P8Uw/oN/vm8/6gwE++pGP4MEHF/GFhYdxYEuBxx9v8hIAePKpQ/jkXXfiSw8NMdcB9u9/YE3bP0l80zk93PLhD615mNF9Tw7x5FP5/ltvrBlJJ6K/ApA7vvEnx71F5jNWbf4rgJ+vf/95AL8E4DtzNwkhvBPAOwHg3HPPDfPz82M+fjzs/eqT+IN/+Azm59XR8O/9M8zPzyP89Xtx803Pxx/e/0lccskZKIhwx1NfwpVXnIc/+IfP4NprrsDsZz+G+fl5zNz6AVx//XX4zOLfYd/ebVWd0689jSuvPB3vvu8zeMELrsfcXR/Gddddi/c+fDcuuvA0bHv0GTz2zCIuO+94fODhL2B+/vr4bP75sRdMtgJEDnctfgFFQZifH30QEGPrJz+Eq666bNnVDfbv3w89fo/feT8ev/dRzM9f2vqd3/i723HJJWfimXsfxTHbZjD/grOW9cxWfOFh3PHU32N+/pqlrz2Kcbg/xHfhXmyfeVDGjufoKNTXbP/sLbjqiovx+N98Db1OgSvO2Ys/vf8eXH3VJfh/v3gX5udfgNmP/zWuu/Za3Iv7sHf7LLbPddH/6pO4/PLT8GcP/A3m529A98N/iRtuuB7ve/QeXHD+iTi0OMTT9z2G+flLgPf+GW6en8fMxz+I6669Fu99+B5cdOHpwFefBADs2TaDziMHccm5x+OTB+/DTTdejt+57xO4/PJzcR/ux7kn7sCjBxcBAKfs3oKn73sMV165D398/914/g1X4D1f+ywuvvh0PPXFR3H8zlk8s1B53k7bsxWP/92juPrqs3DrU1/EVVedjXvLL+OMvdvwxLN9AMAlp+3GJw/ehxtvvAydj/w15ufn0fnwX+L5N9yA4qMfxE03PR87x6jPv0RvAwB69z6KWw7ci/n5axGHpx6Hf/Wxv8Dll12GTz97Hy684ETsmOvhjqe+hPn5a9D76F/h+ddfj8+Xf48922Zw4cm78JHH7sU111yA3/zbOzE/P4/iA3+Bm266Ee++/5O45OLTcfqerfitv70TN1x/HXof/3D1Xvvfh+c//wYM/vr9ePHN83jyrvtx4EsHcMnFJ+HTz/wDrr7qefif91ZjHuox23LXh3DN1VfGQ4ie/NRXcT8exvz8ZY259Euf/QiuvPJCXHzq7jF6w+LgwgCdW/7KyNb/eM9HccUV5+OuZ76E551/MuYvrsqzLt7zNXzu8Fdw2aVnYv+jf4v5+evid7of/SvceMP1OH7n+IcPrR5Wbv7a52/FlZefh7eecQyICP/nrvvxyN8+ghuufx56d34EN1x/PX7ji3fguuuuwju/cAeuvPJi3PHM3+H8C07E7MMHAQCX7tuDjzx2L6679mLMfOZjuHl+Hr/+xdtx6aVn44az9wIADi0Ogf1/ifn5efQ++le4/rrr8ecPfRYXXXga5i8YfbLztHHbs5/Drq09XHHmsVGG8Bh2PvyXuPGGG3DLk5/DeWccg/kxyhWuBum+99ThfpQFDPrAe/GCm27E+x+7G+edeSyec+w2/PUjn684QYKtn74FV155Ma4mwpaZztQSmFeCCdO3Vtz91Sfx7vsSXjclrBlJDyG8uO1vRPQQEZ1UW9FPAvBw5rL7AZymfj8VwAP1vR9S9/p1AO+ZTKuXj2O2zeAVtXBOwfFT7JrVLkL9E0hLzpFxr1au5qaLnd35o5IY1yOxpQxAbxnPWY6LehTGiavjUIhRrvyVPXtzuQmnhbleBz/ydeeO7WVJocPAeN7oeHB9TYyxhQ4Vq78LDlmoQ0SSUASTZBrsIR0xtCmG36hn8gXx4iQMAEkSXmp7UCFtsZ367ySf6dCdgiYfkz7Kfc8yR6qz2FAGE6MMjt9vlo2Ug8ik0k4q5/7o+66PrnuuBJOGxgAqDEa1uUo6zb/DOHWt25APMagPJuoUGKhgfp03lAqoSR9jvxIMSj5Qqp6TcR5L7oasKSllyq2O8xFBXUNq3GHvCxUaNCHZv9bgk0z1umOYpPYphC7lYtJzc7ttuxvUuWDnnjj5AhJHCtYiRHalmFaw8p8AeHP97zcD+OPMNXcAOIeI9hHRDIDX199DTewZ3wDg7jVs60icsnsLvv/ms7N/+8mXPw8znSLGpuYqUzBMyStqxqKmxCDeL+TJ6kWn7Jrwm7ZjuQckTSp5KpKnJZ/VTBRcj2c78njv28a3TqQ9zIRWxwzGmGggJmjHMHATky5rKJcQxiX6dE1wwMar65N99edQ11Y/M/kn6buoz3TsbyNxNJIgaWfj0J8JoZWkQ+Z87OO6RZqAMZGu1pxWpFTZyEKNkSYcAaACuOz0Y+o+qXMDMooKIyUnVXnW/EuwjF0J8vOlalOHYI4oLwqloCXfmcZR6imqeSNtMHXSZSjMXNbjHoseBCTz0pJWW4VEcjmm/PpjgddWLoEw1J0TdCetI3IKIyu/PI6j1kGVi7DxFaVpQifGTxvTikn/BQDvJqLvAvBlAN8MAER0MoD/EUJ4eQhhQEQ/AOB9ADoAfjOEcE/9/V8koktRyZL7AHzPOrd/LHz7DfsAMKmgSLR1KSpDNKI1QlmPVDKZHDVdCTreEHOE8U9/8Pnr9p65wzxGIbDZZpUYh3hLXefJLrpc5QbHeFhOmFNa+k3GvFkzm9eAWPmUN0qvL74ms/lGYslkpC5TwoQbgCGYQHPu61NEdcWF1Oor/1bVXRrWSKrfW7W3JrODCdeIzlVKuvOnXsyPjIRFSrxV12gvoD5kyZaNDPFkYVvdxXoTdVcy4TDyMmlfWsaVa7Zn3y+sPGkzteJXfSLvbavRSLWUdI4NhuXYx9ivFYYZD4yUp5Q9RnuFeG1UyqdOKrXzMk2g5eRFWQvr491dLQZlWZ9q3VwXw1D1X3ro2XphpltgMTmudlAG9DqyTnJeHEZ/WKK3GTSlKUIfljdtTIWkhxAOAGgcERlCeADAy9Xvfw6gUV4xhPCmNW3ghMEn00FtwtFywdcEVVMdzZAYXStYWyxCbfOY5nxarpW62swn8+ylFhJbOyZNqidxGIRjPERFtZ4zjXCXIFYkrsiQEgieB2WAsuTmrbIStlE9u8jcz1rSFUGrG2aV6vZ3s9Vn+H31u8szNOFla9okDenpuwDAsXW50uiJCBLuwu3Rh9kAwEJ/iLlukRBwIW3VQWQix3TVKlvXvPYqQin2SV+mB8qcvmdbrLWfe7+VcpMc6WGvzE+/8nxsm+maa0Xpsph0iNJKkHpgtIKlPSaakOvzBeJaQDAklr0kjG6niIqN7G/TKVu4XBREmOvlj4ePVVGmpHD0OgV++zuuanxOahxnVDnbFNX5Cht/DKYJXeN/2vATR9cBukSVEAxbVlFcxkE2JiUExcohlj5bpnF66NTutXGh+2M1GOfAASZaX3fBCSuqyd7+cA93WQ8YRRUqDAxCcHUYQ6ULN88PCOq7Eq5hwQoyYNeWLkkHJCQstY7DhrBIqEYzXILboD1i6ZTSskIZLFEQ4c/+6fMnShK4LW1/Y5JVWRjJKEAUSyoSbj7veFx75rF46tDAlrlkEgg5cZQKxBfTigogcoL7IBfWl5aRu+6sY3HdWcdm32F1MemiTJxYJ33yHEjPXZipT87Nee82Tky6Vixl3ylLUQBl3alcKSgvFf+txRMCSGgbnzibjvFGxU/Uoar3PPBUY02Udf/Vy3squPGc47Kfszy66JRdeOebrsheMyhLJ+lLgHNsNgKcpK8DzEYexPLcEHDqc2NtD5oYiKWP5WyR293XEZ2iqrk6Lth1uh4INalYSUWHUegWxbIUE8fKkFrrTAgEX6Ms4PoQHRNjq6zPkcg3hk+vQVGO9fLiGugSt948bElCM4JRvJnExmtVKBvTz8A3qWEseUZWABecvGtFfdqGUZuSyCAYiyq3h0NMCqoOeJvtdvD04UGzj5Pva4t8TOqVSyXEIrA3MfF+LIP05kjkuNAKwkff8UL1efOOM90C/WFF4Rqxw6E9HGe9kCoKun+ZjNuTYmX96NCX1FuQekIACW2L98XmsKTP1ed3AM2tdaBOxN1or8JN7XUKnNBSQag/DB7usgQ2kqfcR2odMGTrU/17tIprAaeIa7TemWvJWgyVy5nJx7TQKZqnSo7Ceh7owYenTBq9DqHvJH3NoUMwWFHlWFEd/iFVX8iQDDmWXMgH53Pw6L3txefEa9ODaIpCWQ8hCrMl3tJeuS+fRJmcbJp5P/kpCoK+Xser87VrQXQWBiVmu53s36LFX1d3UWEOEiKh2p6xJLNSo09i5ivSxE7u41y4EWM54SM5EjkutILABLfNMt+tLek5bw3PqWkifbpO+tX9XP2UsC5dlSd6gWBDmlo9MUzsy/Uz0EwCaY4Ig+fvRsM4Xur+sERvgx1wuNGQMwhMC25JXwewe5GJbF7A6ezs6o9pKEt6DHN6Kum0cPyO2UYiyyikxGalGOdYZo6XnTR6nQL9lthXx+QgljwWnNa6CjTJNZnvCbGNlvSEyL/txc+t72O9WUzwKSEx3K7YPh2TrhSKuMZbEswk3EUSR5GSgqxXYGV9uRQuPGUXdszmtwRd1aZTkDlhtEreLJqeAkXA5T6i+DSS3kPm2npAU0WFMaqKRfMdVk4Qc5a1NlLa6xD6w3rMky996J/Pr6wBE0SnIFONhsdAV2MRy7cN75Lx0pWIZGK2yVodk74ZEkcZZx+/Hb/4ukuyfxsGTD10qYFEyc/h519zIbbN5JVxRwWPST8KYWW12sF10g0LMWhLlbD0yv0ryTy8aWnC8iuvv3R9Xkjh9Vcv7zAHLpm3Woyz6a7GejYKlUvbSfpaQydxAhUp08mhQEqutXtexp3d7OmZBfZZiVUxrjNqEG4dk57uijrEpjrmHjXZzlSC0aSo/iwl/dqjpt9l0jhl9xacsntL699jaUGy7YmVJRIFI09sq/7rFFSVbiVRhtLv87XSB80QpVylkhRvuenMeL8Vx6RnvsfhVTmkZTMZzzl2+gfHXHrabmyb1SRNatZrxUm2J1uzHlEplhAowOZ0pLDJ3Wv2ahPH1pkuzj85X42qXCMD0Gowjmx43RWnrlNrNi9yJVenBSfp64CsexFNa2C0mtfEAPozpMk3zcORAOA1l56yHq+0KowS5su7z9IxppXVaPJkuluQk/R1gLakA3liFAxpkKRQS+StOz9nlTUVLeqH8zqLhxmxRb+EvbZG6iVLn2OvpfhZW8k+NlQ26lGvMzeo9AyKJWTZqyHtzNV4b7qMh2VAt1Ngx1wXr7u8JgvKQ2Bi0uv7FbEPmqR/HE/ZT7z8edU7ZJSk1aCtnOBJu7bg+24+e0PFtWr8+2+2lmEJJxIjkQ7HjESc1PwmVQVpDOVRF0zYaMR2pRhHQVwv3PL2mwFMzkt9tKMK7Zt2Kyp4YNI6gN3YIf5uhSAgVrdIIqA3e21tU1UnkvjAzYJJCeoy2dRz+NU3XIYL1+BgJ7YEOtYY0ZJXrZfTj92Kb79hn4kJNaUTya6RuOqUtVafYpk+i6uUQBEUKauY5okgEmhzmxDMGk8PR0pfrxGWo26nrfephX5dESRZUOpHW6TKd64ay2Jd13zrTBfveNl5xmKVKt1VjHxh5WVK+sMyYtLHkBfLQVu96T3bZvDqS07OKikbEaTWDhuJohKqiLh4oFTYpVYeyxEEsZ7XlVK1Di+1DhgsI9RqrXHanq0AxAjhWB3sQVzThVvS1wE3nnMcjt02iweeOFQlrUEWE08EFl764KOGy5RJBHSmvTp8YpNgUpbAcgyJdOoxW1f/oOyzMfUqDUcDmMQyST5+xxxefcnJeOCJQ40azNHDlPFUMcnndZazyupDeTRBId0OKIu8spozdGiMTpCW72hLs7xXlAcNy3wzRGBSnqjloISEQRRUzX3OsZEShLl4etvJfCR5vISttGiGpl1/1rEYlAGDOgkzFz6ynJKGk7YyLlVvOjfHNiJ06EoakiVWc+WBCirsEmnYWf4ZvLYGtSdlM+OkXVKCc6NY0hmT9hYdrdByadpwkr4O+JGXVIlp9z9+yJxillY26BTaSm7d5tU1SijWFkNg82wGjIltlhO2jC0He7bN4K3zZ03l2UcTzMFC2sKsrOQmlIXJXMNTxe58CaFoO+Ydyf3MEdFBecJADVJjvh9fwrY7/TeTX/1M+55Na/26T/v6vYf1Tz49FAA++o6bs1/JHQRzw9l7sXtrL7lGeRHUtZecthsAcMsXH0GvU2TzCD7+Ey/KhpzkMOmkxXHqTW8GsSzKl5BxE96FxAPF3ymtFwhol8eb5RCjcfDRH6tKcG4kSzqjGomN1abNiMFw+ucZMJykryNYUJna50pd0+Qi57KPVg1YYWjc+psAk3LXs1VvGti1pYd/dNXyEmYd4+NHa8WW5zqTdYaxkkdCrizfiadKW+SrOdOsYS2Ks7WoS130dC3mlQd1Q9Ou3Bq1oR4U303es2mNrp6zvhM/egfqGtGapOuyjWnb03CPn3v1Beb36hr1e+a1uDpWTs4d31ILOvsOYelE8+VgqXrTmsCesHO29bppQ3typNyvWlOKkGuDUPQ41fcZbUmHWpubZ6/S+J4XVAnITMx5LWwkTHqOH6049Zgt+PN/euO0mwHAY9LXFdqSw5a9VFxFYkBKCEYyok4lhf5sskferzVWc6iIRqqsOI4c/OCLuHZ53sKs450HZUWWeC1ociGW9GBISD7cRdyc1jJv3f4MUQbsHJQDj5LY3cRSrBVxkziur8l8Ng3wWuO49G5LToYm0dpT2IZ0+eaUj20zXZywc27Vcm615zP8zCvPN78PhqMt6Vo23fqOF634uWsOUspw/ZEouWlFMVJW9+aJsaPkMRHyWtgmwY+/7Hnm9xc897gYC75REMJkvUVHK4gIu5THb5pwS/o6gi2/0cLCfnxzDYww1GRCXOzN2NbNkKDEyLnvVwKPvzvyoUmwIVjKShlCZd2KFSiiYisMV5OQqs46f6qfJcmJmtCbv6lr+Q423EV7wNTnlP5Dh7vYkA/LIzeGAs7v1O0U0bK91Im7qacwf83SC/jqfXtw1RnH4JGnF1YVJ8pJryvFdz5/n/n933zjRdg6076FchgJsAHraWvUxp+omKJZbYiTn/U0NqExWNqzyQfwbYDpPBF8d13acyOhIT4cmx5O0tcRZVklXI2qysKaMAGNP6YudlsvffNgOcleo5AqK44jD5rw5siwudYkVCMh1Tr2m5BaxfmaQq3N6jnqMzTJeWq5aijV2jrZ9n7QIQT5ko7TBldS4nJ9nYIwWKJGWS7Rc6UgYs1q5Xdczumk42CpcrfZCkIbELEefT2PtaIacy4UkY/XIJnfrBiPwDu/7Qrs3jKzNi/iqBToJfIkHJsLTtLXAP/9TVdkPz9j71a89MITk2OuE2seIEQDwR4/HFIBCr56Y+zkY2IwnMxmmcYpO45M5EJTsuQ1aGtdaKwve2Jp8/s6eQ7gY+s1GVffidekISwqbl2tcVK/p9eK8iDvwI8gvtGUUQag2yGctGsLts506hOU7TVp6E9u3FYDTXrf9uJzlv394XB9CcxGUbCWQhqm0qyTLieFcv/rJFMdo76UWD9+x/g5BI7lY7ZbtJ4a7Nic8NFcA3z9BSdmPz/7+B04+/gd+NqThxtWtggOdzHJPNWf5LAVa13cLJsBozrQZPWbZX8YTDk3x5EHPqwmTRjM1bGNoSxkreLmmpqIm4otNSQ5VMeJ65rqZAiJ9mYxjKUx5D9vfAapOmOU9LJFRkwBfAT6r7z+UhARHnzyUMOSniatTbrWsM5DeNuLn7vs70/akr4UckaYjYi06k3DAwVZW/y5hIOJUjrp6jmO5eO/fuvlm77EpcPCSfoUEAk2mpYmTjqzLvvUxQ5om9xGKrw/DgZlie6IqgjjYt9x27B3x8atmuBYPTiOOJ+HUf2bLUfxyHoVspLmasix9s3qLoBYzW2ynKxFhrWOW2IiiaKJ9T1X3SXxjsn7NetQTxPVoUFFHIMqJt1ek5bZ02M0CbBFd6WYVJjduNgsxpPcuRVlqU7f1Z4eWMNQrrCBY3pwgn7kwUn6FJAj4Awt6JiwixAMjZhZYPKb4VqjnJAwv/nc41d/E8eGhiEH6nMmtgDwiZ9+MQAhzBJi0h533hYhxkSwQ6IY6JrqOr48d9AQINZwm3xHGUKfXithNdYbMP3FPSxhvF/dosAwsaRz4m68prN0culysFqFpT8h48C4oM3C0tEMG9QGIV2sQIxBJOGX9SerrZ7jcDiacJI+BfAhKLmSYpqUpMlvcthKMD9zZH+jw92ijnHAJ7s2Dw2SMBCu0y3hX6rCSmN9cThZeyjCsFThLvXT9NrjH0zem8pD0zKZ+zz+O+MtM/Hqo/Mz1wUlYEJFOlSdHqnB9eUZvaLAYmpuXwW0YrYSzHU762rp5ZCQjY5GTLpaN0LW7TzXoS/8j7IMWEcdyOE4KuAkfQpIY/40dChLLiRGJ/PIhr45qgg4HMsFx6T30+PEOVBWgQlc5k/mmqqWejtbC4HDItJwF2pYDTXxFkMyE25rfUf8u35WHXpT6jwUsqE1rS1dP2zvkbFCdzrULK8Y7PtN+jTG3LkSy8FdP/2SdTUObJR8gqWQhruYxFETk66JvNRLZ0WEQ6IcDsfk4CtqCojueGVBe/lFVbKpWAOhaiaLqE8PRdHx6w7HkYYyVBWOCgK29uRkS2PJq8FEQoeNNJNDq8+LEWsmJquq8BkOCdDxt1phlnhd+V68P8evJy2O9yWdhKdIvwqBmTb+/U1bMNNVJD1jSR8V6fCeH3z+qtugD85ZCbbMdJa+aILYKPkESyH1gMT5yPQ8jUmPIWXW4LTeMf8Ox9EAt6RPAfrIcRbi/+Vbq7KNEgYTALTE1cKGymyUjXxc9LyOq2NMlGVVBvFnXnmBCbfIJRGaeG7kLZns2mdrYfaZIaBTSEhLJOzZHBIVBqD+nYYj5+LXY11qwCje8Xo0k1KnhZR8dYpm/xWZMWFceMqu1nv/1rdfNVYbNkv4CGOzhCGma8HmSMg+xUSeSHIldNiYk3SHY/Jwkj4FVHGmaeWHCnGzNsTAoizTJLPN4VZlfOpnvm7aTXBsEpShIoTaigvkrZRi+W7WcJb76drn7c/UJ/5qy6JO4tZhMFwJA9BhL4i/S7stiQnqWUiU7ba4+o2AbkH45itPM58VtDISffN54yWAbzY5l8s52ojYNtsxXoZYmQji2SnjvOdreB+SMRmMIOlvvOb0NWu/w3Ekw0n6FBBrnaNpAY/u7oCR18RrkScjGxnb/LAFx5gYBuuKZ+St2vXaUWEj6TVS+7zdyhmru0CFk8FawU1eCKAIu6xXExqDprIdSRCSNc0hOwjZd9gIKArCv/mGi8xnubKMP7yCeuZt2GxyDtgc7X3Bc4/D88/eaz7T1Vx4D9LWc4Yek+GIOvTpXHE4HOPB2dI0wKF+WXe8ru6SP8wkKOKiN3SH40hDaCHpbZWRJDwlHyoWTxVFeyiJiUmPcbjcHvlZaG8WNKnmL7BlXazu+pESx65igAMr3vzvzWGNBfIhSD+0gpNB2++/ueTcZglDJCJTXpPDisSSnqwFQjwJWy9ND3dxOCYPTxydAjjpLeuyh7Xe5RLc9AEv1f02z0bucCwHwzomPYfmuuB482ZSm1wT4ppqK/QRAuKJpJSsLf5nevpvGr+bkmtWCNJHamVCW881IdosS7szIiZ9Ethscq6K0Z92K5YPDm+x1V2SPCiIV4rhJN3hmDzckj4F6HjXFEIeZLNPN76UuLDAdDiONDDxTpEPZeHyilBJbfZ7BVUH7DAZziFa0pEmc6pQFlhiHj1eJtSmQrS+p9VdlNWdLZfVr9aquRmssQBw+p6tOGHn3Jo+Y5N0BYDqMKfBRihyv0zEhGYSa3l6AF1u/Q3rMDGHwzE5OEmfAsTS1xRoZW29QwgxmaxZD7p2N+obbhp7m8OxPOTqbbeFsnQKSRzNrYsfeclzsXfHLO5//FCW/Ov7hGAPZ9Hk2SxNsp+pj+RzFeKW3i+Gu2QsxZvJkv7dN525qu9/8J/Nj/z7Zgt3mekU6A83T3tzYM9ualTKeTV4X3I4HJODk/QpYKmjvitDumzg6ZWcTCfxsJvLDexwrBa5OunD+ljQNPRE4zWXngJgdBWSUlkPjVXbhJ6FWI0lJfuSONp8RjPcpfaElVp5T75xlKztfXu3jfz7ZpNzvU6B/gRPXJ0KVGazHKBHWe/t+3/4pvVvn8NxhMNj0qcAXdIqBW/SccNGc7Pn6hNAtXGttPSZw7HR8aKW8ny5JEVAxaQjZIk8IyAfRgPUZR9J4s051lZbcm38ObcpCRVQz9I/5SV0Yp5UctFhOpvJkr7W2Gx90e3QpifpnBcVE0l5vme8VOecsGPd2+dwHOlwkj4ttJF0hJg4CuQrwHCddMZmqx/scIyL32g56CYXb86fIyaGticyppUpNPrDEt2iiImjkpCq6qSDrfn2Pla5ts9Kn6lDY0pN+tUfckr6cTtm8w0/wiGHvG0OzHQK/Ld/fMW0m7EsHJ/MrRiGBTmsqjoBeHN5NRyOzQon6VPAqNjKYRnqyhL1tchXdykKaljdHY6jBaOSrnXSJ6+LtyWlALUFPMW5J+zAlpmO8WRxQipDx5A3QmIySak6/ty2g0NrdIMkHC6ngH/kx25uafmRjc2WIE9EeNHzTph2M5aF2378Reb3GI7F87SUMqdD33QcjjWHx6RPAaOsEGy106XYclUsOnwNbNUJh+NoQC7pOnqhYK3XAPC25FCdtsRtAPiDt14v96M6B6TgZ6jvA9byjTS51K7JdIXG0BiQlLzTf69D2dKlPdvt4GiEFw5Ze6QlFHkNlCWkclIAts500Ou4jc/hWGv4KpsC2DKRQ1lKZYnq2iahH5ZSDismyfkO5jjKET1LysI9OiZ96ftxyUapvy5JoTqGHBBDePrsWAM9tbqbv4Xkd75mbWuPbya4jFt/6DLAVV5GNa/nep2j1qPjcKwnnKRPAaNiyNNj0HPJUkGFuwDV34/dNrMWTXU4Ng3Yuq3rj7cttFJqNLaCk+X0iYs6CVSXeoxKNRPs5NlE9mf2WXWdRp2IWhSV4u5wTAOcPD1QBxXxvnO0enQcjvWEk/QpYFQMOVvSO4WyoKWW9KAOWyHCnm0zeJ+Xv3IcZXjd5aea30NdFtGEu7R8t1nqsP2aXsFVOixLp8JWiYn5IQgJoQ/8FdVWG79emvAZaVinIAycpDumhXrqlbrCkScyOxzrBo9JnwJGkQMu/9YpCINhyNZUL8sqJl0fw+zxgY6jDb/0LZeY33V1FEkczRPcQVliZok1wwFnNz13Ly46dRcWBmVciVKSLlh7fAxrUfeJlVustV1KOMphMdq+TwB2zvXwQ0nSq8OxXmAlclDvOTedcxwWk7KSH0uSTR0Ox+TgJH0KGBVbOSyDcY3naqqzO30wDOj5CW8OBwCpSz3X60SLdJsNultQwwJ4y9ttjG0Vkw5sm+1i22wXX3rkoMSkQ4fB6DhzHYuur63/zv8Idp3reHVdrnHbbBffes1zAAD/9hsvWnafOByrQVQiy4BOh3DhKbsa16TJpg6HY3Jwkr7BwAk6qIVjzhpYhqoM1lyvQEEeF+hwAHzCo6yVUWFlX3/Bifi68080n522Z6v5neukx/upf8fqLkjPLJBrbaUWCXchVWIxLXEniak2yRQA3nD16fmXcTjWCCYm3RN3HY51h5P0KeMXEusYh7Ccf/JOvONl52WtgW+85nTM9Tr47hvPXL+GOhwbHC+94ETs27sNTx5abC1fyqCk7nkb0kt0nLmuypJepBWEqGSrxFa+d3UfyT+RWHWHY/rg+T0MwS3mDscU4CR9ynh9Yh3jpNDdW2ewe+sMyjI0rIE/+Yrz17GFDsfmwLdcdRoA4BP3PVaR4Uz50uWgUdccmnhLaIstmdg8zMiGu8j3och6rJOehL04HNMEh3V9w6WnLJnD4XA4Jg8n6RsMIdgYP9+oHY7lgYnFJCzSaSiLrtQi5Lwm1aAYp15do6szqVNE1d9snXSKpSO9NLpjI4DDsf7dN1087aY4HEclXDWeEtqSwIb1scsMP8DD4VgeOOGz+mVy99WWeV3isUnkk2threQS7iJlVNmSXn1ufzoc04RvQQ7H9OAkfUpoSwIjt6I5HKtCWVulc+VLl4M0YVuvzRiWkh4+hmaNdh23rsNdTEiMKukItMfSOxzrDTcUORzTg5P0DYZTj9mCrTNescXhWCk43jtXvnRiz4Dcv5XCGEu6WNZNMnhyDdRPN2E6HA7H0Q2PSd9g+J3vuqZhufif33X1lFrjcGw+BIQ6cbT9MKNxUAagaMkPiZbv5HTRXAgMuC2wlWAasenJT4fD4XAc3XBL+gZDzrV44znHTaElDscmReCDwNoPMxoHZWiWV8weZqROOgWaiaMmRMaEu9i7c2JqevKow+FwOI5OOEl3OBxHFDhxc7UW6SaJ1qeJVsmpmnhzDfRm4qi2tlMk43yf9Hkc6+7RLg6Hw3F0w0m6w+E4ohCiJX1199GnhAIVKS8Vq85Z6qlugE0ctdZ2XQc9/b4h7W5LdzgcjqMaTtIdDscRhYCq4spqq1JQwtI7RBiWybMSi7dYw/U1rDCo8JmWhNNYN31VLXc4HA7HkQAn6ZsIVzznmGk3weHY8NA1x1cDndgJVIeMlZn4mSJ5mC692LhncshSeo1OLvVwlyZ+6zuumnYTHA6HY93gJH0T4Q/fev20m+BwbHiUZWgQ55VAl00EKpI+SEzpZWpJhySFmjrpqsa6JuHZcBc/K6EVN597/LSb4HA4HOuGqZRgJKI9AP43gDMA3AfgW0IIj2eu+00ArwTwcAjhwuV+3+FwHH24at8enLF326rv88arT8fzTtoZf68s6faaGG/OaaEk1nB74iiZii0h6N/U/aBi1lf9Bg6Hw+HYzJiWJf0dAD4QQjgHwAfq33P4bQAvXcX3HQ7HUYbts13smwBJf/H5J+Dk3Vvi752CMCzT8BQVlkKUlGMU6JNI05NLU+jqLw6Hw+E4ejEtkv4aAO+q//0uAK/NXRRC+DCAx1b6fYfD4ZgUOgVhmLDqNLSGCbhOWrUWdba8tySIZmqqOxwOh+PoxLRI+gkhhAcBoP653EDD1X7f4XA4loWquoul1cMQ0ClGs+lYJ70OjdF11bPXQkJkHA6Hw3H0Ys1i0onorwCcmPnTT67VM1va8RYAbwGA4447Dvv371/PxzsmiIMHD/r4bVJMc+wm9dwQAoZliPfbv38/nnn2EO74+O2474EBQgDuPPQVPH1w0VyzsLCIj912Gx57bBGf/exTeOBgwGOHS9w1eBBPPWWvfeKJQ/jUpz6FLz8yxJYusJ/un0jbVwtfe5sXKx07PS8d04OvvaMba0bSQwgvbvsbET1ERCeFEB4kopMAPLzM24/9/RDCOwG8EwDOPffcMD8/v8xHOTYK9u/fDx+/zYmpjd17/2yyz31ffb/6vjO3fQDXX3ctvvqJ+xEAXHnBCfi9L30a8/M3xWt6H/0rXH/99fijBz6Diy4+A1sfPoivPnEIV1x6Cv74/rsxP//8eO2vfu5WXH75eXj8cw9jx1wX8/NnT67tq4Cvvc2LFY3de+08d0wPvvaObkwr3OVPALy5/vebAfzxOn/f4XA4lo0rk7MKONyFa7XkTgkNQSWOIn/gkQbXZ/doF4fD4Ti6MS2S/gsAXkJEXwTwkvp3ENHJRPTnfBER/R6A2wCcS0T3E9F3jfq+w+FwaDzn2K0Tvd8fJGcVDMsqVh1Ao3KLQI4XZYLeVt2FDzcqy4DuErHuDofD4TiyMZU66SGEAwBelPn8AQAvV7+/YTnfdzgcDo39/2x+Te9fhoBCkemc9TvWUg9sbZdr01KLXPVlUAZ0Cj9rzuFwOI5m+C7gcDiOWKx1hZQyNE83zdU4j4ccEVR1l3xoDFBVkXFLusPhcBzdcJLucDgcK8Q1+/ZgpitilC3mGvwrW9Srf4f4WXqtWNKdpDumi/NO3DHtJjgcRzWmEu7icDgcRwL++5uuNL/nDijihNF4DYSMZ08cBTAcuiXdMX38xQ/dOO0mOBxHNZykOxwOx2pRHxHKVVzMn1CF3fApouY00tx9APzEK56H2a47Oh3ThR+o5XBMF07SHQ6HY5UoA9AlarGkq7KK+rNckikqYrRrS29tG+xwOByODQ831TgcDscqUQaOIW+y9BCChLaQrerSsLpLtUaHw+FwHOVwku5wOByrxDC0Hz5UcXOKP2MJxlx1Fz/EyOFwOBw1nKQ7HA7HKlGWAZ2WcBcA6jAj9dGImuoOh8PhcDhJdzgcjlViWAKdIp84KjUY1UctJ446HA6Hw8Fwku5wOByrBB9qRETNxFGow4zU59kTR1sSSh0Oh8Nx9MFJusPhcCwTb7j6dPP7sD58qLKk22u5TnpFwIWB52PSHQ6Hw+Go4CUYHQ6HY5n4t994kfn9+28+G70O4eDCoHFtrJMOsZLzzyyhd0u6w+FwOOAk3eFwOFaNE3fNAQAOLgzyISzInDzakmRaOEt3OBwOBzzcxeFwOCaKNIyFyypKbDpf1wTHtjscDofD4STd4XA4JoQyk/hpyypS/f9U/83a0ssAFM7RHQ6HwwEn6Q6HwzExpCEtjHjiKORnLtylDMEklzocDofj6IWTdIfD4ZgQApox5bpMekXWOTk0U93FSzA6NgDedO1zpt0Eh8MBJ+kOh8MxMQTOEjUfxj8mQS9omNKDx6Q7NgB+/rUXTrsJDocDTtIdDodjgiBsnemYT2ziqKqTng138Zh0h8PhcFRwku5wOBwTwlnHbcMffO/15jNOHI2lGOvPvbqLw+FwOEbBSbrD4XBMCESEuV5qSbeHGOmTR9PqLh6T7nA4HA6Gk3SHw+FYQ3DFl/SQIz6FVMMt6Q6Hw+FgOEl3OByONQTHosewl/pzD3dxOBwOxyg4SXc4HI41BsGGsvDPJNolexiSw+FwOI5OOEl3OByONUQ8xCj5vKru4jHpDofD4cjDSbrD4XCsMfQhRlWMevW/FF4n3eFwOBwMJ+kOh8OxxuBqLkzM28NdnKQ7HA6Ho4KTdIfD4ZgCuBwjAOyc6wLww4wcDofDIXCS7nA4HOsAjjdPrecA8ImfegmAypJObkl3OBwOB5ykOxwOx7ogIEh1l+RvM91KFHviqMPhcDgYTtIdDodjHcB10hmcRGqvCdn66Q6Hw+E4+uAk3eFwONYB1aFGUnYxd+LoMAR0PCjd4XA4HHCS7nA4HOsGfahRjor/k+efiZmOi2WHw+FwAN1pN8DhcDiORPzsq843v+vQFk4OTZNI/9nXn7vm7XI4HA7H5oCbbBwOh2MN8B037DO/c7gLI3fiqMPhcDgcDCfpDofDsR4IACBx6LkTRx0Oh8PhYDhJdzgcjnVAWSeFVlVeKuRqpjscDofDAThJdzgcjnWBOU2UONzF4XA4HI48nKQ7HA7HOmBYBhREUoJxyu1xOBwOx8aGk3SHw+FYB4QQUNSmdI5H93AXh8PhcLTBSbrD4XCsA0y4C1Cb0p2lOxwOhyMPJ+kOh8OxDihDHe4SDzPygBeHw+FwtMNJusPhcKwDyiB10r26i8PhcDiWgpN0h8PhWAewJZ3h1V0cDofDMQpO0h0Oh2MdUIaADhFC8OouDofD4VgaTtIdDodjHVCWYklng3rweBeHw+FwtMBJusPhcKwDQgCokDh0IvJwF4fD4XC0wkm6w+FwrAMG8TCjqrKLh7s4HA6HYxScpDscDsc64N9/88XY0uuYzzzaxeFwOBxt6E67AQ6Hw3E04JUXnwwAGJYBnYKq6i7O0h0Oh8PRArekOxwOxzpiWAZ0iyrgxSm6w+FwONowFZJORHuI6P1E9MX65zEt1/0mET1MRHcnn/8cEX2ViD5V//fy9Wm5w+FwLA//87uuNr8PyoCi8Ih0h8PhcIzGtCzp7wDwgRDCOQA+UP+ew28DeGnL3345hHBp/d+fr0EbHQ6HY9W48ZzjzO87t3Sxc65bFUp3U7rD4XA4WjCtmPTXAJiv//0uAPsB/Fh6UQjhw0R0xrq1yuFwONYYb33BWQCApw4N/EQjh8PhcLRiWpb0E0IIDwJA/fP4FdzjB4joM3VITDZcxuFwODYaiAhEhF6XcP5JO6fdHIfD4XBsUNBaVRcgor8CcGLmTz8J4F0hhN3q2sdDCG1x6WcAeE8I4UL12QkAHkXlLP55ACeFEL6z5ftvAfAWADjuuOOuePe7372i93FMHwcPHsT27dun3QzHCuBjt7nh47d54WO3ueHjt7lx88033xlCuHKl31+zcJcQwovb/kZEDxHRSSGEB4noJAAPL/PeD6l7/TqA94y49p0A3gkA5557bpifn1/OoxwbCPv374eP3+aEj93mho/f5oWP3eaGj9/RjWmFu/wJgDfX/34zgD9ezpdrYs/4BgB3t13rcDgcDofD4XBsNkyLpP8CgJcQ0RcBvKT+HUR0MhHFSi1E9HsAbgNwLhHdT0TfVf/pF4nos0T0GQA3A/jh9W2+w+FwOBwOh8OxdphKdZcQwgEAL8p8/gCAl6vf39Dy/TetXescDofD4XA4HI7pwk8cdTgcDofD4XA4NhicpDscDofD4XA4HBsMTtIdDofD4XA4HI4NBifpDofD4XA4HA7HBoOTdIfD4XA4HA6HY4PBSbrD4XA4HA6Hw7HB4CTd4XA4HA6Hw+HYYHCS7nA4HA6Hw+FwbDA4SXc4HA6Hw+FwODYYnKQ7HA6Hw+FwOBwbDE7SHQ6Hw+FwOByODQYn6Q6Hw+FwOBwOxwaDk3SHw+FwOBwOh2ODwUm6w+FwOBwOh8OxweAk3eFwOBwOh8Ph2GBwku5wOBwOh8PhcGwwOEl3OBwOh8PhcDg2GJykOxwOh8PhcDgcGwxO0h0Oh8PhcDgcjg0GJ+kOh8PhcDgcDscGg5N0h8PhcDgcDodjg8FJusPhcDgcDofDscHgJN3hcDgcDofD4dhgcJLucDgcDofD4XBsMDhJdzgcDofD4XA4NhicpDscDofD4XA4HBsMTtIdDofD4XA4HI4NBifpDofD4XA4HA7HBoOTdIfD4XA4HA6HY4PBSbrD4XA4HA6Hw7HB4CTd4XA4HA6Hw+HYYKAQwrTbsG4goqcBfGHa7XCsGHsBPDrtRjhWBB+7zQ0fv80LH7vNDR+/zY1zQwg7Vvrl7iRbsgnwhRDCldNuhGNlIKJP+PhtTvjYbW74+G1e+Nhtbvj4bW4Q0SdW830Pd3E4HA6Hw+FwODYYnKQ7HA6Hw+FwOBwbDEcbSX/ntBvgWBV8/DYvfOw2N3z8Ni987DY3fPw2N1Y1fkdV4qjD4XA4HA6Hw7EZcLRZ0h0Oh8PhcDgcjg0PJ+kOh8PhcDgcDscGw1FB0onopUT0BSK6l4jeMe32OJogot8kooeJ6G712R4iej8RfbH+eYz624/X4/kFIvr66bTaAQBEdBoRfZCIPkdE9xDRD9Wf+/htAhDRHBF9nIg+XY/fv6g/9/HbJCCiDhF9kojeU//uY7dJQET3EdFniehTXK7Px2/zgIh2E9EfENHn6z3wukmO3xFP0omoA+DXALwMwPkA3kBE50+3VY4MfhvAS5PP3gHgAyGEcwB8oP4d9fi9HsAF9Xf+Sz3OjulgAOBHQwjPA3AtgO+vx8jHb3NgAcALQwiXALgUwEuJ6Fr4+G0m/BCAz6nffew2F24OIVyq6qH7+G0e/AqA94YQzgNwCap1OLHxO+JJOoCrAdwbQvhSCGERwO8DeM2U2+RIEEL4MIDHko9fA+Bd9b/fBeC16vPfDyEshBD+HsC9qMbZMQWEEB4MIdxV//tpVELqFPj4bQqECgfrX3v1fwE+fpsCRHQqgFcA+B/qYx+7zQ0fv00AItoJ4CYAvwEAIYTFEMITmOD4HQ0k/RQAX1G/319/5tj4OCGE8CBQEUEAx9ef+5huUBDRGQAuA3A7fPw2DepwiU8BeBjA+0MIPn6bB/8RwNsBlOozH7vNgwDgL4noTiJ6S/2Zj9/mwJkAHgHwW3W42f8gom2Y4PgdDSSdMp953cnNDR/TDQgi2g7gDwG8LYTw1KhLM5/5+E0RIYRhCOFSAKcCuJqILhxxuY/fBgERvRLAwyGEO8f9SuYzH7vp4oYQwuWoQnK/n4huGnGtj9/GQhfA5QD+awjhMgDPoA5tacGyx+9oIOn3AzhN/X4qgAem1BbH8vAQEZ0EAPXPh+vPfUw3GIioh4qg/68Qwv+pP/bx22SoXbX7UcVL+vhtfNwA4NVEdB+qUM4XEtHvwMdu0yCE8ED982EAf4Qq/MHHb3PgfgD3155HAPgDVKR9YuN3NJD0OwCcQ0T7iGgGVdD+n0y5TY7x8CcA3lz/+80A/lh9/noimiWifQDOAfDxKbTPAYCICFVM3udCCP+P+pOP3yYAER1HRLvrf28B8GIAn4eP34ZHCOHHQwinhhDOQLW3/XUI4R/Dx25TgIi2EdEO/jeArwNwN3z8NgVCCF8D8BUiOrf+6EUA/gYTHL/uxFu9wRBCGBDRDwB4H4AOgN8MIdwz5WY5EhDR7wGYB7CXiO4H8LMAfgHAu4nouwB8GcA3A0AI4R4iejeqxTAA8P0hhOFUGu4AKmvemwB8to5rBoCfgI/fZsFJAN5VVxkoALw7hPAeIroNPn6bFb72NgdOAPBHlZ0DXQC/G0J4LxHdAR+/zYIfBPC/aiPwlwB8B2o5OonxoxA8nMnhcDgcDofD4dhIOBrCXRwOh8PhcDgcjk0FJ+kOh8PhcDgcDscGg5N0h8PhcDgcDodjg8FJusPhcDgcDofDscHgJN3hcDgcDofD4dhgcJLucDgcRxCI6Fgi+lT939eI6Kv1vw8S0X9Zo2e+jYi+bcTfX0lE/2Itnu1wOBxHKrwEo8PhcByhIKKfA3AwhPAf1vAZXQB3Abg8hDBouYbqa24IITy7Vm1xOByOIwluSXc4HI6jAEQ0T0Tvqf/9c0T0LiL6SyK6j4i+kYh+kYg+S0TvJaJefd0VRPQhIrqTiN7HR10neCGAu5igE9E/JaK/IaLPENHvA0CorEH7AbxyXV7W4XA4jgA4SXc4HI6jE2cBeAWA1wD4HQAfDCFcBOAQgFfURP1XAXxTCOEKAL8J4F9n7nMDgDvV7+8AcFkI4WIA36s+/wSAGyf+Fg6Hw3GEojvtBjgcDodjKviLEEKfiD4LoAPgvfXnnwVwBoBzAVwI4P31seUdAA9m7nMSgM+p3z+D6pjs/wvg/6rPHwZw8uSa73A4HEc2nKQ7HA7H0YkFAAghlETUD5KgVKLaGwjAPSGE65a4zyEAc+r3VwC4CcCrAfw0EV1Qh8LM1dc6HA6HYwx4uIvD4XA4cvgCgOOI6DoAIKIeEV2Que5zAM6urykAnBZC+CCAtwPYDWB7fd1zAdy91o12OByOIwVO0h0Oh8PRQAhhEcA3Afh3RPRpAJ8CcH3m0r9AZTkHqpCY36lDaD4J4JdDCE/Uf7sZwJ+tZZsdDofjSIKXYHQ4HA7HqkBEfwTg7SGEL7b8/QQAvxtCeNH6tszhcDg2L5ykOxwOh2NVIKJzAZwQQvhwy9+vAtAPIXxqXRvmcDgcmxhO0h0Oh8PhcDgcjg0Gj0l3OBwOh8PhcDg2GJykOxwOh8PhcDgcGwxO0h0Oh8PhcDgcjg0GJ+kOh8PhcDgcDscGg5N0h8PhcDgcDodjg+H/B6/7Ph36YbJsAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 864x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "u_sim = MRPy.from_periodogram(SU, fs)\n",
