{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Universidade Federal do Rio Grande do Sul (UFRGS) \n", "Programa de Pós-Graduação em Engenharia Civil (PPGEC) \n", "\n", "# PEC00025: Introduction to Vibration Theory\n", "\n", "\n", "### Class 11 - Free vibration of multi degree of freedom systems\n", "\n", "[1. Natural vibration modes and frequency](#section_1) \n", "[1.1. The general solution for free vibration](#section_11) \n", "[1.2. Natural vibration modes and frequencies](#section_12) \n", "[1.3. Orthogonality of vibration modes](#section_13) \n", "[2. Examples of modal properties assessment](#section_2) \n", "[2.1. Example 1: steel plane truss](#section_21) \n", "[2.2. Example 2: beam element](#section_22) \n", "[2.3. Example 3: experimental 3-dof model](#section_23) \n", "[3. Structural response to initial conditions](#section_3) \n", "[4. Assignment](#section_4) \n", "\n", "---\n", "_Prof. Marcelo M. Rocha, Dr.techn._ [(ORCID)](https://orcid.org/0000-0001-5640-1020) \n", "_Porto Alegre, RS, Brazil_ \n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Importing Python modules required for this notebook\n", "# (this cell must be executed with \"shift+enter\" before any other Python cell)\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pickle as pk\n", "import scipy.linalg as sc\n", "\n", "from MRPy import MRPy\n", "\n", "# Load matrices generated in Class 10 (that notebook must be run firstly!)\n", "\n", "with open('resources/data/sample_KM.pk', 'rb') as target:\n", " K1, M1, K2, M2, K3, M3 = pk.load(target)\n", "\n", "#target = open('resources/data/sample_KM.pk', 'rb')\n", "#K1, M1, K2, M2, K3, M3 = pk.load(target)\n", "#close(target)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Natural vibration modes and frequencies \n", "\n", "### 1.1. The general solution for free vibration \n", "\n", "Once the stiffness and mass matrices are defined for a given structure, the\n", "undamped equilibrium matrix equation results to be a set of coupled equilibrium\n", "equations, each one for one of the degrees of freedom. In matrix forms it reads:\n", "\n", "$$ \\mathbf{M} \\, \\ddot{\\vec{u}} + \\mathbf{K} \\, \\vec{u} = \\vec{F}(t) $$ \n", "\n", "where $\\vec{F}(t)$ is the (time dependent) external loads vector.\n", "In case of free vibration we have:\n", "\n", "$$ \\mathbf{M} \\, \\ddot{\\vec{u}} + \\mathbf{K} \\, \\vec{u} = \\vec{0} $$ \n", "\n", "Let us now assume that there is a solution $\\vec{u}_k(t)$ such that:\n", "\n", "$$ \\vec{u}_k(t) = u_k(t) \\, \\vec{\\varphi}_k $$\n", "\n", "where $\\vec{\\varphi}_k$ is not time dependent. This assumption may be\n", "understood as a separation of time and space dependence of $\\vec{u}_k(t)$.\n", "Now the acceleration vector results to be:\n", "\n", "$$ \\ddot{\\vec{u}}_k(t) = \\ddot{u}_k(t) \\, \\vec{\\varphi}_k $$\n", "\n", "and the free vibration equation becomes:\n", "\n", "$$ \\ddot{u}_k(t) \\, \\mathbf{M} \\, \\vec{\\varphi}_k + \n", " u_k(t) \\, \\mathbf{K} \\, \\vec{\\varphi}_k = \\vec{0} $$ \n", "\n", "Premultiplying this equation by $\\mathbf{K}^{-1}$ and dividing by $u_k(t)$ results:\n", "\n", "$$ \\frac{\\ddot{u}_k(t)}{u_k(t)} \\, \\mathbf{D} \\, \\vec{\\varphi}_k + \n", " \\mathbf{I} \\vec{\\varphi}_k = \\vec{0} $$ \n", "\n", "where $\\mathbf{I}$ is the identity matrix and $\\mathbf{D} = \\mathbf{K}^{-1} \\, \n", "\\mathbf{M}$ is called the _system dynamic matrix_.\n", "Recalling that $\\vec{\\varphi}_k$ is not time dependent implies that the equation\n", "above is only valid if the coefficient of matrix $\\mathbf{D}$ is constant in time.\n", "We denote this constant quotient as $-\\omega_k^2$ and the condition becomes:\n", "\n", "$$ \\ddot{u}_k(t) + \\omega_k^2 u_k(t) = 0 $$\n", "\n", "The solution for this equation has the general form:\n", "\n", "$$ u_k(t) = u_{k0} \\sin \\left( \\omega_k t + \\theta_k \\right) $$\n", "\n", "which is the same form found for a single degree of freedom system.\n", "However, the time function $u_k(t)$ is only part of the solution for $\\vec{u}(t)$,\n", "corresponding to its time dependent amplitude. \n", "There is still the need of finding the time independent vector, $\\vec{\\varphi}_k$,\n", "and the free vibration frequency, $\\omega_k$.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2. Natural vibration modes and frequencies \n", "\n", "The general amplitude solution above implies that the acceleration vector is:\n", "\n", "$$ \\ddot{\\vec{u}}_k(t) = -\\omega_k^2 u_{k0} \n", " \\sin \\left( \\omega_k t + \\theta_k \\right) \\, \\vec{\\varphi}_k $$\n", "\n", "Replacing this result in the free vibration equation and simplifying gives:\n", "\n", "$$ \\mathbf{K} \\, \\vec{\\varphi}_k = \\omega_k^2 \\, \\mathbf{M} \\, \\vec{\\varphi}_k $$ \n", "\n", "or, alternativelly, with the dynamic matrix:\n", "\n", "$$ \\mathbf{D} \\, \\vec{\\varphi}_k = \\lambda_k \\, \\vec{\\varphi}_k $$ \n", "\n", "with $\\lambda_k = 1\\,/\\,\\omega_k^2$.\n", "The two equations above represent an eigenvalue-eigenvector problem, which\n", "has as many solutions as the matrices order, $N$, which is also the number\n", "of system degrees of freedom. \n", "Each solution is a pair $\\left( \\omega_k, \\vec{\\varphi}_k \\right)$ or, \n", "alternatively, $\\left( \\lambda_k, \\vec{\\varphi}_k \\right)$ if the \n", "dynamic matrix is used.\n", "\n", "The eigenvalues $\\omega_k$ are called the _natural vibration frequencies_\n", "of the strutural system, while the eigenvectors $\\vec{\\varphi}_k$ are\n", "called the _vibration modes_, or _modal shapes_. \n", "It is very important to keep in mind that _the modal shapes have \n", "no prespecified scale_, what means that they can be multiplied by\n", "any scale factor, $\\alpha$, and still remain solutions for the eigenproblem:\n", "\n", "$$ \\mathbf{K} \\, (\\alpha \\vec{\\varphi}_k) = \n", " \\omega_k^2 \\, \\mathbf{M} \\, (\\alpha \\vec{\\varphi}_k) $$ \n", "\n", "Numerical algorithms for solving this eigenproblem are available in many\n", "environments, including the best models of HP handheld calculators. \n", "In Python, they are available in ```scipy.linalg``` module and will be\n", "used in [section 2](#section_2) for the three examples provided in the previous class.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.3. Orthogonality of vibration modes \n", "\n", "The eigenvectors $\\vec{\\varphi}_k$ presents the important property of _orthogonality_\n", "with respect to the stiffness and to the mass matrix.\n", "This is a direct consequence of their symmetry, as shown in the following.\n", "Let us start by considering two vibration modes $i$ and $j$ that are solutions for\n", "the eigenproblem:\n", "\n", "\\begin{align*}\n", "\\mathbf{M} \\, \\vec{\\varphi}_i &= \\lambda_i \\mathbf{K} \\, \\vec{\\varphi}_i \\\\\n", "\\mathbf{M} \\, \\vec{\\varphi}_j &= \\lambda_j \\mathbf{K} \\, \\vec{\\varphi}_j\n", "\\end{align*}\n", "\n", "Transposing the equation for mode $i$ above and recognizing that \n", "$\\mathbf{M} = \\mathbf{M}^{\\intercal}$ and $\\mathbf{K} = \\mathbf{K}^{\\intercal}$ gives:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \n", " = \\lambda_i \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} $$\n", "\n", "Now, postmultiplying by $\\vec{\\varphi}_j$ gives:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j\n", " = \\lambda_i \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j $$\n", "\n", "On the other hand, the eigenproblem for mode $j$ above can be premultiplied by \n", "$\\vec{\\varphi}_i^{\\intercal}$ to give:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j\n", " = \\lambda_j \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j $$\n", "\n", "Subtracting this last equation from the previous one results in:\n", "\n", "$$ (\\lambda_i - \\lambda_j) \\, \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j = 0 $$\n", "\n", "This condition can be satisfied if and only if:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j = 0,\n", " \\hspace{1cm} {\\rm for} \\; i \\neq j $$\n", "\n", "Starting again this demonstration with the $j$ eigenproblem solution leads also to:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j = 0,\n", " \\hspace{1cm} {\\rm for} \\; i \\neq j $$\n", "\n", "These are the two orthogonality conditions for the eigenvectors $\\vec{\\varphi}_k$.\n", "In the next class they will be used to decouple the matrix equilibrium equation \n", "into a set of scalar equations, one for each vibration mode. Once this orthogonality\n", "condition has been stated, we observe that the eigenvectors $\\vec{\\varphi}_k$ constitutes\n", "a base of independent vectors (of a _linear vector space_) that can be linearly combined \n", "to represent the complete system response as:\n", "\n", "$$ \\vec{u}(t) = \\sum_{k = 1}^{N} u_k(t) \\, \\vec{\\varphi}_k = \\mathbf{\\Phi}\\vec{u}_k(t) $$\n", "\n", "where $\\mathbf{\\Phi}$ is the modal matrix, whose _columns_ are the the eigenvectors $\\vec{\\varphi}_k$.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Examples of modal properties assessment \n", "\n", "In the following sections, each of the three examples presented in the\n", "last class are subjected to a modal analysis and the corresponding solutions,\n", "for both natural frequencies and associated vibration modes, are plotted\n", "for visualization.\n", "\n", "The eigenvalues and eigenvectors are solved with ```scipy``` function ```eig``` \n", "from module ```linalg```. We define a general function to return natural\n", "vibration frequencies, and the associated vibration modes, in ascending order:\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def vibration_modes(K, M):\n", "\n", "# Uses scipy to solve the standard eigenvalue problem\n", " w2, Phi = sc.eig(K, M)\n", "\n", "# Ensure ascending order of eigenvalues\n", " iw = w2.argsort()\n", " w2 = w2[iw]\n", " Phi = Phi[:,iw]\n", "\n", "# Eigenvalues to vibration frequencies\n", " wk = np.sqrt(np.real(w2)) \n", " fk = wk/2/np.pi\n", "\n", " return fk, wk, Phi\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.1. Example 1: steel plane truss \n", "\n", "For the steel truss presented last class this is done as follows: \n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 3.93785233, 13.28874904, 23.0790977 , 32.38000947, 36.76923945])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fk1, wk1, Phi1 = vibration_modes(K1, M1)\n", "\n", "fk1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The script below shows the results as nodal displacements at the truss top.\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/AAAANBCAYAAABHyVXeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxb1Zk38N/VasuWFy3e4n3LTvbNjh0HSAq0lHQotKUF2sK0FOiQ5p2WrTMsL5C30FI6TcOQKUMoHZbOsA4Ni4EkjrNvDoEk3rd4lWRbtiVblqX7/qHFlu04MbElS/59Px9/It17dXXkHEt67vOccwRRFEUQERERERER0bQmCXQDiIiIiIiIiOjiGMATERERERERBQEG8ERERERERERBgAE8ERERERERURBgAE9EREREREQUBBjAExEREREREQUBBvBEREREREREQYABPBEREREREVEQkAW6Af7kdDrR3NwMtVoNQRAC3RwiIiIiIiIKcaIooqenB0lJSZBILi+HPqMC+ObmZqSkpAS6GURERERERDTDNDY2Ijk5+bLOMaMCeLVaDQCora2FRqMJcGsolNntdnz88cfYuHEj5HJ5oJtDIYx9jfyFfY38hX2N/IV9jfylo6MDGRkZ3nj0csyoAN5TNq9WqxEVFRXg1lAos9vtUKlUiIqK4gcCTSn2NfIX9jXyF/Y18hf2NfIXu90OAJMyjJuT2BEREREREREFAQbwREREREREREGAATwRERERERFREGAAT0RERERERBQEGMATERERERERBQEG8ERERERERERBgAE8ERERERERURBgAE9EREREREQUBBjAExERERHRjCWKIn7yk59Ao9FAEASUlZWhqKgImzdvDnTTiEZhAE9ERERERDPWRx99hJ07d+L9999HS0sLFixYEJB2fPOb30RqairCwsKQmJiIW2+9Fc3NzeM+pq2tDT/84Q+RlJQElUqFa665BpWVlT7HpKen47nnnhv12EcffRSLFy+exFdA/sAAnoiIiIiIZqyamhokJiYiLy8PCQkJkMlkAWnH+vXr8be//Q3l5eV48803UV1djW9/+9sXPF4URWzatAk1NTV49913cfLkSaSlpeHqq6+GxWLxY8vJnxjAExERERHRjPSHP/wBmzdvRkNDAwRBQHp6+pjHffjhh4iOjsZf/vKXKWvLL37xC6xevRppaWnIy8vDAw88gEOHDsFut495fGVlJQ4dOoTnn38eK1aswOzZs7F9+3b09vbitddem/DzC4Iw6udCvw8KHAbwREREREQ0I91555145JFHkJycjJaWFhw9enTUMa+//jpuvvlm/OUvf8Ftt912wXNFRkaO+3Pttddecrs6OjrwX//1X8jLy4NcLh/zGJvNBgAICwvzbpNKpVAoFCgtLb3k5/JoaWnx/lRVVSE7OxuFhYUTPg9NrcDUhxAREREREQVYREQE1Go1pFIpEhISRu3fvn07HnroIbz77rtYv379uOcqKysbd394ePhF23P//fdj27ZtsFqtWL16Nd5///0LHjtnzhykpaXhwQcfxAsvvICIiAg8++yzaG1tRUtLy6jz/vrXv/bZNjAwgHnz5nnve16/KIq48cYbER0djRdeeOGibSb/YgBPREREREQ0wptvvom2tjaUlpZi5cqVFz0+Ozv7sp/zl7/8Je644w7U19fjsccew2233Yb3338fgiCMOlYul+PNN9/EHXfcAY1GA6lUiquvvnrMTP8vf/lL/PCHP/TZ9m//9m8oKSkZdexDDz2EgwcP4ujRo5d00YH8K6hK6EtKSnD99dcjKSkJgiDgnXfeCXSTiIiIiIgoBC1evBh6vR4vvfQSRFG86PGTUUKv0+mQm5uLDRs24PXXX8euXbtw6NChCx6/bNkylJWVoaurCy0tLfjwww9hMpmQkZEx6rzZ2dk+PxqNZtT5/vrXv+L3v/893n77bSQnJ1+0veR/QZWBt1gsWLRoEX70ox/hxhtvDHRziIiIiIgoRGVlZeF3v/sdioqKIJVKsW3btnGPn4wS+uE8Fw08Y93HEx0dDcA1sd2xY8fwf//v/53QcwHAwYMHceedd+KFF17A6tWrJ/x48o+gCuCvvfbaCU3+QERERBMniiJsg0702x3oszvQN+BAT58NLVagocMKtUqJcLkU4XIpZNKgKuYjIpqQ3Nxc7N69G0VFRZDJZGOup+5xOSX0R44cwZEjR7B27VrExsaipqYG//qv/4qsrCysWbPGe9ycOXOwdetWfOtb3wIA/Pd//zf0ej1SU1Nx+vRp3Hfffdi0aRM2btw4oedvbW3Ft771LXz3u9/F1772NbS2tgJwTYqn1+u/8uuiyRdUAfxE2Ww2nytW3d3dAAC73X7B5RiIJoOnf7Gf0VRjX5tZhgJrJ/rsDm+A7b0/4ED/4Ih9A+77noB8wLPPdb9/0IG+Aeewc7mOHbtaVIb/d8p3ZmO5VECYXIowmQRh7qA+TCFx/eve7trm3icftm/Y7XD5sMf73Hbt44WCmYPva+Qvnj7mcDh87gOu91un0wm73Y7MzEx89NFH2LBhAwRBwNNPPz3pbZHJZHjzzTfxyCOPwGKxIDExERs3bsQrr7wCiUTibVt5eTk6Ojq898+fP48tW7agra0NiYmJ+P73v4+HH3541N+Pw+EYc5soirDb7fjiiy/Q1taGl19+GS+//LL3mLS0NFRWVk76651pJvP9TBAvZUDHNCQIAt5++21s2rTpgsc8+uijeOyxx0Ztf/XVV6FSqaawdURENJOIImB3Dv0MuH/sTmDAIQzd9m7z3BZ8tg09Vhg6l2PocXYnIGL0REZTSSqIUEgAuQRwiIFth1wCb1sUEkAhBeSSoe0KCSCXDrvt2Scd8Tj39uHHeh4r9e/LIiKiGcBqteKWW26B2WxGVFTUZZ0rpAP4sTLwKSkpaGlpgVar9UMraaay2+0oLi7Ghg0bLrh2J9FkYF8bnydj7clSj5Wx7nNno22DIzLWw7PUw257s9R23+P8zZP5Hp7VVvpktIey2qOz3a59yhGZ7+HZc6XM9Ri5O/M9vK/JZDIMDDrRN6ISwOa+3zfi9zPyd+WpBLCNqBbwVAL0Dw49xt/fUmQSYXRFgEKCMNmICoJhFQVhMinCFWNXFIyuLvD9vdJofF8jf2FfI38xmUxITEyclAA+pEvolUollErlqO1yuZx/pOQX7GvkL8HW17yBtTeAdgwFygPDgsABh2+ANyLoHnqM7/7+Yef2N4VU4g2kwxVSn6A5TC5xB3pDAbPnvnfb8PLzYcd4z6NwlaUHqqTc09cUCiByip9rrLH4PhcDhv2/24ZdBBi+3zVEYEQ/GvC9oDP8QsGgU0SvbRC9F58z6rLIJILPhQDP7TCZxPv/faGhBz77x9qmGLpgEMwXCoLtfY2CF/saTbXJ7F8hHcATEdHEjBVYuzKlYwfWvmOthwLroceMDrw9AZi/KaSSobHVIwJrT/b0UgPr4funS2AdigRB8P4fxEzh8wy/UODpnz5B/7ALAf1jXCgYfmFgZNWBz2NGXCjosQ2ixzY4ha/sAhcKRvwdDF08GNHPR12AGnnxQOI9bzBfKCAiCiZBFcD39vaiqqrKe7+2thZlZWXQaDRITU0NYMuIiPzL7nDC0GNDU0cvyrsEKM+2Y0AULimw9gk4RgXj/i8F9wTWw4OFsTLPYcOy2iMD75GB9cjMJANrGs/wCwVTSRRFDDic3mEao4N+x+igf8A5xsWD0UMWptuFggtVDCjHuiDmvXjgvhggEdFsBcx9dmhlMggCJyYgIvIIqgD+2LFjWL9+vff+li1bAAC33347du7cGaBWERFNHlEU0Wm1o627H63d/Wjv7ker2Ya2nn60mfvR1uO6b7LYho0NlgJnyya9LZcaWIcrho8BHrlfwsCayE0QBChlrvkFojF15boXulDQP+h7wW7ogt4FLgS4h6OM/RgHrFN6oUCG35zajTC5BPFRYYhXhyE+OgzxaiUSosMQFxWGhKgwxEcpER8VNuUXX4iIpougCuCLiooQpHPuERHBOjCIVnM/2rptaOvuHxak29Dqvt/ebcOA49Ky4DKJAL1aCcHehzhtDMLlslGB9aWMpR65zXNbKmHWiygYBfJCwejKn4tfCPDOaeHeb7ENorWrF9ZBAf12J+pNVtSbrOO2JTpcjoSoMMRFKd2BvW/AHx8VBl2kku9rRBT0giqAJyKajjzl7J6gvG1YQO6532bun1BmShuhcGeYXNklz09CtBJx6jAkRIdBo1LA4RjErl27cN11qzgBDxH51VRdKLDb7di1axeu2vA1dPQ53ZVH/aPeY9vdF0H77U6Y++ww99lR3tZzwfNKBECvVroDfd8Mvuv91ZXpjwpn2T4RTV8M4ImILuCrlbOPT6WQDmWHopTuDJH7i6P7i6RerYRSdmnloA7/zwVHROQXSrkUqaowpGpVFzxGFEV09w8OVTWZ+9HeYxsV8Lf39MMpwl0BZQNgvuA5vWX7nsB+5IVUd6afZftEFAgM4IloRrIODLqyOOZ+tHuzO6NL2ydSzh6n9g3IfUo53QG7OoxZciKiySIIAqLD5YgOlyM3Xn3B4xxOEaZeT3XUsAy+uR9tPTbvRdkuq/2Sy/ZjVPJxx+YnRIVBy7J9IppkDOCJKKTYHU4Ye20XHWve03/p5eyaCIU3AL9Q6aU2QgEJv6QREU1LUomAOPf793j67Q6fz4qhzxCbT5bfNuhEl9WOLuv4ZftSiQB9pHJUqX7csLH58VFhiApj2T4RXRoG8EQUFERRRJfVPmps+fBxkG3dNhh7J17OPjpTPjTWPC7q0svZiYgouIXJpUjVqi5ett83eNGx+YYeGxxOEa3u+xcr27/Y2HyW7RMRwACeiKaBvgHH6GzHiLHmbd02DAxOrJzd54vQGGPNI5XMeBAR0cQIgoBolRzRqouX7Rt7bd6svbdUf0RVmLnPVbZfZ7Ki7hLK9ocC/dFj8+OjlCzbJwpxDOCJaMoMOpww9NouOtac5exERBRqpBLB+7l0RfKFj+u3O0Zn8EeMzR9Ztn+u9RLK9t1j81m2TxRaGMAT0YRdrJzdc5vl7EREROMLk0uRpo1Amjbigsd4yvZbu4dn8IeGj3k+i0eX7V9YuFyK+Cgly/aJggwDeCLywXJ2IiKi6WV42f7shAuX7Q86nDBZBsYcmz/8vrnPjj67g2X7REGIATzRDDFV5ezekjzPUjojMugsZyciIvIPmXRoDfvx9A04hr4HXGBsfmt3Pwa+Ytn+8FL94UPeWLZPdPkYwBMFOU85u2eM3OjlbyZezh4ul/pkx8caa85ydiIiouAUrri0sn1zn903g+8dk2/zXgAw9k68bP9CS+olRIVBr2bZPtF4GMATTWN9Aw7vFfHxlk671HJ2qbucfexJ4NxjzaPCoGY5OxER0YwmCAJiVArEqBQXLds39g6MOza/1dyP7v7BSy7bj1XJx8zgeyv8opXQRrBsn2YmBvBEAeD5sBtrrHn7sHVluydQzj78w26sseZxUfywIyIiosklk0qQEO36rrFonOM8SYmRpfojExQDg050Wu3ovISy/aE5dsYemx8fzaQEhR4G8ESTrN/uQE1bL852CbAcb4LJYh91JdrYa4NzguXsI5d/GT7WnOVmRERENJ2FK6RI10UgXXfxsn3v96ZhY/N9Ztt3l+23mPvRYu7HqfGed5zvUVqVDF021/MSBQsG8ERfQb/dgcYOK2qNFtSZLK5yMKMFdUYLWrr73WPNpcDZLy94Dl45JiIiIhoyvGx/TsKFj5tIJWOf3YFaowW1RssFzibD/zv9KdK0EUjXui4wZOhU3ttxaiW/h9G0wgCe6AJsg54g3Yp6k2UoWDda0WzuG3dCuEilDGqpHdlJOiTGhI8Ozjl2i4iIiOgrGV62Px7rwOAFS/Xbu/vR0tWH5q4+9NmdONfaM2bJvso94V+GTuX61x3Yp+tU0EcyuCf/YwBPM9rAoBMNHaMD9DqTBc1dfeOWuUcqZUj3XKEddsU2TRuBKIWADz74ANddtwxyudx/L4iIiIiIAAAqhQzpOtkFy/btdjvee38XFq5eh/Nm26ikTVNnH6wDDpxt6cbZlu5Rj4/wBveugN57WxsBXaSCwT1NCQbwFPIGBp043+kKymuN7lJ309Ab83hBeoRnvJY2whusZ+hcy66M98Zst9un6NUQERER0WSRSYAMXQRyE2NG7bMNOnC+sw91xqGgvt7kGkLZ1NUHy4ADZ1q6cWaM4N6T6BmetfckerQRDO7pq2MATyHB7nD6vMHWmyyodY9Lb+rqg2OcKH14adTwbDpLo4iIiIhmLqVMiix9JLL0kaP2eYZaeio3Rw617LUN4oumbnzRNDq4Vytl3gn90rWqYZWcEYhVyfndk8bFAJ6CxqA7SK81WVBvdE0c53mzPN85fpAeLpciTavyZs8zhmXT9ZychIiIiIgmQCmTIjtOjew49ah9wyc7rjdZUWuyeCc7bjb3o8c2iNNNZpxuMo96rDpM5i3D9wb4OlcWPzZC4Y+XRtMcA3iaVgYdTjR39Xvf6DzZ9DqTFY0dVgyOE6SHySVI10Ygbdgbnaf8PT6KQToRERERTb0wuRQ58WrkxI8d3Dd4VjIyDlvJyGRBi7kfPf2D+Py8GZ+fHx3cR4fLvQH90LBOV4IqRsXgfqZgAE9+53CKaO7qGzVpXJ3RgsZOK+yOCwfpSpnEFaB7JwwZGp8erw6DhLO6ExEREdE0FSaXIjdejdwxgvu+gWHBvSdr7/6u3NrdD3OfHafOm3FqjOA+RiV3DwVVecvxPUNDo1WcUDmUMICnKeEJ0keukV5rsqCxY/wgXSGTIE0z9OaTplV5s+kJUQzSiYiIiCj0hCukmJ2gxuyE0cG9dWAQ9SbPLPlW7/fqepMFbd02dFntKLN2oayxa9RjY1Vyb3Vqmjvx5UmERYUxuA82DODpK3M6RTSb+7yzcXquEtYaLWjs6MOAw3nBxyqkEqR6Ju0YfqVQF4FEBulERERERF4qhQxzE6MwNzFq1D7rwOBQRat3vL1r7L2hx4ZOqx2dDV042dA16rHaCMWYw0/TdSqoGdxPSwzgaVxOp4jW7n7vVb7hY3XqO6wYGLxwkC6XCkjVqIbN6u658qdCUkw4pAzSiYiIiIgui0ohw7ykKMxLGh3c99oGXfNJDZst35PFN/baYLIMwGQZwIkxgntdpMI9v5R7Auhhk+tFKhlGBgp/8wSnU0RbT787i+4pzRla69I2TpAuk7iDdO9kGu71LnURDNKJiIiIiAIoUinD/KRozE+KHrWvp9+OetPQXFS17iC/3mSBsXfA+3OsvnPUY3WRyqElmIdl7dO1EYhgcD+l+NudIURRRFu3bdga6UPlNfUdFvTbxw/SUzQqn1kvPdn0pJgwyKQSP74SIiIiIiK6XOowORbMisaCWaOD++5+O+rdZfj1IypxOywDMPbaYOy14Wjd6OA+Tq0cCuhHjL1XKRh+Xi7+BkOIKIpo77ENG4s+tCxFvcmKPrvjgo+VSgSkxIYPBejDxqXPiglnkE5ERERENENEhcmxMDkaC5NHB/fmPvtQxa6netcd4Hda7WjvsaG9x4YjdR2jHhsfpfTOju+KNVwxR5omAuEKqT9eWtBjAB9kRFGEodfmGscybPbJWvcfj3Vg/CA9OTbcVeLuyaa7A/bk2HDIGaQTEREREdE4osPluCI5Blckx4zaZ7bavZPp+ax1b7Kgy2pHW7cNbd02HK4dHdwnRIV5Z8hP0/qudR8mZ3DvwQB+GhJFEcbeAZ+JJuqMVu9tyzhBukQAZsWGD62TPmw8SnKsCgoZg3QiIiIiIpp80So5FqlisCglZtS+LuuAO57xXeu+1mhBd/8gWrv70drdj0M1o4P7xOgwn6y9Z86tVM3MC+4ZwAeIKIowWQbGXMuxzmhFr23wgo8VBGBWTLg3QE/TDq3lmMIgnYiIiIiIppkYlQJLUhVYkhrrs10URXRZ7cPm6BrK2tcaLejpH0SLuR8t5n4crDH5PFYQgKTo8DGWwlMhVauCUhZ6wT0D+CkkiiI6rXafNdI9S7DVGS3ouUiQnhQd7i0byRg2eVyKJjwkOyMREREREc0sgiAgNkKB2AgFlo4R3HdYBoZiKG+FstUbTzV19aGpqw8HqscO7l2JTpXP2PtUTfAmPRnAT4JOy8CoNdKHXzG6kPGuGKXMwHIQIiIiIiIiD0EQoI1UQhupxLK00cG9yTLgE4MNz+JbBhze4L60yve8EgFIGlbR7InBgqGiOegC+O3bt+OZZ55BS0sL5s+fj+eeew4FBQVT/rwXGrNRZ7LC3Gcf97Ecs0FERERERDR5BEGALlIJXaQSy9M1PvvGm1Oszj3x9/nOPpzv7MO+SqPPYyUCkByr8qmC9lRFp2hUAZ/4O6gC+DfeeAObN2/G9u3bkZ+fjxdeeAHXXnstzpw5g9TU1Ms+/8VmTRwPZ00kIiIiIiIKPEEQoFcroVcrsWKM4P5Cq3rVGS3oszvQ0GFFQ4d1VHDvWdVreKznqaROjvXP0ttBFcA/++yzuOOOO3DnnXcCAJ577jl89NFHeP7557F169ZLPs+Xzd3obOwfc93C8XDdQiIiIiIiouAlCALi1GGIU4dhZcbo4L69xzZsSLR12FxmFvTbnag3WVFvsmJvhcHnsTJPcD8ia5+hi0CYwzlp7Z/0AL6xsRGPPPII/vM//3NSzzswMIDjx4/jgQce8Nm+ceNGHDhwYMzH2Gw22Gw27/3u7m4AwA/+8xgkStWYj4lTK5GqCXcH6q7SiTSNCmnacKgUF/p1OWG3T95/CgU/u93u8y/RVGFfI39hXyN/YV8jf2Ffo7FowqXQpERhaUqUz3ZRFNHWY3NNoOcO4j3/1ndYYRt0uqu3rQB8g3uJvW/S2ieIoihO2tkAnDp1CkuXLoXDceG1yr+K5uZmzJo1C/v370deXp53+1NPPYWXX34Z5eXlox7z6KOP4rHHHhu1fe4v30BCtAr6MBH6cBG6MLhuhwFKJtKJiIiIiIjoEjlFoHsAMPQLMPQDhj73v/0CjP3AQH8fGp+7GWazGVFRURc/4TgmnIF/7733xt1fU1PzlRtzKQRB8LkviuKobR4PPvggtmzZ4r3f3d2NlJQUfLalEFqtdkrbSTOb3W5HcXExNmzYALlcHujmUAhjXyN/YV8jf2FfI39hXyN/cDpFnKlvxtLnJud8Ew7gN23aBEEQMF7i/kIB9eXQ6XSQSqVobW312d7e3o74+PgxH6NUKqFUKkdtl8vl/CMlv2BfI39hXyN/YV8jf2FfI39hX6OplqpVT9q5JjxNXmJiIt588004nc4xf06cODFpjRtOoVBg2bJlKC4u9tleXFzsU1JPREREREREFIomHMAvW7Zs3CD9Ytn5y7Flyxb8+c9/xn/+53/i7Nmz+MUvfoGGhgbcddddU/J8RERERERERNPFhEvof/nLX8JisVxwf3Z2Nnbv3n1ZjbqQ73znOzCZTHj88cfR0tKCBQsWYNeuXUhLS5uS5yMiIiIiIiKaLiYcwBcUFIy7PyIiAuvWrfvKDbqYu+++G3ffffeUnZ+IiIiIiIhoOppwCT0RERERERER+R8DeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCQNAE8E8++STy8vKgUqkQExMT6OYQERERERER+VXQBPADAwO46aab8LOf/SzQTSEiIiIiIiLyO1mgG3CpHnvsMQDAzp07A9sQIiIiIiIiogAImgD+q7DZbLDZbN773d3dAAC73Q673R6oZtEM4Olf7Gc01djXyF/Y18hf2NfIX9jXyF8ms4+FdAC/detWb+Z+uN27d0OlUgWgRTTTFBcXB7oJNEOwr5G/sK+Rv7Cvkb+wr9FUs1qtk3augAbwjz766JgB9nBHjx7F8uXLv9L5H3zwQWzZssV7v7u7GykpKVi/fj20Wu1XOifRpbDb7SguLsaGDRsgl8sD3RwKYexr5C/sa+Qv7GvkL+xr5C8mk2nSzhXQAP7ee+/Fd7/73XGPSU9P/8rnVyqVUCqVo7bL5XL+kZJfsK+Rv7Cvkb+wr5G/sK+Rv7Cv0VSbzP4V0ABep9NBp9MFsglEREREREREQSFoxsA3NDSgo6MDDQ0NcDgcKCsrAwBkZ2cjMjIysI0jIiIiIiIimmJBE8D/67/+K15++WXv/SVLlgBwTUhXVFQUoFYRERERERER+Yck0A24VDt37oQoiqN+GLwTERERERHRTBA0ATwRERERERHRTMYAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIyALdAH8SRREA0NPTA7lcHuDWUCiz2+2wWq3o7u5mX6Mpxb5G/sK+Rv7Cvkb+wr5G/tLT0wNgKB69HDMqgDeZTACAjIyMALeEiIiIiIiIZhKTyYTo6OjLOseMCuA1Gg0AoKGh4bJ/cUTj6e7uRkpKChobGxEVFRXo5lAIY18jf2FfI39hXyN/YV8jfzGbzUhNTfXGo5djRgXwEolryH90dDT/SMkvoqKi2NfIL9jXyF/Y18hf2NfIX9jXyF888ehlnWMS2kFEREREREREU4wBPBEREREREVEQmFEBvFKpxCOPPAKlUhnoplCIY18jf2FfI39hXyN/YV8jf2FfI3+ZzL4miJMxlz0RERERERERTakZlYEnIiIiIiIiClYM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCMyYAH779u3IyMhAWFgYli1bhn379gW6SRRitm7dihUrVkCtViMuLg6bNm1CeXl5oJtFM8DWrVshCAI2b94c6KZQCGpqasIPfvADaLVaqFQqLF68GMePHw90syjEDA4O4te//jUyMjIQHh6OzMxMPP7443A6nYFuGgW5kpISXH/99UhKSoIgCHjnnXd89ouiiEcffRRJSUkIDw9HUVERvvzyy8A0loLaeH3Nbrfj/vvvx8KFCxEREYGkpCTcdtttaG5unvDzzIgA/o033sDmzZvx8MMP4+TJkygoKMC1116LhoaGQDeNQsjevXtxzz334NChQyguLsbg4CA2btwIi8US6KZRCDt69Ch27NiBK664ItBNoRDU2dmJ/Px8yOVyfPDBBzhz5gx+97vfISYmJtBNoxDzm9/8Bv/+7/+Obdu24ezZs3j66afxzDPP4I9//GOgm0ZBzmKxYNGiRdi2bduY+59++mk8++yz2LZtG44ePYqEhARs2LABPT09fm4pBbvx+prVasWJEyfwL//yLzhx4gTeeustVFRU4Jvf/OaEn2dGLCO3atUqLF26FM8//7x329y5c7Fp0yZs3bo1gC2jUGYwGBAXF4e9e/eisLAw0M2hENTb24ulS5di+/bteOKJJ7B48WI899xzgW4WhZAHHngA+/fvZ9UaTblvfOMbiI+Px4svvujdduONN0KlUuGVV14JYMsolAiCgLfffhubNm0C4Mq+JyUlYfPmzbj//vsBADabDfHx8fjNb36Dn/70pwFsLQWzkX1tLEePHsXKlStRX1+P1NTUSz53yGfgBwYGcPz4cWzcuNFn+8aNG3HgwIEAtYpmArPZDADQaDQBbgmFqnvuuQdf//rXcfXVVwe6KRSi3nvvPSxfvhw33XQT4uLisGTJEvzHf/xHoJtFIWjt2rX49NNPUVFRAQA4deoUSktLcd111wW4ZRTKamtr0dra6hMnKJVKrFu3jnECTTmz2QxBECZc1SabmuZMH0ajEQ6HA/Hx8T7b4+Pj0draGqBWUagTRRFbtmzB2rVrsWDBgkA3h0LQ66+/jhMnTuDo0aOBbgqFsJqaGjz//PPYsmULHnroIRw5cgT/9E//BKVSidtuuy3QzaMQcv/998NsNmPOnDmQSqVwOBx48skn8b3vfS/QTaMQ5okFxooT6uvrA9EkmiH6+/vxwAMP4JZbbkFUVNSEHhvyAbyHIAg+90VRHLWNaLLce++9+Pzzz1FaWhroplAIamxsxH333YePP/4YYWFhgW4OhTCn04nly5fjqaeeAgAsWbIEX375JZ5//nkG8DSp3njjDfz1r3/Fq6++ivnz56OsrAybN29GUlISbr/99kA3j0Ic4wTyJ7vdju9+97twOp3Yvn37hB8f8gG8TqeDVCodlW1vb28fdbWNaDL8/Oc/x3vvvYeSkhIkJycHujkUgo4fP4729nYsW7bMu83hcKCkpATbtm2DzWaDVCoNYAspVCQmJmLevHk+2+bOnYs333wzQC2iUPXLX/4SDzzwAL773e8CABYuXIj6+nps3bqVATxNmYSEBACuTHxiYqJ3O+MEmip2ux0333wzamtr8dlnn004+w7MgDHwCoUCy5YtQ3Fxsc/24uJi5OXlBahVFIpEUcS9996Lt956C5999hkyMjIC3SQKUVdddRVOnz6NsrIy78/y5cvx/e9/H2VlZQzeadLk5+ePWg6zoqICaWlpAWoRhSqr1QqJxPdrqVQq5TJyNKUyMjKQkJDgEycMDAxg7969jBNo0nmC98rKSnzyySfQarVf6Twhn4EHgC1btuDWW2/F8uXLsWbNGuzYsQMNDQ246667At00CiH33HMPXn31Vbz77rtQq9Xeqo/o6GiEh4cHuHUUStRq9ai5FSIiIqDVajnnAk2qX/ziF8jLy8NTTz2Fm2++GUeOHMGOHTuwY8eOQDeNQsz111+PJ598EqmpqZg/fz5OnjyJZ599Fj/+8Y8D3TQKcr29vaiqqvLer62tRVlZGTQaDVJTU7F582Y89dRTyMnJQU5ODp566imoVCrccsstAWw1BaPx+lpSUhK+/e1v48SJE3j//ffhcDi8sYJGo4FCobj0JxJniD/96U9iWlqaqFAoxKVLl4p79+4NdJMoxAAY8+ell14KdNNoBli3bp143333BboZFIL+93//V1ywYIGoVCrFOXPmiDt27Ah0kygEdXd3i/fdd5+YmpoqhoWFiZmZmeLDDz8s2my2QDeNgtzu3bvH/H52++23i6Ioik6nU3zkkUfEhIQEUalUioWFheLp06cD22gKSuP1tdra2gvGCrt3757Q88yIdeCJiIiIiIiIgl3Ij4EnIiIiIiIiCgUM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCMyIZeQ8nE4nmpuboVarIQhCoJtDREREREREIU4URfT09CApKQkSyeXl0GdUAN/c3IyUlJRAN4OIiIiIiIhmmMbGRiQnJ1/WOWZUAK9WqwEAtbW10Gg0AW4NhTK73Y6PP/4YGzduhFwuD3RzKISxr5G/sK+Rv7Cvkb+wr5G/dHR0ICMjwxuPXo4ZFcB7yubVajWioqIC3BoKZXa7HSqVClFRUfxAoCnFvkb+wr5G/sK+Rv7Cvkb+YrfbAWBShnFzEjsiIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIimrFEUcRPfvITaDQaCIKAsrIyFBUVYfPmzYFuGtEoDOCJiIiIiGjG+uijj7Bz5068//77aGlpwYIFCwLSjieffBJ5eXlQqVSIiYkZtd9kMuGaa65BUlISlEolUlJScO+996K7u3vc8/70pz9FVlYWwsPDodfrccMNN+DcuXM+xwiCgHfeeWfUY3/4wx9i06ZNl/GqaLIxgCciIiIiohmrpqYGiYmJyMvLQ0JCAmQyWUDaMTAwgJtuugk/+9nPxtwvkUhwww034L333kNFRQV27tyJTz75BHfddde45122bBleeuklnD17Fh999BFEUcTGjRvhcDim4mXQFGMAT0REREREM9If/vAHbN68GQ0NDRAEAenp6WMe9+GHHyI6Ohp/+ctfpqwtjz32GH7xi19g4cKFY+6PjY3Fz372MyxfvhxpaWm46qqrcPfdd2Pfvn3jnvcnP/kJCgsLkZ6ejqVLl+KJJ55AY2Mj6urqJtS+uro6CIIw6qeoqGhC56HLE5jLS0RERERERAF25513orCwEC+++CKOHj0KqVQ66pjXX38dP/nJT/DKK6/ghhtuuOC5IiMjx32ugoICfPDBB5fdZo/m5ma89dZbWLdu3SU/xmKx4KWXXkJGRgZSUlIm9HwpKSloaWnx3m9tbcXVV1+NwsLCCZ2HLg8DeCIiIiIimpEiIiKgVqshlUqRkJAwav/27dvx0EMP4d1338X69evHPVdZWdm4+8PDwy+nqV7f+9738O6776Kvrw/XX389/vznP1/0Mdu3b8evfvUrWCwWzJkzB8XFxVAoFKPOO/IChs1mw9e//nUA8Pkd9ff3Y9OmTVizZg0effTRSXlddGkYwBMREREREY3w5ptvoq2tDaWlpVi5cuVFj8/OzvZDq4Df//73eOSRR1BeXo6HHnoIW7Zswfbt28d9zPe//31s2LABLS0t+O1vf4ubb74Z+/fvR1hYmM95r776ap/H3X///WOOlb/jjjvQ09OD4uJiSCQcle1PQfXbLikpwfXXX4+kpKQLzpRIRERERER0uRYvXgy9Xo+XXnoJoihe9PjIyMhxf6699tpJaVdCQgLmzJmDG264AS+88AKef/55n9L2sURHRyMnJweFhYX4n//5H5w7dw5vv/32qPNmZ2f7/KjV6lHneuKJJ/Dhhx/ivffeG3M/Ta2gysBbLBYsWrQIP/rRj3DjjTcGujlERERERBSisrKy8Lvf/Q5FRUWQSqXYtm3buMf7q4R+OM+FBZvNNuHHTfQxgKsq4fHHH8cHH3yArKysCT+eLl9QBfDXXnvtpF25IiIiIiIiGk9ubi52796NoqIiyGQyPPfccxc89nJL6BsaGtDR0YGGhgY4HA7vBYHs7GxERkZi165daGtrw4oVKxAZGYkzZ87gV7/6FfLz872z5zc1NeGqq67CX/7yF6xcuRI1NTV44403sHHjRuj1ejQ1NeE3v/kNwsPDcd11102ofV988QVuu+023H///Zg/fz5aW1sBAAqFAhqN5rJeO126oArgJ8pms/lcWeru7gYA2O122O32QDWLQpTN7sCRuk7sqTDiYI0Jxi4pnjlbAolEgFQQIJEIkAgYdluAROK+794mFeC9LXHflnqOFQCpxLVch1QQIJXAdXvE/tG3Rz+P77kx1MZhtwX3cwzdHvG4Ua8H3ucbdeyIc0skl/jaRrXJtZ2GeN7L+J5GU419jfyFfY38xdPHPGO8h/c5URThdDpht9uRmZmJjz76CBs2bIAgCHj66aenpD2//vWv8corr3jvL1myBABQXFyMdevWQS6XY8eOHfjFL34Bm82G5ORkbNq0Cb/61a+8bbdarSgvL0d3dzfsdjukUilKSkrw3HPPobOzE/Hx8Vi7di327t2L2NhYn9c8ODg46u/O6XR6fw+HDx+G1WrFE088gSeeeMJ7TGFhIT755JMp+Z2Eisl8PxPESxnQMQ0JgoC3334bmzZtuuAxjz76KB577LFR21999VWoVKopbB3NFMZ+4EyngLNdAiq7BdidDC6nmgAREgEQANe/gmsyjzH/HX7cGMd7tvkeJ3qPueD5L3Lekf/6nM/T/oudb5zzDm+3BEC8SoRG6a//ASIiIiKaCKvViltuuQVmsxlRUVGXda6QDuDHysB71i/UarV+aCWFmn53ln1vhREllUbUmaw+++OjlCjM0SE/MwYN505hxYqVECRSOEXAKYpwOMURt0U4na77Y+8fui2KIhwiht0eeqxrG9zbXI8buu16nOe268d1nrGO9e7ztglDz+c+j0Mcavvw9vgcO+zc4hjnHOs1B+e70fSQrg1HQY4ea7O1WJUeiwhlSBdYUQDY7XYUFxdjw4YNkMvlgW4OhTD2NfIX9jXyF5PJhMTExEkJ4EP6G55SqYRSOTotJZfL+UdKl6zOaMGe8nbsqTDgUI0J/Xand59MImBZWiyKZsehaLYecxLUEAQBdrsdu86fwvIMHfvaBIgjAnpvgO+5UHGhCxQjLj74XNBwHzfmxZPhFxOcvhcpxjrv0HHDjhneprEuZrjP67mI4brt3j7WxRGfto19wWf467LZHaho60GdqQ91pga8cqgBcqmrXxbk6LEuV495iVGQSFgdQpODn6HkL+xr5C/sazTVJrN/hXQAT/RV9NsdOFRjwp5yA/ZWGFBrtPjsT4gKQ9FsPYpm65GfrYM6jG/4k0UQBMikDDQnwm634833diEqezn213SgpNKAxo4+HKrpwKGaDjzzUTm0EQqszdGhIEePwhwd4qLCLn5iIiIiIpp2giqA7+3tRVVVlfd+bW0tysrKoNFokJqaGsCWUbAbnmU/WG2CbdA3y748fSjLPjtezYnUaFoJlwEb5sXhukWzALj6875KA/ZWGHGw2giTZQDvljXj3bJmAMCcBDUKc/UoyNFhRboGYXJpIJtPRERERJcoqAL4Y8eOYf369d77W7ZsAQDcfvvt2LlzZ4BaRcGo3+7AwRoT9pYbsKe8fdRYdmbZKZil6yKQrovArWvSYXc4caK+E/sqjdhXacDnTWaca+3BudYe7CipgVImwapMLQpzdCjM1SMnLpIXqIiIiIimqaAK4IuKihCkc+7RNMAsO81EcqkrQF+VqcU/f202OiwD2F9lREmFAfsqjWjt7kdJhQElFQbg72eREBWGghwdCnL1WJutgyZCEeiXQERERERuQRXAE03ExbLsidGuLPu63DjkZ2uZZacZQROhwPWLknD9oiSIoojK9l5XAF9pxOEaE1q7+/Hfx8/jv4+fhyAAC2dFoyBHh8IcPZakxkIhkwT6JRARERHNWAzgKaTUerLs5a4Z4y+UZV8/Ow658SwVpplNEATkxquRG6/GnQWZ6Lc7cKyuEyWVroz8udYefH7ejM/Pm/Gn3dWIUEixJkuHwlzXhHjpWhX/hoiIiIj8iAE8BTVm2YkmT5hcirU5OqzN0eGh6+aivbsf+yqNKKk0oLTSNRneJ2fb8MnZNgBAiibcPbO9HnnZWkTx74uIiIhoSjGAp6BzsSz7inSNewI6ZtmJLkdcVBhuXJaMG5clw+kUcaalGyWVBuyrMOJYfQcaO/rw6uEGvHq4AVKJgCUpMa6APleHK5JjIOXa80RERESTigE8TXt9A5512V0T0NUzy07kdxKJgAWzorFgVjTuLsqGxTaIw7UmlFS4MvQ1BguO1XfiWH0nfv9JBaLD5cjP1qIwR4+CXD1mxYQH+iUQERERBT0G8DQtjZdll0sFLE9jlp0okCKUMlw5Jx5XzokHADR2WFHqnt1+f5UR5j47dp1uxa7TrQCALH0ECnL0WJerx6pMDVQKfvwQERERTRS/QdG0cLEse1J0GNa5l3jLz9YhUsmuSzSdpGhU+N7KVHxvZSoGHU583mT2LlV3sqET1QYLqg0W7DxQB4VUgmVpsSjM1aMgR4d5iVGQsNyeiIiI6KIYBVFAiKLozrIbsKfCgMPjZNnXz4lDThyz7ETBQiaVYGlqLJamxmLz1bkw99lxsNqIvRWuDH1TVx8O1phwsMaE33wI6CIVWJutQ2GuHmtzdIhThwX6JRARERFNSwzgyW+GZ9l3lxvQ0MEsO9FMEB0uxzULEnHNgkTvxbt9la5g/mCNCcbeAbxT1ox3ypoBAHMTo1CY41qqbnl6LMLk0gC/AiIiIqLpgRESTZmRWfZDNSYMjMiyD58xnll2otAnCAIy9ZHI1Efi9rx0DAw6caKh01tuf7rJjLMt3Tjb0o0XSmoQJpdgVYYWhbl6FObokM33CSIiIprBGMDTpOobcOBgjdEVtI+TZV8/W488ZtmJZjyFTILVmVqsztTiV9cApl6bezI8I/ZVGtDeY8PeCgP2VhgAuFadKMhxldvnZ+kQG6EI8CsgIiIi8h9GT3RZmGUnosmkjVTihsWzcMPiWRBFEeVtPdjnXqrucG0HWsz9+Nux8/jbsfMQBOCKWdHuyfD0WJIaA7lUEuiXQERERDRlGMDThF0syz4rJhzrZutRlMssOxF9dYIgYE5CFOYkROEfCzPRb3fgSG2Ht9y+vK0Hp86bceq8GX/8rAqRShnWZA2V26dpIwL9EoiIiIgmFSMruihRFFHjybKXt+NwbceYWfb17gnoOEaViKZCmFzqCs5z9QCAVnM/9lUaUFJpRGmlAZ1WO4rPtKH4TBsAIE2rQoF7Mry8LC3UYfJANp+IiIjosjGApzF5suy7zxmwp6IdjR19PvuZZSeiQEuIDsNNy1Nw0/IUOJ0ivmzuRkmlASUVBhyv70S9yYp6UwP+eqgBUomApakxKMzRoyBXj4WzoiHl2vNEREQUZBh1EYBLy7KvzNCgKJdZdiKafiQSAQuTo7EwORr3rM9Gr20Qh6pNKKl0ldvXGi04WteJo3Wd+F1xBWJUcuRn67zL1SXFhAf6JRARERFdFAP4Gcw6MIiD1Sb3BHRjZ9k9k8/lZWkRwSw7EQWJSKUMV8+Lx9Xz4gEAjR1WVzBfYcT+aiO6rHb8/fMW/P3zFgBAdlykOzuvw+oMLcIVXHueiIiIph9GZDOIJ8u++1w79lYYmGUnohkjRaPC91el4fur0jDocOLU+S7sdS9Vd6qxC1Xtvahq78V/7q+FQirBioxYV0Cfo8fcRDXfC4mIiGhaYAAf4phlJyLyJZNKsCxNg2VpGmzZkIsu6wAOVJtQUuEaP99s7sf+KhP2V5mw9YNz0EUqXaX2uTqszdZDr1YG+iUQERHRDMVoLcSIoohqgwV7yt1Z9poODDiGsuwKqcSVZZ+tR9FsPbL0zLIT0cwWo1LguoWJuG5hovc9dJ977PzBahOMvTa8dbIJb51sAgDMS4zyLlW3LD0WShnL7YmIiMg/GMCHAOvAIA5UmbCnoh17yg0438ksOxHRVyEIArLjIpEdF4kf5WfANujA8fpOlLjL7b9s7saZFtfPv++tRrhcitWZGhTkuJa3y9JH8KIoERERTRlGckGIWXYiIv9QyqTIy9IhL0uHB66dA0OPDfurjK5y+0ojjL027C43YHe5AQCQFB2GwlzX2Pn8bC1iVIoAvwIiIiIKJQzgg8TFsuzJse4se24c1jDLTkQ0JfRqJTYtmYVNS2ZBFEWcbenxltsfqe1As7kfrx9txOtHGyERgCuSY1CYo0Nhrh6LU2Igk0oC/RKIiIgoiDHKm6ZcWfZe97rsBhypHS/LHseyTSIiPxMEAfOSojAvKQo/XZeFvgEHDteavOX2le29KGvsQlljF/7tsyqolTLkZWtRkKPHulw9UjSqQL8EIiIiCjIM4KcRZtmJiIJXuEKKotlxKJodBwBo7upDaaURJZUGlFa51p7/6Ms2fPRlGwAgXavyjp1fk6VFJN/TiYiI6CL4bSGALiXLvipTg3W5zLITEQWbpJhw3LwiBTevSIHDKeKLJjNKKlzl9icaOlFnsqLOVI9XDtVDJhGwNC3WW26/ICkaEgnf74mIiMgXA3g/s9gGcaDahD3lrix7U9fYWfb1s11ZdpWC/0VERMFOKhGwKCUGi1Ji8POrctDTb8fBahNK3OPn601WHKntwJHaDvz24wrEquTIz9a5l6vTIyE6LNAvgYiIiKYBRodTjFl2IiIaSR0mx8b5Cdg4PwEAUG+yoKTSiH0VBhyoNqHTasf7n7fg/c9bAAC58ZHecvtVGRqEybn2PBER0UzEAH4KXCzLnqIJR1FuHIpm65llJyIipGkjcKs2AreuToPd4URZY5d3qbrPz3ehoq0XFW29eLG0FgqZBKsyNCjI0aEgR485CWpe+CUiIpohGDlOAlEUUdXuzrJXtONobeeYWXbX5EZ6ZOqYZSciorHJpRKsSNdgRboG/2fjbHRaBrC/2ugdP99i7se+SiP2VRoBnINerURBjg7rcvXIz9ZBF6kM9EsgIiKiKcIA/itilp2IiPwhNkKBb1yRhG9ckeQdlrXXvVTdoRoTDD02vHWiCW+daAIALJgV5Sq3z9FjWVosFDKuPU9ERBQqGFVeootm2d0ljcyyExHRVBEEAdlxamTHqXHH2gz02x04Xt/pLbc/29KNL5pcP8/vqYZKIcXqTC0Kc3QoyOVnExERUbBjAD8Oi20Q+6uM2FNhwN5xsuzr5+ixOpNZdiIi8q8wuRT52TrkZ+vwIID2nn7X2vMVrrXnjb0D+OxcOz471w4AmBUTjsJcHQpz9MjL0iFaJQ/sCyAiIqIJCbqIc/v27XjmmWfQ0tKC+fPn47nnnkNBQcGknHtklv1IbQfsDtG7n1l2IiKazuLUYfiHpcn4h6XJcDpFnG3tRom73P5YXSeauvrw2pFGvHakERIBWJwS457dXodFyTGQSVluT0RENJ0FVQD/xhtvYPPmzdi+fTvy8/Pxwgsv4Nprr8WZM2eQmpr6lc55sSx7qkaFotl6FM1mlp2IiIKHRCJgflI05idF42dFWbAODOJwTQf2Vhiwr9KAaoMFJxq6cKKhC3/4tBLqMBnys1xrzxfk6JCiUQX6JRAREdEIQRWNPvvss7jjjjtw5513AgCee+45fPTRR3j++eexdevWSz5PdXsv3vyyC3vKDThaN3aWfb07y57BLDsREYUAlUKG9XPisH5OHACgqasP+9wz25dWGWHus+PDL1vx4ZetAIBMXYR3qbo1WVoomJwnIiIKuAkH8H19fTh+/Dg0Gg3mzZvns6+/vx9/+9vfcNttt01aAz0GBgZw/PhxPPDAAz7bN27ciAMHDoz5GJvNBpvN5r3f3d0NAPj2jiOQKIcyCymx4ViXq0Nhjg6rMzQIV0i9+wYHByfzZdAMYbfbff4lmirsa/RVxUXIcOOSRNy4JBEOp4jTTWbsqzJhf5UJZefNqDFaUGO04OWD9ZBLBSxOjka8KCCpvgNXpMRCIuHFbZoafF8jf2Ffo6nWaxvEoZoOfHiyZtLOKYiiKF78MJeKigps3LgRDQ0NEAQBBQUFeO2115CYmAgAaGtrQ1JSEhwOx6Q10KO5uRmzZs3C/v37kZeX593+1FNP4eWXX0Z5efmoxzz66KN47LHHRm3P+MUbyNWHY26siHkxIvRhAJPsRERELtZBoNIsoNws4FyXAJPN90MyQiZidrSIuTEiZseIiFYEqKFERETTiCgCrX3A2S4BZzoF1PQIcIgCnDYrGp+7GWazGVFRUZf1HBPKwN9///1YuHAhjh07hq6uLmzZsgX5+fnYs2fPVx6DPlEjy9lFUbxgifuDDz6ILVu2eO93d3cjJSUFn/0iH7MS4qa0nTSz2e12FBcXY8OGDZDLOcszTR32NZpqoiiioaMPe8rb8M6hctRY5LAMOHDCJOCEyXVMblwkCnK0yM/WYkVaLMLk0vFPSjQOvq+Rv7Cv0WTotQ3iYHUH9lYaUVJpRIu532d/Smw4ViZF49lJer4JBfAHDhzAJ598Ap1OB51Oh/feew/33HMPCgoKsHv3bkRERExSs0bT6XSQSqVobW312d7e3o74+PgxH6NUKqFUKkdtV6vC+EdKfiGXy9nXyC/Y12gqZScokKZVQd91FldvXI8vWnpRUukaP3+6yYyK9l5UtPfixf31UMokWJmhwbpcPQpy9MiNj+RcMvSV8H2N/IV9jSZCFEVUtvdi97l27Ck34Fj96DnVVmdqUZSr986p1tHREZgAvq+vDzKZ70P+9Kc/QSKRYN26dXj11VcnqVmjKRQKLFu2DMXFxfjWt77l3V5cXIwbbrhhyp6XiIiIhihkEqzK1GJVpha//BrQYRlAaZUR+yoMKKk0oK3bhn2VRuyrNAI4i/goJQpy9N4J8TQRrLcnIqLg0utZuazcgL3l7WgekWVP06rcAXscVmdqfeZUm2wTCuDnzJmDY8eOYe7cuT7b//jHP0IURXzzm9+c1MaNtGXLFtx6661Yvnw51qxZgx07dqChoQF33XXXlD4vERERjU0TocA3FyXhm4uSvFmJkgoDSiqNOFxjQlu3Df9z/Dz+5/h5CAKwICkahbmuYH5paiwUMk5vT0RE04soiqho68We8gtn2ddkat3LjcchQzd1legjTSiA/9a3voXXXnsNt95666h927Ztg9PpxL//+79PWuNG+s53vgOTyYTHH38cLS0tWLBgAXbt2oW0tLQpe04iIiK6NIIgIDdejdx4Ne4syES/3YGjdR3YV2lESYUB51p7cLrJjNNNZvxpdzUiFFKsydKiIEePwlw90rUqltsTEVFA9NoGUVppxN6KduwtNwQ0yz6eCQXwDz74IB588MEL7t++fTu2b99+2Y0az91334277757Sp+DiIiILl+YXOoun9fjoevmoq27311e7xo/32EZwCdn2/HJ2XYAQHJsOApz9SjM0SEvW4eoMI5JJSKiqTEyy360rgODzqEsu9Izlj0AWfbxTHgdeCIiIqKvIj4qDN9eloxvL0uG0yniTEs39lYYsK/SgOP1nTjf2YdXDzfg1cMNkEoELE6JQWGOHgW5OixKjoGUa88TEdFl6Om3Y3+VCXsrXEH7yBnj07UqFM2Ow7rZeqzJ1E7LVVUYwBMREZHfSSQCFsyKxoJZ0bhnfTYstkEcqjF5y+1rjBYcr+/E8fpO/P6TCkSFybDWPRFeYa4es2LCA/0SiIhomhNFEeVtPdhTbsCe8nYcq+sMiiz7eBjAExERUcBFKGW4am48rprrWhq2scPqLbcvrTKiu38Qu063Ytdp13KymfoIFOboUZirw6oMLSKU/EpDRERDWfY95e3YWxGcWfbx8NOOiIiIpp0UjQq3rErFLatSMehw4tR5M/ZVGlBSYUBZYxdqDBbUGCzYeaAOcqmA5WkaFOTqUJijx7zEKEhYbk9ENCNcSpZ9TZbWOwFdehBk2cfDAJ6IiIimNZlUgmVpsViWFovNV+fC3GfHgSojStzl9k1dfThYY8LBGhOe/rAcukgF1ma7yu0LcnWIU4cF+iUQEdEkcmXZ3euyj5NlL5qtx+ogzLKPhwE8ERERBZXocDmuXZiIaxcmQhRF1Bot3rHzB2tMMPYO4J2yZrxT1gwAmJOgxrpc12z4y9NjQ+qLHBHRTODJsu8+58qyH68P7Sz7eBjAExERUdASBAGZ+khk6iNxe146BgadOF7f6Sq3rzTgi6ZunGvtwbnWHrxQUoMwuQSrMrQoyNFhXa4e2XGRXHueiGgaGp5l31NuQGu3b5Y9QxeBdbn6kMyyj4cBPBEREYUMhTsLsyZLi19dMwemXhtKq4woqXBNiNfeY8PeClfJ5RN/P4vE6DAUuGe3X5utQ2yEItAvgYhoRhJFEedah8ayj5Vlz8vSekvj07Shm2UfDwN4IiIiClnaSCVuWDwLNyye5S3B3FdhREmlAYdrO9Bi7sffjp3H346dhyAAV8yK9i5VtyQ1BnKpJNAvgYgoZHX327G/cmgsO7PsF8cAnoiIiGYEQRAwJyEKcxKi8I+Fmei3O3CktgMlFQbsqzSivK0Hp86bceq8Gdt2VyFSKcOaLC0Kc3QozJ252R4ioslysSx7mFyCNZnMso+HATwRERHNSGFyKQpzXdl2AGg197vHzhtRWmlAp9WO4jNtKD7TBgBI1ahQ4A7m12RpERUmD2TziYiCwsWy7Jm6CKyb7Zp8blWGhln2i2AAT0RERAQgIToMNy1PwU3LU+B0ivii2eyd3f54fScaOqz4r8MN+K/DDZBKBCxNjfGW2y+cFQ0p154nIoIoijjb0oM9Fe3YU27ACWbZJxUDeCIiIqIRJBIBVyTH4IrkGNyzPhu9tkEcqjahpNJVbl9rtOBoXSeO1nXi2eIKxKjkyM/WodA9IV5STHigXwIRkd94suy7y9uxt8KAtm6bz35m2ScPA3giIiKii4hUynD1vHhcPS8eANDYYXUF8xVG7K82ostqx98/b8HfP28BAGTHRXrL7VdlaKBS8CsXEYWOS8my52XpUDRbj6LcOKRqVQFsbWjhpwkRERHRBKVoVPj+qjR8f1UaBh1OnDrfhb3upepONXahqr0XVe29eGl/HRRSCVZkxKIgR4+CHB3mJUZx7XkiCjrd/XaUVhqx5yJZ9vWz47CSWfYpwwCeiIiI6DLIpBIsS9NgWZoGWzbkoss6gAPVJpRUGFBSYUCzuR/7q0zYX2XC//sA0EUq3dl5HdZm66FXKwP9EoiIRvFk2XeXt2NvuQHHGzrhYJY94BjAExEREU2iGJUC1y1MxHULEyGKIqoNFuxzj50/WG2CsdeGt0824e2TTQCAeYlRKMjVYV2OHsvSY6GUMWtFRIFh7rNjf9U4WXZ9BIpyXZPPMcseGAzgiYiIiKaIIAjIjotEdlwkfpSfAdugA8frO1HiLrf/srkbZ1pcPy/srUG4XIpVmRoU5uhRmKtDlj6S5fZENGVEUcSZlm7XEm8XyLLnu7Ps65hlnxYYwBMRERH5iVImRV6WDnlZOjxw7RwYemzYX2X0zm5v6LFhT7kBe8oNAICk6DDvUnX52VrEqBQBfgVEFOzMfb5j2dt7mGUPJgzgiYiIiAJEr1Zi05JZ2LRkFkRRxLnWHpRUuIL5I3UdaDb3441jjXjjWCMkAnBFcoxrqbpcPRanxEAulQT6JRDRNHexLHu4XIq8LK1rLPvsOKRomGWfzhjAExEREU0DgiBgbmIU5iZG4afrstA34MDhWpO33L6yvRdljV0oa+zCv31WBbVShjVZWhTm6lGYo2dpKxF5XSzLnqWPQNFsV5Z9RTqz7MGEATwRERHRNBSukLq/YMcBAFrMfdhX4Sq3L61yrT3/8Zk2fHymDQCQrlV5l6pbk6WFOkweyOYTkR+Joogvm7uxt8KAPeXtONHQxSx7iGIAT0RERBQEEqPDcfOKFNy8IgUOp4gvmszecvsTDZ2oM1lRZ6rHK4fqIZMIWJoai8JcHQpy9FgwKxpSCSfDIwolniz7bneW3cAs+4zAAJ6IiIgoyEglAhalxGBRSgx+flUOevrtOFhtwr5KV4a+3mTFkboOHKnrwG8/rkCsSo78bB0Kc10Z+sTo8EC/BCKaoEvJsudna7FudhyKcvXMsocoBvBEREREQU4dJsfG+QnYOD8BAFBvsqCk0oh9FQYcqDah02rH+5+34P3PWwAAufGR3nL7VRlahCuYmSOajsxWO/ZVuVamGC/Lvn52HFZkxEIp499yqGMAT0RERBRi0rQRuFUbgVtXp8HucKKssQv7KgzYW2nE5+e7UNHWi4q2XrxYWguFTIKV6Rpvuf2cBDXXnicKEE+WfU95O/aUG3CykVl28sUAnoiIiCiEyaUSrEjXYEW6Bls2zkanZQD7q43eCfFazP0orTKitMoI4Bz0aiUKcnRYl6tHfrYOukhloF8CUUi7WJY9Oy4SRbmuyeeYZScG8EREREQzSGyEAt+4IgnfuCIJoiii2tCLEncwf6jGBEOPDW+daMJbJ5oAAPOTorxj55enaaCQce15osvhdHrWZR87y65SSJGXpUPRbD3WMctOIzCAJyIiIpqhBEFAdpwa2XFq/HhtBvrtDhyv70RJpQElFUacbenGl82un+f3VEOlkGJ1phaFOToU5OqRqYtguT3RJTBb7SipHMqyG3uZZaevhgE8EREREQEAwuRS5GfrkJ+tw4PXAu09/SitNGJfpRH7Kg0w9g7gs3Pt+OxcOwBgVky4d+x8fpYO0SquPU8EjM6yn2joxLAkO7Ps9JUxgCciIiKiMcWpw/APS5PxD0uT4XSKONva7VqqrsKAY3WdaOrqw2tHGvHakUZIBGBRSgwKc/QozNVhUXIMZFKW29PMcbEse05cJIpmu7Lsy9OZZaevhgE8EREREV2URCJgflI05idF4651WbAODOJwTQdKKg3YV2lEVXsvTjZ04WRDF/7waSXUYTLkZ+lQkKtDYQ4zjBR6nM5hM8ZXGHBynCx70Ww9kmP5N0CXjwE8EREREU2YSiHD+jlxWD8nDgDQ1NWHUvfY+dIqI8x9dnz4ZSs+/LIVAJChi3CNnc/RY02WFhFKfg2l4NNlHcC+SiN2l7ejpMLILDv5XdC8cz755JP4+9//jrKyMigUCnR1dQW6SURERETkNismHN9ZkYrvrEiFwyni8/Nd3rHzJxq6UGu0oNZowcsH6yGXCliaGovCXD0Kc/SYnxQFiYST4dH0cylZ9vzsobHszLLTVAuaAH5gYAA33XQT1qxZgxdffDHQzSEiIiKiC5BKBCxJjcWS1Fj801U56O6342C1CSUVBpRUGtDY0YfDtR04XNuBZz4qhyZCgbXZOhTk6LAmIybQzacZrss6gJJKI/ZcJMu+fnYclqdzaUXyr6AJ4B977DEAwM6dOwPbECIiIiKakKgwOb42PwFfm58AAKgzWrCv0oC9FUYcrDaiwzKA9041471TzQAAqSDFL49+AqkgQCoRIAiuiwJSQYAgCJBKMOz2sGMEARJBgETiOkbivi+VCJAIGHbbfYx7m8R9bolkxDGC63FSiesYiec5JMKI4+DzGKkEQ8cIwx4rcbfZfczQ7bFe4wWO8d4e+3WNet1jtXvM1zrUvpnG6RRx+rwZu8vbsae8HWWNXT5Z9giFFHnZOm9p/KyY8MA1lma8oAngiYiIiCg0pOsikK6LwK1r0mF3OHGivtNbbv95kxkOUYBj0BnoZs5YQxcSxrjtcxFi7GNGXTjxXCBxXzgY85hLvLgy5oWTS764Mvx4AfbBQfxvlQSPP70XJsuAz+8gNz4SRbPjUJSrZ5adppWQDuBtNhtstqGSl+7ubgCA3W6H3W4PVLNoBvD0L/Yzmmrsa+Qv7Gs0lZamRGFpShTuuzITnb19+KB4N/ILCiCRSuF0Ak5RhMMpwimKcIrwue10inCI7vtODLstwiEConf/8GOHbouiCIf7caL3eYY9p/u+Qxy67XQ/x/Bjxzq397ZThOg+h+u2e7/ntY069/DX6Gqfc+T9YW3wPffwtrp+B0OPvbT/D4dThAOXeHDQkwAYcGXZs7QozNGhMEeLpOFZdtEBu90RsBZS8JvMz86ABvCPPvqotzT+Qo4ePYrly5d/pfNv3bp1zPPv3r0bKhUnmKCpV1xcHOgm0AzBvkb+wr5G/hCjBL48sm9Kzi11/0y6IEjQiiIguv91DvvXKQ7tcw771zlim+je5hxxDnHYOZwQfB83/HzDziGOfH6fc4x4nM9+YfT5PMdf5Hyjnh9AfBgwN1ZEpnoQMkkzYGhGmQEo88v/CM0UVqt10s4liKIYsMtrRqMRRqNx3GPS09MRFhbmvb9z505s3rz5kmahHysDn5KSgpaWFmi12q/cbqKLsdvtKC4uxoYNGyCXywPdHAph7GvkL+xr5C/sa+Qv7GvkLyaTCYmJiTCbzYiKirqscwU0A6/T6aDT6abs/EqlEkqlctR2uVzOP1LyC/Y18hf2NfIX9jXyF/Y18hf2NZpqk9m/gmYMfENDAzo6OtDQ0ACHw4GysjIAQHZ2NiIjIwPbOCIiIiIiIqIpFjQB/L/+67/i5Zdf9t5fsmQJANd49qKiogC1ioiIiIiIiMg/gmC6DZedO3dCdM8OOvyHwTsRERERERHNBEETwBMRERERERHNZAzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiICALdAP8SRRFAEBPTw/kcnmAW0OhzG63w2q1oru7m32NphT7GvkL+xr5C/sa+Qv7GvlLT08PgKF49HLMqADeZDIBADIyMgLcEiIiIiIiIppJTCYToqOjL+scMyqA12g0AICGhobL/sURjae7uxspKSlobGxEVFRUoJtDIYx9jfyFfY38hX2N/IV9jfzFbDYjNTXVG49ejhkVwEskriH/0dHR/CMlv4iKimJfI79gXyN/YV8jf2FfI39hXyN/8cSjl3WOSWgHEREREREREU0xBvBEREREREREQWBGBfBKpRKPPPIIlEploJtCIY59jfyFfY38hX2N/IV9jfyFfY38ZTL7miBOxlz2RERERERERDSlZlQGnoiIiIiIiChYMYAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiAwYwL47du3IyMjA2FhYVi2bBn27dsX6CZRiNm6dStWrFgBtVqNuLg4bNq0CeXl5YFuFs0AW7duhSAI2Lx5c6CbQiGoqakJP/jBD6DVaqFSqbB48WIcP3480M2iEDM4OIhf//rXyMjIQHh4ODIzM/H444/D6XQGumkU5EpKSnD99dcjKSkJgiDgnXfe8dkviiIeffRRJCUlITw8HEVFRfjyyy8D01gKauP1Nbvdjvvvvx8LFy5EREQEkpKScNttt6G5uXnCzzMjAvg33ngDmzdvxsMPP4yTJ0+ioKAA1157LRoaGgLdNAohe/fuxT333INDhw6huLgYg4OD2LhxIywWS6CbRiHs6NGj2LFjB6644opAN4VCUGdnJ/Lz8yGXy/HBBx/gzJkz+N3vfoeYmJhAN41CzG9+8xv8+7//O7Zt24azZ8/i6aefxjPPPIM//vGPgW4aBTmLxYJFixZh27ZtY+5/+umn8eyzz2Lbtm04evQoEhISsGHDBvT09Pi5pRTsxutrVqsVJ06cwL/8y7/gxIkTeOutt1BRUYFvfvObE36eGbGM3KpVq7B06VI8//zz3m1z587Fpk2bsHXr1gC2jEKZwWBAXFwc9u7di8LCwkA3h0JQb28vli5diu3bt+OJJ57A4sWL8dxzzwW6WRRCHnjgAezfv59VazTlvvGNbyA+Ph4vvviid9uNN94IlUqFV155JYAto1AiCALefvttbNq0CYAr+56UlITNmzfj/vvvBwDYbDbEx8fjN7/5DX76058GsLUUzEb2tbEcPXoUK1euRH19PVJTUy/53CGfgR8YGMDx48exceNGn+0bN27EgQMHAtQqmgnMZjMAQKPRBLglFKruuecefP3rX8fVV18d6KZQiHrvvfewfPly3HTTTYiLi8OSJUvwH//xH4FuFoWgtWvX4tNPP0VFRQUA4NSpUygtLcV1110X4JZRKKutrUVra6tPnKBUKrFu3TrGCTTlzGYzBEGYcFWbbGqaM30YjUY4HA7Ex8f7bI+Pj0dra2uAWkWhThRFbNmyBWvXrsWCBQsC3RwKQa+//jpOnDiBo0ePBropFMJqamrw/PPPY8uWLXjooYdw5MgR/NM//ROUSiVuu+22QDePQsj9998Ps9mMOXPmQCqVwuFw4Mknn8T3vve9QDeNQpgnFhgrTqivrw9Ek2iG6O/vxwMPPIBbbrkFUVFRE3psyAfwHoIg+NwXRXHUNqLJcu+99+Lzzz9HaWlpoJtCIaixsRH33XcfPv74Y4SFhQW6ORTCnE4nli9fjqeeegoAsGTJEnz55Zd4/vnnGcDTpHrjjTfw17/+Fa+++irmz5+PsrIybN68GUlJSbj99tsD3TwKcYwTyJ/sdju++93vwul0Yvv27RN+fMgH8DqdDlKpdFS2vb29fdTVNqLJ8POf/xzvvfceSkpKkJycHOjmUAg6fvw42tvbsWzZMu82h8OBkpISbNu2DTabDVKpNIAtpFCRmJiIefPm+WybO3cu3nzzzQC1iELVL3/5SzzwwAP47ne/CwBYuHAh6uvrsXXrVgbwNGUSEhIAuDLxiYmJ3u2ME2iq2O123HzzzaitrcVnn3024ew7MAPGwCsUCixbtgzFxcU+24uLi5GXlxegVlEoEkUR9957L9566y189tlnyMjICHSTKERdddVVOH36NMrKyrw/y5cvx/e//32UlZUxeKdJk5+fP2o5zIqKCqSlpQWoRRSqrFYrJBLfr6VSqZTLyNGUysjIQEJCgk+cMDAwgL179zJOoEnnCd4rKyvxySefQKvVfqXzhHwGHgC2bNmCW2+9FcuXL8eaNWuwY8cONDQ04K677gp00yiE3HPPPXj11Vfx7rvvQq1We6s+oqOjER4eHuDWUShRq9Wj5laIiIiAVqvlnAs0qX7xi18gLy8PTz31FG6++WYcOXIEO3bswI4dOwLdNAox119/PZ588kmkpqZi/vz5OHnyJJ599ln8+Mc/DnTTKMj19vaiqqrKe7+2thZlZWXQaDRITU3F5s2b8dRTTyEnJwc5OTl46qmnoFKpcMsttwSw1RSMxutrSUlJ+Pa3v40TJ07g/fffh8Ph8MYKGo0GCoXi0p9InCH+9Kc/iWlpaaJCoRCXLl0q7t27N9BNohADYMyfl156KdBNoxlg3bp14n333RfoZlAI+t///V9xwYIFolKpFOfMmSPu2LEj0E2iENTd3S3ed999YmpqqhgWFiZmZmaKDz/8sGiz2QLdNApyu3fvHvP72e233y6Koig6nU7xkUceERMSEkSlUikWFhaKp0+fDmyjKSiN19dqa2svGCvs3r17Qs8zI9aBJyIiIiIiIgp2IT8GnoiIiIiIiCgUMIAnIiIiIiIiCgIM4ImIiIiIiIiCwIyYhd7D6XSiubkZarUagiAEujlEREREREQU4kRRRE9PD5KSkkYtmTlRMyqAb25uRkpKSqCbQURERERERDNMY2MjkpOTL+scMyqAV6vVAFxr8mk0mgC3hkKZ3W7Hxx9/jI0bN0Iulwe6ORTC2NfIX9jXyF/Y18hf2NfIXzo6OpCRkeGNRy/HjArgPWXzarUaUVFRAW4NhTK73Q6VSoWoqCh+INCUYl8jf2FfI39hXyN/YV8jf7Hb7QAwKcO4OYkdERERERERURBgAE9EREREREQUBBjAExEREREREQUBBvBEREREREREQYABPBEREREREVEQYABPREREREREFAQYwBMREREREREFAQbwREREREREREGAATwRERERERFREGAAT0REREREM5YoivjJT34CjUYDQRBQVlaGoqIibN68OdBNIxqFATwREREREc1YH330EXbu3In3338fLS0tWLBggd/bUFdXhzvuuAMZGRkIDw9HVlYWHnnkEQwMDHiPMZlMuOaaa5CUlASlUomUlBTce++96O7uHvfcO3bsQFFREaKioiAIArq6ukYdIwgC3nnnnVHbf/jDH2LTpk2X+epoMskC3QAiIiIiIqJAqampQWJiIvLy8gLWhnPnzsHpdOKFF15AdnY2vvjiC/zjP/4jLBYLfvvb3wIAJBIJbrjhBjzxxBPQ6/WoqqrCPffcg46ODrz66qsXPLfVasU111yDa665Bg8++KC/XhJNEQbwREREREQ0I/3hD3/A7t27Abiy0Glpaairqxt13IcffojvfOc7+OMf/4jbbrtt0tvhCbA9MjMzUV5ejueff94bwMfGxuJnP/uZ95i0tDTcfffdeOaZZ8Y9t2cowJ49ey6rjXV1dcjIyBi1fd26dZd9brp0DOCJiIiIiGhGuvPOO1FYWIgXX3wRR48ehVQqHXXM66+/jp/85Cd45ZVXcMMNN1zwXJGRkeM+V0FBAT744INLbpvZbIZGo7ng/ubmZrz11ltYt27dJZ/zcqSkpKClpcV7v7W1FVdffTUKCwv98vzkwgCeiIiIiIhmpIiICKjVakilUiQkJIzav337djz00EN49913sX79+nHPVVZWNu7+8PDwS25XdXU1/vjHP+J3v/vdqH3f+9738O6776Kvrw/XX389/vznP1/yecfzve99b9QFDJvNhq9//esA4PM76u/vx6ZNm7BmzRo8+uijk/L8dGmCKoAvKSnBM888g+PHj6OlpQVvv/02J1UgIiIiIqJJ9+abb6KtrQ2lpaVYuXLlRY/Pzs6elOdtbm7GNddcg5tuugl33nnnqP2///3v8cgjj6C8vBwPPfQQtmzZgu3bt1/28/7+97/H1Vdf7bPt/vvvh8PhGHXsHXfcgZ6eHhQXF0Mi4bzo/hRUAbzFYsGiRYvwox/9CDfeeGOgm0NERERERCFq8eLFOHHiBF566SWsWLECgiCMe/xklNA3Nzdj/fr1WLNmDXbs2DHmMQkJCUhISMCcOXOg1WpRUFCAf/mXf0FiYuL4L+giEhISRl2EUKvVo2atf+KJJ/Dhhx/iyJEjUKvVl/WcNHFBFcBfe+21uPbaawPdDCIiIiIiCnFZWVn43e9+h6KiIkilUmzbtm3c4y+3hL6pqQnr16/HsmXL8NJLL11SZlsURQCuUnd/ePPNN/H444/jgw8+QFZWll+ek3wFVQA/UTabzacze9ZItNvtsNvtgWoWzQCe/sV+RlONfY38hX2N/IV9jfzF08c8JeLD+5woinA6ncjIyMDHH3+MDRs2QCKRjDkm3SMtLe2Sn3Ok5uZmXH311UhJScHWrVvR3Nzs3ecZd/7BBx+gvb0dy5YtQ2RkJM6ePYsHH3wQeXl5mDVrFux2O5qamvC1r33NWzUAuCaba21tRXl5OQDg5MmTiIyMRGpqqs8keYODg6Pa53Q64XQ6Ybfb8cUXX+C2227DP//zPyM3NxeNjY0AAIVCMe5kezS572chHcBv3boVjz322Kjtu3fvhkqlCkCLaKYpLi4OdBNohmBfI39hXyN/YV8jfykvL4fVasWuXbu820wmE2pra73bHn74Yfz6179GfX09fvzjH096Gz799FNUVVWhqqpq1FJt77zzDgDg9OnT+Otf/4rGxkYMDg5Cp9Nh9erV+Id/+AdvO9va2lBRUYHPPvsMBoMBAPDaa6/hjTfe8J7vyiuvBAD8/Oc/x1VXXeXdfvz4ccjlcp/nPn/+PCwWC3bt2oVPP/0UVqsVW7duxdatW73HzJ8/H08++eTk/TJCkNVqnbRzCaKn7iLICIJw0UnsxsrAe5Y/0Gq1fmglzUT1HVYcrjaivuJL/OMNRYiJvPQZR4kmym63o7i4GBs2bBj1oUs0mdjXyF/Y12iqiaLo+r5WY0JjxZf4x03rER0RFuhmUQgzmUxITEyE2WxGVFTUZZ0rpDPwSqUSSqVy1Ha5XM4PBJo05j47DlYbUVJpRGmlEQ0dnitsUvxnRSmWpMYgP1uHtdk6LEqJgVzKmTpp8vF9jfyFfY38hX2NJpOhx4YD1a7vageqTWjq6nPvkeI/n9mH5WkarM3RoTBHj/lJUZBIxp+wjmgiJvO9LKQDeKKpYHc4UdbYhX0VBuyrMuJUYxecw+pY5FIBV8yKRl1bJ0w24GhdJ47WdeK5TyoRoZBiVabWG9DnxkdedEZTIiIiIpqYXtsgjtSaUFppwoFqI8619vjsV0gluCI5CjWtneiwAQdrTDhYY8IzH5UjViVHfrYrmF+bo0NSDKspafoIqgC+t7cXVVVV3vu1tbUoKyuDRqNBampqAFtGoUwURdQaLSitMqKkwohDNSb02gZ9jsmOi8TabB0Kc3VYlaGFQiJi165dWLC6CEfqzSitMuJAlRGdVjs+O9eOz861AwB0kUrkZ7sC+vxsHWbxA4KIiIhowjwJlv1VRuyvMuJkQxcGnb4jhecnRWFttg552TqsSI+FXBDx97/vwvzV63Cwtgv7Ko04WG1Cp9WO9z9vwfuftwAAsvQRKMjRoyBHh9WZWkQogyqEohATVL3v2LFjWL9+vff+li1bAAC33347du7cGaBWUSjqsg5gf5UJ+yoN2FdpHFZm5RKrkmNtjh4F2boxr8x6ZppM1aiQFR+N761MhdMp4mxrN/ZXGVFaZcKRWhOMvTa8W9aMd8tcM41m6iKQl63F2mwd1mTqEK1i6SARERHRSKIoorytB/urTNhfZcThGhMsAw6fY1I1KneSRIs1mVpoI32H1trtdggCkK6NQE5CDG5bkw67w4lTjV3uoZEGlDV2odpgQbXBgp0H6iCXCliSGovCHB3W5uixcFY0pCy3Jz8KqgC+qKgIQTrnHk1zA4NOnGjoRGmlEfsqDfi8yYzhXU0hlWB5eqx3bNS8xImPjZJIBMxPisb8pGj8pDALtkEHTjZ0uQN6Vyl+jdGCGqMFfz3UAIkALJwVjTx3uf2ytFiEyaWT/MqJiIiIgkNTV583w76/ypUIGU4TocCaLFciJD9Lh1TtxFedkkslWJ6uwfJ0DbZsyPXOdbSv0vXT0GHFkdoOHKntwG8/rkB0uBz52VoU5OixNluHFA1XuqKpFVQBPNFkEUUR1QaLN8N+qMYE64irtrnxka434xwdVmVooFJM7p+LUibF6kwtVmdq8X82zkZ3vx2Hqk04UG1CaZURVe29OHXejFPnzXh+TzWUMglWpGu8V5LnJ/GKLxEREYUus9WOgzWuRMf+KhNqjRaf/WFyCVZmaLHWPRxxbsLkTz4XHS7HNQsScc2CRABAvcmCfe6Ji/dXG2Hus2PX6VbsOt0KAMjQRaAgx5V8WZOlhTqM1ZQ0uRjA04zRYRlAaZWrHGpfpREt5n6f/bpIBdZmu8qh1mbrkBDt3+VEosLk2Dg/ARvnJwAAWs39rivM1a4rzW3dNlf7q4wAXB8oeVlD4+fTtSpOiEdERERBq9/uwPH6TnfAbsTpERWRUomAK5KjXRn2bB2WpMZAKfNvdWKaNgJp2gj8YHUaBh1OnDpv9lZwnmzsQq3RglqjBX85WA+pRMCSlBjX+PlcHa6YFQ0ZVyOiy8QAnkKWbdD1IbDP/ab6ZXO3b1m8TIKV6RrXVdKcqblqezkSosNw47Jk3Lgs2V0x0Ou+2mvCoWoTzH12fPBFKz74wnXFd1ZMuHdCvLwsHfTq0UsoEhEREU0XDqeIL5vN3oD9WF0nbINOn2M8EwXnZ+uwKlODqGmU0ZZJJViWFotlabG47+ocbzVlaZWr3L7WaMGx+k4cq+/E7z+pgDpMhvwsnXdI5lcp8SdiAE8hQxRFVLb3oqTCgNIqIw7XdKDP7lsWPydBjYIcHQpy9FiZoQmaMeWCICA7To3sODV+mJ+BQYcTnzeZsb/SlZE/0dCJpq4+/O3Yefzt2HkArtfqWa5uZYaGM6YSERFRQImiiDqT1bs6zwF3QmK4+Cil9/tLXpb/KyIvx8hqysYOqzuYN2B/leu1fvhlKz780pV8SdWovN9L12RpER0+fS5O0PTFb/QU1Iy9Nux3L+9WWmVAW7fvZCZ6tRIF2ToU5Lqu3Mapg+dDYDwyqQRLU2OxNDUWP78qB9aBQRyt63RNiFdpxJmWbpxr7cG51h68WFoLmUTAktQY7wfiopQYyFnCRURERFPM0GPDgeqhiedGruyjVsqw2jPxXLYWWfrIkBkSmKJR4XsrU/G9lalwOEWcbjJjX4UB+6qMOFHfiYYOK/7rcAP+67Br8uLFKTFYm6NHYQ6/q9GFMYCnoNJvd+BYXad38rkzLd0++5UyCVZlar1B++x4dch8CIxHpZBhXa4e63L1AABTrw0Ha0zeGe4bO/pwtK4TR+s68dwnlYhQSLEqU+sN6HPjQ+fDkoiIiALHYhvEkdoOb1n8udYen/1yqYBlabHIz9IhP2fmjAuXSgQsTonB4pQY/PyqHPTaBnG4xuQd6lltsOBEQxdONHTh3z6tRKRShjVZWu9ydZzriDwYwNO0JooizrX2oLTSiJJKA47UdowaGzUvMQoFua6xRFxqzUUbqcQ3rkjCN65IAgA0mKzYX230lqx1Wu347Fw7PjvXDgDQRSqxNlvrXbJu5Lr2RERERGPxrJvuCdhPNnRh0Om77PO8xCiszXFVQ65Ij530lX2CUaRShqvmxuOqufEAXEvkeSZa3u/+rlZ8pg3FZ9oAAMmx4d5y+7wsLWJUikA2nwKIfz007bR393sn/yitMsLQ41sWHx+ldM3m6f4g0EVysraLSdWqkKp1lXA5nSLOtHTjQLURpVUmHKl1raP6Tlkz3ilrBgBk6iK8y9WtydQhWsUxWURERORKrlS09XoD9sM1JlhGLMWbogn3Tjy3JlMLLb+rXdSsmHB8Z0UqvrPC9V3ty+ZulFQaUFppxLH6Dpzv7MNrRxrx2pFGSARgYXKMKzufrcOS1FgoZKFfxUAuDOAp4PoGHDhS1+G96jiy1CpcLsWqTA0K3GOCsuNY7n05JBIBC2ZFY8GsaPykMAu2QQdO1He5A3ojTjV2ocZoQY3RglcO1bs+JGZFe5erY5UDERHRzNLc1ecN2PdXuS78Dxerknur+PKzdJxd/TJJJAIWJkdjYXI07lmfDevAIA7XdHjL7Svbe3GqsQunGrvwx8+qEKGQYnWm1r2ykh5Z+gh+Vw5hDODJ7zwZYM+snEfrOjEwrCxeEIAFSdHe5d2WpcX6fY3PmUQpk2JNlhZrsrT4Pxtnw9xnx2H3+Pn91SZUtffi1HkzTp03Y/ueaihlEqxI13jHz89LioJ0Gi2/R0RERJfHbLXjYI0rWN9fZUSN0eKzP0wuwcoMrWv4XZYO8xKn11K8oUalkGH9nDisnxMHAGg192NfpWvVpdJKI0yWAXx6rh2fuodGJkWHoSBH7x22oIlguX0oYQBPfjHWG81wSdFhWOse18M3msCKDvddAqXV3O++4m7E/moj2rptrv/HKiN+4z4+L2toQrw0TrJCREQUVPrtDhyv7/R+3p9uMmP4MHaJACxKifEu7bY0LYbJlQBKiA7DTctTcNPylDETY83mfrxxrBFvHGtkYiwEMYCnKTFWqc9wLPUJHgnRYbhxWTJuXJYMURRRbehFaaVr/PzhGteaph980YoPvnCtaTorJhz52a6APi9LB72a496IiIimE4dTxJnmbm9Z/NG60ZMEZ8dFIt99gX5VJtcon66GD428a13WmENTTzeZcbrJVUkZLpdidabGu1wdh6YGHwbwNClGTrZxvL4TAw7fsvgrkmNcy7vlcLKNYCUIArLj1MiOU+OH+RkYdDjxeZMZ+90TDp5o6ERTVx/+duw8/nbsPABgToLam51fmaFBhJJvO0RERP4kiiLqTVZvwH6g2nUBfrj4KKVraTf3nDcJ0WEBai1djnCF1Gdp4eGTQ++rNMLYa8PucgN2lxsAcHLoYMRv0vSVNXf1eddj9yx3MdysmHAU5nK5i1Amk0qwNDUWS1Nj8fOrcmAdGMTROlcJXmmlEWdaunGutQfnWnvwYmktZBIBS1NjkZetxdpsHRalxEA+A9Z+JSIi8jdDjw0Hqocmnmvq6vPZr1bKsCrTNY59bY4OWXpmYkNRXFQY/mFpMv5hafKYyzO3ddvwP8fP43+OuxIv85NcS/5xeebpiwE8XbJe2yAO15i8ZfHVBt8JTSKVMqzJ0nrXqEznWOgZR6WQ+Vz1NfXacKDahAPVrqu+5zv7cKSuA0fqOvDcJ5XeoRSemWtz4/nlgYiI6Kuw2AZxpLbDm2UfuaqPXOq6iL42W4f8HB2umBUNGS+izyiCIGBuYhTmJkbhHwsz0W934Fhdpzchd6alG182u35e2FvjnaywIFuHglwdZser+T1tGmAATxfkcIo43WTGvgoD9lUZcaK+E4PDZjSRCMDilBjvGBpmU2kkbaQS1y9KwvWLkgAADT7le66qjeGzpurVSu94u/xsHZJiwgPZfCIiomnL7nDiVGMXSquMOFBlwokG3+9pADAvMco7E/mK9FioFPzqT0PC5FKsdU9u9yCGqjZKKlzJuvYeG0oqDCipMAC7XN/TPMF8frYOcWoOswgE/hWTj8YOq3cWy/1Vo8dHpWpU7gy7DmuydJzQhCYkVavCLdpU3LIq1Ttr6n73jPZH6zpg6LHhnbJmvFPWDADI1EV4g/k1mVpEq9jfiIhoZhJFERVtve6A3YhDNSZYBhw+xyTHhnvHMq/J1ELL8cw0AXq1EjcsnoUbFs+CKIqobO9FSYVrFalDNSYYemx462QT3jrZBMA1z5Gn8nZlhobl9n7CAH6G6+m342C1qyy+tMqI2hHrfKrDZMjP0rmXeNMhTRsRoJZSqBk+a+pP12XBNujAifoub0D/+fku1BgtqDFa8MqhekgEYOGsaO+EeEs5LouIiEJcc1ffsKVcXQHUcLEqOfKyda7vatk6pGpVAWophRpBEJAbr0ZuvBp3FmTCNuhaatAzlPaLpqF5jv5jXy0UMglWpmu8y9XNTYiCRMJy+6nAAH6GGXQ4ceq8GaXuP76TjV1wDCu3kkoELEmJQUGOHmtzdFiUzPFR5B9KmRRrsrRYk6XFP39tNsx9dhyuMXkD+mqDBafOm3HqvGsZFKVMghXpGm9APy8pClJ+UBARURAzW+046P7s219lRM2IxIpnTLJnuNm8RAZJ5B9KmRR5Wa4lgu+/Zg5MvTbsrzZ5l6trMbtmuy+tMgIfALpIBfKzdd4Z7uOjWG4/WRjAzwANJitKKg3YV2nAgWoTevoHffZn6CJcV8uydVidpUVUGMuUKfCiw+XYOD8BG+cnAABazf3eLzSlVUa099i8HxS/ARCjkmNNptYb0KdxEkUiIprm+u0OnKjv9M4Pc7rJjOHD2CUCsCglxru829K0GChlrD6jwNNGKvHNRUn45qIkiKKIaoPFOxneoRoTjL0DeLesGe+6h0Xmxkd6E4SrMjScj+Ey8DcXgsx9dhysHlrvsaHD6rM/OlyO/Gyt648oW4cUDcutaPpLiA7DjcuSceMy1zIoVe297mDehEM1JnRZ7fjgi1Z88EUrANcyhvnZroA+L0sHvZrjAImIKLAcThFnmru9AfvRug7YBp0+x2TpI1wzxWfrsCpTy/mGaNoTBAHZcZHIjovEj/IzMDDoxIkG1+z2pZVGfN5kRkVbLyraevFiaS0UUgmWpcWiINe1XB0rSSaGAXwI8MxCWuIuiz/V2OVz9VYmEbA0LdY9a6QeC2dFs9SYgpogCMiJVyMnXo0f5md4h4Z4MvQnGjrR1NWHvx07j78dc61rOidB7f1CtDJDgwgl3/6IiGhqiaKI+mErsBx0X3AeLk6t9H4+5WfrkBDNUmMKbgqZBKsztVidqcUvvwZ0WgZwoNrkzdA3dfXhYI0JB2tMePrDcmgi3OX22a7x81yFaHz8BhuERFFEncnq/SM4WG1Cr823LD5LH+Edc7IqU4tIBisUwmTuK7nL0mLxT1flwDrgWgvXFdCbcKZlaKKVP5fWui5qpca6vyxpuQQiERFNGs9SXJ7PoKauPp/9kUoZVmdqsTZbi7U5OmTpIznki0JabIQCX78iEV+/IhGiKKLWaPFWCh+sNqLDMoD/PdWM/z3lKrf3xDGFuTqsytAy6TICfxtBoss6dOWqpMI46sMgViV3TxShw9ocPWbxyhXNYCqFDEWz41A0Ow4AYOq14UD10IR45zv7cKSuA0fqOvD7T4AIhRSrM4fWn8+N55cpIiK6NBbb0EXj0iojzrX2+OyXS10Xjddm65CXzQmCaWYTBAGZ+khk6iNxe1467A4nyhq7sK/CgH1VRpxq7EK1wYJqgwU7D9R5/348y9UtYCUxA/jpamDQiZMN7qUa3EtqicPK4uVSAcvTNFib4xo7Mj+JY0eILkQbqcT1i5Jw/aIkAK6JHUu9y/IY0WW149Nz7fj0XDsA1zqonhl+87NZykVEREM8Qxf3V5m8w7YGh49dBDAvMco7D8tKTthFdEFyqWtVoRXpGmzZOBtmqx0Hql3xz75KAxo7+nC4tgOHazvw248rEKOSIz9L512uLjl25s3lxXeTacIze6NnKYaDNSZYBxw+x+TERQ4ri+eHAdFXlapV4RZtKm5ZlQqnU8SZlm5v5uRoXQcMPTa8U9aMd9wzp2bqIrzB/JpMLaJVnFCIiGimEEURFW293nlWDtWYYBnxHS05Ntw7jj0vSwttJCdOJfoqolVyXLswEdcuTAQA1JssKKk0orTSgANVrjkk/n66BX8/3QLA9R1trTs7vzpTA/UMWE2LEWAAdVgGsN99dam00ohmc7/Pfm2EAmvdy7sV5Og5qQnRFJBIBCyYFY0Fs6Lx03VZsA06cKK+yxvQf36+CzVGC2qMFrxyqB4SAVg4K9q7XN3StFiEybmkDxFRKGnu6vMG7PurTTD02Hz2e7KAns+CVO3MywIS+UOaNgK3aiNw6+o096TFXd7x82WNQ9/R/nKwHjKJgCWpMd7l6q6YFZrDVRjA+5Ft0IHj9Z0odXe6L5rNPmXxCpkEK9Jjvcu7cUkFIv9TyqRYk6XFmiwt/vlrs2Hus+NQjQkH3AF9tcGCU+fNOHXejO17qqGUSbAyQ4O8LNeXuHlJUTN+bBYRUbAxW+04WGPyBu01RovP/jC5q8zXk2XndzQi/3NNWqzBsjQNNl+di+5+Ow5Wm9yxlQF1JiuO1nXiaF0nni2uQFSYDHlZOhTk6lCQrQ+ZC20M4KeQKIqobO91XyUy4HBNB/rsviVXcxLU3onnVqZrEK5gJo9oOokOl+Nr8xPwtfkJAIAWcx/2Vw0F9O09Nu+V4N/AlZXJ84yfz9IhTavihHhERNNMv92BE/Wd3vlQTjeZfZbglQjAFckx3oB9aVoMlDJ+RyOaTqLCfL+jNXZYvXHX/iojuvsH8eGXrfjwy1YAQJpW5Yq7svVYk6VFdHhwltszgJ9kxl6buyze1Xnaun1LrnSRSvcsiq5sXVwUy+KJgklidDi+vSwZ316WDFEUUdXe6/0CeKimA11WO3adbsWu064Pi1kx7nGROa5xkTqOiyQi8juHU8SZ5m6UVhlxoNqII7UdsA06fY7J0kd4Z4pfnRm8X+6JZqoUjQq3rHLNceRwivj8fJe38vlEQyfqTVbUmxrw10MNkEoELEqO9s4vtjglJmjK7RnAX6Z+uwPH6jqxr8qAfRVGnGnp9tnvKa8tdI/FmJOgZjaOKEQIgoCceDVy4tX4UX6Ge2yW2Tt+/mRDJ5q6+vDGsUa8cawRgKvqxhPQr0zXcG1TIqIpIIoi6t0rjhyoNuJAtWvyq+Hi1EpvwJ6frUViNFccIQoVUomAJamxWJIai59flYNe2yAOuZfk3ldlRI3BghMNXTjR0IU/fFoJtVKGNVla73J107mCkt8cJ0gURZS39WBfhWt5g8M1plFXcOclRnn/85enc4IropnCNTYrFsvSYvFPV+XAOjB8bWATzrZ041xrD8619uDPpbWQSwUsSYl1TYKUo8UVyTGQB8nVXyKi6cZTBXmgyoTSKiOauvp89kcqZVidqfFOPJcdFzltv6AT0eSKVMpw9bx4XD0vHgDQ1NWH0koDSipdVZRdVjs+PtOGj8+0AXCtLOHJzudn6abVCkQM4C9Be08/SiuNrhKMKuOomUjj1EoU5OhRmKtDXpYOejVLZIkIUClkKJodh6LZcQBcXy4PVpu8w2yauvpwpK4DR+o68PtPXB8uqzLcXy5zdMjhl0sioguy2AZxpK4D+ytdVU/nWnt89sulrgycZxz7ouTQnJGaiCZuVkw4vrMiFd9Z4Sq3/7LZ7B0Cfby+E+c7