    "f1    = u_sim.plot_time()\n",
    "\n",
    "sU = np.std(u_sim)             # r.m.s. da parte flutuante\n",
    "pU = np.max(np.abs(u_sim))     # pico\n",
    "gU = pU/sU                     # fator de pico\n",
    "\n",
    "print(sU, pU, gU)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Zero upcrossing rate: 0.503Hz\n",
      " Peak factor:          3.550  \n"
     ]
    }
   ],
   "source": [
    "sU2 = np.trapz(            SU[kF], f[kF])\n",
    "sU4 = np.trapz(f[kF]*f[kF]*SU[kF], f[kF])\n",
    "\n",
    "nu   = np.sqrt(sU4/sU2)\n",
    "lnu  = np.sqrt(2*np.log(600*nu))\n",
    "g    = lnu + 0.5772/lnu\n",
    "\n",
    "print(' Zero upcrossing rate: {0:4.3f}Hz'.format(nu))\n",
    "print(' Peak factor:          {0:4.3f}  '.format(g ))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Como esperado, a taxa de cruzamento do nível zero é uma frequência muito próxima à frequência natural do sistema\n",
    "sujeito a um processo banda larga. O deslocamento máximo em 10 minutos portanto é:\n",
    "\n",
    "$$ u_{\\rm max} = \\bar{u} + g \\, \\sigma_U = 0.2 + 3.55 \\cdot 0.0398 \\approx 34.1{\\rm cm} $$\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "__Questão 2.5:__ O número de ciclos que ocorrerão no tempo de 10 minutos, considerada a resposta a um processo banda larga, \n",
    "será aproximadamente a taxa de cruzamentos de zero vezes este tempo de observação:\n",
    "\n",
    "$$ N = \\nu_0 \\, T = 0.503 \\cdot 600 \\approx 302\\;{\\rm ciclos} $$\n",
    "\n",
    "Todas as questões acima podem ser conferidas por meio de simulação utilizando-se o módulo ``MRPy``, tal como\n",
    "mostrado a seguir.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAADmCAYAAACj+j1MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABaXklEQVR4nO2dd3wcxdnHf8+pWLIld1k2yL33Jjds7LNNx6FDgECABAwBEhKSAH6pSYAAAUICBDA9dEIzxsbGBp9770XuVbYsy7Zsq5e7ef/Y3bu9vW13t6eTdM/387F122ZnZ2dnnnnmeZ4hIQQYhmEYhkksXPHOAMMwDMMwdQ8LAAzDMAyTgLAAwDAMwzAJCAsADMMwDJOAsADAMAzDMAkICwAMwzAMk4CwAMAkHER0KxGVxjsf9RkiEkR0TbzzEQ1E9AQRbTHadvhebeUyc8cifYaJBSwAMI0KuRE2+/cegM8AdItT/t5T5aWGiI4R0QIiuoeIUuKRJwM6AJjpREJENJSIvES01In0ouB5ABOUDfldfBfH/DBMXGEBgGlsdFD9u0Nn331CiAohxLE45Q8A5st56QLgAkgd7V8ALCaiZnHMlx8hxFEhRJVDyd0B4D8ABhBRX4fSDBshRKkQ4kS87s8w9Q0WAJhGhdxxHRVCHAVwSrtPCHFaOwWgqIaJ6BYi2k9EpUT0LhGlEtHdRHSIiE4Q0YtE5FJdl0pEzxJRPhGVEdFqIrrQRjar5LwcFkJsEEK8CMANYBiAB1TptyKi94momIgqiGg+EfVXHb9VzuvFRLSdiMqJ6FsiakFE1xDRLiI6TUQfEFG66rqLiGixnO5JIpqr7ZjVUwBE1EXevpqI5sn32UZE51s9qHzfGwG8CeALAL/WHFfSvp6IFsrPuZ6IBhHRACJaJpftEiLqqvPObieig/J13xBRW5O8+KcAiOgJALcAuFSlkXGr8pNrVB7y9ggiWktElUS0HsAonfv1I6JZRFQia3o+IaL2VmXGMHUFCwAMI9EFwOUApgC4GsC1AGYAGAFplH47gN8CuFJ1zbuQVMo3AhgI4H0AM4locLg3F0JsATBHvrfCe5A6lssBjARQDmCOujMH0ATAHwH8AsBkALmQOtpb5LSukJ/pbtU1zQC8JKfpBnBazneqRTafAvBvAIMBrAbwKRFlWFxzDYADQohNAD4A8EuDqY6/AHgWwFBIgtvHAF4G8LCczzT53mq6ALgJUvmcB6AngHcs8qPwPIDPEdDGdACwzM6FspZmFoC9kMr7ITk99TkdACwCsEXO/3kAMgB8qxYiGSauCCH4H/9rlP8gdT5CZ/+tAEpV208AqADQQrXvCwBFAFJV+zwAXpF/dwfgA9BJk/Y3AP5jkqf3AHxncOwZAOXy754ABIDxquMtIHXWt6ueQwDorTrneQBeAG3t3FM+3ky+ZpxqnwBwjfy7i7x9p+r42fK+cUbpyuctBPAn+TcB2A/gatVxvbSnyPuusnhnXnX5AxgnX9dTdc4WzTXq7ZByUeUnV7NfXR5TIQkpGarjN8nnuOXtvwL4UZNGK/mckfH+Nvgf/xNCsAaAYWQOCiFOq7YLAewUQlRr9rWTfw+D1KFtk9XwpfK0wqWQhINIIEgdBAD0hSRgLFcOyvnbDKCf6poqIcQOTR6PCiGOG+QbRNSdiD4moj1EdEY+7gLQySJ/m1S/j8h/2+mdKN+nB4CxkEbzEEIIAB9B0qaYpV0o/92s2deMiJqq9h0WQhxUba+EVGaxtjPoC2CTEELtSbJcc85wAOM1deOQfCzS+sEwjpIc7wwwTD2hRrMtDPYlyb9d8vYInfMqIsxDP0hqZUASBoxQL+FZq3NML99qYX8mgMMA7pT/1gLYBsBqCsCfrhBCEBFgPo14O6TyOiifC8jPRUQdhRCHVOeq8yxM9sV60OKT/wYyHDplYfZuFFyQpgn+pHOsUGcfw9Q5rAFgmMhYD6kjaC+E2K35dzjcxIhoAICLIE09AFKH7AIwRnVOc0i2BtsizTQRtYE0gn1aCDFfCJEHIBMODwaIKBmSHcI0AENU/wZDGu3f5sBtziaijqrtkZDKLM/m9dUICHQKRfLfDqp9QzTnbAMwkII9NkZrzlkHoD8k+wdt/SixmT+GiSksADBMBAghdkJSZ78nW9x3I6JcIvoTEV1lcXkTImpPRGcR0WAiuh+SfcFayMZkQohdkIwQ3yCic4loIIAPAZyBrFKPkGIAxwHcQUQ9iGgCgNcRqkmIlksBtAXwphBii/ofgE8B/MoBY7gKAO8T0RAiGgPpOWbJZWeH/ZBcE3uTFMgnRQhRAWAFgAeJqD8RnQONgR+k8q8F8I58zvmQjBXVvArJZuMzIhol14/ziGg6EWVG9rgM4ywsADBM5NwGyRPgOQDbAXwHYDyAAxbXnQegAMBBAD8CuAySFfx4IUSZJv1VAL6V/zYFcJHcSUWEEMIH4OcABkGyUH8VwKMAnPL5V/g1gAVC3+/+fwA6QyqHaNgPSZiYCeAnSNMn4WgW3oSkLVgDaeQ/Vt7/K/nvagBvAHhEfZE89z8FkqHmOkgCwoOac47I6fkgeXdshVTWVXC+rBkmIkiyy2EYhmk4yH781wghBsQ7LwzTUGENAMMwDMMkICwAMAzDMEwCwlMADMMwDJOAsAaAYRiGYRIQFgAYhmEYJgFhAYBhGIZhEhAWABiGYRgmAWEBgGEYhmESEBYAGIZhGCYBYQGAYRiGYRKQRrEccMuWLUWPHj3inY0GQVlZGZo1a2Z9YoLD5WQfLit7cDnZg8vJPmvXrj0uhMiK9PpGIQBkZ2djzZo18c5Gg8Dj8cDtdsc7G/UeLif7cFnZg8vJHlxO9iEiq4XHTOEpAIZhGIZJQFgAYBiGYZgEhAUAhmEYhklAWABgGIZhmASEBQCGYRiGSUBYAGAYhmGYBIQFAIZhGIZJQFgAYBiGYZgEhAWAesiuwhJU1/rinQ2GYRimEcMCQD3kzg/W4lBxebyzwTAMwzRi4i4AEFESEa0nou/k7dZENI+Idsl/W8U7jwzDMAzT2Ii7AADgPgB5qu2HAPwohOgJ4Ed5m2EYhmEYB4mrAEBEOQAuBfCWavflAN6Xf78P4Io6zhbDMAzDNHrirQF4CcADANQWb9lCiAIAkP+2i0O+GIZhGKZRE7flgIloCoBjQoi1ROSO4PqpAKYCQFZWFjwej6P5iyfl5eVYtXIVDmU4L5+VlpY2qrKKFVxO9uGysgeXkz24nOqOuAkAAMYCuIyILgGQBqA5EX0IoJCIOgghCoioA4BjehcLIaYDmA4AvXv3Fo1p/eimazwYOSoX3bMyHE+b19q2B5eTfbis7MHlZA8up7ojblMAQohpQogcIUQXANcD+EkIcROAbwHcIp92C4AZccoiwzAMwzRa4m0DoMczAM4nol0Azpe3GYZhGIZxkHhOAfgRQngAeOTfJwBMjmd+GIZhGKaxUx81AAzDMAzDxBgWABiGYRgmAWEBgGEYhmESEBYAGIZhEoxT5dX4en1+vLPBxBkWABiGYRKMo2cq8bpnb7yzEcSGQ6finQVbPPLN5nhnwTFYAGAYBn/4bEO8s8AkOFe8ujTeWbDFhysO1sl9zlTWxPweLAAwTAOivLo2Jul+vf5wTNI1o+B0BQ6eKK/z+zKAEPHOAWPFoCd+iPk9WABgmAbEkL/Mi3cWHGPmxiOY9vWmeGcjZqzefxLVtT7rEyPgfgc0NkTR58Np3lxUv6YlGjssADBMA6LaG5sOJR64iLB094l4ZyNm3P3ROpwqr45J2l/FQWNTFzw1Oy/eWUgoWACIAeXVtfDs0F3DyDF8PoGX5u+M6T0i5d6P18U7C0wDgOrjENRhWNPO1GdYAIgBhWeq8MS3W2N6D68QeOWn3TG9R6R8t6nA8TR9PhF3K2HPjmN4+cdddXa/p2Zti/szx5JYdv8zNsR/hEzgufbGxr/m1933Xxc0CgGgoKx+qEVfXbAbP+YVQoTx1VdUe7G3qDRkPzccwVTWenHD9BVxzcOxkiocOFl3Rms7C0tRHCMVcn3AF8NKft+nG2KWtl2IABFnHcADX2zE8dKqOr3nJ6sOoriscdbbf0apda2tZ1N4jUIAqPLGOwcSB06U+T82u+rNjfmn8NBXDcevdO7Wo3G5r1lfUd8+KsYeT87i+d5Ys2zPCVRUhzaQyvdUVFKFGoe/n3eW7ENRHQsdTqO4JDo54q/1+jD67z+FdU2N14fLY+ge2SgEgLrmwxUHYn6P+jo9eucHa+N2b70y2VVYghvfWln3mWGYRsDUD9ZgU/7peGcjYr5aJ0Uz3H2sxNF0lam3aEf8agQQtlGo1yeQd+SMY3nQwgJABDzyzRbd/RFrNCO8rtaXWPMEeuVb4xU4U2E/YMb0RXtsnxviox5Bca89cDL8i5h6TWlVra1pPgI1kKm8BpFJXe7/fCMA4LwXFzmS3o1vxnaaMaKSjuFgkAWACPH6BD4w0ATcFMaItJ4O9BstT8/ebvvc8f9YELJP732ZxVS/+rXltu+nJdJm+f++3ox1B4sjvm88+cdc++8HsPaHn/rfNTjksN3GjW+uwJbD1qOy+qDFsxJAjLL4qMEgR82p8mr/lGdljRc7C50dhceDZXti55ZaD6pDCCwARMit764K+UiIAJ8AjpyujFOuAngboXbAyQb1528EOub7P99g+zq9Uv3DZxujz5CDHDpZjpLK8CMGPjsnvM7XLuHUxVcX2NfQAPr+8Oo57T1FpaiscdZIKBzjxYbwFeo9jtHgRs1nqw9huhy4Z29RGX73yXqnsxY1Qgj4YtAWKlMPdUEsBYdGLwCUVjkTOnVz/umghuW0gdpZ+ZjiLe2NevpHx9P8aXthRNdVVHtRVVtPLDVlVu4LqOa/WmfTZSzGL/XNRXtRpqqv4dzOCePMXYWh3ihOEIu6CMCwYd9xNDASJaKYdMJ2rPsJwN0fhm8z46TRl5XQHEkshnnbCg21Knd/tNaxNtcJPlhxAK+HMe1nlx+3xzbOi0Ksp5AatQBQXl2L0Q41Pj97ZQmKSswtWyN9WXqNSSRpbT96Bk/N2gYAjrr+nC6vQWWNF8/N2RHR9S/N34l3lux3LD+xYsOhU46ri83QjoynLw4WAMJBa5wZiayyaFcRnouBFiBWbmhPzNSPtaH+dmLhi09hlO7GCAzsNsoGaNdPj3z6yIq5W49iR2EJ1h4oNgxXrOc9AEgj/7yC4CkQpQ2bvfkoCupAA/rpKnsL8pRU1kakDYuEtxY7F8Y4HFfyaGjUAgBQ/1Xh4UrgJ0qrsGDHMd0mqKikCm8u3udMxlQ8MXMrZm/WD+5jR70mjcLCfw8V1V7/R2V19TQHXCk/XnkAy/YcNz7Bgaqk9iCZ/IIn4g7fjHDbDqWDrq714cipCsfzEy1GjeF/l4eqqTccOoVNh0/5t+Pli3/4VAUqo1wHYMXek3h7yT5DbWM0/OvHXf56YvQJawU39XsQmv1ChNeWrT9YbFtrVev1hWgV1K7TD30prSdRUlmjW1fCFYZf+MF6oKOXpuLW+sS3W+H1CWw5HJl3xYZDp7CjUK3FguPTWAqNXgBQcMJX/IDKKtzIdSbcxsaocTP6lnYdK8Vrnj26d4ml0GiU9iX/Xoy/zNxqukqdiyLLW2lVLV5faE9994nNEUG0RDsLoPYgKSqpMq0t1kKP8UI64ciVT9Vzf/zz/2nfwnv+tkJ4dhT5t60s8a0EsL1FpX7jtnBU2//31WacDCMYznVv6I/2//bdtpitJxAOXp/A5BcXAgCOnKqAZ0cRBKTO6qEvN2PKy0tsp+XzCWw+fBpLdpkI2zJCCMzdWogHvjC2s1m4U3rfF/xzEY6eCdY+RDKSnp8nqfcj9eB5b9l+lFbWRuxR8OXa/JCyGfyX2KwMmBACQH5xOS5/dSnuitCH/ViJVKleWRAaFOLuj6Q01x0sxpfr8gPStEUDHI5EF6kkWRcUnK7Eu0v3G6oLAWnRl/eX7ce+42VhpR2Pkdv6g6dwutyZEZdehEc91Jbv2ic2q0afrDoUfqZ0+H5LQLtjNYozs9J/bIa15bgQQtceZM3+QGOrCH3fbjyCqlovdh8rDVob/frpy00FerttfmlVLcb83XyK8PstR/1LJceqEQaAVfsi62zeWbIv6kA+doTFc575EXuLpO93W8EZv8BdUlmLw2FojTbnn8bUD9bYPn/SCwv9v297d5XuOcr7rvUJ03bILsr0htaDJ1xhQnt2NK1ZVYxWlWz0AoCAgNcnUFJZizkmKqdvTFbXmvalpG7Se/+zN0tp7iosMVSl6TH4Lz9g1b6TknpcSEuHGhEiXTvQLyqVWW8EVOP14brX7c0/2lFPEklhdNcdKMbt768OL6OqLtBpGzy11ftnqw/i8zX5+HT1IWwtcEbgMhN41PYkiuW73vNF8qqX7D6Om98ONJZ//t/GkDlbNZU1xo3Ln/63Mcio7tUFe8JSyWtdYpfvPYG7PwxdLOoaVX175nvpvTw2YwvK5TCf6s53zf5iw3IREJifF2qs6vMJ3XyHM0WoPldJavGuIoOzncPM5uAfc3fYEgDeWrw3rI5aS+GZUDsOJVdLdluP5BXm5RX6R9ifr7EWYPcdL8PJsip4fQILdgSXtfbdFZVUYdILC/GDqp13asGp7zcX4FkDGyjdsMeEoI/31QW7/bvVWA2KYj0IanQCgLphVX84VgX5exvra5sJgP5jJie9vnAPfD6B2ZsLUFXr86v91hwoNlQBajGrzuHU9fNkdd4gnVGNTzi78I7yEVbV+rD9aLi+wlJ5hit9a32Sf9AR/l7zBKYX9mo+xDVHJcFIq6lx6nMc8dR8y7Tsvk71qEevQ9t7vAylVbU4eroSj1uM0rX33FNUGqL6Vo/KrFB3Dl6fJIwbjWbM3rH20L9tLspE8vTTozO24Mc8a8ttWwF+5EL6en1+kKBlN83qWl+QRiMaKmq8WGawpPLpihrkF0ud/qzNBdhvQwNnNpXnBEqHJ4T9Ue2jM7Ziq040PCN3TPW3r5T9rsKSiJ9tzpYCnCyvxskyfWPWoX+bF7JPsj0J8I+5+sLDxOc9uvvV081aAfDFH3ag8IwzhpZxEwCIqCMRLSCiPCLaSkT3yftbE9E8Itol/20VTrojnprv/71wp/TBW1ntGlnBhoPQ/NXjH3N3wCcE7v4oMAJy0rdd+5xmK6LtKZI6Bb0Ow0lbgg+W7zdV11bX+mISy/8Czbzx1DCnf17ZIH3sw/42D+8tNTasXHtACrijaFJ8PuGf+1PK0U6nYmZMuXhXEb5cm48FKtcjtWCyVNXJ6qm0FUv4M5U1WLbnhOmI0c4683amcoQQIfcZ9fR8g7PDZ76NztyfFwicqqhBhY1ptwn/8NiujxsOnrJ13i/fWeUffdd4fRj99x8dnU4wGtnf8X6wqv0XBgHK1NVTna9w2yY7pztp3W43KSLg4a+3BNltrT9YbLsT3Xz4NB7+egs+XxPw/bfSLETSrE/7ahPu+XgdvMI4yBwAzN1a6NgiYfHUANQC+KMQoi+A0QDuIaJ+AB4C8KMQoieAH+XtiLjrw3W6nf+zc7YHfeTDNRKcMvpdvKvI9vyaIo0qDbleBXCRscWtFqvKvV6n8dFqOY6cClTwvIIzmPLy4iCpWRF85mwJjI7v/ThUPRuNjPLoDH1XLWXO98V5O/Hesv265+w/Xo7jpYGKXlbtxbsmnTEAbMo/hZV7pRHRRysPWFoaW0UvK6/24omZ2/zb2rJQ6kf/x+f69y2X76+U9LnPhUYUVNJShMFbDOY3Acmv/ZsNh3Hbe9L0yXebjuDClwICjkv1FR/TcVV1EQVGQsdKcavJvfQJv9H27CjCn/8XbLilvEsjbZwSVMbOne12JMoUm5r3lu7zv3ehSevgyXKM1LgOW93q241HTN1HD50sR5UsfHh9Qg4lLAlx87YFT1fY8QpZsMOe8LPKZFrRiBqvsyrnM5U12H+8zF/GRmV59WvLwk7bqB4Z3UP97b61ZJ9tuws7VU1/ICU02+ZpfLLqEGZtKqjTxc3iJgAIIQqEEOvk3yUA8gCcDeByAO/Lp70P4Iqo7qNTSV7z7MEDX27Cv+bvQn5xOUo0H52yEtTNb6/yz0EapeU/ZvFyz1TWgECGaqug3aqaaiSA6E0ZaJNW5/fp2XnYcviMbmd+rKTSr+b9blPAIEwIgX/M3R6iHgeA3Cfn2TZkVGtYFMFZmfP1+nyG87B6nfd3mwr8c8R6DeHS3Sfwk7x/z7Ey3YZ5l6rTn7nxSMjxbQ4vvqGoYfVYKzfSi2Wr369VI3CjKvWfBXuCVYSW0V6CBc/SKi8+WmlvQSsCdGM4WBk4VtX6UK5jkKUI5Hod+KHi0HcVtuGV5nR1ySiHFu4sQn5xOSprvCiv9uI3sk2CEgNBbb2vLVo9A8Y3F+3Fbk15qK9Tvx8hAnk6WVaNR77ZHPR9PKozRaPNwwwbWpp48ydZ+Fu66zj+/n2e5bSRokkzwuwb0lr+6xHruXTFKFLRKhh9k7U+gRMWcTGCpq5V2Z6x4bDjyyzXCxsAIuoCYCiAlQCyhRAFgCQkAGgXSZpqt7DXFu7BoZPBFai8yosftxfifofCuGqr156i4E5z8F9+ABF0G0WzxHKfjFxt+sbCvUEGXABwuDT0QzhcXIEBqhEsAICAG95cgR+2FoYEQDpWUonjpdWmoxV1JVfcdIDgCv3HzzdGFKnt9YV74PUJ3PZusEHhxysPYrPKBzxwz+A7bFMZxAUiNwY+Or1lap1QXeqtWObSNBSKcKMYKBKkxsQs/Gy5xXrYpPP34a+NbQG0zzpLjgGhHpmEYweg5t5PQjVMytSG3iPqyYa1PmHblkSxAdBSVuXFOfLSrIpx8H88oS6n2muH/VXSFqp3bz582lJJEpgiFEHvvPBMFZ6cFdAwGb1mtcHcGU1gG6u6OWPDYV2NYSBvznSO6jqqqNsVDYx/7j9Cmx49jLx1iKRnVuITBPYHf2tlVbUR+9dru3fl2/jbd4F3WaZp638la/BWhunxoWT7Nc8ex4MsJTuaWgQQUQaALwH8Xghxxq7VJhFNBTAVAFLb94DH4/Ef83g8mDZHqnA+rw+b9uQHHQOAouNFOFMhsOmML+jYsiO1QectWboEx09IndmpU6eC7qO+budBqTLu2rU75F6A9GEL4cMw7XTD+vVB5z+zqgLllQKrV61CfobLb2WvpLXjpBenTgekwFtfmYtbBzQBAGw5Hpz30xU1mLN4JQqyklF8Uqo4r64vR6VXUnG+9o3UiL8hq16V6xYtWgSfz4f1B06iVRqh2gts356H0lIpLyOfkq5fuiygtlu2bBkyUwPvbviT8/HeRc0AAGXl0rvYuXMHTpZU++/z5bp8XNw1BcUpwALfQdT4gL+tqMTfxqYDAPIPVfnzVVErfcmnT0sNyzszpMZ7zZrVKJWFjRnLt2HTcS8q5PYxP/8QKk64MKdKGu2++oWU77xtgQ5+/wHp2EfLzOMNPPLf+UhNAo4W++DxBEYrjy4NCJYej0dqBIX0e3NhoKH+4ccFWHfMG1TO2gaiurraf+5rnnIMaJuEn1aexqqjtUENTllZYLT5wmfz8fL6QDmpUbZPnarAhg0b0LyJlMq+Y6d1z1f4bPYC/LC/Br/s3wRnzlT4z733x2ChVrm+tLTU//u6l+bgzkFNsLXIi6Ljgef/fr40DXKqvAZFJ4ox9fXAXPOfPpXmqo8cCWhjZv6wAKfKa4Jset78+kc0SwltH9TPceBAddD+0tIK/OyVJRjZPgl5dBLNi3fixMlKbN56BtVen24a6u19e6tRXgt4PJKQUFbtxanTJXhz9irM2hfogDZt3gQ6GmhOT5wINNRl5eVYunwlCk5VoKJ2MYRPeu/Ll0tasJ378/33PFpYGZKfBz9cjGVHatGudA8OnPHi+Anpvu/NkOrzrl274amR6nF5jcBPh2owpVuq//rnfwgsaevxeJB3IrjezVyyHrOXEiZ3Sg6694oVK9A2PXiMqM7Xnr17UFoaSEsrlN3x2lz0aZ3krwc//rQAx45JdXXXbqmd/PvH8zE4Kynous1HSgGDuunxeHC4VHpv2qkahZVb9+L5w7V4csZGnJuTjBovcOqUF+vXr8ez39Tgt0PTUHSsEk9vL8CmbTtQUi1wda9U3bQA4ODB0Bgjx44V4p43fsCFXVIAAHk7d8v7JWF2yeLF/vwqKAaxW7ZsRdMTAaNAbd0rOBrQwi5evBher1TGZWVlWL1mNcrKqrB69RoczYx+/B5XDQARpUDq/D8SQnwl7y4kog7y8Q4AdCe8hBDThRC5QohcAHC73XC73QCAHoNHBu7hcqF169b+7QkTJgAA1hZ6sf9MsHrd7XZj+qYq/28AGDd2HNq2aQMAaNGipX+/9rqePXsCALr36BG0/6uCFv5rkpOSQq4dMnRo0PnbT/rQtGlTjBw1Eu37DAs65na74TneDCeqAw2NJ7/Wf2zw4MFBeQeA/v0Hwu12o1VryZayoJxwJKkDAKC8afuQ5wCAc88dD5fLhSov0LRpU6SnpaF3n75o1iwj6Pyx55zj/913SC7cbre/fNXpnamRnrtnr14orw3OX6dOHdG1Wze07jEUb+9Ow6ESn/95cjp29Kczdtw4AECLFi0AAEPlchsxYgTyZa1Gu+xsf+cPAGfn5KBbt+4499xzAQArTkv579e/n/+czp07AQBKLIyyz+rUFdXN2iOrXbY/f263G8crAx2S9PxuEEm/+w8Y4D/23t50VMjlrVeHACA1VWqEOvYbDgBo07o1fM3bY/tJH1q2DNjCZmQE3oPS+QNAQdNuQekpeWzVqiUGDx6MkSNGAABOV4mg41oGDh2OIzXpGDziHOTLfX6bHkNRqimj3DHjMDB3DDIyMvzprDrqxTnjxqN//wFo27ZtIM3ho/y/m2Y0x+IjgW/vRKWUnwWHav2jnSG5gfMVnlpZiQNy3dV7TrfbjY6dOgXtz8yUyiqrXTv069cPbrcbm4q8/u9cfa5emt26d0OnTp2Cjh8s8SG5RVbQ+YMGDgrKh7rNOVYuMKugKV7bRph/sjVSkqXvt0OvQQCA1MzW/ntmt8sOyY+3SXP/vseXVaKNnPYTyyVhoSajnf++lW16YvmxZMM65na7MTM/uLP7fEcNPtlejec3JQXde/To0SF1RP2bMtsjMyO4TVCz5IjAwAED0EZuP3/9QznatpXKrafcTr6xqQq9BucG52dfkmHddLvd+PZwuuE9AWDxYakRKKoQ6NKlKzp37ozmLVpg2LChWFvohdvtRla7djhTDfTs2QMz99YY3g8AOqnqlEK7dtnYVpKK/sOkb+qzHZLgmZUlKazHjz/Xn19tun3kepiSM0D3nPbtA+3ywNzRUBR8GRkZGD48F82aZeCt7WSY33CIpxcAAXgbQJ4Q4kXVoW8B3CL/vgXAjHDTzisISKJaVxMz9cvF/1psmq7ZtX6Lb83+b1VzzPZ0GwFO6ai4lu89gRMG80B//Dx0OkNPdRyL+TBlPe7JOqphswhqSqQ2nxBB6ji1itDMZUr9eFq14vebj+Kp2aHqfLVP/E6bC+CsO1CMj1YeRFEYce0f/DIQqa/G68P7sp+8UcAcpfNTymHhziK/j776Peq5RAFAgY41+N6iUqw28ZvXo0myC9VeH1buO+G//9tLQg30vl5/GC/O2xmyH5DiKmw2iJa54dAp09gDkaIX6CvYFdgYq2h7L2rCw4arwa6V5zK+XJcfpNLV4p8qCOMGn6/J9xu+3q/TBmghg4ZI+53O2lSAmRuP4Mr/6C9O9NmaQxaRLEWI2t0/BaDeF0ZZPjZjS9gqdOkeIqj91U6LmVFsNNUAc7srALoeRBsPncLlry615ZWhDgJHkNZVKThdEWQDFA3x1ACMBXAzgElEtEH+dwmAZwCcT0S7AJwvb1vy3aYj+O/y/QAkwzIjrp9uHJ7RLFiKFY9/K1m7m3242vleADho8iLVZ0+3saKVngW4T8C2T79iMCcgwvpA1KgNBtVz/4C+5wKRFE1MmueW9uUXl+OilwLC2OC//BBq3KWTMe05Wr9fxR5C3dhrrbCNMFr9S/3BV9Z4gwwa1QKcuiPSC5hjxBdrJfWwrUZPp1BW7jsJr08YNrJrdCzFU5JcqK714S5VwJ5vNoQaSxpx/j8XYsXek7aMs4ywE49dy5ytR/1RO7XMUhm36jHkr8FTc09+tw3/VAk3//5pd9Dxb3WMRwHJIHD1/pMhrpLqdsHlkt7TYp1QuAHXUeO8agPiAAiKHe8Uu46VYm9Rmbn9QBixGwCguEz6JsxcMg+V+PDSfH3BctHOyAMv6bUZdpwe9MKMe31Cbuv0Lf2VhdM+Whl67dtL9vkXfAqX+XnH/DYg9+h4bIWLoQBARC2I6Bki2k5EJ+R/efK+ltHeWAixRAhBQohBQogh8r/ZQogTQojJQoie8l9b4t4rP+32W5LepRNpLFL+OX+nc0s/6lVAE7/An6uEFaMoVApGy+36hMAVry4NMj58d+l+AKEjIrW7mtD8BUIbGatAHre8E+xupnRmagiSUZ/aHe+LtflB91I3JForWPVHbewWJO1XBCSnQuhqefDLTfh+S0HE0ceitYtyaW47c+MR0zS/31wQFIFPwSp+vhX5xRW2fO7NMNJyWMX00C7trH4V3208YtuK+q0l+/DOktDRmxFK3Xtu7nZc+/pyHDRxC9Q+gXp77/FSOb0AegOHukAIYMsRfS1OuOkoKK6JViuL6glHkUJkrP1RG+2Fg2IYa/SdKK7Ndt/dy6rAVnY/PSuh1g5mGoDPARQDcAsh2ggh2gCYKO/7X9R3rofovSutj7qVj+Z3Ji9FrzKog1G8IcdA94rQEZuVSnDYX0OjUQEBN0K9fEfb4ZzzzE9B23oqTSuUInngi02SNbWKIDdAOa9al8TgKYDgtJXNWCx2o4RKVquya73Se/P6BD7Wkfxjzf/WBAtYv/1kvb9j+nF7YUg413s/WY9ocXoyyapOhjt9pf7ifthWGFYcekDqqPS8N4zvp9/gr1ONoo0ERGkFOUnwWaQKMVxtwy9cbYAXqbygp87ec8zeFJkeVbU+WxpEu6sCAsD+MFXfwW7UzgtS2tr4/ZbgZ7HzLvYdL8MLKm2TYRyDGMiBZgJAFyHEs0II/xMJIY4KIZ4FEGoVUQ8wKji70qSdDrHHw9+bHjdTt2tHaADwyoKAavHvsgvYgRPlfmEgOH/GGdRalCv4pyZ0jhlVKLVWgiBFGrOzsM2zNteSV7sPmglMZr6/eoTYO8ibn652bsSvNN6r9p/E/3RimSuN9asLglXGdtoevSmccDCL9f7u0v2447/BnZ+R9onI3hx0OO1RuFqRAyYjaC1Gi3yF07GYYeWjDoQnTButEjhV9X7Ua9gr9zcTRJwQOEPW9RChArdeSG0z/rfW+ttTeyk4zcs/7dadq9cS6ZoO/7IISe0isgzBfN+nwYK4Wsi9U1W3t0UxRW2EmQBwgIgeIKJsZQcRZRPRgwBio0ONAifD1wLWRkFqQhp7GW2kqXBUedqP0SeAZww6WDMjuZJKYwM8I56fu8MfnESJZ+Ck/6l6/QE9Yxa9WAlGI7+gKQADDYCTqDtGvbn8B76QDP+iWXjFSdTzl9Gq5bUoaxCU1QhLzdhYjbbICqPw3HojbKNFvh75ZkuIlGs1haBGCRBmZATmFLWyzZI6vKueAFZUEn0QGLMlahUjwDtlLYne97NsT/C6A1bxGOZuLTSNYWGG3dU07ZBfXIF75KibeosQ3fz2qohiE1ip4V0uYLeFFiVkaXmDbDjdxwHmAsDPAbQBsJCIThLRSQAeAK0BXOd8VqLHyfKxkuzUGC30oA2go2e9b5TnH3SM095YGGqJDZiPUJRRXkglg/GoQRtoBHAmcIc2T0YsDWN1MTWx6PC17Cws8X/QcZqaDQtFpRwOz83dgSM2BL6nZuehuKwar6yvtNSMxRojT5OQVxSjdxZNXVgqL+azzmJtAat72FkKd9meE4b2FQpzt0ptj943n5ocvt24ntGiFQRpkTSnOF5a5TdKfeCLTbqdaddpsx27n0JSBBXDznocTmEYCEgIUQzgQflfg0AvrGs8icd69k6g9+HH+0nsyB+xkJC1FJ6pwpwtktSvDTO8/qBxgxVOMxDvsg7nOzpSTzQdRiu9adtfu/Hfw0UK9CUcEzD06rJV0ooaO7+4Qtdy3Qm+WhdqyBsLhP+/2KAY8cUabZj5+kbcIwE6RSzcYOoEJyq5Jg2zleUiSE7aV4e9kr176TWHwReaxR+IBmU+W6saNhs111dtgTTfH/n1Gw18/eua2Tqq2KKSKqSnhAbfigUnSqvRddpspCY541kdyeBBPUccjfFeIA+hqBfniiVrDxTbsr2wg9aFsy7ZW2Q+/x9v6sVaAPURO+o0u5ipz+1Y+IbLxvxTUV2vl914j0q199ebJvBEoGqMKC91KQ0xQRSc1tc4qFdsVGPmjuckD8hBn2LxPdtFUd0DznyvK/aesD6JadCwAGCAE5bjq2V14yAH1/62Q7TGXnpBTupyesWOtateBLraKDUfdsmzuRCNmhV7Y6N6jpaGJsvMCCMgUUNmfl5o7JHfWrhtqpVMkS5yo8bIEJMJjzvCdD2tSywFACJqSkSPEtGb8nZPIpoS+6w1fJTQr5FY4kdFA2vUmWD+Y+BVwiQOetblVm6iam8gvQh04RJr74dEoT4L2XY0AO8CqAIwRt7OB/BkzHLEhI12xHyzJgJfY6A+qd2XOBilTA+90R/DWBFu3AyGsSMAdBdCPAegBgCEEBWImTMNEwlaN0QrN7vGxOw6suZVExIwhWEYpgFiRwCoJqJ0yIplIuoOSSPAMHWGkUgzZ4sz0d4YhmESDTtugI8DmAOgIxF9BGkVv1tjmSmGsUvi6DoYhmGcxVIAEELMI6J1AEZDUv3fJ4SI7SQow2i4VmfVOqB+2QYwDMM0JAwFACIaptmlTLZ2IqJOQgjn1txlGAu066sr7KnngTYYhmHqK2YagBfkv2kAcgFshKQBGARgJYBxsc0awzAMwzCxwtAIUAgxUQgxEcABAMOEELlCiOEAhgJgR2WGYRiGacDY8QLoI4TYrGwIIbYAGBKzHDEMwzAME3PseAHkEdFbAD6EZHR9E4C8mOaKYRiGYZiYYkcAuA3AbwDcJ28vAvBazHLEMAzDMEzMseMGWAngn/I/hmEYhmEaAZYCABHtg068FSFEt5jkiGEYhmGYmGNnCiBX9TsNwLUAWscmOwzDMAzD1AWWXgBCiBOqf4eFEC8BmBTrjBHRRUS0g4h2E9FDsb4fwzAMwyQSdqYA1BEBXZA0Apkxy5F0zyQArwI4H9Lyw6uJ6FshxLZY3pdhGIZhEgU7UwAvqH7XAtgH4LrYZMfPSAC7hRB7AYCIPgVwOQAWABiGYRjGAewIAL9WOmIFIuoao/wonA3gkGo7H8CoGN+TYRiGYRIGO5EAv7C5z0lIZ1+QJwIRTSWiNUS0JsZ5YRiGYZhGh9lqgH0A9AfQgoiuUh1qDskbIJbkA+io2s4BcER9ghBiOoDpANCkQ09eE5ZhGIZhwsBsCqA3gCkAWgL4mWp/CYA7YpgnAFgNoKc81XAYwPUAbozxPRmGYRgmYTAUAIQQMwDMIKIxQojldZgnCCFqieheAHMBJAF4RwixtS7zwDAMwzCNGbMpgAeEEM8BuJGIbtAeF0L8LpYZE0LMBjA7lvdgGIZhmETFbApAWfGPjewYhmEYppFhNgUwU/77ft1lh2EYhmGYusBsCmAmdBYBUhBCXBaTHDEMwzAME3PMpgCer7NcMAzDMAxTp5hNASxUfhNRKoA+kDQCO4QQ1XWQN4ZhGIZhYoSdxYAuBfA6gD2QIvR1JaI7hRDfxzpzDMMwDMPEBruLAU0UQuwGACLqDmAWABYAGCbBcBHg47ibDNMosLMWwDGl85fZC+BYjPLDMEw95qyW6fHOAsMwDmFHA7CViGYD+BySDcC1AFYr6wMIIb6KYf4YhmEYhokBdjQAaQAKAUwA4AZQBKA1pPUBpsQsZwzDMI2Ia3qmxDsLDBOEpQZACHFbXWSEqV90z2qGPUVl8c4GwzQaxpyVjC921cQ7Gwzjx1IDQERdiehFIvqKiL5V/tVF5pj4kdHEzuwQk2iM75UV7ywwdUD3rGbxzgJTB9hp5b8B8DaAmQB8Mc0NEzfSUlyorFG9XqL4ZaaOyG7eBIVnquKdjQbF01cOxMcrD8Y7GwzDOIAdG4BKIcS/hRALhBALlX8xzxlTp7TLTIt3FuocQt0KOSO7tnY2vS7OpsfEloYkU5/XNzveWWDqADsCwL+I6HEiGkNEw5R/Mc8Z0+C4aXSneGchLOq6Qb5zfDdH0xvZtTWuHZ7jaJpMdKSnJMU7C46QkuRiATMBsCMADARwB4BnIAUFegG8ToBjnF1f/apFeNFeMtOS0TI9NUaZiQ1O9/+d2zQFAFw+5Czd42EWqSX3TuqBUd3amJ6TmmznE2ecoiGN8s1ITiK8dWuuf7tV08g9GH45prMTWWqQnN+vfmtS7LQOVwLoJoSYIISYKP+bFOuMJQr1pYH+6PZRwTvCbMkG57REkqthtX7kcGutpPav64c6mq4RKUkuCAupollqbEekXdvWD2OxNs1Chc/MOBiymtWoqtrI033k0r6RXxwhzdMCnf7aR86POJ0W6Ynr/vjkFQPinQVT7PQ+GwG0jHE+GiSfTR0ddRpOdUHb/nphVNd3bN3UoZwwRtTH0eGlgzpEdX2438DE3rHxImgiC9Ltm6tsWRwu74Fnt7A8x0yo1Ipq4QjMTep4oDC2R9ugbVcUwr23DmNHZ6bVL++l1rJg+rfL+zuW5oCzmzuWlp1alQ1gOxHNbWhugLFucJ0w6hrSsaWt86yeJdll/Cr/df0Q+xlSiEBfreTx1+O6hn8/hxnaqaXlOTmtnJ1+satR+MN5vZy5H0I7lXB59cbozHnaNQ/PeNSq03PLAoKdzlaNUg7dYui+dvNoa1X2gxf1tp1evw6BhtyqLWnRtG6n10Y4OP//zfrDjqVlxYX92zue5gQHXF+dlIEu6Cc9oxOaFTsCwOOQpgGeRsAG4IWo71wHODXnaqdRibQhffHnQwAAfdpnmp6nPIvReWZ9j9Oqbj0uHNAeHVtJWgS7dxvRpVXY9xnfKwsPXtTH8ryv7x6ru//7+871/053QD1+t7u7//egHPNOS3mH953XM+r7xgo9VbqzBGqH1td8TLc2+NVYSXi0KkujVNWCXzS1vrnOSLJvB+uR181juti+h1oWevxn/UzPjZdxYVpKaBdxbs+2Omca07wOpwCctrMBgPOimMdXXvGILq3RpU3TiOMrPHVl6FRCNHYZCpYCgNr1T3b/qwVwXdR3rgMUo6xomfeHCf7ff79qoP+3umMd3jn8zkyN0jFZBeD5jarDUROLih8ON4/ujC7yfPCdE/TzqOUXo4xHVClJ+s137+wMJEWhDW2T4XwHN6lPOwDWc/9Gr+hPF9jXCNw0ulPwfLDD7/1ng/UNGIdZaFTe/GUuOraOTqOSbPDO7aB8i+f2DB2tPX/tYN1rOrSw1l5cMjAwoux3VqgAkGvx3avvrSekKCjfr5WQccPIuvW0adOsSci+y+Q6YkfLBgDXqDxV9ASrcDAay0QymLCLkeZn8xMX2Lp+UE4L9DurOd7/1Ui0yZDK87vfjgsrD2nJoQKgEwM7W00pEQ0houeIaD+AJwHkRX3nOmDBH92mxy8eYE9dpFZb9tdpBLKbh34kRrz/q5G6+5WXOb6XvnStvGtFxVVfjK/0yMqUysNMAFv60CRM7N3O8Lid+dFYusC9Mqkp7E576p02pGPLkHlbPeGuRXoK7p1kXyPwyKX9cPu5kjuh1fd/jUH5aBthdTpGaX5loFFROL9fNlzyxeaqSamne/bqgSZHQ7ku1/xdq40hte5rPgPp+JFLjUfdyhXndA98j3p1Uq+M1VM81wzPwXl92wWlaeZjf8/EYOF5sGaKMFpbgMEqzcoNIzv6fxt1cno2IpcMlPbZ7X5yWgXagU1PRGarpMx7Gw10/nfXOdLxMCTi128y1toufcjazj0zzd4I/Nt7pc6+c5tm+PQOyWZGT7NiRnpqkl/zopR7mgNaIcNcEFEvInqMiPIAvALgEACSvQBeifrOdYCV4crLN4SO2IiA+88Pf45WqXh6Bhq/GBWQ2q3mk8zmsP5+1UD/S4+1Ut/uZ5SsKmOjzmNCr6yg84DI3R/VDcCdE7pj79OXhJmA/m5tQ56RSoYS9qI/Twza1jtN+7xG54XbEFh99OrOx6hRX/tosEV31zYBYdIsOFLbDGtB9+yW6ZaeCQCQJNustDRQY2rL6rlr9EfxdvAZTMB2aGmuAYh07lc7xfPWLSOCVL/Ks6lzZSTwzrhHEryUo3p1KBzDt2BbgkBiRm3etIsD022KIBPuwFN5NiONQY92GZZpdG1rfQ5gHdwr+HszPjdW7tnqPslsOuBGVZ9xYf9sEIAPfh3sqTX95uHR58fk2HYAkwH8TAgxTgjxMgBv1HeMEXYMut78Za7lOeseOd9Und5bMwc/tkcby0p31bCzLe8LSJqEUV31/bqFMB8Vm32Ug8I0qAIiEzAKT1cGbWfLBmKRuDqqy3Ri7yycpVLXKsd6tMvwf1B2VIBatzCrZzQ63knWbNw5vhuI9FVxLiLLaRnt62wagU2C1YhH72iKxRzKD38Yr7t/5f9NDtr+7aQeIed8qHIn1Ro7Si6J0kOrH/0tk+/SriufmTrU6HmHdWplGuwmIy3ZMUNiUtWHSCJQKnUj2UUhrp1qIcrKXTCjiX4da2Vg+6EuV8W+Qcm/UZkr03dKB6fU838YCHGtVULJZQZTUE6tTaIWYuPplUNESNVR6yv8XiVEGtUXJzy3zFqCqwEcBbCAiN4koslwaOBJRP8gou1EtImIviailqpj04hoNxHtICJb+qLWafaypVWvu3RqQKtmqaaNaorG2v6j2yWVjrqxH6dxobE7V/O3ywcYjoi0GOVQPa+pfDStTCyI/3HNIP0DRPjo9lFBc6BWdFaNJPc/c2lEke+UUYL6Hbx720gseXASbhvbBf3Pbo7u7UIlZwKhb4fm+KOJ9mbZtEnITEvB7Ta9FFY/fJ7hsbm/H49pl/SV7x1K28zUkDlt7Xna96JXH80gCyHDKrmzDObAe2XrG5pqBVDtvYWQPROEpLK/77yeliMpIYKNxBTtgdLozbQ5V6rkTe+R9bQmigGVup7ZiZmw66mLcce5gfpj1xNI7bGhvJdw3vY5cpviIjKdMlKmh+ygJ8BFi6QBkn7fck4XAOp6rV9Zn1W1QY9pjCGVKYiRXVvhkoHtw5puVVBrHub9YYLfS8nJ/t9oNG/U9ndr2wxf332OYXpGodnP6W4e+CtcDAUAIcTXQoifA+gDwAPgDwCyieg1IrJn/WDMPAADhBCDAOwEMA0AiKgfgOsB9AdwEYD/EJHlVxmpiyqR9EHbwcxKd2yPtqaqWb3sef7kDtl3Qf/2/nQi9c/+v0sCIwClMW1qIPUDwLW5HQ2Pje3RFv/5hb6aSfGMUNfvvh2CO47JfbOx/5lLQ661azwEBIQpl4vw+M/648qhOZjUR2cOlaRyNrPsz0xLQXpqEn4hq8abmEjggPGoCAjWBOl13K/cMCxEtalt/lo1S8WTV+jPhTuJkWV/tiwAqPMVjgyiJygTAV4h8NjPAn7PipGktpyICFW1Xt157XDmcpsku/CVqjFVrjWzk5ksz8MbjsYNRuspSa4gjULbzECHpLbUd2viHRCpBACEDhKEMDYM02penOKsMNXcfuFMLpKHdbQNnj+7Q96cUZ3qLQuaLgI6GYxmFQ0QgZCS5MKyhybrTq/586hTb9QeQempSbamsqwwMyAd0aUV2mWa34OIQvqMJskuvHJjYFpaT6v98R2jHdVc2PECKBNCfCSEmAIgB8AGAA9Fc1MhxA9CCCUu1go5XQC4HMCnQogqIcQ+ALsB6FvNabBTKKkaVSAR6aoH9UZVSkepd58XrhvsD/gABCrhx3eMCj1ZpotNIz4jf2htNlKSXNj6lwuDrLiflj0WlGc8q0UaHhmVZmu6xKg4FQOvH++XPCPUaii7QVC0H/B9k0NHNOGoSZ+8YkBY0nz75ml497YRSIlgakKrMcnt3BpDdAQal4vQo10GHpvSD+kpSXhAxz+8SbIrJFTo/10izbmajQ7sotRjPc+RAWc3R0sL9yzFJU+PP13QK1QDIL9lr08gSVUXrh8hC5kETNB0jL3bNw/6diJF0Xap66B2Dj/c2Pa5nVvpfivqx1aXgbrzuXpYsE2Juj4ThQrLADDg7Ba69T5bJ7jRP38+OKYxD+zQLDVULe8i8htdKu/VaOoyQ7Zd6NiqKb74zRgA0uMNzpI6xpd+PiTInkKZBlUE86uGSlOrRgalRijvSakrY+Rw2lmZTWxNEyv5NOJ/d50T0Uj93J5tMWWQ/hRIrAirBRRCnBRCvOFwKOBfAfhe/n02JGNDhXx5X1gYueQpL/yqYWeHuDWp+y6nPKuSiDAop0Vk7hpyJtQjep3DQTTTzJNdPiS46Pp0aI4erZJC5gmVEZoaIx9TxT9beaa+7a19oyW1cCDHWk+IaNeYv2l0Z/Tt0Nx2YIz01CRTDwQztBqTiX3aBflF71EZJRIIGWnJGNm1ta57l7paKFMXU8dLnbXd6YBI6+rt47oFqd4Vg9ipqmmbrm2N5xiJyPDePiGgF5eKEDBMVB7v+WsGoWPrpuidnRn0nRAId04IfwqpffM0v1ClzZ/duOxKNm4b2zVkpK7GRcZubXqjYPX0hhDSfLSR8GM2ygWAK4fm4CfZy0krNKit+61YoKOJDJd3VGsGKFNAAPydmTINZDRd5XJRkMr7hj5SmYzs2hodWqRjyYMTgzQoyuj7H7KL5c9HBAzm7LRHZtNm2mJXTwOO7RHo1OPpde2ky3fM4iYS0XwAehPIDwshZsjnPAwprsBHymU65+s+LhFNBTAVAFq0OxuVFQEDtPTaEgCAx+MJusbj8aB3Kxf6ppzApjPVwcdF4Jz9+6vxs+4pmLmnxr+vyitC0tSmDwAlJaXwVki/N2zYgDNnqrFu3dqQa4z+KhQeO+ZPQ2HH9u3wlO4BAJSXl4c8m8Kjo9Mwa28NPB4PLu2a4j924sQJlLatRQZ2BF33yy6h9z9VfDJkX1Y6YVhmCUbnpvmP9Ug5ieapZFouRccrMSEnGQsOSUqfVcuWAABKq6UyXb9unf/cM6fPAACS4MWFnZORr5MPvfu4mwOHD1dhzx79d6+3r+REFdo3JRwtFyg8ehQAcHO/VHywrRqlpaW20gCAQyU+3WNHj1ZhR/UxnDjpxeZNZ5CaROjR0uU/b0JWVaAchUBtba1/e9/WddBCCK1/Ow/VBJ2zf/8+/++169aipqYGe/bsCXmG2gof+qUKeDwelJeXo/TQdgBA3roVfh/fXbt2GT73vn17UV4DeDxHkURSOpUVlVi5ciVqvQJLFi1CkotQWVmJrVu3AAC83sDz5eXlobysBqtWrcbhTBceGiLwwtqT2LRJev8FRw7jpn5NsHJlgf/+j4xOw5Mrgg1NAcDr82HRokUAgL2bV0GxAtm//wAAYHveVgAIKoejR4/C4ylGk5oqNE0GymsBr1eycU5LAh4emRLyzMr2wQPVSHUBSS5g4cKFgXx4ff5zthXUBl1TVlaB8nIvAMLuPXtwqtIHIYBLOrmwMN+F1WtW41jzJGw9Wovh2UkYkpWEt7cEt1EdM104dPAQTqYAHtU4qaKiIiiPBQVVIWV0fudkzDtQi2PHikKeR/v7gRFpQdtPj0uHx+PBpqJaDGib5C/r1atXAwBcRwNe4QsXBqc5KCsJB7euAQD/u1Y4c/p0yL2XLVsGX1U5AMLy5cvRJl06P6+gFoWFUv0pOSM97yL5Xurrywv3AgAu6ZqC2ftqgo7f1j8VHo8H+/ZWAwC2bNkMACg+VQwAqKqqxubNm4Ou2bp2uT/t4uJi/++qqsC3+093OhYcqsa9/dPxB08FPB4PCgsr/eWhJ8zrtSPNa4uD+oOqSimNouNF2LK1GOknpHZ73/5qwzTCJWYCgBDC2IIKABHdAmAKgMkiMDzMB6AWX3MAHDFIfzqA6QBwdrdeIi09DZA/hA9/eyG6PDQLbrcbmDMLL143GPd/vhFutxtuN7Bm/0l8X5AHt1ueG5ozC/P/OAGtm6aiVbNUrK3eIYXW3bMTAKR0AGDeLEycOBGDti7BpvzTgf0Kc2bhy99NwmuePchbsg9DhgzBzMPbkDt8ILB8aSCtObP0/6rSycrKAgqPYsiQIcDqFQCA3n36wJ3bEZgzC02bNgXKy/yXqK93A/i1f38gzbZt2iAjo8x/T+11yj4AaNOmLdzu3KD9vc9ug9yh3QLBVubMgnv0cHiObYXbPS6wT1MuHx1cgymDOmDpF5tQXevzHy8uqwZ+moehw4YBK5cBAJq3aA6cPoUmqam44+Lh+O/yA3C7hyIEnfssLNkqjTa25wU9o14ZAcC54wVcBHSdNhvT7zwPfR+bg359egPbNiMjIyMkjZtGd4LbHapu3H70DLB0cUj6M49tRO9urbGrugADB3VBekoSfiraCbd7DDBnFv58feATKamsQfLin/z3vOKiSfi9Jzj/RKpnkJ9/rNeHdx/+3n9O165dgd1SvR0+bDhSNq5C9+7dge2BRlqbz6ZrPBg1KhdtNywPSr9Xr17Ati2h18yZhe7duuNUeTXc7r74T+0CuN1upK36CaNHjYZYtACTJrpBRJiWmY8ubZriX+uWIzUlxf98ffv2hadwD0aMHOY3Onxv3yoMHNQFWLsaOTk5cLv748CJMmCxR/p2ATy5IrhMpHIhTJgwHpg3Jyj/N5+fi5lvLMcfrp2Mk6lbJJuAHVI5tG/fHm73YPQdVomikipMeXkJkpKSAK8XyUnJuP5SlZJT862srNyO2zoJfLzyYFAdIZfLf86ZjUeAjev927ck7UWbsv1IdlWiZ4/uOHKqEjVeH3q0y8DaU4eQmzsI/c9qgfLNBdhXewSDBrQHtmwIKvdFEwSembMdLdNT4VamdebMwru3j8WUl5f48ziveDNw6GBQGb1+5wW46rVlyGqRBhQexbgebeF2j/KnoX6Ou6/WtzkQ249hbcl+TJgwHJg3B7kjcgP1Xr524sSJWDeyGsP+Ns/f3ir3uHjSOEnjIZ/bokUL4FRx0DsbO3YsNq1eBqAMY8aM8dsplGw8gkPiKNzuYXhxyxLgzGlMnDgRmDsr6PpBgwYBa1ejd/eumL1P1X7PmYXHb5bcXwfkVuGLJ+djwICBwLo1aNGiJXDyJFJTUzFokLQvpF2eMwutW7UGThzHF3eNwe8+We8/58qLJuFK+TH/4JGu+eboeqDgCNwT3CHu6E+mHYBbcdGVy2LLXy4MeDrI901b9RNQUYGstlkY0P8suOX4C1t8u4BdO0P7nwiIy1J0RHQRgAcBXCaEUA9lvwVwPRE1IaKuAHoCWGUnTTM/0auGhQbr0Krlu2dl+OeW2mU28Qez0cMsFGbbjCb+OS8B4MNfj0L/syS1eThznX3aNzeNEGfH11rNVI1FfsjqfxbMvHccnrisP4Z10p9eMcNImal9gtvHdQ2KeJXbpTVekkMla9H1sw/TrjfJFfD1txMW2Mhgz+i+ShVTjua0SscVQ/RntOy8TT0XUbUNS6RrUyh1acW04IbfbBYiJYn89bxJslzf5YeYee84f7leMzwHTeW5YmUkdIW8XPK/bxgaavwlp6EYSGmruZ6bmxD6Uya5nVth2UOT4HJJtj7qb16xlclunub/1u1O1V09LAeXDtQx0jV5ibef2w2t0lzY+PgFmNw3O8Q1WHlOc68O/fwN0NgJqctCeUdJruBaOi7McL6BPFh/Z0btXNS2HnLZ3Dm+u+1wxHrTwWojQHfvLNVrk35ZLVjVoWW6/5onDIzDzerSTTrxOfTcHCNxFw2XeK1F+wqATADziGgDEb0OAEKIrQA+B7ANwBwA9wghLGMPJFFwhKtouXlMl6BADFr+fKF5LHp159yyaar/I7QbBvOTO0bjd5N7BLn79D+reVSL11yXm+O3fAZCV/uyok+HTPRolxFkZ/CJHNXKKbPUhy/ti/d+NSJon1Ewp002w3BGgt9ozSZGIXCvHZ4TZHiW06qpab2yKkUroe3zO8cEGYYluQi92qm9FczTT9YYxOoZeSncek4X/F5nUSMiYKDBt3iHSgglksLe6nnPJLtI1zAUkObltfiE0C07l4v8I8gL+mdjlCwgbfvrhUEGgtpOV1sHtfRolxHk8qoHAbpCQrMmyejatllQp63Ou0+IsN1BFfS+iYm92+kGhIom5kRAsDXOp9Z2YuPjoXnTk3WMUkxNdvm9RS4d1CEkKI5Cr+xM9MrO8Ofxy9/oG9O6/M8gCZtjurWxnFtXvHrUebzVxFC2IRAXAUAI0UMI0VEIMUT+d5fq2FNCiO5CiN5CiO/N0lFITyb88QLzVbi0kmC4I2ggEJXLCqOk7bp8jenexi9BKhX51nO6BIUlDdewsEe7TNPOxwq9RmlMmJauBODyIQErVyEEWjVNQZ/2mZj1O2nUqLjmWT1eU5POSU0ko+Jwq4ZRXkZ1a2Pb28MItQW1nVc+ZdBZ/vMy05Lx+V1j/MeMOhajutSxdbquy+bGxy5AcpIrJMDTjaM6Ba0hr+UueY0I0+IlKZ8mi1sGcce5XSFg/T2c072tv9O1qjvDO4fWGfUiUkaEuDPaeF9EkhGuon3s0CLNdCGk5mkpaGbg1quUvfq9ZDdvgl7ZwdrR28Z2wU0663DYcacmBB7LzFXzQ42wqmega3Y/rZvdBf2y8czVoTFL1IZ5gGRwaGdFQHXAoTd/ORwv3zjUUgunuNPaaR6cGBLdO1E/ToOTi7vFSwNQ56glwUjLTxuXO1wiVbvpEYkAEw1GH2tOq6a2lklVUC+Yk5GWjMd+1g/NmiT7p0kUInk8Xb/0MK6/oF+24fldolhY6v7ze2FITkvTc8yeN5LgJ+FgXJf0S6OFgYfI3e4ehsdCUzYoaQG8fONQf8At7beqrYcPX9pPngKwdVtLFJcwLbqL9KiKrVd2RkinZ8W1uTkY3zMLf7qwt99SPrdLa9PFtH4zobvl92ZUFP3Oao7MtGQkEelq1hZqQlzHGj2B1KhtliLnhXZXSiA2NXrV+UONxuCl64f6FxVrkpxkq53QurDqoQiK2qBPkXBdmJrISGj0AsC7t4aq87QV5LaxXXSvjdQXO9y+y2iFPwAYnNMSwzu3qnO3E+1CPkZSZ1ZmE8NFZ7Ron6FJchKuHBq7BX3CZbqJD7CZTYgVgzu2NA0q5Ecu4l9rIhUufyj8QDDPXzvY7z+uaBHMVMtG7zcWcmaPrAzdQClKFi7s3z6og+qkiTWhN0KOZlSkvvSTqaEditU1gCTQqDuo9JQkyym/QTktw9YQuVR2K2Z5U9xKR3Vrgz6y8PL0lQPRs11o/AElRoVVaFl/KGPV/XsbRI20okV6imlo846tmka1OiSAIM2HncGX1aBqkCzEm+XKzpLR0RLpFJFuWo6lVM9oLzd+E3V83IHgSvy4KmqZmqEmBm/v3WY+T3jN8BzDID6KYZsSKtdsffv01CTTiGarHnY2Sti5PdviP78YhkenmK9PXh8xm5P89l570zeRpO0YcvujLXuXi8Jag10IKUiKMr9+8+jOfqM3q3Xn1XRsnY4bY7D87G8n9/SHttWi1eLotcnK6mpm9Glvv2OKSNukuUbbJk/u2y6qKI9Ga4KEy2WDz8IIiwBId7vthwRWt5u92mXiszvtCUxqsps3wb9vGKorACjpf3bnaMNwuNZ5lP7O/b3+mhb61xjHtYgoDw6mpSXZRfjlGPtaVzManQCgRGBaZmM5x2hwmwSSEUJqgLSBeRSukCNYTTMI8hMOkX4kgHHAJKN8R8rfrxoId+92tj+KoZ1aOrgIi/R3kIUKXo22E7KzYt9MG52SGUbPq4xKPvj1qLBGuepTk5NcUhRMsl4ISE27zDRH1JB2s210WiR1wc6cvd37W2m42mbIc8OqakNEtpa0NqJ9izTs+7v1Spf/un5IyL5otCFv32KsBQssZiThchFamqwzYsTyhybD59M3dlRsBaJ5Bj1NheG58l+SrxOaaR0F9YJVsdbGfvmbMZbnaKPaRkqjEwA+li3TrZYCjiXhxDG3w7SL+2CKZm2Ab387Dn++UFLdrdcs72oXPQvZRy7tF1asfju0yWgS1jrm02+2F47TDgTCZzbVuoB+Z/PebdbRqI0s343QjlBjbdIhIMU8qGvbkXDRy57dLKu/A6PGX291Qat+4nk54pzRNVr3Saew04Ep0T4v0EQ5FIisk1B7CmkRcGZk63KRFC46hm10uCnrFbVag3CezSiS2gxY1V0lnLEarRFq57ZNIxK07BCzQECJjBDOWmq20Vm8onlaCu6RrURtzS/bRLvccTxonp6MJy7Tn5axg1qzQSTNg4ZDiHo34pwYoztCjbHMajSNUZ9FArPPSGu7Y+c7WBuhsKwlxeXyTy9q3Sfjgdp+5YJ+2SAivPLTbsfvQ+SM1683CndHI4wMOM1Q50AIEfRsRm243Vw/f+1gy4Hoiz8fgq/WHzY9Z9rFwZri8/plo7y61uDs8EhIAaBbVgbumWhseBctZ7dMj8pozIq6MDRxGhcRLhpgb2nhJslJUS2KYeT7a4c6metH9AKionYOJ/2bx3TGJIMRXvz0ZZFzi7w+fTjoWZIrfH2P/XqTnpqEf98w1PrEOJDbpTWqai3Dp8SVlukpUsyKPOtz7WLXgFMPgj0bgLtNDLbVPHxJX9uuyuFiZhMWLgkpALRulqq/pKxD3KGJugdIQVqcIpL5zXiTmuwKcgGsK+z0s7+IIj6CY4Q5DI9E7dwrO9PvbhbO7fXUlLEgXKFIsaC3WnrVDu0ym6CHjoV8ODg99VffCCwHHL24OKpbG4zq1gbTF+2NOi1HsPlID1zUB16fsBxk6Glt6yPx113Vc16/aZjtcz81kUAjDdPKxJ6nrgy21tZrxuuicddrg4waWzO1czODKG+Rzv+/aBCOub6wPEZz8OFARDG34wgHFxH66Cw5HD0NUVekT/esDFwmByZzkX6wIj2SVBEmGzosAFhw0QCdmN8GjI5gDqo+oV0iuaGRkkyWy6haonO5k/Yc4WIVl1yPdY+FP89dX5p1u53oU1cO8P92wpgs2r67vpSfQkqSy5a7ZDioy8hIyKwP2BXWO7dp5o9DkpmWAo8DSyM3NBJyCoDR56u7o/OVjzd/PL93SGcQ7px+dvM0eY4tsPRnXVjOk0tqhLS8dYt5vAk9miTrN87xFGTsEE7ufqETyjae3DymM9q3iNwlt6GgVKFIhMy6JJKqXh+MOesaFgCYRoOZgZddJvTKwoReWfB48gFEtmhKJDRPS8GCCEcgPdpl4Moo5unrk+o6XkQrGt0Qg4BJseDige1RWeOL6Fp1PTESMsPlzgmh9lJM3cECAGPJhf1jZzAZS6aO74a8gjNRpbHu0fNRcLoy7NUTIyFSAWbeH8bX69F9Pc6an0SRgXJaRb6mRcumKehocP3rNw3HXR+uDTtNrYubE1yX2zFiF8P6Jgzb9TqIlEYlAHz3W2fnvBiJNxwMzFOXjO3RNmoBIC1FCsWst/RtfSEWnb+d6IexQNv+5rRqGpV7lx0agHxSLxjdrY2hndNFA9pj/v0T6jhH+lgt1dyQeMAkTLwTNKpJjwEGsfcZhjFHK0NseCx0/fZI6dzaXoOsJ8ckucjQddEp6tmgr8HSo12G9Un1nIagrXKSRqUBYBg1HVqk1YnqviFw3+Sett2cAPgXEnKC9DDsKOp7qGKGaUywAMA0WnplZ6JXhMuVNjbM1KIju7YOq5OOHfEZfiXYoI9h/LAAwDAJjt5iN/Egjut3MUxCwgIAwzAxx45R4UvXD3HMvYxhGgp/vTzyhc+ihQUAhmFijh2jwlgtnmJFVmYTzP5dw1tfg2kc/DKCRa2colF5ATBMY6KhBJexg5NGhU5DRDFdvZNh6issADCOUl/mkxsDf79qoPVJDMMwEcICAOMo1wzPiXcWGIZhGBuwAMAwDMMwCUhcBQAi+hMRCSJqq9o3jYh2E9EOIrownvljGIZhmMZK3LwAiKgjgPMBHFTt6wfgegD9AZwFYD4R9RJCeOOTS4ZhGIZpnMRTA/BPAA8gOBT35QA+FUJUCSH2AdgNYGQ8MscwDMMwjZm4aACI6DIAh4UQGzUrmZ0NYIVqO1/ep5fGVABTASArKwsejyc2mW1klJaWclnZgMvJPlxW9uByssbj8cS1nDYdq8WJk7UJ855iJgAQ0XwA7XUOPQzg/wDoRQbRCwaquzqIEGI6gOkA0Lt3b+F2uyPLaILh8XjAZWUNl5N9uKzsweVkwZxZcLvdcS0n3/ZCbCw7ALc7MRTPMRMAhBDn6e0nooEAugJQRv85ANYR0UhII/6OqtNzAByJVR4ZhmEYJlGpcxsAIcRmIUQ7IUQXIUQXSJ3+MCHEUQDfArieiJoQUVcAPQGsqus8MgzDMIlH87QU5LRqGu9s1Bn1ai0AIcRWIvocwDYAtQDuYQ8AhmEYpi7I7dIauV1axzsbdUbcBQBZC6DefgrAU/HJDcMwDMMkBhwJkGEYhok71+VyGPG6hgUAhmEYJu48dw0vJFbXsADAMAzDMAkICwAMwzAMk4CwAMAwDMMwCQgLAAzDMAyTgLAAwDAMwzAJCAsADMMwDJOAsADAMAzDMAkICwAMwzAMk4CwAMAwDMMwCQgJIeKdh6ghohIAO+KdjwZCWwDH452JBgCXk324rOzB5WQPLif79BZCZEZ6cdwXA3KIHUKI3HhnoiFARGu4rKzhcrIPl5U9uJzsweVkHyJaE831PAXAMAzDMAkICwAMwzAMk4A0FgFgerwz0IDgsrIHl5N9uKzsweVkDy4n+0RVVo3CCJBhGIZhmPBoLBoAhmEYhmHCoMELAER0ERHtIKLdRPRQvPMTT4joHSI6RkRbVPtaE9E8Itol/22lOjZNLrcdRHRhfHJd9xBRRyJaQER5RLSViO6T93NZaSCiNCJaRUQb5bL6i7yfy0oHIkoiovVE9J28zeWkAxHtJ6LNRLRBsWTnsgqFiFoS0RdEtF1ur8Y4Wk5CiAb7D0ASgD0AugFIBbARQL945yuO5TEewDAAW1T7ngPwkPz7IQDPyr/7yeXVBEBXuRyT4v0MdVROHQAMk39nAtgplweXVWhZEYAM+XcKgJUARnNZGZbX/QA+BvCdvM3lpF9O+wG01ezjsgotp/cB3C7/TgXQ0slyaugagJEAdgsh9gohqgF8CuDyOOcpbgghFgE4qdl9OaRKBPnvFar9nwohqoQQ+wDshlSejR4hRIEQYp38uwRAHoCzwWUVgpAolTdT5H8CXFYhEFEOgEsBvKXazeVkHy4rFUTUHNKg7m0AEEJUCyFOwcFyaugCwNkADqm28+V9TIBsIUQBIHV8ANrJ+7nsABBRFwBDIY1suax0kNXaGwAcAzBPCMFlpc9LAB4A4FPt43LSRwD4gYjWEtFUeR+XVTDdABQBeFeeVnqLiJrBwXJq6AIA6exjtwZ7JHzZEVEGgC8B/F4IccbsVJ19CVNWQgivEGIIgBwAI4logMnpCVlWRDQFwDEhxFq7l+jsa/TlpGKsEGIYgIsB3ENE403OTdSySoY0pfuaEGIogDJIKn8jwi6nhi4A5APoqNrOAXAkTnmprxQSUQcAkP8ek/cndNkRUQqkzv8jIcRX8m4uKxNk9aMHwEXgstIyFsBlRLQf0lTkJCL6EFxOugghjsh/jwH4GpKqmssqmHwA+bLGDQC+gCQQOFZODV0AWA2gJxF1JaJUANcD+DbOeapvfAvgFvn3LQBmqPZfT0RNiKgrgJ4AVsUhf3UOERGkebU8IcSLqkNcVhqIKIuIWsq/0wGcB2A7uKyCEEJME0LkCCG6QGqHfhJC3AQupxCIqBkRZSq/AVwAYAu4rIIQQhwFcIiIesu7JgPYBifLKd5Wjg5YSV4CyYp7D4CH452fOJfFJwAKANRAkgZ/DaANgB8B7JL/tlad/7BcbjsAXBzv/NdhOY2DpBrbBGCD/O8SLivdshoEYL1cVlsAPCbv57IyLjM3Al4AXE6h5dMNkrX6RgBblXaby0q3rIYAWCN/f98AaOVkOXEkQIZhGIZJQBr6FADDMAzDMBHAAgDDMAzDJCAsADAMwzBMAsICAMMwDMMkICwAMAzDMEwCwgIAwyQQRNRGXoFtAxEdJaLD8u9SIvpPjO75eyL6pcnxKcoqgwzD1B3sBsgwCQoRPQGgVAjxfAzvkQxgHaTVF2sNziH5nLFCiPJY5YVhmGBYA8AwDIjIrVrD/gkiep+IfpDXbb+KiJ6T12+fI4dRBhENJ6KF8oIuc5XwpBomAVindP5E9Dsi2kZEm4joU0BacRBSiOEpdfKwDMMAYAGAYRh9ukNa2vZyAB8CWCCEGAigAsClshDwMoBrhBDDAbwD4CmddMYCUC+Q8xCAoUKIQQDuUu1fA+Bcx5+CYRhDkuOdAYZh6iXfCyFqiGgzgCQAc+T9mwF0AdAbwAAA8yQNPpIghaHW0gFAnmp7E4CPiOgbSKFNFY4BOMu57DMMYwULAAzD6FEFAEIIHxHViICxkA9Su0EAtgohxlikUwEgTbV9KYDxAC4D8CgR9ZenB9LkcxmGqSN4CoBhmEjYASCLiMYA0vLKRNRf57w8AD3kc1wAOgohFgB4AEBLABnyeb0gLTbEMEwdwQIAwzBhI4SoBnANgGeJaCOkFRXP0Tn1e0gjfkCaJvhQnlZYD+CfQohT8rGJAGbFMs8MwwTDboAMw8QUIvoawANCiF0Gx7MBfCyEmFy3OWOYxIYFAIZhYgoR9QaQLYRYZHB8BIAaIcSGOs0YwyQ4LAAwDMMwTALCNgAMwzAMk4CwAMAwDMMwCQgLAAzDMAyTgLAAwDAMwzAJCAsADMMwDJOAsADAMAzDMAnI/wNP1mJvBIrD7AAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 576x216 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "F = MRPy.from_periodogram(SF, fs)\n",
    "\n",
    "F.plot_time(fig=6, axis_t=[0, 600, -50, 50], figsize=(8,3));\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Valor r.m.s. da parte flutuante da resposta em deslocamento é 3.92cm.\n",
      "\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAADmCAYAAABMOFZyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAACgZElEQVR4nOx9d5wkR3X/93X3hI23l3OSdAqnHJFAoBMILBFMNBY22EQZY342xphggrHJ2AYDBoTAmJyMEQhJKKJTQOnupJN0d7qc0+Y0Mzuhu+v3R9Wrqp6d3Z2927073db387nPzfZ0z9RUV1e9933f94qEEHBwcHBwcHCYevCOdwMcHBwcHBwcjg+cEeDg4ODg4DBF4YwABwcHBweHKQpnBDg4ODg4OExROCPAwcHBwcFhisIZAQ4ODg4ODlMUzghwmLIgorcSUe54t+NEBhEJInrD8W7H0YCIPklEG0b6e4K/a5bqs1WT8fkODhMNZwQ4nJRQE/Fo/74H4OcATjlO7fue1ZYKEXUQ0X1E9DdElDoebRoB8wH8diI+iIguJKKIiP4wEZ93FPh3AFfxH+pe3Hoc2+PgcNzgjACHkxXzrX/vqnHs74QQQ0KIjuPUPgC4R7VlGYCXQS62/wLgQSJqOo7t0hBCHBZClCbo494F4BsAziGisyboM8cNIUROCNF9vL7fweFEgjMCHE5KqMXrsBDiMIC+6mNCiP7qcADTxET0l0S0m4hyRPQ/RJQmovcQ0T4i6iaiLxGRZ12XJqIvENF+IsoT0Roi+qM6mllSbTkghFgvhPgSgFUALgLwQevzpxPR94mol4iGiOgeIjrbev+tqq3XEdFmIioQ0S1ENI2I3kBE24ion4h+SEQN1nXXEtGD6nN7iOjO6sXZDgcQ0TL19+uJ6G71PZuI6KVj/VD1vX8G4NsAfgngHVXv82dfT0T3q9/5JBGdR0TnENHDqm8fIqLlNe7ZO4lor7ru10Q0a5S26HAAEX0SwF8CeIXFzKyy2nPJSP2h/r6UiNYRUZGIngTwvBrft5KIbiOiQcX4/JSI5o3VZw4OxwLOCHBwSGIZgFcDeCWA1wP4EwC/AXAppLf+TgD/D8BrrWv+B5Je/jMA5wL4PoDfEtH54/1yIcQGAHeo72Z8D3JxeTWAywAUANxhL+gAMgD+AcCfA3gJgEsgF9u/VJ/1GvWb3mNd0wTgP9VnrgLQr9qdHqOZnwHwVQDnA1gD4GdE1DzGNW8AsEcI8TSAHwL4ixHCHv8C4AsALoQ03n4C4GsAPqramVXfbWMZgDdD9s81AFYA+O4Y7WH8O4BfwLAy8wE8XM+Fiq25DcBOyP7+sPo8+5z5AB4AsEG1/xoAzQBusQ1JB4fjBiGE++f+ndT/IBcgUeP4WwHkrL8/CWAIwDTr2C8BdAJIW8dWA/gv9fpUADGAJVWf/WsA3xilTd8DcOsI730eQEG9XgFAAHiR9f40yAX7ndbvEADOsM75dwARgFn1fKd6v0ldc6V1TAB4g3q9TP39V9b7C9WxK0f6XHXe/QA+oF4TgN0AXm+9X+uzX6mOvW6MexbZ/Q/gSnXdCuucDVXX2H8P6xerPZdUHbf74wZIQ6XZev/N6pxV6u9/BXBv1WdMV+dcdryfDffP/XOWqINDEnuFEP3W3+0AtgohylXH5qjXF0EuapsUJZ9TIYZXQBoIRwKCXCQA4CxII+MRflO17xkAK61rSkKILVVtPCyE6Bqh3SCiU4noJ0S0g4gG1PsegCVjtO9p6/VB9f+cWieq7zkNwAsgvXoIIQSAH0OyKqN9drv6/5mqY01E1GgdOyCE2Gv9/Rhkn0227uAsAE8LIewMk0eqzrkYwIuqxsY+9d6Rjg8HhwlDcLwb4OBwgqFS9bcY4ZivXnvq70trnDd0hG1YCUkxA9IgGAn2FqBhjfdqtds2/H8L4ACAv1L/hwA2ARgrHKA/VwghiAgYPbT4Tsj+2qvOBdTvIqLFQoh91rl2m8UoxybbgYnV/6bBw8MXo90bhgcZMvhAjffaaxxzcDimcEyAg8PR4UnIxWCeEGJ71b8D4/0wIjoHwLWQYQhALsoegCusc1ohtQebjrTRRDQT0pP9rBDiHiHEswBaMMGOAREFkLqEjwC4wPp3PqTX/7YJ+JqFRLTY+vsyyD57ts7ryzBGHaNT/T/fOnZB1TmbAJxLyUyOy6vOeQLA2ZB6iOrxMVhn+xwcJg3OCHBwOAoIIbZCUtvfU0r8U4joEiL6ABG9bozLM0Q0j4gWENH5RPR+SL3BOiiBmRBiG6Qw8VtE9EIiOhfAjwAMQNHrR4heAF0A3kVEpxHRVQBuxHBG4WjxCgCzAHxbCLHB/gfgZwDePgECuSEA3yeiC4joCsjfcZvqu3qwGzJt8QySxX5SQoghAI8C+BARnU1Ez0eV6A+y/0MA31XnvBRSwGjj65Aajp8T0fPU+LiGiG4iopYj+7kODhMHZwQ4OBw93gaZIfBFAJsB3ArgRQD2jHHdNQAOAdgL4F4Afwypjn+RECJf9fmPA7hF/d8I4Fq1UB0RhBAxgD8FcB6kcv3rAD4OYKJqAjDeAeA+UTsv/38BLIXsh6PBbkiD4rcAfg8ZShkPw/BtSNZgLSQD8AJ1/O3q/zUAvgXgY/ZFSgvwSkjx5hOQRsKHqs45qD4vhsz62AjZ1yVMfF87OIwbJDU6Dg4ODs89qDz/NwghzjnebXFweC7CMQEODg4ODg5TFM4IcHBwcHBwmKJw4QAHBwcHB4cpCscEODg4ODg4TFE4I8DBwcHBwWGKwhkBDg4ODg4OUxSTagSorUq3ENF2IvrwKOddSkRR1RaddV3r4ODg4ODgcGSYNCOAiHzIohjXQdZCfxMRrRzhvC8AuHO81zo4ODg4ODgcOSaTCbgMwHYhxE61A9vPIPf7rsb/A/B/ADqO4FoHBwcHBweHI8RkGgELYbbMBID96pgGES0E8FrIWt/jutbBwcHBwcHh6DCZWwnX2mazuijBfwL4kBAisrYYrfdaeSLRDQBuAIBsNnvxkiVjbYXuEMcxPM9pQseC66f64fqqPrh+qh+ur+rD1q1bu4QQs4/0+sk0AvYDsLf3XATgYNU5lwD4mTIAZgF4ORGFdV4LABBC3ATgJgA444wzxJYtWyak8SczVq9ejVWrVh3vZpzwcP1UP1xf1QfXT/XD9VV9IKKxNiobFZNpBKwBsIKIlgM4AOB6AH9mnyCEWM6vieh7AG4VQvxa7UE+6rUODg4ODg4OR4dJMwKEECERvRdS9e8D+K4QYiMRvVu9X60DGPPayWqrg4ODg4PDVMRkMgEQQtwO4PaqYzUXfyHEW8e61sHBwcHBwWHi4FQXDg4ODg4OUxTOCHBwcHBwcJiicEaAg4ODg4PDFIUzAhwcHBwcHKYonBHg4ODg4OAwReGMAAcHBwcHhykKZwQ4ODg4ODhMUTgjwMHBwcHBYYrCGQEODg4ODg5TFM4IcHBwcHBwmKJwRoCDg4ODg8MUxaQaAUR0LRFtIaLtRPThGu+/moieJqL1RLSWiK603ttNRM/we5PZTgcHBwcHh6mISdtAiIh8AF8H8FIA+wGsIaJbhBCbrNPuBXCLEEIQ0XkAfgHgTOv9q4UQXZPVRgcHBwcHh6mMyWQCLgOwXQixUwhRBvAzAK+2TxBC5IQQQv3ZBEDAwcHBwcHB4ZhgMo2AhQD2WX/vV8cSIKLXEtFmALcBeLv1lgBwFxGtI6IbJrGdDg4ODg4OUxKTFg4AQDWODfP0hRA3A7iZiF4E4FMArlFvvUAIcZCI5gC4m4g2CyEeGPYl0kC4AQBmz56N1atXT1T7T1rkcjnXT3XA9VP9cH1VH1w/1Q/XV8cGk2kE7Aew2Pp7EYCDI50shHiAiE4lollCiC4hxEF1vIOIboYMLwwzAoQQNwG4CQDOOOMMsWrVqgn8CScnVq9eDddPY8P1U/1wfVUfXD/VD9dXxwaTGQ5YA2AFES0nojSA6wHcYp9ARKcREanXFwFIA+gmoiYialHHmwC8DMCGSWyrg4ODg4PDlMOkMQFCiJCI3gvgTgA+gO8KITYS0bvV+zcCeD2AvyCiCoAhAH+qMgXmQoYIuI0/EULcMVltdXBwcHBwmIqYzHAAhBC3A7i96tiN1usvAPhCjet2Ajh/Mtvm4ODg4OAw1eEqBjo4ODhMIra2Dx7vJjg4jAhnBDg4ODhMIl725WF6ZgeHEwbOCHBwcHBwcJiicEaAg4ODg4PDFIUzAhwcHBwcHKYonBHgMGVw69Mj1qpycHBwmJJwRoDDlMF7f/IkzH5VDg4ODg7OCHCYMkj5hHIUH+9mODg4OJwwcEaAw5SB7xFiZwM4ODg4aDgjwGHKwCNC5MIBDpOIfCl0ISeH5xScEeAwZeATIXYTtMMk4k3ffhQbDw4MO37f5g70D1WOQ4scHEaHMwIcTip86/4dNY8XKxGIgDh2RoDD5EEIIKoxxv7j7i3Y050/Di1ycBgdk2oEENG1RLSFiLYT0YdrvP9qInqaiNYT0VoiurLeax2mJm59+iB68uVhxz97+7PIl0J87neb9TFe8AvlEM///O+lJsDZAA6TCN+rHXJK+R4qTpTqcAJi0owAIvIBfB3AdQBWAngTEa2sOu1eAOcLIS4A8HYA3xnHtQ5TEN9+cBd21/CofvXEfgwUK/A9wlfu2YYoFrjyC7/HK7/2ICqhQCWM4REhjGO8+TuPHYeWO0wF+B7VZAJ8IkQx8L2NpePQKgeHkTGZTMBlALYLIXYKIcoAfgbg1fYJQoicMCqaJgCi3msdTi6Uwqiu81IeIYxqe1qlSgyPgBvv34FiJcLB/iK2HB5EOYpBBHjq2od3dE108x0ccPemdvhqjP3PH3Yl3iOS/6/eFx6Hljk4jIxgEj97IYB91t/7ATyv+iQiei2AzwGYA+AV47lWXX8DgBsAYPbs2Vi9evXRtvukRy6Xm/R+2t4b4ZQ2Dx7PfmPgr+/J45vXNI153uDAENY98SQKe/zE8VKphEcefQxCCPiIcO/9DwIASAg88NAfEEUhKiLCQw8/AgLw8n/7HT54acOI3yOEQD6fd+OpThyLMXWi41135HHGdA/r16/HF9YUsbyyR7/X39+PJ598EgCmfD/VCzemjg0m0wioNfsPc+GEEDcDuJmIXgTgUwCuqfdadf1NAG4CgDPOOEOsWrXqSNs7ZbB69WpMdj/99cfvwLqPX4PGdH1DbOiO2zA08wzkyxHecPGixHvffWgXrj5zDpbPasI3tjyCCy88HU/s7cV7Vp2mz2l49Pe45NJL4T/6ELKZAJdffgXw+3uRSQW4+NLnIbP2YWQDD5dcehn8hx/Epu4YV111FYYqUaKN31i9HWfNa8UftnfhyuaOSe+nkwXHYkydqPj5mr148ZlzgTvuwbS2Nlx44enAmkdNf9xxG9qmteGCC04HHn90yvbTeDGVx9SxxGSGA/YDWGz9vQjAiMXbhRAPADiViGaN91qHEw8pn1AOxyeE2t1dwLb2wcSxP2zvwuqtnQlltRDAF+/YkjiPCAhjAd8jEBEqsYBHgK+qBHoEEBFCddwjYFdXHq/82kOJz/niHVswWApxeKA4zl/sMFXx/Yf3oH2E8WLXDHCaVAcAuGvj4ePdhAQm0whYA2AFES0nojSA6wHcYp9ARKcRSb6YiC4CkAbQXc+1Dic2pBp69Gnvb37yROJvjzAsj//Pv/MY0pZBMVJwgQVZBCXCiqRBEHieupZ0vNYj+dr3CIXScC1CMIK4y8GhFjzPGrfWsPnQL59Gx6ASAtYY2w4nP373zCFs70g6Njf8cN1xak1tTJoRIIQIAbwXwJ0AngXwCyHERiJ6NxG9W532egAbiGg9ZDbAnwqJmtdOVlvHg58+vjfx91fu2eZSf2rA82jMymm3PX0oeQ2NnsLXlRtZWe1pL5/gEVCJY5B6bXv/YRyrc6Q5USudy/fkZzk4jIWfr9k74rh9dFc3BouhZKEgGaz6FDIOJwvu2tSOp/b1H+9mjIpJrRMghLhdCHG6EOJUIcRn1LEbhRA3qtdfEEKcLYS4QAhxhRDiodGuPRHwkV89k/j7Ow/tRKFcn7J9KsGj2gtsNdbt6cVX7tkGQFL6tS+RU+cln74HACBqEKseAVGczAKQC7/06j0ieTwWIJILfUWdAwAdA0X8ct1+9Vnkigo5jIrP3LYJWw4P4kP/9wxohEqU9tgDJBPgVVkB7//F+mPQWofjBVIM0ECxgk0HB9BfOPGqRrqKgUeJhpSPIWcEaAghsKMzp0r0ymPhKExJx0ARzx6SZVa9Ucr68lEi1AyueqQWdUXzh3EMAinjQIYGPLLCAapmgEeEYiXCgb4h/PBRqeZ23trUxb/duRmrt3SMed6zhwa1DsC3K1Fag8cjoBLFhnVS4SqbIfvVEwcmrO0OJx64VPkln7oHX75nKx7Z2Q0A6C9UTpiQozMCjhKuElgSlUjgj778gPSO1CC//HO/H/F8smKlHqFmCKE6yzCq4VGxJoCp/jAyIsGQGQJlECTZAsLFn7pb7TB4YjyUDscHb/2fx3G4v2Ti+KOAyNiiHIqqNlADT84NRGacEwEv/fIDk9J+hxMPHCoqRzECzzg5b/ve43hib+9xbp2EMwKOEglRkIOkPD2C5wFDlQjv/uG6UWP5AJnJVJX1LVaGMytadyWAWMhFP/EpRMrrMrF/PfnG0MZBFAv4ShjIE3S+HOn39PcBuHnb8PLEDicvVm/pRMqvXYzKxhu++TCIjOYlQftbwzLwOeREIMhtrAnA9o4cevJl3HmCqcQdJh72+uBVCY5PFMbRGQFHCV9NAF+/b/vxbsoJAb3IEqFUifHgtk4AwL6eAm56YPjmPp6lAyC11e/Fn7p71O+IYwGy6IHefBm+x15+MguAtBgQFitACSEhfxQ/rPz3b3aY+N2TJ4jV7jC5IKKamhMba/fIsWCHqGzxKY+jwJNZLZ4yRiPFBKQDD7u68vhPpYVxOHlBVljU3sVUjrPxoX+ogv/6/cSPGWcEHCU8RfH8251b3D7ikBMgx98rsYmHdgyWcNszwz0f26MCpHWcH0Vjwcp93zICLvzU3UYTQHamgNEZcNZAxPUDPGjmIPBIMQwWE1B1L1/7jYePtEscTnBUohiDRTb46nuG7dCVZAJi7fHz0GG2iVNSWROQ8eW0W2+pbIfnLuyMEHZOAJMtMh6Uwgjfe3j3RDYPgDMCjgprdvfojUEA4O3fW4O+wtSmkOMYyZi7R0j5MlhaSyDoWbHVkZ4KmzaT8X65eH9j9XZ0DBb1cTnJGi9fe/yR0KEB9v59StYMqCghoYzdQjMNe7rz+NGje2q0yuFkwb3PduAD//vUuK6xJ3HPgx5LnoeEEcBaASLz2vMosa31hgP9+PStm2oyZScKfrluP/77oV14fFfP8W7Kcw62polf0wj6p1E/Z5ICCM4IOAJsONCPrlwJf3LjI1qJDgCbDg1gqEY8eyrBMAEyK4AL9tj7rBfKIQ72DelrEkzAiOPcUPWVWBoXd244jP298nNMDQA5KUccAgASgsFYMQHERgNJmq4SxlLLYBkZAHCwr4hbnnLFKk82bO8YxN/9TNbyD1S6qI0b7x99QZYMlnxtNAHqNVO+UAyB9Tx4Kj3VFqF2DBaxvTOHz96+udZXnRBoHyiiK1fCG7/1yPFuynMWyXlu/OEAKSydeENgRCOAiKYR0eeJaDMRdat/z6pjbRPekucQvnn/Djy8Q6Z6eCTjfoFa7MYSFZ3M2NmZU8p9DgcITbfHFt2+dncvPvjLp7UeYCRRvrBi9AnvSlGsdkEiptpIefkV9ZpjsTL2bxiCaqqWwwcEwxYAUEKxJIPBOgeHo8dT+/rwpbu2jH3iBKMUxtjansNrvv4H+H6yOBSB8Pnfjb4gE5CI71bsegCxYZ4iJUr1eeyBUweFZgSksTB1542pBM0EYHyCciGE1ltNdDbaaEzALwD0AlglhJgphJgJ4Gp17H8ntBXPMaR9DxVVxtZX4h8uQzuVMwWu/c8HMaSU9sajJq2bAIBbnz6oVNOx9ppGMm4lLZ98zVS/71EiFMOiQs8zKtxqj19rAjzz2vcIge8pARclNAQj4S3//bibtCcIPYUy1u8/9hXVOLV3/b6+YSTrWMJAgAVf9rgyTFKkF3uuV1E9DilRuZLoxM4w4mJeJ3ATT2DU3juCVDpp/1B9xYNe8h/36/nqeZ+9d0JbOJoRsExV9NNqLiHEYSHEFwAsmdBWPMdAdo6wRzoHdKqXm80EHoqVSFOenB7lqfgngfDenzyJlO9Jb1t57/4IC24s5HuEpLgvTAgATVqgTfuzkWEft738at1AOYq1Zya1DKYd1RRcyp8antu+nsKk18Dwaezy0pONI/l21pf4ZBeh4rCUCol5bHSacIDWrER8rdILnIAMYhjFEELgy/dshVdH1oRDEk/v7wNQO5bP9QMu+fTomVCMfb0FlMIYngf05CdWdzaaEbCHiD5IRHP5ABHNJaIPAdg3oa04AWFTwLc+fRC/fvIA1u2RohhelABZLayiFhA71veb9QemXBGhwCeUFCuSiNEzXaoC7VJUJax8/uEPyf1bO7G/d8hQrMJ49nyNXrCVoVBL9KczBTxTDpi9LztToLrMMOnvHf47bR3IV+89edO83vWDtdhatavjRKO6PsOxghDQuo96cevTB/GICgMmtSZJAzSyjEs7SyVZspqNTtLhA9muE2eh/dzvNuuKhnZIzqE+/PF//QFC1GaWfE8yl5VI1HXPmXHm+bA3X8Z9m8eubFkPRjMC/hTATAD3E1EPEfUAWA1gBoA31vPhRHQtEW0hou1E9OEa7/85ET2t/j1MROdb7+0momeIaD0RrR3Xr5oAXPF5U+XuvT95Emv39GDjwQHVNmj3gW9O4Jm4HwB87Ncbau5QdyJiqBxNyOST8j2UwkiHAEId9yQlEpTnCUBPknb9frsFP1+zF2t398DzkFjseYHngj+aVvWqYrFWmCEa5v1XbzgkP8dnw8Ka3GNhHlL+P+V5+j5/6e6tR91vJyo8okmf+I9XsS27pn+9tsAz+/vx5D5TLyIWzBgZVokoWZdCZ6x4pmywGWNWFUsrM+VEQaEcoajSGNlwt/Gb9SdmyeOJWhyPBNV9JETS4GRWQKaMSkfifT9fP2wL9WoEnodyFGvWdHd3Hv95z8TMPSMaAUKIXiHEh4QQZwohZqh/Z6ljY+aJEJEPuTPgdQBWAngTEa2sOm0XgKuEEOcB+BSAm6rev1ptLnTJuH7VBKCzqnRoyvcS29mydecRe7+ezgUGJDVeip4bRsBf/WgdHpuA1J+U76FUibXXrWlRJYTiAcy5szKmH+vqfxwyAIBM4KvQAlkxfjmZmkmWBVaWpwVOIxzumRHHbvVxw1QkPDmRnKCB5M6Cnie3KrZxInlwE4Vj4f1JdmZyv6MWOLxE1j1m1KJvYzWWmekjS/Rn9CVGK1Bdl4KILOZJMgF6PwvFVAUWw3QiwPeQ+L3VY+Hvfrb+2DeqDrz9+2uO6ff9/c/X69cv+dL9wyqeCpUxZfefrWfa3V1ArhSO+h2BTyhVIs2mpnwP5QkKIU1miuBlALYLIXYKIcoAfgbg1fYJQoiHhRBsWj8KYNEktueoYHtF9msjDJQ3KooFPvKrp5EJfJQqJ84DPRrCKEYUC/zjOHOlq5FS4QATu7fV94b25zipXsTJeEHsvSc9cpXHr8MBQouwYhWXJb2ok7ay2VAwE7HxwPi1HVbQLIKlJyhHRvTJi0XKl+1hbO8YxHt+/MRR9d2JCBZJTiaEwDGvn7qnO69FVinPk5kkdpuUgX//1k7EsUChHOKFX7wvsRCyEak1ARZ7VMsA1SJYGCPVhAzkeAs8D4PFEOv2HF11yge2duJRtVHN0YCroQLSMKo1Er7z4E48vKOr7s+M4vro7/HCnruOtT1+85OGEdnZmcdrv/Ewdnbm9DE7vMiwSwgTxmaAOI2V2Up2aCYCk2kELERSO7BfHRsJ7wDwO+tvAeAuIlpHRDdMQvvGxKaDA7hjg9zz3vb+bdqOJ4DA8zQr8PM1+55Tewrw5Pa/aitdxpfu2jIuXYPvKVZEL9wW9a429AFkvwQehwxUbBRIqPI5bcojqbtIxPi14WBSszzLM6s2IKrjtckJGrpYkO2ZEcmHo2IZNblSiPu2dCDwPGw6OIBP3rIRAFCsxNjdXTiivmd26UQE0ZGJ5sYDHgvHEtf+54PIlUK9x8VIi9JffvdxPLmvD2/9nzU40DeUWAg5lEVk16UgPW7JEgnqbJTIHK9EMXzLSJVZKoRt7Tl89OZnaraHMVbdirW7eybECJAZN/zaHP/N+gO6zsemQwM42Fes+zO/ft92/OjRPVize2Tm8feb28cdaqieu44neK5gxAJaBBpaY8PUlgDGetJ8j1COIhCplGs1bbzlvx876vYGR/0JI6PWk13zlxLR1ZBGwJXW4RcIIQ4S0RwAdxPRZiHEsO23lIFwAwDMnj0bq1evPuqGM369+nE83Slv5r79+9CflovVoUOHkMm3AwD6enux8dkBlEsV5FHC4+uelB5ksYhHHn0Mu5o8iDqLPMRC4OGDIa5cmJqw31ALuVwu0U+9vUN46ilpSa9evRrlSOA/nyhiz0CMM+ggmlL1TdJDQwU8/cwGDA2VMRAPYfPmHIpDFZQjYMOmTRgcCEEA1j25Hv19FURhjM1bt6NzIAIB2Lp9O3qLcogcPnwYQb4DURSio6MDm4tdiKMQnR3t8HKdKBVD9PWUsGHjAKIoRG9PD7bFfSgUIvRFBWzZOoChoQpEhbBl23YMDoQoesDW7QPI52UGw+Yt25AbCFEsCzy7eSv6+0KEYYyt27ajMy9AEFj/zAYM9FeAOMYd9/0BX1pXBAF4/Imncf8umd7zxLq1GBws4Rv/dy9WzvTHdS/ec08e37imaVzXHAlKkUDGH99imxscwrp169C3Y+zfVD2m6sUznSH6+yoT+tyOhQARHlu3HrmBCkQc4+kNG9HbI5/zgwcPIZWTz7ZHwJp1T6C7R6qx9+zdg0B1YWdnB54NuxFHIbo6O7G12I1SKURXVxnPih7EUYju7m5sjftQKlbQ0dEODHYCIsbQUAGbNm9BbjBEHMV4ZuMm9PZEEFGE9evXYyBXqtkf7FT87Z0FtPaOHA/eu7cMIYDVq4+uyNWhAyUUu6WfuH37DvQW5crzzbuexoFT0wCAjvZ2PFvuxKvu24BL5vloThEunjvysrJ5exmNKeDjv6nge9cOH/fffrqEJa0euodi/PHi8Y2LW++6T78e73i6eVsZr12hflMhxpzG8fnH9vcVcjk8tmYdPAIOHT4EGmyHiCN0dnRgY6ULBKC7qwtPbZDpqbnBAaxd9yQGd438nIXlMtatfwZDhQogBB5bsxaFfAkPtudGvKZejGkEEFEjgH8AsEQI8S4iWgHgDCHErWNcuh/AYuvvRQCGjUoiOg/AdwBcJ4TQ5qsQ4qD6v4OIboYMLwwzAoQQN0FpCc444wyxatWqsX5SfbjjNpx79koc2HAYOHQISxYvRltjGsGOrViwYAFWLGgFNm3ArFkzsOyUWWjp3IvpLRmcufIUZJ5+Es1NWVx8ycVYMbcFr/n6H/Drv3nBmF9ZrER49yfvwsf+/KVH1fSP3vwM/nrVqVg0vbHm+6tXr4bdT9/Z/hjOO/8UYO3jWLVqFQaKFex94PdoaUjj4suuwPSmFDLB2AtBy5MP4PQzT0XL4e2Y2ZLFslNmo6V3P4YqEU5bcSqeyR2A39+LM1eegydye9FeGsCyU5ajfHgQfschLF12ClryZWDPLsyfPw9LZzchu38X5s+bg+XzmpHeuwPz583B/GlZNA0cxqyZTTjt9HnIbH8Ws2ZOx5JF07A5145ZrRksO2Um1vXuR2MmwLLl87Cr3IFM4GHpspnYOHgIvkdYdsp8bC92IMqXsPzUpdgTduBQcQBLly8HuvMIOvZjxRln4pn8Aewv9OGSSy9B6pnHkU35OHPlGXigawcwMIBLLrkUP9m5Hl9cM4jdn3/FuO5V4Y7bMGFjdhRc8um7sfZj4xtXX3v2YZx3wZm4dNmMMc+tHlPV6Bgo4p9u3oCrTp+Ft1yxTB8XmzuwLrcbq1ZdNq62jRfffWgX3n7lcgBA5qF7cMZZZ+Phnl3oKA7i9DPPxJbSIaCrAwsWzMeK+a3wnt2IlO9h5Tnnoa19G9Dfi+VLl8qY7PZtmD9vLpYvnIbM3h2YO3cWlsxpRlPPfsydOw2nLp+B9O6tmDN7BpYubkNT937Mn9eGBdMa4B/agdbmZiw/dTE2Dx1GZ2kQp604A7vDDhwY6sP555+P/929Ab840IJv/PnFid/wnQd3Kqr72VH7+uloGypRjFWrzhizX5iFqIWHcpswpzUDbNmMU089FYcHisCeXZjeNh3nn38asOYxLJg/D6cvnY7/3vAMrjp3OVKBh1WrVoz4fY8VN6M5EwBbtyCaexYqUYxrz5mv33/rHbfh6gvPQrZvCM3NnfU/G3fchj2pxcoD3zHuZ+qtd9yGr7zrZQCAFR+9Hds+8/L6L7af4TtuQ2trC847/ywE6x7HwgXzsXRmE1J7tmP+/Hk4dXEbgs2bMG/uHJx2+mwEmzZg1ozpOOe80/CC02aN+BXNa+7D6Weejmldu9BVzOHs8y5A2/5N2J8bGNfvrIV6zJ3/AVACcIX6ez+AT9dx3RoAK4hoORGlAVwP4Bb7BCJaAuBXAN4ihNhqHW8iohZ+DeBlADbU8Z0TimqhjonvYRgt6KnsgFIYI/A9BJ6H/X1D+PLdW7F+Xx/iWKBjYHTaLIyFqrN/5Lh/ayfW7enFwNDoQpNq2Iwoi6AyKQ8DxQpe8Pnf4z0/Xjfq9T98ZLek960UvIpVMrWic6dNbEvnThMBFj1mt4MsGo3jYdWpWb6VasUiQbs2QKyFftZxqsoUqKorwJ9ZCa39BUKzQ6IQQveZrTQ/UdGVG39usb3hydGgY7CISAg8vb8PH//NxsR71ZtBHSk2HuxPxGGr8a+3btKvA0Wtal1KmLx/sYCK0ZusEQAAJXVBYdX41LUorLRVEwIwwlWuC2CHzXxPCvG45sjtNTbbypVCa6OjkcFjeCyxGQBc8bmRC89IucbwezNcGzH8+EjwyYgrt7bn8MTevhqfP/6sFI+kVqfWNuSj4fO/24z7tyYrgNolpL/3h13jawgAEFnz1fC5hccDi0MDXyr/R4OdIsi1aSbiuQHqMwJOFUJ8EUAFAIQQQ6hDyiOECAG8F8CdAJ4F8AshxEYiejcRvVud9gnINMRvVKUCzgXwEBE9BeBxALcJIe4Yzw+bDETWQsQD2SOYFEE1uXC8e2Cogt8+dRDpwEP/UAUv/bIhMvJVD2h3roSKMiA2Hx7AQB0Pey385XcfT4jY6oHnmXrnAJTGwWwHXChHNSclGx//zcbhYkDOvfc4RZBL+pq6CpVIToCetbjz2I5iqPd4MjVphfYDNmwiVt+h47KJbYUt5X9kKg8awWByci9b7S5HEQLf0xUQY5X6U45iBEdpvE0ExqPf6M2XRx1jg8WKKvc8vtn4D9u78MNHdieOvfAL92GoHKHWnDWaJzoe/PrJA7h7U/uo5xQrEbpypaRBp/UgfJYlPFXjk2c7qQtSrwk67ZVFgjy5c413z4NVRhv6HN9jA1nF3a09Nsoq06gW5Fa0Y/cFb197wb/cNea5HYMlbDjQj/+rEVMXVUJd8/lWdpQ1Ruy7uG5PDw72DQ2bhzxLTyVLcg//QUcyGgLVZzwvr93dg/X7+sa87nD/ELpzMhMsVwqxvUMakvlSiPf97El89neb0V+o4M3fGR57392Vxy/WDi+Zo+cEz3JgvGQRMzkG5X1P+zSmNihQC7+nNAGlSjQhzw1QnxFQJqIGqPFPRKdCMgNjQghxuxDidCHEqUKIz6hjNwohblSv3ymEmK7SAHUqoMooOF/9O5uvHQ/u2HB4zNzLesCWMKf+2OI29i5NrrpcNKWaXPUB1E0LYz1AC+UQ133lwcT3XPH53yNXCpHyCf/8m43YcBSlVFO+l1CvA6OnsKUsj69YifTE7HuEYhjpNL+RDAv+XXJCNQPeHvy6rr9n6irYfWcEVaS9BZ1q5SUX79DelCVOevnyO6qLt1glgWNblW0ZB5GwfqepQmhb3yW7HkRk0r1KYXTMxW21cNln7qn73K/ftx2/WDNyza/LP3uvvP+VCK/5+h/q/tzd3XlsOpSkKJszAfqGKnqitjFRRoBcjEY/Z/WWDvzTr55RxrpchO3JGODCUdLL4ueWPS4ePwD0/hTDhajQtS/stMBhNSqsapra6PSgx1g13vY/jw8z1kcDt6ke7OjM4b4tw3Pr7SI39tfKYmlQfVK1BTcE3v/z9fjJY/vw0Pau4UwDGaOBmZa4qp1H4uDy/eM55/6tnfj9s6MbhfK7DOvw9L4+fOzXUpQ5VInwwLYuZAPJhj5Vw6DY11vAr58cLmAMeB3wVRGzKOlgGINAaOOv1tx6ww/W6r4JPM9aW7hKrYeJmHbqMQL+GcAdABYT0Y8B3Avgg0f/1ZOHPd15/H5z+5ipNm+88RF05UojLpDVR5nKMcr15GLnk3yIU74HX1n1pBaKYiWCr7zFchijt2rL4YaUj8FiiJTvHbUqOxN4ifTEnZ053PDDken8wNok5+VfeRCH+4t6sJUq8vdwrXUbP3p0D3Z15VGOYqR8m/piD9x46ZVYqqE9Akp2iV6d7geTn689bZu6tyxou2ww06rKUCBYhYDYSxNVam0yzANPyra6OzmhS2/PJ0XHeRYdpx5madQkH6X3qR3qJgJMccaxwFA5SXfet6VDH+stjM4e3bXxMH7y2F4AQOB7KI3ifeTVHhDFSozNh+uPO8pHSY7zre2DeHh7F5oyAfoLlZpsSSQmyAiwFpdD/UPDNn2SXyGf28CiVnXKqbXQ8xjxPVkGOxXIe0v2GKWqOSBRcbKqBgCRMQj4O6zxw8wWj7Fa/XHfls6EETIW7E+oLnZVjUwwfCzkSmFi4RcwoTrb+6/+LgD41ZMH4JH8vo7B4f4iL/K+Kh9+9X+sxpbDg9jXYzJsxptGGHikdyrVRdvqsCZsdsfzpOo+8AhD5Qgpn5AOPOTL4bCxG8dC7iFTg30LPFk0zc4I8CznhNkgpvR9lVq+r6eQ+N0PbOvUYQJtuJLFKHioaViPF2N+ghDibgCvA/BWAD8FcIkQYvVRf/Mk4qp/W60mBeDmJyXNlS+F2HQwOZk9vrsHV33xPuTLteNIomoc8YSlFyJPLT7WFqHlUFLD2iDwPO1R8A0rR3FCaFcKIzSkfAwU5UQZqIp09T7wpr3y/HQgByGDiIaVf93eYf6Wg1ZOPkOVSA/6lC8nQd8j9ZnJAf+xX2/Ay7/yIAaUl6dT+WwmwF6svRpMQFRrUpWUIW/2Y3veVGuS9WiY16Xj9FVhAr3YWxO05yGRasilhbkkdHW7A+U9slFSa+L+zVMHx10Od8OBfn0ff/ToHn384k/J+uIPbOvE//tpsh7Bp367CQdUuhYXoWHs6c7j6f19+JufyGt2dOaxuzuPX67bX5cHwbHz1BgTTfWEzc/MhgP9+NmafUgHZhxVwy4WdaToGDRamy/csRlv/e4a7OlJpmzys8cGux3mYY8egDXBkqZd02oBIFgMk0Xps0FZPd6MoWkWA/kdqEptrfbwaveH7XWv2d2D3V35mufZ9+Pna/biJ49Lw++133h4mBHpKwales29+FN36z4BZGiOM5xs5nAk8PwLAI/t7MZX790mF/kai/ue7gJ+9cR+3P6MnY49Pvi+TN9kZomrM44JMv3FhmQ68JArhQg8D2nfQ6Esw4CMOzYcxvM//3vpPKkfGUaxNjzt8un2nJNkgExFVa7H8MIv3of3/+IpPQ+kfePMJUKqnnE8JsAGGHUr4Yv4H4ClAA5BqvuXqGPPCfz9z58CAGw+PIh/svJv+cY3pH0UyjI+/2WrBCxZtDOgCjrElpgnShYKYYqZqWFeWAOftEfBD3c5jPXEUqxEeOEX7kPgywU4pSoPxrHAlV8wpYvrQSWSXk7KT25pXImkN2/jmi9JfcKjO7sRKEGN7xEygYehciQXdY/bJI/Xils1pn0MlqTRIEVOVdYqJcUxuloasW4gNpMnU+zqYbSNApsxSBb5YQ/eTLhEgCnGwos6qjYQsow3yzMjMvnfREA5siZ9DhlYk7XUChhNQBQLVKIYDSkzruqBEAKv/NpD2N9bwGApxL/8diN2d+WxqyuvjdRMINki+5qWhpSO7Vd7dP/62014aHsXth6WBl9K7d74gf99qi6vUoe3qrygj/zq6cRC8yc3PoJCRXmb1nkp39OedzE0xsQDWzvxxN5efO53z0rdBxFe/82HEcdi3MIuALjsM/fqHf2+uXoHiDCsUJcdxtMhgKpxACSpej3+rWcnjpOTuJkDqkNO9mfBOm7iwUa/YupVjBbrtRfWXz2xH38YpUgPr98DQyF2dkpjYX/v0DBhoV3szJ7/SuoYG7J6rxSPVFE02b+JNd0yGrhOiu8RDg8U8eyhAbzwizKFT4dY7d/mmQWV60f9cmv9YtbAMzqowDJS8qUQD27rTBiKNpK1H0zdCnnfCSk1H6ase/LuH63D4YGiHruAZEW5hLgOI9nOkGePEyi9iQk7cdu7ciW9QVA68LUzJx0SM/bY8ZhsJuA/1L+vA3gMMg3v2+r1V4/6mycZtgf/zu+vHab05wUzm/JRLMvjX7E2g9FKf+vmszXsW96/8ToxzEIzBgFpg4C/mynGfClEFAvpdZcjxQTIgXOwf/Rsgs//bjO2HDYefRjH1vUxvvPgTvz08b3K6JDf9+yhAWzoMgvJ9Tc9qsMV3B/5cqQGmBrMfrJino2sCmOY4j+GnufKgH7C01YToDe8qE+sqBemG40Qszb1yhoEvg+JXd2sksCJ74jNhGszBDpe6xlK0bOZADKiT/1AepLK41gdAPz4MTkZsNFULQAFgL/64fCtMHiieP/Pn8KaXT1I+R5+vnYfbrUKw/ieoWH7hyp41X89hKwV+pFhoChxvm0M2iEdZltqgRf4Ws8AANy1sT2RbdBTKKO3ZDyilEf474d26Xsqx5cZ/4/u7MbD27vwrft36kyUdXt68eD2Lrz3J0cWRhFK0Q9IJqxabW0//2yIEpGejHlxNmNSnjdUjpEOPB0KiAWGZ6Dwa88OOVWXqbarVfLCAF0GWxrFXt0iU1lWe2whKFcxldcMZ/NSasELfC8x/wFJwTBX+uOFx1bQ25OtnTUQC7M48/GRzE5mTcxHEm7dWb842h7rPH8QARd/+m7890O7tHdto9ogioX8HJ6LU75kAvKlUDMBNusr+4307+JnnUPBrDGyq5Ha26Dr0tFVcyu/su8Xj1lPGWH2Rm1Hi9H2DrhaCHE1gD0ALhJCXCKEuBjAhQC2H/1XTz44Fnzflg4UK5FeCKNY6AWzWkS36eAAtrYPSm/Ppnk1bacoQ8sz1RaatdhzPD3wvcQiC8iFJe17ePN3HsNQJUImkCGDghp40pMf+wF/en+fVrbKzxVIeRy/F/j0bc/KjYzKJq75xN5erD0caS8akBviFNVkn/I9DJXlos4MgQxpeDXrmjekfeSK8iFhr4rURJeM3Q+nPG2vi5QVTjCTeXKznxHq/FuTrPHAqidiI7yqriSoqdrq3Qg9SlYMtMaD7yVFgvZCOaD2B0/5Hg71F/HSL90/rM/u3DhcsFQKY2QDaTyy9xnHIuGFE5lJtliJcLi/lFjwMoGPUii3f/3luv2GdbFmCr6eha61PKRqo9b3CHdtNNkh0yz2AZBsENcxl3Ssh0/dukl7kkHV+GcDjEjqQ+z22WGs8YDZHkDqa6oZBd9XhgjfP9Z6eKTbzu3jsWo8Qk9Ttry9NRuIPN5sL61650Be+Jmi1hkylPQUfQ/KoDTT8s7OHL5091Z4lBTqSW9X3vdP3rIxwdIlatR7oxsB0tCpLWy10/lCtZAzg8fjgigZfjBetbyW2aCEhsD6KiFsg1zdyzpjAf/zh13YfHgAv1izTxkm5vmsqG2b5T2vMloULvzXu2Vb1FvswAV+ci4eslncSBqF2cBDTmm4+PeywcTjnRf40A5f2jopZRwElrFla1syKQ8H+obw8PYu0+eKueRwlh2mOFLU8wlnCiE0jy6E2ADggqP+5mMA6ZV4aEj56B+qIOV7KJRD/OtvN+KW9QeR8r0EdQRIg+HmJw8YS02N2IRH6VFicdA168nUCfCtOLteNNQNKyvx4BN7e9FXqCCT8hHwYPPlIBwrb5TbZKuFK1GMVOCpWJW8Pu1LYUvaJ3z9vu3K6JHHc6UQad/T3ix/t93uorJ22SB4aFuSgsymPORKFT25VixL16bY7Xr/ZU4R1NZwcvD7nlyMzSYryfRBvi/Ei7dHw+5PFBmDYtgmLp61B4FlZPB3JehcrQ+wWJ4qK74cRpqWC9Skl1K5vyPdx3s2tev0ogN9kqbNpHythUizGE2Rpr9Yuw+5UqgXzHIYIxNIT6WiJvZsysM9z7bjs7c/qyn/olrEbMoRgJ68r/zCffoY05BhLLTxyipkW1jKMX5GYypAKZJUvLw2uaAEvqeYAC/hGTamfOSt33QkZbZ5kRIwu7U1pH0MVRkBgce6BE/R8SIxMQPScBMCiXGk9Su63SZ90GSUVG9SldQEwFrsmW1KjFvOnKHhmoDeQhkPbusctpDZC+nvNhxCl3IGtrUPJvL77eeqWivEv7lojV8brH1KKfqfPWWb7mZNBbeHmR1PGfUpFTfnoVfrFvsk7wdrDkIlNB4LD+/oxu6uPD74f09r5tW+HwyPkt/bmy9DCKGffw4B6LnO83Q4IB2wJsA8d2nfQzblI1eSawrfLp0q7ieNpOSup0b8XImMUcqhEDttMu17WLu7B996YGfCoNcOifrMo0U9RsCzRPQdIlpFRFcR0bch8/5PcKhOtm5kOvBw0afuRv9QRaXjeQh8Dzs6c/iX38oiJjxJeQQt8gOS6WKsPrVjPkSmdj5TxqVQDiT50Ehr8pO3bJTfHXhoTPvoLZSRVpNjUcXfq2P6wPAccJ64eHDf/swhrN/bp/UInJmQDiSdlfI9/NudW+QkRnKADRZDZFIeUp5JBdTpLR5Zhoxs34G+Ij74y6cS7ZCCRqMJqC6MYeLv1SGTWtv2QvU1TwZmMmZKTS/q9k6FZAlwrIwA/hy7cNBwTcDwz5dZBkbcyUZK2RI3shFoh0x4nMRqIRwqS/apv1DRdGSoHvwdnTktVP2HX6zHH7Z3IxN4ujZD2vfUlsuyT/7jri3oHChpz6MURsikkgZjJvDRV6hgV1eBHwFlcJoQC48qTvOyPciLPnU31uzuwfcf3o0UG68W5ZkrhXh4e5cMoSkq+tO3bkI27aMUCXzhjs2JlD8Oe/H450krimU7sinJIvkeIe3zmCX05ss16dtaYM+MF+/A95ANfBTL1UYAG0RU5YkbwZ4J1xkmgIsK+WpMmbx/W/+C4R4/QbNKBKa7Y22YVrRA1dQb4PlDG0XKsODFV3q3hhESkFtZN2UCKcJ8fC9e+uUHdBiOn6VYCLzxxkeQTfkJJqCvUFbGfe1Fl+ttpH0PUWzSon1rPvOs11ALa6AM/1hIA7Ca1eRF1zb6Q1VDATD3cSzEyphMaLA8FX60DJNqXPeVB9E+UFL33EOFw7Hqd6R8zg6wwgFqTi2HcrxlAg+5ktF/CSGsOL1ZB+z1QTstNLxeSpRg8yL85XcfRybloxKZLKlKbIzFSiTnnIlITa7HCHgbgI0A/g7A+wBsUsdOaBCZuH/gEfLlUKndY21R8w3PlUI8qDxc2+Ky6V/ALvqA5CRiUYH8QPh6UHpWaIBw2zOH0DFYQtonNKR99BYqyKrJnAeeHb/8xurtaB8o4tKqHPDLPnsvPDWxfeGOzXhwWyfW7e1VFJahs2wjADAZD2mV/5pVLATTtTq9xSOk1CKQUtZxoRQik/LV57CwMpC0mOeZEIBHiUGrPW2LSvSs43LCIrX3toyVAlA7Bw43FniR5oWcqkIAbIDUMhrsOgGjx3F5DCWtbw712CENNmq4fwWkh5VXxt6Fn7oLr/zaQwijGC/64n1IB55cULT1LxmqTOAhpZTJ6cBLUNw+SQqbF6piRWaYpHx5v+7aeFheI4Q2GNM2u5SYmCS1LGpEaPd0F/DYrh4V3jHXpH0P+3sL+MjNzyCbMtqD7zy0C9nAA68ttgi1ovQBvNBw+C2KpRy9Ie1jsFgBC1LzpRApj/DsoQF85jbjZ9xr5XvblSs/fesmFCsRsup3R7FAyiMl9o3w1v95XJ9rs3FM0erFXC2u2jC1hIG2x8WGuR3rZU1AXDX2pHFpecZeUiQovcOkIWt/H+9UKVSITBoxZuKPhFwAv3rvNmQDH7u68omNhXhpkAst4fHdPYnU4WIlwgs+/3vNkOjYtjBZSQTDSmmNjpeMSTNDlvY9xIK9eE9rYlJeMlzGcye/73u8Q16smRweNwCwbk/vsIp+jDCWRkc6MHOsr0KXtsFkh0R+s/4AUoGpLMhzXCalBNHKMeR4f5qFgT7hn25+Brc8dVAzAYPFClLqu2NhhMNsJNnz1TCRoGeq/nlkQqcszH5gWycyvgzBcshEi1ktR+qYMAFCiKIQ4stCiNeqf18WQtS/bdRxAFvKTLunfA+FUqStXe5YXnDzpVCrNHmy5FgrQT6QTNP6anWw46Y6lc2z6wTI+B7fKOlpe2jNBugalB5dNpBhikzKR8ozA0+WkZSD9pfr9qN/qIK+qhzwnnwZaZ8wWAzxo0f3aOo+pRapgvJC2ePniVkuXtIIGCzKhceepPVrz6ijWR/An/nFOzbjkR3d8mFQi5acEKBj95wRoGNYoa2hsGN3Jm8fEEpM5AHEDxWSD4/q+2EPlUUBJsWAw9O0+PtsfUCizGcNY8/3YIl9klZ82fIceXIOrHugGGEMFEMMqgW+VIm1aI7HaibwkfIIhXJoee/yfkuVcqhp21IYI5uSRl5PvoL3/+KpxIQFQBuDaab2Vful4RBrpoSRVhMzM1g8ngPPQ1ZNkgTpwRctWll6LPK1EGYBCiMOK/BCw6EqeZ8zgRzzPqkS1UMVEBH++sdPJEID7/zBWj1p25Urf/DoHv38aGPM93Q4YPUWs3gYfQvp8WjHj4FkGqEuJBRxCWmo2DY0nRtazFNoefnV40qauNCaAI+fE8uYYGFiKZSfmQl8hJFASYV9bH2O70mjg424TEoalbVy1m1qPaO0EndsOIzBYqgcANZreGoxFppdgWoz61PsFGl2GnxlEGRTvm4DzyNhJO/HkEWnc8lkTjnmRa0SyVBLOvD08woAT+7txX2bhxcyYnD/GHbHiCHZIJVzuRw/f/ez9cgGMh07rRZ8aUj6ev609VmBTyiosRvHQjK3gdIKqKwB/j4OKaYUa1DNjsoxYAwiNiINU+wp5yxENvCVAycZbFtIaM9Fx8QIIKJdRLSz+t9Rf/Mkgju5aFlzzAQA7HmpG+5LgQd7x7JefGzRk0g8BLIohbGKqwvZJMVjJp5eqkjrtjEdyAEYSGuyv1CWg9gzIqS0T1qc15wJMFis1KS2As94kKTDH2aApgNPD6SMeqhlO6qMAGUN80TATABb/Hy8UImQCgh7egrY1Z03D4N6SIyHYyg527vWZVoVQ8MLtCnFLMWcPAElQwvMChjqkCcUWwDInpncotiO/VveP9XKODA537rsK42QHeCpRUQ9wLp