+/DakQa8dqTBOyeGJ0G7JDWwCRcG8GPotztwpLbDVWJROfoDIUwuwepMLdZm61CYq+eXbCK6JLpIJa5flITrFyVBFEU0dFixv8o963G16+rvp+fa8em5dgCA3lPemaXF2hwdyzuJaEazO5zuMa2u982TjZ2wO0SfY+YmRmFttmsi0ZUZGqgU/KpLROOTSgRckRyDK5JjcM/6bNfFwdoOlLhjwar2XpQ1dqGssQt//KwKEQrXikVrs3UoyNUjUxfh11gw6N7Vtm/fjmeeeQYtLS2YP38+nnvuORQUFFzWOZ1OEWdbu7HPnWU/UteBgRFl8QtmRXnLKJalxXImUiK6LIIgIE0bgTRtBG5ZlQqnU8SZlm7v+PkjtR0w9Njw9skmvH2yCQCQ6ZlgKUsX1LOnEhFdClEUUdHWg1J3ievh2g702gZ9jpkVE+4qcc12vS9yolAiulwRShnWz4nD+jmuCsoWc583TiytMqLDMoBPzrbjk7OuhItnwuKCXFe5fWyEYkrbF1QB/BtvvIHNmzdj+/btyM/PxwsvvIBrr70WZ86cQWpq6oTO1dbd77PMgLF3wGd/YnSYd3m3/CwttPxAIKIpJJEIWDArGgtmReOn67JcSxw1dLrXJDbh8/NdqDFYUGOw4C8H6yERgIXJMcjLiIXM7MpMyRnPE1GQM/TY8NnZFvx3pQRPnN4Lw4jvZzEqOfKzXAF7frYWqZrpO9EUEYWGxOhw3Lw8BTcvT/EmXDxx5LE63wmLBQFYOCvaFdDn6LEsLRYK2eSW2wuiKIoXP2zI2bNncejQIaxZswZz5szBuXPn8Ic//AE2mw0/+MEPcOWVV05qA4dbtWoVli5diueff967be7cudi0aRO2bt160cd3d3cjOjoaRU++j1rfyeKhUkixOnNo5sEsvX9LISi02O127Nq1C9dddx3kjKpoEpj77DhU4y63rzKi2mDx2a8Ok6EwV48rZ8ehaLaeFx1p0vF9jaaC0ynii2YzPjvXjt3n2nHqvNlnv2c1H8849nmJUZBI+P2MJgff1+hy9Q04cLjW5M3Ql7f5Dr0Ol0uxOlODJQly3HfdUpjNZkRFRV3Wc04oA//hhx/ihhtuQGRkJKxWK95++23cdtttWLRoEURRxNe+9jV89NFHUxLEDwwM4Pjx43jggQd8tm/cuBEHDhwY8zE2mw0229CEc93drqi92mCFNEyFhUlRyM/SIj9biyUpMT5XRwYHB0edj+hS2e12n3+JLpdKBlyZq8WVuVoAs9Fi7sfBGtcHxu6zrejpH8TfP2/B3z9vgSAAV8yKRlGuDutn6zEvkctX0uXj+xpNlp7+QZRWGbGnwoiSytFVkPMSIzFL0o1brlyKFRlaKIet5uNwDMLh8HeLKVTxfY0ul0wA8jNjkZ8ZC3wtB23d/ThQ3YHSKhP2V5tgsgxgd7kBn35unbTnnFAGPi8vD1deeSWeeOIJvP7667j77rvxs5/9DE8++SQA4OGHH8bRo0fx8ccfT1oDPZqbmzFr1izs378feXl53u1PPfUUXn75ZZSXl496zKOPPorHHnts1PYHtr2GhfHhiOCFNiIKAU4RqO8FznRK8GWngCarb7AeJRcxN0bE/FgRs2NEhHEKDyLyI1EE2vuBLzsFnOkUUN0jwCkOvU8pJa73pvmxrveq6KkdPkpE5BdOEWixAuVmAV+09uGzx787KRn4CQXw0dHROH78OLKzs+F0OqFUKnH48GEsXboUAPDFF1/g6quvRmtr62U1aiyeAP7AgQNYs2aNd/uTTz6JV155BefOnRv1mLEy8CkpKWhpaYFWq530NhJ52O12FBcXY8OGDSzJoik1Vl9r7e5HSYUru7W/2gTrwFC6Si4VsCItFkWz9SjK1SFDFxGoplOQ4fsaTYTN7sDhuk7sKTdgT4URjZ2+a7JnaFXe96HlI8aIsq+Rv7Cvkb+YTCYkJib6v4R+OIlEgrCwMMTExHi3qdVqmM3mCz/oMuh0Okil0lEXB9rb2xEfHz/mY5RKJZTK0eNA5XI5/0jJL9jXyF+G97UUrRzfX6PG99dkwDboWhbTM760zmTFgZoOHKjpwFMflCNdq0LR7DhcOScOqzI1XGGDLorva3QhzV192F3ueq/ZX2VCn33o4qFCKsGqTA3Wu99v0i/h4iH7GvkL+xpNtcnsXxMK4NPT01FVVYXs7GwAwMGDB31mf29sbERiYuKkNW44hUKBZcuWobi4GN/61re824uLi3HDDTdMyXMSEQU7pUzqXgJTj0eun48aQy8+O9eOPeUGHK41oc5kxc4Dddh5oA4qhRT52TpcOScO62fHISE6LNDNJ6JpbNDhRFljFz47147PzrXjXKvv5E3xUUrv+0l+tg4RyqBa/IiIaFqa0Dvpz372MziGzRyyYMECn/0ffPDBlM5Cv2XLFtx6661Yvnw51qxZgx07dqChoQF33XXXlD0nEVEoydRHIlMfiTsLMtFrG0RppRG7z7Vjd3k72ntsKD7ThuIzbQCAeYlRri/fc+KwOCUGUs78TDTjdVoGsLfCgM/OtaOk0oAu69DkX4IALEmJ8b5vzEuM4gSaRESTbEIB/MUCZc9kdlPlO9/5DkwmEx5//HG0tLRgwYIF2LVrF9LS0qb0eYmIQlGkUoZrFiTgmgUJ3nVNPZm0U+e7cKalG2daurFtdxViVXKsy9Vj/Zw4rMvVI0bFWaaIZgJRFHG2pQe7y13vDScbOuEcNntSdLjnvUGPdblx0ETwvYGIaCoFXS3T3XffjbvvvjvQzSAiCikSiYAFs6KxYFY0/umqHJh6bdhTbsDu8naUVBjQabXjnbJmvFPWDIkALEuLxfo5rrGss+O5TB1RKLEODGJ/lck93KYdLeZ+n/1zEtTev/8lKTGQSSUXOBMREU22oAvgiYho6mkjlbhxWTJuXJaMQYcTx+s78Zl7cqqKtl4crevE0bpOPP1hOZKiw7xf5vOydAhXcCI8omBTb7J4K3AO13RgwOH07guTS5CfpcN6d2n8rJjwALaUiGhmYwBPRETjkkklWJWpxapMLR68di4aO6zY4y6nPVBtQrO5H/91uAH/dbgBCpkEazK1uNId0KdoVIFuPhGNYWDQiWN1rhUqPitvR43B4rM/RROOK2fHoWhOHNZkahEm54U5IqLpgAE8ERFNSIpGhVvXpOPWNenoG3DgYI0Ru8+5JrVq6urD3goD9lYY8Mh7XyI7LtI7C/Xy9FjIWWpLFDDtPf3Yc841NGZfpRG9tkHvPplEwPL0WO/Ftyx9JIfGEBFNQwzgiYjoKwtXSHHlnHhcOScej4siKtt7vWW4x+s7UdXei6r2XuwoqYE6TIbCnKGJ8PRqZaCbTxTSnE4RnzeZ8dk51/CX001mn/26SAWKZrsusBXk6hAVxnWwiYimOwbwREQ0KQRBQG68Grnxaty1Lgtmqx0llQbsPteOPRUGdFgG8PfTLfj76RYIAnDFrGjv2PkFSdGQcJk6ostm7rNjX6UBu88ZsLeiHcbeAZ/9VyRHY/1s19/dwln8uyMiCjYM4ImIaEpEq+S4flESrl+UBIdTxKnzXdjjHm/7RVM3Tp0349R5M577pBJ6tRJFuXpcOScOa3N0UDMTSHRJRFFE1YjKl8Fh67xFKmUoyHFNQFc0W484dVgAW0tERJeLATwREU05qUTA0tRYLE2NxZaNs9HW3e+dCK+00ghDjw3/ffw8/vv4ecgkAlaka1xj5+fEIUsfwbG4RMP02x04WGPCbnfQfr6zz2d/lj7C+/ezPE0DhYxzTxARhQoG8ERE5HfxUWH4zopUfGdFKmyDDhyt7cRu9zJ1NUYLDtaYcLDGhCd3nUWqRuUNRlZlaDgbNs1ITV19rnXZz7Vjf7UR/fahZd4UMglWZ2px5Ww9rpwTj1QtV38gIgpVDOCJiCiglDIp1ubosDZHh3/5xjzUGV3rUe8ud61H3dBhxc4Dddh5oA7hcinys3XugF6PxGiuR02hadDhxImGLu8EdOVtPT77E6PDUOQey56frYVKwa90REQzAd/tiYhoWknXReDHazPw47UZsNgGUVplxG53QN/WbcMnZ9vwydn/z959x1ddn/0ff53snZCdkEF2wl6yR5ChiIPWbR1ttbZ3tRW5teC4q/an4qjWtlRbrHfd1fZ2VEFQkBH2XgrZk0DIInud5JzfHycciAwZSQ7n5P18PPLQnPE9V8In53yv7/W5Pp+jAKSG+1q3vRoR0w9nLcgldqy6sY112eWszqwgI7uC2maj9T4nA4yM6Wdd+DE13FetJSIifZASeBERuWR5u7twxaBwrhgUjtls5tvDddbe+d0lNWSW1ZNZVs+ra/MI8HJlaudCeFOTQwjwcrN1+CJndXxMH79AtbukBvOJ9ee6jOkpSSH089aYFhHp65TAi4iIXTAYDAzu78/g/v7cf3lSl2rluqxyapqM/GfPYf6z53CXauW0lFDSIlStlEvD6WaVnEyzSkRE5GyUwIuIiF0K9HbjByOi+MGIqNP2C+8oOsaOomO8+GWW+oXFpgo613VY27muQ1vHiQXotK6DiIicD53BiIiI3XNxdmJMXCBj4gJZODuV0ppmS4Wzc8XuI7Ut/HNbMf/cVqwVu6XHtbWb2FZQbV2MsaCyscv92llBREQulBJ4ERFxOP0DPLl9XCy3j4s97Z7ZGdmWRcKe/PwACSHeTOuszo8eoD2z5cKU17WwpnN9hg05lTS2dVjvc3EyMCYu0Jq0xwd7q6VDREQuiBJ4ERFxaB6uzkxLsfTCP3WtmdzyBlZ3JvM7io6RV9FIXkUBf99QgI+7C5OTgpmWGkp6Sgihvh62Dl8uUR0mM3sP1Vh72b8pretyf7CPO9NSLAvQTUoKxtfD1UaRioiII1ECLyIifYbBYCApzJekMF9+PjWB2mYjG3Iqrf3JVY1tLP+mjOXflAEwNMrfkvynhjK0vz9OWlCsT6ttNpKRXcGazHLWZldQ3djW5f5hUf7Wbd4GR2q8iIhI91MCLyIifZa/pytzhkYwZ2gEJpOZfaW11oXw9pfWsu+Q5euPX+cQ7OPG1GRLcjY5ORg/VVQdntlsJuekGRs7i47RYTqxz5uvuwtTkkOY1rl1YYivuw2jFRGRvkAJvIiICODkZGB4dADDowOYPzOZ8roW1mZVWHqacyupbGjjo12H+GjXIVycDIwe0M+63VdCiI96mh1Ei7GDTXmVnRdyKiitae5yf2Koj6WXPSWU0QP64eqsNRNERKT3KIEXERE5jVA/D266LJqbLoumrd3EjkLLquKrs8rJr2hkS341W/KrefaLTKIDPa1T7cfHB2lVcTtz6FiTdZHDTXlVtLaf2ObNzcWJ8fFB1os10YHatUBERGxHCbyIiMj3cHNxYkJiMBMSg3n86oEUVTVap1Vvza+mpLqZtzcX8fbmIjxcnZiYEGzthY4M0L7elxpjh4mdRcdYk2Vpl8g+2tDl/kh/D+u/34SEYDzddEFGREQuDUrgRUREzlNskDc/mRjHTybG0dTWzsbcKmvvfFldC19nlvN1ZjkAqeG+1mRwRHQALppybRNVDa2WloiscjKyK6hvabfe52SAUbH9rP9OKWG+aokQEZFLkhJ4ERGRi+Dl5sLMgWHMHBiG2Wzm4JF6637gu4uPkVlWT2ZZPa+tzcPf05UpySFcnhrC1ORQAr3dbB2+wzKbzXx7uM46U2LvoRrMJ9afo5+XK+kplu0CpyaHEOClfwsREbn0KYEXERHpJgaDgYGRfgyM9OO+aYkca2xjXbZlIbx12RXUNhv5fO9hPt97GCcDDI8OsCyIlhrKwAg/VX0vUkNrOxtyKjq3BaygvL61y/0DI/ysv+/h0QE4a5s3ERGxM0rgRUREekg/bzfmjujP3BH9ae8wsaekxloRziyrZ1dxDbuKa/j9V9mE+3kwLTWEaSmhTEwMxttdH9HnIr/Css3bmqxythVUY+w4UWb3cnNmUqJlPYJpKaGE+3vYMFIREZGLp7MDERGRXuDi7MToAYGMHhDIb65M5XBNs3URtY25VZTVtfDPbSX8c1sJbs5OjI0PZFqKpSd7QLC3rcO/ZLS2d7CtoNq65kBhVVOX+wcEeVl72cfEBeLuogXoRETEcSiBFxERsYHIAE9+NDaWH42NpcXYwZb8KstWZlnllFQ3sz6nkvU5lfxu6QHig72tSellAwJxc+lbC+GV1bZY1xXYmFtJU1uH9T5XZwNj4k5c7IgP8bFhpCIiIj1LCbyIiIiNebg6dy6oFsqTZjN5FY3Wfcm3F1aTX9lI/oYC3thQgI+7S+e0cMt0+1A/x5sW3mEys6ekxvo7OHCkrsv9ob7uTEsJZVpqCJOSQvBRu4GIiPQR+sQTERG5hBgMBhJDfUgM9eFnU+KpazGyIaeyc2G2ciob2ljxbRkrvi0DYHB/Py5PsSzMNiwqACc7XZitpqmNjJxK1nQu+Ffd2Ga9z2CAYVGWBf8u71zwz15/ThERkYuhBF5EROQS5ufhylVDIrhqSAQmk5n9pbXWZH7voVq+Ka3jm9I6/rQ6lyBvN6amhHB5aiiTk0Lw93S1dfhnZDabyTpab+1l31l0DNNJ27z5erhYttxLCWVqSgjBPu62C1ZEROQSoQReRETETjg5GRgWHcCw6AAenJlMRX0ra7MsK7Cvz66kqrGNj3eV8vGuUpydDIyK7WetWieF+th8m7rmtg425VVak/bDtS1d7k8O87GuGD8qth+uzn2r119EROT7KIEXERGxUyG+7tw4OpobR0dj7DCxvbCaNZnlrMmqILe8gW0F1WwrqOa55Zn0D/C0JvPjE4LwcO2d1dlLqpusW+dtzq+ird1kvc/dxYkJCUFcnmrp/48O9OqVmEREROyVEngREREH4OrsxISEYCYkBPPYHCiuarKu3L45v4rSmmbe2VLEO1uK8HC1PPb4yvb9Azy7LQ5jh4kdhcesr51b3tDl/v4BnkxLtUzzHx8fjKebtnkTERE5V3aTwD/zzDMsW7aMPXv24ObmRk1Nja1DEhERuWTFBHlx14QB3DVhAE1t7WzKrWJ1577zR2pbrFXx/+HE1PXLO6euu5zn1PWK+lbWZVewJrOcjJwK6lvarfddilP5RURE7JXdJPBtbW3ceOONjB8/njfeeMPW4YiIiNgNLzcXZgwMY8bAMMxmM5ll9azJOrF4XPbRBrKPNvC3dfn4HV88LjWUqckhBJ1m8TiTycw3h2utvez7Smsxn7QAXaC3G+nJIUxLDWVKUgj+XpfuYnoiIiL2xG4S+KeeegqAN99807aBiIiI2DGDwUBahB9pEX78Mj2RmqY2a/V8bXYFNU1Glu47wtJ9RzAYYHh0AJenhDIhvh97qgxkfPINGTlVVNS3djnu8e3s0ju3s3PWNm8iIiLdzm4S+AvR2tpKa+uJE4y6ujoAjEYjRqPRVmFJH3B8fGmcSU/TWJOL5e1q4KpBoVw1KJQOk5m9h2pZm1XBmuxKMsvq2V1cw+7iGl4CwBk4bHmemzMTEoKYlhLMlKRgwvw8rMc0dbRj6rDFTyOOQO9r0ls01qS3dOcYc+gEftGiRdbK/cnWrFmDl5dWupWet3LlSluHIH2Expp0p1QgNQ5qIuFAjYEDxwxk1xnwc4WB/cwMCjCT4NeOi9NhOHqYnUdtHbE4Ir2vSW/RWJOe1tTU1G3HsmkC/+STT542wT7Z9u3bGT169AUd/5FHHmH+/PnW7+vq6oiOjmbatGkEBQVd0DFFzoXRaGTlypXMnDkTV1f1fkrP0ViT3qKxJr1FY016i8aa9JaqqqpuO5ZNE/j777+fW2655ayPGTBgwAUf393dHXf3UxffcXV11R+p9AqNNektGmvSWzTWpLdorElv0ViTntad48umCXxwcDDBwcG2DEFERERERETELthND3xxcTHV1dUUFxfT0dHBnj17AEhMTMTHx8e2wYmIiIiIiIj0MLtJ4H/729/y1ltvWb8fMWIEYFmQLj093UZRiYiIiIiIiPQOJ1sHcK7efPNNzGbzKV9K3kVERERERKQvsJsEXkRERERERKQvUwIvIiIiIiIiYgeUwIuIiIiIiIjYASXwIiIiIiIiInZACbyIiIiIiIiIHVACLyIiIiIiImIHlMCLiIiIiIiI2AEl8CIiIiIiIiJ2QAm8iIiIiIiIiB1QAi8iIiIiIiJiB5TAi4iIiIiIiNgBJfAiIiIiIiIidkAJvIiIiIiIiIgdUAIvIiIiIiIiYgdcbB1AbzKbzQDU19fj6upq42jEkRmNRpqamqirq9NYkx6lsSa9RWNNeovGmvQWjTXpLfX19cCJfPRi9KkEvqqqCoC4uDgbRyIiIiIiIiJ9SVVVFf7+/hd1jD6VwAcGBgJQXFx80b84kbOpq6sjOjqakpIS/Pz8bB2OODCNNektGmvSWzTWpLdorElvqa2tJSYmxpqPXow+lcA7OVla/v39/fVHKr3Cz89PY016hcaa9BaNNektGmvSWzTWpLccz0cv6hjdEIeIiIiIiIiI9DAl8CIiIiIiIiJ2oE8l8O7u7jzxxBO4u7vbOhRxcBpr0ls01qS3aKxJb9FYk96isSa9pTvHmsHcHWvZi4iIiIiIiEiP6lMVeBERERERERF7pQReRERERERExA4ogRcRERERERGxA0rgRUREREREROxAn0ngX331VeLi4vDw8GDUqFGsX7/e1iGJg1m0aBGXXXYZvr6+hIaGMnfuXLKysmwdlvQBixYtwmAwMG/ePFuHIg6otLSU22+/naCgILy8vBg+fDg7d+60dVjiYNrb23n88ceJi4vD09OT+Ph4fve732EymWwdmti5jIwMrrnmGiIjIzEYDHz66add7jebzTz55JNERkbi6elJeno63377rW2CFbt2trFmNBpZsGABQ4YMwdvbm8jISO68804OHz583q/TJxL4Dz/8kHnz5vHYY4+xe/duJk+ezOzZsykuLrZ1aOJA1q1bx3333ceWLVtYuXIl7e3tzJo1i8bGRluHJg5s+/btLFmyhKFDh9o6FHFAx44dY+LEibi6urJ8+XIOHDjASy+9REBAgK1DEwfz/PPP89e//pXFixdz8OBBXnjhBV588UX+/Oc/2zo0sXONjY0MGzaMxYsXn/b+F154gZdffpnFixezfft2wsPDmTlzJvX19b0cqdi7s421pqYmdu3axf/8z/+wa9cuPv74Y7Kzs7n22mvP+3X6xDZyY8eOZeTIkbz22mvW29LS0pg7dy6LFi2yYWTiyCoqKggNDWXdunVMmTLF1uGIA2poaGDkyJG8+uqrPP300wwfPpxXXnnF1mGJA1m4cCEbN27UrDXpcVdffTVhYWG88cYb1tuuv/56vLy8eOedd2wYmTgSg8HAJ598wty5cwFL9T0yMpJ58+axYMECAFpbWwkLC+P555/n5z//uQ2jFXv23bF2Otu3b2fMmDEUFRURExNzzsd2+Ap8W1sbO3fuZNasWV1unzVrFps2bbJRVNIX1NbWAhAYGGjjSMRR3XfffcyZM4cZM2bYOhRxUJ999hmjR4/mxhtvJDQ0lBEjRvD666/bOixxQJMmTeLrr78mOzsbgL1797JhwwauuuoqG0cmjqygoICysrIueYK7uztTp05VniA9rra2FoPBcN6z2lx6JpxLR2VlJR0dHYSFhXW5PSwsjLKyMhtFJY7ObDYzf/58Jk2axODBg20djjigDz74gF27drF9+3ZbhyIOLD8/n9dee4358+fz6KOPsm3bNn7961/j7u7OnXfeaevwxIEsWLCA2tpaUlNTcXZ2pqOjg2eeeYZbb73V1qGJAzueC5wuTygqKrJFSNJHtLS0sHDhQm677Tb8/PzO67kOn8AfZzAYunxvNptPuU2ku9x///3s27ePDRs22DoUcUAlJSU88MADfPXVV3h4eNg6HHFgJpOJ0aNH8+yzzwIwYsQIvv32W1577TUl8NKtPvzwQ959913ef/99Bg0axJ49e5g3bx6RkZHcddddtg5PHJzyBOlNRqORW265BZPJxKuvvnrez3f4BD44OBhnZ+dTqu3l5eWnXG0T6Q6/+tWv+Oyzz8jIyCAqKsrW4YgD2rlzJ+Xl5YwaNcp6W0dHBxkZGSxevJjW1lacnZ1tGKE4ioiICAYOHNjltrS0ND766CMbRSSO6uGHH2bhwoXccsstAAwZMoSioiIWLVqkBF56THh4OGCpxEdERFhvV54gPcVoNHLTTTdRUFDA6tWrz7v6Dn2gB97NzY1Ro0axcuXKLrevXLmSCRMm2CgqcURms5n777+fjz/+mNWrVxMXF2frkMRBTZ8+nf3797Nnzx7r1+jRo/nRj37Enj17lLxLt5k4ceIp22FmZ2cTGxtro4jEUTU1NeHk1PW01NnZWdvISY+Ki4sjPDy8S57Q1tbGunXrlCdItzuevOfk5LBq1SqCgoIu6DgOX4EHmD9/PnfccQejR49m/PjxLFmyhOLiYn7xi1/YOjRxIPfddx/vv/8+//nPf/D19bXO+vD398fT09PG0Ykj8fX1PWVtBW9vb4KCgrTmgnSrBx98kAkTJvDss89y0003sW3bNpYsWcKSJUtsHZo4mGuuuYZnnnmGmJgYBg0axO7du3n55Zf56U9/auvQxM41NDSQm5tr/b6goIA9e/YQGBhITEwM8+bN49lnnyUpKYmkpCSeffZZvLy8uO2222wYtdijs421yMhIbrjhBnbt2sXSpUvp6Oiw5gqBgYG4ubmd+wuZ+4i//OUv5tjYWLObm5t55MiR5nXr1tk6JHEwwGm//vGPf9g6NOkDpk6dan7ggQdsHYY4oM8//9w8ePBgs7u7uzk1NdW8ZMkSW4ckDqiurs78wAMPmGNiYsweHh7m+Ph482OPPWZubW21dWhi59asWXPa87O77rrLbDabzSaTyfzEE0+Yw8PDze7u7uYpU6aY9+/fb9ugxS6dbawVFBScMVdYs2bNeb1On9gHXkRERERERMTeOXwPvIiIiIiIiIgjUAIvIiIiIiIiYgeUwIuIiIiIiIjYASXwIiIiIiIiInagT2wjd5zJZOLw4cP4+vpiMBhsHY6IiIiIiIg4OLPZTH19PZGRkTg5XVwNvU8l8IcPHyY6OtrWYYiIiIiIiEgfU1JSQlRU1EUdo08l8L6+vgAUFBQQGBho42jEkRmNRr766itmzZqFq6urrcMRB6axJr1FY016i8aa9BaNNekt1dXVxMXFWfPRi9GnEvjj0+Z9fX3x8/OzcTTiyIxGI15eXvj5+ekDQXqUxpr0Fo016S0aa9JbNNaktxiNRoBuaePWInYiIiIiIiIidkAJvIiIiIiIiIgdUAIvIiIiIiIiYgeUwIuIiIiIiIjYASXwIiIiIiIiInZACbyIiIiIiIiIHVACLyIiIiIiImIHlMCLiIiIiIiI2AEl8CIiIiIi0meZzWbuvfdeAgMDMRgM7Nmzh/T0dObNm2fr0EROoQReRERERET6rC+//JI333yTpUuXcuTIEQYPHmyTOK699lpiYmLw8PAgIiKCO+64g8OHD1vv37t3L7feeivR0dF4enqSlpbGH//4x3M+vtlsZvbs2RgMBj799NMu953uNoAf//jHzJ079wJ/IukJLrYOQERERERExFby8/OJiIhgwoQJNo1j2rRpPProo0RERFBaWspDDz3EDTfcwKZNmwDYuXMnISEhvPvuu0RHR7Np0ybuvfdenJ2duf/++7/3+K+88goGg6GnfwzpYUrgRURERESkT/rjH//ImjVrAEsVOjY2lsLCwlMet2LFCm6++Wb+/Oc/c+edd/ZILA8++KD1/2NjY1m4cCFz587FaDTi6urKT3/60y6Pj4+PZ/PmzXz88cffm8Dv3buXl19+me3btxMREXFB8RUWFhIXF3fK7VOnTmXt2rUXdEw5f0rgRURERESkT7rnnnuYMmUKb7zxBtu3b8fZ2fmUx3zwwQfce++9vPPOO1x33XVnPJaPj89ZX2vy5MksX778nOKqrq7mvffeY8KECbi6up7xcbW1tQQGBp71WE1NTdx6660sXryY8PDwc3r904mOjubIkSPW78vKypgxYwZTpky54GPK+VMCLyIiIiIifZK3tze+vr44OzufNrl99dVXefTRR/nPf/7DtGnTznqsPXv2nPV+T0/P741nwYIFLF68mKamJsaNG8fSpUvP+NjNmzfzr3/9i2XLlp31mA8++CATJkw468UHgFtvvfWUCxitra3MmTMHoMvvqKWlhblz5zJ+/HiefPLJ7/25pPsogRcREREREfmOjz76iKNHj7JhwwbGjBnzvY9PTEy86Nd8+OGHufvuuykqKuKpp57izjvvZOnSpaf0rn/77bdcd911/Pa3v2XmzJlnPN5nn33G6tWr2b179/e+9h/+8AdmzJjR5bYFCxbQ0dFxymPvvvtu6uvrWblyJU5OWhe9N9nVbzsjI4NrrrmGyMjIM66UKCIiIiIicrGGDx9OSEgI//jHPzCbzd/7eB8fn7N+zZ49+3uPERwcTHJyMjNnzuSDDz7giy++YMuWLV0ec+DAAS6//HJ+9rOf8fjjj5/1eKtXryYvL4+AgABcXFxwcbHUb6+//nrS09O7PDY8PJzExMQuX76+vqcc8+mnn2bFihV89tlnp71fepZdVeAbGxsZNmwYP/nJT7j++uttHY6IiIiIiDiohIQEXnrpJdLT03F2dmbx4sVnfXx3TKE/2fGLBq2trdbbvv32Wy6//HLuuusunnnmme89xsKFC7nnnnu63DZkyBD+8Ic/cM0115xXPGCZlfC73/2O5cuXk5CQcN7Pl4tnVwn87Nmzz+nKlYhIX1FY1Uhtm62jEBERcUzJycmsWbOG9PR0XFxceOWVV8742IuZQr9t2za2bdvGpEmT6NevH/n5+fz2t78lISGB8ePHA5bkfdq0acyaNYv58+dTVlYGWHrTQ0JCACgtLWX69Om8/fbbjBkzhvDw8NP29sfExJx2Rfmz+eabb7jzzjtZsGABgwYNsr6+m5vb9y6kJ93HrhL489Xa2trlilVdXR0ARqMRo9Foq7CkDzg+vjTOpKfkVTTy/JdZrMmqBFx479BGpiaHMCUpmJExAbg621WHlNgBva9Jb9FYk95yfIwd7/E+ecyZzWZMJhNGo5H4+Hi+/PJLZs6cicFg4IUXXuj2WFxcXPjoo4944oknaGxsJCIiglmzZvHOO+/g5OSE0Wjkgw8+oKKigvfee4/33nvP+tzY2FhycnIAy4rzWVlZ1NXVnfVvqL29/ZT7T3ebyWSy/h62bt1KU1MTTz/9NE8//bT1MVOmTGHVqlXd8WtwWN35fmYwn0tDxyXIYDDwySefMHfu3DM+5sknn+Spp5465fb3338fLy+vHoxORKRnNBhheYkTm44aMGHACTNmwMyJxW08nM2k+JtJC7B8BbjbLl4REZFLUVULbChzws0ZUgNMxPiAs+H7nydyIZqamrjtttuora3Fz8/voo7l0An86Srwx/cvDAoK6oUopa8yGo2sXLmSmTNnnnXvTpFz1Wrs4O2txby6toCG1nYApqeGMP/yePZs24hL9BA25tWwPreSY01dr/KmhvkwJTlY1Xm5KHpfk96isSY9qa7ZyGsZBby1uQhjx4k0yNfDhfHxgUxODGZSYhBR/c6vX13kbKqqqoiIiOiWBN6hp9C7u7vj7n5q6cnV1VUfCNIrNNbkYpnNZpbuO8LzKzI5dKwZgIERfjx+dRoTEoIxGo3kusJVI6O5eWw8HSYz+w7VsDargrXZFew7VEPm0QYyjzawZH0hvu4uTEwMJj0lhPSUUML9PWz8E4q90fua9BaNNelOxg4T/9xWzCurcqhutCweMz4+kJbaSvKb3KhtbuerA+V8daAcgLhgb6YkBTM5KYTxCUF4uzt02iQ9rDvfyzQSRUQuUbuKj/H00gPsKq4BIMzPnYdmpfDDkVE4O51+np+zk4ERMf0YEdOPB2cmU9XQyvqcStZmlZORU0l1Yxsrvi1jxbeWhWdSw31JTwklPSWEUbH9VJ0XERGHYjabWZ1ZzrNfHCSvohGAhBBvHp8zkInxASxfvpwrrpxGZnkT67MryMipYFdxDQWVjRRUNvLW5iJcnQ2MjOnHlOQQpiSFMCjSD6czfA6L9DS7SuAbGhrIzc21fl9QUMCePXsIDAwkJibGhpGJiHSfkuomnl+RydJ9RwDwdHXmF1MT+NmUOLzczu9tO8jHnbkj+jN3RH86TGb2l9ayNquctVkV7D1UQ2ZZPZll9fx1XZ6q8yIi4lAOHK7jmS8OsDG3CoBAbzcenJHELWNicHV2si4s5uxkYHh0AMOjA/jV9CTqWoxszqtifU4FGdmVFFc3sbWgmq0F1bz4ZRaB3m5MSgxmclIwU5JDCPPT56X0HrtK4Hfs2MG0adOs38+fPx+Au+66izfffNNGUYmIdI+6FiN/WZPLPzYW0tZuwmCAG0dF8d+zUrrl5ODkE5R5M5KpbmwjI7virNX5qSkhpCeHMnqAqvMiImIfjta18NJXWfx75yHMZnBzduKnk+L45bQE/Dy+fyqzn4crVwwK54pBlu3XiqoayciuICOnks15VVQ3tvHZ3sN8tvcwAClhvkxJtky3HxMXiIerc4/+fNK32VUCn56ejp2uuScickbtnX15fzipL29CQhCPzUljUKR/j71uoLfbOVXn/7YuHx93FyZ1VuenpoQQ4a/FfURE5NLS1NbO6xkF/HVdHs1Gy9ZwVw+NYMGVqUQHXvgOVLFB3twx3ps7xg/A2GFid3FNZ3W+gn2ltWQdrSfraD2vry/A3cWJMXGBTEkKYUpyCMlhPhgMmm4v3ceuEngREUdiNptZk1XOs19kklveAEB8iDePXZXG5amhvfqBf7rq/PqcCtZmVbAuu0LVeRERuWSZTGY+3l3Ki19mcrTOsgPViJgAHp8zkFGx/br1tVydLQn6mLhA/ntWCsca29iQW2mdbl9W18L6nErW51TyzBcHCfNzZ3JSCJM7F8QL9Hbr1nik71ECLyJiAwcO1/HsFwfZkFsJQD8vVx6cmcytnX15thbo7cZ1w/tz3fD+mKzV+QrWZpezp+TU6vzExCDrYniqzouISG/ZlFfJM8sO8u3hOgCi+nmycHYqc4ZE9MqF8H7eblwzLJJrhkViNpvJLW8gI6eSjOwKthZUcbSulf/beYj/23kIgwEGR/pbe+dHxvTDzcX2n/liX5TAi4j0ovK6Fl76Kpt/7Syx9uX9ZOIAfjktEX/PS3O7JCcnA8OiAxgWHcADM5K6VOczsiuoamzjy2+P8uW3RwFLL2B6qqrzIiLSc/IqGlj0RSarDlo+e3zdXbj/8kTumjDAZj3oBoOBpDBfksJ8uXtSHC3GDnYUHmN9jmU2W2ZZPftLa9lfWsura/PwdnNmfEIQkzun2w8I8tJ0e/leSuBFRHpBc1sHr6/P56/r8mhqs/TlzRkawcKL7Muzhe+rzh/vBVR1XkREutuxxjb++HUO724pot1kxtnJwI/GxvDA9CSCfNxtHV4XHq7OTEoKZlJSMI9clUa5dXp9BetzKqlqbGPVwXJWHbTsPR/Vz7Nzq7pgxicEX7IX9sW2lMCLiPQgk8nMJ7tLefHLLMrqWgAYHh3A/1ydxqjYQBtHd/G+W50/1thGRk4F6zp7509bne9cCG90bKCmDoqIyDlpbe/g7U1F/Hl1DnUt7QBcnhrKo1elkhjqa+Pozk2onwfXj4ri+lFRmExmDhypY33ndPsdRdUcOtbM+1uLeX9rsXVtmuPT7Yf298dFM9oEJfAiIj1mS34VTy87wDellr68/gGeLJidyjVDe6cvzxb6nWt1PsNSnZ+QEMS0VFXnRUTk9MxmMyu+KWPR8kyKq5sASIvw4/E5aUxMDLZxdBfOycnA4P7+DO7vz3+lJ9DU1s6W/CoysivJyKkgv6KRnUXH2Fl0jFdW5eDn4cKkzoXwpiSH0D9An5l9lRJ4EZFull/RwKLlmaw8YKk6+7i7cN+0RH4y0XZ9ebZwLtX5rw4c5asDqs6LiMip9pTU8MyyA2wvPAZAiK87D89K4fpRUTg7OdaFcC83Fy5PDePy1DAADh1rYkOOJZnfkFNJXUs7X+wv44v9lt1g4kO8O7eqC2ZsXBDe7krr+gr9S4uIdJOaJktf3jubT/Tl3Tommnkzkgm+xPrybOG71flvDndW57NOrc57uzkzMTHY2jsfqUqDiEifUVrTzAsrMvnPnsMAeLg6ce+UBH4+Jb7PJKpR/by4ZUwMt4yJocNkZu+hGtZ3Vuf3lNSQX9FIfkUjb24qxNXZwOjYQCYnBzMlKYSBEX44OdgFDjmhb/wFiIj0oLZ2E29vLuRPX5/oy5uWEsKjV6WRFGYffXm9zcnJwNCoAIZGBfDr6d9fnU8O87Em86rOi4g4pvoWI6+tzeONDQW0tpsAuH5kFA9dkdyn26ycnQyMjOnHyJh+PDAjidpmI5vzKq3b1R061szm/Co251fxwoosgrzdmJRkSeYnJwUT6udh6x9BupESeBGRC3S8L++5FZkUVVn68lLDfXlsThqTk0JsHJ19+b7qfPbRBrKPNrBE1XkREYfT3mHiwx0l/GFlNpUNbQCMiw/k8TkDGdzf38bRXXr8PV25cnAEVw6OwGw2U1jVxPocy9aum/OqqGps4z97DltnMKSG+3aubh/C6AH9+lQ7nyNSAi8icgH2ltTw9Hf68v57ZjI3jo52uL683na66vz63ErWZpWTkV1BZcMZqvPJIYweoOq8iIg9WZddwTPLDpB9tAGAuGBvHpmdysyBYQ674Gt3MhgMxAV7ExfszZ3jB9DWbmJX8bHOhL6Sbw7XkllWT2ZZPUsy8nF3cWJsfBBTOle3Twr10e/ZziiBFxE5D6U1zby4IpNPT+7LmxzPz6cm9Jm+vN7Wz9uNa4dFcu2wSEwmM98ermNNVvkZq/MTEoNJTwkhPSVUq/SKiFyissrqeeaLg2RkVwAQ4OXKA9OT+NHYWF2IvQhuLk6Miw9iXHwQD18BVQ2tbMittO4/f7SulYxsS7WeZQcJ9/OwblU3KTGYft5utv4R5HvobFNE5Bw0tLbz2tpc/r7+RF/eD0f056ErUjSFuxc5ORkYEuXPkCh/fj09iZqmNjJyulbnVx44at0BQNV5EZFLS0V9Ky+vzObD7cWYzODqbOCu8QP41eVJ+Hu52jo8hxPk425tUTObzWQfbWB9jmW9mW0F1ZTVtfDvnYf4985DGAwwpL+/tXd+ZGw/XLX3/CVHCbyIyFm0d5j4145DvLwym8qGVgDGxAXy+Jw0hkYF2DY4IcDr1Or82qxy1mZXsLv4mKrzIiKXiBZjB29sKODVNbk0tnUAMHtwOAtnpxIb5G3j6PoGg8FASrgvKeG+3DM5nhZjB9sKqq3T7bOO1rPvUC37DtWyeE0uPu4ujIsPYmqyZf/5AcH6d7oUKIEXETmDddkVPLvsIFlH6wEYEOTFI1elMUt9eZekk6vzv+qszq/PqWTNGarzSaE+1mT+MlXnRUR6hMlk5rO9h3lhRSaHa1sAGBblz2NzBjImLtDG0fVtHq7OlsXtkkN4bA4crWthfefK9htyK6lubGPVwaOsOmj53IwJ9GJykiWZn5AYhJ+HZkzYghJ4EZHvyD5azzPLDrKusy/P39PSl3f7OPXl2ZMALzeuGRbJNWeozueUN5BT3sDr6wvwsq5sr+q8iEh32V5YzdNLD7D3UC0Akf4e/ObKVK4dFql9yi9BYX4e3DAqihtGRVk/NzM6V7ffWXSM4uom3ttazHtbi3F2MjAiOoApyZbp9kOjArSIby9RAi8i0qmivpU/rMrmg20n+vLuHD+AX12eSICXFnWxZ2eqzq/t3He+sqH1jNX50QP64e6iLXdERM5VUVUjzy3PZPk3ZQB4uznzy2mJ3D0pTluY2YmTPzfvm5ZIQ2s7W/KqWJ9TwfqcSvIrG9lRdIwdRcd4eWU2/p6uTEoMZkrndHutD9RzlMCLSJ93vC/vtbV5NLS2A3DlIEtfnvq9HNN3q/MHjliq82uyTl+dn5BwvDofQlQ/L1uHLyJySaptMvLn1Tm8tbkQY4cZJwPcfFkM82cmE+Lrbuvw5CL4uLswY2AYMwaGAVBS3WSdbr8xr5LaZiPL9h9h2f4jACSEeFv3nh8bH4iXm9LO7qLfpIj0WSaTmc/3HeaFFVmU1jQDMDTKn8euSmNsfJCNo5Pe4uRkYHB/fwb39+f+y09fnT+5BzAx1If05BCmpao6LyICYOww8e6WIv74dQ41TUYAS1/1VWmkhPvaODrpCdGBXtw2NobbxsbQ3mFi76EaMrItW9XtKakhr6KRvIpG/rGxEDdnJ0YP6Gedbp8W7qcWiougBF5E+qQdhdX8v2UH2VtSA0CEvwe/uTKF64b114dKH3em6vzarAp2FR8jt7yB3PIG/r5B1XkR6dvMZjMrDxxl0fJMCiobAcv2nY9elUZ6SqiNo5Pe4uLsxKjYQEbFBvLgzGRqm4xsyqvs7J+vpLSmmU15VWzKq+K55RDs4965GJ5lur1mZ5wfJfAi0qcUVTXy/IpMvth/oi/vv9ITuHtSPJ5uqqRKV9+tztc2GVmfW8HaLMvXmarz6SmhXBan6ryIOK5vSmv5f0sPsLWgGoBgHzfmz0zhptFRuGjv8D7N38uV2UMimD0kArPZTH5lI+uzK8jIqWRzXhWVDa18sruUT3aXApAW4ceU5GCmJIVoZts5UAIvIn1CbZORxWtyeHPTyX150Tw4M5lQXw9bhyd2wt/LlauHRnL1UFXnRaRvKqtt4cUvs/h49yHMZnBzceKeSXH8V3oCvtpWTL7DYDCQEOJDQogPP54YR2t7B7uKasjIqWB9TgXflNZx8Ijl62/r8vFwdWJcfBCTk0KYmhxMQoiPtu79DiXwIuLQjB0m3ttSxCsn9eVNTgrmsTlppIb72Tg6sWdnq86vy66gol7VeRFxHI2t7fxtXR5L1ufTYjQBMHd4JA9fmaqtN+Wcubs4Mz4hiPEJQSy4MpXKhlY25layLtuyun1Ffat1ltv/w7L14OSkECYnBzMpMVi7AqEEXkQclNlsZtXBchZ9cZD8zr68pFAfHp2TRnpyiK7mSrc7XXV+XXYFa7PK2Vl0uup8EFNTQklPDiE6UNV5Ebk0dZjMfLTzEC9+lUVFfSsAo2P78fjVAxkeHWDb4MTuBfu4c93w/lw3vD9ms5nMsnrrVnVbC6o5XNvChztK+HBHCQYDDI0KYGpSMJOTQxgeHYBrH2zXUAIvIg7nm9Janl52gC35lr68IG83HpyZzC2XRasvT3rFydX5+6YlnqE6X86qg+WAZbudaSmhqs6LyCVlQ04lTy87QGZZPQAxgV48MjuVKweH60K4dDuDwUBahB9pEX7cOyWB5rYOthVWk5FtmW6ffbSBvSU17C2p4U+rc/F1d2F8QhCTk0OYmhRCTFDfuBiuBF5EHMbp+vLunhTHL9WXJzZ2tur8ruLj2+0UqDovIpeE3PJ6nv0ik9WZlouMvh4uPDA9iTvGx+oCo/QaTzdnpiaHMDU5BIAjtc3Wvec35FZS02TkqwNH+eqApVUtNsiLKUmWrerGJwQ57LmfEngRsXuNre38LSOf1zPyaTZ2AHDtsEh+c2WKFg6TS84p1flmIxtyKi2L4Z2hOp+eEkp6Sghj4gJ18iwiPaaqoZVXVuXw/rZiOkxmXJwM3D4ulgemJ9HPW73HYlsR/p7cNDqam0ZH02Ey801pLes7t6rbVXyMoqom3qkq4p0tRbg4GRgZ04/JScFMSQ5hcH9/nB1km2Al8CJit4735f3+qyzKO/vyRsX24/E5aYyI6Wfj6ETOjb+nK3OGRjBnqGW7HcvK9qdW59/YUICnq6U6n56q6ryIdJ8WYwdvbirkL6tzqW9tB2DmwDAemZ1KfIiPjaMTOZWzk4Fh0QEMiw7g/suTqG8xsiX/xHT7wqomthVWs62wmpdWZhPg5cqkRMtWdZOTg4nwt9+FF5XAi4hd2phbydPLDnLwSB0A0YGePDI7jdnqyxM7ZjAYGBTpz6DIU6vz67IrKK9v5evMcr7OVHVeRC6e2Wxm6b4jPL8ik0PHmgEYFOnH43MGMj4hyMbRiZw7Xw9XZg4MY+bAMACKq5rIyKkgI7uCzXlV1DQZWbrvCEv3HQEsCxtPTgphSnIwY+OC8HSzn89PJfAiYldyyxtY9MVBawLj6+HCry9P4s4J6ssTx3Om6vy6rAp2Fh87fXU+xbJVnarzInI2O4uO8cyyA+wqrgEgzM+dh69I5Ycj+uPkIFONpe+KCfLi9qBYbh8Xi7HDxN6SGjKyK8jIqWTvoRpyyhvIKW/gfzcW4ObixJgBgdbp9qnhvpd0MUgJvIjYhaqGVv74dQ7vbbX05Tk7Gbh9bAwPzEgmUH150gecrjq/Mbezdz7ru9X5b4kP8SY9OZRpqarOi8gJJdVNPL8i01qJ9HR15hdTE/jZlDi83JQaiONxdXZi9IBARg8IZP6sFGqa2tiYW9WZ0FdwpLaFDbmVbMitZNHyTEJ83ZmcaEnmJyUFE+zjbusfoQv9lYrIJa21vYM3Nxay+KS+vBlpYTxyVSoJ6suTPszf05WrhkRw1ZDTV+fzKxrJryjgfzeqOi8iUNdi5C9rcvnHxkLa2k0YDHDjqCj+e1YKYX4etg5PpNcEeLl1md2WV9Fo7Z3fkl9NRX0rH+8u5ePdpYClreT4dPtRsbbf6lUJvIhcksxmM8v2W/rySqotfXkDI/x4/Oo0JiQE2zg6kUvLhVbnj/fOe7iqOi/iqNo7TPxzWzF/WJVDdWMbABMTg3j0qjQGRfrbODoR2zIYDCSG+pAY6sNPJ8XR2t7BzsJjrMupYH12JQeO1PHtYcvXX9fl4enqbNl7PimYyUkhJIR49/p0e7tL4F999VVefPFFjhw5wqBBg3jllVeYPHmyrcMSkW60q/gYTy890ZcX6uvOw1ek8MORUQ6zBYhIT/pudf7gkXrWZluS+Z1Fp1bnxx+vzieHEhOk6ryIIzCbzazJKufZLzLJLW8ALAtfPjYnjWkpoZd0j6+Irbi7ODMhMZgJicE8MhvK61vYmFvJ+uxKMnIqqWxoZXVmOas712LqH+Bp7Z2fmBCMv1fP7z3fLQm82WzulTeBDz/8kHnz5vHqq68yceJE/va3vzF79mwOHDhATExMj7++iPSskuomXvgyi8/3HgYsfXk/nxrPvVPi1ZcncoEMBgMDI/0YGOnHL9O7VufXZVdwtO7kkxFV50UcwYHDdTz7xUE25FYCEOjtxrwZSdw6JgZXZycbRydiP0J9PfjBiCh+MCIKk8lMZlk9GTmW6fbbC45RWtPMB9tL+GB7CU4GGBYdYJlunxTM8OgAXHrg761bzojd3d3Zu3cvaWlp3XG4M3r55Ze5++67ueeeewB45ZVX+PLLL3nttddYtGhRj762iPScuhYjr67J4383Flj78m4YaenLC/dXX55Id7rQ6vzE+H62Dl1Evkd5XQsvfZXNv3aWYDaDm7MTP5k4gF9OS8Tfs+crgyKOzMnpxAXxX0xNoKmtna0Fx/eeryS3vIHdxTXsLq7hT1/n4OvuwoTEIKYkhzA4uPsS+fNK4OfPn3/a2zs6OnjuuecICrLsF/nyyy9ffGTf0dbWxs6dO1m4cGGX22fNmsWmTZtO+5zW1lZaW1ut39fVWfaLfvaLg8wcFsfY+EB83FXVk+5nNBq7/FdOr73DxIc7S/nj17kca7L8rsbHB7LwymQGRvgB+h1+H401uVhJIZ4khcTys4mx1LcY2ZhXTUZOJRnZlRyt7zpVMNTDmR2mA0xLCWXMgH64qzovPUDva+evua2DNzYW8vqGQpraOgC4anAYD81KIrqfpS1Gv89TaazJxXA1wKT4fkyK7wdXJnO4ppmNeVVsyK1iY14Vtc3tfPntUb789iim1qZue12D2Ww2n+uDnZycGDZsGAEBAV1uX7duHaNHj8bb29LEv3r16m4L8LjDhw/Tv39/Nm7cyIQJE6y3P/vss7z11ltkZWWd8pwnn3ySp5566pTbo+f9Cyd3L5wMZuJ8IDXARGqAmShvUHutSM8zm+FAjYH/FDlxtNnyRxfqYea6WBOD+plRW56I7ZnNcLjJ8rd68JgTBfVg4sQfp6uTmSQ/MwP7mUkLMBOsyTIivc5khh2VBpYWO1HbZvn7jPUx84MBHcT52jg4kT7MZIaSBsisNZBZ40R+ZRNFr9xMbW0tfn5+F3Xs8yo/P/PMM7z++uu89NJLXH755dbbXV1defPNNxk4cOBFBXMuvttrf7b++0ceeaTLrIG6ujqio6P54fBwdpQZOXSsmbx6yKt3ZlkJ9PNyZUJCEJMTg5iYGES4ttSQC2Q0Glm5ciUzZ87E1VVT1k6WWVbPcyuy2ZhXBVj+7n41LYFbLotSX94F0FiT3lJd38xfP11LnXcUG3KrOVrfyoEaAwdqLPfHBXkxJTmYqUnBqs7LRdH72rnZWlDNohVZfHu4HoD+AR48NDOJOUPCtUDdOdJYk95SVHqUpFe651jnlcA/8sgjzJgxg9tvv51rrrmGRYsW9dpgDw4OxtnZmbKysi63l5eXExYWdtrnuLu74+7ufsrt/3P1QIKCgiiqsuz5l5FTyea8Ko41GVm2v4xl+y2vkRzmw5SkECYnhzBWC/nIBXB1ddUHQqfy+hZe/iqbf+0owdTZl/fjiQO4T3153UJjTXpaoC8MDzJz1VVDcHFxIbOsnrVZFazNKmdn0TEKqpoo2FzMW5uL8XB1Ynx8EOkplsXwYoO8bR2+2CG9r51efkUDi5ZnsvLAUQB83V345bREfjJxgM5VL5DGmvS0fr6e3Xas824Av+yyy9i5cyf33Xcfo0eP5t133+2Vq3xubm6MGjWKlStX8oMf/MB6+8qVK7nuuusu6JixQd7cMd6bO8YPwNhhYndxTeciBBXsK60l+2gD2Ucb+PuGAtxcnBgbF9iZ0AeTEuarq5si56C5rYPX1+fz13V51r68OUMiWHBlqrarErFTBoOBtAg/0iL8+K/0BOpajGzKrWRNZgXrsisoq2thTVYFa7IqAIgL9mZqcgjTUkN1QVzkAtU0tfHHr3N4Z3MR7SYzzk4Gbh0TzbwZyQT7nFqwEhHHdEEruPn4+PDWW2/xwQcfMHPmTDo6Oro7rtOaP38+d9xxB6NHj2b8+PEsWbKE4uJifvGLX1z0sV2dnRgTF8iYuEAeuiKF6sY2y55/ORVkZFdSVtfC+pxK1udUwheWfaknJ4UwJTmYSYnBBOmNU6QLk8nMp3tKeWFFFmV1LQAMjw7g8TlpjB4QaOPoRKQ7+Xm4cuXgCK4cbFnZ/pTqfGUjBZWNvLmpUNV5kfPU1m7i7c2F/OnrHOpa2gGYlhLCo1elkRSmRneRvuailmC/5ZZbmDRpEjt37iQ2Nra7Yjqjm2++maqqKn73u99x5MgRBg8ezBdffNEjrx3o7cY1wyK5ZlgkZrOZ3PIG1nVuEbC1oIry+lY+2nWIj3YdAmBwfz9LdT4phFGx/XBzUS+v9F1b8qt4ZtlB9pfWAtA/wJMFs1O5ZmiEZq6IOLjvVufrW47vO1/B2qwzV+fTU0IYFx+k6rxIJ7PZzIpvynhuRSZFVZYVrFPDfXlsThqTk0JsHJ2I2MpF76EWFRVFVFRUd8RyTn75y1/yy1/+stdeDywnI0lhviSF+XLP5HhajB3sKDzG+hzLVMHMsnq+Ka3jm9I6Xl2bh5ebM+PjLXv+TU4KJi7YW0mL9AkFlY0s+uIgX3X25fm4u/DLaQn8dGKcTspF+ijf71Tns46eqM7vKDy1Oj8uPoj05BDSU0IZEKzqvPRNe0tqeHrZAbYXHgMgxNed/56ZzI2jo3HWlkkifZo2Qb8AHq7OTEoKZlJSMI9clUa5dXq9pUJf1djG15nlfN25b27/AE+mJIcwJSmYCYnBWrBLHM53+/KcDHDb2Bj15YlIFwaDgdRwP1LD/fjF1NNX54//P58fUHVe+pzSmmZeXJHJp3sOA+Dh6sS9k+P5+dQEvN112i4iSuC7RaifB9ePiuL6UVGYTGYOHKljfU4lGdkV7CiqprSmmX9uK+af24pxMlj6gC3V+RCGRfnjoq2zxE4d78v78+pcapuNAKR39uUlqy9PRL7H+VTn3V2cGJ+g6rw4pobWdl5bm8vf1xfQ2m4C4Icj+/PwFSlE+Hff6tUiYv+UwHczJycDg/v7M7i/P/+VnkBjaztbC6rIyK4kI6eC/IpGdhXXsKu4hldW5eDn4cLExGDrgnhR/bQqt1z6zGYzX357lOeWH6TwpL68R69KY0qy+vJE5PydvjpfxbrsctZmVXCktmt1fkCQF+kpoUxNCWG8qvNip9o7TPxrxyFeXplNZUMrAGPjAnl8zkCGRPnbODoRuRQpge9h3u4uXJ4axuWplr3qDx1rsk6335BTSV1LO8u/KWP5N5a95+ODva298+PigzRdSi45+w7V8PTSg2wrrAYg2Medh2apL09EupelOh/OlYPDMZvNZB9tYE1WubU6X1jVxJubClWdF7uVkV3BM8sOknW0HoABQV48clUaswaGae0kETkjZYe9LKqfF7eOieHWMTF0mMzsPVTD+s7q/J6SGvIrG8nvnC7o6mxgVGy/zv75EAZG+OGkBEls5HBNMy9+mcUnu0sBcHdx4t4plr48H11oEpEeZDAYSAn3JSXcV9V5sXvZR+t5ZtlB1mVbdmLw93TlgelJ3D4uVrsYicj30lm3DTk7GRgZ04+RMf14YEYStc1GNudVktHZP3/oWDNb8qvZkl/NCyuyCPJ2Y1JS53T7pGBC/Txs/SNIH9DQ2s5f1+bx+vr8E315I/rz0BUpRAaoL09Eet/pqvNrsyzJ/I6i6lOq8+Pig0hPsVTn41SdFxupqG/lD6uy+WBbMSYzuDobuHP8AH51eSIBXm62Dk9E7IQS+EuIv2fXxXwKq5pYn1NBRnYFm/OqqGps4z97DvOfzpVJU8N9rdPtLxsQqAqDdKsOk5l/7Sjhpa9O9OWNiQvk8TlpDI0KsG1wIiKdTq7O/3xqAg2t7SetbF/OkdoW1mVbtn196vMDxAZ5Wabap4aqOi+9osXYwRsbCnhtbR4Nre0AXDkonIWzU9XuISLnTQn8JcpgMBAX7E1csDd3jh9AW7uJXcXHOhP6Sr45XEtmWT2ZZfUsycjH3cWJsfFBTEkKZkpyCEmhPuqfkgt2ur68hbPTuGKQ+vJE5NLm4+7CFYPCuWLQ6avzRVVNvLW5iLc2F6k6Lz3KZDLz+b7DvLAii9KaZgCGRvnz2FVpjI0PsnF0ImKvlMDbCbfOk4xx8UE8fAVUNbSyIbfSuiDe0bpWMrIt1XqWHSTcz4PJScFMTg5hUmIwgd6amiXf73R9eb+ensQd6ssTETt0tur8uqxyDp+pOp8Syrj4IDzdVJ2XC7OjsJr/t+wge0tqAIjw9+A3V6Zw3bD+Ws9IRC6KEng7FeTjznXD+3Pd8P7WCsP6HMtJyLaCasrqWvj3zkP8e+chDAYY0t+fyUnBTEkKYURMPyVj0kVlQyt/WJnNPzv78lycLH15v56uvjwRcRzfrc7nlJ+ozm8vPLU6PzbesrL9tFRV5+XcFFU18vyKTL7Yb9ldyNvNmf9KT+DuSfG6ICQi3UIJvAM4ucJwz+R4WowdbCuotk63zzpaz75Dtew7VMtf1uTh7ebM+IRgpiRbEvrYIC9Ni+6jWowd/O/GAl5dc6Iv74pBYSycnaaTVRFxaAaDgeQwX5LDfLl3iqU6vym3kjUnVeePz2z73VJV5+XsapuMLF6Tw5ubCjF2mHEywM2XRfPgzGRCfbXosIh0HyXwDsjD1dmy9VxyCI/NgaN1LazvXNl+Q24l1Y1trDp4lFUHjwIQHejZubJ9CBMSg/DzcLXxTyA9zWw289nern15Q/r78/gc9eWJSN/k4+7CrEHhzDqH6vzxtjZLQh9CXLC3LoT3UcYOE+9tKeKVr3OoaTICMDkpmMfmpJEa7mfj6ETEESmB7wPC/Dy4YVQUN4yKwmQy8+3hOjI6V7ffWXSMkupm3t9azPtbi3F2MjAiOsCS0CcHMzQqAGf1ajmU0/XlPXxFCnOHqy9PRATOXJ1fm13BuqwKSmuaT6rOQ0ygV+dCeCGMjw9Wdb4PMJvNrDpYzqIvDpJf2QhAUqgPj85JIz05RBd0RKTHKIHvY5ycDAyJ8mdIlD/3TUukobWdrflVZGRXsD6nkvzKRnYUHWNH0TH+sCobf09XJiUGWxfE6699v+1WcVUTz604aO3L83Jz5r+mJnDPZPXliYiczXer87nlDazNqmBNVjnbC6sprm7i7c1FvK3qfJ/wTWktzyw7yOb8KgCCvN14cGYyt1wWjYuz1hgSkZ6lBL6P83F3YXpaGNPTwgAoqW6yTrffmFdJbbORZfuPsGz/EQASQryZnBTC1OQQxsYH4uWmIXSpq202snh1Dm9tKqKtw4STAW4aHc38WerLExE5XwaDgaQwX5LCfPnZlHhV5/uQstoWfv9VFh/tOoTZbNkh6O5JcfwyPQFftR+KSC9R9iVdRAd6cdvYGG4bG0N7h4m9h2rIyLZsVbenpIa8ikbyKhp5c1Mhbs5OjB7QzzrdPi3cT1OwLyHGDhPvby3mlVXZHDupL+/Rq9JIi1BfnohIdzhTdX5tdjnbCk6tzo+NCyQ9JZT0lBDiVZ23C42t7fwtI5/XM/JpNnYAcO2wSH5zZQpR/bxsHJ2I9DVK4OWMXJydGBUbyKjYQB6cmUxtk5FNeZWd/fOVlNY0symvik15VTy/AoJ93JicFMLkpGAmJQWrumsj1r685QfJr7D05SWG+vCY+vJERHrUd6vzja3tbMqrsi6GV1rTzPqcStbnVPL/lloWkU1PDmVaqqrzl6IOk5mPdh3i919mUV7fCsCo2H48PieNETH9bBydiPRVSuDlnPl7uTJ7SASzh0RgNpvJr2xkfWfv/Ob8Kiob2vhkdymf7C4FIC3CjylJwUxJDmFUbD88XHVi0tNO15c3b2Yyt6ovT0Sk13m7uzBzYBgzB4ZhNpvJq2hgTeaJ6nxJdTPvbCninS2qzl9qNuZW8vSygxw8UgdYLrY8MjuN2YPD9e8iIjalBF4uiMFgICHEh4QQH348MY7W9g52FdWQkVPB+pwKvimt4+ARy9ffMvLxcLUs6mPZri6YxFAffQB2ozP15f1XeoK2BRQRuQQYDAYSQ31JDD2/6nx6SgjjE4K05kwvyS1vYNEXB/k6sxwAXw8Xfn15EndOiMXdRYUIEbE9fRpIt3B3cWZ8QhDjE4JYcGUqlQ2tbMytZF1nhb6ivtXSE5hVAVi2LpvcWZ2fmBBMP283G/8E9qmprZ2/rctnyXf68h6+IoXoQPXliYhcqk5XnT/+OXmm6vzU5BCmpYaqOt8DqhvbeGVVNu9tLabDZMbZycDtY2N4YEYygTpHEZFLiBJ46RHBPu5cN7w/1w3vj9lsJutovXWruq0F1RypbeFfOw7xrx2HMBhgaFSAdbr98OgAXDXd+6xO15c3MiaAx68eyEj15YmI2JWTq/P3TLZU5zfnVbE221KdP3TsRHX+6WUHVZ3vRq3tHby5sZDFa3Kpb2kHYEZaKAtnp5EY6mPj6ERETqV3fOlxBoOB1HA/UsP9uHdKAs1tHWwrrO5M6CvIPtrA3pIa9pbU8OfVufi4uzA+IYgpyZbp9rFB3rb+ES4pmzr78g6c1Je38Mo0rhqivjwREUfg7e7CjIFhzDiX6ryzE2PjLdX59JRQEkJUnT8XZrOZL/aX8dyKg5RUNwMwMMKPx+ekMSEx2MbRiYicmRJ46XWebs5MTbbsJQ+W/m1L73wlG3IqONZkZOWBo6w8cBSA2CAvy3T7JEuloa/utZpb3sBzyw+y6uCJvrxfXZ7IXRMGqC9PRMRBnW91Pqqfp2Xf+eRQJiSqOn86u4qP8cyyg+wsOgZAqK87D1+Rwg9HRuGs7XBF5BKnd3WxuXB/D24aHc1No6PpMJn59nAtGdkVZORUsqvoGEVVTRRVFfPulmKcnQyMjAlgSlIIk5NDGNLf3+E/bKsb2/jjqmzeVV+eiEifd2p1vpG1WeWsy65ga341h4418+4Wy2emqvNdlVQ38cKXWXy+9zAAnq7O/HxqPPdOideFDhGxG3q3kkuKs5OBoVEBDI0K4P7Lk6hvMbIlv5r1ORVkZFdQWNXE9sJjbC88xksrswnwcmViYjBTk0KYnBxMhL+nrX+EbtPa3sFbmwr582r15YmIyKks1XkfEkN9uGdyPE1t7WzKVXX+u+pajLy6Jo//3VhAW7sJgwFuGBnFf89KIdzfw9bhiYicl77xzi12y9fD1bpKL0BxVZN1q7pNuVXUNBlZtu8Iy/YdASAx1KezOh/MuLggPN3sb2q5+vJERORCeLmdX3V+TFygJaFPCSEhxPG2d23vMPHP7SW8sjKbqsY2AMbHB/H41WkMivS3cXQiIhdGCbzYlZggL24PiuX2cbEYO0zsLamxTrffd6iG3PIGcssb+N+NBbg5O3FZXD9LQp8UQlqE7yV/crK7+BhPf6cv76ErUrhefXkiInIeTled35xXZVkML7uckupmNuRWsiH3RHV+anII01LsvzpvNptZm1XBM18cJLe8AYD4YG8evSqN6Wmhl/y5gIjI2djvu7P0ea7OToweEMjoAYHMn5VCTVMbG3OrrNPtD9e2sDG3io25VSxankmwjztTkoKZnBzMpMQQQnzdbf0jWJ2uL+/eKfH8fKr68kRE5OJ5ubkwPS2M6WmW6nx+ZWPnyvbl1ur8e1uLeW+rfVfnDx6p49kvDrI+pxKAfl6uzJuRzG1jY7RFrYg4BGUG4jACvNyYMzSCOUMjrFMHj29VtyW/msqGVj7eXcrHu0sBy7T041vVjRrQzyYruZ+uL+/6kVE8pL48ERHpIQaDgYQQHxJCfLh7Utz3Vuf7B3T2zqeEMiEhCG/3S+/0sby+hZe/yuZfO0owmcHN2YkfTxzAfdMS8ffsm7vXiIhjuvTegUW6wclTB386KY7W9g52Fh4jI6eSjOwKDhyps379dV0enq7OjIsPZEqyZbp9T6/U295h4oPtJfzhO315j81JY3B/9eWJiEjvOWt1vqCa0pqu1fnL4vqRnhzKtFTbV+eb2zr4+/p8XluXR1NbBwBzhkSw4MpUYoK8bBaXiEhPUQIvfYK7izMTEoOZkBjMwtmpVNS3siG3gvXZlWTkVFLZ0MqarArWZFUA0D/Ak8lJwUxOCmFSYjD+Xt1z9f54X96zXxwk56S+vEeuSmOG+vJERMTGTled35LfWZ3PqqC4usnanvbMF7arzptMZj7dU8qLX2ZxpLYFgGHRAfzPnDRGDwjslRhERGxBCbz0SSG+7vxgRBQ/GBGFyWQms6zeurr99oJjlNY088H2Ej7YXoKTAYZGBVin2w+PDsDlAvroMsvqeGaZ+vJERMR+eLm5cHlqGJennl91Pj0lhMTQnqnOb8mv4pllB9lfWgtYLrr/5soUrhkaiZMWfBURB6cEXvo8JycDAyP9GBjpxy+mJtDc1sGWgqrO6nwFueUN7CmpYU9JDX/6OgdfdxcmJAYxOSmEqckhRAeefYred/vyXJ0N/GRinPryRETErlxIdX5qSgjpySFMTAy+6Op8QWUjzy0/yJffHgXAx92FX05L4KcT4/Bwtb9tY0VELoTdJPDPPPMMy5YtY8+ePbi5uVFTU2PrkMRBebo5My0llGkpoQAcrmm2rGyfU8mGnEpqm418+e1R6wnEgCAva+/8+IQgfDpPUNo64C9r81myvsDal3fVkHAWXJlKbJC3bX44ERGRbvLd6nzB8ep8dgVb8qsorWnm/a3FvL+1GFdng2Vl+wuoztc0tfGnr3N5e3Mh7SYzTga4dUwMD85MJtjn0tlRRkSkN9hNAt/W1saNN97I+PHjeeONN2wdjvQhkQGe3HxZDDdfFkOHycz+0lrWZ1eQkVPBruIaCquaKNxcxNubi3BxMjAyth/D+vvx7z3O1LTlAurLExERx2YwGIgP8SE+xLJ4bHNbB1vyq1iTVX7B1fm2dhNvby3gT1/nUNtsBCA9JYRHr0ojOcy3t39EEZFLgt0k8E899RQAb775pm0DkT7N2cnA8OgAhkcH8KvpSdS1GNmcd3zv+UqKq5vYVlDNtoJqwECkvwcLZqeqL09ERPoUTzdnpqWGMi019Jyq85cNCLQuhjegnzt7qwy8/OdNFFU3AZAS5stjc9KYkhxi459MRMS27CaBvxCtra20trZav6+rqwPAaDRiNBptFZY4EE9nuDw5iMuTg2AOFFU3sSG3ip2F1TjVHeaJ28bg6+VBR0c7HR22jlYc0fH3Mr2nSU/TWJOLER3gzh1jo7hjbBTNbR1sLawmI7uSdTmVFFc3symvik15VTz7RSZ+Hi7UtTgDTQT7uDFveiI3jOyPs5NB40+6ld7XpLd05xgzmM1mc7cdrRe8+eabzJs375x64J988klr5f5k77//Pl5e2htURERExNbKm+FgjYGDNQZyag20mw24GsxMizQzvb8JD61PJyJ2rqmpidtuu43a2lr8/Pwu6lg2rcCfKcE+2fbt2xk9evQFHf+RRx5h/vz51u/r6uqIjo5m2rRpBAUFXdAxRc6F0Whk5cqVzJw5E1dXrTQvPUdjTXqLxpr0hua2DvYUV1P4zXZumKOxJj1L72vSW6qqqrrtWDZN4O+//35uueWWsz5mwIABF3x8d3d33N1PXZ3U1dVVf6TSKzTWpLdorElv0ViTnuTq6sr4xBCOZWusSe/RWJOe1p3jy6YJfHBwMMHBwbYMQURERERERMQu2M0idsXFxVRXV1NcXExHRwd79uwBIDExER8fH9sGJyIiIiIiItLD7CaB/+1vf8tbb71l/X7EiBEArFmzhvT0dBtFJSIiIiIiItI7nGwdwLl68803MZvNp3wpeRcREREREZG+wG4SeBEREREREZG+TAm8iIiIiIiIiB1QAi8iIiIiIiJiB5TAi4iIiIiIiNgBJfAiIiIiIiIidkAJvIiIiIiIiIgdUAIvIiIiIiIiYgeUwIuIiIiIiIjYASXwIiIiIiIiInZACbyIiIiIiIiIHVACLyIiIiIiImIHlMCLiIiIiIiI2AEl8CIiIiIiIiJ2QAm8iIiIiIiIiB1wsXUAvclsNgNQX1+Pq6urjaMRR2Y0GmlqaqKurk5jTXqUxpr0Fo016S0aa9JbNNakt9TX1wMn8tGL0acS+KqqKgDi4uJsHImIiIiIiIj0JVVVVfj7+1/UMfpUAh8YGAhAcXHxRf/iRM6mrq6O6OhoSkpK8PPzs3U44sA01qS3aKxJb9FYk96isSa9pba2lpiYGGs+ejH6VALv5GRp+ff399cfqfQKPz8/jTXpFRpr0ls01qS3aKxJb9FYk95yPB+9qGN0QxwiIiIiIiIi0sOUwIuIiIiIiIjYgT6VwLu7u/PEE0/g7u5u61DEwWmsSW/RWJPeorEmvUVjTXqLxpr0lu4cawZzd6xlLyIiIiIiIiI9qk9V4EVERERERETslRJ4ERERERERETugBF5ERERERETEDiiBFxEREREREbEDfSaBf/XVV4mLi8PDw4NRo0axfv16W4ckDmbRokVcdtll+Pr6Ehoayty5c8nKyrJ1WNIHLFq0CIPBwLx582wdijig0tJSbr/9doKCgvDy8mL48OHs3LnT1mGJg2lvb+fxxx8nLi4OT09P4uPj+d3vfofJZLJ1aGLnMjIyuOaaa4iMjMRgMPDpp592ud9sNvPkk08SGRmJp6cn6enpfPvtt7YJVuza2caa0WhkwYIFDBkyBG9vbyIjI7nzzjs5fPjweb9On0jgP/zwQ+bNm8djjz3G7t27mTx5MrNnz6a4uNjWoYkDWbduHffddx9btmxh5cqVtLe3M2vWLBobG20dmjiw7du3s2TJEoYOHWrrUMQBHTt2jIkTJ+Lq6sry5cs5cOAAL730EgEBAbYOTRzM888/z1//+lcWL17MwYMHeeGFF3jxxRf585//bOvQxM41NjYybNgwFi9efNr7X3jhBV5++WUWL17M9u3bCQ8PZ+bMmdTX1/dypGLvzjbWmpqa2LVrF//zP//Drl27+Pjjj8nOzubaa68979fpE9vIjR07lpEjR/Laa69Zb0tLS2Pu3LksWrTIhpGJI6uoqCA0NJR169YxZcoUW4cjDqihoYGRI0fy6quv8vTTTzN8+HBeeeUVW4clDmThwoVs3LhRs9akx1199dWEhYXxxhtvWG+7/vrr8fLy4p133rFhZOJIDAYDn3zyCXPnzgUs1ffIyEjmzZvHggULAGhtbSUsLIznn3+en//85zaMVuzZd8fa6Wzfvp0xY8ZQVFRETEzMOR/b4SvwbW1t7Ny5k1mzZnW5fdasWWzatMlGUUlfUFtbC0BgYKCNIxFHdd999zFnzhxmzJhh61DEQX322WeMHj2aG2+8kdDQUEaMGMHrr79u67DEAU2aNImvv/6a7OxsAPbu3cuGDRu46qqrbByZOLKCggLKysq65Anu7u5MnTpVeYL0uNraWgwGw3nPanPpmXAuHZWVlXR0dBAWFtbl9rCwMMrKymwUlTg6s9nM/PnzmTRpEoMHD7Z1OOKAPvjgA3bt2sX27dttHYo4sPz8fF577TXmz5/Po48+yrZt2/j1r3+Nu7s7d955p63DEweyYMECamtrSU1NxdnZmY6ODp555hluvfVWW4cmDux4LnC6PKGoqMgWIUkf0dLSwsKFC7ntttvw8/M7r+c6fAJ/nMFg6PK92Ww+5TaR7nL//fezb98+NmzYYOtQxAGVlJTwwAMP8NVXX+Hh4WHrcMSBmUwmRo8ezbPPPgvAiBEj+Pbbb3nttdeUwEu3+vDDD3n33Xd5//33GTRoEHv27GHevHlERkZy11132To8cXDKE6Q3GY1GbrnlFkwmE6+++up5P9/hE/jg4GCcnZ1PqbaXl5efcrVNpDv86le/4rPPPiMjI4OoqChbhyMOaOfOnZSXlzNq1CjrbR0dHWRkZLB48WJaW1txdna2YYTiKCIiIhg4cGCX29LS0vjoo49sFJE4qocffpiFCxdyyy23ADBkyBCKiopYtGiREnjpMeHh4YClEh8REWG9XXmC9BSj0chNN91EQUEBq1evPu/qO/SBHng3NzdGjRrFypUru9y+cuVKJkyYYKOoxBGZzWbuv/9+Pv74Y1avXk1cXJytQxIHNX36dPbv38+ePXusX6NHj+ZHP/oRe/bsUfIu3WbixImnbIeZnZ1NbGysjSISR9XU1ISTU9fTUmdnZ20jJz0qLi6O8PDwLnlCW1sb69atU54g3e548p6Tk8OqVasICgq6oOM4fAUeYP78+dxxxx2MHj2a8ePHs2TJEoqLi/nFL35h69DEgdx33328//77/Oc//8HX19c668Pf3x9PT08bRyeOxNfX95S1Fby9vQkKCtKaC9KtHnzwQSZMmMCzzz7LTTfdxLZt21iyZAlLliyxdWjiYK655hqeeeYZYmJiGDRoELt37+bll1/mpz/9qa1DEzvX0NBAbm6u9fuCggL27NlDYGAgMTExzJs3j2effZakpCSSkpJ49tln8fLy4rbbbrNh1GKPzjbWIiMjueGGG9i1axdLly6lo6PDmisEBgbi5uZ27i9k7iP+8pe/mGNjY81ubm7mkSNHmtetW2frkMTBAKf9+sc//mHr0KQPmDp1qvmBBx6wdRjigD7//HPz4MGDze7u7ubU1FTzkiVLbB2SOKC6ujrzAw88YI6JiTF7eHiY4+PjzY899pi5tbXV1qGJnVuzZs1pz8/uuusus9lsNptMJvMTTzxhDg8PN7u7u5unTJli3r9/v22DFrt0trFWUFBwxlxhzZo15/U6fWIfeBERERERERF75/A98CIiIiIiIiKOQAm8iIiIiIiIiB1QAi8iIiIiIiJiB5TAi4iIiIiIiNiBPrGN3HEmk4nDhw/j6+uLwWCwdTgiIiIiIiLi4MxmM/X19URGRuLkdHE19D6VwB8+fJjo6GhbhyEiIiIiIiJ9TElJCVFRURd1jD6VwPv6+gJQUFBAYGCgjaMRR2Y0Gvnqq6+YNWsWrq6utg5HHJjGmvQWjTXpLRpr0ls01qS3VFdXExcXZ81HL0afSuCPT5v39fXFz8/PxtGIIzMajXh5eeHn56cPBOlRGmvSWzTWpLdorElv0ViT3mI0GgG6pY1bi9iJiIiIiIiI2AEl8CIiIiIiIiJ2QAm8iIiIiIiIiB1QAi8iIiIiIiJiB5TAi4iIiIiIiNgBJfAiIiIiIiIidkAJvIiIiIiIiIgdUAIvIiIiIiIiYgeUwIuIiIiISJ9lNpu59957CQwMxGAwsGfPHtLT05k3b56tQxM5hRJ4ERERERHps7788kvefPNNli5dypEjRxg8eLBN4rj22muJiYnBw8ODiIgI7rjjDg4fPnzK4958802GDh2Kh4cH4eHh3H///Wc9bllZGXfccQfh4eF4e3szcuRI/u///q/LYwwGA59++ukpz/3xj3/M3LlzL+bHkm7mYusAREREREREbCU/P5+IiAgmTJhg0zimTZvGo48+SkREBKWlpTz00EPccMMNbNq0yfqYl19+mZdeeokXX3yRsWPH0tLSQn5+/lmPe8cdd1BbW8tnn31GcHAw77//PjfffDM7duxgxIgRPf1jSTdTBV5ERERERPqkP/7xj8ybN4/i4mIMBgMDBgw47eNWrFiBv78/b7/9do/F8uCDDzJu3DhiY2OZMGECCxcuZMuWLRiNRgCOHTvG448/zttvv81tt91GQkICgwYN4pprrjnrcTdv3syvfvUrxowZQ3x8PI8//jgBAQHs2rXrvOIrLCzEYDCc8pWenn6hP7JcACXwIiIiIiLSJ91zzz088cQTREVFceTIEbZv337KYz744ANuuukm3n77be68884zHsvHx+esX7Nnzz7nuKqrq3nvvfeYMGECrq6uAKxcuRKTyURpaSlpaWlERUVx0003UVJSctZjTZo0iQ8//JDq6mpMJhMffPABra2t5514R0dHc+TIEevX7t27CQoKYsqUKed1HLk4mkIvIiIiIiJ9kre3N76+vjg7OxMeHn7K/a+++iqPPvoo//nPf5g2bdpZj7Vnz56z3u/p6fm98SxYsIDFixfT1NTEuHHjWLp0qfW+/Px8TCYTzz77LH/84x/x9/fn8ccfZ+bMmezbtw83N7fTHvPDDz/k5ptvJigoCBcXF7y8vPjkk09ISEjo8rhbb70VZ2fnLre1trYyZ84cgC6/o5aWFubOncv48eN58sknv/fnku6jBF5EREREROQ7PvroI44ePcqGDRsYM2bM9z4+MTHxol/z4Ycf5u6776aoqIinnnqKO++8k6VLl2IwGDCZTBiNRv70pz8xa9YsAP75z38SHh7OmjVruOKKK057zMcff5xjx46xatUqgoOD+fTTT7nxxhtZv349Q4YMsT7uD3/4AzNmzOjy3AULFtDR0XHKMe+++27q6+tZuXIlTk6a1N2b7CqBz8jI4MUXX2Tnzp0cOXKETz75RKsiioiIiIhItxs+fDi7du3iH//4B5dddhkGg+Gsj/fx8Tnr/ZMnT2b58uVnfUxwcDDBwcEkJyeTlpZGdHQ0W7ZsYfz48URERAAwcOBA6+NDQkIIDg6muLj4tMfLy8tj8eLFfPPNNwwaNAiAYcOGsX79ev7yl7/w17/+1frY8PDwUy5C+Pr6UlNT0+W2p59+mhUrVrBt2zZ8fX3P+vNI97OrBL6xsZFhw4bxk5/8hOuvv97W4YiIiIiIiINKSEjgpZdeIj09HWdnZxYvXnzWx3fHFPqTmc1mwDKNHWDixIkAZGVlERUVBVh65SsrK4mNjT3tMZqamgBOqZI7OztjMpnOKx6wzEr43e9+x/Lly0+Zgi+9w64S+NmzZ5/X4g8iIiIiIiIXKjk5mTVr1pCeno6LiwuvvPLKGR97MVPot23bxrZt25g0aRL9+vUjPz+f3/72tyQkJDB+/HhrLNdddx0PPPAAS5Yswc/Pj0ceeYTU1FRrf35paSnTp0/n7bffZsyYMaSmppKYmMjPf/5zfv/73xMUFMSnn37KypUru/TXn4tvvvmGO++8kwULFjBo0CDKysoAcHNzIzAw8IJ/djk/dpXAn6/W1lbrFSuAuro6AIxGo3U7BpGecHx8aZxJT9NYk55m7DDx752l/H1DIf44ETv0GIOi+tk6LHFgel+T3nJ8jB3v8T55zJnNZmvPeXx8PF9++SUzZ87EYDDwwgsvdHssLi4ufPTRRzzxxBM0NjYSERHBrFmzeOedd3BycrLG9sYbb/DQQw8xZ84cnJycmDx5Mp9//rk1/qamJrKysqirq7M+5z//+Q+PPfYY11xzDQ0NDSQkJPDGG28wc+bMLj9ze3v7KX93JpPJ+nvYunUrTU1NPP300zz99NPWx0yZMoVVq1Z1++/EkXTn+5nBfHxuhp0xGAzf2wP/5JNP8tRTT51y+/vvv4+Xl1cPRiciImLfzGbYW21gWbET5S0n+j4NmLksxMxV0Sb6udswQBERETvR1NTEbbfdRm1tLX5+fhd1LIdO4E9XgT++f2FQUFAvRCl9ldFoZOXKlcycOdO6d6dIT9BYk56wvfAYL3yVzZ6SWgACvV25e0IMK3flsKfK0kfp5uLEneNi+MWUOPw9Nfak++h9TXqLxpr0lqqqKiIiIrolgXfoKfTu7u64u59aHnB1ddUfqfQKjTXpLRpr0h2yj9bz/PJMvs4sB8DLzZl7Jsfzs8lxeDhDVEMW/YeO58WvcthaUM3fNxTyrx2HuG9aIndNGICHq/P3vILIudP7mvQWjTXpad05vhw6gRcREZHvd6S2mZe/yuajXYcwmcHZycCtY6L59fQkQn09gBP9e8Oi/Png3nGszargueWZZB2tZ9HyTN7aVMj8WSn8YER/nJ3OvtWSiIiIXBi7SuAbGhrIzc21fl9QUMCePXsIDAwkJibGhpGJiIjYn9pmI6+tzeMfGwtobbdsJzR7cDgPX5FCfMiZ9zM2GAxMSw1lSnIIn+wu5eWvsjhc28JD/97L39fns+DKVNJTQr53z2QRERE5P3aVwO/YscO6RQLA/PnzAbjrrrt48803bRSViIiIfWkxdvDO5iIWr8mlttlSWR8TF8jC2amMjDn3FeadnQzcMCqKq4dG8NamQv6yJpfMsnp+8uZ2xsUHsnB2GsOjA3ropxAREel77CqBT09Px07X3BMREbG5DpOZT3eX8vLKbEprmgFIDvNhwZWpXJ4aesEVcw9XZ34+NYFbLovh1bW5/GNTIVvyq5n7l43MGRLBQ1ekEBfs3Z0/ioiISJ9kVwm8iIiInD+z2cza7AqeX55JZlk9ABH+Hjw4M5nrR0Z1W8+6v5crj1yVxl0TBvDySktP/bL9R/jy2zJuHRPDr6cnEeKrvedEREQulBJ4ERERB7bvUA2Lvshkc34VAH4eLvxyWiI/7sFV4yMDPPn9jcO4Z3IcL6zIYnVmOe9sKeKjXYf42eR4fjYlHh93nYKIiIicL316ioiIOKDCykZe/CqLZfuOAJZ92388YQC/TE8gwMutV2JIDffjf398GVvyq1i0PJO9JTX88esc3ttaxK+nJ3HrmBhcnZ16JRYRERFHoAReRETEgVQ2tPLnr3N4b2sx7SYzBgP8YER/5s9MJqqfl01iGhcfxKe/nMDyb8p48cssCiob+e1/vuV/NxTw8BWpXDUkXCvWi4iInAMl8CIiIg6gsbWdv68vYElGHo1tHQCkp4Sw4MpU0iL8bBydZeu5q4ZEMHNgGB9sL+GPq3IorGrivvd3MSzKn4Wz0xifEGTrMEVERC5pSuBFRETsmLHDZE2IKxtaARgW5c+C2alMSAi2cXSncnV24o5xsfxwRH/rBYe9h2q59fUtl9QFBxERkUuREngRERE7ZDabu0xJBxgQ5GU3U9K93V14YEYSt42N4c+rc3h/azFrsypYl13BD0dEMX9WMv0DPG0dpoiIyCVFCbyIiIid2dq5KNyekhoAgrzdeGCGfS4KF+Lrzu+uG8xPJ8ZZF937aNchPt93uNcX3RMREbnUKYEXERGxE1ll9Ty/IpPVmeUAeLk5O8y2bAOCvfnLbSO5d3INi5YfZEt+NUsy8vlgW3GPb3snIiJiL+z7015ERKQPOFzTzMsrs/lo1yHMZnBxMnDrmBh+NT2RUF8PW4fXrYZFB/DPn41jbXYFzy/PJLOsnueWZ/LWpkIenJnM9SOjcHa6tNsDREREeooSeBERkUtUbZORV9fm8o9NhbS1mwCYMySCh65IIS7Y28bR9RyDwcC0lFCmJIXw6e5SXl6ZTWlNM7/5v328sb6ABbNTmJYSesn3+YuIiHQ3JfAiIiKXmBZjB29tKuQva3Kpa2kHYGxcII9clcbw6ADbBteLnJ0MXD8qijlDI3hncxGL1+SSdbSen765gzFxgTwyO5URMf1sHaaIiEivUQIvchGMHSaKqprILW8gr+L4VyPFVY0EOjvTEXWEq4dF4eZiX4tKiYhtdJjMfLK7lJe/yuJwbQsAKWG+LJydSnpKSJ+tOHu4OvOzKfHcNDqaV9fl8o+NhWwrqOYHr25i9uBwHr4ihfgQH1uHKSJ2oqS6ife2FvPp7kO0tTrzUeVOEkP9SAj1JiHEh8RQH4K83frse65c2pTAi5yD2majJTkvtyTox5P14qom2k3m0z7nGAbm/3s/zy7P4ubLorl1TAxR/bx6OXIRsQdms5m1WRU8v8LS8w0Q4e/B/JnJ/FA931b+Xq48MjuNu8YP4A+dawIs/6aMrw4c5ZbLonlgRpLDrQkgIt2jw2RmXXY572wuYm12BWbr6ZuBjJwqMnKqujze39OVhBBLQp8Q6mP5b4g3MYFeuNjZbh/iWJTAi3Qymcwcrm0mr6LxREW9M2GvbGg94/O83Zy7vLEnhPgQ5uvK60s3savWi6P1rfxlTR6vrc3j8tRQbh8Xy5SkEJx0Qi4iwJ6SGp7rXHUdwM/DhfumJXKXVl0/o8gAT168cRj3TI7nhRWZfJ1Zzntbi/lkdyn3TI7nXgdYlV9EukdlQyv/2lHCe1uKKa1ptt4+OSmYW0b3J2vfTsISh1JQ1WydSVlyrInaZiO7imvYVVzT5XiuzgZig7xPJPedFfv4EG98PVx7+aeTvkifbtLntBg7yD+pip5X0UheeQP5lQ20GE1nfF64nweJoZ1JujVh9yHMz/2UKVZGo5Ero828dM9kMnKreXdLMRtyK1l1sJxVB8uJCfTiR2NjuHF0NIHe2t9YpC8qqGzk919msWz/EQDcXJz4yYQB/DI9EX8vnQSei5RwX9748WVsza9i0fJM9pTU8Kevc3hvSxG/np7ErWNi1MIk0geZzWZ2Fh3jnS1FLN9fRluH5fzO39OVm0ZHcdvYWOKCvTEajbQXwlWjo3B1PfG+22LsoLCqkbzyk88XG8grb6TZ2EFueQO55Q3A0S6vG+bnbj0/PPl8McLfQ9PxpdsogReHZDabqWpss1bQT+5RL61pPmnaVFeuzgbigk9cUT3eCxUf4nNB1RxXZyeuHBzBlYMjyKto4L0txfzfzhKKq5tYtDyTl1Zmc/WQCG4fH8uI6AC9uYv0ARX1rfzp6xz+ua2YdpMZgwGuHxnF/JnJRAZ42jo8uzQ2PohPfjmBFd+U8eKXWeRXNvLEZ9/yvxsLeGhWCnOGRGjWk0gf0NDazqe7S3l3S5G1HQks21PeMS6Wq4dGnNPMJg9XZ1LD/UgN9+tyu8lkpqyupevaR51Jfnl9K0frLF+b8rpOx/dycya+s2KfeNKU/NggL820kvOmBF7sWnuHieLqphN96eUnquq1zcYzPs/f0/VENb1z6lNCiA9R/Tx7rK8pIcSH314zkIevSOHzvYd5Z0sR+0tr+Xh3KR/vLmVghB93jI/luuGReLnpT1PE0TS0tvN6Rj6vr8+nqa0DgMtTQ/nNlSmnnCTK+TMYDMweEsGMgWF8uL2EV1blUFTVxK/+uZvX1+ez8MpUJiQG2zpMEekBWWX1vLuliE92l9LQatm5w8PVieuG9ef2cbEMifLvltdxcjIQGeBJZIAnU5JDutxX12K0zPA8KbnPLW+gqKqJprYOvimt45vSuq7HM0B0oFeXNszjyb1maMqZKEsQu1B//E3xpDfEvIpGiqoaMXacvpxuMEB0P6/TLkASaMOVRT3dnLnpsmhuuiyavSU1vLOliM/3HubAkToe+Xg/zy47yPWjorh9XAyJob42iVFEuo+xw8QH24r549c5VDa0AZZq0COzUxkXH2Tj6ByPq7MTt4+L5Qcj+vPGhgL+ti6PfYdque3vW5maHMLC2amkReiCiYi9a2s3seLbMt7dUsS2gmrr7fHB3tw+LpbrR0b1ajuSn4crw6MDTtnq03i82PSdhZBzyxuob2mnqKqJoqomVmd2PV4/L1drgenkWaFR/by0sGkfpwReLhlms5kjtS2nXe39aN2ZF5HzdD0xLen4G1xiqA8Dgrwv+WlJw6IDGBYdwONz0vi/nYd4d0sRhVVNvLmpkDc3FTIuPpA7xg1g1qAwXLXiqYhdMZvNfLG/jBe/zKSwqgmAuGBvHr4ihdmDw9Uy08O83V349fQkbhsbw+LVuby7pYh12RVk5FTwg+H9mT8rWTuDiNih0ppm3t9axIfbS6wXRZ2dDMwaGMbt42KZkBB0Sb2/ujo7Wc9RT2Y2m6lsaDupMHViXabSmmaONRnZXniM7YXHujzPzdnJ0u4ZetK5b4hlET1vLd7ZJ+hfWXpdi7GDoqqmU6a851U0WKeVnk6or3uXK5DHq+oRfh5239sY4OXGPZPj+enEODbmVfLO5iJWHTzKlvxqtuRXE+Lrzq2XRXPr2Bgi/NUjK3Kp25xXxXPLD7L3UC0AwT7uPDAjiVsui9bFuF4W7OPOk9cO4icTB/Dil1ks3XeEj3eXsnTfEe6aEMsv0xPpp6mqIpc0k8lMRk4F724pYnVmOcd38A3zc+eWy2K4dUwM4f72tYWkwWAgxNedEF/3U2ZjNbd1kF95IqE/fq6cX9FAa7uJrKP1ZB2tP+WYkf4ep+yMlBDqQ6jvqQsui/1SAi895lhjG7mnSdJLqps4w9bpuDgZiA3yOmXKe3yID/6ejr8qs5OTgclJIUxOCuFwTTMfbCvmn9tLLIterc5l8ZpcZqSFccf4WCYmBNv9hQsRR3PwSB3Pr8hkbVYFYNlm8t4pCdwzOU6VERuLDfJm8W0juXdKDc8tz2RTXhWvry/gg+0l/DI9kZ9M1LZ9Ipea6sY2/r2jhPe2FlNc3WS9fWJiELePjWXGQMecoejp5sygSH8GRXbt3TeZzJTWNJ90fm05t86vaKCyoY3DtS0crm1hfU5ll+f5uLt8p6XUu3MRPW/t1GGHdDYhF6XDZObQsePV9K5bs1U3tp3xeb4eLl37ejq32ogJ9HLIN+ILERngyfxZKfxqehJffXuUd7YUsiW/mq8OHOWrA0cZEOTF7eNiuWFUFAFeqh6J2FJpTTMvf5XNx7sPYTZbLkbeNjaGX12eRIivu63Dk5MMjQrgvXvGkpFTyXPLM60XXd7aVMj8mclcPypK/aUiNmQ2m9ldUsO7m4tYuv8Ibe2WLeB8PVy4YVQUPxobS2Koz/ccxTE5ORmIDvQiOtCLaSmhXe6raWrr0n6aV26p2BdVN9HQ2s7eQ7XWWWHHOTsZiA30Iv47M1wTQ3y0neklTAm8nJPG1nYKKhtP2TajoKrR+sZ6Ov0DPLtc6Ts+BT7ER1N5zpWrsxNzhkYwZ2gEOUfreW9rMR/tPERhVRNPLzvIi19mcc2wSO4YF8uw7yycIiI9q6apjVfX5vHmpkLre+GcoRE8PCuFAcHeNo5OzsRgMDA1OYTJicF8uqeUl77KprSmmd98tI/X1+ez4MpUpqeF6nNKpBc1tbXznz2HeXdLEd8ePrFa++D+ftwxLpZrhmmXnrMJ8HJjVKwbo2L7dbm9tb2D4uOtq9+Zkt/Q2k5+ZSP5lY2sOtj1eME+bpbEvrPQdrzw1j/AUzNAbUx/BWJlNpspr289Zcp7XnkDh2tbzvg8d5fji2n4nLQlmzdxwd56o+1mSWG+PHntIB6+IoXP9h7mnc1FHDhSx//tPMT/7TzEkP7+1g85TzdNBRXpKS3GDt7cVMira3Kpa7FsWTQuPpBHZqfpQpodcXIy8MORUVw1JIJ3txSxeE0uOeUN3PP2DsYMCGThVamMjOn3/QcSkQuWW17Pu1uK+WjXIeo730/dXZy4emgkd4yPZViUvy6mXQR3F2eSwnxJCuu6s9F3z/tzT5qSf6S2hcqGNiobqrus8G85nlNnYt91Sn58sI/OPXuJsqs+qK3dRHF1I7nlp+6dfnzvzNP57pW4hFDLFJvIAE9NN+xl3u4u3Domhlsuiz4xzWzfEfaX1vKbj/bx9LID3DAqmtvHxRAf0jenmYn0hA6TmY92HeIPK7M50nlhMzXclwWzU0lPDtFJpp3ycHXmnsnx3Dg6mr+uy+N/NxSwrbCaH766iSsHhfPwlSmnrCAtIhfO2GFi5YGjvLO5iM35VdbbY4O8uH2spT1Qi0v2LIPBQJifB2F+HkxIDO5yX0NrOwUnT8c/PvO2spHWdhMHj9Rx8EjdKcc8PvM28TtT8oN9bLd9syNSAu/AapuMlkUuTtML03GGVeScDJaFfrpOebck7OqzvvQYDAZGxvRjZEw/Hr96IP/eUcK7W4soqW7mfzcW8L8bC5iUGMzt42KYkRaGi9YXELkgZrOZNVnlPL88y7ryb/8AT+bPTGbuiP66iOkg/D1dWXBlKneOj+WVlTn8e2cJK74tY+XBo9x8WTTzpicR6mdfK12LXEqO1Dbzz20lfLCtmPJ6yxbBTgaYnhbGHeNimZSoBXovBT7uLgyJ8mdIVNdF9E5e+yq3/MT6V7kVDdQ0GSmtaaa0ppmM7Iouz/PzcDlpcWqtfXWxlMDbueOrUZ485T23/MRqlGdyptUoY4K8cHfR9Bd7FOjtxs+nJvCzyfHWrVa+zixnQ24lG3IrCffz4JYx0dw6JoYwnYCKnLPdxcdYtDzTOo3Q39OV+6clcsf4WK1a7qAi/D15/oah3D05jhdWZLHq4FHe31rMJ7tKuWdyHPdOicfXQws8iZwLk8nMprwq3tlSyKqD5dYiUrCPO7d2npdEBmiLXHvg7GQgNsib2CBvLk8N63JfdWPbabeILqluoq6lnd3FNewurunynOO7T3VZ2DrUsqe9n95jz0gJvJ34vv0gzyTC36PLla7jfxxhflpEzlE5ORlITwklPSWUQ8ea+Oe2Yj7cXkJZXQuvrMrhz6tzmTXQcqV7fEKQxoHIGeRXNPD7r7L4Yn8ZAG4uTvxk4gB+OTVRq/P2Eclhvvz9rtFsK6hm0fKD7C6u4c+rc3lvazG/ujyRH42N1RZMImdQ22Tk3zstW8AVVDZabx8bF8gd42OZNTBcfz8OJNDbjUDvQC4bENjl9hZjB4VVjd/ZrcpSvW82dnQm+o3A0S7PC/V1ty5+fXJyH+Hn0ednaSiBv4SYzWYqG9q6DOzjFfXSmuYzPs/N2YkBwd+5ehXiQ1yINz7ad7hPi+rnxcNXpPLA9GRWfFvGu5uL2FZYzfJvylj+TRkJId78aGws14+Kwt9TCYkIQHl9C3/6Ood/biuhw2TGyQDXj4ziwZnJqhL1UWPiAvn4vybw5bdlvLAii/zKRp76/AD/2FjIQ1ekcPWQiD5/Qily3L5DNbyzuYjP9h62Fpl83V344cj+/GhcLMnfWUxNHJuHqzOp4X6khvt1ud1kMlNW13JS1f5E3lNe32r9OnmNBABPV+euSX1nkj8gyLvPzIpTdmcDxg4TxdVNXQbr8cF7fDXj0wnwcrUsCvGdq1FR/TzV2yxn5ebixLXDIrl2WCSZZXW8t6WYj3cdIq+ikd8tPcALX2Yyd3h/bh8Xy+D+/t9/QBEH1NDazpKMfP6+Pp+mtg4ApqeG8psrU0kJ1wlnX2cwGLhycAQz0sL4cEcJr6zKobi6iV//czevZ+SzcHYqE7+zEJRIX9Hc1sHn+yxbwO07aa/xtAjLFnDXDY/EW0UlOYmTk4HIAE8iAzyZnBTS5b66FiP5XWYdW3KmwkpL1f6b0jq+Ke26iJ7BANH9vL7TImzZHSvQwRZE1F9SDzrT4CuqasTYcfpF5L47+BJDTwxARxt8Yhup4X78v7mDWTA7lU92l/LeliIyy+r5YHsJH2wvYXh0ALePi+XqoRF95kqm9G1t7Sb+ua2YP32dQ1WjZe2Q4dEBPDI7lbHxQTaOTi41Ls5O/GhsLD8Y0Z831hfwt4x89pfW8qO/b2VKcggLrkxhUKQuhErfkF/RwHtbi/n3jhJrEcrN2Yk5QyO4fVwsI2MC1Kon583Pw5Xh0QEM/862rMYOEyXVTeRVNHZue3diC7z6lnaKq5sorm5iTVbXRfT6ebl2qdbbexFUCfxFMpnMHKlr6Zqkd059P7665ulo+ofYmo+7C3eMi+X2sTHsKDrGu1uK+GL/EfaU1LCnpIanlx3gptHR/GhsDLFB3rYOV6Tbmc1mlu47wu+/yqKoqgmA+GBvHr4ihSsHh+ukU87Ky82FX01P4raxMZ198UVkZFewPqeCucP7M39mMtGBXrYOU6TbtXeYWHWwnHe3FLEht9J6e3SgJz8aG8uNo6II8nG3YYTiqFydLXvQx4f4MHPgiUX0ztSGnFfRwKFjzRxrMrKj6Bg7io51Od7xNuSTc7HEEF/iQ7wv6Rkjl25kZ/Dqq6/y4osvcuTIEQYNGsQrr7zC5MmTe/x1z7QAQ35Fo3Wq5emcbgGGxFAfwrUAg1wiDAYDlw2wLDryP1cP5MPtJby/tZjSmmaWZOSzJCOfKckh3D42hstTQ+3ySqXId23Kq+S55ZnWqZ7BPu7Mm5HEzZdFa0sbOS9BPu48ee0gfjoxjt9/lcVnew/zye5Slu07wh3jY7l/WqL2sxaHcLSuhQ+2lfDPbcWU1bUAlpmjl6eEcvu4WKYkh2hLTbEJg8FAiK87Ib7ujPvOzLnmtg4KKhstW2ufZiHw7KMNZB9tOOWYl/JC4HaVwH/44YfMmzePV199lYkTJ/K3v/2N2bNnc+DAAWJiYrrlNaob205MyTjpH7nkWBPm08961xYI4jCCfdy5b1oiv5iawNosy9X1tdkVZHR+Rfp7cNvYGG66LJpQX21FJ/bn4JE6nlueybrOPWq93Zz5+dQE7p4Ud0lfbZdLX0yQF3+6dQQ/mxzPcysOsjG3ijc2FPCv7SX8Ij2Bn06Mw9NNM+zEvpjNZjbnV/HuliK++vYo7Z1bwAV5u3HzZZYt4DTTRC5lnm7ODIz0Y2DkqYvofXcr7uO5X2VDG0dqWzhS29JllglYzhtOJPTe1vwvNsi713ZVsKuzlZdffpm7776be+65B4BXXnmFL7/8ktdee41Fixad83HaO0wUVjaedprFsSbjGZ/n6+HynZXeLVdkYgK9VLERh+LsZGB6WhjT08IormrivW1F/HvHIQ7XtvD7r7J5ZVUOVw4O5/ZxsYyNC7T5lUiR73PoWBMvf5XNJ3tKMZstF15vHxfL/ZcnEqypntKNhkT58+7dY1mfY5nlceBIHS9+mcXbmwt5cEYyN4yK0kwmueTVNhv5eNch3t1S1LnFl8Vl3deW+wAAJ0JJREFUA/px+7hYrhwcjruLLkiJ/XJyMhAd6EV0oBfpKV3vq2lq+85C45aKfVF1E41tHew7VNtlsUawnDvHBJ60iN5JM7ADvLp3FtZFJfDHjh3jrbfeIicnh4iICO666y6io6O7K7Yu2tra2LlzJwsXLuxy+6xZs9i0adNpn9Pa2kpr64k+9Lo6y2qFE15YR4fLmbcC6h/gQXywNwkh3sSHeFv/P8jb7fSJiqkDo+nM0+il7zEajV3+a88i/Fx5aEYiv5oax4pvj/L+9kPsKq5h6b4jLN13hMQQb24bE83c4RH4asZJr3OksdYTjjW18beMAt7eUmxdPHTO4HAenJlIbGfVSL+7c6Oxdn7GxwXwyS/G8vn+Ml5ZlcOhmhYWfryfv6/P56GZSVyeGqKLn2egsWY73x6u4/1tJXy+7wjNRssWcN5uzlw3PILbLos+sSOH2YSx8357prEmp+PtamBopA9DI3263N7WbtlJLL+ysXMafqPl/ysbaWy1TNUvqGxk1cHyLs8L9HYlyusMU7kvgMFsPtPE8FNFRkayf/9+goKCKCgoYMKECQAMGTKEgwcPUl9fz5YtW0hNTe22AI87fPgw/fv3Z+PGjdbXBXj22Wd56623yMrKOuU5Tz75JE899dQpt0fP+xfuHp6EekKop5kwTwjzNBPqaSbUAzTDTeTsDjXCxjIndlQaaDNZTkDdnMyMDjEzKcxEf615JzbW1gEZZQZWlTrR3GEZo0l+Jq6NNRHj8z1PFulm7SbYcNTAV4ecaGy3jMd4XzPXxnYQpx0KxcaMJthdZWBjmROFDScuKkV4mpkYbuKyYDMedjVnV6R3mc1QZ4SjzQaONkN553+PNhuoabP8TZlamyh55SZqa2vx8/P7niOe3Xkl8E5OTpSVlREaGsqtt95KWVkZy5Ytw8vLi9bWVm644QY8PDz497//fVFBnc7xBH7Tpk2MHz/eevszzzzDO++8Q2Zm5inPOV0FPjo6ml2ZBQwcEKlF5KTHGI1GVq5cycyZM3F1ddyqdH2LkU/3HOG9bSVdptiNjAngtjHRXDkoDPde6gfqq/rKWDtXHSYzH+8+zB9X53K0zvL+nxrmw8NXJDM5MUgVz4ugsXbx6luMLFlfyJubi2jprF7OTAvlv2cmkRCiK5/Haaz1jqLqJv65rYSPdx+2tpC6Ohu4YmAYt42JZnSs428Bp7EmPa2xtZ3CqiZ25x3ip9OHd0sCf8HX07Zu3crf//53vLwsUxDd3d15/PHHueGGGy4qoDMJDg7G2dmZsrKyLreXl5cTFhZ22ue4u7vj7n5qb2NMsC/u7loRVnqeq6urQ38gBLq68tPJCfxkUjxbC6p5Z0sRX35Txq7iGnYV1/Ds8izrVnRa5KZnOfpY+z5ms5mvD5bzwpeZ1tVk+wd48t+zkpk7vL8u2Hajvj7WLkagqysLrxrIjyfG88qqbP61o4SVB8tZnVXBTaOjmTcjiTA/LRB6nMZa9+swmVmdaVmk9vhinmB5v7xtbAw3jY4mxLfvrQuisSY9JcDVleE+nkR34+y/807gj1+Ja21tPSVxDgsLo6Ki4nRPu2hubm6MGjWKlStX8oMf/MB6+8qVK7nuuut65DVF5NwYDAbGxQcxLj6I8voWPtxWwvvbijlS28Jf1+Xxt4w80pNDuGN8LFOTQ7XNjHSrXcXHeO6LTLYVVgMQ4OXK/dMSuX1cLB6u6omSS0+4vwfPXT+UuyfF8cKXWaw8cJR/bivmk92HuGdSPD+fGq81RaRbVdS38q8dJ7aJBcsWcFOTQ7h9bCzTUvXZLGIvzjuBnz59Oi4uLtTV1ZGdnc2gQYOs9xUXFxMcHNytAZ5s/vz53HHHHYwePZrx48ezZMkSiouL+cUvftFjryki5yfU14NfTU/iv9ITWJ1ZzjtbilifU8marArWZFXQP8CTH42zXOXX6t9yMfIqGnhxRRYrvrXMzHJ3ceKnk+L4xdQE/D2V/MilLynMl9fvHM32wmqeW57JzqJjLF6Ty/vbirl/WiI/Ghejlb7lgpnNZrYVVPPu1mJWfHPEupBnPy9XbhodzW1jY4gNUuuGiL05rwT+iSee6PL98enzx33++edMnjz54qM6g5tvvpmqqip+97vfceTIEQYPHswXX3xBbGxsj72miFwYF2cnZg0KZ9agcAoqG3l/axH/2nGI0ppmXliRxSsrc5g9JJw7xsUyKrafw/fZSfcpr2vhla9z+HB7CR0mM04GuHFUNPNmJhHhf+YdRkQuVZcNCOT/fjGerw4c5YUVmeRVNPK7pQf4x6YCHpqVwjVDtW6PnLv6FiOf7i7lnS1F1pYisKxPc/u4WK4aEqHZSSJ27LwWsbN3dXV1+Pv7U1lZSVBQkK3DEQdmNBr54osvuOqqq9RTdZIWYwdL9x3hnS1F7C2psd6eGu7L7eNimTuiPz7uWur2fPSlsVbfYmRJRj5/X19As9GydeeMtFB+c2UqyWFayrun9aWxZkvtHSb+vfMQf1iZTXm9ZSHGwf39WHhlGpOSem6W46VEY+3CHDxSx7tbivh0dymNbZb3SE9XZ+aOiORHY2MZ3N/fxhFeejTWpLdUVVURHBxs20XsRETOl4erMzeMiuKGUVHsP1TLu1uK+M/eUjLL6nn80294bnkmPxjRn9vHxZ7Ya1b6vLZ2E+9vLeLPq3OpamwDYERMAI/MTmNMXKCNoxPpXi7OTtw6JobrhkfyvxsK+Ou6fL4preP2N7YyOSmYBVemKhETq9b2DpbvL+PdLUXsKDpmvT0hxJs7xsXyw1FR+Gk9BRGHogReRGxiSJQ/z98wlEevSuOjXYd4d0sR+ZWNvLOliHe2FDFmQCC3j4/lykHhuGkruj7JZDKzdP8Rfv9lFsXVTQDEB3vzmytTuGJQuNouxKF5ublw/+VJ3DY2lj+vzuHdzvVE1uds4LrhkTw0K0W7e/RhJdVNvL+tmH9tL7Fe2HRxMnDFoHBuHxfLuPhAvUeKOCgl8CJiU/5ervx0Uhw/mTiATXlVvLuliK8OHGVbYTXbCqsJ9nHj5suiuW1sLP0D1N/cV2zMreS55ZnsL60FIMTXnXkzkvj/7d17XFV1vv/x9+Z+EVRAQAR2KCjeUVDxfklJK8tp0iyxzrGZX87RRrpqU6eaOaVpk3lOlo0zTc6AdrfSygte0khRRCFTES+4AVEQRVBRQNi/PyjOeLrMWLAXe+/X8/HgD5a690cfH7brvb5rfT93JUTIzZULOnAeAb4eemZiT80YGqU/bjysj3NK9HFOiT7bf0rJiWY9OCZGAb6MxnUG9Q1WbcsvU1pmobYeLtO3D8GG+nvpnkGRmjogQsGMIQQcHgEeQKtgMpk0NDpIQ6ODdLryit7aXai3swpVWlWjV7ce07LPj2lMbLCSE80aEdOBDZ0c1IGSSi1cf1jbv5lP3MbTTQ+M6Kz7h0fJx4P/suC8IgJ89N9T++nXwztr4fo8fXGkXG9+eULv7ynWzFFdNGNolLw92JjMEZ29WKN39xRr5S6LiisuNx0fHhOk5ESzbowN5sIm4EQ4GwLQ6oS29dJD47pq9phobTpYqrRdFn159Kw2HSrTpkNligzw0bRBkZqcEMHKk4MoOletxen5+ijnpKxWyd3VpGmDzHpwTLQCGTcINOnVqa1S7x+kL46c0Qvr8nSgpEovbjisv+04oYfGddXk+HDCnAOwWq3aW1ih1J0Wfbb/tGrrGyRJbb3dNTk+XNMSzYoKYgQc4IwI8ABaLXdXF03o3VETenfUsTMXtTKzUO9lF6nwXLUWrMvTS+n5urV3RyUPNqtfRDue97NDFZdq9erWo/r7TkvTCeptfcP0SFJX5hMDP2J4TAcN7RKktV+V6MUNh1VccVlPrN6vv3xxXI+Pj1VSjxA+E+3QpZqr+ijnpFJ3WpR3+kLT8b7hbZWcaNbEvmGMgAOcHAEegF3o0qGNnp7YQ4/e1FVrc0uUmmnR1yertHrfSa3ed1I9w/yVnGjW7XFh3GptBy7X1uvNHQVa9vkxXbhyVZI0NDpQ88Z3V+9wdtgG/hUuLibdHtdJ43uFamVmoV7ZckTHzlzSA6nZije31xMTYpVwA5Ma7EF+6QWlZVq0eu9JXaxp/Ez0dHPR7XFhSk40q094O2MLBNBqcJYLwK74eLjprgGRmpIQodxvRtGtzS3RgZIqPbF6v+Z/dki/7B+u5MRIRQcziq61uVrfoA/2Fuvl9CM6XXVFktSjo7/mTYjV8JggVgyBn8DTzVUzhkXpzoRwLd92XH/JOK5sS4XufH2nxvUI0dzx3fg8bIVqrzZow4HTSs20aHfBuabjnYN8NS3RrDv7h6utDyPgAFyLAA/ALplMJsVFtFNcRDs9eXN3vZ/duMHPibPVWrHjhFbsOKHBnQOVnGhWUs8QufNMqKGsVqs2HSrTovV5OlJ2UZIU3t5bjyZ10219w9iUEGgG/l7uevSmbpo+2Kwlm47o3T1FSj9Yqs2HSnXXgAiljO2qEHYpN9zJ85f11q5CvZ1VpPKLNZIkVxeTxnUP0fTBZg3pEsjFTAA/iAAPwO619/XQr0d01v3DopRxtFypmRZtPlSqncfPaufxswr289TUgZG6e2CEOrZlFJ2tZVsq9MK6Q8o6USFJaufjrtmjozV9sFmebjzLCTS3EH8vLbijt+4fFqVF6/O08WCp3tpdpA/3ndT9w6L0wMgu8vdiZdeWGhqs+uJouVJ3WrQlr1QN34yAC/bz1N0DI3X3wEiFtuXiCoB/jgAPwGG4uJg0omsHjejaQSXnL+ut3YV6a3eRyi7U6H82H9GrW49qbPfGUXRDuwSx6tvCjp25qEXr87ThQKkkycvdRTOGRmnmKMIDYAvRwW20/N4E7TlxTgvW5SnbUqFXtx7Tql2Fmj0mRsmJkVxEa2EVl2r1XnaRVu4qlOVsddPxIV0CNT3RrLE9uEMMwPUhwANwSGHtvPVIUjc9OCZGGw+eVupOi3YVnNOGA6XacKBUUUG+jaPo4iN4xrCZlVVd0cvf3L5b32CVi0maktB4+y4rTIDtJdwQoPdnDlb6wVItXJ+nY2cu6b8+Oag3vyzgMZYWYLValVN0XmmZhVr7VYlqrzZO2PDzctOd8eGaNsis6OA2BlcJwF4R4AE4NA83F93aJ0y39glTfukFrfxml9+C8kt67tNDenHDYd3Wt3GX374R7Ywu165duFKnP207rjcyCnS5rl6SNK5HiB6/qZtiQthACzCSyWRSUs9QjYkN1vvZxXp5U76KKy4r5Z0cLd9+XPMmxGpE1w5Gl2nXqmuvak1OidJ2NU5J+VbPMH9NTzTrNqakAGgGfIoAcBpdQ/z0+9t76fHxsfo4p3EU3aFTVXovu1jvZRerz7dzdvuEyduD20r/VTVX67Uys1BLtx7VuUu1kqR4c3vNmxCrAYywAloVN1cXTR0YqdvjOumvXxbo9c+P6eCpKt37190aFh2keRNi1asToxyvx9Gyi0rLtOiDvcVNYzEbLx531PREs+Ii2rEpHYBmQ4AH4HR8Pd10z6DGTe32Fp5XWqZFn351Sl8VV+rx97/Sc58c1OSECE0bFKnOHbjN8Yc0NFi19qsS/XHjYRWduyxJ6tzBV3PHxyqpRwgnrEAr5u3hqlmjo3X3wEgt3XJUqZknlHG0XLe+kqHb+obp0aRuigz0MbrMVquuvkHpB0uVlmnRjmNnm46bA32aHs9q7+thYIUAHBUBHoDTMplMije3V7y5vZ66pbve+2YUXdG5y3ojo0BvZBRoWHSQkhPNGts9WG5sNNQk40i5Xlh/qOk20WA/T6WM7aopCeH8OwF2JMDXQ09P7KF/H3qDXtp4WB/llGhNbonWfX1K0waZ9eCYaAW28TS6zFbjVOVlvbW7SG/vLlTZhcYRcC4m6cbuIUpONGt4NBukAmhZBHgAkBTYxlMzR3bRr4d31vb8M0rLtGjL4TJlHC1XxtFyhfp76e6BkZo6MMKp5yh/fbJSC9fn6Ysj5ZKkNp5umjmys2YMi+LZTsCORQT4aMnUfvrV8M5NP+MrdpzQ+9nFemBEZ90/3Hl/xq1Wq748elZpmRalHypV/Tcz4ILaeGrqgAjdPShSndoxohSAbTjnJzEA/ABXF5NGxwZrdGywis5V663dhXonq0inq67o5U35emXLESX1bFxpGdw50GluEy86V920OidJ7q4mJSea9eCYGAVwmyjgMHp1aqvU+wddc5fNS+n5+numRSljY3RXQoTT3GVTWV2n9/cWa2WmRcfLLzUdHxQVoOREs27qGSoPN+f4twDQehDgAeAHRAT46PHxsZozNkbrvz6ttEyLsk5U6LP9p/XZ/tPq0sFXyYlm3dE/XG29HXMU3blLtVq65ajSMi2qrW8chXR7XOPzsREBPB8LOKphMUFa02XYNftcPPnh13ojo0CP3xSrm3o67j4X+4srlZp5QmtyS3SlrvFzr42nm+7o30nJiWZ1ZaoGAAMR4AHgn/B0c9XtcZ10e1wn5Z2uUlqmRR/uPaljZy7p92sPatH6w7o9rnEUnaPs3ny5tr5ph+oLNY27KrNDNeBcXFxMuj2ukyb06qiVuyx6ZctRHT9zSTPTstU/sp2euLm7w0yauFJXr7W5JUrLtCi3uLLpeGyon6YPNmtSXCf5enLaDMB4fBIBwHWIDfXXc5N6a96E7vpw30ml7bTocOkFvZ1VpLezihQX0U7TE826pU9Hebnb3yi6q/UNTTOiS6saN2jqGeaveRNiNTyGGdGAM/Jwc9G/D43SnfHhWr79uP7yRYH2Fp7X5Nd3amz3EM0d300xdroqXVB+SSszLXovu1iVl+skSR6uLrq5d6imDzarf2R7h73TAIB9IsADwE/QxtNN0xPNSh4UqawTFUrLtGjd16eUU3ReOUXn9dyn/zuKzhzoa3S5/5TValX6wVIt2nBYR8suSpLC23vrsZu6aWKfMHZVBiA/L3c9ktRN0xPNWrL5iN7JKtKmQ6XakleqyfERShkXo45tW/9mblfrG7Q5r0xpmZamDTmlxs+8aYPMmpIQzs77AFotAjwA/Awmk0kDowI0MCpAZy700Lt7irRqV6FOnr+s5duPa/n24xrRtYOmJ5o1JjZYrq0wCO85cU4vrMvTHkuFJKm9j7seHBOjaYmR8nSzv7sIALSsYH8vzf9Fb80YGqUXN+Rpw4FSvbOnSB/lnNSMYVGaObJLq9wXpKzqit7OKtJbuwt1qvKKJMlkkkZ3C9b0RLNGdO3QKj+jAeAfEeABoJl08PPUrNHRmjmyi7bmlSltl0Xb8s9o+zdfndp56+6BEbprQKQ6+Bm/unO07IIWrj+s9IOlkiQvdxf9alhn/b+RneXv1fpOvgG0LtHBbfSn6QnKtlTohXWHlHWiQss+P6a3dhdq9uhoTR9sNvwioNVqVebxc0rLtGjDgdO6+s0IuEBfD00ZEKF7BkayIScAu0KAB4Bm5upi0tgeIRrbI0SWs5e0aleh3t1TpJPnL+uPG/P135uPaHyvjkoeFKmBUQE2f76ytOqKlmzK1ztZRWqwNtY7JSFCKWNjnHrGPYCfJt7cXu8+MFibD5Vp4fo8HSm7qOc+PaQ3vzyhR5K6alJcJ5s/hlN1pU6rs4uVtquw6bEgSUowt9f0wWaN7xVq+MUFAPgpCPAA0ILMgb564ubuemhcV322/5TSMi3aW3hea3NLtDa3RF1D2ig50axf9OskvxZe9a66Uqc/bTumNzIKmkYjJfUI0ePjYxUd3KZF3xuAYzOZGi9cjurWQR/sLdbi9HydPH9ZD7+bqz9/UaB5E2I1IiaoxS9YHiipVFqmRR/tK9HlunpJko+Hq37Rr3EEXPeO/i36/gDQ0gjwAGADXu6uuqN/uO7oH66vT1Zq5a7GE8z80ot6+uMDemFdnib166TkQWb1CGveE8yaq/VKyyzU0i1HVFHduMtyvLm9npgQqwQHGQEFoHVwc3XRXQMidVvfTnpzR4GWfX5Mh05V6b6/7taQLoF6YkJ39Q5v3lGUV+rq9dn+U0rNtGhf4fmm411D2mh6olmTbHCBFABshQAPADbWq1NbLbijj564ubtWZxcrNdOiY2cab7VftatQCeb2Sk40a0Lvn3eLZ0ODVWtyS/THjYdVXHFZktSlg6/mjo/VuB4hjEYC0GK8PVz1H6OidfeASL269aj+vtOiHcfOauLSDE3sG6ZHk7r+7AkdhWertXKXRe/uKWq6OOnuajL0ESUAaGkEeAAwiL+Xu/5taJTuG3LDNZss7bFUaI+lQv/1iUfTKLrr3WRpe/4ZvbAuTwdPVUmSQvw99dDYrrozPlxuri4t8dcBgO9o7+uhp27tofuG3KCX0/P1Yc5Jrc0t0fqvT2naILNmj4lW0HWMbKtvsGprXplSMy3afuSMrI170imsrZemJZo1JSGiVWwSCgAthQAPAAYzmUwa3CVQg7sENo05WrWrUKerruj1bcf0p+3HNLpbsJITIzWy64+Povv6ZKVeWJenjKONs439PN00c1QXzRgaJW8PNmwCYIyIAB8tvitOvxreWQvX52lb/hmt2HFC7+0p0gMju+j+YVHy9fzh09IzF2quGdP5rZFdOyi5FY/pBIDmRoAHgFYk2N9Lv70xRv8xqos255UpLdOiL46Ua0tembbklSm8vbemDTJrSkK4Av9h1aqoolpLNh/XmtwSSY23kU5PvEGzx0QrwNfDqL8OAFyjR5i//jZjoHYcLdeCdXnaf7JSi9Pz9fedFqWMjdFdAyKafq/VatXugsa7k9Z9fUp19Y3L7e183HVXQoTuGRT5s2/DBwB7Q4AHgFbIzdVFN/UM1U09Q1VQfkkrMy16L7tYxRWXtXB9nl5Oz9fNvUM1Ka6jVhe46NHdXzad3E6KC9MjSd2YbQyg1RoSHaSPZw3Vp/tP6cUNh1V4rlpPffS1/ppRoDljuijjtEmvLt2p/H8YAdcvsp2SB5l1S5+O8nLnjiIAzokADwCtXFSQr566tYcevamb1uaWKC3TotziSn2UU6KPckokuUiyanhMkOaOj1WvTs27wzMAtAQXF5Mm9g3TTT1DtWqXRf+z5aiOl1/SnHe/kuQq6aK83V01qV+Ypg0y89kGALKjAP/888/r008/VU5Ojjw8PHT+/HmjSwIAm/Jyd9XkhAhNTojQV8Xnv7mt9LTau9bpD5MTNCo21OgSAeC6ebi56N+GRumX8eH68/bjSs20yMNaq1+PjtXkAWa19WYEHAB8y262Iq6trdXkyZP1m9/8xuhSAMBwfcLbadGdfbX3yTF6pE+9hnYJNLokAPhZ/Lzc9XBSN+1+YrR+F1ev+wYT3gHg/7KbFfjf//73kqQVK1YYWwgAAAAAAAawmxV4AAAAAACcmd2swP8UNTU1qqmpafq+qqpKklRXV6e6ujqjyoIT+La/6DO0NHoNtkKvwVboNdgKvQZbac4eMzTAP/vss023xv+QrKwsJSQk/KTXX7Bgwfe+/tatW+Xjw3gltLz09HSjS4CToNdgK/QabIVeg63Qa2hp1dXVzfZaJqvVam22V7tO5eXlKi8v/9Hfc8MNN8jLy6vp+xUrViglJeVf2oX++1bgIyIidOrUKQUGsuETWk5dXZ3S09M1btw4ubuzAQ9aDr0GW6HXYCv0GmyFXoOtnD17Vh07dlRlZaX8/f1/1msZugIfFBSkoKCgFnt9T09PeXp6fue4u7s7P6SwCXoNtkKvwVboNdgKvQZbodfQ0pqzv+zmGfjCwkKdO3dOhYWFqq+vV05OjiQpOjpabdq0MbY4AAAAAABamN0E+Kefflp/+9vfmr7v16+fpMbn2UeNGmVQVQAAAAAA2IbdjJFbsWKFrFbrd74I7wAAAAAAZ2A3AR4AAAAAAGdGgAcAAAAAwA4Q4AEAAAAAsAMEeAAAAAAA7AABHgAAAAAAO0CABwAAAADADhDgAQAAAACwAwR4AAAAAADsAAEeAAAAAAA7QIAHAAAAAMAOEOABAAAAALADBHgAAAAAAOwAAR4AAAAAADtAgAcAAAAAwA4Q4AEAAAAAsANuRhdgS1arVZJ04cIFubu7G1wNHFldXZ2qq6tVVVVFr6FF0WuwFXoNtkKvwVboNdjKhQsXJP1vHv05nCrAnz17VpIUFRVlcCUAAAAAAGdy9uxZtW3b9me9hlMF+ICAAElSYWHhz/6HA35MVVWVIiIiVFRUJH9/f6PLgQOj12Ar9BpshV6DrdBrsJXKykpFRkY25dGfw6kCvItL4yP/bdu25YcUNuHv70+vwSboNdgKvQZboddgK/QabOXbPPqzXqMZ6gAAAAAAAC2MAA8AAAAAgB1wqgDv6empZ555Rp6enkaXAgdHr8FW6DXYCr0GW6HXYCv0GmylOXvNZG2OvewBAAAAAECLcqoVeAAAAAAA7BUBHgAAAAAAO0CABwAAAADADhDgAQAAAACwA04T4F977TVFRUXJy8tL8fHx+uKLL4wuCQ5mwYIFGjBggPz8/BQcHKxJkybp8OHDRpcFJ7BgwQKZTCalpKQYXQoc0MmTJ5WcnKzAwED5+PgoLi5O2dnZRpcFB3P16lU99dRTioqKkre3tzp37qw//OEPamhoMLo02Lnt27dr4sSJCgsLk8lk0kcffXTNr1utVj377LMKCwuTt7e3Ro0apQMHDhhTLOzaj/VaXV2d5s6dq969e8vX11dhYWG69957VVJSct3v4xQB/p133lFKSoqefPJJ7du3T8OHD9eECRNUWFhodGlwINu2bdOsWbOUmZmp9PR0Xb16VUlJSbp06ZLRpcGBZWVlafny5erTp4/RpcABVVRUaOjQoXJ3d9e6det08OBBvfTSS2rXrp3RpcHBLFy4UK+//rqWLl2qQ4cOadGiRXrxxRf1yiuvGF0a7NylS5fUt29fLV269Ht/fdGiRVq8eLGWLl2qrKwshYaGaty4cbpw4YKNK4W9+7Feq66u1t69e/Wf//mf2rt3r1avXq38/Hzddttt1/0+TjFGbtCgQerfv7+WLVvWdKx79+6aNGmSFixYYGBlcGRnzpxRcHCwtm3bphEjRhhdDhzQxYsX1b9/f7322mt67rnnFBcXpyVLlhhdFhzIvHnz9OWXX3LXGlrcrbfeqpCQEL3xxhtNx375y1/Kx8dHqampBlYGR2IymfThhx9q0qRJkhpX38PCwpSSkqK5c+dKkmpqahQSEqKFCxfqgQceMLBa2LP/22vfJysrSwMHDpTFYlFkZOS//NoOvwJfW1ur7OxsJSUlXXM8KSlJO3bsMKgqOIPKykpJUkBAgMGVwFHNmjVLt9xyi8aOHWt0KXBQa9asUUJCgiZPnqzg4GD169dPf/7zn40uCw5o2LBh2rx5s/Lz8yVJubm5ysjI0M0332xwZXBkBQUFOn369DU5wdPTUyNHjiQnoMVVVlbKZDJd911tbi1TTutRXl6u+vp6hYSEXHM8JCREp0+fNqgqODqr1aqHH35Yw4YNU69evYwuBw7o7bff1t69e5WVlWV0KXBgx48f17Jly/Twww/rd7/7nXbv3q3f/va38vT01L333mt0eXAgc+fOVWVlpWJjY+Xq6qr6+no9//zzuvvuu40uDQ7s2yzwfTnBYrEYURKcxJUrVzRv3jzdc8898vf3v64/6/AB/lsmk+ma761W63eOAc1l9uzZ+uqrr5SRkWF0KXBARUVFmjNnjjZu3CgvLy+jy4EDa2hoUEJCgubPny9J6tevnw4cOKBly5YR4NGs3nnnHaWlpWnVqlXq2bOncnJylJKSorCwMN13331GlwcHR06ALdXV1Wnq1KlqaGjQa6+9dt1/3uEDfFBQkFxdXb+z2l5WVvadq21Ac3jwwQe1Zs0abd++XeHh4UaXAweUnZ2tsrIyxcfHNx2rr6/X9u3btXTpUtXU1MjV1dXACuEoOnbsqB49elxzrHv37vrggw8MqgiO6rHHHtO8efM0depUSVLv3r1lsVi0YMECAjxaTGhoqKTGlfiOHTs2HScnoKXU1dVpypQpKigo0JYtW6579V1ygmfgPTw8FB8fr/T09GuOp6ena8iQIQZVBUdktVo1e/ZsrV69Wlu2bFFUVJTRJcFB3Xjjjdq/f79ycnKavhISEjRt2jTl5OQQ3tFshg4d+p1xmPn5+TKbzQZVBEdVXV0tF5drT0tdXV0ZI4cWFRUVpdDQ0GtyQm1trbZt20ZOQLP7NrwfOXJEmzZtUmBg4E96HYdfgZekhx9+WNOnT1dCQoIGDx6s5cuXq7CwUDNnzjS6NDiQWbNmadWqVfr444/l5+fXdNdH27Zt5e3tbXB1cCR+fn7f2VvB19dXgYGB7LmAZvXQQw9pyJAhmj9/vqZMmaLdu3dr+fLlWr58udGlwcFMnDhRzz//vCIjI9WzZ0/t27dPixcv1owZM4wuDXbu4sWLOnr0aNP3BQUFysnJUUBAgCIjI5WSkqL58+crJiZGMTExmj9/vnx8fHTPPfcYWDXs0Y/1WlhYmO68807t3btXn3zyierr65uyQkBAgDw8PP71N7I6iVdffdVqNputHh4e1v79+1u3bdtmdElwMJK+9+vNN980ujQ4gZEjR1rnzJljdBlwQGvXrrX26tXL6unpaY2NjbUuX77c6JLggKqqqqxz5syxRkZGWr28vKydO3e2Pvnkk9aamhqjS4Od27p16/een913331Wq9VqbWhosD7zzDPW0NBQq6enp3XEiBHW/fv3G1s07NKP9VpBQcEPZoWtW7de1/s4xRx4AAAAAADsncM/Aw8AAAAAgCMgwAMAAAAAYAcI8AAAAAAA2AECPAAAAAAAdoAADwAAAACAHSDAAwAAAABgBwjwAAAAAADYAQI8AAAAAAB2gAAPAAAAAIAdIMADAAAAAGAHCPAAAOB7nTlzRqGhoZo/f37TsV27dsnDw0MbN240sDIAAJyTyWq1Wo0uAgAAtE6fffaZJk2apB07dig2Nlb9+vXTLbfcoiVLlhhdGgAATocADwAAftSsWbO0adMmDRgwQLm5ucrKypKXl5fRZQEA4HQI8AAA4EddvnxZvXr1UlFRkfbs2aM+ffoYXRIAAE6JZ+ABAMCPOn78uEpKStTQ0CCLxWJ0OQAAOC1W4AEAwA+qra3VwIEDFRcXp9jYWC1evFj79+9XSEiI0aUBAOB0CPAAAOAHPfbYY3r//feVm5urNm3aaPTo0fLz89Mnn3xidGkAADgdbqEHAADf6/PPP9eSJUuUmpoqf39/ubi4KDU1VRkZGVq2bJnR5QEA4HRYgQcAAAAAwA6wAg8AAAAAgB0gwAMAAAAAYAcI8AAAAAAA2AECPAAAAAAAdoAADwAAAACAHSDAAwAAAABgBwjwAAAAAADYAQI8AAAAAAB2gAAPAAAAAIAdIMADAAAAAGAHCPAAAAAAANgBAjwAAAAAAHbg/wPBCzkU85dFwAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f1 = plt.figure(1, figsize=(12,10), clear=True)\n", "x = np.arange(0, 14, 2)\n", "\n", "for k in range(5):\n", " qk = np.zeros(7)\n", " qk[1:-1] = Phi1[:,k]\n", " qk /= np.max(np.abs(qk)) # adjust scale for unity amplitude\n", " \n", " plt.subplot(5,1,k+1)\n", " plt.plot(x, qk)\n", " \n", " plt.xlim( 0.0, 12.0);\n", " plt.ylim(-1.5, 1.5); plt.ylabel(str(k+1));\n", " plt.text(10, 1, 'fk = {0:3.1f}Hz'.format(fk1[k]));\n", " plt.grid(True)\n", "\n", "plt.xlabel('x');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2. Example 2: beam element \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The interpolation functions could not be dumped with ```pickle```, so we must re-create\n", "them for visualizing the modal shapes:\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Beam length discretization\n", "L = 1\n", "\n", "# Defining a list of lambda functions\n", "phi = []\n", "phi.append(lambda xi: 1 - 3*xi*xi + 2*xi*xi*xi)\n", "phi.append(lambda xi: L*(xi - 2*xi*xi + xi*xi*xi))\n", "phi.append(lambda xi: 3*xi*xi - 2*xi*xi*xi)\n", "phi.append(lambda xi: L*(-xi*xi + xi*xi*xi ))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Furthermore, the stiffness matrix is not positive definite, for no \n", "boundary conditions have been applied so far (it is a bar \"floating in space\").\n", "It is necessary to restrain at least two degrees of freedom to suppress a \n", "free body motion.\n", "For instance, to model a cantilever beam we can restrain $u_1 = 0$ and $u_2 = 0$,\n", "what implies that the first two rows and two columns of $\\mathbf{K}$ and \n", "$\\mathbf{M}$ can be removed:\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "K2 = K2[2:,2:]\n", "M2 = M2[2:,2:]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the eigenvalues problem can be solved:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[-0.58747258 0.13007598]\n", " [-0.80924407 0.99150403]]\n" ] } ], "source": [ "fk2, wk2, Phi2 = vibration_modes(K2, M2)\n", "\n", "print(Phi2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the visualization below, the vibration modes are a linear combination of the \n", "interpolation functions (for the remaining degrees of freedom), each one multiplied \n", "by the resulting eingenvector coordinate.\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAF3CAYAAAALl5VRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABHpElEQVR4nO3deZjcZZ3v/c+31t67k16yhwQSwhJliyCOSgPiEIZDlINeYFxwlhxHmTnqM2f0ebyOMjPnOnJGzjg6iIg+HEXRDI8OECEsijQgiAYwLAETYghJZ+t0p7fq7trv549fdXd1p3pJL7/q7rxfl3X9trvq921y2/nUnbvuMuecAAAAAPgnUOwCAAAAgJMNIRwAAADwGSEcAAAA8BkhHAAAAPAZIRwAAADwGSEcAAAA8FlRQ7iZ3WVmLWb26gjXG82s08y25x5f9rtGAAAAYKqFinz/70u6TdLdo7R52jl3tT/lAAAAANOvqCPhzrmnJB0rZg0AAACA32bDnPCLzewlM3vYzM4udjEAAADAZBV7OspYXpR0inMuZmZXSbpf0upCDc1sk6RNklRSUnLB8uXLfSsSM182m1UgMBvec8JP9AsUQr9AIfQLFLJr165W51z9RJ5rzrmprufECjBbIelB59zacbTdK2mdc651tHZr1qxxO3funJoCMSc0NTWpsbGx2GVghqFfoBD6BQqhX6AQM3vBObduIs+d0W/pzGyhmVlu/0J59bYVtyoAAABgcoo6HcXMfiKpUVKdmTVL+oqksCQ55+6QdJ2kvzaztKQ+Sde7Yg/dAwAAAJNU1BDunLthjOu3yVvCEAAAAJgzZvR0FAAAAGAuIoQDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAIzDN7/5TZ155pnauHGjbr75Zt16661Tfo9MJqPzzjtPV1999YhtmpqadO655+rss8/WJZdcIknauXOnzj333IFHVVWV/vVf/1WSdOONN+qnP/3pkNeoqKiY8tpxYkLFLgAAAGA2uP322/Xwww9r5cqVuvnmm6flHt/4xjd05plnqqurq+D1jo4OffrTn9Yjjzyi5cuXq6WlRZK0Zs0abd++XZIX5JcsWaIPfvCD01IjpgYj4QAAAGP4l3/5F+3Zs0fXXHONvv71rw+59t3vflfr169XX1/fpO7R3Nyshx56SH/5l385Ypsf//jHuvbaa7V8+XJJUkNDw3FtHn/8cZ122mk65ZRTxrznl7/85YHR8yVLluiTn/zkxH8AnBBCOAAAwBg+//nPa/HixXriiSf0uc99buD8bbfdpp///Oe6//77VVpaOuQ599xzz5ApIv2P6667ruA9PvvZz+qf//mfFQiMHM927dql9vZ2NTY26oILLtDdd999XJvNmzfrhhtuGHLuv/23/zakhn7/+I//qO3bt+vJJ59UbW2tbrrppvH858AUKOp0FDO7S9LVklqcc2sLXDdJ35B0laReSTc65170t0oAAIDj/fCHP9TSpUt1//33KxwOH3d948aN2rhx47he68EHH1RDQ4MuuOACNTU1jdgunU7rhRde0OOPP66+vj5dfPHFeuc736nTTz9dkpRMJrVlyxZ99atfHfK8r33ta0PCf/6ccOecNm7cqM997nO64IILxlUvJq/Yc8K/L+k2Sce/jfOsl7Q697hI0rdzWwAAgKJau3attm/frubmZq1cufK46/fcc4++9rWvHXd+1apVx31Q8plnntGWLVu0detWxeNxdXV16aMf/ah+9KMfDWm3dOlS1dXVqby8XOXl5Xrve9+rl156aSCEP/zwwzr//PO1YMGCcf8cN998s5YuXcpUFJ8VdTqKc+4pScdGabJB0t3O85ykGjNb5E91AAAAIzvvvPP0ne98R9dcc40OHjx43PWNGzdq+/btxz2GB3BJ+upXv6rm5mbt3btXmzdv1mWXXXZcAJekDRs26Omnn1Y6nVZvb69++9vf6swzzxy4/pOf/OS4qSijefDBB/WLX/xC3/zmN8f9HEyNYo+Ej2WJpP15x825c4eGNzSzTZI2SVJ9ff2o/5SDk08sFqNP4Dj0CxRCv0AhsVhM8XhczzzzjKqrq7V3716VlpZq3bp1+tjHPqZLLrlEt956q6qrqyd9r+3bt6utrW2gH27ZskWSdM0110iSVq9erVWrVsnM9Gd/9mdqbW1VU1OT4vG4Hn74YX30ox8d0ocPHz6sHTt2qK6ubuBcJpNRU1OT/vt//+86dOiQzjrrLEnSu971Lv35n//5pH8GjM2cc8UtwGyFpAdHmBP+kKSvOud+nTt+XNLfO+deGO0116xZ43bu3Dkd5WKWampqUmNjY7HLwAxDv0Ah9AsUQr9AIWb2gnNu3USeO9NXR2mWtCzveKmk4/+9BwAAAJhFZnoI3yLp4+Z5p6RO59xxU1EAAACA2aTYSxT+RFKjpDoza5b0FUlhSXLO3SFpq7zlCXfLW6KQj+0CAABg1itqCHfOjfrxXedNWP+MT+UAAAAAvpjp01EAAACAOYcQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+KyoIdzMrjSznWa228y+WOB6o5l1mtn23OPLxagTAAAAmEqhYt3YzIKSviXpCknNkraZ2Rbn3GvDmj7tnLva9wIBAACAaVLMkfALJe12zu1xziUlbZa0oYj1AAAAAL4o2ki4pCWS9ucdN0u6qEC7i83sJUkHJf2dc25HoRczs02SNklSfX29mpqaprZazGqxWIw+gePQL1AI/QKF0C8w1YoZwq3AOTfs+EVJpzjnYmZ2laT7Ja0u9GLOuTsl3SlJa9ascY2NjVNXKWa9pqYm0ScwHP0ChdAvUAj9AlOtmNNRmiUtyzteKm+0e4Bzrss5F8vtb5UUNrM6/0oEAAAApl4xQ/g2SavNbKWZRSRdL2lLfgMzW2hmltu/UF69bb5XCgAAAEyhok1Hcc6lzewmSY9KCkq6yzm3w8w+lbt+h6TrJP21maUl9Um63jk3fMoKAAAAMKsUc054/xSTrcPO3ZG3f5uk2/yuCwAAAJhOfGMmAAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgs6KGcDO70sx2mtluM/tigetmZt/MXX/ZzM4vRp0AAADAVCpaCDezoKRvSVov6SxJN5jZWcOarZe0OvfYJOnbvhYJAAAATINijoRfKGm3c26Pcy4pabOkDcPabJB0t/M8J6nGzBb5XSgAAAAwlUJFvPcSSfvzjpslXTSONkskHRrthfd2ZbX6S1tlMuX+JzPJZLmtZGYyKe/68dcs18DyXiNgpmAg98jbH3J++LWAKTTQRgoFAgoETEHTwLX+1wjl2gfNFAoGFA6awsGAQkFTJBhQKGAKhwIKBwIKh3LXAgFFQqZQIKBwoefkncs/Hw4GFAzYxP8EAQAAMCETDuFm9knn3P+ZxL0LpT83gTb99WySN2VFlQ3L9P7loYGGTpJz3l5u453rv+4GruSuu8HrBdpmnZRxTtncfjab20pKZ6Wk8q7lPTJOcrnnZYZfl5R1Q5+XyeaeM/p/x0kxyXtjYFI4KIUDpnBAuYcpFPDOh4ad798PBSz3vAJtRjkfCUqRgCmSe+3pFovF1NTUNO33wexCv0Ah9AsUQr/AVJvMSPg/SJpMCG+WtCzveKmkgxNoI0lyzt0p6U5JWrNmjfvWf3n/JEqbWTJZp1Qmm3s4pTNZJTNZpTNu4Fwqk1U6m1Uy7ZTOZoeez7hh7QdfJ5XJKpk7n0hnlExnlUhnlUh590ikMwP7sVRWiWRGiXR2sF06rVRmcm8TQgFTaTioaDio0khApeGgSnIPb987VxoJKhrytqV510py10py10rynlMWCaksGtS2Z3+txsbGqfkDwZzR1NREv8Bx6BcohH6BqTZqCDezl0e6JGnBJO+9TdJqM1sp6YCk6yV9ZFibLZJuMrPN8qaqdDrnRp2KMhd501q8cDkTZbNeyE+kskpkvNA+GNQzubDuHcdT3nFfKqNEKqO+ZEZ9qYziqbxzqf5zGXX0pRTvzCieHmzb/6bgREV+9bDKI7lgHgmqLBrKHXvnyqNBlYa97UCbSFDl0ZBKI0GV586VRwevlUVCTOkBAAAnbKyR8AWS/lRS+7DzJunZydzYOZc2s5skPSopKOku59wOM/tU7vodkrZKukrSbkm9kj45mXtiegQCppKBNwlhX+6ZzmQVz4X6vqQX2PuDfH+A7w/tPYm0duzcrQVLlqs3mVZPIqPeZFq9SW97sCM10K43mVFPMp2bvjQ+0VDguGBeEfXCfEU0rMqSwf2KkpAqoyGVR702lSX9bb39aCggM0I9AABz3Vgh/EFJFc657cMvmFnTZG/unNsqL2jnn7sjb99J+sxk74O5JxQMqCIYUEV0fDOqmjL71Nh4xrjaOueUSGeHhPLeZEa9CW+/r/9cgeP+9rFEWi3dcfUkMuqOpxRLpJUdR7APBUwVJSGVR4YG9P7wnh/YK3Lny6O5ayX9wT6symhIAUboAQCYsUZNMM65vxjl2vCpI8CcYGYDc9Jrp+g1nXOKp7LqTqQUi3uj8f37sURaPYm0uhPp3LXB/VgirY7epPa39w5c60lmxvEzSBWRkKpKvZH4qpKwqkq9gF5VktsOHOfa5LWtLAnN2OlPAADMBcVcohA4aZiZ94HSSFANlZN7rUzWqSfpBfJYfFh4j6fVFU+pK55Wdzylrr7cNp7SwY64uhPdA+fGGpmPhAJeeC8JqbLU2w4J7FFvW1UaUmU0rOqysKpLw6opDauqNEyIBwBgFIRwYJYJBiwXjsNS9cRewzmnnmRGXX2pgeA+NLSn1dWX28ZzbfpSOtDRN7CfSI/+4diScEDVpf3BPKKq/v2yoduqXHD3zkVUVRJSKFjM7xEDAGD6EcKBk5CZeXPKxzmnvpBEOqPuuDf63tmXUldfSh19qcH93qQ6+1Lq6PXONbf3asdBb793jCk1FdHQQIDPD+z9o+39wX54mGcuPABgtiCEA5iQaCioaEVQdRXRE35uMp1VZy6wew8vsHf2Dgb5zt7B62+0xAbOjbY8ZcCkmrKIasrCmlcW0bwyb3R9XllY88ojw85F1BH3ls6MhBh5BwD4ixAOwHeRUED1lVHVV55YgO//gGt/OO8fbR88Tqm9NzmwPdAR146DXTrWkxxx+sxnm7z142vKIppfPnKAH9gvi2heeUTlkSDLSQIAJowQDmDWyP+A68LqkhN6bl8yo/be5JCQ/rvtO1S/ZIXae71Af6w3qfbelPYd61V7T1Jd8fSIrxcO2kAwzw/oXpgPa355VLXlXrDvf5QR3AEAOYRwACcFL7yXanFN6cC5imO71Ni4esTnpDPeqHt/SG/vTam9J5kL8/3nvP03W3v0Ym+HOnqTSmUKLz0TDQWGhPLacm9U3Qvr0YHw3n+tujTMHHcAmKMI4QAwglAwoNqKqGpPYN67c06xRFrHepJq60nqWMwbYT/W4z3aYl5wb+tJam9bj47FkiOu/R4waV5umsxgWB8M795+dEiwZ347AMwOhHAAmEJm5n1raUlYp9SWj+s58ZQ3VaY/oPeH9WM9uQCf23+jJaZjuZF4N8I675XRUF5Azxt1r/ACe21FRHUVUdVVRAntAFBEhHAAKLKScFCLqku1qLp07MbyvrCpfypMf1hv60mqvX/0PRfUD3UOfjB1pFVlqkvDXjDPC+i1FRHVVkRVVx5RXaU3t722IqqqkhBz2gFgihDCAWCWCQZsYJrMqoax2/dPkWmLJdUaS6g1llRbT2LguH/7RktMv9nTpo7eVMHXiQQDuYA+OKpe3x/ay6MDgZ1RdgAYGyEcAOa4/CkyK+rGniKTymTV3pPU0VxA7w/sA8exhNp6knrjSLdae5JKjrD8I6PsADAyQjgAYIhwMKCGqhI1VI29DORIo+yt3UNH23cd6R5zlL2uIjKwfnxdRfT4/QpvtJ012gHMBYRwAMCETdkoe3dCR3Mh/kBHXNv3d+pYT0LZAh9ALQ0Hc+G8QGjPBfX63HFJODgNPzUATB4hHADgmxMZZc9knY715AX03PZod0Ktue2eoz363ZvH1D7CCHtlSWgwmOeFc+9cRPUVJaqv9KbJhIPMYQfgn6KEcDObL+nfJa2QtFfSh51z7QXa7ZXULSkjKe2cW+dflQCAYgoGbGCkeyzJdHZgGszRWDwX1HMBPvd4/WCXnupOqDtR+JtQ55WFVV8ZVTDVp/sO//64UfX+0fb55REF+RIlAJNUrJHwL0p63Dl3i5l9MXf8hRHaXuqca/WvNADAbBMJBfKWeawetW08lRkYXc8fVe/f/+OBXr24r11HuxOKp47/0GnApNqKqBpybxAaKqNqqCxRQ1X/uZKBa0yHATCSYoXwDZIac/s/kNSkkUM4AABTpiQc1LL5ZVo2v6zg9aamJjU2Nso5p55kZkhAzx9Zb+mOq6U7oR0Hu9QWKzx/vbo07IX0qlxQrxz8wGl+cK+IsjoMcLIxN9LXrk3nTc06nHM1ecftzrl5Bdq9KaldkpP0HefcnaO85iZJmySpvr7+gnvvvXfK68bsFYvFVFFRUewyMMPQL1DIRPpF1jl1JZw6Ek6dydw2kbeND+6nC/y1GwlKNVFTTdRUPWzr7QdUHTVVhKUAYb0o+H2BQi699NIXJjpdetpCuJn9UtLCApe+JOkH4wzhi51zB82sQdIvJP2Nc+6pse69Zs0at3PnzokXjzmnf2QLyEe/QCHT2S+cc+rsS6klfzS9K6GW7tyjK547n1CswNz1cNBUV5E37aUqbzpM3og7HzSdevy+QCFmNuEQPm3TUZxz7xvpmpkdMbNFzrlDZrZIUssIr3Ewt20xs/skXShpzBAOAMBMZGaqKYuopiyi0xdUjtq2N5lWS5c3d90L6vFcUPf2m9u9uevHepIF7iPNL/OWcGyoygX03GNBVcng9JiqqKIh5q0DxVCsOeFbJH1C0i257QPDG5hZuaSAc647t/9+Sf/oa5UAABRJWSSkFXWhMddfT6azao0lCo6uH80F912Hu9UaSyhdYOL6vLJwLpiXaEEupC+o8sL7gqrBeeyMrANTq1gh/BZJ95rZX0jaJ+lDkjf9RNL3nHNXSVog6b7cB1VCkn7snHukSPUCADAjRUIBLa4p1eKa0lHbZbNOx3qTg6PqXQkd6YrrSHdcR7q8qTC7DnfraCyhzLCwbibVlkfUUOkF9IHQXhXVgsqSgdH12vKIQoR1YFyKEsKdc22SLi9w/qCkq3L7eySd43NpAADMSYGAN5+8riKqs1Q1YrtM1qmtZ3Day5H+sJ4L6ke643r1YJdaYwkN/1hZwKS6imGj6UOCe27OenlEAdZax0mOb8wEAAADggHLfdCzRKOtuZ7OZNUaS+YCenzgg6VHuhI60h3XgY64fr+vQ20F5qyHcl/ENNIUmP4R9pqyMEs3Ys4ihAMAgBMWCga0sLpEC6tLRm2XTGd1NOaNpveH9PwR9rfaevW7vcfU0Zs67rmRYED1ldGBkfT+0fT+KTD9wb2qhHXWMfsQwgEAwLSJhAJaUlOqJWPMWe//JtP+qS/989WP5kbW32iJ6de7W9UdP37pxmgoMOoUmP4AXxEl9mDmoDcCAICiG+ubTPv1L93ohfT+KTDedJgjXXG9frBLT3S1qDeZOe65FdGQGqqiWjgw7cUL6wtzHzRdWF2i+oqoIiE+XIrpRwgHAACzxniXbowl0l5Q7/QC+uFcWO8faf/dm8fU0h1XKnP8so11Fd5KMAurB0fUOw6llP3DkYHwPr+MD5dicgjhAABgzqmIhlRRX6HT6kf+qvls1qm9N5m3Akw8F9YHj19u7lBrzPtw6fd3PD/w3HDQhizZ2P9YWJ2bs17NFBiMjp4BAABOSoGAqbYiqtqKqM5aPPKyjalMVlsea9LKs89TS1dchzu9qTBHOr1567uOdOvXb7SqO3H8fPWRpsDk7zdUljAF5iRECAcAABhFOBhQbWlA5y+fN2q7ntwUmMNd3pchncgUmNryyOAc9eqS46bDMAVm7iGEAwAATIHyaEin1lfo1FGmwDjndKwnObCe+pFOL6Afzi3heLgrrlcOdKmt5/gvQxppCszwD5cyBWZ24E8JAADAJ2Z5U2BG+ebSVCaro9154fwEpsCUR4LenPTcaHqh6TBMgSk+QjgAAMAMEw4GtLimVIvHWF+9fwrM8A+X9k+H2bb3mFq6Ekpmssc9d7QpMP37TIGZPoRwAACAWWq8U2Dae1O50fSJTYEZa311psCcOP6LAQAAzGFmpvnlEc0vj4xrCkz+h0nzP1z6RktsglNgct9eyhSYIQjhAAAA8G0KTENViRYWWF/9ZJsCQwgHAADAuJ3IFJjBgB7X4c68FWG6JzYFJn+/siQ8zT/p9CKEAwAAYErlT4E5c9E0ToHJD+h502FmwxSYooRwM/uQpJslnSnpQufc8yO0u1LSNyQFJX3POXeLb0UCAABgWp3IFJiW7oQOd8bV0p1bsjFvOszzb7Wf8BSY/JH12nL/p8AUayT8VUnXSvrOSA3MLCjpW5KukNQsaZuZbXHOveZPiQAAAJgJyqMhrYyGtLKufMQ2k5kCEwqYGiqjY66vPpVTYIoSwp1zr0veP1WM4kJJu51ze3JtN0vaIIkQDgAAgCFOZApMayxx3Gh6/4dLdx+N6Zk/tqo7PvYUmMmYyXPCl0jan3fcLOmikRqb2SZJmySpvr5eTU1N01ocZpdYLEafwHHoFyiEfoFC6BdzU4mkUySdUpI7aOi/ElU8HVFHwqk97rxtIquOuFN7Iq7WY31645Ab6WXHZdpCuJn9UtLCApe+5Jx7YDwvUeDciD+tc+5OSXdK0po1a1xjY+N4ysRJoqmpSfQJDEe/QCH0CxRCv0AhdvPEnzttIdw5975JvkSzpGV5x0slHZzkawIAAABFNzPXbPFsk7TazFaaWUTS9ZK2FLkmAAAAYNKKEsLN7INm1izpYkkPmdmjufOLzWyrJDnn0pJukvSopNcl3euc21GMegEAAICpVKzVUe6TdF+B8wclXZV3vFXSVh9LAwAAAKbdTJ6OAgAAAMxJhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGdFCeFm9iEz22FmWTNbN0q7vWb2ipltN7Pn/awRAAAAmC6hIt33VUnXSvrOONpe6pxrneZ6AAAAAN8UJYQ7516XJDMrxu0BAACAoprpc8KdpMfM7AUz21TsYgAAAICpMG0j4Wb2S0kLC1z6knPugXG+zJ845w6aWYOkX5jZH5xzT41wv02S+oN6wsxePfGqMYfVSWJaE4ajX6AQ+gUKoV+gkDUTfeK0hXDn3Pum4DUO5rYtZnafpAslFQzhzrk7Jd0pSWb2vHNuxA984uRDn0Ah9AsUQr9AIfQLFDKZhUNm7HQUMys3s8r+fUnvl/eBTgAAAGBWK9YShR80s2ZJF0t6yMwezZ1fbGZbc80WSPq1mb0k6XeSHnLOPVKMegEAAICpVKzVUe6TdF+B8wclXZXb3yPpnAne4s6JV4c5ij6BQugXKIR+gULoFyhkwv3CnHNTWQgAAACAMczYOeEAAADAXDVrQ7iZXWlmO81st5l9scB1M7Nv5q6/bGbnF6NO+Gsc/WJjrj+8bGbPmtlEpzxhFhmrX+S1e4eZZczsOj/rQ3GMp1+YWaOZbTezHWb2pN81wn/j+Huk2sx+bmYv5frFJ4tRJ/xjZneZWctIy19PNHPOyhBuZkFJ35K0XtJZkm4ws7OGNVsvaXXusUnSt30tEr4bZ794U9Ilzrm3S/onMcdvzhtnv+hv978kPepvhSiG8fQLM6uRdLuka5xzZ0v6kN91wl/j/H3xGUmvOefOkdQo6X+bWcTXQuG370u6cpTrE8qcszKEy1svfLdzbo9zLilps6QNw9pskHS38zwnqcbMFvldKHw1Zr9wzj3rnGvPHT4naanPNcJ/4/l9IUl/I+lnklr8LA5FM55+8RFJ/+Gc2yd531nhc43w33j6hZNUaWYmqULSMUlpf8uEn3JfFHlslCYTypyzNYQvkbQ/77g5d+5E22BuOdE/87+Q9PC0VoSZYMx+YWZLJH1Q0h0+1oXiGs/vi9MlzTOzJjN7wcw+7lt1KJbx9IvbJJ0p6aCkVyT9V+dc1p/yMENNKHMWZYnCKWAFzg1f5mU8bTC3jPvP3MwulRfC3z2tFWEmGE+/+FdJX3DOZbzBLZwExtMvQpIukHS5pFJJvzGz55xzu6a7OBTNePrFn0raLukySadJ+oWZPe2c65rm2jBzTShzztYQ3ixpWd7xUnnvSE+0DeaWcf2Zm9nbJX1P0nrnXJtPtaF4xtMv1knanAvgdZKuMrO0c+5+XypEMYz375FW51yPpB4ze0re91cQwueu8fSLT0q6xXlrPO82szclnSHviwVxcppQ5pyt01G2SVptZitzH4a4XtKWYW22SPp47hOr75TU6Zw75Heh8NWY/cLMlkv6D0kfYzTrpDFmv3DOrXTOrXDOrZD0U0mfJoDPeeP5e+QBSe8xs5CZlUm6SNLrPtcJf42nX+yT968jMrMFktZI2uNrlZhpJpQ5Z+VIuHMubWY3yVvFICjpLufcDjP7VO76HZK2yvv2zd2SeuW9c8UcNs5+8WVJtZJuz416pp1z64pVM6bfOPsFTjLj6RfOudfN7BFJL0vKSvqec67gEmWYG8b5++KfJH3fzF6RNw3hC8651qIVjWlnZj+RtxJOnZk1S/qKpLA0uczJN2YCAAAAPput01EAAACAWYsQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+KyoIdzM7jKzFjN7dYTrjWbWaWbbc48v+10jAAAAMNVCRb7/9yXdJunuUdo87Zy72p9yAAAAgOlX1JFw59xTko4VswYAAADAb7NhTvjFZvaSmT1sZmcXuxgAAABgsoo9HWUsL0o6xTkXM7OrJN0vaXWhhma2SdImSSopKblg+fLlvhWJmS+bzSoQmA3vOeEn+gUKoV+gEPoFCtm1a1erc65+Is8159xU13NiBZitkPSgc27tONrulbTOOdc6Wrs1a9a4nTt3Tk2BmBOamprU2NhY7DIww9AvUAj9AoXQL1CImb3gnFs3kefO6Ld0ZrbQzCy3f6G8etuKWxUAAAAwOUWdjmJmP5HUKKnOzJolfUVSWJKcc3dIuk7SX5tZWlKfpOtdsYfuAQAAgEkqagh3zt0wxvXb5C1hCAAAAMwZM3o6CgAAADAXEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAMbhm9/8ps4880xt3LhRN998s2699dYpv0cmk9F5552nq6++esj5f/u3f9OaNWt09tln6+///u8LPveRRx7RmjVrtGrVKt1yyy0D548dO6YrrrhCq1ev1hVXXKH29nZJUlNT03H3ufHGG/XTn/50in8qFEIIBwAAGIfbb79dW7du1T333DNt9/jGN76hM888c8i5J554Qg888IBefvll7dixQ3/3d3933PMymYw+85nP6OGHH9Zrr72mn/zkJ3rttdckSbfccosuv/xyvfHGG7r88suHBHQUDyEcAABgDP/yL/+iPXv26JprrtHXv/71Ide++93vav369err65vUPZqbm/XQQw/pL//yL4ec//a3v60vfvGLikajkqSGhobjnvu73/1Oq1at0qmnnqpIJKLrr79eDzzwgCTpgQce0Cc+8QlJ0ic+8Qndf//9Y9by/PPP69xzz9W5556rt73tbTKzSf1sOB4hHAAAYAyf//zntXjxYj3xxBP63Oc+N3D+tttu089//nPdf//9Ki0tHfKce+65ZyDI5j+uu+66gvf47Gc/q3/+539WIDA0nu3atUtPP/20LrroIl1yySXatm3bcc89cOCAli1bNnC8dOlSHThwQJJ05MgRLVq0SJK0aNEitbS0DLR7+umnh9S2ZcsWSdK6deu0fft2bd++XVdeeWXB0XdMTqiYNzezuyRdLanFObe2wHWT9A1JV0nqlXSjc+5Ff6sEAAA43g9/+EMtXbpU999/v8Lh8HHXN27cqI0bN47rtR588EE1NDToggsuUFNT05Br6XRa7e3teu6557Rt2zZ9+MMf1p49e4aMTjvnjnvN8Yxev+c979GDDz44cHzjjTcOuX7vvffqxRdf1GOPPTaunwPjV+yR8O9LunKU6+slrc49Nkn6tg81AQAAjGnt2rXau3evmpubC14/kZHwZ555Rlu2bNGKFSt0/fXX61e/+pU++tGPSvJGta+99lqZmS688EIFAgG1trYOef7SpUu1f//+gePm5mYtXrxYkrRgwQIdOnRIknTo0KGC01kK2bFjh77yla9o8+bNCgaD43oOxq+oIdw595SkY6M02SDpbud5TlKNmS3ypzoAAICRnXfeefrOd76ja665RgcPHjzu+saNGwemdOQ/Cq0+8tWvflXNzc3au3evNm/erMsuu0w/+tGPJEkf+MAH9Ktf/UqSNzUlmUyqrq5uyPPf8Y536I033tCbb76pZDKpzZs365prrpEkXXPNNfrBD34gSfrBD36gDRs2jPmzdXZ26vrrr9fdd9+t+vr6E/sPc5J4fu9oEXZsRZ2OMg5LJO3PO27OnTs0vKGZbZI3Wq76+vrj/ikHJ7dYLEafwHHoFyiEfoFCYrGY4vG4nnnmGVVXV2vv3r0qLS3VunXr9LGPfUyXXHKJbr31VlVXV0/6Xtu3b1dbW9tAPzzttNP0s5/9TCtXrlQ4HNbnPvc5Pfnkk2ptbdWtt946sNrJpk2b9N73vlfZbFbr16/X0aNH1dTUpHe/+936h3/4B912221qaGjQzTffrKampuPuI0mHDx/Wjh079Pzzz2vPnj264YYbBq5973vfm/TPNhcc7snq/9uV1AtHMpN6HSs0h8hPZrZC0oMjzAl/SNJXnXO/zh0/LunvnXMvjPaaa9ascTt37pyOcjFLNTU1qbGxsdhlYIahX6AQ+gUKoV/gWE9S33z8Df3oubcUDQX0qUtO09++7/QXnHPrJvJ6M30kvFnSsrzjpZKO//ceAAAAYBrEUxn9n2f26vYndqs3ldH171imz77vdNVXRvW3k3jdmR7Ct0i6ycw2S7pIUqdz7ripKAAAAMBUymSd7vv9AX39F7t0oKNPl5/RoC+uP0OrF1ROyesXe4nCn0hqlFRnZs2SviIpLEnOuTskbZW3POFueUsUfrI4lQIAAOBk4JzTL147oq89ulNvtMS0dkmVvnbd2/WuVXVjP/kEFDWEO+duGOO6k/QZn8oBAADASey5PW36X4/8Qb/f16FT68p1+8bztX7twmn5xtCZPh0FAAAAmFavHujU1x7dqSd3HdXCqhLdcu3bdN0FSxUKTt9q3oRwAAAAnJT2tvbof/9il37+0kFVl4b1/1x1hj5+8QqVhKf/y4kI4QAAADipHO6M699+9Yb+fdt+hYMB3XTpKv3Ve09VdWnYtxoI4QAAADgptHTFdXvTH/Xj3+1TNuv0kYuW66bLVqmhssT3WgjhAAAAmNNauuO6o2mP7vntW0pnna47f6luumyVls0vK1pNhHAAAADMSa2xhL7z5B/1w+feUirjdO15S/Q3l63W8trihe9+hHAAAADMKW2xhO58ao/u/s1bSqQz+sB5S/S3l63WirryYpc2gBAOAACAOeFYT1LffXqPfvDsXsVTGW04d4n+5rJVOrW+otilHYcQDgAAgFntcGdc3316j378232KpzO65pzF+pvLVmtVw8wL3/0I4QAAAJiV9rX16ttP/lE/e6FZGee04dzF+nTjaVrVUFns0sZECAcAAMCssutIt25/Yre2vHRQoWBAH37HUv2X955W1NVOThQhHAAAALPCy80duu1Xu/XYa0dUFgnqL969Un/1nlPVUOX/Ot+TRQgHAADAjOWc02/2tOnbTX/U02+0qqokpL+9fLU++a4VmlceKXZ5E0YIBwAAwIyTzmS19dXD+u5Te/TKgU7VVUT0hSvP0EffuVyVJf59vfx0IYQDAABgxogl0vr3bft116/f1IGOPp1aX66vXvs2ffC8JSoJB4td3pQhhAMAAKDojnTF9f1n9+qe595SVzytC1fM183XnK3Lz2hQIGDFLm/KFTWEm9mVkr4hKSjpe865W4Zdb5T0gKQ3c6f+wzn3j37WCAAAgOmz60i37nxqjx7YfkCZrNOVaxfqr95zqs5bPq/YpU2rooVwMwtK+pakKyQ1S9pmZlucc68Na/q0c+5q3wsEAADAtMhmnZ7cdVT/59m9emrXUZWGg/rIhcv15+9eqVNqZ85Xy0+nYo6EXyhpt3NujySZ2WZJGyQND+EAAACYA7rjKf30hWbd/Zu39GZrjxoqo/q/rjhdH33nKbN6pZOJKGYIXyJpf95xs6SLCrS72MxeknRQ0t8553YUejEz2yRpkyTV19erqalpaqvFrBaLxegTOA79AoXQL1AI/WJyDvdk9cu3Uvr1gbTiGWlVTUCfOieqdQuCCgUO6KVtB4pdou+KGcILzbB3w45flHSKcy5mZldJul/S6kIv5py7U9KdkrRmzRrX2Ng4dZVi1mtqahJ9AsPRL1AI/QKF0C9OXDbr9NQbR/X9Z/eqaedRRYIBXf32JfrEu1bonGU1xS6v6IoZwpslLcs7XipvtHuAc64rb3+rmd1uZnXOuVafagQAAMAJ6OxL6T9ebNYPf/OW9rT2qL4yqs9fcbpuuHC56iujxS5vxihmCN8mabWZrZR0QNL1kj6S38DMFko64pxzZnahpICkNt8rBQAAwIicc9q+v0M//u0+/fzlg4qnsjp3WY2+cf25Wr92kSKhQLFLnHGKFsKdc2kzu0nSo/KWKLzLObfDzD6Vu36HpOsk/bWZpSX1SbreOTd8ygoAAACKIJZI64HtB3TPc/v02qEulUWCuvb8pfrIhcu1dkl1scub0Yq6TrhzbqukrcPO3ZG3f5uk2/yuCwAAACPbcbBTP/7tPt3/+wPqSWZ05qIq/Y8PrNWGcxfPia+U9wPfmAkAAIAx9STSeuiVQ/rxb/dp+/4ORUMB/adzFmvjRct17rIamc29b7WcToRwAAAAFOSc0wtvteve5/frwZcPqTeZ0Wn15fry1WfpP5+/VNVljHpPFCEcAAAAQxzpiutnLzbrp883a09rj8ojQf2nty/Wh9+xVOcvn8eo9xQghAMAAEDJdFaPv35E9z6/X0/uOqqsky5cOV+fvnSV1q9dqPIosXEq8V8TAADgJOWc0ysHOnXf7w/oge0HdawnqYVVJfrrxtN03QXLtLKuvNglzlmEcAAAgJPM/mO9uv/3B3Tf9gPac7RHkWBA7zurQR9et0zvWV2vYIDpJtONEA4AAHASaO9J6sFXDumB3x/Q82+1S5IuWjlfm95zqtavXcSHLH1GCAcAAJij4qmMHn+9Rff9/oCe3NWiVMZpdUOF/v7KNdpw7hItqSktdoknLUI4AADAHJJIZ/TrN1r10MuH9IvXjqg7kVZDZVQ3vmuFPnDeEp21qIrVTWYAQjgAAMAsl0xn9czuVj348iE99tphdcfTqi4N68q1C7Xh3CW6+LRa5nnPMIRwAACAWSiVyerZP7bpoZcP6tEdR9TZl1JlSUjvP2uhrj5nkf7ktDpFQoFil4kREMIBAABmiUQ6o2f/2KZHXz2sR3ccVntvShXRkN5/1gL92dsX6d2r6xQNBYtdJsaBEA4AADCDdcdTemLnUT2247Cadh5VLJFWeSSo9521QFe/fbHes7pOJWGC92xDCAcAAJhhWrrj+uVrLXp0x2E9+8dWpTJOdRUR/adzFun9Zy3Uu1bVMuI9yxHCAQAAisw5pz8e7dGv/nBEj+44ohf3tcs5afn8Mt34rhV6/9kLdf7yeXy4cg4pagg3syslfUNSUNL3nHO3DLtuuetXSeqVdKNz7kXfCwUAAJhi8VRGv33zmJ74Q4t+9YcW7TvWK0k6a1GVPnv56frTtQu0ZkElywnOUUUL4WYWlPQtSVdIapa0zcy2OOdey2u2XtLq3OMiSd/ObQEAAGadw51xPbHTC93P7G5VbzKjaCigP1lVp79676m6dE29ls4rK3aZ8MGYIdzMzpC0RNJvnXOxvPNXOucemcS9L5S02zm3J/d6myVtkJQfwjdIuts55yQ9Z2Y1ZrbIOXdotBfOOqmzNyULSCYpYKaAmcwkM++4/7x3jneYAABg6qUyWb20v0NP7jqqx19v0WuHuiRJS2pKde35S3T5GQt08Wm1fLDyJDRqCDezv5X0GUmvS/p/zey/OuceyF3+n5ImE8KXSNqfd9ys40e5C7VZImnUEL6vO6tz/vGxEyomFDCFgqZwIKBwKKBQwBQOBhQOmkJB7ziSOx8KBhQJBhQKmkKBgCIhbxsNBVQSDqok3L8N5p3LnQ8Fh7UJKJp3riwSYr4XAACzlHNOb7X16uk3juqpN1r1mz+2KZZIKxgwXbB8nr5w5Rm67IwGnb6ggkHAk9xYI+F/JekC51zMzFZI+qmZrXDOfUPeIPNkFHq+m0Abr6HZJkmbJKmqYak+ckZETt6ouOT9nyKbe3ZWksudzzoNtEtnpYxzyrist5/NKONcbl/KxKWEc+rJShnnnUs7KZN1yjgplZWSGadkVkplRih0HCIBqSQkRYOmkpCpJChF+7dBU0lIKgmaoiGpNLctyduWhU2lIaks5LUN8H9yxWIxNTU1FbsMzDD0CxRCv0Aho/WLnpTTa20Z7WjN6NW2jFr7vARQV2pa1xDU2tqozqwNqjyckLRfh/6wX4f+4F/tmJnGCuHB/ikozrm9ZtYoL4ifosmH8GZJy/KOl0o6OIE2ytV3p6Q7JWnNmjXuf954xSTLmxznnJKZrOKprBKpjOKprOLpjOL9+6ncfjqreDIzcK036T1iibR6E2n1JDPqTaYVS2TUmUirtzejnmRaPYm0UpmxY76ZVBEJqao0rMqSkKpKvG1lyfBz4ePOVeWOo6HArH+33tTUpMbGxmKXgRmGfoFC6BcoJL9f9CUzeuGtdv1mT6ue/WObXtrfoayTKqIhXXxag967uk7vWV2vU2rLZv3fn5g+Y4Xww2Z2rnNuuyTlRsSvlnSXpLdN8t7bJK02s5WSDki6XtJHhrXZIumm3HzxiyR1jjUffKYwM0VDQW8Nz9LwtNwjmc6qN+kF9Z5EOvfIqDueUnc8ra54Sl3xtLrjKXX15bbxlA53xfVGi3e9O55WJjt6mI+EAqopDWteWUTVZWHVlIZVUxZWTVnE25b2b/POlYVVGg7yywcAMOvFUxm93pbRi4/t1HN7jun3+9uVyjgFA6a3LanWTZeu0ntOr9e5y2oUDvI18RifsUL4xyWl808459KSPm5m35nMjZ1zaTO7SdKj8pYovMs5t8PMPpW7foekrfKWJ9wtb4nCT07mnnNNJBRQJBRRzSQ+RO2cU28yMxDau3PBvatvMMh39qXU2ZtSe29SHb0p7TvWq5ebveNEOjtyfcHAQCCvKR0M8PPLI5pXHtH88ohqc/u1ueOKaIjgDgAoqkQ6o+37OvSbPW16bk+bXtzXoWQ6q4Dt1tol1frzP1mpd55Wq3WnzFNlyfQMtGHuGzWEO+eaR7n2zGRv7pzbKi9o55+7I2/fyftgKKaJmak8GlJ5NKSF1SUn/Px4KqOO3pQ6+pJq70mpsy+ZO055297kwPX9x3r1Sm9Kx3qTSo4Q3iPBgOaVhzW/PKr5uW1teUTzyiKaXxEZ2K+t8EL7vLIIH2QFAExKR29SL7zVrm172/X83mN6+UCnkumszLw1uz/+zlNU0XtQf37NJaoidGOK8I2ZmJSScFALq4MnFOD7R9+P9STV1pNUe257rCcxcNx/7UB7h9p6kuqOpwu+lplUnRtd7x9Nr62Iqq4iqrqKSG4b1aFYVp19KVWVMNIOACcz55z2H+vTtr3H9PxbXuh+o8VbgTkcNK1dUq0b37VC606Zp4tW1qq6zAvdTU0tBHBMKUI4fJc/+r5s/vjm0iTTWXX09of1wcfQ0J7Qm609en5vu471JgdWwOn3f//6MUWCAdVV9Ad1L6T379dXRnPH3nlG2QFg9utJpPXKgU5t39+h7fs69OK+drV0JyRJlSUhXXDKPH3gvCVad8o8nbOshvW64RtCOGaFSCighqoSNVSNb8Q9ncnqWG9SbbGkWmMJPb3tJdUvPVWtPQm1dnvnjsYSev1Qt9p6EgVXmgmYNL98cDR9MLwPHWWvq4yotjyqSIgP4wBAMWWyTrtbYtq+v13b93fo9/s6tOtI98Byxcvnl+ni02q1bsV8vWPFPJ3eUKkAgy0oEkI45qRQMKCGyhI1VHqhPXMgpMb3nlqwrXNOXX1pHY0l1BpLDAR37zG4/9a+HrXFkupNZgq+TnVpeDCcV0ZVXxHNja575/JH2qMhRloAYDKyWad9x3r1yoFOvXqwUy/v79TLzR3qyf2OrioJ6ZxlNXr/WQt07vIanbO0RrUV0SJXDQwihOOkZ2aqLguruiysVQ0VY7bvTaa90fSehFq7B4N6W250vbU7qdcPdump7oS6E4XnsleVhAZCeaHA3n++jsAOAMpknfYcjenVg5169UCXXj3QqdcOdg38jo0EAzpjUaX+8wVLdc7SGp27vEYra8sZ5caMRggHTlBZJKTltSEtrx17Pns8lRkYUT/anRtdz22HBPZYYsQPn1aVhHKB3Avq9RXHj64T2AHMFd3xlHYd6dbrh7q183C3dhzs1OuHutWX8ka4S8IBnbmoSh84b4nWLqnS2YurdfqCSqYEYtYhhAPTqCQc1NJ5ZVo678QC+0BQ7x6cFnM0ljixwD7C6Ho9gR3ADJDOZLW3rVd/ONylnYe90P2Hw11qbu8baFMRDenMRZW6/sJlWru4Wm9bWq1T68oV4gtxMAcQwoEZ4kQDe1tPbnR9IKj3h/ZcYD/cpafeGDmwV5aEvFH1MUbX6yqirBYAYMJSmazeauvR7paY3jgS0+6jMW+/JTbwnRHBgGllXbnOXVajGy5crjULKnXGokotqSllWVnMWYRwYBYqCQe1pKZUS2pKx2zbH9hbu/NH1genyPQH9tbuhLrGCuzDR9f7AzyBHTjpdcdTequtV7tbYoOPozHtbe1ROju4AtWSmlKd1lChd51WqzULq3TGwkqtaqjgdwdOOoRwYI6baGAvNB3maPc4Ans0/0OnkYGpMf3TZPLXZOcvXWB26exL6a22Hr3Z2qO32nq1t83bvtXWo9ZYcqBdMGA6pbZMq+or9P6zFmhVQ4VWN1Tq1PpylUeJHoBECAeQZzKBffh0mNbuhP5wuFut3a2jBvbB0fTBuev1eYG9/5jADky/TNappTuuA+19am7vGwjZXujuUXtvakj7RdUlWlFbrivOWqBTasu1orZMp9VX6JTacj4oCYyBEA5gQk4ksCfSGbXlrxAzbDpMa3dCOw9369ejBPbScFDzyyOaVx7WvLKIt9+/LY9ofpl3bX5uv6YsQggAhomnMjrY0aeDHXEd6Oj1wnZHnw609+lgZ58OdcSHTB0xkxZXl2pFXZnWv22RVtSW6ZTacq2sK9fy+WW8OQYmgRAOYNpFQ0EtrinV4hMI7MOnw7T3JHWst3/rzT1t70mOuBa75I20zxsI6eG8sO6F94NH0ip785hqysKqKQ2rqjRMqMCs5JxTZ19KLd0JHemKq6UroSPd3ralO64DHd7odmssMeR5AZMWVJVoSU2pzl8+T4vf7r2xXjKvVEtrSrWMoA1MG0I4gBnlRAK7JCXTWXX0egH9WE9S7T2pgbDenhfaW2NJ7ToSU3vv0G89/bff/2bY/QOqKQururT/EVF1aXjIuZoyL7DXlOa3C7NsGqZcXzKjtp6EjvV4/bstlhwM2t2DYftIV2JgpZF8ldGQ6quiWlxdqsvPaNCSeYMhe0lNqRZWlyhMvwWKghAOYFaLhAJqqCpRQ1XJuJ8TT2XU3pvUY08+q1PPfLs6elPq7Mt79KbU0ZdUZ19Kze29eu1gSh19qSHhvZCKaEjVuRH1ymhIFSUhVZaEVJHbryoJqyJa+Fx/W9Zvn5ucc+pJZtTVl1JXPKWuvrTac28c8x9tPbk3jj1JtfUkFE8dH6wlL1w3VEXVUFmiC5bP04KqEtVXRrWgqkQN/duqqMoi/DUPzFT8vxPASackHNSi6lKdUhXUe1bXj/t5yXRWXfFUXmj3gvqQEN+bUlc8re54Ske64vrj0bRi8bS642klM4UDVb5IMOCF9FxQ7w/spZGQysJBlUaCKss9SiOhwf1wUGWR0LDrQZVHQioNB/n67glKZ7LqTWXUm8ioN5lWbzKj3mRGPcn0wLmehPfn2x+uu+KDQbszF7q742ll8uZaD1cW8T7zUFseUV1FRKsXVKi2PKL55VHNLw/ntt51wjUwNxTl/8VmNl/Sv0taIWmvpA8759oLtNsrqVtSRlLaObfOvyoBYKhIKDCwgstEJNKZgUAeywW37nhKsUT+cVqxRGqgXXcirUOdcfX1B79kRn3JzJAPz4239mgooGgomNsGhp4LBxQJBhQNe8eD+/3tggoFTaGAKRgIKGhSMBjIHdvAdnA/MORc//mJfO+Kc1I665QZ9hg455wy2azSGaesGzyfTGeVyD28/czAufzjZCarRMrb9iUzOtbVq+xTj6knmSk4xWMkZZGgqkrCqir1/oWjvjKq0+rLVVUaHnK+qjSsypLQwAeL55dHmHcNnISK9Vb6i5Ied87dYmZfzB1/YYS2lzrnWv0rDQCmRzQUVLQiqNoJhvh8ybQXGHtTg8G8f4S2f78vb+Q2ns4MBM3BbWYgkPYk0mrPXSsUWk809M80kVBA0eDgG4/+Nxb5xxUlIZVUB9UQiuvU5YtVFvX+JcH7l4WQyqPevziURwfPlUW848qSEHOrAZyQYoXwDZIac/s/kNSkkUM4AGCYSC44Vivsy/28kefs4Ah0ZnDEOZ3NKpvV0OsD26wyuWvpzMSDfChoCpopFDQFzBQKBI4bZc/fDwRsMGAHAyf01edNTU1qbFw74VoBYDzMOf9HN8yswzlXk3fc7pybV6Ddm5LaJTlJ33HO3TnKa26StEmS6uvrL7j33nunvG7MXrFYTBUVFcUuAzMM/QKF0C9QCP0ChVx66aUvTHS69LSNhJvZLyUtLHDpSyfwMn/inDtoZg2SfmFmf3DOPVWoYS6g3ylJa9ascY2NjSdaMuYwb2SrsdhlYIahX6AQ+gUKoV9gqk1bCHfOvW+ka2Z2xMwWOecOmdkiSS0jvMbB3LbFzO6TdKGkgiEcAAAAmC2K9SmSLZI+kdv/hKQHhjcws3Izq+zfl/R+Sa/6ViEAAAAwTYoVwm+RdIWZvSHpityxzGyxmW3NtVkg6ddm9pKk30l6yDn3SFGqBQAAAKZQUVZHcc61Sbq8wPmDkq7K7e+RdI7PpQEAAADTjkVNAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8VJYSb2YfMbIeZZc1s3SjtrjSznWa228y+6GeNAAAAwHQp1kj4q5KulfTUSA3MLCjpW5LWSzpL0g1mdpY/5QEAAADTJ1SMmzrnXpckMxut2YWSdjvn9uTabpa0QdJr014gAAAAMI2KEsLHaYmk/XnHzZIuGqmxmW2StEmS6uvr1dTUNK3FYXaJxWL0CRyHfoFC6BcohH6BqTZtIdzMfilpYYFLX3LOPTCelyhwzo3U2Dl3p6Q7JWnNmjWusbFxPGXiJNHU1CT6BIajX6AQ+gUKoV9gqk1bCHfOvW+SL9EsaVne8VJJByf5mgAAAEDRzeQlCrdJWm1mK80sIul6SVuKXBMAAAAwacVaovCDZtYs6WJJD5nZo7nzi81sqyQ559KSbpL0qKTXJd3rnNtRjHoBAACAqVSs1VHuk3RfgfMHJV2Vd7xV0lYfSwMAAACm3UyejgIAAADMSYRwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnRQnhZvYhM9thZlkzWzdKu71m9oqZbTez5/2sEQAAAJguoSLd91VJ10r6zjjaXuqca53megAAAADfFCWEO+delyQzK8btAQAAgKKa6XPCnaTHzOwFM9tU7GIAAACAqTBtI+Fm9ktJCwtc+pJz7oFxvsyfOOcOmlmDpF+Y2R+cc0+NcL9NkvqDesLMXj3xqjGH1UliWhOGo1+gEPoFCqFfoJA1E33itIVw59z7puA1Dua2LWZ2n6QLJRUM4c65OyXdKUlm9rxzbsQPfOLkQ59AIfQLFEK/QCH0CxQymYVDZux0FDMrN7PK/n1J75f3gU4AAABgVivWEoUfNLNmSRdLesjMHs2dX2xmW3PNFkj6tZm9JOl3kh5yzj1SjHoBAACAqVSs1VHuk3RfgfMHJV2V298j6ZwJ3uLOiVeHOYo+gULoFyiEfoFC6BcoZML9wpxzU1kIAAAAgDHM2DnhAAAAwFw1a0O4mV1pZjvNbLeZfbHAdTOzb+auv2xm5xejTvhrHP1iY64/vGxmz5rZRKc8YRYZq1/ktXuHmWXM7Do/60NxjKdfmFmjmW03sx1m9qTfNcJ/4/h7pNrMfm5mL+X6xSeLUSf8Y2Z3mVnLSMtfTzRzzsoQbmZBSd+StF7SWZJuMLOzhjVbL2l17rFJ0rd9LRK+G2e/eFPSJc65t0v6JzHHb84bZ7/ob/e/JD3qb4UohvH0CzOrkXS7pGucc2dL+pDfdcJf4/x98RlJrznnzpHUKOl/m1nE10Lht+9LunKU6xPKnLMyhMtbL3y3c26Pcy4pabOkDcPabJB0t/M8J6nGzBb5XSh8NWa/cM4965xrzx0+J2mpzzXCf+P5fSFJfyPpZ5Ja/CwORTOefvERSf/hnNsned9Z4XON8N94+oWTVGlmJqlC0jFJaX/LhJ9yXxR5bJQmE8qcszWEL5G0P++4OXfuRNtgbjnRP/O/kPTwtFaEmWDMfmFmSyR9UNIdPtaF4hrP74vTJc0zsyYze8HMPu5bdSiW8fSL2ySdKemgpFck/VfnXNaf8jBDTShzFmWJwilgBc4NX+ZlPG0wt4z7z9zMLpUXwt89rRVhJhhPv/hXSV9wzmW8wS2cBMbTL0KSLpB0uaRSSb8xs+ecc7umuzgUzXj6xZ9K2i7pMkmnSfqFmT3tnOua5towc00oc87WEN4saVne8VJ570hPtA3mlnH9mZvZ2yV9T9J651ybT7WheMbTL9ZJ2pwL4HWSrjKztHPufl8qRDGM9++RVudcj6QeM3tK3vdXEMLnrvH0i09KusV5azzvNrM3JZ0h74sFcXKaUOacrdNRtklabWYrcx+GuF7SlmFttkj6eO4Tq++U1OmcO+R3ofDVmP3CzJZL+g9JH2M066QxZr9wzq10zq1wzq2Q9FNJnyaAz3nj+XvkAUnvMbOQmZVJukjS6z7XCX+Np1/sk/evIzKzBZLWSNrja5WYaSaUOWflSLhzLm1mN8lbxSAo6S7n3A4z+1Tu+h2Stsr79s3dknrlvXPFHDbOfvFlSbWSbs+Neqadc+uKVTOm3zj7BU4y4+kXzrnXzewRSS9Lykr6nnOu4BJlmBvG+fvinyR938xekTcN4QvOudaiFY1pZ2Y/kbcSTp2ZNUv6iqSwNLnMyTdmAgAAAD6brdNRAAAAgFmLEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AJzEze4eZvWxmJWZWbmY7zGxtsesCgLmOL+sBgJOcmf0PSSWSSiU1O+e+WuSSAGDOI4QDwEnOzCKStkmKS3qXcy5T5JIAYM5jOgoAYL6kCkmV8kbEAQDTjJFwADjJmdkWSZslrZS0yDl3U5FLAoA5L1TsAgAAxWNmH5eUds792MyCkp41s8ucc78qdm0AMJcxEg4AAAD4jDnhAAAAgM8I4QAAAIDPCOEAAACAzwjhAAAAgM8I4QAAAIDPCOEAAACAzwjhAAAAgM8I4QAAAIDP/n/aE80e0s6N0gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f2 = plt.figure(2, figsize=(12,6))\n", "x = np.linspace(0, 1, 200)\n", "\n", "for k in range(2):\n", " qk = Phi2[:,k]\n", " px = np.zeros(x.shape)\n", " \n", " for km in range(2):\n", " px += qk[km]*phi[km+2](x) # superpose interpolations\n", " \n", " px /= np.max(np.abs(px)) # adjust scale for unity amplitude\n", " plt.subplot(2,1,k+1)\n", " plt.plot(x, px)\n", " \n", " plt.xlim( 0.0, 1.0);\n", " plt.ylim(-1.5, 1.5); plt.ylabel(str(k+1));\n", " plt.grid(True)\n", " \n", " plt.text(0.8, 1.0, 'fk = {0:4.2f}Hz'.format(fk2[k]));\n", "\n", "plt.xlabel('x');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.3.Example 3: experimental 3-dof model \n", "\n", "For the experimental model we get:\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "fk3, wk3, Phi3 = vibration_modes(K3, M3)\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAHiCAYAAAA9GNBtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABl90lEQVR4nO3dd3hb1f0/8PeRLFte8oi3Y1tZduLsxM5iJWFTKFBSViCBEvJj05Yy2pRS2tIBfKGlrJaVBMzemwJxICEheyd24iS249ixPOI9ZEnn94dsMMGJl67OlfR+PY+e2NK19I7kj/zRveeeI6SUICIiIiIizzGoDkBERERE5G/YZBMREREReRibbCIiIiIiD2OTTURERETkYWyyiYiIiIg8jE02EREREZGHscn2cUKILCHEFiFEoxDiNiHEUiHEX1TnIiI31iiR72C9kiexyfZ9dwFYKaWMlFI+5o0HFEKsFEK0CSGaOi+Fffy5FUIIKYQI6nZdsRDijGO2u0YIsdrTuYkUUVGjtwghNgoh2oUQS4+5zdpZh03dLvce535ChBDPCSFKOpuOLUKIc7vdPlsIUdbDz60UQizy+H+MSHterdc+1FiwEOLNzr+VUggxu5f7G9P5t7ZeCFEkhLi4222sVy9jk+37MgDsUvC4t0gpIzovWb1tLISYDyCot+2I/JCKGi0H8BcAz59gm+huNfzn42wTBOAQgNMARAG4F8DrQgirJ8MS6Yi367UvNbYawFUAjpzojjp3YL0H4EMAsQAWA3hJCJHp+djUF2yyfZgQYgWAOQAe79wblXnM7ZFCiHwhxGNCCKEmJSCEiAJwH9x7CPr7s5cds8etXQix0uMhiTSgqkallG9LKd8FUDPI+2mWUv5RSlkspXRJKT8EcBDA1L7ehxDig2Nq2CWEuGYwuYi0oKJee6sxKaVdSvlPKeVqAM5e7m40gBQAj0opnVLKFQC+AXB1X/OwXj2LTbYPk1LOBbAK3+9V3tt1mxBiCIAvAXwjpbxNSimP/XkhxJNCiLrjXLb38vB/E0JUCyG+6e3wFYC/AngKvXwK74mU8rWuvW1wv3kcAPBKf++HSAXFNdqbEiFEmRDiBSFEXF9+QAiRCCAT/djTJ6W8oFsNz4P7feDLASUm0pAe6nUgNdb9x49z3bi+3gHr1bPYZPunFABfAXhDSvn7420kpbxJShl9nMuEE9z/3QCGA0gF8F8AHwghRvS0oRAiB8BJAP59gvt7t/ubEYAne7gfA4CX4R4r958T3BeRL9C6Rk+kGkAu3IfFpwKIBJDX2w8JIUyd2y2TUhZ0/78c21AAOLmHn88EsBzAZVLKQwPMTqSCV+r1BDXWVwUAbADuFEKYhBBnwT0MJaz7/4X16j1ssv3TTwCEAnhaizuXUq6TUjZKKdullMvgPhx13rHbdTbGTwK4XUrpOMFdXtT9zQjATT1s8wDczcBtg/8fECmnaY2eiJSySUq5UUrpkFJWArgFwFlCCMvxfqazll8EYO/cvrvyYxsKuMeQdv/5KLjHit4rpVzlyf8PkRdoXq+91FifSCk7AFwEd94jAO4A8DqA7ic7sl69iE22f3oGwKcAPhZChB9vIyHE08eMvep+6c+hKomeD1NZAOQAeE0IcQTAhs7ry4QQp/T1zoUQlwO4AsC8zjcRIl/n7Ro9ka7D3j2OMe0ce/ocgEQAl/S3BrsdhcrnUSjyUZrW62BrrDsp5XYp5WlSyiFSyrPhPuq8vq8/z3r1LDbZ/usWAIUAPhRChPa0gZTyhm6zCxx7GdvTzwghooUQZwshzEKIIOGeNeRUAJ/1sHk93IfZJnVeuvZ2TwWwri//CSHEZLiHmlwkpazqy88Q+QhNahRwzzIghDADMAIwdtVr523ThXsuYEPnONPH4B6GVX+cu3sKwBgAF0gpWwfw/3wAQDiA2wfws0R6oVm9opcaE+5p/syd3wZ31vPxPhRP6Lw9TAjxGwDJAJb24//JevUgNtl+qvOkjMVwTw30XrcCHSwT3FODVcE9tvNWuBvgQgAQQqR3fmpPl25Hui6dPwMAlVJKex8f70IAMQBWd9sj8ImH/i9EymhYowDwewCtAO6Be+qv1s7rAPeerU8BNALYCaAd7iNFAAAhxO+6akwIkQHg/8H9IflItxqc348sVwCYAeDoAH+eSDmt6rWPNVYIdw2nwr1DqxXucyp+UK+drgZQAffY7NMBnCmlbO9HJNarB4keTpAlIiIiIqJB4J5sIiIiIiIP06zJ7hwTtF4IsU0IsUsIcX8P28wW7qU/t3Ze/qBVHiI6PtYrkW9hzRLpn5bLXLcDmCulbBLuuR9XCyE+kVJ+e8x2q6SU52uYg4h6x3ol8i2sWSKd06zJ7jxJoKnzW1PnhQPAiXSI9UrkW1izRPqn6ZhsIYRRCLEV7rNcP5dS9jRt28zOw12fCCFONMUNEWmI9UrkW1izRPrmldlFhBDRAN4BcKuUcme36y0AXJ2Hu84D8C8p5agefn4x3FPnwGw2T01PT9c884m4XC4YDGrPGWUG9Y+vlwx79+6tllLGe+r+Bluvndvqpmb18BoxAzN08XS9Avwb648ZVD8+M3xvUDUrpfTKBcB9AH7TyzbFAOJOtE1mZqZULT8/X3UEZtDB4+slA4CNUqf1KnVQs3p4jZiBGbpoUa+Sf2P9LoPqx2eG7w2mZrWcXSS+89M1OldHOgNAwTHbJHWtWiSEmAb38JUarTIRUc9Yr0S+hTVLpH9azi6SDGCZEMIId2G/LqX8UAhxAwBIKZ8GMA/AjUIIB9wrGF3e+amBiLyL9UrkW1izRDqn5ewi2wFM7uH6p7t9/TiAx7XKQER9w3ol8i2sWSL944qPREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GGaNdlCCLMQYr0QYpsQYpcQ4v4ethFCiMeEEEVCiO1CiCla5SGi42O9EvkW1iyR/mm5J7sdwFwp5UQAkwCcI4SYccw25wIY1XlZDOApDfMMWl4eYLUCc+eeBqvV/T2Rn/C7eiX/1fVebDAgkN+LWbPkMawpbWjWZEu3ps5vTZ0XecxmFwJY3rnttwCihRDJWmUajLw8YPFioKQEkFKgpMT9PX8RyR/4W72S//rhezEC9r2YNUue8n1NyR/U1BdfJKiO5vM0HZMthDAKIbYCsAH4XEq57phNUgEc6vZ9Wed1urNkCdDSAkSfUojoObsBuL9fskRxMCIP8ad6Jf+1ZAnQanci8Yq1MGdUAwjc92LWLHnCkiVAG9qROH8tTAn1ANw19eyzwxUn831BWt65lNIJYJIQIhrAO0KIcVLKnd02ET392LFXCCEWw32oC/Hx8Vi5cqUGaU+stPQ0AAKmuEYExbSgLr/reomVK7/yep6mpiYlz4OeMqh+fL1k8BRP1Sugj5rtoofXiBk8l6G09DREzymEOb0WdatFt+v79l6sh+fBU/zpb2x3eniNVGfw5uOXHjoV8T/fguDEekB+/ytjs4UE/OswaFJKr1wA3AfgN8dc9x8AV3T7vhBA8onuJzMzU6qQkSElIGXsmTvk0Ns+k+4Dle7rVcjPz1fzwDrKoPrx9ZIBwEap03qVCmu2ix5eI2bwXIaMKTUy/a4PZeyZ2797H+7Pe7Hq50GLepV+8De2O9WvkR4yePPxM84vkBl3fyjDx5f+oKYSE1u9luF4VL8OUg6uZrWcXSS+89M1hBChAM4AUHDMZu8DWNB5BvQMAPVSygqtMg3GAw8AYWGAo9EMY2gHRJATYWHu64l8nb/VK/mntg4n4s7fDldjKI5+Nea76wPxvZg1S56QX2gDxhahdfdQNO9I++76sDBg0aIDCpP5By2HiyQDWCaEMMI99vt1KeWHQogbAEBK+TSAjwGcB6AIQAuAazXMMyjz57v/XfJsCAAgPasND/w2/LvriXycX9Ur+adHv9iL6vZmLJowDS8kB6G0FEhPdzfYAfhezJqlQTlc14pfvbYVo5MicdnYcbh/O35QU6mpNgDZqmP6NM2abCnldgCTe7j+6W5fSwA3a5XB0+bPB9KnmXH1c8Br77dh+vBw1ZGIPMIf65X8y7ZDdXjm6wO4LCcN982Lx303qE6kFmuWBsPucOHmvM1wOCWeumoqhsUZce3VP9zGl4dC64WmJz76oySLGQBwpKFNcRIiosDQ7nDizje3ISHSjCXnj+n9B4johP768R5sPVSHJ+dPwbA47jDUCpvsfkqMcjfZlWyyiYi84okVRdhb2YTnr8mBxWxSHYfIp320vQJL1xTj2pOsOG88p03XkqbzZPujyJAghBiBI/XtqqMQEfm9XeX1eHLlfvxscirmjk5UHYfIpx2oasLdb23H5PRo/PZcHhXSGpvsfhJCIDpEoLKRe7KJiLTU4XThzje2IyY8GH+4gCdgEQ1Gq92Jm/I2w2QUePzKKQgOYguoNQ4XGYAYs0BlPZtsIiItPb1yP3ZXNOA/V09FdFiw6jhEPu3e93aisLIRL1yTi9ToUNVxAgI/xgxATIjgiY9ERBoqPNKIx1bsw/kTknH22CTVcYh82usbDuHNTWW4dc5IzM5KUB0nYLDJHoAYswG2hvauFbSIiMiDHE4X7nxzGyxmE+7/6VjVcYh82u7yBtz73k6cNHIIbj8jU3WcgMImewBiQgTsThdqm+2qoxAR+Z1nVx/E9rJ63H/hWAyJCFEdh8hnNbR14Ka8TYgOM+Ffl0+G0SBURwoobLIHINrs/iWtbOAMI0REnlRka8Ijn+/F2WMT8RNOL0Y0YFJK3PXGdhw62orHr5yCOH5g9To22QMQE9LVZHNcNhGRpzhdEne9uQ1hwUb8+aJxEIJ73YgG6vlvivHpriO4+5ws5FpjVccJSGyyByCmc082T34kIvKcpWuKsbm0DvddkI2ESLPqOEQ+a1PJUfzt4z04MzsR158yXHWcgMUmewCiQgSEAI5wGj8iIo8orm7GQ58VYO7oBFw0KVV1HCKfVdtsxy0vb0ZytBkP/3wijwgpxHmyByDIIDAkPITDRYiIPMDlkrjrre0wGQ3468Xj2RQQDZDTJXH7q1tQ02zH2zfOQlSoSXWkgMY92QOUaGGTTUTkCXnrSrD+YC3u/Uk2kqI4TIRooB5fUYRV+6px3wXZGJcapTpOwGOTPUBJFjOOcHYRIqJBOVTbgr99UoBTRsXh5zlDVcch8lmr91Xjn1/uxcWTU3HltHTVcQhssgcsMcrMPdlERIMgpcRv394BAeDvl0zgMBGiATpS34bbX92CkfEReOBizsyjF2yyByjJYkZtsx3tDqfqKEREPum1DYewuqgavz1vDFKjQ1XHIfJJHU4Xbnl5M1o7nHjqqikIC+bpdnrBJnuAEi3uSd1tHDJCRNRvFfWteOCjPZgxPJaHtokG4cFPC7Cx5Cj+9rPxGJkQqToOdcMme4ASLe6TczhkhIiof7qGiThcEg9eMhEGLvVMNCCf7TqCZ1YdxNUzMnAhp77UHTbZA9R1BjwXpCEi6p+3Nx/GysIq3HVOFtKHhKmOQ+STSmqa8Zs3tmHC0Cj8/vwxquNQD9hkD1BS555sLkhDRNR3toY23P/BLuRkxGDhTKvqOEQ+qa3DiZvyNsMgBJ64cgpCgoyqI1EPODp+gKJCTQgJMnC4CBFRH0kpseTdnWh3uPDgvAkcJkI0QPd/sBu7yhvw3MIcpMXyaJBecU/2AAkhkGgxo5InPhIR9cm6I058vrsSd5yVieHxEarjEPmktzeX4ZX1pbhx9gicPiZRdRw6ATbZg+BekIZ7somIelPd1I6XdrdjYlo0rjt5uOo4RD6p8EgjlryzE9OHxeKOMzNVx6FesMkeBC5IQ0TUN/e9twttDuDheRNg5DARon5ranfgxrxNCA8Jwr+vmIwgI1s4veMrNAhJlhAcqW+DlFJ1FCIi3fpkRwU+2lGBC0eaMCqR8/gS9VfXtJfF1c147IpJSOicfIH0jU32ICRazGh3uFDf2qE6ChGRLh1ttuPe93ZibIoF5w4zqY5D5JNe/LYEH2wrxx1nZWHWiDjVcaiP2GQPwvcL0vDkRyKintz/wS7UtXTgoXkTEcRhIkT9tu1QHf784W7MyYrHjaeNUB2H+oFN9iBwQRoiouP7Yncl3t1ajpvnjER2ikV1HCKfU9dix015m5EQacYjl07itJc+hvNkD0LXgjSVXJCGiOgH6ls7sOTdHRidFImb54xUHYfI57hcEr9+fRtsjW1444ZZiAkPVh2J+ol7sgchwRICgHuyiYiO9ZcPd6O6yY6H5k1EcBD/1BD119Nf78eKAht+/5NsTEqLVh2HBoB7sgchJMiImDATm2wiom6+2luFNzaV4abZIzB+aJTqOEQ+Z0+NEw9vLMT5E5KxYGaG6jg0QNy9MEiJFjNsbLKJiAAAjW0d+O1b2zEyIQK3nT5KdRwin2NraMNT29phjQvH3y+ZACE4DttXcU/2ICVFcdVHIqIuf/ukABUNbXjrxlkwm4yq4xD5FIfThVtf2YI2h8RT86ciIoRtmi/jnuxBSrKYcaSeU/gREa0pqsbL60px3UnDMCU9RnUcIp/zyOd7se5gLRaODUZWEhdu8nVssgcp0WJGTXM7Opwu1VGIiJRpbnfg7re3wzokDHeclaU6DpHP+XJPJZ5cuR+X56bhpFQu3OQP2GQPUqLFDCkBWyP3ZhNR4Hros0Icqm3Fg/MmIjSYw0SI+uNQbQt+/fo2ZCdb8MefjlUdhzyETfYgJUW5p/Gr5LhsIgpQ6w/WYumaYiycmYFpw2JVxyHyKe0OJ255eTNcLomnrprCcxn8CEfUD1IiF6QhogDWanfi7re2Iy02FHedM1p1HCKf88BHe7CtrB5PXzUVGUPCVcchD2KTPUhdqz5yhhEiCkSPfF6Ig9XNyFs0HeGcCYGoX97fVo7la0uw6ORhOGdckuo45GEcLjJIseHBMBkFm2wiCjibS4/iudUHccW0dJw0Mk51HCKfUmRrwj1vbcfUjBjcfS6PAvkjNtmDJIRAQqSZw0WIKKC0dThx15vbkWQx43fnsUEg6o8WuwM35W2C2WTE41dOhsnIdswf8dieByRFmVHZwNlFiChwPPblPhTZmrD02lxEmjndGFFfSSnx+3d2Yp+tCct/MQ3JUaGqI5FG+NHJA5IsZs4uQkQBY0dZPf7z9QHMmzoUs7MSVMch8imvbjiEt7ccxu2nj8Ipo+JVxyENscn2gESLe2l1KaXqKEREmrI7XLjzzW0YEh6Me3+SrToOkU/Zebge972/C6eMisOtc0epjkMaY5PtAYmWELTYnWhsd6iOQkSkqSfyi1BwpBEPXDweUWEcJkLUV/WtHbgpbzNiw4Lxz8smwWgQqiORxthke0BSlHsaPxuHjBCRH9tT0YAn8otw4aQUnJmdqDoOkc+QUuLON7ahvK4VT8yfjCERIaojkRewyfaArgVpjtTz5Eci8k8dTvcwkegwE/54AZd9JuqPZ1cdxP92V+Kec0djagZXRQ0UnF3EA7ggDRH5u/9+fQA7DzfgqflTEBMerDoOkc/YUFyLv39agHPGJuG6k4epjkNexD3ZHvDd0upssonID+2rbMS/vtiH88Yn4dzxyarjEPmM6qZ23PLyZgyNCcWDP58AITgOO5BwT7YHhAYbYTEH4QgXpCEiP+N0Sdz55naEhxjxpwvHqY5D5DOcLolfvroVR1s68M5NubBwPvmAwybbQ9wL0rDJJiL/8tzqA9h6qA7/unwS4niyFlGf/evLfVhdVI1/XDIeY1OiVMchBThcxEMSuSANEfmZA1VN+L//7cUZYxLx04kpquMQ+Yyv9lbh3yv24ZIpQ3FpTprqOKSIZk22ECJNCJEvhNgjhNglhLi9h21mCyHqhRBbOy9/0CqP1pI6F6Qh8kWBVq/UO5dL4u63tiMkyIC/XjyOY0l1hjWrX+V1rfjlq1uQlRiJv1zE2glkWg4XcQC4Q0q5WQgRCWCTEOJzKeXuY7ZbJaU8X8McXpEUZUZVYzscTheCjDxAQD4noOqVerdsbTE2FB/Fwz+fiITOk7tJV1izOtThdOGWlzfD7nDhiflTEBpsVB2JFNKsG5RSVkgpN3d+3QhgD4BUrR5PtQSLGS4JVDfZVUch6rdAq1c6sdKaFjz4aSFmZ8Xjkin8NdAj1qw+/f2TAmwurcM/5k3AiPgI1XFIMa/schVCWAFMBrCuh5tnCiG2CSE+EUL47AoHSZzGj/xEINQrHV/XMBGjQeCvF4/noW4fwJrVh092VOC51QdxzSwrzp/AcxgIEFJKbR9AiAgAXwF4QEr59jG3WQC4pJRNQojzAPxLSjmqh/tYDGAxAMTHx099/fXXNc3cm6amJkRE/PATanG9E39c24ZbJ4dgaqL2k7b0lMHbVGdQ/fh6yTBnzpxNUsocT9yXJ+q1c1vd1KweXiNfyrCitAPLd9txzdhgzE7z7JRjvvQ8aMWT9QoEzt9YvWc40uzC/WtbkRxuwO+mmxFkGNyHU198Dvw1w6BqVkqp2QWACcBnAH7dx+2LAcSdaJvMzEypWn5+/o+uq2xolRl3fyiXrTmoLIO3qc6g+vH1kgHARqnTepU6qFk9vEa+kqHsaIvMvvcTeeUza6XL5VKSQWuqM3iqXmWA/Y3Vc4ZWu0Oe/ehXcuL9n8lDtc1ef3ytMIPbYGpWy9lFBIDnAOyRUj5ynG2SOreDEGIa3MNXarTKpKUh4SEwGgQXpCGfFGj1Sj8mpcQ9b22HBPD3n3FlOr1jzerHfe/tQsGRRjx62SQMjQlTHYd0RMtxDScBuBrADiHE1s7rfgcgHQCklE8DmAfgRiGEA0ArgMs7PzX4HKNBICEyhNP4ka8KqHqlH3tjYxlW7avGny4ci7RYNgo+gDWrA29sPITXNh7CLXNGYk5Wguo4pDOaNdlSytUATrgrREr5OIDHtcrgbYkWM2wN7apjEPVbINYrfe9IfRv+/NFuTBsWi6umZ6iOQ33AmlVvT0UD7n1vJ2YOH4JfnZmpOg7pECd09iAuSENEvkZKiSXv7ECH04UHL5kAwyBP2CIKBI1tHbgpbzMsZhP+dcUkGFk31AM22R6UFGVGJcdkE5EPeXfrYXxZYMNvzsqCNS5cdRwi3XOfv7ADpbUt+PcVk5EQycWaqGdssj0owRKCxnYHmtsdqqMQEfXK1tiGP76/G1PSo3HtScNUxyHyCcvWFOOjHRW48+wsTB8+RHUc0jE22R7UtSANh4wQkd5JKfGHd3ehtcOJB+dN5OFuoj7YUnoUD3y8B2eMScDiU4arjkM6xybbg7jqIxH5io92VODTXUfwqzMyMTKByz8T9eZosx03521GosWM//v5JJ6/QL3SfmnCAJIYxSabiPSvpqkd9723CxOGRuH6UzhMhKg3LpfEr17fiuomO966cRaiwjy7Gir5JzbZHpTYNVykntP4EZF+/fGD3Who68DL82YgyMgDmkS9eXJlEVYWVuHPF43D+KFRquOQj+C7qwdFhAQhIiSIe7KJSLc+23UEH2wrx61zRyErKVJ1HCLdW1NUjUc+34sLJ6XgqunpquOQD2GT7WGJlhA22USkS3Utdvz+3Z0Yk2zBjbNHqI5DpHuVDW247dUtGB4fgb9ePB6dq9QT9QmHi3hYUhQXpCEiffrTh7tR22zHC9fkwsRhIkQn5HC6cOvLW9Dc7sQr109BeAhbJuofvst6WKKFC9IQkf5stTnw9ubDuPG0ERiXyjGlRL156H+FWF9ci7/9bDxGJXJoFfUfP5Z5WKLFDFtjO1wuyel9iEgXGto6sGyXHZmJEbj19JGq4xDp3habA//ZfADzp6fjosmpquOQj+KebA9LspjhcElUN3OGESLSh79+tAd17RIPzpuIkCCj6jhEunaotgXPbG/HuFQL7j0/W3Uc8mFssj2saxo/WwObbCJSb9W+Kry64RDOGWbCpLRo1XGIdK2tw4kb8zYBAJ6aPxVmEz+U0sCxyfawpKiuubI5LpuI1Gpqd+Cet3ZgeFw4Lh7JxTOIevPnD3dj5+EGXD8hBGmxYarjkI9jk+1hXUurc4YRIlLtH58UoLy+FQ/Om4BgI88RITqRd7ccRt66Uvy/04ZjcgJPWaPBY5PtYXERwTAILq1ORGqt3V+DF78twTWzrMixxqqOQ6Rr+yob8du3d2CaNRZ3npWlOg75CTbZHhZkNCAuIoTDRYhImRa7A3e/tR3psWG482w2DEQn0tzuwI15mxEeYsS/r5yMIM4hTx7C4yEaSIoyo7KRJz4SkRoPf7YXpbUteOX6GQgL5ts80fFIKfG7d3bgQFUTXrxu+neTFxB5Aj+uaYAL0hCRKhuLa/HCmoO4akY6Zo4YojoOka7lrSvFe1vL8aszMnHSyDjVccjPsMnWQJKFS6sTkfe1dThx15vbkRIVinvOHaM6DpGubS+rw58+2I3ZWfG4eQ4XaSLPY5OtgURLCOpbO9DW4VQdhYgCyKNf7MWB6mb8/ZLxiAjhMBGi46lv6cBNeZsRFxGMRy+dxBWaSRNssjXQNaaLJz8SkbdsPVSHZ74+gMty0nDKqHjVcYh0y+WSuOONrahsaMPj86cgJjxYdSTyU2yyNdC1IA2n8SMib2h3OHHXm9uQEGnGkvM5TIToRP676gC+2GPD784bgynpMarjkB/j8UQNcEEaIvKmx1cUYW9lE56/JgcWM1d2JDqedQdq8NBnhfjJ+GRcM8uqOg75Oe7J1kCChXuyicg7dh6ux5Mr9+Nnk1Mxd3Si6jhEulXV2I5bX9mC9Ngw/P2S8RCC47BJW2yyNWAxByHUZMSRes6VTUTa6XC6cOeb2xEbHow/XJCtOg6RbjldEre9sgUNbR146qopiOQRH/ICDhfRgBDCvSAN92QTkYaeWrkfeyoa8J+rpyI6jCdvER3Po5/vxdoDNXho3gSMTrKojkMBgnuyNZJoCWGTTUSaKTjSgH+v2IfzJyTj7LFJquMQ6VZ+oQ2P5xfh0pyh+HlOmuo4FEDYZGuEC9IQkVYcThfuenM7LGYT7v/pWNVxiHTrcF0rfvXaVoxOisSfLhynOg4FGDbZGkm0mGFraIeUUnUUIvIzz6w6iO1l9bj/wrEYEhGiOg6RLtkdLtyctxkOp8RTV02F2WRUHYkCDJtsjSRazLA7XahttquOQkR+pMjWhEe/2IuzxybiJ+OTVcch0q2/frwHWw/V4aF5EzAsLlx1HApAbLI18v2CNJxhhIg8w+mSuOvNbQgLNuLPF43jFGREx/HR9gosXVOMX5w0DOfywygpwiZbI4mcK5uIPOyFbw5ic2kd7rsgGwmRZtVxiHRpf1UT7npzG6akR+Oec0erjkMBjE22Rrr2ZPPkRyLyhOLqZjz8v0LMHZ2Aiyalqo5DpEutdiduemkzgoMMePzKKQgOYptD6nCebI3Ed56MdKSeTTYRDY7LJXHXW9thMhrw14u5Uh1RT6SU+P27O7HX1oil105DSnSo6kgU4PgRTyPBQQbERQRzuAgRDdpL60qw/mAt7v1J9ndHyYjoh17feAhvbS7DrXNH4bTMeNVxiNhkaynRwlUfiWhwDtW24O+fFOCUUXH4ec5Q1XGIdGlXeT3+8N4unDwyDrefPkp1HCIAbLI15V6QhrOLENHASClxz9vbIQD8/ZIJHCZC1IOGtg7clLcZ0WEm/PPySTAaWCekD2yyNZTAPdlENAivbjiEb4pq8NvzxiCV40uJfkRKibve2I6yo614/MopiOPiTKQjbLI1lGQxo7bZjnaHU3UUIvIx5XWteOCjPZgxPBZXTktXHYdIl57/phif7jqCe84ZjVxrrOo4RD/AJltDSVHuT9Q2Dhkhon6QUuJ37+yA0yXx4CUTYeDhb6If2VRSi799vAdnZSdi0SnDVMch+hE22RrigjRENBBvbT6MlYVVuOucLKQPCVMdh0h3apraccvLW5ASHYqHfj6R5yuQLnGebA1xQRoi6q/Khjb86YNdyMmIwcKZVtVxiHTH6ZL45WtbUdNsx9s3zkJUqEl1JKIecU+2hhI7lz3mgjRE1BdSSix5ZyfaHS48OG8Ch4kQ9eDxFUVYta8a9/90LMalRqmOQ3RcbLI1FB1mQnCQgcNFiKhP3t9Wji/2VOKOszIxPD5CdRwi3Vm1rwr//HIvfjY5FZfnpqmOQ3RCbLI1JITgXNlE1CdVje344/u7MDEtGtedPFx1HCLdqahvxe2vbsWohAj85eJxHIdNuscmW2NJnCubiPrgj+/vQnO7Ew/Nm8DFNIiO0eF04ZaXt6C9w4kn509FWDBPKSP9Y5OtscQoNtlEdGKf7KjARzsqcNvpI5GZGKk6DpHuPPhpATaVHMXfLpmAkQkcSkW+gU22xhIjQ3Ckvg1SStVRiEiHapvtuPe9nRibYsH/O22E6jhEuvPpziN4ZtVBLJiZgZ9OTFEdh6jP2GRrLCnKjHaHC/WtHaqjEJEO/emDXahr6cBD8ybCZORbMlF3JTXNuPONbZg4NApLfjJGdRyifuE7usa6FqThXNlEdKwvdlfi3a3luGnOSGSnWFTHIdKVtg4nbnxpMwwGgcevnIKQIKPqSET9wiZbY10L0lRyhhEi6qa+pQO/e2cHRidF4pY5I1XHIdKd+z/Yhd0VDXj0solIi+XKp+R7eHquxroWpKnkgjRE1M1fPtqNmmY7nluYi+Ag7u8g6u6tTWV4Zf0h3DR7BOaOTlQdh2hANHtnF0KkCSHyhRB7hBC7hBC397CNEEI8JoQoEkJsF0JM0SqPKis+DgEALP5lG6xWIC9PbR6inrBevSMvD7BagbARNryxqQwnDRmO8UO5Yh31nz/WbFd9nH3pFNzxyg4MC4/Fr8/MVB2LaMC03H3iAHCHlHIMgBkAbhZCZB+zzbkARnVeFgN4SsM8XpeXB9x8gxHOFhOMEW0oKQEWL2ajTboU8PWqtbw8d/2XVnQg9uwdsFdH4K37R/H9gAbKr2r2+/pwIO7CzXC0mbDhscl47VUe5SHfpdlvr5SyQkq5ufPrRgB7AKQes9mFAJZLt28BRAshkrXK5G1LlgAtLYCzyQxjhHu4SEuL+3oiPWG9aq/r/SBmdgGMkW2o+WQCWhqNfD+gAfG3mu2qjyFn70BQTDOq35+M5moz64N8mlfGZAshrAAmA1h3zE2pAA51+76s87qKY35+MdyfwhEfH4+VK1dqFbVPmpqa+pShtPQ0AAKO+lAExbR0u15i5cqvvJJBS6ozqH58vWTwtMHWa+d96KZm9fAaNTU1obRUwmDuQMTEUjRuzoC9PAaAZ94P+ppBD88DM3ieP/yNLS09DRAS5uE2OJvM6KiO6LzeO/VxLNW/J6ofnxk8REqp6QVABIBNAH7Ww20fATi52/dfAph6ovvLzMyUquXn5/dpu4wMKQEpo08pkOl3fiRFkEMC7uu9lUFLqjOofny9ZACwUeq0XqUOalYPr1F+fr7MyJAybEyZzLj7QxmcXCsB6bH3g75mUI0ZPFuv0o/+xnb9vQxJq5Zpv/5YJi38WooQu9fq41iqf09UPz4zfG8wNavpYCchhAnAWwDypJRv97BJGYC0bt8PBVCuZSZveuABICwMsNssEAYJU1wjwsLc1xPpTaDXq9YeeACIzLLB2RwMe0U0APD9gAbFn2q26+9l+6EhqHpnKoLjG5F82Xr84U8O1dGIBkzL2UUEgOcA7JFSPnKczd4HsKDzDOgZAOqllD869Oyr5s8H/vtfID7IvchE8pgG/Pe/7uuJ9IT1qr3Lr5CIya6C0RYPIQQyMsD3Axowf6vZrr+XGRlAe3E8xNrJCEmuxxftG9HW4VQdj2hAtNyTfRKAqwHMFUJs7bycJ4S4QQhxQ+c2HwM4AKAIwDMAbtIwjxLz5wMHtochIiQIV9/WwD+opFesV41tKT2KVmcHHl+SAJcLKC5mg02D4nc1O3++uy5WrPgKxauT8X+XTcDaAzW4KW8z7A6X6nhE/abZiY9SytUARC/bSAA3a5VBLwwGgTHJkdhd0aA6ClGPWK/aW1FgQ5BB4JRR8aqjkB8IhJq9ePJQtNidWPLOTvzqta147IrJMBpO+F8m0hWu+OglY1Oi8PrGQ3C5JAx8kyAKOCsKbMixxiAq1KQ6CpHPmD89Ay3tTjzw8R6EBhvx4CUT+DeUfAZnefeS7GQLWuxOFNc0q45CRF5W0+pCwZFGzB2doDoKkc+5/tTh+OUZo/DmpjLc/8GurplSiHSPe7K9JDvFffLj7ooGDI+PUJyGiLxpW5X7xC022UQDc/vpo9Bid+K/Xx9AaHAQ7j4nC+5zP4n0i3uyvWRUYgSCDAK7yzkumyjQbKtyIi02FCP4AZtoQIQQ+O25ozF/ejqe/mo/nsgvUh2JqFfck+0lIUFGjEyI4MmPRAGmrcOJPTVOXDE9gXveiAZBCIE/XzgOrXYnHv7fXoQGB+G6k4epjkV0XGyyvSg7xYJV+6pVxyAiL1p7oAZ2FzCHQ0WIBs1gEHhw3gS02J3484e7ER5sxOXT0lXHIuoRh4t4UXayBVWN7bA1tqmOQkRekl9gQ7ARmDF8iOooRH4hyGjAY1dMxuysePz2nR14b+th1ZGIesQm24vGpkQBAPZUNCpOQkTeIKXEigIbsmONMJuMquMQ+Y3gIAOevmoqpllj8evXt+F/u46ojkT0I2yyvSg7uXOGEZ78SBQQimxNKDvaionxbLCJPM1sMuK5a3IxPjUKt7y8Bav2VamORPQDbLK9KCrMhNToUOwqr1cdhYi8YEWBDQAwgU02kSYiQoKw7NppGJEQgeuXb8T6g7WqIxF9h022l2WnWDjDCFGAWFFgw+ikSAwJ5VstkVaiwkx48bppSIkOxS+WbsD2sjrVkYgAsMn2urEpFhysbkaL3aE6ChFpqL61AxtLjnIBGiIviIsIQd6i6YgOM2HB8+tReITnPpF6bLK9LDvZAil58iORv1u1rwpOl2STTeQlyVGheHnRDIQEGTD/2XU4WN2sOhIFODbZXtZ9eXUi8l8rCmyIDjNhcnqM6ihEASN9SBjyFs2AlBLzn/kWZUdbVEeiAMYm28tSo0MRFWriDCNEfszlkviqsAqnZcbDaOAqj0TeNDIhAsuvm4amdgfmP7sOtgauTUFqsMn2MiEEspN58iORP9tWVoeaZjuHihApMjYlCkt/MQ1Vje246rl1qG22q45EAYhNtgLZKRYUVDTA4XSpjkJEGlhRYINBAKdlxquOQhSwpqTH4LmFuSipacGC59ehoa1DdSQKMGyyFchOtqDd4eJJGUR+akWBDVMzYhAdFqw6ClFAmzliCJ6+aioKjzTi2hc2cGYv8io22QqMTeXJj0T+qrKhDbvKGzCHQ0WIdGHO6AT86/LJ2FJ6FNcv34i2DqfqSBQg2GQrMCI+AsFGA09+JPJD+Z2rPHI8NpF+nDc+GQ/Nm4hvimpwy8ub0cHhmuQFbLIVMBkNyEyKwC422UR+Z0WBDSlRZmQlRqqOQkTdXDJ1KP580Th8sceGX722FU6XVB2J/FyQ6gCBKjvZgi/22CClhBCc4ovIH7Q7nFhdVI2LJ6eyrol06OoZGWhpd+BvnxQgLNiIv/9sAgycZpM0wj3ZioxNiUJtsx2VDe2qoxCRh6w/WIsWu5NDRYh07P+dNgK3nT4Kr28sw58+3A0puUebtME92Yp8v/JjPZKizIrTEJEnrCiwISTIgFkj4lRHIaIT+NUZo9DS7sCzqw8iPMSIO88erToS+SHuyVZkdJJ7vOauwxyXTZ4jhBgthDhdCBFxzPXnqMoUSPILbJg5YghCg42qo5CPEEJME0Lkdn6dLYT4tRDiPNW5/J0QAkt+MgZXTEvHE/n78UR+kepI5IcG3GQLIa71ZJBAE2k2wTokjNP4kccIIW4D8B6AWwHsFEJc2O3mv6pJFTgOVDWhuKaFQ0Woz4QQ9wF4DMBTQoi/AXgcQASAe4QQS5SGCwBCCPzlonG4aFIKHvqsEC98c1B1JPIzgxkucj+AFzwVJBBlp1g4wwh50vUApkopm4QQVgBvCiGsUsp/AeCZPRpb0Tl135wsNtnUZ/MATAIQAuAIgKFSygYhxEMA1gF4QGG2gGA0CDz884lo7XDi/g92Izw4CJfmpqmORX7ihE22EGL78W4CkOj5OIElO9mCj3ccQUNbByxmk+o45PuMUsomAJBSFgshZsPdaGeATbbm8gttGJUQgbTYMNVRyHc4pJROAC1CiP1SygYAkFK2CiE4kbOXBBkNeOyKybh++Sbc/fZ2mIONsKgORX6ht+EiiQAWALigh0uNttH8X9fJjwUVjYqTkJ84IoSY1PVNZ8N9PoA4AONVhQoETe0OrD9Yy6Ei1F92IUTXp7KpXVcKIaIAsMn2opAgI/5z1VTkWmPx69e2YouNy6/T4PXWZH8IIEJKWXLMpRjASs3T+bmxKVEAgN3l9YqTkJ9YAPch5+9IKR1SygUATlUTKTCs3leFDqfkUurUX6dKKVsAQErZvak2AVioJlLgCg024rmFORibYsETW9uxel+16kjk407YZEspr5NSrj7ObVdqEylwJESGYEh4ME9+JI+QUpZJKY8c57ZvvJ0nkKwosCHSHISpGTGqo5APkVL2uFCClLJaSrnD23nIPSnBsl9MQ1KYwPXLN2Jjca3qSOTDOIWfQkIInvxI5ONcLokVBVU4NTMeJiPfUol8XXRYMO7MDUVylBnXvrABO8p4tJkGhn8RFMtOsWBfZRPsDg6/I/JFO8vrUd3UjrmcVYTIb0SFCLy0aDosoSYseH4d9lby3CnqPzbZimUnW2B3urC/qkl1FCIagBUFNggBzM6KVx2FiDwoJToUL18/HSajAfOfXYfi6mbVkcjHsMlWbGzX8uocMkLkk/ILbJiUFo0hESGqoxCRh2UMCUfeoulwuiTmP7sOh+taVUciH8ImW7FhcREwmwwcl03kg6oa27GtrJ5DRYj82KjESCz/xTQ0tHVg/jPfwtbYpjoS+Qg