+gEWt8hjj39KQ8tE5WEJLJkBaTTySMZDtKIWxpvf5Oh6DPGblhED49K2bZDhA0ZI9+RJasvJz2cgAoCdgntiY7uT842ojoDEtY/SyYEpS15JVuppM4CMbyN+yv1eGHTKBpFSrwYuJ7Q0GSgHvkUyBKpRlEa1M4KNf7XfRP1RBU8bsbbZgWgM6VdGZlG9KrDYqJk0+P9CTeEPK1/nw29oH8fc/X28xAWbhN2NFWi6BTyqsYD3PkSn4FSsvWQtIrT0wIrWNtRxjPD5VcSGPdP0A/ixbSMjbWPOcQSSZkf+6bzv2dBeQDjxd3MlTfRgLqDi67H/b0LdRUdoYZlv6hyp438+fxGCxgpZskHAeGlLSeCpHMTK+MYhSvjQy+LebuiImfJVRzFVFhQN8j2l2NW9YbWPvXT5brMuKEcYCWUWB11KHdAwW8W93bgYAfPGOzZpty6Z82XcWAwYARTWP288RIDUjA0NJByiT8rSI0BYDptmI8WQqYUUZMJzS7avzWWthG0Y+JUOQzCZxqEM7EhazkgmkMZxJSUY3XzIOgb1HTdnSGRwt6gkHXALgUvXvhZDpgT866m+eBAgBPLKjW3txRuFpJlaubCcL4sgBkiuHICI9MD1KFsfJKOtUCHkDTd14S/wDJOhTKcoyIkGOubNIUVJKnppYPcsil4YJt7cx7aN9QC4e1SCSld0yga/oZY6PkTZy5EMYam+AvSHJEMhJPSliNA+D8eAUK1CWQsIZjWm0D5Q0Dcft5oFK1mRohwbYa2JhIMccWTglIBL7yycU1BZjMMyz9zgGyexMVWhAWBu3WCWBkzm7yTABe2zl0BKD2nm6KibHGSG+50k2pxwaD8IyPBvTPjoGi2jOBpJ6rEQQQnrVYRyjqLJE0oGvwzecO03EzII8/p2Hdim2ykfa99CTL6M5EyBVFfrhQid2BUtfqZ8rUawnWo5nNqR89A2VtQHoc5qrCl31q8kpk/Lwm/UH8elbn0Vj2ldGgP0cCn3/bG2BZCGkkQ31jBWZCVALFM9pTZkAfaqqZqOi93/82B40pgOditWUDtCrjOhAxXRTvpd4xoqVGNs6BmUGjJq0dY62Zyq3AcrYV8+2beBxNb8oFtozBuxyvypvnuO+lnHJtUV0WWzYLJkxRm0NDqk5566Nh7GtPacZolBR3MxMDBYraEj5yAQ+BoZkaM8GP5vyt5EOAaZ96W22NqQgMyDkPJVJ+ShVIsmgKkOSi+fE6rdrtlQZuxwCleNYKM2Lp9kPdkjsxSqKBTKBb7xltcCW1BiM4liH5Pg7AWBfz5AWJn9j9Q4dyrXDAey0CYiEE2gbAYaB9fS4yAa+xcSyFsbToTopGpXsAhtlBbUfRlYxWgTShpHOLCPDFJOaB+35LZFhZN2jjHKw2Hm1mQ47NHlMNAFCiG7r3wEhxH8CeHE9H05E1xLRFiLaTkQfrvH+nxPR0+rfw0R0fr3X1kIoZCGTwJN5vZrS8YwSvjEdoBLGKFhpcLliCI84j1ouKiYcAG0J84CMhRLJeEn6T8dtPEPx6BrkqvyupD1DJS5hi9Q39FKQ1Ac0ZwIc6i+iJZvC754xKuAGZTEX1EPAsTwWOw5VQmPVWloDSb/K38TCQIIZkCnfYgK09yQ/M1+Sn9OSDdCdKyk6zYQSeGH1q9X3nvHqbWEge1dMo8aCRXVsKSfzqpPefHXqYO30PxOvRTJdMMEEGKaCBU2ALNCR2EBIe5LQ8TmjlIbuC88j47lrIyBAx0AJjekAmUB6qkIIzeLkS3IiTXmEvKLw9USqaOqCNZmy95XyPXTnypoJkGOZjAHIRolnwjyBijWWwxjNmQC/39yB9/9iPRpSPnryFR27NxkRZCbOQIaxwkhgsFRBY1rSlmwECEB7gGHE41EVC2KaWHVwRk2kgXreWB8AAM0ZH1d+4T4MFCua3v/ozRvQnAmQV0WYGtI++gplaciSzOlngzVXCtGU8ZEvh8rQtYWBhqXiapQAVGhGJLJDbE0IGwiBb7JU9LjiMAElNShRbLIlmMHSG1axHoWLBRHUQkbIqEW1HEXwPSgPWWoE2FgpVCJthPUPSYOAIdTv4bANx+kHiyHSgYxnt2ZTWhOQ8gjZlIfeQkUbULLNsjwuz3/Gc5VOioBZGNmb53soYMIwbEwI1Q+8MPM9IDWm2ZioRAKB6uNMSralY6CIua1ZvOW/H7MMoVAzqdqYCzzEsdGnVFc7zaQ89A3JccOx+WzK0+EWO6WVHUg7O8CwtZGM46d8DJU5jCPXHqb3CSyoJF1wTn+W3juAmVj53OVUqEaHA1Q4zy4uZGdCHC3qCQdcZP27hOQOgC11XOdDFhq6DsBKAG8iopVVp+0CcJUQ4jwAn4IsSFTvtcMghBSqBT6pHFHVsYGnF8umtI9yFGtPmw0Ej0jXgiZCwnrU4YBYDmq7kE2tRclXE6292NlMwGCxBhPgmep8tgfXlAnQPlBESzbAjffv0PW1G9PSg8wrj58tcjP5R9pizZekcWHnCfOky2ECnqw0baoGGOsaUor+4nRGzax45uFhusuOp+vYfZSMwbInb6fu8CRrazd4kJsNm6qyDqrugxEi1or9o+peDT+fYDxZDg3xImAyJbyEMJBFQOnAS6T6FMohUgHp+9U+WEQ2Je9priTZp4aUDxCQKxlGqFA2lD5/FiCNAO6PJ/f2aiFhT76MlmxKTvKlUMZW2XArR9Z9lUr3lGI1SmGEtsYUegsVFMrSCOnNl/X9NgIkD9m0j/6C9DYzKUl/sjhRMmjSQI7iWHuD5chsq82irZRnChYxE8As3KAKywFAazaFGU1pdOfKCXq/Me1jw4F+dOdKaEz76Bosoynja5V6ypMLTbESYbq6vjHtG2PVMxMqM0gswmVNB2s1At/sF8FMgNAhQaMR0iEAUGK8kTVWARnuIkBVn0wKE7UwMDJMAAAUSvKea087FpqZLKp7lkkZz9bMhUILASNlOGRULJyNgZZsoFkhUt/xrQd24NsP7DSagIjj9FbZdMVyctZAGAtttISR2Q49imMdYohjgYaUrxmFtG+eIW3YqhBXGAk17nihlGNmf+8Q5rZm8eC2LjQqJyhfMkYepzFKQZ00JNK+px06RjYlna+GtGxPqJgJrYvyTOiFdTYcr2dnktMIPcVi2a/lb4l1SV97DAjI3xPHwnJOJL3PzEOuFOr0Xzbi2VjRzCobBP6xCQf8h/XvcwAuAvDGOq67DMB2tSNgGcDPALzaPkEI8bAQolf9+SiARfVeWwsxgJZMAE4/YS827ZNaLCXlFcUiYekNKiYgk5jE1Y0S0GpuIWQxHqGZAJuqZppYgOuO802z6TOOrXJbegtlNKQVE6BoOY9IFxFqTPs41F9EazaFhrSPvT0FPLitU3sGvGBwDJqv5+JIWmjmSe+inDACpMUprXOhJ0gudJHQByj9AXuonCpjlxxmep9FTqFFsdsVA21aVIdSPADCCJFYdxH40lLQYiFevGFoVW0QRLbHHye+D5RkbShhEJj4nOfZVc8sYaDlFfPiqIWBOk/fl+lQahFmj1UyUD46BkpIBz6aM5zHLmOgBGhakxkESWlKb4on5HwpRCmMcc1Zc9E5WNIMUk+hjOZsoGOIgPSSPYLyVqTwLlaLWEa1sxTGmN6YRuegXFBlzQd5fcDxXsV+ZAMPfTqMJccwQe4Q6BGhFEl2KoyEzi2vKFGarUfgRYfHoElv9DBYMuLXbMrH9MYU+tTzMaBYgqZMgK/cux23PXMI2ZSPbhUKgZALUFbRycVKhJlNaXQOFtGUTsa+eRKVz7l8ZqUA2DN7VhCZEApxaiP0giqsMamNS8WARVbhKXuDJN58iHUIbCybYkGy5gSpucj3CAPFCjyS4Zio2ghQe44wvS8LhZHKEBEWRS/vh4w3ywUmVwzRrObKUInyGtNS61GsRJpdjFSuvx0OYMM3kzJZA9ymMI712OX7UVAGXFPaRyWOtTDQFvJxOMAwATGygbxPfYUyfvToHnzm9meRUs8S94cOB5AJ10hjPNbjL6Mcsh+oLa4zygFqzQYohRGiSOgQnWauLM+cQ6tctjutjO9COdT3qmQZs4ApPCTXOatsdSwzEmLLiARM6jCRNGCzKV8ZBOysJre/5tDeSNtOjwf1fMI7uHqgEOKlQogbANRT1HkhAHuv0v3q2IjfA+B3R3gtALkwZ1LS4uUBmfa5Cl6kKbFYCJ0OwgMC6kFjC02HADT9ZizhxDa3xDSfUW0G3nDamxfTbEo9sIGkWPsKksbzPdKlKqUAJVYPqYeDfUNoa0yhOZPC+n19+Mo929CUYUtYxrOMsJDjTQLZtFRNy9gVoSljalFnAtkOSUebVCACjIDKEroFHqGghGmAid+xwaKVsJZnbl4nwwGs/GYmgIubxMJ4WnEMnSkQC/MgSU8dw9L8RiotPLoYcLhgUIYlVPtgqsKl1ILFWRBl23tjIyCQE1gpitGUCVAoy22Zm7MBAt9TC7cM8ZQqsZ48Da3pq5oWoVXdMkZjWupBhioRipUIi6Y3oCtf1qGcwWIoBYdKEwBIT5qV3tKzNDRrNuWjEguUKjHaGlNoHyiitSGFrPLaeBFn2tf3SFHvMlSQTfnoyZfheYSWrAyvldXvLEdy8m1MB4bu9WxGSXp6URyjIZ00Su30XQBobUiht1BGUybAwb4hzGpO62qAn/jNRmRTPrpyJbQ1plFRzzs/F8WKMnByJWRSqnaAJdrlEIBdnVMKA43exyckjIXYMkxjYSroGcOWtBiQY7U8roRiGGT9CWMUm5LVhoXj++UTYWBILjTZlGRbwsh43QXNBHi6UmVzRt6DKJYUdxjHuuBTJmXSTwdLoWJI1IIZC7RkA3TlygjUQsshAHaCYmHpISKhMxh4HLPBwQZnFAtVU0LOOdl08vxKJI2aLM/XipYPIxmqyvoy7PaDR/bg3mdlhkDfUBltDSk0po0TxBlRXJmQMwx0uirJ2hP/fucWPdb6hypoyaZQCmOLCYg0I2yLBAtKP5ZNSeMpE0jnShvYgcmWsedQLzEG5Dyn1xBhak7wOcn0X5PenQ5UgbLYbH/N5aVPndU01rI4JoarzYbjl5Def/Wxi8e4rhZPUUv0CSK6GtIIuPIIrr0BwA0A0DJnMXL9vYgrMfYfPISeYoxyBMRFQr4iMEP0ozwUobuSVyI6oLvs4WB/hIZAPvTbdw0hVxHIF2McGiJkA0KxEGP/gQJ6inKR2hv1o7soUCzEOHCghJ7eCFGBkC566B8I0UkF5AKgtz/CYb+A/qJAlO9DGAtEaUJHb4T2dAFhDLT3RWg/WERPUaA9F6MlHkChm3AgFyMqCRw6OIRdHREaZ/oIhcCaDtluLxLo7imgnJNW9L59gzjUH6MxIOwWA2jvk+rzQgT0EZAq9gKVGPsOHEJbEGKg2Isdg73wCNhd7EFnjwxFtJf60VsUmJYmlNKEjv4YYohQiYG+XiDlAbsL3TjcLyfsAwfzODQYIxMQwhwwWAaG0sBQmtDbH6MhHEQhBIqhwIGoH4MDMfIE7BYDGOiPUImA3bsHUS6GONxewkBAyBVilPPynmV8wu64H919ESIB7N6dw2AuQk+Uh18gtOflRHIgGkBPf4x4iIA8obsvRjlNSHlAviIQ56WCvDsXI8zLe91dFEiX+5GrCPQWBfZjELnBGKJI2B32IY5C9PYPYs+eAgZyMfL9QFNKeoRd+RiNlQHkcjGiIUKUI5SHYhw4VECuh1COgFxFIFcWSAmBwf4+9PYC07OSju8sxPCK/SgOxSgXgHIE+EUPBR843B2DioQ9xW6UIkBUQuQjQljMIxsQplU87OuIkCl5yAeE/kIFfZ2HUIqAnsEIh9tLEBWBHbv3YqgYor29HeVCjMPteVQGCJUh+dpX4Y8NA72Y0+ihkIvRUxQYSsv2HNhXQFdPhMaU7Me+Hmm4TQt7MFgMMdjfh7RP2Ll3EJVKBRRG2LN3P0IBUBRhx649yAaEvpJA50CMpmgQxXyM9lIeQbEHpRDoH4ywe/du5AZi9JcEynnC31+cwc7du1HKx7j/8QGUcjEe7u9EI2IUBvvQn5MLc66vB329wNxGws5eoD0nVeU7dw+ioyAwPUt4ZqAbQgD5skApFJge9aE7H6NrSKAxGsDAkDSMMNSP/FCMA3EO/SWBfEmgL8qjd0hg954CKqUQhw6XEAmgMCSwZ28BPf0x0j6wd88AevsiZH3C/qgfHbkYxVBg3/5BdA3GaEwR9gz1oL8/QtaL0NnRjr68wEEvh9xgjEoB2KPa1VMQyIaDyJcEhkoCQ4U8vJKHYggMCkDkCaVCjIOH8ugtyt/beTiPrn7ZvkBE2L17L2IAUTnCvv0HUYoEwnKMQ/v3Yc9AjEpZ4Olnt6EUCQzlBEqRwM5oAKWiQH8+xt4DeZRKArt2F9A9FCMfAgeLA/L8IYFdu/egPS9/4959g+grCYQxEOaBQgUoVgR27h5CJRYYKAn0FAXCHCEqCezeuw/5ikC+DBwsDSDXTSgPRTjcXoBHQDEE9hf7AQGkKMauvfswPUPY19EDANix7zCiSoyACF3dRV3RVUCgFAH7okEMlAUKFYFcQAhLAjt37cbhfIxmX849He3tOgNhd6EXlUggEkCfAApZwmBJoBgCbVlCIUXo7AvRFOchBgmHuiPEjXLO7c7HOEB55AsxKgVC4AFDRYH9B/Lo7osRZgi7oz709ErtwK7dOXQOSINrXzSA3gEZ8ti9exDthRjlYoxdu3ajsydCxgfaxSD6ciEOHdiPwbJAz2CMwyKHviF5z/ZHA0gdPREwshFARGcCOBvANCJ6nfVWK4BsHZ+9H8Bi6+9FkLsQVn/PeQC+A+A6IUT3eK4FACHETVBagoYFK8Si+XNR6cph1uxmlPuLIAAt2QAH+4pYunQOOkQPYgGUKhHmtGYxqzmNrYMdmN7WiJZsCvNmNMr42pBM42vKBCj4ecyd1YS4v4iUT1gwswmibwgFbwhLl8zGgUoX5kxrwLLZTdg4cAgL589AUybAtlwHFi+cjaC/iHQgvaB507J4rH0vTl22FOUwxtqOfTj1lGVo6BvC4T29WLp4DlqyAfIHB9AQRpgzoxGFQ/ux8tQlyJVC/H5zB644ZSZKUYy93QVkMz7mtWYxrSGFfeVezJ/RgCVzW9AuetCaTaEzV0IlirFg4XQMeINoa04jGOrGorZZyJVCzGnJYEFbAw6EXZjelEZLJkCxO4/5MxoxvSmNQ5UeLJjfglIlxqB1fvuubjSkfCyc3ojuA/2Y05KRGQz9Rcxvy2J6Yxr7Sl2YP68VA8UQPfkSli6ZgYH9/YhigaXLZqJnby/ypRBLlszCs4OHMXtOK5ozAeL+IelhDVXQ1pDCwrnN6EIfYgEsWzYTm3OHMW9OExZMa0Du8AA8IiyZ24LOuBdz2xqwaEYDDkU9mNOaQUalsy2Y0YhUQMgdGsS8tgZJUXfnsXB+K/oKZZR7hrBk8Qx0iT40pn0sWzIdB3I7kQ0asGTJXMRdeZTCCAvaGlAOY/QdGsCChW0oduZAICya24wBbwAzmjKY3pRCcybA5sOD8MMY6bKMT+/pzmPh/OlozQYY2NuHWbOb4BcqiOIYHQMlnLF8DmIh8OxAOxYtmI5F0xsxWKzgUNirK4c1NqRw2XmLsHb1dpy6bL4surJjG04/dTkGixWs7diPGbNmwR+qYPb0RqD9EObOm4u4T2YmzG9rQC4Y1OzRvGlZbO/IYdHCaWjKl7FuTy+aWzLwibB0aRt2lzoxp7UBLdkA+3sLaGtM4+zTZuEXWzaiZVobFkzLIhP4OHT4EObObMasOc0IY4E+5DBnfpuM6+dLOLCzB0sWzcRQ+yA8AmbPaUZTOsDWwYNYvGQRwu48htoH0dyUwSUXnoZoVw8aB4uY1pLF3JSHdbt7cUqDFHV1lvvwitOngwDs7s7j3NPnoTtXwmBHTmoJmtPIdeZw9pLp2Hx4EAvasugaLKMzV8KyZbMguvLId+awYEEbgoEi+ocqmNPWADFQwpzpDfByJSBfxuzWLArdBSxcNBu7S12YObMJUSSAfAkLFkxDp+hDcybAsiXTsafcidaGFJYtbMXggQE0xzEWz21F/8F+zGpOY8G0BhwMe4BSDvPnz0PPgQEsXjwLPehDJuVh2dIZoO48ug8OYP7caWgqVoD+InryZSyYNxPlKEZfoYJ5MxuR83OY2ZzBUG8Bs1syWDyjCffv34PZc+ahOx7AvAXTEQvgcNiH2XNbkC+F6I5yWL5sPjp39WBOJkBbWxaB74H6hnB4oIg586dhWhihd08vGlob0UjAgtnNoP4iWsIIzZkAuVKEOF/CoiUzUDgsyxPPn94Ib6AI3i21r1BGsxBYOL8VxUqMtkqE3KEBzJnTjErvEObOa0F/oYLmULI2M5rS6MEA2hpT2itOqWyE/nI7Zs+dj0fedTYu+8w9ePqT1+Ad31uDZpRx2pwWdOdLEAJozgYgAD2FCubNb0FLKcLhgSIaUj6yYYz5C1vRvq8PixoJuUMDmDdvHrpyJSxoa8BQOdLix+58CYtmN6O5UMGBvgIWzW7G9MYUnu49iEULZmLetAY8038Ai+a3IYwFeg8NYO7cGQjyJa1lSpdCzJ/VhIOVPsyd3oAl81pwKOpBJuVh8cJpyB8eRBQLLJjRiB706/FT6RhET5zD0qXzsK3QgfltWSyf04wHDu7GqcuXoitXQseePixeNAPUO4TufBmnLJs16SmCZwB4JYA2AK+y/l0E4F11fPYaACuIaDkRpQFcD+AW+wQiWgLgVwDeIoTYOp5rR0ImkClCoaKjGtK+jlWXwxit2RTKofRiG1LyPd6etSkToKIUrpmUl4gxMR0W+EaJb+LJVnGR0Ow6ligjqUrxZnyTy51NmbQmAIlCL5UoRpPKZChWYrQ1phF4hK5cCbEQmNWUVnRYhNYGRWsxDRvJuFtzJlBVvKTQpiUboBTGiGKgKaMEioGlAmZRi668ZWK5HK5oTMuYazmM0ZgJpBKWY61esmaC2S/A5CsHPumcYxlyMVuOcjhA5yVbxXRiwQWF+HxDS9pxWY792xsLVZcZtuOy+nVsK8Tl9/C1sRA6HGCHegCZ685FZJhyL5QjTGtIIa9EetmUh0ZVIjdUtHkpjHR8lyBjv82ZAFEMrQchNQ4a0lL1XShHKFUizGpJKwU3JegxFluVwxgtGTkmuOAV06yhEmtVYqmZaWtMo1CO0JMvY+H0BgxVIjWOfESxKTvMItYolrFjQFKeklKNEMWSii6pZ6spHVi5054ST0LTwKWKHI/lKEYljqVgN4y10hyQIY32/iJmN2ewp0cueLzL5cr5rdrAm96YQllRy40ZH5UwRr4UYVZzBr2FMnxSv1/dY65Qx22LYukJ2qLflG92DuRceQ4DyhCVyZsHJE3pWWOPx6cOByC5QVZFFRcKfBn6AkzqF0iOpUCJxARMdkAUC61rGqpEmNaQhoAM+xTDSPWpotnVPa+oLA0Zd5daiVxJ3mej45BzYxRLsZ0UHpsYPz+n3A+8cIZMwfueSu0TOixm8v7lfNSQ9lV7Yh0+YPU/h2+zKfk55ShGQ2AKEQ2okBfP1XNaMzI7ytpmm7/fDgfIsIFAV06GEVqyKRDkRl8trAlQ31sOYyUu53CASdtkjYRdgK4SSdFlJjD3RvaDDHdxpUXdb8KUTI6qxo/sn0A9lzLtO+2bol6sY9GvrXDD0WJEI0AI8RshxNsAvFII8Tbr398KIR4e64OFECGA9wK4E3KvgV8IITYS0btVhgEAfALATADfIKL1RLR2tGvH+s5YVWrLpoyIhtNmKkoIxXGgSiQtUY/kZFZS6VLlUMbTzM20KmbFJkXQrp5lF7IpR2YxLXMcXBWDSMngNQCTQ1uJhNIpIFFUo6LiyjxZ+Z7JZ8+XI8xsziBUwpjWbArFSmQ9+LJoR1MmQBwLszDoQS/fG1DCQEDqGjKBrNSXKH2s0naIoCadFAplWVCkMeVrAabvecYgomSFNFZjg8we8/wwcAzWV0Ez3nQkVgs/973QBoGk8XTVrXh47N+IBE1pYiAZ+/e9ZGaBjgt7pCuxeWoRiGNZjrbCVQ+tRSStYqq672O5AE1rTGuRXTblo1Glq5UqEZoz0hCNVHze92TstykTWIImY+Q0pgNtVOZKIWY1Z2SmAIsqABNj1+NcjmXe+tQWibGAsRRGmN6YwlA5Qjd7RjyO1ITNorVsSmoCWKsCSOOvtUEt/LFAazaFUkV+Z5N6lvheFStGgV4Oq57FUI5Hfi75t2dSPn6+dh/mtmaxt6eAlmygjasz5rbg/MXTUChFqmKhnIQb1OvBYgXzp2VRKLGxJRcJAfMcAdLrtBc4ofQnnGGkHQF73PomXVCnwwkrxh+JxPg0hYbkmLLTEtmg4H7icSWr4EmDvBJx/rwRBoYx6x5S2iDlsRVGsYqvG5FdAxvvUSyZklIFZV6Y1RzBzoTU+wQJJyhO9AOGHZcLodEEsO5Dz0eWwcGaAPtaNra4WJDUBBhjG5DGOu/50taYVm2VVSzTAX8ndJZOGAk0qjm0c7CE1oYUWrLSMRoshpjWwOPV1jfEunoga5BCpcupRFadAKUriWs4jPwb7T0XtA5Axf5ZdOlb46QhJTcD48JhUksCNf+b/SYCr/a27keKEY0AIvqgevlnRPTV6n/1fLgQ4nYhxOlCiFOFEJ9Rx24UQtyoXr9TCDFdCHGB+nfJaNfWg6QqVg48IaBFUnLSilSnB1qlWSjLdCm2WnUBHmE8Vjk5JIsF2TnsgCmuAcBUHPSUgt6nhNhBXQLeAIWLW3D99+aMr9XT15w1F684d75aAELMaEqjWIm0RyUFLrGe4ENlbZNaEMuRnHSLlRihgK5E2Miq44iV6mZDHM4O4D4sViQtWFQFRRqUt2gXheEUSWZf/KpFM+Un86057UpPlAI6hcYc56IhVQwBzEJuRH/GICDl5XMON5FV4IWM8eZbx33P8syIxUZGjMOFY2SZUy7ZKvN/eSIZqoSY3phCTnktmUDmchcrsTakyny/rPRQ9poqoV1/33je5SjGYFEaAaa0tcCrzl+gx70QUAaf9NDZmMpayn1eKDk7oFAJMVgMMa81i3wplCyPZTQEnilyFUZCV/Pj7ymHMSqxDLsVQyksbFJjlydJ3msgq787MoZKbAzwUhjrbIqhcojT5jRj5YJWlMMYb7l8Gd5x5XKEscA1K+fi+kuXaDEsj/mGlPzennwZc1qzyJdDJVAzm3Jxpocej1Vj0GYCpIFnvDrtFAiTtsrPPQGJvHAAulgQZxQRTN0MwLAPbCyHsVlYZLZRrJ5NWYHPKPHlWGprTOm0X2agNGOgxiP3b7EinYEZjWn05iuWcSG/Y3ZLBnNaMspokAYt/17jEMn2asOKX6uFsBIb40Mv6spIZiOVq4IaoaqXmIPYi88GSOT3A8Bpc5rRlAnQmg2048MVFtnrZlaiHEmGqRLFOu2uIS0dl2IYSVZY9ZXsX1O1kCv+AdDGOj8zKV9mB2jWWPez6RPtwOjXPM7UGhKbKpNQ85g0NGKdessQYJZZllHneZbH7NFitHAA7+CxFsC6Gv9OSNhWc6Q8GkBOoHLBlNZfOZRUET+MhVKItgYzKLR1F1lWq7CKBcXG443jZDnhjPIoylGsq8JJJsDcMDt3NO1zNSr5wEnLXGhv6u0vWI5TZjfjkmUz8MhHXozBoozNF1WJz9YGxQSoBaOsLPJYLfY6FKINIBn6KJQiPfB4cgGgqTBPhTGYLWCaOo6VQeRJutHOl66ExtPmFCpO34EwW+0aWpWpVNIPccpS+gaWccD52UIk93431QN505DqvQNUGVdwmGB4ASJ+qPj7BGTxFqaAU4FKF7NqKQAyJzmKTQiJmYC2hrTMe4ecoLgPYyHvkQzLCF33HeCSuGYc8HhmI6ASxvijs+ehtSElv1vtOPa1N12Y8KCZCeA2VpTqmmu7N6SNgr6tMYVCKcLyWU2Y25rV3k6jmrC5/juXrS2FMiS0YFoW6cBTVHxswgGVWKn0g4QXW1IGcVZNnpp5U3R1Y9owAenAQ2s2hYGhEPe8/yrMas5g1+dejiUzG7FoeqM2snmbWmbUIiH0b/v2X1yCRdMbUFTZDkyhy0W4mskRqlSyGXfcl3EMa+E145DTh0kv9uY1M4b6OWcGS0AbppXYVILkZ4AzjyIVWuJSzJxtEdqLTizrBLQ2GCbAGAGSCeQQSDmM0Zw1xnsm5eHx3T16LLCh0JpN4dd/8wIZYsym9MJmb3jFC5tNu/PCyyFYdkTMazOmRmICklkDatwEpgDQ7//hKgDA9952Gd58+RJcuKRNxvOVYWd741xrgPuNWR/eZwCQDEsrMwFWOzlsIetXmNANG86c8cJ1CkxmRJzITGDDkZ0c24GxwwEpZgViNmCF3NBIZQRArS9cw4aZyFgYluloMaIwUAjxW/X/94/6W44RUh601ds3JHR8ilSqTzmKdW5o4Hn6AQCAq8+cg1nNGUnT8qBWE0tWTYAmRm32DgBMGILjhHzzo1hu8iGNgCiR01mJYzT6cnK3vQyuo10JY02RfuJVpk5Syvfw/FNn4dQ5zfjq9Rfir3/8hPTAeDAHPsKohIoalDKkUMUEBDJnt6QmXE6T4fxvLn5Dqp0NaV8XYEmptv7ppYulOKZQRiUy+88zZcVV0QCjA0jQqrGhxYwRBd1/TJ+adCymYaEtYCE411ZOrjGzM7CLC5G2uLU+IPEaqqqgSUMU/B0cDlCGSTmSIZ0Kmc1aUpoejdGQDhBGAoVyKBdXRSm+5sKFeN4pMxDFAtvaczr+aO6X0OOAx6k0FCJUohgzmtIAgFIU41OvOUePBbugFedEA+yhGyNAU65qcmpQhaaGyia08G9/cj4A4MIlbejJl9GQDjCULxmmRX3nt95yCdoaU1j9j1cjigWe2t+nwwEtyrPyPGkQ7FO/hY1gqU3wtSagMR3IWv3MeikNAxfSsgu88AILAA/849WJYymlhWBPshLFeN4pM5EvhSpNM9aLOGDKSgsr3BQJeS+00eeTYQJUiC9XihIV+3hbboD3m+DXnPuuWCtLE6D2xlKLgwkHyIneN0xAYFIXy4kFNEYmK6n6Ib1YACvntyrDysf+KEYAuU9JTjE7rVlD9V+6bAbuef9V+Pc7t0jjIhYoh0JVQiStMzrUX9QLPPdRSi9yso35Umg5TdKgy6qKmIlUQM3QlnR/cqhiWkNKGfCkjbVyJJBNAV1KV3LK7GZ9/1974SIMFis4b9E0rN/XJ8MBvq/DtLZx0pTx0T5oQlg8kosVyUSVohjp2DMpjqrNvOEVM6msLZBpwhx+MIY8G0DpwFPFkUzoM+K5K+Y53tMpgqx/qlhjV2/rzkWX1G8yTCT0HDqpTAAR/ZaIbhnp31F/8yRgYbOn6U6+QamAVKGFWMUwUyof2Xg7APCZ156LGc1plKOklWvTYbxY2Tme/HBLahsJqosfdK7Ul7YmIqEWrJefO0/TgIDafztmuipIxMQYH77uTJw6uxnPP22W9YAroU/a0LgvXTlX0aeyL5qUhRsJwzLw4Kpo6kxYC6Xa8UsVCCpW5CIYC+CdLzwF86dlwSIYuwiLXTMbkGVvTd5/0rPXoRXP6ABMyEVV19Lne1pDYHskgSXCgjUpm6JASlDjJUu6crlWj0y1Ql9pAti4MHFgY4n7HuePWznRwmyk05UrY25rVhuBjWkfrdkU/vXV5+CSZdOxsK1RMwG8dwAgfx8bF3K73lhT6wCGjQW7AiSX6AXkBMcxU0DpPVKGfuXYbKEcYUZTGteeM09/5s3veUFi0uPfwJ7t7JaMLsXKRa4kLQpN70thomEC2PuKhaJdoxiDpQpaG+TErOsKRDGGyjGyaW9YvXcb86aZ5KTpjbJSIhtVjVbtgQZVqMampbVXFhvDkguB6WdbPfPVmgAtDPSTxV44OsvzsV1VEOCxbdglHquR/VlCzlXaO04Z45BFuFxox16w+Dm9/e9eiCtPm4nZis7n86JYanZaGwwTMKs5g9PmNKOgFkIWjJrKlLKaoB0CYM81rZ87ZVhp494YKQ1pz2g0FB2vBanae/Z1X/NYY10SC5mzAY04BlqyKdz0F5doJkiWo451GyM11rlM/NqPXaOYI/l5xTDW82sijKqMZDscwNqyShTreTvle7o2ha2H0AaTtYbIAkGm3on0/k0J4UixTTx2eZMirlzK408LAz3etVDoNh4NRqsT8O9H/enHAZUolqIm9ZDx5iTlKibAI+iCE9/8c1kGIe1LYQYpda6mwAJrIfIJxYqpvKbjPJ6pIsYiJAD6gS6qOt/5Uojvve1S/GF7FzwCvvHnFyf2AWfBCdNVtjdUC6VQUoDMBDRYNO7SmY2SHlQsRmNaMQZpaHqaq2lpIaKaTImg67xzsaAwjrFoegNypVYAJjbFg5+NDyITGwVM7J8XU37te0mRIDA8HCArz6niTB5ZxoFkTHhS5r5OlGglzliQ7UhqAky4wgi9zAIhjQ6zfazcGlUJBtVnSsOKY6dmIvnq9RdipvLeP/vacxOL1j+87Awt1tQTuvpcveMcTAiJJ8+4hg4oYy2UXMgIMAJOjsOHERdkkQt0kwoBFcoRmrMBvvynFwx7hnjSY8pxJCUyaxPDGJpy9ki+Lin6lI2TKJYFaSpK29CSlWGNinrGAKjnJMA1Z83FZctnjDzwFVb/49XYdHBAC1653Xyf3nTZYvTmZancKDKeni10i2NjlPL9ZmU2T7Yct5YGkR0eZMNUaC8zZl2LHquwNARqx0yRZCKYAeN5i2lxvh+NCVGdHGfTGlK6cBYAfPQVK/Hgtk618yFpilvGxgNtEHA4RbKNtvbD7FHBmQIJh0g9jxy/T6s+tb1hI8I0hYA4Q6FBGbxMlXO4gT1gLt7G4tiGAGPOfzobCyZ0YzthPMdnUz4WtjXobALbeYpi3+gSVJu5SBgbctVGqc4OiI1GoxJ7CT2E3AxIjQE2pITRnnBfxUJoB647L/eGYR0JoAz8wOxr45NVun6SwwH382uVpncmZOhqiyrle0KCJzkeqB7x7oAmRvSzG67Am7/zmBahXHfufACmjKnvUZLiqcoUKJQiwxBYN9Z+aHjh4UmHH77BosCqM+Zg9ZbOmiUf2aItViKdzjgaYiHT/YqhjI81pGSKVEW1jy1WTRFXIlQUVQUAKVWak9O6KpFRlDM4DhVGAs8/bRaef9os2VaPMxHkrmOx8lztWBYgkPJ9S7RjNmBii9gWAArNBJiKgeUwtJgDowkohYYhMJOsHKRCWF5+bJVxjZNpgewZxnaYARwOIM0AsQfEdfl5L4lUYErN8oJ+5YpZuu9sGtPuTzk2VHyex0pkdCNyEYoUs+JhVnM68RmnzGpSokc1UygP5Y/PX4DzF7dhTksmYSDoBSGM0agmfo+AxlRy5znApCXyJOeN4m1IoRShFAu0KXW575HS3kQJhiISQmcHrFzQpCla/t3/++4r8NV7t+kKmtW74tXCtIaU2svAeHHlyFhMn3vdeXjn99fqKnt6UauiY9lANWPThMnsawDpyRUrMSDMFsNCQNeKt7Us7CCUwlhVGFS3SxjtgJ1Gxh63XcK8HKnFOpLPNXv4az56DQ72DWHxjEb9e1O+pwRkJluFN5sSQnr5rDGRYU8jxGNj+rLlM7TXzEwbe64pXwpc9eKnHR/WVpgQgHSU5Pxja1Hs/uQsBl509cZJYzABeqyqFEZOT7bj8naKIAC898UrMFCsIF8KcfOTB8A7GfJiLJmWWIesqkXcfP8FjD6JGUAWorOBqec65SRyONGMjeScwcZQOYzxpsuW6MwkQDKZvAaxgJTXmskWBqofT68AsANyC+H/ArCdiK476m+eJJRY8Bdbu15ZHUUEXLx0uqYpbQ/Ltu7svNe0lUZkcmNtgZChzFhPwFS48RCF9poAuWd6a1ZOgkz7AFAbrMi9Dea0ZrSXOBrSvq9pLa6RwLWouSzqxUtn4NQ5zfjiG86Ti5d64KUgT1rUjazoVvQ8z/1c6jSMk20JlEfMQjaPzKZB8neZ87SnPUwYaNHwQiQmUDsdy1Zv20aDTimMjTEGwdkb9kZB1ZsPkWZr7HKxfE/l5Gc8OJ1PHtsiKBNrNt7Q6JMW4/pLF1u0r6H0A9/D80+dqSg/mR1w/uJp+PZfXJK4/t5/uEpOUsYGgEfAV990Id5x5XLMaEonNAHs6dgCrcc/eo3esdFGmT1ERdH61lioxgWL2/DlP70ApRBYOL0Bb7l8aSJFsWwtLrxAlKMYP3j7ZZjdkgEAPX4uXTYDP3zH88Y9saV9tVGOZQTb0DRzbDaV0TF533j/gT0GrTbL8uOmpLgMIZjULyFY+W8xAZaxa5cN5p9WzYxFcVKfwIbXS86cg0pocsgjFdrhsOOyWU244tSZ+rdKo18tZoGv55LGtK80CsYBuHTZdCyd2agZHy5V/Yu/ukKzdJFAFRMwXBho4vCWyC6WBgszASxaNOJG43lzmEAyViYc0FCHESD3YLC1OSyuNuym/Rmt2RTmT2vAmy5brL17fj6YaeG5sfp70r6HtR+7Ru8yKY8bcaUJ71WFkS3WM2Inx1o3uD9ZGPi5150LezfTyBqPAsbwtFMMjwb1biB0tRBilRDiKgBXA/jyUX/zJMGkrsXa27GrEGuKJTYbgTDSvhkUOte1apGxPQcWycTqxgrtyZobaGJ4ycH81ucvwzVnzQUAzGzK4OKl0wEYK68Yxjh9bgt+9Z7nj/mbA5+wfFaTpNw4BmeJ9WJhdATXnTtfGyqNqpBSLAxlqB8YYUQ0AGouAr5vaHGdIqgsesAOByQnOptitxWzesHVqYPcH8b7F5ohsBZru5Y7swVI7uluRILJWgJAUhVujAsYAY6+p+rB802s0NaOsGq7Hnz+9eclJsPvvvUSrR/4ybsul3skqG1a7ewCcz9IaVKE7mv7HqUDD4tnNOAr11+g6VBjBAT6WC1cs3Iu2hpUPf7I9OPHXnHWsHOzKR+LpjeiFAksmNaAd73olIQwUSCpmmcvi3HuwmkJL/RIkFW7GoZsVFU9a/y9UcwFaUw82qbjTYogzB4DsVnwmKq3hV22up/732gClA5AbUolRYJmnwzDjJma9/x9i6Y34MY3X4z/fuulMu2OF83IqOlrgTduCq3fPFCsoCkTDFsw/vGPzsSyWU0WE2CWg0D/9lhvJWzrDNhoqG5TckHl1Eo5L09vTCeZldio8XW6nbp/pTBCYyB1SKMhjKXxldbPJxstnC5e2zD/3OvO0wYp78fAjCiHpgDo50um8HqY1ZzR2UyACZ1xEaSslaWQ3HOB5zEzv9mGAgt7zQ6mAITAB689I+Hxx9Y1UXTsjIAOIcR26++dADqO+psnEYlNSlK+pr/+5OLFWG5tuCCqnqO0osbtEACrdnkxSPkmDsYPBz/07P3LzzZUHqcsAmaiOH9xG6aruPGVK2bhbS9YDgBqFzszQDgnezQsaGvAD95+GZrSvs5qqFhCn2pUYrkwr/3YNYqdSFbuApKTGjCCEaAWWH6fU5+MGlqel9KLurF8tcgyNqp+WwCoNQGWd2ZqCRjBoNDn88JtPocXHztdULMCHocDkKSBLWWx1gTESXaHwcyQHTeuh7lhmEUxxovPnIvXXbQI//RyudCyx1oOkznDNuyYpagy2ua2ZvHTd12OV1+w0KTDxlJ1za9Hwleuv1CG0BRVyiGQd77wlBGvKUbQlQ1LVg42e8EAdKz7p++6XF/32/93pa4Kd6SQqZKyrakak+Kwxcu6xynLEE0pD58L/1SH+Hhc8WTN2Ssm/Y+ZAN5oTAmAedzGyaqXcWwbyEZ8GQu5MK5c0Kp/AwtTmUJmA7saZu4zIsyfvOtynLdoGl5/0SJ89rXnJs4PPFJ0vfl+wKacUdMJYhbLNmDMc2BCSWzc3fG+F2LetCx40yDWDbAHrAvvKEOoFMo9F8bSBAByoQ4U42k+Q6Wb+iOPq3Tg6XFhVzDUm3cJ0ycr5jTjZWfP0/eHYT9PJn3T1FcwtQGSTCdnjtj9yfVVABXC9AjvWXVaos0JY1FMvjCQsZGIbgfwC8i14U8ArOH9BIQQvzrqVkwg/ujsuZjTktE35Q0XL0JzNsB/P7QLr7kwuREhswEMTjVKx8lBnQqsvE5+nQgHQOeBAnIy4GEihIwb86Q7wrM7DO9/6enj+t1EhEf/6SV49tCg0hRIOrAWpMcMNKYDvVjGahHhePXw9Kfhgy1pJJjteW1aFUjG7O0Fnksws3WMCrShoD0nS2DF+bUChm1h+k56lyon22o/Gxe8DTEzAVqcBbW1Zywn5WyKhn2fzU7YVbz04iKsimiW19GSHf3xspkAAErDAdVnhJnN6URu830fWDXsPjKiKiaA7wlgdnyUu7OZ2hCjgYWggJzo7L3qa+FzVzbohVwXsFIiQR4H7G1XC/7CaGSDtR6w5sYORSU+X4cDYmtRNrH/KEZiPEbKUPTV/bfvk0dm4WbdCIeozPOSDIGxUcxpp5zOyjSvEElRaBQnJ/ez5reirTGZtz+SEcdzWCaKdXz90mWyv0+b0zLsfHZe5D1IMgEVtaimrNg/p7qFiiGwq+Oxl8+MmEfQv6Mlm9KhyQQTEBtNQCQ8HSMv1RkO4P62CxqZ7ACTxlsLTZkA9//