22YoZDQKjkyzYXcETK4h8zcrCzlUeOXUfkV8blxqFpdfmwtbYjqufXY+jzXbVkcgHsMnWgewUC3aXN0BKqToKEfVDfqENiZaQ74Z9EZH/mpoRi2cX5OBgTTMWPL8eDW0dqiORzrHJ1oHsZAsa2hwc60XkQzqcLqzaW405WQkQgqvWEwWCWSPj8PRVU7CnogHXLd2AFjtXhqTjY5OtA13Lq3NcNpHv2FBci8Z2B4eKEAWYuaMT8c/LJ2FTyVH8vxc3oa3DqToS6RSbbB0Yk2SBQXCGESJfkl9gQ7DRgJNHxqmOQkRedv6EFPzjkglYta8at76yBR1OrnVBP8YmWwdCg40YFhfO5dWJfMiKAhumD49FeEiQ6ihEpMDPc9LwpwvH4vPdlbjj9W1wunheFf0Q/zroRHZKFDaXHFUdg4j6oLSmBfurmjF/eobqKESk0IKZVjS3O/GPTwsQFmzE3342nudo0HfYZOvE2BQLPthWjroWO6LDglXHIaITWFFQCQCYy/HYRAHvxtkj0GJ34N8rihAabMQfzs9mo00A2GTrRnZy58qPFQ2YNYJjPIn0bEVhFYbHhcMaF646ChHpwK/PzERzuxPPf3MQESFBuOOsLNWRSAc4JlsnxiRzeXUiX9Dc7sC3+2s4qwgRfUcIgXvPH4PLc9Pw7xVFeHJlkepIpAPck60T8ZEhSIgMYZNNpHPfFFXD7nRxqAgR/YAQAg9cPB4tdice/LQQ4cFBWDjLqjoWKcQmW0fGplg4wwiRzuUX2hAREoRca6zqKESkM0aDwP9dOhGtHU7c9/4uhAUb8fOcNNWxSBEOF9GR7BQLimxNnNieSKeklMgvqMLJI+MQHMS3TyL6MZPRgMevnIxTRsXh7re248Pt5aojkSL8K6Ej2clRcLgkimxNqqMQUQ92VzTgSEMbh4oQ0QmFBBnxn6unYmpGDH756lZ8uadSdSRSgE22joz9bnn1esVJiKgn+QU2AMDs0fGKkxCR3oUFB+G5a3KRnWLBjXmbsaaoWnUk8jI22TqSHhuG8GAjT34k0qkVBTZMGBqFhEiz6ihE5AMsZhOWXTsNw4aEY9HyjdhUUqs6EnkRm2wdMRgExiTz5EciPapttmPLoTrMyeJQESLqu5jwYLy4aBoSLWZc88IG7DzMo9WBQrMmWwjxvBDCJoTYeZzbZwsh6oUQWzsvf9Aqiy/JTrFgT0UjXC6pOgoFGNbsiX211wYpucoj6QPr1bckRJrx0qLpsJhNuPq5ddhX2ag6EnmBlnuylwI4p5dtVkkpJ3Ve/qRhFp8xNsWCpnYHSmtbVEehwLMUrNnjWlFQhbiIEIxPjVIdhQhgvfqc1OhQ5C2ajiCjAfOfXYeSmmbVkUhjmjXZUsqvAXDwUT9lJ7v/gHPICHkba/b4HE4Xviq0YXZWPAwGoToOEevVR1njwpG3aDo6nC5c+cw6lNe1qo5EGhJSajcsQQhhBfChlHJcD7fNBvAWgDIA5QB+I6XcdZz7WQxgMQDEx8dPff311zVK3DdNTU2IiIjQ5L7tTokbvmjBT4aZcElmsJIMfaU6g+rH10uGOXPmbJJS5njivvyxZj3xGhXWOvG39W24eVIIcpP6v4aXHn5PmEEfGVivvVP9GnkjQ3G9E//Y0IaoYIHfTg9FVMgPP7wHwnPgKxkGVbNSSs0uAKwAdh7nNguAiM6vzwOwry/3mZmZKVXLz8/X9P7PeuQree0L65Vm6AvVGVQ/vl4yANgoWbPH5YnX6G8f75EjfvuRrG+1K8swWMygjwys196pfo28lWHDwRo5+vefyLMf/UoebW73+uP3hhncBlOzymYXkVI2SCmbOr/+GIBJCBGnKo+ejE2xcK5s0p1Artn8AhtyrbGwmE2qoxD1SSDXq6/IscbimQU5OFDVjIXPr0djW4fqSORhyppsIUSSEEJ0fj2tM0uNqjx6kp1iQWVDO6qb2lVHIfpOoNbs4bpWFFY2clYR8imBWq++5uRRcXhy/hTsKm/AdUs3otXuVB2JPKj/gwv7SAjxCoDZAOKEEGUA7gNgAgAp5dMA5gG4UQjhANAK4PLO3fIBLzvZvfLjnooGnDKKK8uRd7Bme7aic5XHOWyySUdYr/7jjOxEPHrZJNz26hYsfnEjnl3okSH7pAOaNdlSyit6uf1xAI9r9fi+LPu75dXZZJP3sGZ7ll9gQ3psGEbEh6uOQvQd1qt/uWBiClrtTtz11nbc+vIWXDqUn4f8gWZNNg1cdFgwUqNDubw6kWKtdie+KarGFdPS0XnknYhIE5fmpqHF7sAfP9iNhqNGzJktYeSUoT6Ny6rrFJdXJ1Jv7YFqtDtcHCpCRF5xzUnDcOfZWfi2wonfv7sDHOHj29hk61R2igUHqpp4EgSRQisKbAg1GTF9WKzqKEQUIG6eMxLnDzfhlfWH8JeP9rDR9mFssnVqbIoFLgkUHOHebCIVpJTIL6jCSSPjYDYZVcchogByySgTrpllxXOrD+LRL/apjkMDxCZbp7pmGOGQESI19lY24XBdK6fuIyKvE0LgD+dn49KcoXjsy314+qv9qiPRAPDER50aGhMKizmIJz8SKfL91H2c4YeIvM9gEPjbzyagxe7E3z8pQHiwEVfPtKqORf3AJlunhBDITuHJj0Sq5BfYMCbZguSoUNVRiChAGQ0Cj142CW0dTtz73i6EBgdh3tShqmNRH3G4iI5lJ0ehoKIRThdPeiDypvqWDmwqPYrTOVSEiBQzGQ14/MopOGnkENz15jZ8vKNCdSTqIzbZOpadYkFrhxMHq5tVRyEKKF/tq4LTJTl1HxHpgtlkxDMLcjAlPQa3vbIF+Z3D2Ujf2GTrGE9+JFIjv8CG2PBgTEqLVh2FiAgAEBYchOevzcXo5Ejc8NImrNlfrToS9YJNto6NTIhAsNHAkx+JvMjpklhZaMNpmfFcbY2IdMViNmH5L6YjPTYMi5ZtxKaSo6oj0Qmwydax4CADRiVGYFd5veooRAFj66E6HG3p4FARItKl2PBg5C2ajvjIEFzzwnrsPMweQa/YZOtcdrIFu8sbuOITkZfkF9hgNAicNopT9xGRPiVYzMhbNB2RIUFY8Px6FNkaVUeiHrDJ1rmxKRbUNNtR1diuOgpRQFhRYMPU9BhEhZlURyEiOq6hMWHIu34GDEJg/rPrUFrTojoSHYNNts5lp0QBAHZxXDaR5o7Ut2F3RQOHihCRTxgWF468RdPR7nDhyme/RUV9q+pI1A2bbJ0bnRwJgDOMEHlD1yqPXEqdiHxFVlIklv9iGupaOjD/2XWobuKRb71gk61zFrMJ6bFhnGGEyAtWFNiQGh2KzMQI1VGIiPpswtBovHBtLsrrWnHVs+tQ12JXHYnAJtsnjOXy6kSaa+tw4puiaswZHQ8hOHUfEfmWXGssnlmQgwNVzVj4wgY0tTtURwp4bLJ9QHayBQerm1kwRBpad7AWrR1ODhUhIp91yqh4PH7lZOw8XI9fLN2AVrtTdaSAxibbB2SnuFd+LODebCLN5BfYEBJkwMzhcaqjEBEN2Fljk/DIpROxobgWN7y0Ce0ONtqqsMn2AV1NNoeMEGlDSokVBTbMGjEEocFG1XGIiAblwkmp+NvF4/HV3irc/spWOJwu1ZECEptsH5BkMSM2PJgnPxJpZH9VM0prWzhUhIj8xuXT0nHv+dn4dNcR3PnmdrhcXNTO24JUB6DeCSGQnWzhXNlEGsnvnLqP82MTkT+57uRhaLU78PD/9iIs2Ii/XDSOJ3Z7EZtsH5GdYsHSNcXocLpgMvIABJEnrSiwITMxAkNjwlRHISLyqJvnjESz3YmnVu5HWLARvztvDBttL2G35iPGplhgd7hwoKpZdRQiv9LQ1oENxbWYOzpRdRQiIo8TQuCus7OwcGYGnll1EP/6cp/qSAGDe7J9RHZy18mP9chKilSchsh/rN5XDYdLcjw2EfktIQTuu2Asmu1O/POLfQgPDsL1pw5XHcvvcU+2jxgWF46QIAN2Hea4bCJPWlFgQ1SoCVPSo1VHISLSjMEg8I9LJuAnE5LxwMd78NK3Jaoj+T3uyfYRQUYDRidFcho/Ig9yuSRWFtpwamY8gniuAxH5OaNB4NFLJ6HV7sS97+1EWLARP5syVHUsv8W/Kj4kOyUKuysaICWn4SHyhB2H61HdZMfc0fGqoxAReUVwkAFPzp+CmcOH4DdvbMMnOypUR/JbbLJ9SHaKBXUtHSivb1MdhcgvrCiwQQjgtEyOxyaiwGE2GfHMghxMSovGba9uQX6hTXUkv8Qm24d8d/Ij58sm8ogVBTZMTotGbHiw6ihERF4VHhKEF66dhszESNzw4iZ8e6BGdSS/wybbh4xJjoQQbLKJPMHW0IYdh+s5qwgRBayoUBOW/2Ia0mLDcN3SDdhSelR1JL/CJtuHhAUHYVhcOHZX1KuOQuTzVhZWAeAqj0QU2IZEhCBv0XQMiQjBwufXc0eeB7HJ9jFcXp3IM1YU2JBkMX83DIuIKFAlWszIWzQd4SFBuPq5dSiyNamO5BfYZPuY7BQLyo62ormDM4wQDZTd4cLqomrMGR3P5YWJiACkxYYhb9F0CAFc9ew6VLW4VEfyeWyyfczYlCgAwKFG/vITDdSG4lo0tTswJ4tDRYiIugyPj8CL101Ha4cTD25owxHOZjYobLJ9TNeh7dIGNtlEA7WiwIZgowEnjYxTHYWISFfGJFuw/BfT0GiXmP/st6hualcdyWexyfYx8ZEhiI8MQQmbbKIByy+wYfrwWISHcNFbIqJjTUyLxq+mmnG4rhULnluP+pYO1ZF8EptsHzQ2xYJSDhchGpDi6mYcqG7m1H1ERCeQFWvEf67OQZGtCdcsXY+mdofqSD6HTbYPyk62oLzJBbuDjTZRf60ocK9sxiabiOjETsuMx2NXTMb2snosWrYBbR1O1ZF8CptsH5SdYoFTAvtsjaqjEPmc/EIbhseHI2NIuOooRES6d864JPzfzydi3cFa3PjSJu7g6wc22T6o6+RHzpdN1D/N7Q6sO1CL07kXm4iozy6anIoHLhqP/MIq/PK1LXA42Wj3Bc/68UHWIeEIMXJ5daL+Wl1UDbvTxVUeiYj66crp6WixO/CXj/bAbNqOh+dNhMHAdQZOhE22DzIYBNIiDdhdwSabqD/yC2yIDAlCrjVWdRQiIp+z6JThaLE78cjnexEWbMSfLxzHBb1OgE22j0q3GLChvAEul+QnSaI+kFJiRYENp2TGwWTkSDkiooG4de5INLc78J+vDyA8OAj3nDuajfZx8C+Nj0qPNKCx3YGyo62qoxD5hF3lDbA1tnOVRyKiQRBC4J5zR+OqGen4z9cH8O8VRaoj6Rb3ZPuoDIv789HuinqkDwlTnIZI/7qm7pvNJpuIaFCEEPjTT8f9YOjIolOGq46lO9yT7aNSIwwwGgRPfiTqoxUFNkwcGoX4yBDVUYiIfJ7BIPDgJRNw3vgk/OWjPXh5XanqSLrDJttHBRsFRsSHcxo/oj6oaWrHtrI6zipCRORBQUYD/nnZZMzJiseSd3fg3S2HVUfSFTbZPmxsShRnGCHqg5WFVZCSqzwSEXlacJABT101FdOHxeKON7bh051HVEfSDTbZPiw72YKK+jbUNttVRyHStRWFNsRFhGBcSpTqKEREfsdsMuLZhbmYMDQKt76yGV/trVIdSRfYZPuw7BT3yo97uDeb6LgcLomv91ZhTlY8p7skItJIREgQll4zDaMSIvH/XtyIdQdqVEdSjk22D/t+efV6xUmI9KuozoXGNgeHihARaSwqzITl101DanQorlu2EVsP1amOpJRmTbYQ4nkhhE0IsfM4twshxGNCiCIhxHYhxBStsvirmPBgpESZOcMIeYS/1uy2KidMRoGTR8WpjkLkMf5ar+T74iJCkLdoBmLCTVj4/PqAPtqu5Z7spQDOOcHt5wIY1XlZDOApDbP4pbw8oHy3Ba9/3gCr1f090SAshR/VbF4eYLUC720IQUd5LN5/y6Q6EpEnLYUf1Sv5l6QoM15eNAOhJiPmPbEO1vFNMBgQcL2KZk22lPJrALUn2ORCAMul27cAooUQyVrl8TdffJGAxYuBumILTEOaUXrYicWLA+uXlzzLn2o2Lw9YvBgoO9qC4Lgm1O5KYH2QX/GneiX/lBYbhssTp6OxAXCcsg6GyBaUlCCg3otVjslOBXCo2/dlnddRHzz77HC0tAD2yigIg4QpvgEtLcCSJaqTkR/zmZpdsgRoaQFCkt3nK3RURbI+KND4TL2S//rnnyNw5NXpMEa0IebUQgAIqPdilcuq93Sav+xxQyEWw324C/Hx8Vi5cqWGsXrX1NSkPIPNdhoAoL08GgAQMvQo7BUxKC2VWLnyK69kUP08qH58vWTwIp+p2dLS0wAItBXHwdkWhMipxWgrjvdqfXSnh98TZtBPBi/xmXo9lh5eI9UZVD++pzKUlp6G4KEdEAagtSSu2/V9ey/Ww/MwKFJKzS4ArAB2Hue2/wC4otv3hQCSe7vPzMxMqVp+fr7qCDIxsVUCUgJSply/QsZftEECUmZkeC+D6udB9ePrJQOAjZI1+wMZGfK7+rBML5IZd38oQ1JrvFof3enh94QZ9JGB9do71a+RHjKofnxPZcjIkDLuoo1y6G2fSRHk+O59ua/vxXp4HgZTsyqHi7wPYEHnGdAzANRLKSsU5vEpixYdQFiY++v2w7EIGXoUYWESDzygNhf5NZ+p2QcewHf10bjJCkdjCIbMLcBf/tLjjjwif+Qz9Ur+6877WhE2qhJN29IgHUYA7vfmQOlVNBsuIoR4BcBsAHFCiDIA9wEwAYCU8mkAHwM4D0ARgBYA12qVxR+dcYYNY8ZkY8kSoKYsBhHjy/DAv5sxf36E6mjko/ypZufPd/+7ZAlQWmpAUOEoIGcnUnOqAHC+bPJ9/lSv5L9aUkpgKJSIqspAvQDS090Ndtd7tL/TrMmWUl7Ry+0SwM1aPX4gmD/ffdlfFYvT/w9IHl8LgE02DYy/1WxXfaxc+RVmnXwqznjkAB78rBCnZXLlR/J9/lav5H/aOpx4Zf0hnJGdiGf+HqY6jhJc8dEPDI8LR2x4MDYUH1UdhUiXgoMMuOOsTOypaMAH28tVxyEi8nsfba9AbbMdC2daVUdRhk22HxBCICcjBhuLTzRlKlFgu2BCCkYnReKRz/eiw+lSHYeIyK8tX1uMEfHhOGnkENVRlGGT7SemDYtFcU0LbI1tqqMQ6ZLBIHDn2VkoqWnB6xsP9f4DREQ0IFtKj2JbWT0WzrJCiMAdnscm20/kWGMBABs5ZITouOaOTkBORgwe+3IfWu1O1XGIiPzS8rUliAgJws+mDFUdRSk22X5ibIoFZpMBGzhkhOi4hBC465zRqGxox7K1xarjEBH5narGdny4vRzzpg5FRIjKNQ/VY5PtJ0xGAyanxXBPNlEvpg2LxeyseDy1cj/qWztUxyEi8iuvri9Fh1Pi6pkZqqMoxybbj+RaY7CrvB5N7Q7VUYh07TdnZaG+tQPPfH1AdRQiIr/R4XQhb10pThkVhxHxnFKYTbYfyR0WC5d0n3BARMc3LjUKF0xMwXOrD6KqsV11HCIiv/C/XZU40tAW0NP2dccm249MTo+BQYDzZRP1wa/PzITd6cLjK/apjkJE5BeWrS1GWmwo5ozmyroAm2y/EhEShOwUC+fLJuqDYXHhuDQnDS+vL8Wh2hbVcYiIfNqeigasP1iLq2dkwMhVdQGwyfY7ORmx2FJax8U2iPrg9tNHwSAEHv1ir+ooREQ+bfnaYphNBlyak6Y6im6wyfYzudZYtHY4sbu8QXUUIt1LijLjmllWvLPlMAqPNKqOQ0Tkk+pa7Hhny2FcNCkV0WHBquPoBptsP5NrjQEAzpdN1Ec3nDYCEcFBePh/haqjEBH5pDc2lqGtw4UFPOHxB9hk+5kEixkZQ8LYZBP1UUx4MBafOhyf767EZs7MQ0TUL06XxPJvizHNGovsFIvqOLrCJtsP5WTEYmPxUUgpVUch8gm/OHkY4iKC8dCnhawbIqJ+WFlow6HaViycZVUdRXfYZPuhXGsMaprtOFjdrDoKkU8IDwnCLXNGYu2BGqwuqlYdh4jIZyxdU4wkixlnjU1UHUV32GT7oRxrLABwiXWifrhiejpSo0PxIPdmExH1yf6qJqzaV43509NhMrKlPBafET80Ij4cseHBWM9x2UR9FhJkxK/OzMSOw/X4ZOcR1XGIiHTvxbUlCDYacPm0dNVRdIlNth8SQiAnI4aL0hD108WTUzEqIQIP/68QDs41T0R0XE3tDry5qQw/mZCM+MgQ1XF0iU22n8q1xqK4pgW2xjbVUYh8htEg8Juzs3Cgqhlvbz6sOg4RkW69s7kMTe0OLJiZoTqKbrHJ9lM5nfNlb+K4bKJ+OSs7EZPSovHoF3vR1uFUHYeISHeklFi2tgQThkZhUlq06ji6xSbbT41NiYLZZMAGNtlE/SKEwF1nZ6Givg0vfVuiOg4Rke6s2V+DIlsTFs60QgihOo5uscn2U8FBBkxKi8bGEo7LJuqvWSPjcPLIODy5cj+a2h2q4xAR6crSNcWIDQ/GTyYkq46ia2yy/dg0ayx2lTegmU0CUb/deXYWapvteHbVAdVRiIh041BtC77cU4krpqXBbDKqjqNrbLL9WI41Fk6XxJbSOtVRiHzOxLRonDsuCc98fQA1Te2q4xAR6cJL60oghMD86TzhsTdssv3Y5PRoGASwgVP5EQ3IHWdlorXDiSdX7lcdhYhIubYOJ17bcAhnZSciJTpUdRzdY5PtxyLNJoxJtnBcNtEAjUyIxCVThuLFb0tQXteqOg4RkVLvby1HXUsHFsy0qo7iE9hk+7lcayy2lNahgwtrEA3IL8/MBCTwry/2qY5CRKSMlBJL1xQjKzESM4bHqo7jE9hk+7lcayxa7E7sLm9QHYXIJ6VGh+KqGRl4Y9MhFNmaVMchIlJiU8lR7K5owIJZGZy2r4/YZPu5rkVpOC6baOBunjMCoSYjHvm8UHUUIiIllq0tQaQ5CBdPTlUdxWewyfZziRYz0mPDsJGL0hAN2JCIEFx3ynB8vOMIdpTVq45DRORVlQ1t+GRHBS7NSUNYcJDqOD6DTXYAyLHGYGNJLaSUqqMQ+azrTxmGmDATHvysQHUUIiKvenldKZxS4uoZnLavP9hkB4Bcayyqm+wormlRHYXIZ0WaTbh5zkis2leNNfurVcchIvIKu8OFl9eXYnZmPKxx4arj+BQ22QEgt2tc9kGOyyYajKtmZCA5yowHPy3kkSEiCgif7KxAVWM7Fs6yqo7ic9hkB4AR8RGICTPx5EeiQTKbjLj99FHYeqgOn++uVB2HiEhzy9eWwDokDKeOilcdxeewyQ4AQgjkWGOxsYQnPxIN1rypQzE8LhwP/68QThf3ZhOR/9p5uB6bSo7i6plWGAyctq+/2GQHiFxrDA5WN6OqsV11FCKfFmQ04I6zsrC3sgnvbjmsOg4RkWaWrSlGWLAR86YOVR3FJ7HJDhA5VvfqTJu4xDrRoJ07LgnjUi149Iu9sDu4mioR+Z9Gu8R728px8eRURIWaVMfxSWyyA8S4lCiYTQasP8ghI0SDZTAI3Hn2aJQdbcUr60tVxyEi8rivyzpgd7h4wuMgsMkOEMFBBkxKi8ZG7skm8ohTR8VhxvBY/HtFEZrbHarjEBF5jMPpwopSB2YOH4LMxEjVcXwWm+wAkmuNxa7yBjYERB4ghMBd54xGdVM7XvjmoOo4REQe82WBDTVtknuxB4lNdgDJscbC6ZLYeqhOdRQivzAlPQZnjEnEf74+gLoWu+o4REQesWxNMWLNAmeMSVAdxaexyQ4gU9KjYRDgfNlEHnTn2Vloanfgqa/2q45CRDRo+yobsWZ/DeamByHIyDZxMPjsBZBIswmjkyxssok8KCspEhdPSsXSb4pxpL5NdRwiokFZtrYYwUEGnDaUM4oMFpvsADNtWCy2lNahw8lpx4g85VdnZsIlJR5bsU91FCKiAWto68Dbmw/jpxNTEBnMxWcGi012gMmxxqDF7sSeigbVUYj8RlpsGK6Ylo7XNxxCcXWz6jhERAPy5sYytNidWDjTqjqKX2CTHWByMtyL0mwo5nzZRJ50y9yRMBkNeOTzvaqjEBH1m8sl8eK3JZiSHo3xQ6NUx/ELbLIDTFKUGWmxodjIcdlEHpUQacYvTrbi/W3l2FVerzoOEVG/rCqqxsHqZk7b50FssgNQbkYsNhTXQkqpOgqRX1l86ghEhZrw8GeFqqMQEfXLsjXFiIsIwbnjklVH8RtssgNQjjUW1U12FNe0qI5C5FeiQk244bQRyC+s4iw+ROQzSmqakV9ow5XT0xEcxNbQU/hMBqBpw2IAcL5sIi1cM8uKhMgQPPhpAY8WEZFPeHFtCYxCYP70dNVR/Aqb7AA0Ij4CMWEmjssm0kBosBG3nT4KG4qPYmVhleo4REQn1GJ34PWNh3DOuCQkWsyq4/gVNtkBSAiBqRmx2MgZRog0cVluGjKGhOHBzwrhcnFvNhHp17tbytHQ5uAJjxrQtMkWQpwjhCgUQhQJIe7p4fbZQoh6IcTWzssftMxD38u1xuBAdTOqGttVRyGdYL16jslowK/PzMSeigZ8sL1cdRzyQ6xX8gQpJZavLUZ2sgU5GTGq4/gdzZpsIYQRwBMAzgWQDeAKIUR2D5uuklJO6rz8Sas89EM5Vvd82ZtKOGSEWK9auGBCCkYnReKRz/fCwb3Z5EGsV/KUdQdrUXCkEQtnZUAIrvDoaVruyZ4GoEhKeUBKaQfwKoALNXw86ofxqVEICTJwURrqwnr1MINB4K5zslBS04JVZQ7Vcci/sF7JI5avLUZ0mAkXTkpVHcUvadlkpwI41O37ss7rjjVTCLFNCPGJEGKshnmom+AgAyalRfPkR+rCetXAnKwE5GTE4L39HWi1O1XHIf/BeqVBK69rxWe7KnFZThrMJqPqOH4pSMP77um4w7HHTDcDyJBSNgkhzgPwLoBRP7ojIRYDWAwA8fHxWLlypWeT9lNTU5NfZEgQdnx0uAOffZGPkKD+HyZS/Tyofny9ZPAQj9UroK+aVf0anZnoxMYSifte+hLnDQ9WlkP188AMHuW39Qro4zVSncEbj//WXjtcLomRqMDKlZVKMvRGDxkGRUqpyQXATACfdfv+twB+28vPFAOIO9E2mZmZUrX8/HzVETySIb+gUmbc/aFcva9KWYbBUP34eskAYKPUab1KHdSsHl6jCx76RE7442eyrsWuLIMengdmYL32herXSA8ZtH78VrtDTvnT/+R1Szcoy9AXesgwmJrVcrjIBgCjhBDDhBDBAC4H8H73DYQQSaJzpL0QYhrcw1dqNMxE3UzJiIEQXJSGALBeNXVJpgn1rR145usDqqOQf2C90qB8vKMCNc12XMNp+zSl2XARKaVDCHELgM8AGAE8L6XcJYS4ofP2pwHMA3CjEMIBoBXA5Z2fGsgLLGYTRidZOF82sV41lmEx4oKJKXhu9UEsmJWBhEgu+EADx3qlwVq2phgj4sNx0sghqqP4NS3HZENK+TGAj4+57uluXz8O4HEtM9CJTbPG4I1NZXA4XQgycm2iQMZ61davz8zExzsq8MSKItx/4TjVccjHsV5poLYeqsO2snr86cKxnLZPY+yqAlyONRYtdif2VDSqjkLk14bFhePSnDS8vL4Uh2pbVMchogC1fE0xIkKC8LMpQ1VH8XtssgNcjtW9wtN6jssm0tztp4+CQQg8+sVe1VGIKABVN7Xjw+0VuGRKKiJCNB3MQGCTHfCSo0IxNCaU82UTeUFSlBnXzLLinS2HUXiER4+IyLteXV8Ku9OFq2daVUcJCGyyCbnWWGwoPgqeE0OkvRtOG4GI4CA8/L9C1VGIKIB0OF146dtSnDIqDiMTIlTHCQhssgm51lhUN7WjpIbjRIm0FhMejMWnDsfnuyuxuZQz+xCRd3y+uxJHGtqwkHuxvYZNNiG3c1w258sm8o5fnDwMcRHBePDTAh5BIiKvWLqmGENjQjFndILqKAGDTTZhRHwEosNMbLKJvCQ8JAi3zBmJbw/UYtW+atVxiMjP7alowPqDtVgwMwNGA6ft8xY22QSDQSAnI4aL0hB50RXT05EaHYqHPivk3mwi0tTytcUwmwy4NCdNdZSAwiabALjnyz5Q3YzqpnbVUYgCQkiQEb86MxM7Dtfjk51HVMchIj9V39KBd7YcxkWTUhEdFqw6TkBhk00A3Cc/AuDebCIvunhyKkYlRODh/xXC4XSpjkNEfuj1jYfQ1uHCAp7w6HVssgkAMC7VgpAgA+fLJvIio0HgN2dn4UBVM97aXKY6DhH5GadL4sVvSzDNGovsFIvqOAGHTTYBcB+6npgWzZMfibzsrOxETEqLxj+/2Ie2DqfqOETkR1YW2lBa24IFszJURwlIbLLpO7nWGOwsb0CL3aE6ClHAEELgrrOzUFHfhpe+LVEdh4j8yLK1JUi0hODssUmqowQkNtn0nRxrLJwuia2ldaqjEAWUWSPjcMqoODy5cj8a2zpUxyEiP7C/qglf763C/OkZMBnZ7qnAZ52+MyU9BkIAG3jyI5HX3Xl2Fmqb7Xh21UHVUYjID7y4tgQmo8AV09JVRwlYbLLpO1GhJoxOsmBjCcdlE3nbhKHROHdcEp5ddQA1nEqTiAahqd2BtzaV4SfjkxEfGaI6TsBik00/kGuNweaSo5xOjEiBO87KRGuHE0+u3K86ChH5sHc2l6Gx3YEFs6yqowQ0Ntn0AznWWDTbndhT0ag6ClHAGZkQiXlTh+LFb0twuK5VdRwi8kFSSixbW4IJQ6MwOS1adZyAxiabfiDXGgMAnMqPSJHbz8gEJPCvL/aqjkJEPmjN/hoU2ZqwYKYVQgjVcQIam2z6geSoUKRGh3JcNpEiqdGhuGpGBt7cVIYiW5PqOETkY5atKUZseDDOn5CsOkrAY5NNPzJtWCw2FB+FlFJ1FKKAdPOcEQg1GfHI54WqoxCRDyk72oIv9lTi8tw0mE1G1XECHpts+pEcawyqGttRUtOiOgpRQBoSEYJFpwzHxzuOYHtZneo4ROQjXvq2FABw1Qyu8KgHbLLpR3KtsQA4LptIpUWnDENMmAkPfca92UTUu7YOJ17dUIqzspOQEh2qOg6BTTb1YGR8BKJCTdjIRWmIlIk0m3DznJFYta8aa/ZXq45DRDr3/rZy1LV0YCGn7dMNNtn0IwaDQE5GDDbw5Ecipa6akYHkKDMe/LSQ50gQ0XFJKbFsTTGyEiMxY3is6jjUiU029Sh3WCwOVDVz5TkihcwmI355xihsPVSHz3dXqo5DRDq1ufQodpU3YMGsDE7bpyNssqlH38+XzSEjRCpdMmUohseH46HPCuF0cW82Ef3Y0jUliDQH4aJJqaqjUDdssqlH41KjEBxkwEae/EikVJDRgDvOzMI+WxPe3XJYdRwi0hlbQxs+2VGBS3PSEB4SpDoOdcMmm3oUEmTEpKHR2FDCPdlEqp07LgnjUi149Iu9sDtcquMQkY68vL4UDpfE1Zy2T3fYZNNx5VhjsOtwPVrsDtVRiAKawSBw19mjUXa0Fa+sL1Udh4h0wu5wIW9dKWZnxcMaF646Dh2DTTYdV641Fg6XxNZDdaqjEAW8U0bFYcbwWPx7xT40t/ODLxEBn+46gqrGdk7bp1Nssum4pmTEQAhgw0EOGSFSTQiBu84ZjeomO1745qDqOESkA8vWFMM6JAynjYpXHYV6wCabjisq1ISsxEhs5HzZRLowJT0GZ4xJxH++PoC6FrvqOESk0M7D9dhUchRXz7TCYOC0fXrEJptOKNcai80lR+Fw8mQrIj248+wsNLU78NRX+1VHISKFlq0pRqjJiHlTh6qOQsfBJptOKMcag2a7EwVHGlVHISIAWUmRuHhSKpZ+U4wj9W2q4xCRAkeb7XhvWzl+NiUVUaEm1XHoONhk0wnlWt3Ls27gfNlEuvGrMzPhkhKPrdinOgoRKfDqhkOwO1xYMNOqOgqdAJtsOqGU6FCkRoeyySbSkbTYMFwxLR2vbziE4upm1XGIyIucLomXvi3BzOFDkJUUqToOnQCbbOpVrjUGG4qPQkou6UykF7fMHQmT0YBHPt+rOgoRedEXeypxuK4VC2dx8Rm9Y5NNvcqxxqKqsR2ltS2qoxBRp4RIM35xshXvbyvHrvJ61XGIyEuWry1GSpQZZ4xJVB2FesEmm3r1/bhszpdNpCeLTx2BqFATHv6sUHUUIvKCfZWN+KaoBvNnZCDIyBZO7/gKUa9GJUQgKtSEjRyXTaQrUaEm3HDaCOQXVvG8CaIAsHxtCYKDDLg8N011FOoDNtnUK4NBICcjBuv5R5xId66ZZUVCZAj+8UkBz5sg8mMNbR14a3MZLpiQgiERIarjUB+wyaY+ybHG4kBVM2qa2lVHIaJuQoONuO30UdhYchT5hTbVcYhII29tKkOL3YlrZllVR6E+YpNNfZJrjQEAbCzhuGwivbksNw0ZQ8Lw0Gd74XJxbzaRv3G5JF5cW4LJ6dEYPzRKdRzqIzbZ1Cfjh0YhOMjAcdlEOmQyGvDrMzOxp6IBH2wvVx2HiDxsVVE1DlQ3YyEXn/EpbLKpT0KCjJg4NIozjBDp1AUTUjA6KRKPfL4XHU6X6jhE5EHL1xQjLiIE541PVh2F+oFNNvVZjjUWOw/Xo8XuUB2FiI5hMAjcdU4WSmpa8NqGQ6rjEJGHlNa0YEWhDVdOS0NwENs2X8JXi/psmjUWDpfE1kN1qqMQUQ/mZCUgJyMGj325D612p+o4ROQBL35bDKMQmD+DKzz6GjbZ1GdT0mMgBLCRQ0aIdEkIgbvOGQ1bYzuWrS1WHYeIBqnF7sBrGw7h7HFJSLSYVcehfmKTTX0WFWZCVmIkF70g0rFpw2IxJyseT63cj/rWDtVxiGgQ3ttajoY2B6ft81Fssqlfcqwx2FxyFA6eWEWkW785Owv1rR3479f7VUchogGSUmLZmmKMSbYgJyNGdRwaADbZ1C+51lg0250oONKoOgoRHcfYlChcMDEFz68uhq2xTXUcIhqA9QdrUXCkEdfMyoAQQnUcGgA22dQvudZYAOCQESKd+/WZmbA7XXhiRZHqKEQ0AMvWFiMq1ISfTkxVHYUGSNMmWwhxjhCiUAhRJIS4p4fbhRDisc7btwshpmiZhwYvJToUqdGhPPnRD7Fe/cuwuHBclpuGl9eX4lBti+o45GGsV/9W2+bCZ7sqcXluGkKDjarj0ABp1mQLIYwAngBwLoBsAFcIIbKP2excAKM6L4sBPKVVHvKcOBmDj9bXYu7cU2G1Anl5qhPRYLFe/dNtc0dBugROuXEv5s49jfXqJ1iv/isvD7Bagev+mgKnUyKiktP2+TIt92RPA1AkpTwgpbQDeBXAhcdscyGA5dLtWwDRQgguZ6RjeXnA6ndjgdB2GC1tKCkBFi/mH24/wHr1Q19+aEbDRiuk9TCChjSxXv0H69UP5eW567OkzImIiYfQUpSIe24JY736MC2b7FQA3ZcdK+u8rr/bkI4sWQI0HnCf5RyS5h6X3dLivp58GuvVDy1ZAtSsHgHZHoToUwoBsF79BOvVDy1Z4q7P8KwKGMPtaNycwXr1cUEa3ndPp8LKAWwDIcRiuA93AUC7EGLnILMNVhyA6sDMMHUqAJT844fXlpQAQmza5OUwAfw6/ECWB+7DY/UK6K5m9fAaKa3XQ//64bWK6hUI6NfiO6zX3ql+jRRlcNdr8273pQvrVXmGAdeslk12GYC0bt8PBVA+gG0gpfwvgP8CgBBio5Qyx7NR+4cZ9JFB9ePrKYMH7sZj9Qroq2ZVPz4zMMOxj++Bu/HbemUGfTw+M/www0B/VsvhIhsAjBJCDBNCBAO4HMD7x2zzPoAFnWdBzwBQL6Ws0DATEfWM9UrkO1ivRD5Asz3ZUkqHEOIWAJ8BMAJ4Xkq5SwhxQ+ftTwP4GMB5AIoAtAC4Vqs8RHR8rFci38F6JfINWg4XgZTyY7gLvft1T3f7WgK4uZ93+18PRBssZnBTnUH14wN+lEGjegXUP0eqHx9ghi7MwHrtC2ZQ//gAM3QZcAbhrkMiIiIiIvIULqtORERERORhum+yhRA/F0LsEkK4hBDHPcNUCFEshNghhNjqobO3B5LhhMvcDjJDrBDicyHEvs5/Y46znUefBz0s3duHDLOFEPWd/+etQog/ePjxnxdC2I43rZWXnoPeMmj6HPQV6/W7+1ZSr533qbRmVddr52OwZvuINRvY9drHDPwbO9DnQEqp6wuAMXDPUbgSQM4JtisGEKcqA9wnn+wHMBxAMIBtALI9mOFBAPd0fn0PgH9o/Tz05f8E94k1n8A9J+sMAOs8/Nz3JcNsAB9q+Dt4KoApAHYe53ZNn4M+ZtD0OehHTtarVFOvff1/afn7qod67XwM1mzfcwZ8zQZqvfYjg6a/q/5cr7rfky2l3COlLPSBDH1Z5nYwLgSwrPPrZQAu8uB9H48elu7V+nntlZTyawC1J9hE8+WL+5BBF1iv31FRr4D6mlVerwBrtj9YswACt177mkFT/lyvum+y+0EC+J8QYpNwr17lbVovYZsoO+c47fw34TjbefJ50MPSvX29/5lCiG1CiE+EEGM9+Ph9oZfli1U+B/3FenXz9POgumZ9oV4B1uxA+HPNBmq99uf++Td2AM+BplP49ZUQ4gsAST3ctERK+V4f7+YkKWW5ECIBwOdCiILOTybeytDnJWwHkqEfdzOo5+HYSD1cN+ClezXMsBlAhpSySQhxHoB3AYzyYIbeaP0c9IXXngPWa+8Z+nE3nqxXQH3N+kK9AqzZLgFTs6zXQWVQXbM+W6+6aLKllGd44D7KO/+1CSHegfsQSJ9/+T2Qoc9L2A4kgxCiUgiRLKWs6DxMYjvOfQzqeTiGR5fu1SqDlLKh29cfCyGeFELESSmrPZhjUBm15s3ngPXaewZF9Qqor1lfqFeANTuQ+/DpmmW9DjyDDmrWZ+vVL4aLCCHChRCRXV8DOAtAj2eIaqgvy9wOxvsAFnZ+vRDAjz75a/A86GHp3l4zCCGShBCi8+tpcP9e13gwQ2+UL1+sg+egz1ivbho9D6pr1hfqFWDN9ksA1Gyg1mufMujgd9V361VqdLaopy4ALob7U0w7gEoAn3VenwLg486vh8N9Ruw2ALvgPvzk1Qzy+zNg98J9pq6nMwwB8CWAfZ3/xnrjeejp/wTgBgA3dH4tADzRefsOnODsdA0z3NL5/90G4FsAszz8+K8AqADQ0fl7cJ2C56C3DJo+B/3IyXqV6ur1eP8vb/6+qq7XzsdgzfY9Z8DXbCDXax8z8G/sAJ8DrvhIRERERORhfjFchIiIiIhIT9hkExERERF5GJtsIiIiIiIPY5NNRERERORhbLKJiIiIiDyMTTYRERERkYexySYiIiIi8jA22UREREREHvb/AV4IXbNoikkyAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f3 = plt.figure(3, figsize=(12,8))\n", "x = np.arange(4)\n", "\n", "for k in range(3):\n", " qk = np.zeros(4)\n", " qk[1:] = Phi3[::-1,k]\n", " qk /= np.max(np.abs(qk)) # adjust scale for unity amplitude\n", " \n", " plt.subplot(1,3,k+1)\n", " plt.plot(qk, x, 'bo')\n", " plt.plot(qk, x)\n", " \n", " plt.xlim(-1.5, 1.5); plt.ylabel(str(k+1));\n", " plt.ylim( 0.0, 3.5);\n", " plt.title('fk = {0:3.1f}Hz'.format(fk3[k]));\n", " plt.grid(True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\"3dof\"3dof\"3dof
$f_1 = 5.4$Hz$f_2 = 15.2$Hz$f_3 = 22.9$Hz
\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Structural response to initial conditions \n", "\n", "Let us recall the free vibration solution for mode $k$, previously stated:\n", "\n", "$$ u_k(t) = u_{k0} \\sin \\left( \\omega_k t + \\theta_k \\right)$$\n", "\n", "As stated before, the complete solution will be a superposition of solutions for all modes:\n", "\n", "$$ \\vec{u}(t) = \\sum_{k = 1}^{N} u_k(t) \\, \\vec{\\varphi}_k = \n", " \\sum_{k = 1}^{N} u_{k0} \\sin \\left( \\omega_k t + \\theta_k \\right) \\, \\vec{\\varphi}_k $$\n", "\n", "where $N$ is the number of degrees of freedom (length of \n", "vector $\\vec{\\varphi}_k$). Deriving the equation above with respect to \n", "time gives the corresponding instantaneous velocity:\n", "\n", "$$ \\dot{\\vec{u}}(t) = \\sum_{k = 1}^{N} u_{k0} \\omega_k \n", "\\cos \\left( \\omega_k t + \\theta_k \\right) \\, \\vec{\\varphi}_k $$\n", "\n", "Now we provide the initial conditions $\\vec{u}_0$ and $\\vec{v}_0$ \n", "for time $t = 0$:\n", "\n", "\\begin{align*}\n", "\\vec{u}_0 = \\vec{u}(0) &= \\sum_{k = 1}^{N} u_{k0} \\sin \\left( \\theta_k \\right) \\, \\vec{\\varphi}_k \\\\\n", "\\vec{v}_0 = \\dot{\\vec{u}}(0) &= \\sum_{k = 1}^{N} u_{k0} \\omega_k \\cos \\left( \\theta_k \\right) \\, \\vec{\\varphi}_k \n", "\\end{align*}\n", "\n", "To separate the conditions equation for each mode, we create the following\n", "scalar quantities:\n", "\n", "\\begin{align*}\n", "\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{u}_0 &= \\vec{\\varphi}_i^{\\intercal} \\mathbf{M}\n", "\\sum_{k = 1}^{N} u_{k0} \\sin \\left( \\theta_k \\right) \\, \\vec{\\varphi}_k = \n", "u_{i0} \\sin \\left( \\theta_i \\right) \\; \\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i \\\\\n", "\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{v}_0 &= \\vec{\\varphi}_i^{\\intercal} \\mathbf{M}\n", "\\sum_{k = 1}^{N} u_{k0} \\omega_k \\cos \\left( \\theta_k \\right) \\, \\vec{\\varphi}_k = u_{i0} \\omega_i \\cos \\left( \\theta_i \\right) \\, \\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i\n", "\\end{align*}\n", "\n", "Dividing the two expressions above yields the phase angle of each modal\n", "solution, $\\theta_i$,\n", "\n", "$$ \\tan(\\theta_i) = \\omega_i \\, \\left( \\frac{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{u}_0}{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{v}_0} \\right) $$ \n", "\n", "which can be used to calculate the corresponding amplitudes $u_{i0}$:\n", "\n", "$$ u_{i0} \\sin \\left( \\theta_i \\right) = \\left( \\frac{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{u}_0}{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i} \\right) $$ \n", "\n", "ou:\n", "\n", "$$ u_{i0} \\cos \\left( \\theta_i \\right) = \\frac{1}{\\omega_i} \\left( \\frac{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{v}_0}{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i} \\right) $$ \n", "\n", "We recall that the scalar quantities $\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i$, in the equations\n", "above, are the so-called modal masses, $M_i$. \n", "Furthermore, observe that special care must be taken for zero initial velocity, \n", "what gives infinity for $\\tan(\\theta_i)$ implying that $\\theta_i = \\pi/2$.\n", "\n", "As an example, let us calculate the free vibration response of the 3-dof experimental model subjected to a \n", "small displacement of 5mm in the top mass only. We start by calculating the modal masses, $M_i$ and the \n", "scalar quantities $\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{u}_0$ and \n", "$\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{v}_0$:\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 3.30000000e-01 2.77555756e-17 -1.38777878e-17]\n", " [ 2.77555756e-17 3.30000000e-01 0.00000000e+00]\n", " [ 0.00000000e+00 2.77555756e-17 3.30000000e-01]]\n", "[0.33 0.33 0.33]\n" ] } ], "source": [ "u0 = np.array([[0.000, 0.000, 0.000]]).T # column vector with the initial displacements\n", "v0 = np.array([[1.000, 0.000, 0.000]]).T # column vector with the initial velocities\n", "\n", "Mi = np.matmul(np.matmul(Phi3.T, M3), Phi3) # modal mass\n", "print(Mi)\n", "Mi = np.diag(Mi)\n", "print(Mi)\n", "\n", "qMu0 = np.dot(np.dot(Phi3.T, M3), u0)\n", "qMv0 = np.dot(np.dot(Phi3.T, M3), v0)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we calculate the free vibration properties $u_{i0}$ and $\\theta_i$:\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mode 1 with phase 0.0000rad and amplitude 21.66mm\n", "Mode 2 with phase 0.0000rad and amplitude 6.20mm\n", "Mode 3 with phase -0.0000rad and amplitude -2.38mm\n" ] } ], "source": [ "thi = np.zeros_like(Mi)\n", "u0i = np.zeros_like(Mi)\n", "\n", "for k in range(3):\n", "\n", "# If there are initial displacements only\n", "# thi[k] = -np.pi/2\n", "# u0i[k] = qMu0[k]/Mi[k]/np.sin(thi[k])\n", "\n", "# If there are initial velocities only\n", " thi[k] = np.arctan(wk3[k]*qMu0[k]/qMv0[k])\n", " u0i[k] = qMv0[k]/Mi[k]/np.cos(thi[k])/wk3[k]\n", " \n", " print('Mode {0} with phase {1:7.4f}rad and amplitude {2:6.2f}mm'.format(k+1, thi[k], 1000*u0i[k]))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally we superpose the modal responses and get the nodal displacements in free