j1XjFVx+UrImVGQVIQ7wlK6993ikm5MIGHwvJNcukmIeYs8R8E0b2uU5AzKLRZNVFFuDyXY8FkFLt4DkT4K2sDQs6qcJAC1kA7QCuUn93ApgBuY+AgKz9f8LgvS9egZ2dOT3YGtI+MoGPD1935rBzT5vThFeev0D/Lb0fgSgVJ7IDuJiP9EwNfZiy6J7AonKEENbNTKYLjQU+729fsmLcv70lm9ITDGAEaFdYA9hAeclKlNWoKmkZb8R4lvbvqdVWG3KikPSsEGwEWV5FUJ0iaOKmRh9gHphAe2fyeCWMjCYg5jQrDyUlHrSZALsegJ2xQJC/rZahkXidCAd46jMNyzOM1kwlado1H71m1PtVLVyy8YaLF0EAuOWpg1rNvbxq29BzF05DW6NU2H/ilSvRqtT21Shz5kcsELDnMgZjQZaxI4uXjO6pz240E+0bL12MmaqqoW00RQI1Jy2btTkScM52GAksmtE47NmxqXEgGZe3q7pVL9ys0LaZBHhmP3geq0Lw88K/R+iJPslgJUMjPJ+wg8ELZhwjkY3x9T+7SIU7TDpbNSul+8L3NK092nkM9vhDy2sHjKHDiz07O8M0Aep3sR6GDTpZFheJz7RDFcxm8BzNIUzOsPGJkA1khcDR8FdXnYILFrVhTmvWaLKsMO38tixeunLuiNdzH8n03jixFwdntvzvu68Ydh0BWPvxa/C6bzysay3I0F1yC2bdb7bhaYUy7WyLpnSAU5WQ+LxF0/SzwnMYACVGTRplR4sxjQC1f8BzCoFnqB1Oe3n3VacOO++0OS0J65itaE0PRcm4jU6R4cHmW6pfKxwghIkZCWtyGAtPfvyluG9Lx7gmxD973pLE37W8oZ/ecHnib3ugv+Ssubji1Jn49GvPRaEU4q+uOhUP7+hW1q4856z5rZjdksWPH9ub+JwwlrHc11+0SH6u+mBbtCcE9EQneNKLbYGVLQxMCv3s3G1taFWSE7becIg9M4tF8Cza32Y1ONdfhyV8M6nzQxkLILCu4bRFFlICycIklVhWp7Q97LEo7nI48oTOi0BslRatxpKZjVgyUyrD57aOvLGnENCLWFlV6rtk2fRR28aGGSAX9SWWAn0sfPyVKyXrEMX400sXY2Fbg/ottTMNRjIy60VrNoU7//5FuOwz92JeaxavPG9B4n1+htnYsgV8+n7HhsKPRXIRriivOhYCiI2wiz35MBJagyI9fiMy1HOBZsJMu+z4bkI0KIZ7eCwYtsVztZAKZNXOShAn0iVHgm2U2OyDLmEskKgYyPXw9Z4nscnvZ08akHNwvhwOY1o53Zfpdy8SutSzTcs/+YmXYs0jD+HmMTRRH7lOhs+KqkCPTrVU/XPq7Ga9sI4EXU8gElILpbrhvS8+DdmUr7NYGM9bPgOzWjKqqmKyQi2nXEZV99a3Qip26Xk7nPjC02fhdRdJtppDD4AJlwImM4HTIY8JE0BEywH8PwDL7POFEH981N8+SeAOXzqzSXtR1eCFy0Ym8LB4egMGi6G+gXpnKyEn5GTMmFC0qGO9OFg3R2A4TTsSpjeltddaL6pjfKxi/asXjRy/vXiuryfmaQ0pTFNlaJszAeaoxURYpsIly2rna5dDOdD/443n4+v3GdkIe/X8CbpalhDWImuFDeKkt2QXETJZA7AmaabqUWVlq7rwisa0QxT2xA+YPG79UIlkVUIWE8prlIpbCC2kBLiIh1SN6x3ZxvC8kv0nQzajeTuffd25WkV/pJjTkkGLmrCEkIWifviO5416jS00vLwmkzQ6At/Di1bMTlw70qT1xxcsxKLp9RsZ1fA8wpyWLF51/oKan0+wC/mY47wI1xL92s+grGNvmIBEFUuP9O5zvKGT7f2zg2CYACs8Iqxnw/L+bUra/o0ARhQ/MnT1xFjofUHqQTrwEnMlhwnMYmZCb7EwKX8yLdCkyXG6K5fWzgQ+3nSZ3BU+m+JyvCTz42OBiORup19+4wX4+G82aKOYtVD1OkQcutNl4+ulXiENiKaMpduCLFM8q7n2c8cp5fq7VTrlI//4YuzqyoOzjjicJKzF3sxvqj85VTKWDmut32sbiPbnhnE8IZqAeoSBvwawG8DXIDMF+N+YIKJriWgLEW0nog/XeP9MInqEiEpE9IGq93YT0TP27oL1gsUud73vRSOe8x9vPH/YsZZsCje/5wUyHsVCKuWtJSYK7claqUaeEcnZKT5yLMrX5y5swwtOmzXse21cfsrMmgZKvVg2swlvuHgRPvLy4UpuxitOSScK2NSCLVQaCc9bPgMfunZ4mIUFa4nsAF7gFa0eaWrRsm6Fipvaudte0mjQE6tFS9opNybPn8MBpjYAYLxO22iz22trFnSWQ2zEYJ4VbrGFZWEkJ7P/9+L6wziLZzRi+ewm/ODtl414zlWnzz4q0RwA/OyGy7GgLYtYAO9ZddqYWgUAOHNeKz5Y496OB9+v+l02u2DjHVcuP2pDBwC+9qYLax4vW7UKEvfVMu5i6xnmxYAXXt57QLNFnqcN0MSY1IJYkRzPHmuEZIjJZpJsYaIOB9RgAgDgM689Rwr+lPq9FlKejFPzvFUr1FQLv/irKzDfmhNkpo8xAlgrwVtnc0aADg34Zr68cMl0fOi6M/HK8+ajrTGFz73uPABSIzNYDMFpjmHMNfYJ1507H8VKrMOS44UWMip27vF/egla6hBVA0YzAwCnzW3GzOZMzfoetfBPLz8LC6c36M20OJuJ25TcfTZpICZY5lGU/leeNgsrF0wDALU3iik7PQE2QF2agKIQoq5dA20QkQ/g6wBeCmA/pJjwFiHEJuu0HgB/C+A1I3zM1UKIrnF/N5Qw7AioEs8jfPo156iSuDEqkaeVrKwGZ2Vm2k5x840wMKn0NV6Inc87EhbPaEwU/xgvbIr4aCBLCo+++ExvSusMB8l4GksakAurACv82SNjDyOuyqP1zVbCFi3LRoPxqKxJVhtmyju3vK6IwwFaE2AxAYSEZZ3MTLA0Bep92ziw6wtwfXC7yttfrxoedhoJN7/n+UcVC68XRKRLEr9rFIbIxoymtN6zYCJw45svwq+eODBhnzcevP+lp2OxYhqiGFaxHMhnOBaJxZrXIB4jmu6OlQFpK72tUJSdBeAzWwBTi4PnAnYWNBMhkiyJbRDY+PPnLcU3V+8YlQloSPv46CvOwpfu3qpU6/XVrai+17zAJOLWscmSKFvpcLzrYBQL/PWqU/XYuWBxW+IzsykfX/uzC/GBXzxlbciULHc9vSmNj75iJcYLfo6Y8ZvZnMHaj4+uyWFctHQ6GlI+rr908TBmdSwwbX/X318FwGyqJl9bBh6HACw2hY1AARap154LqpmHpCF9bJiArxDRPxPRFUR0Ef+r47rLAGwXQuxUFQZ/BuDV9glCiA4hxBoAlfE3fWS0NqRw45svPuLrrz5zDpossUc2xV6nXeazVtEHef25C6fhFefNx8VLp6O1IZgQL+dY4/rLluCFK2bhv//SFKkZLf5EIwzG2IqvEi/KwohiDO0/PG1KVC32Ca+r6rXtTbFXL9W2nB3A7Ukq/AFlmFiTOgs/zTUmG0ExvvqzbDp5vAv6sTAAGLzL4/HCtefwRDZ+L+9o8dKVczGtMYWrz5iNT7xypd4rwSzCJuefKXCC6S9bGGjHdG1hoQCP4eTeAXIcQhsN9iOkr1dGpAkHjOzhRbFknP5uBOFwOvBw/WVLDC1eBxOQqREyrcSx3sdE1wmo2oiJDeNyxJtnxTWZQRt/dPa8RIrg5afM1ILWhdMb0JIJ8IaLj4wJ/aurpIHLz+dYYlbGD95+GQLfw+dff94RfS9gBIy+Zyr9cY3/uCpkabYSNswYF+U6HqiHCTgXwFsAvBgAm5VC/T0aFgLYZ/29H8DogcgkBIC7iEgA+JYQ4qZ6L8ym/BHj2PWCdQXnLWrTwg+b/mWhGt9YX2UNAMA5CyV186LTZ0v6+ThOvkcKtuJtVmLdx8awrGvMN9UUsKcpMuga7OxpM11mjINkbQCefI1gMDmRChgPjI0PzpbgicGmbXWb1MIuBBL316PanhnTlUJYBY/i5AR/oiEdeLjr70cOjx0LHO/H4H/eNjw8oStYxlzwS6hF3XjmvBBKY8EIs3i8sE7FGKCW5kSYDAJbm8Lfb9ca4TEmRO2wCSBDE63ZQNcVGQmVSKC1IYV/efXZY/bLgx+8etixwCMsmt6AfT0FWRpbUdb2JmhMweu9JuIaE0ANaGNCCPz7n5iw7OoPrDqqufIj152F7z60a1SR7GTDXge47DizTIb1NLoiFo1WIimaPh6oxwh4LYBTjmC/gFp3czxuwAuEEAeJaA6Au4losxDigWFfQnQDgBsAYPbs2Vi9evU4m1kb5UigHEZ489Ictm96Crl8EaWywLObNqCvr4KhksCeXbvQ3h8himJs3bIZ7R0hAIzYholq29Eil8uN2parFwfjbuuunWUMqBGyY+cODMh9MHDo8GFsqXQCANrb27Et6kIUC3R2dWHb1j5Uogjt7R0IBwh9/TECD9jybB7FUgmRALZt3YKu7hDFUozdO3ficH+EShRh6+bN6OgMEUYRdmzfisPdEcIwwu5dO9FVEIiiGPv37tULz+7du3Vb9+zdo5X/Bw4cQNwnH772jg7sCrsxVKzgcHs7prWEAAhdXd3YuLFf/bZdCNUo7u3rw9NPrYcQwHS/hA1PrMHezAlsCUDW/x4v6hkLY40pAOjqKmLDhj5ku7YcQSsmHt09vdj4zNOIBTCYy2HH9q3oH5Bjbd/efVrkWRgawjNPP4WhYgkeATu3bUFPb4hKGGPXjh04MBijVIpw6OAB+B6hWAqxa8d2dPREKJZi7NyxHe09ESqVCJWyQPuhQwCAzq5ubNvah1K5gvaOTmza1IsPXJLFrTvzWP/EWnRsHb4o5IslrHnsETSlRh9nQ+UQTzz2B8zwCKtXbx/1XADYVOPYG+YL/H5TGZuefhL5QgmlUGDLpg3o7ZPE7bq1azCYL6JUEXjisT/gg5ek6xorlUhg3ZpHUSyWRj2/njFVjVMAbH5yDzaP66qJQ0chRq5QxJxGwjNPP4XunjLK5VjNYxUMDQls27IZvX1yrdi0aRM6OuXrBx64f8zP37tvH3pVJnBnVxc2buw76jbXYwQ8BaAN468SuB/AYuvvRQAOjnDuMAghDqr/O4joZsjwwjAjQDEENwHAGWecIVatWjXOZtZGJYoh7r0Dq1atwo7OHL6zeS0GwxIuvegC3HXoWQzGJaw47RTk9/UBHYdxztkrsS8+BLQfRs023HFb7ePHAatXrx61LUfSzGexA32FMrB7J0495VR05+XreXPn4czTZgHPPIVZs+fgnJVzIZ5Zj7bpM3D+OYtBG9dj1qzZWDarCQcrXcgEHs479xT4256GiAXOPXslnh3ah0PFAZy+4jQM7u0FdbXjvHPPxpbSPqCnC+ecdRY6tnQAne04/bTTkOrKQ+zfi+XLl0l3bcd2LFu2TDZ0xzYsX7pUbt60fSsWLlwoU4ie3YiZs2bhrBWzccferZg5eyYaqAdACW0zZuD885YB69Zg6bJlklXYsQ0L587E8y87A3jsIdz8/mvH32nPAXx7TjtWjZJnzRhrTAHAT/etxdlnL8SqqhjnccEdt2HatDZcfOHpwJpH0djYhLPPOgWP9+zCQFTEHz1vJbIpH3f9cB0ymSwuveRCfHvTWnhEOO+clVg/uBuU68eZZ56OoT29CPq7sHSJTE0MOg/izDNWoH1rJ9L5Xpx5+gp0b++G39uJTMbHwjlzgf37MHPmTJxz9gJ4W57B9BmzcN65i/BHZ8/Du6tK+Nq4/+IiZjdnxvSYP9O4F9dctmTUc+pBeM/teOEVz8NNmx4HyiVcdMEFeLB7K371prPQmk2hcfNarGgmXPPiq+r+zOy9v8OqF14J79HRx0w9Y+pEw/7eAtJPPYKHPvRirNndg993bkF7KYfzzlmJjYW96K7kcc7ZZ+LJgT1Aby/OPOss7BPtwOFDY//WO27D4sWLpX5j62bMmjULZ5995CJyRj1GwFwAm4loDYASH6wjRXANgBUqxfAAgOsB/Fk9jSKiJgCeEGJQvX4ZgH+t59qJgk+EVpU6x7SOXQLYVvDGYuw857GU9s91NGV8ZFOj03DVfcb7LegwS5W+whbRMPUuhK0DMPF6kRAGWiKsEbgnUYOUYmEg07OeB5w+tzmR3z6rOaN/w3f+4hIEvjdMAHUyYbRCK+MFgY6DImBk2HFYO301igVetGI2pjelccf7Xogn9vRhTktGUruU3P8i5fFOjrJAUEWlYZqqmVbZYJGkR5n2Zx0Bj7GRDAAAmNNSH9V9/QQYAABwydIZZt8Jq78uWjIdGw70I5PycfvfXjmuz1z/iZfpugAnG6SgkvTGdTqTzLPnNyMiHykTZOTPF5bwemJCkPUYAf98JB8shAiJ6L0A7gTgA/iuEGIjEb1bvX8jEc0DsBZAK4CYiN4HYCWAWQBuVtZuAOAnQog7jqQdRwrPIzz6kZcASMa+slZhCFtNTCT/1RLZAMC6j730GLb+2OMtly8FAPzLbzclJnqCiQFJkZ58zdWuTHpWckdBuxyzjrlyLBYcf+X0m+Q5ehMOmA12OA2Q/7A1AgxRFSMmH7jzfS/Cn3/nMf2gvln9zo/86hk9Wf/6b14wkV150qJaGHe8UVExbsBkgLBRyiK9M+e14sx5regrlOW4UM+4MVKT+d9ye2t7a2yRSB2UU5rpBFvUeiL1DeOnN1yO9oEiIiHwoWvPTLRxYVsD/u4lK8Ydx7c3cDrZ4HuExTNkDRbPdlR0BclkejIXA3vi4/WtD7zWAMCi6Y0Ton+op2JgIlBBRC+A9OjHDGAIIW4HcHvVsRut14chwwTVGABwfo3jxxQ8QbAlP7clm6hRHXie2cpVyEVn7QjiuWmNtUu6niyoZyJYOL0BWdWnXH3MLtLDIhq7aIufMBSSRYQYugYATLqfbNP4fkOshV4mxZCLA1V/1KzmiUufmyqQhvPxET/VQsWql8/sEqdxVS/IvN8AhMmbN+Jga+HnuaFKoKo3GQKqRKmkRa3HWzg5EngTqHdfdSoe29mtj09vSutMiyP5zJPRCFjQ1qA3yOIN1ngeMxUDjaPClRnrTceVDCfh1NlN+OQfjy36rAd1VVMgogsgF/43AtgF4P8m5NufI+BwwCMfeQn29hRMhScrr1MAAMmCQ1MdVPUHD/iPXHdmYqc1O40qVbXYs6Fl79tg12O3wX8ZJqB2u/RhIUA13C5dD0AZJtVn2BXVmCVyqB+eRxNS63yiULaMgFDtusnpgtUUrVZ6IzlW7eJhxvtPbpplp60SQT8gAnb4aeQ02+MNrrUB1C5pfCSwN6g62cBznJ0RwKXT7bRSAHjxWXP0NvL1gFOR73l//RqMsTCiWU5EpxPRJ4joWQD/BZnuR0KIq4UQ/zVhLXgOwPPMAuMTqW0vVRU5rgVWhy5gqmAk+95mC4Sw6uNbaVSsFVi5oNUqTjK8Hnv15+nPrLoJIxkE9oRbqx6A3NUrec2TFmU3WtzWoTa+8Prz8Pw6CmYdM6ix8Z9/egEqoVA0dbJWO4NLw0Y8Jq2qcFFcxSRYmgBUHa+eI+TW4caJOBFh74sSWtUXj/Yzv/WWS8Y+8TkMuwgZE2B2GeZ/fpXc9Kve4nA/fIdMcSVMbI2R0e7mZgAvAfAqIcSVQoivAYgm7JufQ/DJxHAYFVXr2V5knov1ACYL1T3RlDaFO771losThkJSGAhkUx5ufo+MszNtWJ1fC6o9Z9riM0m9JoL+8r8R2mwXJ5IbqnD7pMHSVGcZUofamNGUrruAy2Tjm39+EV569ly0ZAO85sKFqnytqepWbQRkAh/3vP8qvf04j0O9lTDsXTFtMaDZ3joWI1P+o9UGON7QoRDIGih/P85tzmuBiCZUdHoigo0n6SBKtyNUlVKFEGPWeqjGC1fMnhTtyGhGwOsBHAZwHxF9m4heghPWVp1cVMevZjanteVvY0p2Tg0IAd0ZvCivs7zoP1KlNsk6n6uPVU+GZgOh5CZNqJpQ9etaxzCcaq0139rln+1qXifyBO1wZLju3Pn4yHVnaWFVGJuKlPy6GktnNqkCQZYRUFUERoeuVAhAIOlEWNEAZRTwGDtx5w/fmv9mNKVx0ZL66eupDK4eGKpQEZEUNqet8TNe2KLVicKIRoAQ4mYhxJ8COBPAagB/D2AuEX2TiF42oa04wcFV7gBg8YyGxP7StsrcrRMSsTCV0VgdXb0JThgLKxxghFTVO6hxmp/OGtDefJJaFZZxMCLGuEFxjIROwZ6sT0TltsPE4UfveB5mNKU1zT/SRHvn+16USD1lj98OBwiL/rXLBgPJ4RlGMdIsTDyhkieT4LLaDuMDVw/ktYGZAA45HgmEAJrSE8tIjhncEULkhRA/FkK8ElLJvx7AsB0BT2Y0pn185nVyYwneBrMalUiGB6Y6zpzXAsAsmrIm+vDzyqGcADn/2t6khDfSuOKUmZqF4QwC2+gaCSOu1zUuSi72dqlgWyvw3Cz97FA/zlk4TZelHg1nzGtRHl11OEBY4QCR8PD9YWFD4A8ffjHKoREmfurV54xLIHYskQ48fP3P6tkuxsGGT6SrTvL9tzOQjgSfeNVKvPbChRPVRAD1bSCkIYToEUJ8Swgx1r4BJxVSvoc/Pn9B4tjnXneupHnUgnXx0ul44yVHX73puY7f/d0L1X4J8u9aIisAWNiWRWs2hUc+8hJLTS0SE+NPb7g8Ka6x0v/s9C5gtFjr6MfCSGiRn52mZQs9mzPBiPUfHE4e2LT3qOclar+bbV15vwDejAhgIyC53wQgc+z//U/Ox3mLpgEATpndfMJqTnzv5I/fTwbsQkClMEImJeeQo3EoMoF/7MIBDqPjTZctgRBCC95Omd2M551yAimfjxOIkil6tURWAPDtv7gES2Y2qoJLNhMQ10wjq66stWxWE14/xm5jw7IH7PfU/xyvsyH3NDcGwXffeqneFMrh5EX1ZlcjgWBVoiSz+ZTvQdO/vFOlgBj2THCobNmspmFhMoeTB9mUj5efOx8tmQAXLG7D514rdyk80SIrzgg4Crxs5Tx89OXj3/v6ZIft/Z+9sLVmVSt7geaKWlEshqUgmRTMpLjvzHmt+KOz5+H3/1BfvuxIc3tj2tf7yzPWfeyliTDBRKREOZz4qERxohbESJAbvwlcsnS6FqjadSwAaF1AGMsc8dHCDK+5YMGI7zk8dzFvWhYfuvZMrPnYNWjJprBkpkwF5GJSJwrc7HYUaEj7J30lwCOBLdp7z6rTcNny0bd1trdlLkdxQpktLAV1ovSvwimzm/V5/N3JttRuH+MTr1qJV5w7X5c9FkLe11ppoQ4nN9oa0rjhRaeMeV6oqoX+8q+fL0NIIL33AC/2kWIVWDBo61arDdL/vP7CCf0dDicWhoui4xMq28gZAQ4TDi4PywvrWLArr/3oHc8bVnVxrMelbg9O/W9ncqR8D0SET73mnETa4X/92UU4tc09HlMJ0xpTePPlS/Fnzxt9850oFpo94rGkF3stADOhBc+qmhnFcALiKYz/++srMLc1i7ePs0bAZGJSRyMRXUtEW4hoOxENyyggojOJ6BEiKhHRB8Zz7YmEtz5/2fFuwgmFy0+ZiRedPksurPVAxfsjIXD+4rZEjH5mcxqvOE9uPRvViN8DwLKZTbjq9NnDjsexTE9UX6ExktFgl0SdNy170u/86FAbn33tuaO+v2JOM352g6wPL2P+8rgtXLX3H/As4yDw5I6bDlMTFy+dgVnNGbzx0sXHuykak2YEEJEP4OsAroPcGfBNRFQdQO8B8LcA/v0Irj1hMFEbOZwseMFps3DhOAuKEIy3ZGP+tAb8zdWnATC1199xZdKKPn9xmxYJsijrtr+9cnh+v5qtX3X+Alxz1nC180hGhoODDSLSbJWtVfGscJW9yZUUEso3rloc6PHs4HAiYDKZgMsAbBdC7BRClAH8DMCr7ROEEB1CiDUAKuO91uHkQSyAVOCNmZ7FGQIff+XI9iDX6T57wTRVo0AxAZYO4LxFbThldjOWzkzW7I4s5sDB4UjA46wh5WPRdDm+pJBQIuUNL5zl4HA8MZlGwELITYcY+9Wxyb7W4TmGUO0W+LKVo29Lyntvj3qOVbO4OhxQfeXqD6xK/N2cCerSFjg4MC5ZNh3/+mrJBNqswJUrZuGfX7VSHz+RhGAODjYmszpFrVFfr9667muJ6AYANwDA7NmzsXr16jq/Yuoil8udUP00OFjAk0+sw/WLvVHbtX3zBvhD4ajnbN26FYcGY6xe3Y1SVwVCpeLs3r1bx25Huv4dpwm0b3kC7Vvk3ydaP53ImOp99dWrG7Fh40Z0dYUAkmPsiSefxEB/GRnf9dN44Prq2GAyjYD9AGz1wyIAByf6WiHETQBuAoAzzjhDrFq1atwNnWpYvXo1TqR+yj5xP5532UU4fW7LiOc8fnERc1qG1xtI4I7bsGLFCkSHB7Fq1blYpQ5/ff1tWLpsmWQFtm+t+7efaP10IsP1FXDb04ewKzoItB/WffHb0/oxVIlw1+HNePzvLsWTj/1hyvdTvXBj6thgMrnPNQBWENFyIkoDuB7ALcfgWofnGL7w+vOwZIw9tcc0ABRq5WHLN1zSv8PkgvUAtrj03EXTdBntaQ2upojDiYdJYwKEECERvRfAnQB8AN8VQmwkoner928konkA1gJoBRAT0fsArBRCDNS6drLa6nB8MZEbp4wUfx3ROHBwmEAQCOs/8dLEMS4o5OBwImJSd6wQQtwO4PaqYzdarw9DUv11XevgMBbscr+M//vr5+O+zR3HpT0OUwesSa0uduW2GXc4keGk0A4nFWKrzDDj4qXTISCLt3z/7Zcdp5Y5nOwweSnVx4UzAhxOWJyYe1c6OBwBPv+6c3HR0ukoVeKa7xNRzcqCDg4TARn7r7HaCxcOcDhx4YwAh5MG1182cs13pwt0OBYYKbfZMQEOJypcOMDBwcFhAiA3Dap93BkBDicqHBPgMCUQO3GWwyTj1NnNqETDKafGdIAVc0augeHgcDzhjACHKYHXXLjAbeHqMKk4b1EbzlvUNuz4xUunT2garIPDRMIZAQ5TAmfOaz3eTXBwcHA44eBcIwcHBwcHhykKZwQ4ODg4ODhMUTgjwMHBwcHBYYrCGQEODg4ODg5TFJNqBBDRtUS0hYi2E9GHa7xPRPRV9f7TRHSR9d5uInqGiNYT0drJbKeDg4ODg8NUxKRlBxCRD+DrAF4KYD+ANUR0ixBik3XadQBWqH/PA/BN9T/jaiFE12S10cHBwcHBYSpjMpmAywBsF0LsFEKUAfwMwKurznk1gB8IiUcBtBHR/Elsk4ODg4ODg4PCZBoBCwHss/7er47Ve44AcBcRrSOiGyatlQ4ODg4ODlMUk1ksaKS9NOo95wVCiINENAfA3US0WQjxwLAvkQbCDQAwe/ZsrF69+iiaPDWQy+VcP9UB10/1w/VVfXD9VD9cXx0bTKYRsB/AYuvvRQAO1nuOEIL/7yCimyHDC8OMACHETQBuAoAzzjhDrFq1aoKaf/Ji9erVcP00Nlw/1Q/XV/XB9VP9cH11bDCZ4YA1AFYQ0XIiSgO4HsAtVefcAuAvVJbA5QD6hRCHiKiJiFoAgIiaALwMwIZJbKuDg4ODg8OUw6QxAUKIkIjeC+BOAD6A7wohNhLRu9X7NwK4HcDLAWwHUADwNnX5XAA3k9z2LQDwEyHEHZPVVgcHBwcHh6mISd1ASAhxO+RCbx+70XotAPxNjet2Ajh/Mtvm4ODg4OAw1eEqBjo4ODg4OExROCPAwcHBwcFhisIZAQ4ODg4ODlMUzghwcHBwcHCYonBGgIODg4ODwxSFMwIcHBwcHBymKJwR4ODg4ODgMEXhjAAHBwcHB4cpCmcEODg4ODg4TFE4I8DBwcHBwWGKwhkBDg4ODg4OUxTOCHBwcHBwcJiimFQjgIiuJaItRLSdiD5c430ioq+q958moovqvdbBwcHBwcHh6DBpRgAR+QC+DuA6ACsBvImIVladdh2AFerfDQC+OY5rHRwcHBwcHI4Ck8kEXAZguxBipxCiDOBnAF5ddc6rAfxASDwKoI2I5td5rYODg4ODg8NRYDKNgIUA9ll/71fH6jmnnmsdHBwcHBwcjgLBJH421Tgm6jynnmvlBxDdABlKAIASEW2ou4VTF7MAdB3vRjwH4Pqpfri+qg+un+qH66v6cMbRXDyZRsB+AIutvxcBOFjnOek6rgUACCFuAnATABDRWiHEJUfX7JMfrp/qg+un+uH6qj64fqofrq/qAxGtPZrrJzMcsAbACiJaTkRpANcDuKXqnFsA/IXKErgcQL8Q4lCd1zo4ODg4ODgcBSaNCRBChET0XgB3AvABfFcIsZGI3q3evxHA7QBeDmA7gAKAt4127WS11cHBwcHBYSpiMsMBEELcDrnQ28dutF4LAH9T77V14KbxtnGKwvVTfXD9VD9cX9UH10/1w/VVfTiqfiK5Djs4ODg4ODhMNbiywQ4ODg4ODlMUJ4UR4EoMJ0FE3yWiDjtdkohmENHdRLRN/T/deu8jqu+2ENEfHZ9WH3sQ0WIiuo+IniWijUT0d+q46ysLRJQloseJ6CnVT/+ijrt+qgEi8onoSSK6Vf3t+qkGiGg3ET1DROtZ4e76ajiIqI2IfklEm9VcdcWE9pMQ4jn9D1I4uAPAKZCphU8BWHm823Wc++RFAC4CsME69kUAH1avPwzgC+r1StVnGQDLVV/6x/s3HKN+mg/gIvW6BcBW1R+ur5L9RACa1esUgMcAXO76acT+ej+AnwC4Vf3t+ql2P+0GMKvqmOur4f30fQDvVK/TANomsp9OBibAlRiughDiAQA9VYdfDTmYoP5/jXX8Z0KIkhBiF2SmxmXHop3HG0KIQ0KIJ9TrQQDPQlamdH1lQUjk1J8p9U/A9dMwENEiAK8A8B3rsOun+uH6ygIRtUI6df8NAEKIshCiDxPYTyeDEeBKDNeHuULWYID6f4467voPABEtA3AhpJfr+qoKiuJeD6ADwN1CCNdPtfGfAD4IILaOuX6qDQHgLiJapyq/Aq6vqnEKgE4A/6NCTN8hoiZMYD+dDEZA3SWGHWpiyvcfETUD+D8A7xNCDIx2ao1jU6KvhBCREOICyOqdlxHROaOcPiX7iYheCaBDCLGu3ktqHDvp+8nCC4QQF0HuFvs3RPSiUc6dqn0VQIZ2vymEuBBAHpL+Hwnj7qeTwQiopzyxA9CudmiE+r9DHZ/S/UdEKUgD4MdCiF+pw66vRoCiIlcDuBaun6rxAgB/TES7IcOSLyaiH8H1U00IIQ6q/zsA3AxJW7u+SmI/gP2KeQOAX0IaBRPWTyeDEeBKDNeHWwD8pXr9lwB+Yx2/nogyRLQcwAoAjx+H9h1zEBFBxtqeFUJ8yXrL9ZUFIppNRG3qdQOAawBshuunBIQQHxFCLBJCLIOch34vhHgzXD8NAxE1EVELvwbwMgAb4PoqASHEYQD7iIg3CXoJgE2YyH463srHCVJPvhxS2b0DwEePd3uO9z8APwVwCEAF0jJ8B4CZAO4FsE39P8M6/6Oq77YAuO54t/8Y9tOVkFTZ0wDWq38vd301rJ/OA/Ck6qcNAD6hjrt+GrnPVsFkB7h+Gt4/p0Cq2J8CsJHnbddXNfvqAgBr1fP3awDTJ7KfXMVABwcHBweHKYqTIRzg4ODg4ODgcARwRoCDg4ODg8MUhTMCHBwcHBwcpiicEeDg4ODg4DBF4YwABwcHBweHKQpnBDg4TDEQ0Uy1c9t6IjpMRAfU6xwRfWOSvvN9RPQXo7z/St6d0MHB4djBpQg6OExhENEnAeSEEP8+id8RAHgCcsfGcIRzSJ3zAiFEYbLa4uDgkIRjAhwcHAAARLSKiG5Vrz9JRN8norvUvu+vI6Ivqv3f71DllkFEFxPR/WoTmDu5lGkVXgzgCTYAiOhviWgTET1NRD8D5E6FkOWIX3lMfqyDgwMAZwQ4ODiMjFMht8V9NYAfAbhPCHEugCEAr1CGwNcAvEEIcTGA7wL4TI3PeQEAe1OdDwO4UAhxHoB3W8fXAnjhhP8KBweHEREc7wY4ODicsPidEKJCRM8A8AHcoY4/A2AZgDMAnAPgbsnmw4csV12N+QCetf5+GsCPiejXkGVQGR0AFkxc8x0cHMaCMwIcHBxGQgkAhBAxEVWEERDFkHMHAdgohLhijM8ZApC1/n4FgBcB+GMAHyeis1WoIKvOdXBwOEZw4QAHB4cjxRYAs4noCkBuy0xEZ9c471kAp6lzPACLhRD3AfgggDYAzeq80yE3KHJwcDhGcEaAg4PDEUEIUQbwBgBfIKKnIHdhfH6NU38H6fkDMmTwIxVieBLA/2/fDs0TCqIgjM5WQQlUkALypSfaoIvYKBqggvg0gUcMBhPx5HvmnmPHXPmL3Wvbx3v7THLb82bgP18Egd2ttX6SXNr+beynJN9tv469DGYTAcDu1lrnJKe29439I8mz7e+hh8FwIgAAhvImAACGEgEAMJQIAIChRAAADCUCAGAoEQAAQ70Aiyqt99Sl39AAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 576x216 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "u = F.sdof_Duhamel(fn, zt)/m2 + 0.2\n",
    "\n",
    "u.plot_time(fig=7, axis_t=[0, 600, 0, 0.4], figsize=(8,3));\n",
    "\n",
    "print('Valor r.m.s. da parte flutuante da resposta em deslocamento é {0:3.2f}cm.\\n'.format(100*u.std()))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Ou seja, uma rápida simulação com a ``MRPy`` aproxima o valor r.m.s. anteriormente calculado. \n",
    "O pico previsto também está sendo aproximadamente observado no gráfico acima. \n",
    "Sugerimos fazer novas simulações para verificar a repetibilidade desses resultados.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "179.60512242138307 126.96899035480573 16121.12451171875\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD4CAYAAAAEhuazAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABYhUlEQVR4nO29eZRcx33f+6nee3r2BYOVAAju1EKKECVRljiyHEtOHEt2jvNkx0uWd5jk2O8lznsJJfv4PTuOkhc/O3H8IjmRLdnScSSFliyLghZSIjEESVFcQIIkAALEDgxmgFl7enrf6v1xu3oGg5npvvdW3dvg3O85cwbT3ff2F3Wrvr+lqn4lpJQECBAgQIDNhZDfBAIECBAggPcIxD9AgAABNiEC8Q8QIECATYhA/AMECBBgEyIQ/wABAgTYhIj4TaBdDA8Pyz179ji6NpfLkUql9BLSgICXPQS87CHgZQ9vVV6HDx+elVKOXPeGlPKG+LnvvvukUxw8eNDxtSYR8LKHgJc9BLzs4a3KC3hJrqGpQdonQIAAATYhAvEPECBAgE2IQPwDBAgQYBMiEP8AAQIE2IQIxD9AgAABNiEC8Q8QIECATYhA/AMECBBgEyIQf+DSfJ4vPHOO+VzZbyrX4MpikS88c46ZpZLfVK7BbLbE5585x9RiwW8q1yCdL/OFZ85xaT7vN5VrsFSs8BfPnuPcbM5vKtcgX67yxR+e5/T0kt9UrkGxUuNLz53n+GTGbyrXoFSt8Zc/usBrE2m/qWjBDbPD1xQqtTq/+oUXODub48kT0/zl//oevykBUK9L/tFfvMgbUxkOvDbJ1//5Awgh/KaFlJKHvvQSL19M81cvXeI7//sHCIX85wXw619+hWdOz/Kl587zg3/1IJFwZ/g2/+qRV/n+8atsO3SWg//nGIlo2G9KAPzmX7/O3xyZZKQnzpP/x4P0JKJ+UwLg3x44zpefv0hvIsLT/+bH6evqDF5/8NhJ/vTpc3TFwoz/6zG29CT8puQKnTE6fMShN2c4O5vjXTf188zpWd6Y6gxv4/lz87wxleHem/p5+WKaly+m/aYEwGsTi7x8Mc09u/o5cWWJZ8/M+k0JgOOTGZ45Pcv+3QOcn8vzxIlpvykBcG42x/ePX2X/7gGmFot89+iU35QAK6p89NVJ7ts9wMxSiW+92hm8MsUKXzs8wb039ZMpVnnkpUt+UwKsaOQrL1zinl39FCo1vvz8Rb8pucamF/9vvzbFQFeUz/yDdwHwZIeIxrdfn6QrFua///J9hEOCgx3Da4pYOMSf/sp+EtEQT7zRGbyeeOMqQsCf/NJ99CYiPNkhvFR/+qNP3MNob7xj2mv85DR1Cf/h597OzcMpvnfsit+UAOs5lqt1fvun7+Lu7b08frwzeI2fnCFbqvKvP3I7+3cP8Pixq35Tco1NL/4vXpjnffuG2NaX5K5tvRx6c8ZvSgC8dH6B/XsG2dKT4N5d/Tx9qlN4zfOOnX2M9MR5955BnjndGZ7/s2dmuWtbLyM9cR7YN8wzp2eRHXBE6bOnZ7l5OMXOgS7ev2+YH56Zo173n9fTp2cZ7Y1z65ZuHrhliJcvLFDrAF4vnFugNxHhnp39fPC2EV65mKZYqflNi8MX5olHQrx7zyAP3jbC8akMi/mK37RcYVOL/8xSiUvzBe7dNQDA/XsHef3you+DYKlY4eTVJd51U3+T17HJDKWqv4OgVK1x9HKGd+222uu9Nw9xejpLpujvIKjVJUcupXnP3iEA3nPzIJfTBaZ9niiXUvLyxQXu3zsIWO01nytzbs7/id8jF9O8e88gQgjevWeQbKnaESnPI5fSvHNXP6GQ4N5d/VTrkmOTi37T4pWLad62o49YJMS9N1n9/9UbfOJ3U4v/KxcXALi3IbJ3b+8lX65x3ufB+drEIlLCuxqd7O7tfVTrkjevZH3ldWwyQ7lWbxqlu7b3Avi+KuP8XI5ipd7kc/f2PsB/XlcyRdL5SpOX+u23yC7mK1xOF5p87tnVD+C7yObLVU5eyXBvg889jX72is/zXeVqndcvLzZ5vX1nH0JYhupGxqYW/xNXrCVuahC8bYclGkcv+zsIFK+7m7ys30d9HpxvqvbaZrWT4nfMZ5E9MWXxumNrDwB3brN++y1mited26x2unW0m0hI+G6U3rhifb/itWugi0Q0xJtX/XUuTlxZoi7h7Tv7AdjSk2C4O86bV/1dinpuNkepWuftO61+35uIctNgFyd95uUWm1r8z83m2N6XoCtmrXjdN9JNSMCZaX8HwdmZLH3JKIOpGGANzmQ0zCmfB+fZ2RyxSIgdA0nAGpxDqRinfB4EJ65kCIcEt2zpBqAnEWXXYJKTPrfX8YaHf3vDKMUjYfaNdHPyir/tpSKPuxriH2q0nd8ie3bGirj3jSwfXLJvJMWZGX8j8TMz2QaX7uZr+0a6fdcJt9jU4n92JsvNKx5oLBJi12AXZ33ejHN2JsfNI6nmuv5QSLB7qMv3dNSZ6Sx7h1KEV6zr3zuc8n3z0ptXl9gz1HXN+vk9QynO+8zrzHSW7X0Jelesn987nPI9539mJktvIsKWnnjztdu29PjvXMxkiYQEuwa7mq/t29LN6emsr5P3Zxviv3f4WqN0bjbn+/ygG2xa8ZdSNkV2JfYMpXwX2bOzWW4e7r7mtb3D/ovZ2dk12mvY//a6OF9gz9C1vFR7+SkaF+fz3DTUdc1re4ZTXJrP+yoaF+by7BlOXbNp8JbRbq5kiiz5OHl/ZibL7qEuois25+0b6WaxUGHOx933Z2ZybOtLkIov74ndN9JNqVpnMt1Zu9ztYNOK/0y2xFKpeo01h4ZnNuOfaGRLVa5mSteJ7N7hFBfn81RrdV94lat1Ls7nrwl9Fa+rmRK5UtUXXlJKLs3nr/EWwTLiS6Wqr6JxcT7PTat47R3uolKTvorGWu2leF72kZfljF3bv1QK6KyPqZ+zM9nr+v2+Rorx9MyNm/rZtOJ/rtGZVne2vcMpcuWab8sElXd/8/D1Hna1LplY8GdwXlqwvNXVxlJ53H55/wv5CtlSdQ2RtXhd8IlXodGHVvPa7XN71Rp9aDWvnQPW3xPz/vQvKSUX5/PsXsVLGamJBf/qNV1aKFxnLHc12uuyT+NRBzat+CsRXT0IbvK5s6nvXd3Z1KC45BMv1cl3NiZ7FXY30hp+FVO7OL9OezV4nZ/trOeojNL5OX94TS0WqNbl9SLbeK5+9a/5XJlStc72/mv71/Y+62+/RLZQrjGfK1/X77f0xImGha+RkltoEX8hxBeEENNCiKMrXvsdIcRlIcSRxs/fXvHep4QQp4UQJ4UQH9HBwS5URcptfdcWZ9rWb/09mS56zmnl967mpQbFlE+8VHtdNzgbf/vVXkr8VxvxbQ3R8Kvy6IWGuO9eNRcx0m2JxpRPonFxbu32GkzFSEbDvkWWU4tW/1ndv5KxMEOpGJM+PcfJZr+/djyGQoJtfcnA8wf+AvjoGq//ZynlPY2f7wAIIe4CPgHc3bjms0IIz8scTi4WGUzFrquw2BRZnzrblUyReCTUXOapMNqbQAj/crKT6SJCWDxWYqArSjwS8q29LjU9/+tFY6Ar2hQVr9GMSFZ5jKGQYLQ34T+vVeIvhGDnQNK3iFf16x2rxB9gx0DSN6Ok5mZUBLIS2/sTwYSvlPIQMN/mxz8GfFVKWZJSngNOA/fr4GEHU+kCW3uvL8nam4jSHY/46PkX2NaXuK58cywSYrg77pvITi0WGOmOE4tc22WEEGzvTzLpk5hdThcYTMWaezVWYltf0jeRnVoskIheb8TBiur8Eo2pRcuIb+27vu/vGuzikk85/6bI9l/Pa0d/0jenR0XaqyMSgB39XUHaZwP8uhDitUZaaKDx2g5gZZ3WicZrnmJqsbhmRwP/B+e2NbwMgO19/nmMU4tFtq0xAMBqL7/SGFcXi9dFIwp+emZXM6VGtHb9WQfb+pJcyfjzHKeXigyl4tcsp1TwVWQX1454weI1mS74sgLvcrqwZsQLVkRyNVOk4tMKPLcweZjLnwC/B8jG7z8E/jGw1skfaz5VIcRDwEMAo6OjjI+POyKSzWavu/bSXI7tscKa90zUi7w5kXf8fW54nbua587B8JrfHa0UOb1Q94XX6ck8O7pDa363KJQ4P1/ziVeBvphY87vruRKX5qq+8Dp5sUAc1vzuSqbM5YUKBw8eNHpAz1q8jp0rkgrJNXnl58osFio8/sRBYmFveR15s0h/TPLUU09d9/nCbIVipc63Hh+nN+4tr5dPlOiLCX74zKHrP3+1Ql3C3zw2zkiXOT96LV5aIKXU8gPsAY62eg/4FPCpFe89Bryv1f3vu+8+6RQHDx685u9cqSJ3P3xAfubgqTU//8mvvyrv+73HHX+fU17VWl3e/Klvy//3eyfW/PzvPnpM3vnb35X1et1TXvV6Xd7529+Vv/vosTU//wePnZB7P3lAVqo1T3lJKeX+f/d9+W/+6tU1P/+Zg6fk7ocPyFyp4jmvB3//SfnrX355zc//+TNn5e6HD8iZpaLnvH7qjw7Jf/znL6z5+f/54kW5++ED8uJcznNeH//MM/IX//S5NT//3dcn5e6HD8ijl9Oe8/rFP31Ofvwzz6z5+adOTsvdDx+Qz5+d85yXHQAvyTU01Zi5EkJsW/HnzwJqJdCjwCeEEHEhxF7gVuAFUzzWgsrnrzWJA1ZYPpste15HfHqpSK0umyuOVmN7f4J8uUam4O2GqkyhSr5c2yBNlqQu8XxvRLVWZzZbYrQ3vub76vl6PX8jpbTSPj1r89rm48qtq5kio2vk+4FmuYfpJe95TaXXT3eONHl5v/dmMl1cVye2NPpdp52x3S50LfX8CvAccLsQYkII8U+A3xdCvC6EeA34EPAbAFLKY8AjwHHge8CvSSk9Vdn1lnkqKDGZzXr7UFsZJZV3vOrx4JxsttfavLb2We3ldR57JltCStYVMzWpecXjeZJMsUqhUlt3LkL1O68n78vVOnO5MqPrnD3b7F8Zb/t9rS6ZXiquuQADaJ6V64fITmfWn1Na5uXP/I1baMn5Syl/YY2XP7/B5z8NfFrHdzuB6tzrPVTlacwslZo7H72A6kRb1vFkh7sbRmmpxG2jPZ7xUh7XerxGuhNNXl6i+RzXEbNme3lsxKcbRnA9o6T612zW29ITyqNXxno1mp6/x0Z8IV+mLpfbZTVWjkcvkS9XyZVrDPdcPwkN0J+MEgkJZjzuX7qwKXf4KjEYXqezLYuGt4NzpvF9I90tBoHHnU2J+vA6vNTg8Lq9riqRbWHEvRb/ZaO0dnsNpfwRM8VryzrtNdAVIxISnqdXmuNxnf6ViIbpSUQ8N0qzS1Z/Xo9XKCQY7o4z7XGkpAubUvznsiUS0RCp2Np7y/zyNGaXSgjBmsvdYNkoeM6rOTjX5uWXmC172GsPzt5EhFg45Dkvlf5aay09WHs2+ruiPhilBq91xD8UEmzpiXue9lkW2bX7F1hRiddOj/q+9ZwxsKLhwPO/gTCbLTPcHV93mZ1fYjabLVne1xprsAF6kw0x87izzeXKxCMhuuNrZwn9ErMrmSLhkGg+r9UQQjDig2gokd2yTjoKLG/SL/FfL1ICGOlNeD7hO5O1vm+9SBwsh8xrD1s9n/XSUWAZhsDzv4Ewmy2tG8rBspipTukVZrMlhtbx+mGFmPkQkWxkLMEaBF7zmlmy2mvl4TKrMdwd8z59t1SiJx4huU5kCf6012y2RDgk6E9G1/3MqB8i2yK9ApYh9dzzb5HuhMDzv+Ews7Sx+IM1OFWn9AoqItkIvohZtrShVwb+eLJz2TJDrZ6jD8ZyPldmcIMUBlhertftNZ8rM5iKEdrAWG7pjXvu+c9mS8QiIXoT668/UZ6/9HCXr3o+Qxs8y5HuOHPZ0g15otemFP+5XHnD/CLgS7pgtg2R9cXzz5YZ6cD2msuVN4yUwB+jpER2I/jj+bfXXgv5iqclC2ayJUZaRJZbeuIUKjVyZe9WhVtp2OiapTAURnoT1CXM5W4873/TiX+9LpnPteNhez8457KtjZIfvFqlyaAhsn542G2ImdeemWWUWrRXT4xcuUbBQzFrp72UcVjIexddWpF4a+cCvF2G2m6GALgh8/6bTvwX8mVqddlWZ/PSYyxWamRL1dadrSfOfM47MWvXWI70xMmVa+TL3u0+ns+VNwzJweJVl96K2VyLuRtYFg0v+1g74j/YMFrzHh5/2U66U6X3Oo3XSGOZs5/HhTrFphN/9ZDaSa/ky5YgewHlzW+0rAyWxcyrQaCMZSuRVcbUq3mSUtV6Nu2kMcC7lVtSShby7eX8wduSBXNtRHDKOMx7OK80my1tuKIGliMSL0W2HV4DXY1IKRD/zodKTbQKy4c8HgTtTC7BMm+vPEY1udwy7ePxBjRl/AZbPEevN3plilUqNdlxnn+5WidTrLZO+3R7K7K1NiPLgZT3IjvbRtpHjcfA878B0Ny4sc6WbYVBj3Of7YrsQMpapucdr9bL3WDZWKY94jWXVeLf6jla7eVVpLRslNoTWS8jOGjNq+nJevQc203DDjZ4zXvEq1VpB4WeRIRwSASe/42A9kXW287WquSEQtMo5SrGOcHKjS7tiYZXYqY8rVaRktdh+VwzgmszXeCxsWwVkQx0Ra/5vGnMN5/jxu2VjIVJRsOeReLttlcoJBjoigae/42AuWyJSEjQt8FGF1j2NLwSjeYgaOXJeuwBLXvYbYblHvGaz6n03cbt1ZeMIgQs5L0xlnNtPsdE1BIzz4xSrj2jFAlbGxw9i0ga36OM4UYYTMU86/fpRn9pl1fg+d8AWMhX6O+KtTxByWtPdiFXJhkNX3eg/Gr0e2yU0vkyQtDSWKZiYaJh4Z3INj2z1mLWm4h6aJTaS6+A5WV71V52eA2mYp6no/q7Nu5f4A+vgbaeo3dGSSc2nfin8+VmaLsRmrk8z3KflbZ4xSIheuIRDwdBhb5kdMMSCmCVnhjo8s4Dms+ViYQEvcnWVcm9FA1b4u+hx9huGkN9xqtNS8r4dVp7NcW/w4ySTmw68V/Il9sK5VQub96j3Ho6X2569a0wkIp5NrG6kC9vWAtmJbwW2YFU6wgOLK8y7WFEkoq1juDAW49xPlcm3Ea6E3zysNvo+0M+pH3aGZNB2ucGQTpfaSvEBDz1ZBfy5eZKnlYYSMWY90jM0o00WTvwUmTbKVWgMNjlnZjN5Uot8+oKlhH3ai7Cqhi7UV0fhcFU3LP2SucrxCOhDYvgKQx0xTyb8FX//3Ycn8FUzDqQ5gar77PpxH8hX25f/BsP1QvYEdnBrqi3RqnN9vJyQm4+V2q50kfBy0ipnV20CoMeTqzO2TCWQ6kYC/mKJ2K2kGsvEgdrZVeuXPPkbO10vkxPIrJuefWVGOiKUZewWPDGkOvCphJ/a/dlpe3ONtjlnfjbEdkBD8PytI328jrn32oFksJAV9TT1VHtimx/V4xMsULVgyJqdozSQCpGrS49EbMFm5E44Em0tJCvtN1ezT0bN9ikr64D3L8ghJgWQhxd8dqgEOL7QohTjd8DK977lBDitBDipBDiIzo4tINCpUa5WreVW/ci519vDLRONUptt1dXjHTBG49xPldm0IaxLFbqnhRRS+fLba0QAStSkh55jOlCpe20opelFNJtzsHB8qSwF5PRdvs93HglHnR5/n8BfHTVa58EnpBS3go80fgbIcRdwCeAuxvXfFYI0TrhpwELzbW77aYxrCWCpmuIZ4oV6rK9ySWwxCzvQfhbqtbIl2u2IpJaXbJUNFsPqV6XLJWqbU1ewoo9Gx4YzMVCpW1eyuP1YrmnE15eGKX5vI00mYcbHNNtrr6DlUZpE4q/lPIQML/q5Y8BX2z8+4vAx1e8/lUpZUlKeQ44Ddyvg0crqLyvHYteq0syhsXMrlHyanfoolrx0G66oMHfdPi7VKoiJfS2LWbe7Nmo1urkyjV6E/ZEwwujlClU2ual2mux4IXn337ax0vPf97GXESzGN4NJv6tF0k7x6iUcgpASjklhNjSeH0H8KMVn5tovHYdhBAPAQ8BjI6OMj4+7ohINptlfHyc43OWp3zhzWOMz55oed3Vy5b4fe/JpxlN6Z8eUbxOpy1el86cYDxzuuV1k1csY/T4Uz9kd6/+oEnxmliyctFT504xXjzX8rqJGYvXE8/8iFv6zfGayTd4XTjDeO1iy+suzFvt+9RzLzE7bI7XUtmKEKcnzjM+frnldecXLV6Hnn+Z3Hn9Q1HxKtckpWqd2alLjI9fbXnd1ZzVvs8dfo3QlfaE2QmvupQs5MpkZqYYH59reV2mZLXvi68epy99yhgvgLmlAtn5q21pTqlm8Xr56Am25c8a5aUVUkotP8Ae4OiKv9Or3l9o/P4M8EsrXv888Pda3f++++6TTnHw4EEppZTfevWy3P3wAXnySqat655846rc/fABefjCvOPvbofXE29ckbsfPiBfbvN7fnRmVu5++IB85tSMUV7P2fyeIxcX5O6HD8gfHL9ilNfrE2m5++ED8ntHp9q67s0rGbn74QPym0cuG+V1biYrdz98QH798KW2rptYyMvdDx+QX33hglFeVzMFufvhA/JLz51v67qFXEnufviA/PzTZ43ySufKcvfDB+SfHjrT1nXlak3ufviA/OMfvGmUV6lifc9/afN76vW6vPU3vyP//XeOG+XlFMBLcg1NNbna56oQYhtA4/d04/UJYNeKz+0EJg3yaGKhuXGj/Rw2mK9UqXKY9ie+zPJaTpPZS0eZDn8zjVx0u2kMr8oBL9rlpdJkhnPYy+3VXnTRk7DqIaUN5/ztbPACiIZDpGJh47xUv2934l4IQV9XtNnONwpMiv+jwK82/v2rwDdXvP4JIURcCLEXuBV4wSCPJtLNjRvtPVQ1QWZ64svuIPCOlz2jpFaTmF6Klyla9297AjPpTRnsJq82jWUyGiYeCRl3LhYLVjqu3fYKhwS9iSiLpp2eNstMr0R/l/mNcXbn4MDqY15t2NMFLYlGIcRXgDFgWAgxAfzfwP8DPCKE+CfAReDnAaSUx4QQjwDHgSrwa1JKTw4yXchXSMXCxCLt2Tw1WEw/1HS+QkhY9YTagZroNO1p2DVK3fEI0bAwPuHb9LDbqOsDqrhbpOM8f1UPybNIqU3xB6vve+X0tBtZgje81PNot9+DxWtTir+U8hfWeevD63z+08CndXy3HdipnwPLYbIXg6C/za33YJUDTkRDxnnZ2XoPjfDXg0GQsenJgtqt3Xm8+j2o7Gk3UoJGqQ7T/d5muhOU+HdWulN9djLt3eHyOrCpdvjaqZ8DlsfYE494IrJ2OhooT8P0XET7y90U+pLmc5+ZohUppWLt+y5eeIx2IxKwRMN0e9mNSMAbT9ZuZAne1I+ym+4EK6oKyjt0MOyUdlDoTUab691Nod1KoyvhTVjuzCh5IbK9yWjbkRJ4wytTrBANC5JtVPRU8ISXI6MU88TpsZPuBEv8O20ODqx5RK/qR+nCphJ/u2kf8E5k7UwugdXZzA/OzjRKdjYsKfR6EJEsNni1U2ZawStjmYiGiEfaN0r9XkSWNtOdYD3HdKFidNd9Ol+2le4EyyjlyjUqHtRp0oVNJf6ORNYDT8OJUbLCTNM7j+2lycA7MbOTvwbvjFJn8mq/FIaC6vcm6zSlC5W2z4pQ6E/GKFfrFCvmRHax4CziVdfeKNg04l+vSzJF+52tL2l+4iudd8bL9FK8xUKVvjaXxSp4MReRKVZtpTBgWWRNeoyLhQo9Dp6jKjhoCosOIqW+ZJS6tEppmEKmkb6zAy9E1kl7eVkPSRc2jfgvFa16MH0dlsYoV+sUKrWO8xillI492aVS1ajH6NTzr9YleYOVPTNF+x62F2KWKdpvr2Z9H4PzXU7EX4ls2uCKHyeRkvp/3EjLPTeN+Kvlbu3uclToM5z2sbsxSMF0jrFUrVOu1W172L3JKFJitLKnk5y/JyJbqNjuX71eebK20yseiKwDY6l4GTVKReft5UUxPF3YNOK/vAzPvmhYOUYzHqPdUgUKatCYmsR0y8u0mHWkh92pvBx5/uY9WTfG0mQq1kn/Wq6EGnj+HQclZk4Hp6lBoMpFO8lhg7lBsOiyvUwNgmKlRqla77hcsZTSkYdt2oiD5SXbFdnl9IrZ9nJqlIyno+xmCIK0T+diOe1jf3UBmBONTvWwm+3VYSLrOH1nmFehUqNal86dC0PpArsH3yioiX5TiwpUe9nP+Zsdj07bS/XHQPw7EGrrvVMP21Rnc+phm84VN9vLwRwJeMCrw4ySk120sIKXIdGwe/CNQqf2+1QsTDgkjBlLp+3lVTUAndg84u+gvsnKz5tavujUw1bhr6l0QaemfZzO3Zguhuekrg+sNOJmJsidFHUDiEUa5ZNNpTubzoU9XkIIoxU0nUbiYH5xiG5sGvFfLNivBwMepDEcDoLNnvaxK7I98QhCeGGU7PUvVaO+0yISsNrYVNG55f5lv7akyWXOTp0L8GbDnk5sGvHPFCr0JOzVgwHzaYzFQoVYOEQiau9RGJ+IdigayWiYaFh03BxJSNWoN8zLrlFS13SasYRGSYyioX6fd9FeBj1sN0bJKjoXLPXsODjZFQrmPUZrTXHEVj0YsDzGLsMeYzLa/tkHClZZZ3N1hzpVZN142CYrQjop6qZgsh6S0wUYYPbgFDf9qz8ZM14NQCc2jfg7WVYG3niMTgYAWIPAZDrKiWAA9CUjxuciOi1d4MbDNlkG2+lcBFjCnDG0Wc/pnJK6xtSEr9M0LHhTAVgnNo34uxJZg2Gmk7XhCiY9Rif1TRTMimzVdoVKBS88fzvliRU6NYfda9CIK5F10l69yaixHeRNo2Rzxz00SpsUq0brR+nE5hH/YueKmVPx7zPoaTjZFapgtL061SgVqnTHI0TC9oeU6YgkJKDb5kIHUJ6/OaOUioUdtVdvwoqUTIhsplhBOG2vZIRyrU7JYJE+nTAu/kKI80KI14UQR4QQLzVeGxRCfF8Icarxe8A0DyfFmhRMnmq05GA3oYJp0XBllAx6sk6fo8kc9mKHPsdFhwsdwGqvrKEifW6ci95khLqEnIEifYuFCj3xiLP2Spjfra0TXnn+H5JS3iOl3N/4+5PAE1LKW4EnGn8bhZVecT44TYqG00FgPB3lQsxM7otwa5RMeYxueJkq6+yk3pBCbyJiFekzUNbZSUVPBZMimylUHKV8YMVeEkPRkm74lfb5GPDFxr+/CHzc5JdV65JCpdZx6QIppWvRMDnx5SZSMlXW2Y2x7EtGqdSsvqAbbuZuTC4nduP0mNwY53auC8yIbKZYdawTylkyfciSLngh/hJ4XAhxWAjxUOO1USnlFEDj9xaTBPKNZ9FpHmO5DpWadGWUipW6do+xLiVLLoySybLOmULVVUQCZkTW7VwEGOLloGyyQtPD7jiRVUZJf/9y41z0GGwvE3A2iuzh/VLKSSHEFuD7QogT7V7YMBYPAYyOjjI+Pu6IwMxiDhBcPn+a8fJ529fPTpap1iWPPzFOPGI/F7gur7TF6+qls4yPX7J9/ZVLVif77hNP0RfXx2tuMUddCqYvX2R8fMr29VMTFq/Hxp9mS5c+/yKbzTK3JFiaLzvqCxNXLLH4waHn2NWjl9d0OsRQqOCI14UZi9f4s88zMWB/FdNGvKZmQ2zvDjnidW7OipAOPfcSM0N6eU0vhBgUeWe8Fi1ez774MvkL+iQsm80yNRdiW8pZe01mLSfs+cOvIab08nKqfRvBuPhLKScbv6eFEN8A7geuCiG2SSmnhBDbgOl1rv0c8DmA/fv3y7GxMUcczv7NE0CR977r7YzdMWr7+qmuizzy5uu8493vZVtf0hGHtfA/vvUkUGD/O+9m7B3bbV+/eOQyf/nGEd72rnezb6RbG6+vfdfidd/b7mDs3btsX18+doXPHz3Mne+4j7fv7NPG68mDBylU89x1yx7Gxm63fX3k1CyfPfI8t939Tt5z85A2XuPj45Rlidv27mRs7G7b1/deXOA/Hf4h++58O2N36AuCx8fHqYaq3HLTFsbG3mH7+pHJRf7ji89w8x13M3b3Vq283LTXntkcv/vcOHtuvYOxe3dq5VUVVW7Z5ay9pjNFfvOZJ9hx862MvXe3Vl5OtW8jGE37CCFSQoge9W/gJ4GjwKPArzY+9qvAN03yyFetdI3bMFN3WO6al6F0Qb7S4OVighz0h7/FKtSls41BsJKX3nRBrS7JOigDrGCqvcBlbt3QxGpdWmWT3fZ7E2kftePeCUwXD9QN057/KPCNRumCCPBlKeX3hBAvAo8IIf4JcBH4eZMk1CpNNzl/0N/Zck2R7azBmVPt5XpwdpaxNJVbV92i03iVa5JSte5qaSzoN5ZqPDrPrVuypbt/VeqSYsV5e8UjIWLhUJDzB5BSngXeucbrc8CHTX73SiiRdeuZ6ff8r72/XZjj5c4omeLl2lgmzYiG2/5lyogvGyVnw1zVtTJmxB22l6prpVtk3TqJQojGruhgtU/HwH16xYxoNNMrDgenaV7uPUZTg9OhmJlO3zlsr1gkRDKqv0ifW2MZCgm64xEDz9Fd/wK1y1d3ROJOJ9S1N4rnvznEvwLRsLBdNlmh0z1s7WG5yzSGOm2p0+ZIwiFBjwExy7lMYwBGPEa3/QsMiazLiAQa7aX7OVbdG6Ueg3WHdGNziH/VOlvVbtlkBVPrd3MVSVcsTNRBfROAeCRMIhoyNuHb7XBwCiHoTRgQMx0eo4ENe8si61zMTGwk1NVeJvo9OCuepmDCw3a70AFo9PvA8+8Y5CrON1LBsseof3C6CzFhuciVTuSrkp5EhLCD+iYKJsQs5zInq67tSKNkRMyW7+0UJsRMS3rFyHO0fneasTSFTSH++aoVjrmBKY/RjZcB5kTWtVEyMAjyVYkQ1kSkU5g4a0CHmBl5jhrSGNZzNJT2cZNeSRiYi3CZVlTXBhO+HYR8RbrKL4I5j9HNwARDRqkiXQ1MMGWUpOOKiwpGPOwqREKCrpjzXbBGjKWWNIb+yDJXkYRDgpSb9jLEC9xGlvqNkilsGvF3K7JGPMaqew+7z5CH3ecyIjGVjnKTJwYzxjLXMJZO55TAzNkMuQqOD75RMHGgS75qOWNu2ssSWb0Hp+Sr1sqrRNSdUSpX6xQNFA/Ujc0h/lX3nqypCaZO9LDzLudIQIms/pysFmNpoL1cR3CJiPZKqJbIuu/3S6UqNZ28tLRXlFpdktdY019Xv4cbo7jbW178pZTaRMNEzl+HaJhYiufaWBoIf3WJRq5co1LTVwk1V3W3bBFWVELVWDtfV1oRIKsx75+v6Ohf+kU2V9ER8aq9N52f93/Li3+pWqfqoh6Mgu50Qb2ujJL7Cd9MsaLXY9SSJtMf/urwZNXg1rkWW0cEZ6Ikhp6ItyFmGkVWV0QCekW2oKO9As+/c7B8gLV7kc1r9Biz5SoSPR6QTo+xUqtTrOlZggp6xSxX0WPEQe+GPV3pO9DLq1PbK6clItFvlLS01w10lONbXvzVQ9CR9ll5P7do8uowj1F5xG6NpRGR1bQ0FvR72NpEQ6eHrWOVmwleVQ39y4DI6owsdS+PNYG3vvgXdYms3oe6qNko6RJZNZh0pH1An2iUq3XKtc7zZKWUWvZFdKxRSurPYed0psm05/wDz/8tg0XNYqZPZDV52Jo9M11Gafk8U03tpcmI6zZKxUqdmpY5Jb0i25xT6rCIpFipUa3r61+62qu5MERTxBvk/DsATZHVFf7qFrMO8xi1i6ymwanLiOs+mEfnnNLK+7mFmlPSFSnpTne65dWjeTzmyjVrDs7leGzW9A9W+/gP3WKmWzR0eYy6IxJtoqHJA9I/d6NncKr/n9v2SsUihETntVezpr+mdKf6//W4dMZUGWzt7eXyOaqa/kuB5+8/dIuG7tx6p3rYutJRunatLmpqr0Q0RDSsr9y0rjRZKCToSehbTqyrvZo1/bXx0uNcgN4y2LqMOFhRSTDh2wFYLFSIhS1PwQ20e7LFKgJ3RcoAuuOWx6g9t+5SzLR7ZkUlGu7aSwihtSSGrjSGuoe+9IqeOSXQu7tdVyQOavex5vZy2e+te9wYZZ3f8uKfKVTpijivIaKQiIaJRfTVzs8UKiQjuCpSBirM1CtmYYGrImUKOndF6/Kw1T06zcO27qGvbLiutKK6hzYPW+dzNMFLh7G8Qco6+yb+QoiPCiFOCiFOCyE+aep7MsUKLmuBNaGzXKsl/u6NEugX2WQEV0W3FLSG5VpFVqeHrVlkNefW9YisvlIdGU37SKDhYeuOSDQ5F4Hnvw6EEGHgM8BPAXcBvyCEuMvEdy0WKqS0iay+cC5TrJCK6uGl05PNFKvaeOk0SplChUgIVxUXFXTWqFc5bLcTmKD5OSqjpMHz0SlmS1qNkn4jriuCC3L+6+N+4LSU8qyUsgx8FfiYiS+yPH99YqYvvVLVFpHozRVXtKTJQH+uWKdR0mnE42EcH8W5ErqfowC6Y3rSGLpqIWUKVX1GXOPEqrqPLiOu6zl+7+gVPnukSEFj9VIF9/9TZ9gBXFrx9wTwntUfEkI8BDwEMDo6yvj4uO0vipSLDESrjq5djWq+yERaarnX5GyewVhdy71K2SJTS3ruNXG1QCxU03KvQqbE1QU99zp1oUgipOf/mJ0vMZvR0ydOniuRDOvpE+mZMgu5ipZ7HTtdIhmRHDr0lOt7ZWZLzGf1tNeJs/raa2G6zGK+wsGDB12nKY+dKhELSZ59+pBrXrNTZUrVOo8/cZBY2B2v754q88KVGj985pCrY1XXgl/iv9b/4rqylFLKzwGfA9i/f78cGxuz/UVjYzA+Po6Ta1fjG1de4ciltJZ71Z97gt5kVcu9Hpt/jfNvTGu51+8dHqcnVNRyr/HMMY7OT2i515+dfp6e0ryWe71QPMHTl8/y4IMPuhaNL198ie5FPW1/TJ7me+dP8t73f8C1Z/zNq0dIzUxq4XWk+iaPXzjFBz74oGsB+trky6Tmr2jhdVKc4cDZE7zn/R+gy2WE853ZV0lNXdbC61L8PF8/dYx773+AkZ64q3s9tXSMxPnzfPjHP+Sa12r4lfaZAHat+HsnMOkTl7ahM5zLFKt0aTK9OstNZ4pVbWmy3mRU2wElmaLGdFQySrUuKWgoN71Y0JdW1Fk+WS8vKz+pY+OS1e/1PUfQs8dFZxpW57Jwi5dej1/BL/F/EbhVCLFXCBEDPgE86hOXtqFWY7g9Oq5aq5MtaRRZjUfH6c35R7SVm7bETAMp9G7Y61wxq2h1Lqx7auKlqd/3aDSWWp0LjaUnLF6ub7MmfBF/KWUV+HXgMeAN4BEp5TE/uNhBbzJCrS7JuZx8yTbEUFdn01Xfp1ipUarW9XtAOgaBAU9Wl5hpW7Wl0Sgt6uSlXWRd3wYwILLanqO+CsA6+/1q+LbOX0r5HSnlbVLKfVLKT/vFww50eYxKdDrNk1UrOnQbJbe8pJTWEtQO4wVqcLq+DaC34qjuVW6gy4jrTSuCxvRKRxolfZHlarzld/jqRFM0XNarUZ1Ve7rA5SBo8tLuYbvjlSvXqNWlfs/MJa9aXbJU0pj20SgaizrTd1rTZHrTiqCRV0capbeg538jQldtczW4dXtm7iMSZZRcUwL0ebKLzfZyTQnQGSmZeY5uxb9UrVGsGEjfuXyOxUqNsoG0ots9CFJK7ftbQM850W+5nP+NCl0e0LLn75oSoM8DUjlKfTlsPQduLBslzR62JqOU0iZmenLFzbSiZg/b9XPUHfFqqhybK9eoS31GXFWOdWvE63WpdWHIagTibwO6PLPlnL9uj7GzRFaXh70ssnpXiWibu9HUXvFImETUffFAJbK62ktVjnUf8eptL12VY3VHvEIILaU6lkpVpNTXXqsRiL8N6Pf8Oysnu5zzd00J0HdAie7BGQmHGjXq3RlL3UYJ9Owl0Z0mU5VjO61/gZ76UbrnukBP/aiM5ue4GoH424CuU40yhQpCgIYyIoBVV6YrFtYXkWgySqGQHtEwIbKdKhpaeKn20ugx6jBKuiNL0FM5Vl2vq8ou6Knpr9tJXI1A/G0gFBL0aDjVKFOs0hOPENJQNllBl5hFQgINpfyb0CIaRb1pMrBSP9omojVOyOmoBb/s+WsWWbdOj4HnqKN4oAkPW0ukpDk9vBqB+NtEX5cez0xH6diV0JFjVLx01PJX0GGUFhuRkoYS8E3o9LA7zvMv6t1HAprbq8OeozoNTG9EosEoaV4YshqB+NuEHk+2oqWe+UroKDedKVabKzt0QYvHWKg0Jh01D04NRikcEiS0Rko60hgGxExTvwcTufXO87B1lOc24VysRCD+NqHHA6pqOcloJaww071o6DiRaiV0eYxGjKUWIx7puEgpU6gQj4RclxNeCT3plSqxcIioRtXpS0bdb7o0kb5rnPrnpg5YRvOO+9UIxN8m9HjY+sWsV8MpY5mimXSUDl66jZKOg0AWC1X9vJJRlooVV5VQFw2kFfu63B9havUvvcayNxFxXTk2U6yQjIaJaKyX35eMUq7VKVbqju+hNhFq9hObCMTfJnTm1nVCV5hpwsPWkfPXHSn1JaNkS1WqNeeD09RzrEvIlp0LrRljGaHQ2KHrFCb6V28y6rpyrJlI3H0xvEyhSnc8ov0QF4VA/G1Cy4Rvsap/ECSs2vk1Vx6QmXRUyWW56YwRD9v6f7rZgr9oIE2mo77PYqFiYO7G/a7oTLFKj4FICdy1l6k5OHC390alFU0hEH+b6E1EKFbqlKrOxEzV8jfhyYK7AzeMeGYaygF39uA0I2aueJkwlhqMUsaEUdJQqsNUuhM0tJdmXisRiL9NuC2loGr5d5qYqVr+2geBhtITRj1st8bSUETitr1MpKPA3QbHJQMiq8WIF/SvcutU52IlAvG3CbfhrxrUnSayKv1hKl3gdBBUanXy5ZqRCUxwzsuqBGkugnMrGqbSZO54GUh3ajCWRjx/HWkyA/1rJQLxtwm3YqY6Q6d5Gk1exjxGp8aycs19dMHtaV7FSp1yrd5xEYkqT2xiTgl0pDHM9Hv36ShDEYmLZaiB599hcNvZ1HWm0gWOxV/x6jDRUGmGTvOwl424mYjEaXtlS1Xq0oCxdGnEm2lFQ3MkroylgYUOy+cLu1mFdIPm/IUQvyOEuCyEONL4+dsr3vuUEOK0EOKkEOIjpjiYQLOGeKeJhlsP27DIOhWzRVOev8uleKZ4dccaxQPfYsaymVY00F4h4ZxXvnFKnO7xGA2HSMXCjnnVG6fEmVztY+7OFv6zlPIPVr4ghLgL+ARwN7Ad+IEQ4jYppbtT0T2Ce89/eXBOa2OlwZNd4fkvaWPl/oCSxRW8stpY0dzU47S9FldEcHJBH69QyF0teJVm6EtGIaePl7VjOOQ4TXZNurOoj1coJOhxsZHwmnRnXh8vdU/HEVzZquXfm4yCIWX0I+3zMeCrUsqSlPIccBq43wcejuBWzEzl1t2KmSlebg8oMeVhCyFcbYy7RmQ1w009pHSh3LiH/vayeHVWutO6p/P2ajpjBnLrbjY4mkrDroRp8f91IcRrQogvCCEGGq/tAC6t+MxE47UbAm7FTNXy747pDbrcipnJQeCmxIMp8Qd3ZXdN8tIhGkbay5WH3aEi23R69CdB3NRDWpkhMAVXdxZC/ADYusZbvwX8CfB7gGz8/kPgHwNr7VVec1uqEOIh4CGA0dFRxsfHHfHMZrOOr10LiZDkxNmLjI9ftX3t8dMlkmE4dOgp7bwissKpC5cZH5+zfe3Rk2XCAn707CFyuZxmXmVOX5xkfHze9rVHzlie7JEXn6Nc0MtLVAqcnyw6uufh89agPvryC4iyXl61QoFLOWd94/kJi9cbrx4mUctr5UWlwPnLztrr+SlLzE6+/gq96OXlpr2OTFu8Th1/jS3hglZelXyR2YJ0dM8T81au5+zJ49wU18tLwZX4Syl/op3PCSH+FDjQ+HMC2LXi7Z3A5Dr3/xzwOYD9+/fLsbExRzzHx8dxeu1aGHn5KVL93YyN3Wf72kevHmFwaZ6xsTHtvLYee5ZEMsrYmP0s2vcXXqd/+gof+tCHtPPa9sYPiUdDjI291/a1P8y/QfzceX7yw/p5ff7M82SKVcbG3m/72le+/yacOMVPffhBnnn6kFZeX710mDMzWcbGHrR97ZuHzsDRE3zkQx/g8I+e1crrC2dfYLFQcdRel5+/AK8e5cMffIA3Xv6RVl7/c+Iwp6edtdfCKxPw8qt86P3v5cLRF7XyenT6CNNn5x3ds3zsCrxwmA++dz+zp17RykvB5GqfbSv+/FngaOPfjwKfEELEhRB7gVuBF0zxMAE3lT1Nrt11F/5WjS0rc8NrMa9/w5JCXzLKkou0T3c8QiSsfwi56V/qjIHuuIk0RsRxexlPK7pNrxhYVeMqDWswTaZgcrXP7wsh7sFK6ZwH/imAlPKYEOIR4DhQBX7tRlnpo9CbjDK95GzJgom6Kwq9iQiX5p0tWTBRd0WhNxHh9LTz1T7G2stlbt0cr4iruQjdZwwouHV6omFBQmcx/wbcFFtU4txjyCipYot2K3MuT5B3aM5/I0gpf3mD9z4NfNrUd5tGXzLKqWlnCyIzxQq7h7o0M7LgztMwt6HEledvUGSVmEkpbYulifo5K3mp4oHxiL1jwkycMaCgjKWT9lK7aE0YpZXFFu22l6rlH4uYieDAqmnU3xWzzQswEsEpBDt8HcASWadLy8ylfVYOTrswzcvpASVGPf9ElEpNUnBQbtriZShSclGnyYv2cnJAicm0Ym9TZO23V6ZQbe7G1Q23z9FUWlEhEH8H6E1Y652diJnp3Hq17kzMTGxxV+hNOD+gxLTnD50nsm52a5uMSNzsijZxxoCCmw2Oi4UK/TpPul8Bt7xM9S+FQPwdQJ0eZFfMVC1/U56G285mciIanO2KzhQqzXo3uuGmHpJpD1t9h12YnItw8xwX82XbqY924aZ+VLpQpj9pipcLY5k3Z5QUAvF3gGZlT5sV+9QMfn+HiUaxcTxfp4lsrVHfpFM9bJO5dXAosh1qlLxoL2e8DEbiLsqGB55/h8Kph53OWxuWTHlATtMY6YYRM+YBOeRlcrcqrBAzm0ZcVag0Z5ScGUsppTdGyYGxTBtNrzgvuWJFJGb7l7OIJPD8OxJOa66nlZh1mIet6sGYHgR2eZksobDyvnafo3Gj5PDUrFyjQqXJpcRg34jX65ZR6rSIV11jun854ZU2uL9FIRB/B3Ca+1xsetidlZNNe8XLpsiaFn+n6YKVFT1NwKnH6JWxtNteS6UVFSoNwGmarFytkyvXjPX7rliYcEjY7vfqQJ4+Q5G4QiD+DrB84IbN9ErBbNrHrYfdaYPTuPg79GRN80pEw8QjIcfOhSlePU6NknIuDPX7RGOdvmPnwlDEq4ot2h2PhUqNcq0epH06EUo0bIus4cHp2JNtDk5DohF3dkBJ2rDIRhweuKE+b0rMwNnuY9NGKRYJkYyGHaQ7G06PwTSGkw2OptsLGsvCO8y5UAjE3wG649bpQU5z/qbWO4dDgp64/ZrrpiOSUJNX5w0CJyULOp2XyaP/epMuxMygJ+tMZM32e3C2u910GlYhEH8HsA62cPZQexJmd+055RUOCVIxe1vj7cBJ/RWTB4AodKKHDZaYOW0v00apE8XMCS9PnqMDI542nCFQCMTfIZx2NtN5vF4HpSfUSgwTdVcUnBwEslioEI+ESETNGSUnR+0tGo7gwFkJES887L5ktBkptgvTq9zAnciaNEpOjuT04jlCIP6O4STHmM6b202oYIW/9tNRpjuaI2PpwXI3p4PTdN0VJ2K2WKgQMnBK3Er0d8WaotkuFhv7W8xGSs4jEuOefwemoyAQf8dw1Nk88Pydiqzp/KKTmute7HLsS0ZtFwTzipcTo9SbjBKyWT7YDga6ovbFv2BVzrRbcdMO3KR9TKYVlZNop9hikPbpcFgTcvZFw2RHA2cThelCuWPFzLjnn7QfKWU8eI4qTWZHNLxor4GuGAt5m2kfD+rUDDTmlGo2ii2qYnN2a+3bQX9XlHKtTr7cfrHFxUKFiOE5OAjE3zGcHLjhiYfteC7CcDrK4SoRTzz/xoEb7cJkOWeFvmSjEmqp/TbzpL26opSqdQo2xCztAa/+rhhS2ltOnM6Xjac7Bxr3t2MwVYbA5BwcBOLvGHZFVkrpWdonX65RqbVfc92LreS9iai1eaXaPi9PPP/GxqUlG9GSVxEJ2Cvx4JXnD/bEzAtegymL17xNXqbn4FR72UmVeZEhgED8HaMvGaVcrVNss3Z+tuFdejHhC+17QNVanaVi1bxRUrui7YqsB8ZSfVe7SOcrzUFtCk1eNkQjnS8b5+XEk/WiPLG6f9qmh23cWCqjlLPZXoH4dy7s1l9pTuJ4JLLtipnyLL3ysNvlVa5aZx8MGk9H2SvVIaVkwWBtegUnxQPnc+WmOJuC+n/bMkoezCk1I5JcZzkXztI+5tsLXIq/EOLnhRDHhBB1IcT+Ve99SghxWghxUgjxkRWv3yeEeL3x3h8L04ktQ7BbrMyrLdvLvNoTs+VSBR7xattYWoNFeU6mYNfzz5VrVGqSwZT5uRton1e1VidTrBpvr+W0jz2RNW0sHaWjPPCw+x2mfUy3F7j3/I8CPwccWvmiEOIu4BPA3cBHgc8KIdTU9Z8ADwG3Nn4+6pKDL7A7OJsi22EedvOMAdPpKJvlplXu1nQaw+7RhAs5b9Zg2zaWjc91WtqnWKlRrJg7+0ChP6XSPu21l5qDM84r6cDz92AODlyKv5TyDSnlyTXe+hjwVSllSUp5DjgN3C+E2Ab0Simfk9Yati8BH3fDwS/YPTglbbiyoYJT0fAqt95uRKLC9wHDHrZdz1/lbr1KR9k14sYjJZu5da8i3p54hEhItD3hq84+MB3xRsIhehORto1SrS5ZKpo7vW4lTK1X2wH8aMXfE43XKo1/r359TQghHsKKEhgdHWV8fNwRmWw26/ja9XAlZ61aee7l1xBXWjfjCxeth3/8yItMJULGeC0ULV4vvnqMnoU3W37+uUlLjE++9gqZs+Z4pRu8Xnr1GL1t8HrxisXrzPHXKF8yx6tYtZZ4vnLsBNvyZ1t+/rUZi9f5k0cZn37DGK+6lAjg9ROnGa9dbPn5k/PWwoOLp95gvNG+JngBxMPw+smzjIcut/zsxJL13CfPnWK8eM4or64IHD99gfHxKy0/O5O3eE1dPMv4+CWjvBKhGifOXWJ8fKblZzNlqz/OXr7A+PikUV4tVUsI8QNg6xpv/ZaU8pvrXbbGa3KD19eElPJzwOcA9u/fL8fGxjYmuw7Gx8dxeu16mMuW+OTTP2DHnlsYe2BPy88fO3gajp/kpz78YLNWjQlexUqN3xj/HqO79jI2dkvLz59/9hy8dpyfHHs/Q91xo7ywwWviRxfgyFF+8sEHGO1NGOMlpSTy5HcZ3nYTY2N3tPz8wisTcPhVfvzH3sPNI93GeAH0PPUYA6M7GBu7u+VnS8euwAuHGXvfft62o88or+EfPUn30BBjY+9s+dnnzszBsz/ix959Dw/cMmyU1+jLT5Hs62Zs7L6Wn31tIg2HnuWBd72DsbtGjfLaduxZookIY2PvafnZ09NL8OQh7r/nLsbu2WGUV0vxl1L+hIP7TgC7Vvy9E5hsvL5zjddvONg9oGQhVyYZDRstUgb2D7aYz1cQwnw6qsnL7lyE4bDcboVWlY4aNJxeAXtF59RchOm0D1jPpN20j8p1D3ab52Vn93EzfedBew10RZnLtsvLet5DqbhJSoC5pZ6PAp8QQsSFEHuxJnZfkFJOAUtCiPc2Vvn8CrBe9NDRiIZDdNk4CGQ+V/ako4G9CprzuRL9yajRLe4Kg12xttc7z+cqpGJm68Eo9NuoV7OQLxMSyxPrJtHfFW1bzNTqG9NzEWBPZOc8miMBe8/RS/EftGWUSoD5uS5wv9TzZ4UQE8D7gG8LIR4DkFIeAx4BjgPfA35NSql2Q/1z4M+wJoHPAN91w8FP2KmjM+eh+PfZKKXgpVEaTMWaYtAK6XzZEy8WYCgVY64x6FphPmet8TdZPE1hMBVv21gu5MskoiGShuvBgE1j6dHqKLCMUrsTvl6Kv51KqPMeRpauJnyllN8AvrHOe58GPr3G6y8Bb3PzvZ0CO5U9F/Ieev420hheiv9Qd/viP+/BblWFwVSMszO5tj7rRZEyhaFUjLMz2bY+u5Dzrr3sRCTzuTI9iQixiPn9pAOpGOl8GSlly7o487ky4ZAweiZDk1dXlGypSrlab9kOCx4tcYZgh68rWIOgTc8/W2bII5HtT9obnJ6JfyrWDGtbYSFf8czzt+Nhz+fKnqQwoBGRtJkrXvDQWA50xVgsVKi3UQzPy/410BWlUpPk2ig6p9rLiz2m/Sm10av1s5zPlUnFzM8NQiD+rjDcHWcu2366wLM0RrdNMfNgcgkaItuumHlQqkBhuNvKybYjZgsepqMGu2MUKrW2KmhaxtKb9urvilGXtHUOgtdGCZZTTRvBS2ds0Mau6Plc2ZPJcQjE3xXaTWMUyjUKlZrn6ZVWteDrdclCvmK8VMFKXrlyra1ieF6mMQZTlpil20iVWWLmXdoHaGs+wsv2srPL19OIt6v9Xb6WEffmOdppLy8jy0D8XWAwZU3kVFuUT1aTUF4NguFUvFkYbSNkitbhF955/u1VOKzU6iyVqp6KP9AyJSWlZCHnbToK2qsI6amH3TRKbfLyKu1jo6zzfK7syXJKWFnfp7PaKxB/F1Cbolp1NpXq8E40GoOzRYpFDV7Pwt82xb+5NtyriKQhAq3aK1+uUa7VPRPZoe72nmOtbtWp8ap/jXSr9mptLOdy3nn+AzZE1krDeuT5p5Tn3zoimct6N0cSiL8LDLcpsl57/k3RaOHJKhH2ckkltPYYVdjuubFswcuruj4K7baXddwj3qWjGv1rth1jWa13nNOjjKVXz1EZpXYjuCDtcwOg3c6m0gleWfThhmfWanDO++b5t2mUvPaw24xIvBazVu3V3EjlmRFX/au95+iVmKnNiq14WctBvWuvRDRMTzzCzNLGvIqVGvlyLUj73AhQaZ9WHrYyDl5O+EJrT8PLjS6wor1aGCU1eJURM42mZ9aClxq8wx6txuiOR4iFQy2NkuI14lF7xSJWpcpWaR+v+1coJBjujrUUf6+NOMBwT7xtY+mVMxaIvwsMt5mTXcirDSXehOXLEUlnDc7eRIRoWLQtZl6JbCwSoicRaelhq8E70uONyAohrJVb7RpLj3ip72oZWfohst2tean29GrCFyzD3K74B57/DYDehBVmtpNbH/CoJABAPGKFme2kfbo82lAClpgNdMVaetiz2RLhkPAs7QONPRstjJJqT68iErAMc6sIrmmUPOQ1nIoz00rMst56smA9m1bplWWR9cYZAxjuibXkpZ5j4PnfAAiFhFWvpg1Pw6uVKwrt7EGYy5Y88/oV2qnvM7NUYijlnbGE9kR2ZqlETzzimbGE9tsrEhKeHACiMNwTaxlZTi95Gymp72rlYSteW3oSXlAC2otIZjzmFYi/SwylYi0f6vRSydOOBmqXb+tBsMXDgQmWUWqdXil7KhhAW0Z8JlvynFc7JTFmsyWGur01lu2KWSoWJhU3Xz9HYbiRXtlog+PMkhVZeun4jHTHWSxUKFXX3+A443FaMRB/l2hHzGb8ENk2xMwPo9ROHZ2ZpZKnqRVQlT1bpFf84NXduiTGbLbsQ3tZYlaurr/BcXqp6LmxHO6OUanJDQsbTi8VGUrFPClj3uTV03qxw3TGiiy9qMwKgfi7xlBqYw9ISsnMUomRXu9Fo2VEkimyxWNeW3riTC9t7JnN+uBhDzcipdoG9X188fwbJTHy5fV3a/thLId7Wq8o88O5UM9no9TPzFLJ836/vPx6A14e969A/F1CTTCtJ2bpfIVyre79IGhEJOuVnihWamSKVc8jktHeOPlybd3SE1JKZrPei9loX4K63HhwWp6/t3Mko41+czWzAS9f0lGtxWx2yXteatJ7Zmljo+Tl5Dgsr1zbaNJ3JhOI/w2FrX1xCg0hXQvLk0see9i9SszWHgReTy4pqPN41xOzxUKFSk16Lhqjje+7mimu+b4yll4bpa19qr3W5iWlZM6HtM9Iw/PfaMXPtA/iP9yu59+JEUng+d9YWBaztQfn9JL1utfiv7XB60oLXl6no9Sgm16Hl9dr/BVaGSU1H+C5Uerd2ChlClXKtbrn7dVMY6zjyebLVbKlqm/plfU87Fpd+pZWhI133c94bCwD8XeJpsguriOyDTHZ0uutp6E8xpa8vDZKypNdWkf8PV7xoNBsr5ZGyWvx39i5mMk2jLjnRmnj/uX1rmOF/mSUyAYlHuZzZeoSz41SqxIPTWPpYUTi9gzfnxdCHBNC1IUQ+1e8vkcIURBCHGn8/LcV790nhHhdCHFaCPHHwoujdAyilWj4lfZpHZH4k/ZR7XBlce1BoPiOemwsh1IxQmL9iESJnHreXqE7HqErFl43IplSvDxur0Q0zGAqxlSr/uUxL6vEQ3zd9mpGvB4bJbCi7On1nB4f9kS49fyPAj8HHFrjvTNSynsaP/9sxet/AjwE3Nr4+ahLDr5CidR6onE1U/R8rTNYYhYNiw3TPuGQ8HT3JUAqHqEnHlnXKE2mrde39yW9pEUkHGqIxtq8phYLAGzzWPyFEGztTaz7HKdUe/V7215gGZxO8/wBtvcnms9rNZpzXR57/mD1adW/V8OPDXGuxF9K+YaU8mS7nxdCbAN6pZTPSWt5zJeAj7vh4DcS0TD9XdEN0wVee7FgeUBbehJc3SDtM+zxxiCFLRt4QFOLBfq7op6tdV6JrX0JrmzgYccjIc93REOjvdYzlg2R86OPbe9PMJleW2SVURj1Q2T7ky15eR3xwsbtpSI4L50Lkzn/vUKIV4QQTwkhPtB4bQcwseIzE43XbmhYHtDaonElU/RlYII18Nb1GBeLbPXYu1bY2pdYP42RLrLNJ15behLri2y6wLa+hCcHfq/GRp7/lcUiw91xYhHvp+8sY7k2r8vpAomoP8ZyR3+SycXimsuvJ9MFQsL79B1YRmkmW1pzY9zlhULzM16hZS5CCPEDYOsab/2WlPKb61w2BdwkpZwTQtwH/I0Q4m5grZGz7q4aIcRDWCkiRkdHGR8fb0V3TWSzWcfXtoNItcjpy7k1v+PMlTxvHw6v+Z5pXqFSkbNz9TW/49Rknt29IV94yXyJ8/O1Nb/jzcsFBhPCF161bImJueqa33HiYoFECF94lRbLTKUrHDx48Drjc/RckZ6Q9IVXca5MOl/hsScOEg9fy+vIqSIDMclTTz3lOa/sjLXz+FuPj9Mbv5bX4RMl+uOCZ5++PlNtmtfSFevQnW8+Ps5I17XG+sXjJVJReOm5Z7zjJaV0/QOMA/tbvQ9sA06seP0XgP/eznfcd9990ikOHjzo+Np28K//6ojc/+++f93rxUpV7n74gPzP3z/pC6/fefSovOu3v3vd67VaXd76m9+R//7bx33h9fvfe0Pu+9S3ZaVau+69d/7uY/K3vvGaL7z+65On5O6HD8hcqXLdew/8hyfkb3z1FV94feGZs3L3wwfkzFLxuvd+4g/H5UNfetEXXn/98iW5++ED8sz00nXv/fQfPy1/+fPP+8LrsaNTcvfDB+Srlxaue+/v/7cfyr/32Wd94fXMqRm5++ED8rkzs9e994/+/AX50T86ZIQX8JJcQ1ONxIpCiBEhRLjx75uxJnbPSimngCUhxHsbq3x+BVgverhhsKO/i5mlEsXKtUWb1OTOzoEuP2ixoz9Jrly77kzT2WyJcq3OzgF/0is3DXZRrctmnlOhUK6Rzld8S/vsGrSe06X5a/OytbrkSqbItn5/0ne7BhSv/HXvTS36lybb2mt971qTvpfTBXb41F4qdbJWfn1yscAOn/r9RrwuLxTY4fGkvdulnj8rhJgA3gd8WwjxWOOtDwKvCSFeBb4G/DMp5XzjvX8O/BlwGjgDfNcNh07A7qG1B6fK4/kpsgAX5q7ldanBy69BsCyy1/Ka9GlFjYJqr4ureM0sWTV//BJZ1b9W81osVMiWqr611/aGuE+uYcTnc2XPxUxBiezlVStranXJVLroGy/1nNY0Sj4YS1frD6WU3wC+scbrXwe+vs41LwFvc/O9nYabhpZF9tbRnubrEwvWYPWrs+0eSlm85vO8c1d/8/XLaWWU/IlIlCd7cT7PAytev9gwUkqEvcZ64n9+LnfN+15j5zqev2ov9Zy9xra+JCEBFxvto6D6l1/OxUBXlEQ0xNQqkZ1eKlKtS994JaJhhrtj1xmlxUKFpVLVc17BDl8N2K087FWDc2KhQDgk/PdkVw9O5fn76AFFQuI6kT03a/HcM+yPmA10RemOR64T2fMNXnt94pWMhdnSE78ugjs3p9rLH6MUi4TYNdjF2dlr+9ey0+MPLyEEOwe61hyP4F+/V9+9un+pv71ur0D8NWAwFaMnHrlOZC/M5y2hC/vTzEo0zq8SjQtzOYZSMc83nilEwiF2DCTX9LB74hHPN54pCCHYNdh1vfjP5YmGhS8bqRRuGuy6vr0aort70B+jBJZBPLdK/M/O+GssAW4eTnF2JnvNa+rvfSPdflAC4OaR7ut5Ndpv3xZv2ysQfw0QQnDT0PWexunpLLdu8a+jgZUvvrhK/E9NZ7nFZ15ridm52Rx7hlO+rKVXuGkwed1zPD+bY9dgl6eHf6zGmuI/l2NbX8KXDXEKSvzlijX1p2ey9CWjnhebW4l9W7q5OJ+nsqKk+ZmZHPFIyFcjvm8kxeRi8ZrzGc5MZxEC9nicvgvEXxP2DF3rAdXqkjMz2WvmAPzA7qHUNWG5lJLTHSD++0a6OXU1S33F4Snn53K+pXwUbtnSzfnZ3DXH7Z2fy7HXp7y6ws0jKaYWiywVl0+oOj+ba04G+4Wbh1Pky7VmeQKwxGzfiL9G/ObhFJWavCaKOzOdZe9wylcjfnMj6lDREcCZmSy7Bro8PRsaAvHXhju29nBhLt8cnJfm85Srdd9F9o6tPcxmS82aJjPZEouFiu8RyZ3beihUak1vNleqMrFQ4BYfQ3KAO7b2Uq1Lzkxbg7NcrXeEEb9zWy8AJ64sAVCvS05eWeJ2n3ntHbae15kVqYwzMznf+/2+LYrXtSK7z29eI2u3174R752LQPw14e4d1w7ON69av/0eBHdv7wPg2OQiAKeuWp3uli3+isYdW1V7ZQB4YyqDlHD39l4/aXHntp4mH7BSd5Wa5C7feTXaq8Hr4nyeXLnmO687Gu117LLFay5bYjZb4laf+9dtoz0Isdzvs6UqF+fzvjs9e4a7iIVDHG88x1K1xpnpLLf5YMQD8deEu7Y1RPay1dlenUgTDgnu3Orv4FTicGzS6mxHLqUBeNsOf3ndNtpDSMDxKctIKn53+8xrz1CKWCTUFH8lHndt85fXtr4Efclos72UeKh+5xeGu+PsHEjyyqUFYLl/vWOnv7y64xFu29LT5PPaRJq65Jolz34gHglz1/ZeXrlo8ToxtUS5VveFVyD+mjDaG2e4O84rjc52+MICd2/v9XUyDqAvGeWmwa7mIDh8YYF9Iyn6u/ybjANrJdIdW3t58Zy19+/F8/Ns6Yl7Xpd+NSLhEG/f0ceLFywxe+n8Ar2JiK8rV8BaVPCOnX0cvmC11wvn5klEQ9y21V9PFuCeXf0caYjZkUuW0/N2n8UfGrwupZFSNvv/PTv7feUEcO9N/bw2kaZaqzd5BeJ/A0MIwQduHebpU7NkS1WOXEqzf/eg37QA+LFbh/nh6VlypSovnp/n3Xs6g9cD+4Y4fHGBfLnKD8/M8WO3Dvs6Sajw/luGeX0izWKhwjOnZ3lg37Cvk4QKP3bLMG9ezXI1U+TZ07O8e88g8Yi/zgXAfbsHmFwscm42x9OnZnnb9l66Yv4sI17NK52vcHwqwzOnZrl1SzcDPi0jXs2rWLGE/+lTs+zoT7Ldh71AgfhrxNjtI8znyvzbbx2jWKnzt+4a9ZsSAB+6fQu5co3f/dYxlorVzuF1xxbK1Tq/8+gx5nNlHrxtxG9KgPUc6xI+/e3jXE4XePD2TuG1BYA/fPwkp6azzb/9xkfutor+/n9PnOLIpTQ/cWdn9K+fuGuUSEjwuUNneeHcPB/uEF5jt28hEQ3x58+e5+lTM3z4zi2+OD2B+GvER+7eykhPnEdemuC20W7u39sZHvbY7SPsHEjyyEsT3DTYxQdu7Qwxe9/NQ+wbSfHISxOM9MSbIuI37t3Vz9t39PHISxP0JaP83Xdu95sSALdv7eH+vYM88tIEqViYn7u3M47C2N6f5EO3j/DXr1wmFgnxv7x7l9+UAGvz5UfetpVvHplEAr94/01+UwKs+Yifeed2vv36FKVqnV96725fePgfm72FkIiG+fN/+G6+8sJF/uEDezoiVQAQDYf4/K++my89d55/8J7dvhz8sRZCIcHnfmU/n3/mHH9//y7P1zmvByEEn/nFd/HfD53hY/fsoNunndBr4b984h4+e/AMH33b1o5IYSj8x7/3Dv7rwdN86PYtnp/buxF+72NvY6Q7zvv2DTVrcHUCfuvv3EV3PMo9N/X7stIHAvHXjrft6OPTP/t2v2lch9u39nQkr30j3fz7DuR101BXR7bXtr4kv/fxzquLuKU3wb/9WOfxGkzF+J2fudtvGtehLxnl//q7d/nKoTNcwAABAgQI4CkC8Q8QIECATYhA/AMECBBgEyIQ/wABAgTYhAjEP0CAAAE2IQLxDxAgQIBNiED8AwQIEGATIhD/AAECBNiEECuPX+tkCCFmgAsOLx8GZjXS0YWAlz0EvOwh4GUPb1Veu6WU19V0uWHE3w2EEC9JKff7zWM1Al72EPCyh4CXPWw2XkHaJ0CAAAE2IQLxDxAgQIBNiM0i/p/zm8A6CHjZQ8DLHgJe9rCpeG2KnH+AAAECBLgWm8XzDxAgQIAAKxCIf4AAAQJsQrylxV8I8VEhxEkhxGkhxCf95qMghPiCEGJaCHHUby4rIYTYJYQ4KIR4QwhxTAjxL/zmBCCESAghXhBCvNrg9bt+c1IQQoSFEK8IIQ74zWUlhBDnhRCvCyGOCCFe8puPghCiXwjxNSHEiUY/e18HcLq90U7qJyOE+Jd+8wIQQvxGo88fFUJ8RQih7Zi0t2zOXwgRBt4E/hYwAbwI/IKU8rivxAAhxAeBLPAlKWXHHH8khNgGbJNSviyE6AEOAx/3u82Edbp1SkqZFUJEgWeAfyGl/JGfvACEEP8K2A/0Sil/2m8+CkKI88B+KWVHbVoSQnwReFpK+WdCiBjQJaVM+0yriYZuXAbeI6V0uqlUF5cdWH39LillQQjxCPAdKeVf6Lj/W9nzvx84LaU8K6UsA18FPuYzJwCklIeAeb95rIaUckpK+XLj30vAG4Dvp4RLC9nGn9HGj+9eixBiJ/B3gD/zm8uNACFEL/BB4PMAUspyJwl/Ax8Gzvgt/CsQAZJCiAjQBUzquvFbWfx3AJdW/D1BBwjZjQIhxB7gXuB5n6kAzfTKEWAa+L6UshN4/RHwb4C6zzzWggQeF0IcFkI85DeZBm4GZoA/b6TK/kwIkfKb1Cp8AviK3yQApJSXgT8ALgJTwKKU8nFd938ri79Y4zXfvcUbAUKIbuDrwL+UUmb85gMgpaxJKe8BdgL3CyF8TZcJIX4amJZSHvaTxwZ4v5TyXcBPAb/WSDX6jQjwLuBPpJT3Ajmgk+biYsDPAH/lNxcAIcQAVrZiL7AdSAkhfknX/d/K4j8B7Frx9040hkxvVTRy6l8H/oeU8q/95rMajTTBOPBRf5nwfuBnGrn1rwI/LoT4S38pLUNKOdn4PQ18AysN6jcmgIkVUdvXsIxBp+CngJellFf9JtLATwDnpJQzUsoK8NfAA7pu/lYW/xeBW4UQexsW/RPAoz5z6mg0JlY/D7whpfxPfvNREEKMCCH6G/9OYg2KE35yklJ+Skq5U0q5B6tvPSml1OaVuYEQItWYsKeRVvlJwPeVZVLKK8AlIcTtjZc+DPi+AGMFfoEOSfk0cBF4rxCiqzE2P4w1D6cFEV036jRIKatCiF8HHgPCwBeklMd8pgWAEOIrwBgwLISYAP5vKeXn/WUFWN7sLwOvN/LrAL8ppfyOf5QA2AZ8sbESIwQ8IqXsqKWVHYZR4BuWXhABviyl/J6/lJr434D/0XDIzgL/yGc+AAghurBWBv5Tv7koSCmfF0J8DXgZqAKvoLHUw1t2qWeAAAECBFgfb+W0T4AAAQIEWAeB+AcIECDAJkQg/gECBAiwCRGIf4AAAQJsQgTiHyBAgACbEIH4BwgQIMAmRCD+AQIECLAJ8f8Ddxi1Q94eVqIAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "F0 =  127.0*np.sqrt(2) # amplitude\n",
    "f0 =  1.0 # frequencia da excitação\n",
    "Td =  8.0 # duração\n",
    "\n",
    "t  =  np.linspace(0, Td, 2048)\n",
    "F  =  F0*np.sin(2*np.pi*f0*t)\n",
    "\n",
    "plt.figure(1, clear=True)\n",
    "plt.plot(t, F)\n",
    "plt.grid(True)\n",
    "\n",
    "sF = np.std(F)\n",
    "print(F0, sF, sF*sF)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.49975585937500006\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAD+CAYAAACUcxmwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAam0lEQVR4nO3da2yk113H8d9/xuP1eL22od1eNheSQDCEIJoLuVAVOaiXLe02qKogERe1jbpKpRQQL1ACqC0vqlBeIBQaqVpolJZLolVAZRO2hNJgBUho05QUkqZJl9A2VqoubbUz6+x4PeP582Lmcbzjx577zDl+vh9p1Z3xM88cnxwlv55znvM3dxcAAADGJzfuBgAAAGQdgQwAAGDMCGQAAABjRiADAAAYMwIZAADAmBHIAAAAxoxABgAAMGYEMgAAgDEbWSAzs0vM7FNm9sCovhMAACAGfQUyM7vHzE6a2dMt7x80s+fM7ISZ3S5J7v6Cu9/Sz/cBAADsRv3OkN0r6eDmN8wsL+luSW+XdJmkm83ssj6/BwAAYNea6OfD7v6omV3U8vY1kk64+wuSZGb3S7pR0tc6uaeZHZZ0WJKmpqauuvDCC/tp4q5Ur9eVy7H9bzP6JB39ko5+SUe/bEWfpKNf0j3//PPfc/f9vXy2r0C2jfMkvbjp9bKka83sVZI+JukKM7vD3e9M+7C7H5F0RJIWFhb8ueeeG0IT47a0tKTFxcVxNyMo9Ek6+iUd/ZKOftmKPklHv6Qzs2/1+tlhBDJLec/d/fuSbh3C9wEAAERtGPONy5Iu2PT6fEkvdXMDMztkZkdWVlYG2jAAAIAQDSOQPSHpUjO72MwmJd0k6Vg3N3D3B9398MzMzBCaBwAAEJZ+j724T9LjkhbMbNnMbnH3mqTbJD0s6VlJR939mf6bCgAAsDv1+5Tlzdu8f1zS8V7va2aHJB06cOBAr7cAAACIRpDPrLJkCQAAsiTIQAYAAJAlQQYynrIEAABZEmQgY8kSAABkSZCBDAAAIEuCDGQsWQIAgCwJMpCxZAkAALIkyEAGAACQJQQyAACAMSOQAQAAjFmQgYxN/QAAIEuCDGRs6gcAAFkSZCADAADIEgIZAADAmBHIEL1vfPe0/vJrZ1Wv+7ibAgBAT4IMZGzqRzf+6Wvf1Re+XdP/rZwdd1MAAOhJkIGMTf3oRrlSlSSdOlMdc0sAAOhNkIEM6EapGciS/wUAIDYEMkSPQAYAiB2BDNErrxLIAABxI5AheqWNPWRrY24JAAC9IZAhekkgKzNDBgCIVJCBjGMv0I3SGZYsAQBxCzKQcewFOlWvu06frUkikAEA4hVkIAM6dXq1Jm8e0E8gAwDEikCGqCVPWErSKQIZACBSBDJELZkVm8gxQwYAiBeBDFFLQtj+ovGUJQAgWgQyRG0jkE3nVKpU5cmGMgAAIkIgQ9Q2z5BV111n1tbH3CIAALpHIEPUkmXK10w3hjL7yAAAMQoykHEwLDpVqlQ1kTP98JRtvAYAIDZBBjIOhkWnSpWqZosF7S0QyAAA8QoykAGdKlWqmisWND3ReH3qDIEMABAfAhmi1jpDxtEXAIAYEcgQtXJzhowlSwBAzAhkiFp5taa5YkFTE1LOCGQAgDgRyBC1xh6yCeXMNFss6FRlbdxNAgCgawQyRMvdG3vIpgqSpLliQaVKbcytAgCgewQyROvltXWt111zxUYgmy8WWLIEAESJQIZoJeErCWSzBDIAQKQIZIhW6cy5gWyuWFDpDHvIAADxIZAhWuXVlEDGDBkAIEIEMkQrCV+zyR6y6YLKqzW5+zibBQBA10YWyMxsr5l92sz+3Mx+dVTfi92rdQ/ZXLGg9bpr5SxPWgIA4tJXIDOze8zspJk93fL+QTN7zsxOmNntzbffLekBd/+ApHf1872A9EqZpNlNgUyiniUAID79zpDdK+ng5jfMLC/pbklvl3SZpJvN7DJJ50t6sXnZep/fC6hUqcpM2renUVk8CWTsIwMAxKavQObuj0r6Qcvb10g64e4vuPuapPsl3ShpWY1Q1vf3ApI2DoXN5Rp1LOeKk5IoMA4AiM/EEO55nl6ZCZMaQexaSXdJ+oSZvUPSg9t92MwOSzosSfv379fS0tIQmhi3lZUV+kXSN765qknVtbS0pJWVFX37mackSf/+5ae0tjyMoR0fxko6+iUd/bIVfZKOfhm8YfxXy1Lec3d/WdL72n3Y3Y9IOiJJCwsLvri4ONjW7QJLS0uiX6RP/++X9NrcWS0uvklLS0u64g3X6sOPPaILLvlxLV5z4bibFwTGSjr6JR39shV9ko5+GbxhLB0uS7pg0+vzJb3UzQ3M7JCZHVlZWRlow7C7NAqLFzZeb2zqZ8kSABCZYQSyJyRdamYXm9mkpJskHevmBu7+oLsfnpmZGULzsFu0BrK9k3lN5IxN/QCA6PR77MV9kh6XtGBmy2Z2i7vXJN0m6WFJz0o66u7P9N9U4FylSu2cQGZmnNYPAIhSX3vI3P3mbd4/Lul4r/c1s0OSDh04cKDXW2CXc3eVK9WNM8gSBDIAQIyCPH6CJUu0c7ZW19p6/ZwZMqlxSGyJg2EBAJEJMpAB7WzUsZw6N5DNTzNDBgCIT5CBjKcs0U5rHcsES5YAgBgFGchYskQ7BDIAwG4SZCAD2kn2iaUFsvJqVfW6j6NZAAD0hECGKJVXtw9k7tLp1do4mgUAQE+CDGTsIUM7Oy1Zbv45AAAxCDKQsYcM7SSBa9/UuUfpEcgAADEKMpAB7ZQqVc3smdBE/twh/Eo9y7VxNAsAgJ4QyBCl1jqWifnpyY2fAwAQiyADGXvI0E5a2SSJJUsAQJyCDGTsIUM75UpNc8WtpVgJZACAGAUZyIB2tluynCrkNJnPUc8SABAVAhmiVKpUt9SxlCQz0xz1LAEAkSGQIUrbzZBJlE8CAMQnyEDGpn7sZK1WV6W6TiADAOwaQQYyNvVjJxun9E9vH8hOsYcMABCRIAMZsJPt6lgm5pkhAwBEhkCG6CRhK21TvyTNFgsqE8gAABEhkCE6G4Fshz1kp8/WVFuvj7JZAAD0jECG6CSzXztt6pek8mptZG0CAKAfBDJEp9QmkM1Pc1o/ACAuQQYyjr3ATpJT+NvNkBHIAACxCDKQcewFdlJerapYyGtyIn34EsgAALEJMpABOylVqppNKSyeIJABAGJDIEN0diqbJL1yYGzpzNqomgQAQF8IZIhO20DGDBkAIDIEMkSnVKntGMj2TOQ1VcgRyAAA0SCQITrlSnXbQ2ETFBgHAMSEQIbolNssWUoUGAcAxIVAhqis112nz9a2rWOZmC9OMkMGAIgGgQxRaVc2KTHLkiUAICJBBjJO6sd22pVNSswVCxvhDQCA0AUZyDipH9vpJpCdIpABACIRZCADtlNebQay6TZ7yKYLOrO2rup6fRTNAgCgLwQyRKWbGbLN1wMAEDICGaKSBKx2T1kSyAAAMSGQISrdzpBxFhkAIAYEMkSlVKlqMp/TVGHnoZvsMeNJSwBADAhkiEpSNsnMdryOJUsAQEwIZIhKuVLTXHGi7XUEMgBATAhkiEqpgzqWEnvIAABxIZAhKqXmkmU7hXxOeyfzzJABAKJAIENUOp0hkxqzZAQyAEAMCGSISjeBjALjAIBYjCyQmdklZvYpM3tgVN+J3aVed5VXu50hWxtyqwAA6F9HgczM7jGzk2b2dMv7B83sOTM7YWa373QPd3/B3W/pp7HItpW1mtzbHwqbmJ9mhgwAEIf25wc03CvpE5I+k7xhZnlJd0t6i6RlSU+Y2TFJeUl3tnz+/e5+su/WItNKZzorm5RgDxkAIBbm7p1daHaRpIfc/fLm6+slfdTd39Z8fYckuXtrGGu9zwPu/p4dfn5Y0mFJ2r9//1VHjx7tqH1ZsrKyopmZmXE3Y+S+VV7XRx5b1Yeu2KOrXnvu/5dI65P7v35Wj3y7piNv3TvKZgYlq2OlHfolHf2yFX2Sjn5Jd8MNNzzp7lf38tlOZ8jSnCfpxU2vlyVdu93FZvYqSR+TdIWZ3bFdcHP3I5KOSNLCwoIvLi720cTdaWlpSVnsl8dOfE967Iv6uauv0PU/+qpzfpbWJ0/Xv6F//Obzuu6Nb9JUIT/CloYjq2OlHfolHf2yFX2Sjn4ZvH4CWVrtmm2n29z9+5Ju7eP7kHGdFhZPzE1PSmqUW8pqIAMAxKGfpyyXJV2w6fX5kl7qrzkNZnbIzI6srKwM4nbYJTYC2XTne8g2fw4AgFD1E8iekHSpmV1sZpOSbpJ0bBCNcvcH3f0w69PYrLza5QwZgQwAEIlOj724T9LjkhbMbNnMbnH3mqTbJD0s6VlJR939mUE0ihkypClVqsrnTHsnO1t+JJABAGLR0R4yd795m/ePSzo+0BY17vugpAcXFhY+MOh7I16lSlWzUxMyS9u+uNU8BcYBAJGgdBKiUarUOl6ulJghAwDEg0CGaHRTx1Jq1LJMPgcAQMiCDGTsIUOaUqW6EbI6kc+Z9u2ZIJABAIIXZCDjKUukOd3lDJnUOCKDQAYACF2QgQxI0+0MmUQ9SwBAHIIMZCxZopW7d72HTCKQAQDiEGQgY8kSrc6sratWdwIZAGBXCjKQAa26rWOZmJ8ucA4ZACB4BDJEoddANlssqFypyn3buvcAAIxdkIGMPWRoVe4xkM0VC1pbr2u1Wh9GswAAGIggAxl7yNAqmSGbneo+kG3+PAAAIQoykAGtet5DVpyUJJ2qrA28TQAADAqBDFHoNZBtzJCxsR8AEDACGaJQrlRlJu2bmujqcyxZAgBiQCBDFMqrNe3bM6Fczrr6HIEMABCDIAMZT1miValS1dx0d8uVEoEMABCHIAMZT1miValS7foJS6mxxGlGIAMAhC3IQAa06qWOpSTlcqbZKconAQDCRiBDFHoNZBL1LAEA4SOQIQr9BjLqWQIAQkYgQxTKfQSy+WlmyAAAYSOQIXir1XWdrdU122MgSwqMAwAQqiADGcdeYLMkTPUayNhDBgAIXZCBjGMvsFmvZZMSSSBz90E2CwCAgQkykAGb9RvI5osF1equl9fWB9ksAAAGhkCG4A1ihmzzfQAACA2BDMErrw4okHH0BQAgUAQyBC8JUrNTEz19nhkyAEDoCGQIXqlSk9THU5bTSSBbG1ibAAAYJAIZgleqVLV3Mq9CvrfhygwZACB0BDIEr5+ySRKBDAAQviADGQfDYrNSpdrzcqUkzeyZUD5nBDIAQLCCDGQcDIvNyqv9zZCZGQXGAQBBCzKQAZuV+5whkyifBAAIG4EMwet3D5nUeEKTQAYACBWBDMEbRCCbKxY2ipQDABAaAhmCVl2v68zaet+BbL5Y0CkCGQAgUAQyBK3fOpYJ9pABAEJGIEPQygMMZOVKVfW6D6JZAAAMFIEMQUtmtWaLvdWxTMwVC6q7tLJWG0SzAAAYKAIZgjawJcukniVnkQEAAkQgQ9AGuYds8/0AAAgJgQxBK28sWRLIAAC7F4EMQSuvNvZ8MUMGANjNRhbIzOyXzOzPzezvzeyto/pexK1UqWqqkNOeiXxf95lv7iGjniUAIEQdBTIzu8fMTprZ0y3vHzSz58zshJndvtM93P2z7v4BSe+V9Cs9txiZUjpT1exUf7NjEjNkAICwdXqWwL2SPiHpM8kbZpaXdLekt0halvSEmR2TlJd0Z8vn3+/uJ5t//4Pm54C2BlE2SZKKhbwKeSOQAQCCZO6dHZRpZhdJesjdL2++vl7SR939bc3Xd0iSu7eGseTzJumPJH3e3f95h+85LOmwJO3fv/+qo0ePdvzLZMXKyopmZmbG3YyR+PiXKqrVpd+/rrjjdZ30yW8+8rKufM2E3nv5nkE2MWhZGivdoF/S0S9b0Sfp6Jd0N9xww5PufnUvn+3ntM3zJL246fWypGt3uP5Dkt4sac7MfszdP5l2kbsfkXREkhYWFnxxcbGPJu5OS0tLykq//PFX/1UXzk1pcfFnd7yukz7Z/+SS9v7QrBYXrxxgC8OWpbHSDfolHf2yFX2Sjn4ZvH4CmaW8t+10m7vfJemuPr4PGVRereonXrdvIPeaKxZ0qrI2kHsBADBI/TxluSzpgk2vz5f0Un/NaTCzQ2Z2ZGVlZRC3Q8RKlWrfZ5AlKDAOAAhVP4HsCUmXmtnFZjYp6SZJxwbRKHd/0N0Psz6dbet11+nVGoEMALDrdXrsxX2SHpe0YGbLZnaLu9ck3SbpYUnPSjrq7s8Mr6nImtOrgymblJifnqSWJQAgSB3tIXP3m7d5/7ik4wNtkRpLlpIOHThwYNC3RkQGVccyMVssqLxa03rdlc+lbYEEAGA8giydxJIlpMEHsuQ+ycwbAAChCDKQAZJUrgymjmWC0/oBAKEKMpDxlCWkV4LTbLGf01leMU8gAwAEKshAxpIlpCEsWVJgHAAQqCADGSANbw8ZM2QAgNAEGchYsoTUCE6FvKlYyA/kfgQyAECoggxkLFlCagSnuWJBjbr0/SOQAQBCFWQgA6RGHctBndIvSVOFvPZM5AhkAIDgEMgQrHKlqtmpwQUyqVk+iU39AIDAEMgQrGTJcpCoZwkACFGQgYxN/ZAIZACA7AgykLGpH9JwAtn8dEGnCGQAgMAEGciAet1VHkIgmy0WVCaQAQACQyBDkF5eq6nugzsUNsGSJQAgRAQyBGnQdSwTc8WCVs7WVF2vD/S+AAD0I8hAxqZ+DLpsUiIpMM6yJQAgJEEGMjb145UZsgEvWU5zWj8AIDxBBjKgPKQZMsonAQBCRCBDkMqVmiQCGQAgGwhkCNKw9pDNFSfPuT8AACEgkCFIpUpVOZP2Tg7+Kcvk/gAAhIJAhiCVKlXNFgvK5Wyg990IZBQYBwAEJMhAxrEXGEbZJEmanMipWMgzQwYACEqQgYxjLzCsQCY16lkSyAAAIQkykAHl1eEFsrkiBcYBAGEhkCFIpUpVs1PDCWSz1LMEAASGQIYglZub+odhrligdBIAICgEMgTH3Ye7h4wZMgBAYAhkCE6luq7qug93DxnHXgAAAkIgQ3CGdUp/Yq5YUKW6rrVafSj3BwCgWwQyBGdYdSwTc9Oc1g8ACEuQgYyDYbMtCUqzxcGWTUpQPgkAEJogAxkHw2bbKJYsG9+zNpT7AwDQrSADGbJtdIGMGTIAQBgIZAgOgQwAkDUEMgQnCUr7hnRS//z0ZON7OPoCABAIAhmCU65UtW9qQvmcDeX+s1ONhwWoZwkACAWBDMEpD7GOpSRN5HOa2TPBkiUAIBgEMgRnmGWTEnOUTwIABIRAhuCMKpBRYBwAEAoCGYIzqkBGPUsAQCgIZAgOS5YAgKwhkCE45dXqRr3JYSGQAQBCQiBDUM7W1rVarW8cTTEs89MEMgBAOEYWyMzsJ83sk2b2gJl9cFTfi7gM+5T+xGyxoLO1ular60P9HgAAOtFRIDOze8zspJk93fL+QTN7zsxOmNntO93D3Z9191sl/bKkq3tvMnaz5MnH2RHsIZMonwQACEOnM2T3Sjq4+Q0zy0u6W9LbJV0m6WYzu8zMftrMHmr585rmZ94l6d8kfWFgvwF2lVHNkBHIAAAh6Wijjrs/amYXtbx9jaQT7v6CJJnZ/ZJudPc7Jb1zm/sck3TMzP5B0t/03GrsWuVKTdLwA9n8NIEMABCOfnZOnyfpxU2vlyVdu93FZrYo6d2S9kg6vsN1hyUdbr4827pMCknSqyV9b9yNGKYrP971R3rqk2u6/57Y7Pqx0iP6JR39shV9ko5+SbfQ6wf7CWRplZ99u4vdfUnSUrubuvsRSUckycy+7O7sN2tBv2xFn6SjX9LRL+nol63ok3T0Szoz+3Kvn+3nKctlSRdsen2+pJf6uB8AAEAm9RPInpB0qZldbGaTkm6SdGwwzQIAAMiOTo+9uE/S45IWzGzZzG5x95qk2yQ9LOlZSUfd/ZkBt+/IgO+3W9AvW9En6eiXdPRLOvplK/okHf2Srud+Mfdtt30BAABgBCidBAAAMGYEMgAAgDEbeyBrV37JGu5q/vy/zOzKcbRz1Drol0UzK5nZU80/Hx5HO0dpuxJem36e1bHSrl8yN1YkycwuMLN/MbNnzewZM/utlGsyNWY67JPMjRczmzKzL5nZV5v98ocp12RqrEgd90vmxovUqFZkZv9pZg+l/Ky3seLuY/sjKS/pfyRdImlS0lclXdZyzS9K+pwa555dJ+mL42xzQP2yKOmhcbd1xP3y85KulPT0Nj/P3FjpsF8yN1aav/frJV3Z/Ps+Sc9n/d8vHfZJ5sZL85//TPPvBUlflHRdlsdKF/2SufHS/L1/R42KQ1t+917HyrhnyDbKL7n7mqT7Jd3Ycs2Nkj7jDf8had7MXj/qho5YJ/2SOe7+qKQf7HBJFsdKJ/2SSe7+HXf/SvPvp9V4Gvy8lssyNWY67JPMaf7zX2m+LDT/tD7xlqmxInXcL5ljZudLeoekv9jmkp7GyrgDWVr5pdZ/OXRyzW7T6e98fXMq+XNm9lOjaVrQsjhWOpXpsWKNWrxXqPH/8DfL7JjZoU+kDI6X5hLUU5JOSvq8uzNW1FG/SNkbL38q6Xcl1bf5eU9jZdyBrJPyS12VaNolOvmdvyLpR9z9ZyT9maTPDrtREcjiWOlEpseKmc1I+ltJv+3u5dYfp3xk14+ZNn2SyfHi7uvu/gY1qs5cY2aXt1ySybHSQb9karyY2TslnXT3J3e6LOW9tmNl3IGsk/JLWSzR1PZ3dvdyMpXs7sclFczs1aNrYpCyOFbayvJYMbOCGsHjr93971IuydyYadcnWR4vkuTup9Sou3yw5UeZGyubbdcvGRwvb5T0LjP7phrbiX7BzP6q5Zqexsq4A1kn5ZeOSfqN5lML10kquft3Rt3QEWvbL2b2OjOz5t+vUeOf5fdH3tKwZHGstJXVsdL8nT8l6Vl3/5NtLsvUmOmkT7I4Xsxsv5nNN/9elPRmSV9vuSxTY0XqrF+yNl7c/Q53P9/dL1Ljv82PuPuvtVzW01iZGHxzO+fuNTNLyi/lJd3j7s+Y2a3Nn39S0nE1nlg4IemMpPeNq72j0mG/vEfSB82sJqki6SZvPt6xW1mjhNeipFeb2bKkj6ixyTSzY0XqqF8yN1aa3ijp1yX9d3MPjCT9nqQLpcyOmU76JIvj5fWSPm1meTUCxVF3fyjr/y1SZ/2SxfGyxSDGCqWTAAAAxmzcS5YAAACZRyADAAAYMwIZAADAmBHIAAAAxoxABgAAMGYEMgAAgDEjkAEAAIzZ/wOpvoREHejnzAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "F = MRPy(F, Td=Td)\n",
    "SF, fs = F.periodogram()   # spectral density estimator\n",
    "f = F.f_axis()\n",
    "\n",
    "plt.figure(2, figsize=(10,4), clear=True)\n",
    "plt.semilogy(f, SF[0])\n",
    "plt.axis([0, 4, 1e-3, 1e01])\n",
    "plt.grid(True)\n",
    "\n",
    "sF2 = np.trapz(SF[0], dx=1/Td)\n",
    "print(sF2)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}