vibration:\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAJJCAYAAACHy9AqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADdvklEQVR4nOzdd1hT1xsH8G/YoICyEQFBQVRcQLVq3Yp71bZuW6tW66910KVdjtZZq9a6EVfddQ+q4kIUREFwMGWDsvdOSM7vDwoVWUm4SQi8n+fJ03Jz780bT96b956cey6PMcZACCGEEEIIkYiKogMghBBCCCFEGVEhTQghhBBCiBSokCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkQIU0IYQQQgghUqBCmhBCCCGEEClQIU0I4dSgQYPA4/EUHQb51yeffAIej4e4uDhFh9Io3L17FzweD6tWraqyXNGf20OHDoHH4+HQoUMKi4EQIjkqpAkhteLxeBI9lElFQfXmo2XLlrC0tMSoUaOwYcMGvH79WtFhKpXbt29X/lteuXJF0eE0GBW3hJD6qCk6AEJI47Vy5cpqy1avXg19fX0sXbq0xm2OHDmCoqIiGUfGHWdnZ4wdOxYAUFRUhJSUFPj6+uLatWtYvXo1Nm3ahC+//FLBUUpv/fr1WL58OSwsLGT+WgcOHABQfgLm4eFR+e+qDJTtc0sIaRyokCaE1Ortn7+B8kK6VatWNT4HAFZWVrINimMuLi41vpeLFy9i7ty5WLx4MXR0dDB37lz5B8cBc3NzmJuby/x1cnJycO7cOfTq1QtaWlq4cuUKUlNTYWpqKvPX5oKyfW4JIY0DDe0ghHCqprGmb/5EfvnyZfTu3Rs6OjqwsLDATz/9BJFIBAA4duwYevbsCW1tbVhZWWHz5s01vgZjDAcOHEC/fv2gp6cHHR0duLi4VPaIcmHChAk4d+4cAGD58uUoLCys8nxRURFWrVoFBwcHaGlpwcDAAGPGjIGvr2+1fa1atQo8Hg93797FwYMH0bVrV2hra8PGxgbbt2+vfE9//PFH5f7s7e3x119/VdtXZGQkvv32Wzg5OcHQ0LBy3eXLl6OgoKDa+jWNkX5znPCTJ08wYsQI6OrqQl9fH5MmTZJqPPXx48dRXFyMWbNmYfbs2SgrK8ORI0dqXLcippiYGGzevBn29vbQ1tZG586dcfLkSQCAQCDAzz//DBsbG2hpaaFbt264fv16tX1VfN5KSkrw7bffwtLSElpaWujatatEn4e3P7effPIJ5syZAwCYM2dOjUOY2rVrh3bt2om1vwpZWVlYuHAhTE1NoaOjg3feeQfnz5+vM7Znz55h6tSpMDc3h4aGBqytrfHll18iMzNT7PdHCJEN6pEmhMjN+fPncePGDUycOBH9+vXD1atX8euvv4IxhtatW2PNmjWYMGECBgwYgLNnz+Kbb76Bubk5ZsyYUbkPxhhmzpyJ48ePw97eHtOnT4eGhga8vLwwd+5chIaG1lqAS2rAgAEYMGAA7t27h9u3b2PcuHEAgNLSUgwdOhQPHz6Ek5MTli5dirS0NJw6dQo3btzAqVOn8P7771fb37Zt23D37l1MmDABQ4YMwdmzZ7FkyRLo6Ojg6dOn+PvvvzF27FgMGTIEJ0+exOzZs2FjY4P33nuvch/nzp2Dh4cHBg8ejEGDBkEkEuHhw4fYuHEjvL29ce/ePairq4v1/gICAvDbb79h0KBBWLBgAYKCgnDhwgU8f/4cL168gJaWltj/Vh4eHlBXV8fUqVOhoaGBL7/8Eh4eHvjmm29q3cbNzQ3+/v4YN24cVFVVcfLkSUyfPh2tW7fGzp078eLFC4wePRolJSU4fvw4xo8fj/DwcNjY2FTb14cffohnz57hww8/hEAgwOnTpzF37lykpqZixYoVYr+PChMnTkROTg4uXryICRMmoEePHhLv421FRUUYNGgQnj9/jj59+mDgwIFITEzElClT4OrqWuM2ly5dwkcffQRVVVWMHz8elpaWCA0NxY4dO3D9+nX4+/ujdevWDY6NECIlRgghEgDArK2ta31+4MCB7O1Dy8GDBxkApq6uzh49elS5PC8vj5mYmDAdHR1mZmbGoqOjK59LSEhgGhoarFu3blX2tW/fPgaAzZ07lwkEgsrlpaWlbNy4cQwACwgIqPd93LlzhwFgCxYsqHO9n376iQFgP/30U+WyNWvWMABsxowZTCQSVS5/+vQp09TUZK1bt2Z5eXmVy1euXMkAMAMDgxrfo76+PrO3t2dpaWmVz/n7+zMAbPz48VXiSUpKYqWlpdXiXL16NQPAjh49WmX5xx9/zACw2NjYau8dADt58mSV9WfNmsUAsBMnTtT57/KmoKCgarFOmzaNAWD379+vtn5FTHZ2dlXe88OHDxkA1qpVK/bee++xgoKCyudOnTrFALDFixdX2VfF561z585V/s2Tk5OZubk5U1NTq/JvXvHeV65cWeN+3lTxuT148GCN79va2rrWXKhpfxWfg/nz51dZfv369cr2ePO1MjIymJ6eHmvbti2Lj4+vss3x48cZAPbFF1/U+PqEEPmgoR2EELmZMWMG3nnnncq/dXV1MXbsWBQVFeHzzz+Hra1t5XOWlpZ47733EBISgrKyssrlO3bsQIsWLbBjxw6oqf33o5qGhgbWrl0LADhx4gRnMbdp0wYAkJGRUbns0KFDUFdXx4YNG6r8fN+tWzd88sknyM7OxsWLF6vta/HixTW+x9zcXPzwww8wNjaufK5Xr16wtbXF06dPq+zDwsICGhoa1fb9xRdfAABu3rwp9nsbMGAApkyZUmXZp59+CgB4/Pix2Pvx8PAAAMyaNaty2ezZs6s8V5O333Pv3r1ha2uLnJwcrF27Fi1atKh8bvLkyVBXV6/27/HmvnR1dSv/NjMzg5ubG8rKynD8+HGx34ssHTlyBBoaGlizZk2V5a6urhg6dGiN6+fl5WH9+vXVxnBPmzYNTk5OlUNhCCGKQUM7CCFy07Nnz2rLKi6Eq+mnc3NzcwiFQqSmpsLCwgJFRUV4/vw52rRpgw0bNlRbXyAQAADCw8M5i5kxVuXvvLw8xMTEoFOnTmjbtm219QcNGoS9e/ciODgYM2fOrPKcNO/f39+/WjwHDx7EoUOH8OLFC+Tm5laOMQcg0ZR9Tk5O1ZZVvKecnByx9lFaWopjx46hVatWlUNfAGD48OEwNzfH6dOnsX37drRs2bLatrX9e8TExFT791BVVYWJiQlevXpVYxz9+/evdVlwcLBY70WW8vPzERsbi86dO8PMzKza8/3798etW7eqLHv48GHlf6OioqptU1JSgoyMDGRkZMDIyEg2gRNC6kSFNCFEbvT09Kotq+hVruu5igI5OzsbjDG8evUKq1evrvV13r4wsCGSk5MBoLLnNC8vDwBqnY2iokjKzc2t9pw07//N3nigvFd7x44dsLS0xPjx42Fubg5NTU0A5TOqlJaWivW+AEBfX7/WeIRCoVj7OH/+PLKzszF//vzKOIDywnfGjBnYvHkzTp06VeOsJ9L8e1R8Ft5mYmJSbVlFG9XUFvJWEUNNcQI1f56ysrIAADt37qxz34WFhVRIE6IgVEgTQpRGRXHl7OyMgIAAubzm3bt3AaBySEpFDKmpqTWuX7G8pkKwodLS0rBz505069YNfn5+0NHRqXwuJSWlzpMLWakYuuHu7g53d/da15H19IFpaWmwtLSssqyiLWo6YeCCiooK+Hx+jc+9XbxXfB7S0tJqXL+mz1PFNs+fP4ejo2NDQiWEyAgV0oQQpaGrq4tOnTohLCwMOTk5aNWqlUxfz9vbGz4+PjAxMcGQIUMAlBc3tra2iIqKwqtXr6rd6MTb2xtAzUM1GiomJgaMMQwbNqxKEQ0APj4+nL9efeLi4nDr1i2YmprWevMVLy8v+Pn5ISwsDJ06dZJZLD4+Ppg+fXq1ZYD0baGqqgqg9t751q1b4/nz5ygrK6syXr+wsBAvX76ssq6enh5sbGwQFRWFlJSUasM7amq/3r1749y5c/Dz86NCmpBGii42JIQolcWLF6OoqAjz58+vcQhHbGysVPMgv+3SpUuYPHkyAGDjxo1VCtePP/4YAoEAK1asqDKG+sWLFzh48CD09fUxceLEBsfwNmtrawCAr69vlXHRSUlJWL58OeevV5+DBw+CMYaFCxdi//79NT6++uorAHVfdMiFtWvXIj8/v/Lv1NRUbNmyBWpqatUKbHEZGBgAKP/3rYmLiwsEAgGOHTtWuYwxhhUrVtT42Zw1axb4fD5+/vnnKstv3LhRbXw0UD5/ta6uLn744QeEhIRUe76oqKhyHDUhRDGoR5oQolQWLFiAhw8f4vDhw3jw4AGGDRuGNm3aIDU1FeHh4fD398fx48drvVHG2wICAirvbFhSUoLk5GQ8ePAA0dHR0NbWxs6dO/HJJ59U2ebbb7/F1atX8ddffyEsLAxDhw5Feno6Tp06BYFAgCNHjlSZQYIr5ubmmDx5Ms6ePQsXFxcMHToUqampuHLlCoYMGYKYmBjOX7M2IpGo8kY7b//7vGnGjBn45ptv8Ndff2H9+vViz3EtKVtbWzg6OmLy5MmV80inpaVh7dq1VWZKkUSfPn2gra2Nbdu2IS8vr3KcfMVJyxdffIGDBw9i3rx58PLygrGxMXx8fJCTk4Pu3btXm2Hk22+/xblz5+Du7o6QkBAMGDAAiYmJOH36NMaMGYOrV69WWd/Y2BgnTpzAhx9+iO7du2PkyJFwcHBASUkJ4uPj4e3tjb59++LatWtSvT9CSMNRIU0IUSoVd0gcPXo03N3dceXKFRQUFMDExAR2dnbYvHkzhg0bJvb+AgMDERgYCADQ0dGBgYEBunTpgvnz52P27Nk13l5bS0sLt2/fxsaNG3Hq1Cls3boVOjo6GDBgAL7//vsqN1Dh2qFDh9CuXTucPXsWf/75J6ysrODm5obvvvuuxmnxZMXLywsJCQkYOnRonScthoaGGDduHM6ePYvLly/XeKMaLpw+fRo///wzTpw4gfT0dNjZ2WHdunUNGpttYGCAM2fOYNWqVdi9ezeKi4sB/FdId+3aFdeuXcP333+PM2fOoGXLlhg9ejR+++23atMKAkCLFi3g7e2NFStW4Pz583jy5Am6dOmCU6dOITc3t1ohDQBjxoxBUFAQfvvtN9y8eRNeXl5o0aIF2rZtizlz5lSbGYYQIl889vbcToQQQoiSGDRoELy9vatNU0gIIfJAY6QJIYQQQgiRAhXShBBCCCGESIEKaUIIIYQQQqRAY6QJIYQQQgiRAvVIE0IIIYQQIgUqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApUCFNCCGEEEKIFKiQJoQQQgghRApUSBNCCCGEECIFKqQJIYQQQgiRAhXShBBCCCGESIEKaUIIIYQQQqRAhTQhhBBCCCFSoEKaEEIIIYQQKVAhTQghhBBCiBSokCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkQIU0IYQQQgghUqBCmhBCCCGEEClQIU0IIYQQQogUqJAmhBBCCCFEClRIE0IIIYQQIgUqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApUCFNCCGEEEKIFKiQJoQQQgghRApUSBNCCCGEECIFKqQJIYQQQgiRAhXShBBCCCGESIEKaUIIIYQQQqSgdIX0rl27YGNjAy0tLTg7O8PHx6fO9b29veHs7AwtLS3Y2tpiz549ta578uRJ8Hg8TJw4keOoCSGEEEJIU6NUhfSpU6ewdOlS/PDDDwgKCkL//v0xatQoJCQk1Lh+bGwsRo8ejf79+yMoKAjff/89Fi9ejLNnz1ZbNz4+Hl9//TX69+8v67dBCCGEEEKaAB5jjCk6CHH17t0bTk5O2L17d+WyTp06YeLEiVi/fn219b/77jtcunQJYWFhlcsWLlyIp0+fws/Pr3KZUCjEwIEDMWfOHPj4+CAnJwcXLlyQ6XshhBBCCCHKTU3RAYiLz+cjMDAQy5cvr7Lc1dUVvr6+NW7j5+cHV1fXKstGjBgBDw8PCAQCqKurAwDWrFkDY2NjzJ07t96hIgBQWlqK0tLSyr9FIhGysrJgaGgIHo8n6VsjhBBCCCEyxhhDfn4+2rRpAxUVbgZlKE0hnZGRAaFQCFNT0yrLTU1NkZKSUuM2KSkpNa5fVlaGjIwMmJub48GDB/Dw8EBwcLDYsaxfvx6rV6+W+D0QQgghhBDFSkxMRNu2bTnZl9IU0hXe7vFljNXZC1zT+hXL8/PzMXPmTLi7u8PIyEjsGFasWAE3N7fKv3Nzc2FlZYXIyEgYGBiIvR+inAQCAe7cuYPBgwdX/qpBmi5q7+aF2rt5ofZuXrKysmBvbw9dXV3O9qk0hbSRkRFUVVWr9T6npaVV63WuYGZmVuP6ampqMDQ0REhICOLi4jBu3LjK50UiEQBATU0NERERaN++fbX9ampqQlNTs9pyAwMDGBoaSvzeiHIRCATQ0dGBoaEhHXibAWrv5oXau3mh9m6euByGqzSzdmhoaMDZ2RleXl5Vlnt5eaFv3741btOnT59q69+4cQMuLi5QV1eHg4MDnj9/juDg4MrH+PHjMXjwYAQHB8PS0lJm74cQQgghhCg3pemRBgA3NzfMmjULLi4u6NOnD/bt24eEhAQsXLgQQPmQi1evXuHIkSMAymfo2LFjB9zc3DB//nz4+fnBw8MDJ06cAABoaWnB0dGxymu0atUKAKotJ4QQQggh5E1KVUhPmTIFmZmZWLNmDZKTk+Ho6AhPT09YW1sDAJKTk6vMKW1jYwNPT08sW7YMO3fuRJs2bbB9+3ZMnjxZUW+BEEIIIYQ0EUpVSAPAokWLsGjRohqfO3ToULVlAwcOxJMnT8Tef037IIQQQggh5G1KM0aaEEIIIYSQxoQKaUIIIYQQQqRAhTQhhBBCCCFSoEKaEEIIIYQQKVAhTQghhBBCiBSokCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkQIU0IYQQQgghUqBCmhBCCCGEEClQIU0IIYQQQogUqJAmhBBCCCFEClRIE0IIIYQQIgUqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApqEm6wcuXL+Hr64uUlBTweDyYmpqib9++sLOzk0V8hBBCCCGENEpiF9K5ubmYPXs2Ll++DH19fZiYmIAxhvT0dOTl5WHcuHE4cuQI9PT0ZBkvIYQQQgghjYLYQzu+/PJLxMbGws/PD9nZ2YiIiEBkZCSys7Ph6+uL2NhYfPnll7KMFQCwa9cu2NjYQEtLC87OzvDx8alzfW9vbzg7O0NLSwu2trbYs2dPlefd3d3Rv39/tG7dGq1bt8awYcPw6NEjWb4FQgghhBDSBIjdI33p0iVcv34dvXv3rvZc7969sXfvXowcOZLT4N526tQpLF26FLt27UK/fv2wd+9ejBo1CqGhobCysqq2fmxsLEaPHo358+fj6NGjePDgARYtWgRjY2NMnjwZAHD37l1MmzYNffv2hZaWFjZt2gRXV1eEhITAwsJCpu9HUqVlQgQn5OBlWgEKSsvQUlMNtsYt4GTVGlrqqooOj0ggKbsIQQk5SM0rAQCY6Gmhe1t9WBu2UHBkRBKlZUIEJeQginJS6SVmFSE4MQevswsR9poH0bNkOLczgpWhjqJDIxKoKSfbG7dET6tWlJNKpiInU3JLwOMBpnpa6N62VaPLSYnGSPN4PKme48qWLVswd+5czJs3DwCwbds2XL9+Hbt378b69eurrb9nzx5YWVlh27ZtAIBOnTohICAAmzdvriykjx07VmUbd3d3nDlzBrdu3cLs2bNl+4bEFJdRiH0+MUjOKYZLOwM4mOlCV0sdBaUCPEvKhYdPLAxbauCzAbboYKKr6HBJLQRCES4Gv8alp69h0UoLztYG6NxGDzzwkJxbjH33YpCQVYTRXc0x2aktNNToWuDGKi6jEHvvxSAlt3pOPk18Myfbo4NJS0WHS2ohEIpwIegVLj9L/i8nzfWQnwAIhAx770UjIasIY7qaY7JzW6irUk42VrEZhdhXQ07mlwgQnJgDd58YGLfUxGcDbdHemHKysaqak9pwsW6NLhZ6AAOSc0uw5140EhtZTopdSI8bNw7z58+Hh4cHXFxcqjwXEBCAhQsXYvz48ZwHWIHP5yMwMBDLly+vstzV1RW+vr41buPn5wdXV9cqy0aMGAEPDw8IBAKoq6tX26aoqAgCgQAGBgbcBS+lEoEQW29G4lV2MRYPtYO9afUieYiDKRYObI+Y9AL8eTsKrXTU8bVrR7TQlPg6UiJDgfHZ2OIVgVGO5nCf7QxNteo9I+87tQW/rPwg8snBR1g81A7v2hoqIFpSm4qcfJ1Tgi+HdKg1J4HynNx+6yUMWmjiK1d7yslGJjA+C1u8IqvlpEAgQFY4w+iebfBRL2uUlglxMeg1Pj7wCEuG2qE35WSjUiIQYotXJJJzS7B4SAfY1ZCTQzuZ4nO0R3R6Af689RKGLctzUkeDcrIxqcjJ0V1r/56c7NwWpWVCXAh6hY8PPMLSYfboZaPYek3sT9Gff/6JadOmoVevXmjVqhVMTEzA4/GQmpqK3NxcjBgxAtu3b5dZoBkZGRAKhTA1Na2y3NTUFCkpKTVuk5KSUuP6ZWVlyMjIgLm5ebVtli9fDgsLCwwbNqzWWEpLS1FaWlr5d15eHoDyA7BAIBD7PdUlObcEy8+/wOzeVvh6WIfK/dfGspUmNr3fBfejMjHv8GP8NMYBdtQTJhMV7SBOWzPGsM8nDi/TCvDHR92gr60OMBEEAlGN6/MATOphhuGdjLD+nwjcj0zDl4PbQ0VF9r/4kJpVtHNCRj5+uhKB2e+Kn5O/TXaET1QG5h1+jJ/HOFDvdCNQkZNRteTk2/mtgvKcHOZghPXXIuBDOdlovM4pxooLIfi4jzWGdKw/J63eyMm5h8pz0rq1Zr3bEdlijGHPvVjEZhZh+0fdoFfP96QKgPd7mGO4gzHW/fs9+b9BtmLlpCzamccYY5JsEB4eDj8/v8ri1czMDH369IGDgwPnwb3p9evXsLCwgK+vL/r06VO5fO3atfjrr78QHh5ebRt7e3vMmTMHK1asqFz24MEDvPfee0hOToaZmVmV9Tdt2oQNGzbg7t276NatW62xrFq1CqtXr662/Pjx49DRafjYnaRC4EKcCqa2F8FIS/Lt8/jAsSgVjLIUoR2N9FAYEQPOxarAQIthsDmDNKOffFN5iMrjYUZ7ERrBL1jNVmIBcDFe+pzM/Tcnx1iKYE05qTAiBpyNVYGRFsOgBuRkdB4P0yknFaoiJ6e1F8FQypw8GqWCsZSTCiViwJlYFZhoMww0ky4n76fwEJfPw7QOIqjWs31RURGmT5+O3NxczmaZk/h3DQcHB5kXzTUxMjKCqqpqtd7ntLS0ar3OFczMzGpcX01NDYaGVX+e27x5M9atW4ebN2/WWUQDwIoVK+Dm5lb5d15eHiwtLTF48OBq+5XUk4QcnLsbg+P/64pWOtWHnohrTEkZlv39DM6d2qG3gn/2aGoEAgG8vLwwfPjwGocHAeXjvFacD8HYfgZ4v6f0F62OBnAjNBX/vEjFpsmOjWI8WHPzMDodey8E4vCCATDWk/5EeWyJAMtOP4dTL8pJReCXlefk+H6GmNSzTa3r1ZffowFcD0nF9dBUbHyfclIRHsdl45xPLE580bX8FwUpjS0RYMmppxCwNHw+ufbjOZGNipyc9J4hJvSoPSfrMxrAPy9ScDMsHRvf7wK1OnIyMzNT6tepjdIMENLQ0ICzszO8vLwwadKkyuVeXl6YMGFCjdv06dMHly9frrLsxo0bcHFxqZIwv/32G3799Vdcv3692vjvmmhqakJTU7PacnV19QYlYkRKPnbcjcHumc5o2cDxlAbq6tgz0wVfnngCbU11OFvTFzfXamtvxhh+uPgMIxzNMbpr9eFDkhrTvS1UVFSx4kIofv+we50HCcKt8JQ87L2fgI/tRTDW02lQfhuoq2P3LGd8eTwIOloacLJqzWGkpC6MMXx/4RlGdzPHSEfxcrKu4/nYHm2hqqqK7y+EYjPlpFyFJedhj08cds9wbvB1Bwbq6tgxrQem77iJASmFeMfWmKMoSX0YY1hx4RlGd2uDkY5m9W9Qj/E9LaGqqobvL4Zh84fdoVrLMA9ZnCwpVfa7ublh//79OHDgAMLCwrBs2TIkJCRg4cKFAMp7it+caWPhwoWIj4+Hm5sbwsLCcODAAXh4eODrr7+uXGfTpk348ccfceDAAbRr1w4pKSlISUlBQUGBXN9bUnYRVl0KwbYpPRpcRFfQ1lDF1ik98PuNSCRmFXGyT1K/7bei4GCmx0kRXWFUV3MM7miCDf9UH8JEZCMpuwhrLodi8wddocXRrFk6GmrYOrUHNl+PoJyUoz9uvUSXNnpiF9HiGNXVHAM7GmPT9QjO9knqlphVhF+uhGLblB6cXbyro6GGWR1E2HozCknZlJPysvXmS3Rrq89JEV1hTDdzvNfBCJuuyfd7UqkK6SlTpmDbtm1Ys2YNevTogXv37sHT0xPW1tYAgOTkZCQkJFSub2NjA09PT9y9exc9evTAL7/8gu3bt1dOfQeU3+CFz+fjgw8+gLm5eeVj8+bNcntfJQIhlp99jk0fdINhy+o93Q2hq6WOTR90w3dnnyGvhC6mkLXzQUnILRbg0/dsON/3xJ4WUFNVwdnAJM73TaqqyMmNk7vBsIUGp/vW01LHxsndsPwc5aQ8nHuShLziMnzSj/ucnNSzLXi88tcgslXMF2L5uWfY9EE3GHCck9pqwNqJXfDd2WfIp5yUubOBSSgqLcPsPu043/dk57YQMYYLQa8433etGGmw3NxcBoBlZGRItf3ys8/YnfBUjqOqKjA+i/3vWCATiUQyfZ3mgM/nswsXLjA+n19leWRKHpt76BErE8ru37hMKGILjgSwoIRsmb0GYWz52afMOyKNMVZ7ezdUQBzlpKxFpOSxuYceS5STkrZ3mVDEPjvymAVTTsrUt38/Zfci0zjf75vtHRCXxb48/oRyUobCk/PYvMOS5aSkyoQiNv/wY/Y0MbvacxkZGQwAy83N5ez1pOqRzsnJwf79+7FixQpkZWUBAJ48eYJXr+R4BtBEnA1MgnFLDQzqaCLT13Gyao2uFvo4/iih/pWJxEoEQqy6HIJ1k7rWOjaLC6oqPGz8oBs2/hNOPScy8ndAIox1tTDAXrbjJZ2tW8PRQh8nHiXK9HWaqxKBEKsvh2Dd+44yz8lNk7tjwz/hKCgtk9nrNGenAxJhpq+F/nayz0kHc12cekw5KQvF/H9zUg7fk799UJ6ThXLISYkL6WfPnsHe3h4bN27E5s2bkZOTAwA4f/58lWnmSP3iMwvh+TwZS4bZy+X15ve3xd2IdESm5svl9ZqTX6+GYn5/W5joSTEPk4T0tdWxdJgd1l4Nk/lrNTexGYW49iIFS4bayeX1Putvi9vhaXhJOcm5X66E4rMB7WGiK4ec1FHH4qF2WHs1VOav1dzEZhTi+osULJZTTi4c0B43w1IRlSbf66SagzVXQvH5oPYw1uV2CGtN9HXU8cWQDljrKfvvSYkLaTc3N3zyySd4+fIltLT+O0CNGjUK9+7d4zS4pkwkYlh9ORSrxneR6ZnZm1RUeFg70RFrLoeCX1bzROdEcnci0qCppirzXxXe1NvWEPo66rj2ouabERHJiUQMay6HYPUE+ebkukmOWH05FAIh5SRX7oSnQVtdFQNl/KvCm/q0N4Suljquh1BOckUoYlh9OQRrJsr2V4U3qajwsHZSV6y+HEI5yaFbYanQ1VKT+a8Kb+rb3ggtNFThFZoq09eRuJB+/PgxFixYUG25hYVFrXcYJNUd8YvDYAcTWBo0/AYukjDR08JH71hi371oub5uU1VQWoZ93jH42rWj3F/bbbg9jj6MR1YhX+6v3RQd8o3DsM6maNta/jn5oUtb7LsXI9fXbarySwTYdy8GXykgJ79ytccRvzjKSY4c8o2Da2czWLTSluvrmupp4X0nC7j7UE5yIa9EgP0+sXAbLp9f39/09YiOOOQbi2wZ5qTEhbSWllblLbHfFBERAWNjmoNRHPGZhbgflYEZvawU8vrjupnjxas8RKfTT1cN9du1cHw5pAO0NTiaH00Cmmqq+HpER2z4h4Z4NFR8ZiF8ozMxXUE5Ob57GzxLykEM5WSD/XY9Al8OVWBOunbERpqmssFiMwrhF52Jab0sFfL6E3tYIDghB7EZhQp5/aZk07VwLBlmBy11xeTkV64dsem67HJS4kJ6woQJWLNmTeX9ynk8HhISErB8+fIq08qRmjHGsM4zDD+N7SzWfeFlgcfj4adxnfHrlVCIRBLdIZ68ITA+G3whQ98ORgqLoYdlK2irq8Ivmvu7NTUXFTn589jO4Elzf1oO8Hg8/DS2M9ZeDQNjlJPSehyXhTIRQ9/2isvJnlatoamuAv8YyklpVeTkynGKz8lfr4RSTjaAf0wmGAPetW3YXZ8bwsmqNVRVeHgUmyWT/UtcSG/evBnp6ekwMTFBcXExBg4ciA4dOkBXVxdr166VRYxNyo3QVDiY6cHasIVC47BopY3+dsY4Q3MSS0XIgO13orF8pIOiQ8FXIzriz9svUVomVHQoSul6SCo6mevBylC+Qzre1ra1Dvp2MKKclFKZUIRtNyPxXSPIya9HdMT22y/pWhQpXXuRgq4W+nIf+vg2SwMd9GlviHNPaEYyaZQJRdh++yW+bQQ5+c0IB2y7GSmTnJS4kNbT08P9+/dx9uxZbNiwAV988QU8PT3h7e2NFi0UWxw2dsV8IQ77xuHzQe0VHQoAYHYfa1x8+opuCiEF31QeRjuaQV+H+9uNSkpPSx3Te1thv0+sokNROhU5uXBg48nJC8GvaGpDKRx/lIDx3dtAX7tx5OTUd6yw/z6NsZVUEb8MR/zi8dkAW0WHAgD4uG87nAtKoqkNpXD0YTwm9LBoFDmpr62OKe9Y4qg/91MbSn1nwyFDhuDrr7/Gt99+i2HDhnEZU5O1624UPu1no5BxQjVRU1XBokEdsON2lKJDUSrZRXw8z+LhAycLRYdSaUxXcwTGZyMtr0TRoSiVnXeiMK9/48lJdVUVfD6wA3bcoZyURFYhH16hqfjQWTHjaWsytps5HsdmIS2fclISO25HYf6AxpWTCwa0p+9JCWUWlOJWeBo+cGqr6FAqje/eBk8Sczjfr1g3q9++fbvYO1y8eLHUwTRlr3OKEZGSr5AryevSr4MRTjxKQEx6AWyNWyo6HKXwx61ojLIUyW06JnHweDy4DbfHFq9IbJjcTdHhKIVXOcV4mZaPr0c0rpx8z84IJx4nIDajEDZG9CufOLZ4RWDpMHuFXXdSk/Kc7IitXi+x/v2uig5HKSRmFSEmvbBRDAV40wB7Y5x6nIi4jEK0o5wUyxavSLgNb3w5+b+BtjjJ8X7FKqS3bt1a5e/09HQUFRWhVatWAMrvdKijowMTExMqpGux7WYklilg6hdxfDfSAev/CcOuGc6KDqXRi0rLR2FpGXrpKjqS6hwt9AEAL17lVv4/qd02r8abk9+O6IhN1yKwc4aTokNp9F6m5qOoVAhn69aKDqWarm31IXwoQsjrXHRpQzlZn203XzbanPxmREf8diMCO6dTTtYnIiUfJQIRelo1vpzsZM79l7dYQztiY2MrH2vXrkWPHj0QFhaGrKwsZGVlISwsDE5OTvjll184D7ApCEvOA2NAJ3M9RYdSI0sDHbTR15bZFa1NydabL/HlkMYxnrYmbsPtsdUrkq4yr0fo6zyo8HhwMGucOWlt2AImepp4HEc5WZ/GXHwBwFeuHSknxfDiVS7UVXnoaNYIeykAtDNqAeOWmgignKzXH7cisXSYfO5E2RhIPEb6p59+wp9//omOHf/7ObRjx47YunUrfvzxR06Dayoac290hf8N7oBdd6PoYF+HwPgsGLfUhJWCrySvi4meFrpY6MM7Ml3RoTRq225GYunwxn2g/2JwB+y8QzlZl4C4LBjraip8doe6mOppoZO5Hu69zFB0KI3aH7deYkkjL76+GEI5WZ9HsVkw19du1DnJNYkL6eTk5Mo5pN8kFAqRmirb2zAqowdRGWhn1AJt5HxnJkm1bqEBF+vWMr+VprJijGHH7Sh8MaSDokOp1/z+NvC4H0tzhNfC52U62pu0hLl+485Jw5aa6GnZGrfC0hQdSqPEGMPOO1H4UhlycoAt9vvEUE7W4l5kOuxNG39OGrXURHfLVrgTQTlZk4qc/N/gxp+TXJK4kB46dCjmz5+PgICAyrOygIAALFiwgGbveItIxLDHOxqLBinHh+rT92xw2C8OQjrYV3M7PA09LFvDqKWmokOpl66WOgbYGePq82RFh9LoiEQM++7FNJopKOszr78NDvrGUk7W4FZYGnpatYahEuSknpY6+tsZ4Z8XKYoOpdERihj23ovGgkYyBWV95vW3xYH79D1ZE6/QVLzTrjUMWmgoOhS5kriQPnDgACwsLNCrVy9oaWlBU1MTvXv3hrm5Ofbv3y+LGJXW5WevMdDeuFHMoSgOHQ01jOxihrNP6IYQbxKKGA48iMW8/jaKDkVss/pY48SjBAiEdEOIN11+9hqDOppAT0s5crKFphpcO5vhfBDdEOJNQhHDQd9YzH1PeXJydp92OOYfjzLKySouBr/CUAdTpcnJlppqGNbJBBeDKSffVCYU4ZBvHD5VopzkisSFtLGxMTw9PREeHo6///4bp0+fRlhYGDw9PWFiYiKLGJVSmVCEk48SMfNda0WHIpGpvaxw/skrlAjoLnkVzj1JwoguZmihKdYkN42ClroqxndvQ3fJe0OZUIRTjxMxo7eVokORyLReVjgbmEQ5+YazT5IwUglzcmw3ysk3lQlF+DsgCTPeVa6cnN7bGmcCk+husm84+yQJY7qZQ0dDeXKSK1LfkMXe3h7jx4/HhAkTYG/fuC+kU4RLT19jpKNZo5lUXlzqqiqY2ssSRx/GKzqURkEgFOHck1eY+o5yHegB4APntrj89DUVYP+6EPwao7uaK11OaqipYMo7ljjxKEHRoTQKAqEI55+8whQlzMkPXdriYjDlZIVzQa8wtrs5NNWULyc/dGmLE/6UkwDALxPhQtBrfOTSeG6IJE8Snzp8+umndT5/4MABqYNpKsqEIpwJTMKBT95RdChSGdutDWYf8MfMd62Vrujg2rknSRjfow001KQ+51QYNVUVTO9thb/84jG/kdxuV1EEQhHOBibh8Ke9FB2KVMZ1b4NZHv6Y1suq2efk2cAkTFDSnFRXVcG03lY4+jAe8/pTTp5/8kppc3J8dwvM8vDHVMpJnAlMwqSeFlBXVb6c5ILE7zo7O7vKIy0tDbdv38a5c+eQk5MjgxCVz4Xg1xilhD1fFVRVeJj6jlWz75UWCMvPsic3olucSmq0ozm8I9NRzG/ePWDKfEIElOck9UqX93xdDH6Nyc7Km5Nju5rjTkRas8/JM4FJmNiTclLZ8ctEuPz0NSY5WSg6FIWR+BN8/vz5Ko8rV64gJiYGU6dOxbvvviuLGJVKmVCEc0+S8JGL8h7oAWAMHexx7ony9nxVUFHhYXpvKxzzb74nRRXF1wdKXHwB5b8U3QxLbdbDAs4+KS++lLnnS0WFh2m9KCcvBb/G+0rcSQGU56RXaPPOyb8DEzHJqfn2RgMNGCNdZScqKli2bFm1W4k3R+eCXmFMN+Ub8/W25n6wbwo9XxVGdjFr1idF5T1fyn+gL+8Bs8LxZjous6kUX0D5L0XNOSdPByTi/SZQfKmq8DC1V/POyStPk/F+z+bbGw1wVEgDQHR0NMrKyrjanVKqGPP1oXPTGHDfnA/2Fb3Ryn6gB/7tle5l3SxPikrLhLj89HWTOdCP6WrebHulm9I4TJV/h88115y8+iwZk5pQTt4Kb545WXFCpNYEcrIhJH73bm5uVR7Lli3D1KlTMWXKFEyZMkUWMVaxa9cu2NjYQEtLC87OzvDx8alzfW9vbzg7O0NLSwu2trbYs2dPtXXOnj2Lzp07Q1NTE507d8b58+eliu3ys2SlHwrwpubaK80vE+HS06bR81VhlGPz7JU+/TgRHzi3bTIH+ubaA8YvE+HKs6Y1DnN0V3PcDm9+OXnqcSI+eqeJ5WQzvKaotEwIz+dN54SoIST+JAcFBVV5PHv2DADw+++/Y9u2bVzHV8WpU6ewdOlS/PDDDwgKCkL//v0xatQoJCTU/KUSGxuL0aNHo3///ggKCsL333+PxYsX4+zZs5Xr+Pn5YcqUKZg1axaePn2KWbNm4aOPPoK/v7/E8V0PSWsSQwHe1Bx7pc8+ScLEHk2j56tCc+yVLhEI8c+LFEzo0UbRoXCqOfaA/R2Y2GR6oyuo/ttRcbwZXaxWIhDi2osUjO/etIqv5nhN0emAJLzv1HROiBqEKZFevXqxhQsXVlnm4ODAli9fXuP63377LXNwcKiybMGCBezdd9+t/Pujjz5iI0eOrLLOiBEj2NSpU8WOKzc3lwFg7jefib2NMrny9DVzvxet6DDkolQgZNP2+TF+mbDWdfh8Prtw4QLj8/lyjKzhhEIRm+H+kBWVlik6FLk49CCWnX+S1OD9NMb2vhT8iu33iVF0GHJRkZOCOnKSS/Js7zKhiE1392PF/OaRkwfux7ALQQ3PSS5x1d6Xn75qNt+TJYIyueYklzIyMhgAlpuby9k+JT6VGDJkSI3T3OXl5WHIkCENr+xrwefzERgYCFdX1yrLXV1d4evrW+M2fn5+1dYfMWIEAgICIBAI6lyntn3WZWxXM4m3UQbNaVhAU7kwrSbNaahOiUCIG6EpGNe9afVGVygfFtA8eqXLx2E2zZ4v1cqx0k2/V7pEIIRXaCrGdmuiOfnvr7dF/KZ/rdjpx4mY3ERzUhoS35Dl7t274PP51ZaXlJTUO165ITIyMiAUCmFqalpluampKVJSUmrcJiUlpcb1y8rKkJGRAXNz81rXqW2fAFBaWorS0tLKv/Py8sr/RySsLNCbminOFjjsG4O5/dopOhSZKZ8P8xU8ZjvV2Y4VzyljWw/raIg5hwPxkVMbaGso98wydTn+MAHv92gDkbAMogbWmo21vT9yssAR31jM6Wut6FBkprRMhKvPXuNAPTnJJXm393AHo39zUnnvPSCOo37x+MCJm5zkEpftPcW5PCeb8vdkaZkIns+T5ZqTXJJFzGIX0hVjoQEgNDS0SqEpFApx7do1WFjIftwTj8er8jdjrNqy+tZ/e7mk+1y/fj1Wr15dbfmdO3ego6NTe/BKTMSAc2EqMMgKhWYTPdY/SOXBhgd4Xb8m1vpeXl4yjkg27FV5+PnIDQxuwxQdikwIRMDJcBV83kkEz1dBnO23sbW3iAFnwlTQOjMETfWc6H4KD7aqwA0xc5JL8mzvipwcZN40c5IvBE6Fq2BRZxE8k7jLSS5x0d7N4XvSJ4WH9grKSS4UFRVxvk+xC+kePXqAx+OBx+PVOIRDW1sbf/75J6fBvcnIyAiqqqrVeorT0tKq9ShXMDMzq3F9NTU1GBoa1rlObfsEgBUrVsDNza3y77y8PFhaWmLw4MGV+22KVK1T8CqnBPPea6foUDhXWibCiSOBODDbud5hHQKBAF5eXhg+fDjU1dXlFCF3RooY5hwOxJDhPZtkD9hfDxOwYLg6xnY352R/jbm9VaxSkJpf2iR7pUvLRDj51xMcmOkk15+QFdHeI5p4Th72i8fnIzQwths3OcklrttbrV0qErOLMP89Gw6ia1xKBUKc+OsJDs50VtphHZmZmZzvU+xCOjY2Fowx2Nra4tGjRzA2Nq58TkNDAyYmJlBVld0BQENDA87OzvDy8sKkSZMql3t5eWHChAk1btOnTx9cvny5yrIbN27AxcWlMmH69OkDLy8vLFu2rMo6ffv2rTUWTU1NaGpqVluurq7e6L5ouTS2e1vMOuCPj/vZQEdD4lFBjdrJwHh84GIFHa3q7VobZW7v6e9a4/STZMxtYgf7EoEQtyLSceTT3lBVqf1XJWk0xvYe16MtZh94hJl92jW5nDwREIcPXSyhLUFOckme7a0OYFpva/z9JBmfNsGcvB2Rgb/mcp+TXOKqvcd0syj/nuxrixaaTSsnjz1KwpReVgrLSS7IIqfFPqWwtrZGu3btIBKJ4OLiAmtr68qHubm5TIvoCm5ubti/fz8OHDiAsLAwLFu2DAkJCVi4cCGA8p7i2bNnV66/cOFCxMfHw83NDWFhYThw4AA8PDzw9ddfV66zZMkS3LhxAxs3bkR4eDg2btyImzdvYunSpTJ/P8pGRYWHWe9a44hf07pYrbRMiH+eJ2NiE5smrS6jHZvmxWqnHifiIxfLRv2FzSUVFR5m9G56c9j+N01a88nJpnqznROPEjDlneaVk7PetcZfTTAnb4SmNrmpC7kgViF96dKlygHaly5dqvMhS1OmTMG2bduwZs0a9OjRA/fu3YOnpyesrct/1kxOTq4yp7SNjQ08PT1x9+5d9OjRA7/88gu2b9+OyZMnV67Tt29fnDx5EgcPHkS3bt1w6NAhnDp1Cr1795bpe1FWrp3NcP9lBgpKm86Vyaea2E07xPHfDB5NZ7aAipk6muqsALUZ0cUMPi8zmtRsARUnRM0pJ8tvAW/ZpG6209Rn6qhNxfdkYRP6njzu37xOiCTBYxVX39VBRUUFKSkpMDExgYpK7Qc2Ho8HobBpnU2LIy8vD/r6+sjIyGjSY6QrXA9JQVRaAf43uIOiQ2mwEoEQnx56jCOf9hL7S1sgEMDT0xOjR49udD/1S0IkYph1wB/7Z7/TJGbwOOwbh1Y66pjQg9seE2Vo72svUhCXWYiFA9srOpQGKxEIMffwY5kMzxGHIttbKGKY5eEPj4+bRk4efBALgxYanOckl2TV3tdDUhCdXoBFg5rO92RjH54jjszMTBgZGSE3Nxd6enqc7FOsykEkEsHExKTy/2t7NMciujly7WyKhzGZyC9Rvqlv3nbyUUKz6/mqoKLCw8ze1jjiF6foUBqsufZGVxjRxRQPoprGL0Un/s1JZf/CloaqCg/Te1vhr4dxig6lwZprb3QF186m8I3KbBI5efRhPKb2smqWOSmO5lc9kAbj8Xj4uE87HPaNU3QoDVIx5qup3rRDHCO6mOF+EyjAmtvY6LfxeDzMbiI5eTOs+RZfQPn1C96R6Uqfk81tbPTbynPSWulzspgvxO3wNIzp2vhmXGksxLqkdPv27WLvcPHixVIHQ5TH0E4mOOwXh9klAuhpNc6fu+tDY77Ke6U/7tMOhx7E4oshdooORyoVvdFHPm3e1zUM62SCI35xmN3HGrpKmpPH/BMw9Z3m3fOlovLfSZGyDp+r6I3+a27zzsnhnU3x18N4pc7Jow/jMb13887J+ohVSG/dulWsnfF4PCqkmwkej4c5/drh4P04LBmmfAVYRc9Xcz/QA+UnRUcexiO3WAB9beU72B/3b75DAd7E4/HwSd92OPQgDl8OVb6cLOYLcSc8DUc+7aXoUBTOtbMpjj6Mx6w+1krZUXH0YXyz76QAqv56q4wdFUX8MtyNTMNfzbyToj5iDe2IjY0V6xETEyPreEkjMrijCQITspFbrHxjpf/yozFfFXg8Hua+ZwOP+7GKDkViBaVluB2ehnHNeCjAm4Y4mOBxfDbylPD6hb8exmFaLyuoUE6Cx+Ph03428PBRvpzMLxHgbkQ65eS/hnYygX9sllLm5BG/eMzobU05WY8GjZFmjEGMST9IE8Xj8TC/vw32ekcrOhSJ5BYL4B2ZjrE05qvSADsjPE/KQXYhX9GhSGS/TwzmvmdDB/p/8Xg8zHvPBvu8latTI7dYAJ+XGRjlaKboUBqNQR2NEZyYg5wiZcvJWMztTzlZoaKjwv2ekuVkkQAPoignxSFVIe3h4QFHR0doaWlBS0sLjo6O2L9/P9exESXQ384YkakFSMktUXQoYtvrHY0FA23pQP8GHo+HBQPbY9fdKEWHIrbMglI8TczBoI7G9a/cjPS3M0J4Sj5S85QnJ/d4R2PhwPaUk28oz0lb7L6rPB0VGQWleP4qF4PsKSffNNDeGKGv85CmRDm5yzsKnw9qDx6PcrI+EhfSP/30E5YsWYJx48bh77//xt9//41x48Zh2bJl+PHHH2URI2nklg6zwx+3IhUdhlhS80oQmVqA/nZ0oH/bu7aGSMouRmJWkaJDEcvOO9H43+AOdKB/C4/Hw5Khdvjj1ktFhyKWlNwSRKUVoF8HI0WH0uj0bW+E+MwiJGUrS05GUU7WgMfjYckw5cnJ1znFiE0vRN/2lJPikLiQ3r17N9zd3bF+/XqMHz8e48ePx/r167Fv3z7s2bNHFjGSRs7RQh+lAhFepuYrOpR6/XHrJZYo4YVY8uI23B5bvRr/SVFSdhFS8orh0s5A0aE0Sl3b6qOEL0RUWoGiQ6nXH7ciKSfrsGy4PbYoQU4mZhUhLb8UztatFR1Ko9StbSsUlpYhOr3x5+T2Wy+xdJi9osNQGhIX0kKhEC4uLtWWOzs7o6xMuee9JNJbNtweW2827oN9VFoBivlCdG2rr+hQGi07U11oaajiWVKOokOp0/ZbL7GYiq86LR2mDDmZj1KBCI4WlJO16WimC001FTxPylV0KHXaTp0U9Vo6rPF3VESm5kMgZOjchpu7/jUHEhfSM2fOxO7du6st37dvH2bMmMFJUET5WBrowExPG49isxQdSq223YzEUiWcqk/elg6zwx83XzbaC4lDXpcXFA5mdKCvi5WhDkx0NREQ13hzcutN6vkSx9Jh9vjjVmSjzckXr3KhwuPB3lRX0aE0au2MWsCopSYC47MVHUqt/rj5kr4nJdSgiw3nzZuHefPmwdHREe7u7lBRUYGbm1vlgzQvXwzpgB13ohrlwf5RbBaMWmrC2rCFokNp9Ex0tdC1rT5uhaUpOpRqGGPYciMSX7l2VHQoSuGLwY03Jx/GZMJEVxNWhjqKDqXRM9XTQmdzPdyNSFd0KNUwxrDFKxJfudIJkTi+GNIBf95unB0VftGZMNPXgqUB5aQkJC6kX7x4AScnJxgbGyM6OhrR0dEwNjaGk5MTXrx4gaCgIAQFBSE4OFgG4ZLGzKCFBgbYGeF80CtFh1KFUMT+HfNFZ9nimt/fFgcexEIgFCk6lCquvUiBk3VrmOppKToUpWDYUhN92xviYvBrRYdSRZlQhB23o7B0KBVf4vpsYHvsvx+DskaWk57PU+Bs3RomlJNiMWqpiT62hrj0tBHm5B0aMicNse5s+KY7d+7IIg7SRHzctx0+PvAIwzubNppboh5/lIDRXc3RSkdD0aEojRaaapjs1BaHfeMwr7+tosMBUH43yiN+8Tg45x1Fh6JUPulrg08OPsLQTiaNJidPPErA2G7m0NdpHPEog5aaapjQwwKH/eIx9z0bRYcDoDwnj/nH48AnlJOSmNOvIidN0VJT4jJMJo75J2B89zZKeXdbRWvQDVkIeZu6qgr+N7gD/rjZOKb5yS7k4/qLFEx5x1LRoSid950s8CAqo9HMEb7XOwaz+1hDS11V0aEoFQ01FXw+qD3+vN045gjPKuTjRmgqPnShnJTUB05t4fMyvdHMEb7HOxqz+7SjnJSQhpoKFg5sjz9vN47vyaxCPm6GpeJDZ8pJaUhcSJeUlOC3337D6NGj4eLiAicnpyoPQvp1MEJafikiG8F0eL/diMDSYXZ0K3Ap8Hg8fDfKARv+CVN0KIhOL0B4Sh5G0l22pNLfzhjJuSWNYorK366HY+kwe8pJKaio8PDdSAds+Cdc0aEgKq0Akan5GNHFVNGhKKUB9sZ4lV3cKKao3HQtHMuG29MNkaQkcSH96aefYtOmTbC2tsbYsWMxYcKEKg9CAOD70Z3w69UwCEWKu6DCNzoDaio8mmu4ARzM9GDUUhP3IhV3kRNjDGuvhuGHMZ3oRg8N8P1oB4Xn5IOoDGioqtBcww3QyVwPBi00cP9lhsJiEIkY1nmG4YcxnSknG6D8ezJU4Tmppa4KJyvKSWlJPDjn6tWr8PT0RL9+/WQRD2kizPS1MNrRDAcfxCpkjG0xX4g/b0Vh32xnub92U7NsuD3mHQ5AT6tWChlj+3dAEvq2N0Tb1nQleUOY62tjpKMZDvnGKWSMbTFfiB23o+D+cfX7EBDJuP2bk90t9RWTk4GJ6NfBCBattOX+2k1Jm1baGN7ZFEf84jCnn/xzsohfhh23o7CfcrJBJO6RtrCwgK4uzRVJ6jflHUs8jMlCXEah3F97281IzB9g02gurlJmLTTVsGSYHdZ5yv/n5Fc5xbjyPBmf9G0n99duiqa+Ywm/6EzEZ8o/J7d4RWDBQNtGc3GVMmuhqYbFQ+2wXgFDPF7lFOPq8xTKSY5Me8cKD6IykJgl/9vAb7kRiYWD2qMF5WSDSFxI//777/juu+8QHx8vi3hIE8Lj8bByXGesuhwi1ymb/KIzkV3ExxAHGrvHlXdtDaGtroo7EfKbW1ooYvjpwgusHt8Faqp0XTQXKnPyknxz0jc6A/klZRjU0URur9nU9WlvCE01FdyVc07+eP451ozvQmPcOaKiwsNPYzvj54sv5DrE40FUBgr5ZRhobyy312yqJP52cnFxQUlJCWxtbaGrqwsDA4MqD0LeZGmgg4k9LOR2q+LMglL8efslVo7rIpfXa06+GdER7vdikJYvnxkD9t6LxsguZrAxopvocMnSQAfje7TB9lvymTEgs6AUO+9E4edxneXyes3JtyMcsNc7Bun5pXJ5vT3e0RjV1RztKCc5ZW3YAmO7tcEfcsrJ9PzynPxpLOUkFyTuz582bRpevXqFdevWwdTUlC40IPWa2NMCK849h3dkukzPfhlj+OH8C/wwphP9VCUD2hqqWD2+C5affY59s5xl2kv8JCEbYcn52D61vcxeozmb1LMtVpx7Bp+X6ehvJ7ucFInKc/LHMZ2ho0E5yTVtDVWsntAF3519JvOcDIzPRkRKPhYNopyUhcnObfHdmWe4/zID79kZyex1RCKG788/x8/jKCe5IvG/oq+vL/z8/NC9e3dZxEOaqJXjOmPu4cfoYNJSZheo7LgdhX4dDNGljb5M9k8AO1NdTOppgU3XI/D96E4yeY3XOcXYfD0Ce2Y504m6DP08tgvmHXmM9sYt0UZWOXknCu/ZGaGTuZ5M9k8Ae1NdTOjRBr9dj8AKGeXkq5xi/H4jAnspJ2Vq1fgumHv4MdqbtIC5vmxy8o9bLzGoozEczCgnuSLx6auDgwOKi4tlEUudsrOzMWvWLOjr60NfXx+zZs1CTk5OndswxrBq1Sq0adMG2traGDRoEEJCQiqfz8rKwpdffomOHTtCR0cHVlZWWLx4MXJzc2X8bpofLXVVrJ/UDd/8/RS5RQLO938h6BUyC/mY+a415/smVY3r3gaMMZwNTOJ830X8Mnx75hnWv98VenShqExpa/ybk2eeIreY+5w8H5SE7CLKSXmY0MMCAiHDuSeyycnlZ59hw/vd6OJtGdPWUMX697vi679lk5NnApOQX1KGGb0pJ7kkcSG9YcMGfPXVV7h79y4yMzORl5dX5SEr06dPR3BwMK5du4Zr164hODgYs2bNqnObTZs2YcuWLdixYwceP34MMzMzDB8+HPn55TcleP36NV6/fo3Nmzfj+fPnOHToEK5du4a5c+fK7H00Z1aGOlgxqhOWngpCiUDI2X79ojPhFZqKn8bSnKbysnxUJzyIysCNkBTO9skvE+Gr00/xv8EdYG1IYzDlwcpQB9+NdIDbqWCUlnGbkzfD0vDjGBqDKS8/jOmEe5HpnOZkaZkQX51+ii8Gd4CVIU0/KQ/Whi3w7Qjuc/JBVAbuRqThhzGy+dWiWWMS4vF4jMfjMRUVlSqPimWyEBoaygCwhw8fVi7z8/NjAFh4eHiN24hEImZmZsY2bNhQuaykpITp6+uzPXv21Ppap0+fZhoaGkwgEIgdX25uLgPAMjIyxN6mObsbkcYWHAlgRaVlDd7Xg5fp7JMD/qywVPz2aig+n88uXLjA+Hy+3F6zMeKXCdmCIwHMJzK9wfsq5pexhX8FMK+QFA4i41ZzaO874als4V/c5OT9f3OSi30pgjK3d6lAyD478pjdf8ldTt4Ka3w5yaXG2t63w1LZ50cDWDG/4XnkE5nOPj34SGlzkksZGRkMAMvNzeVsnxKPkb5z5w7XtXy9/Pz8oK+vj969e1cue/fdd6Gvrw9fX1907Nix2jaxsbFISUmBq6tr5TJNTU0MHDgQvr6+WLBgQY2vlZubCz09Paip0SB8WRlobwx1FR4WHg3E1ik9YNBCQ6r9XHuRjIvBr7FrhjO0NVQ5jpLUR11VBdum9oDb6WCk5pVgsnNbqfZTxC/D0pPBmN7biqZHU5BBHU2goaqChUcDsW1KD7SWMic9nyfjyrPX2D3TGVrqlJPypqGmgm1TesLtdDBScqXPycLSMiw7FYwZ71rT9GgKMtjBBBpq/+VkKx3pcvLqs2R4Pk/GzhlOlJMyInG1OHDgwFqfCw4ObkgstUpJSYGJSfUvWBMTE6Sk1PwzVsVyU9OqcwmbmprWOgd2ZmYmfvnll1qL7AqlpaUoLf1vuqGKIS0CgQACAffjmpqid6z1oTu8AxYdDcAPox3gYCb+TX5EIoZ9PrFIyC7G7x84Qo0ngkAgvzlxK9qY2hpQBbDlg67Y7PUSa6/kwm1YB4lmDohJL8TqK2H432Bb9GrXulH+mzaX9n7HWh8th3XA50cD8ONoB3SUICeF/+ZkUnYxNk92hCrkm5NcUvb2VuMBWz/sit9uRCIiJRfLhkqWk9HphVhzJQxfDG6Pd9q1Utp/B3E15vbuZa2PlhrtsfCvAPw0xgH2ppLl5J57sUjOLcbmyV2UOie5JIt2bnC3a25uLo4dO4b9+/fj6dOnEArFH9OzatUqrF69us51Hj9+DAA1jn1ljNU7Jvbt52vbJi8vD2PGjEHnzp2xcuXKOve5fv36GuO+c+cOdHRoHJkkxhgAP53IhJkOMLSNCPV1LCcVAlcSVNDdgKGfCYPXdcXdGMjLy0thr93YdAUQkM7DxK0xGG0pQrt6jvd8IeCdwkN8Pg8f2IiQEZoGz1C5hCq15tLeYwyAH05kwlyHYWgbJnZO9jBk6Gus2JzkkrK3dzcAAak8TPo3J60lzMl0JchJLjXm9h5jAKw4ngkLHYYhYuRkYgFwNbE8J/sYM9xoIjnJhaIi7u8gKXUhffv2bRw4cADnzp2DtbU1Jk+eDA8PD4n28cUXX2Dq1Kl1rtOuXTs8e/YMqamp1Z5LT0+v1uNcwczMDEB5z7S5uXnl8rS0tGrb5OfnY+TIkWjZsiXOnz8PdfW6r0xesWIF3NzcKv/Oy8uDpaUlBg8eDENDwzq3JdVNYQy3wtNx1D8Rjm304NrZBA5mutBQK+9FySgohX9sNq4+T4FhSw24z7eFqZ6WwuIVCATw8vLC8OHD6/2sNCejUd5Wu7xj8Sy7GKMczdDX1gBGLTXA4/EgEIoQkVIAr7A0BCfmYGqfthjZpfHPRd8c23sKY7gZlo6jjxLQtY1+jTn5MCYLni9SYdRSA/s/aw8TXU0FR82NptTelTl5NwZPs0sw2tEMfZpATnJJWdq7IiePPUpEVws9DO9UPSf9YrLwz7856fFZexg3kZzkUmZmJuf7lKiQTkpKwqFDh3DgwAEUFhbio48+gkAgwNmzZ9G5s+RXZxsZGcHIqP6Jx/v06YPc3Fw8evQIvXr1AgD4+/sjNzcXffv2rXEbGxsbmJmZwcvLCz179gQA8Pl8eHt7Y+PGjZXr5eXlYcSIEdDU1MSlS5egpVV/gaapqQlNzeofUHV19UadiI3ZqG4WGNm1DYITc3A7PA377sehTFh+u9RWOhp4p11rbPqgu9RjN2WB2rs689bq+GViV+QWC3AjJAVbbkUju5APHg9Q4fHQwaQlBncyxTcjHZTuy7q5tffo7hYY1a0NghJzcCc8DXt94ipvYdxYc5JLTaW9zVur45dJ3ZBbJMD10P9yEgBUVXiwM22JIUqak1xShvZ+Mydvh1XNydYtmn5OckEWbSx2IT169Gjcv38fY8eOxZ9//omRI0dCVVUVe/bs4Tyot3Xq1AkjR47E/PnzsXfvXgDAZ599hrFjx1a50NDBwQHr16/HpEmTwOPxsHTpUqxbtw52dnaws7PDunXroKOjg+nTpwMo74l2dXVFUVERjh49WmUKP2NjY6iq0sB8eeLxeOhp1Ro9rVorOhTSQPra6vjQxRIfulgqOhTSADweD05WreFEOan09HXU8ZGLJT6inFRqlJONj9iF9I0bN7B48WJ8/vnnsLOzk2VMNTp27BgWL15cOQvH+PHjsWPHjirrREREVLmZyrfffovi4mIsWrQI2dnZ6N27N27cuAFd3fLBYoGBgfD39wcAdOjQocq+YmNj0a5dOxm+I0IIIYQQoszELqR9fHxw4MABuLi4wMHBAbNmzcKUKVNkGVsVBgYGOHr0aJ3rMMaq/M3j8bBq1SqsWrWqxvUHDRpUbRtCCCGEEELEIfacOH369IG7uzuSk5OxYMECnDx5EhYWFhCJRPDy8qq8WyAhhBBCCCHNgcS3CNfR0cGnn36K+/fv4/nz5/jqq6+wYcMGmJiYYPz48bKIkRBCCCGEkEZH4kL6TR07dsSmTZuQlJSEEydOcBUTIYQQQgghjV6DCukKqqqqmDhxIi5dusTF7gghhBBCCGn0OCmkCSGEEEIIaW6okCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkQIU0IYQQQgghUqBCmhBCCCGEEClQIU0IIYQQQogUqJAmhBBCCCFEClRIE0IIIYQQIgUqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApUCFNCCGEEEKIFKiQJoQQQgghRApUSBNCCCGEECIFpSmks7OzMWvWLOjr60NfXx+zZs1CTk5OndswxrBq1Sq0adMG2traGDRoEEJCQmpdd9SoUeDxeLhw4QL3b4AQQgghhDQpSlNIT58+HcHBwbh27RquXbuG4OBgzJo1q85tNm3ahC1btmDHjh14/PgxzMzMMHz4cOTn51dbd9u2beDxeLIKnxBCCCGENDFqig5AHGFhYbh27RoePnyI3r17AwDc3d3Rp08fREREoGPHjtW2YYxh27Zt+OGHH/D+++8DAA4fPgxTU1McP34cCxYsqFz36dOn2LJlCx4/fgxzc3P5vClCCCGEEKLUlKJH2s/PD/r6+pVFNAC8++670NfXh6+vb43bxMbGIiUlBa6urpXLNDU1MXDgwCrbFBUVYdq0adixYwfMzMxk9yYIIYQQQkiTohQ90ikpKTAxMam23MTEBCkpKbVuAwCmpqZVlpuamiI+Pr7y72XLlqFv376YMGGC2PGUlpaitLS08u/c3FwAQFZWltj7IMpLIBCgqKgImZmZUFdXV3Q4RMaovZsXau/mhdq7eamo0xhjnO1ToYX0qlWrsHr16jrXefz4MQDUOH6ZMVbvuOa3n39zm0uXLuH27dsICgqSJGysX7++xrjt7e0l2g8hhBBCCJGvzMxM6Ovrc7IvhRbSX3zxBaZOnVrnOu3atcOzZ8+Qmppa7bn09PRqPc4VKoZppKSkVBn3nJaWVrnN7du3ER0djVatWlXZdvLkyejfvz/u3r1b475XrFgBNze3yr9zcnJgbW2NhIQEzhqGNF55eXmwtLREYmIi9PT0FB0OkTFq7+aF2rt5ofZuXnJzc2FlZQUDAwPO9qnQQtrIyAhGRkb1rtenTx/k5ubi0aNH6NWrFwDA398fubm56Nu3b43b2NjYwMzMDF5eXujZsycAgM/nw9vbGxs3bgQALF++HPPmzauyXdeuXbF161aMGzeu1ng0NTWhqalZbbm+vj4lYjOip6dH7d2MUHs3L9TezQu1d/OiosLdJYJKMUa6U6dOGDlyJObPn4+9e/cCAD777DOMHTu2yowdDg4OWL9+PSZNmgQej4elS5di3bp1sLOzg52dHdatWwcdHR1Mnz4dQHmvdU0XGFpZWcHGxkY+b44QQgghhCglpSikAeDYsWNYvHhx5Swc48ePx44dO6qsExERUXnhHwB8++23KC4uxqJFi5CdnY3evXvjxo0b0NXVlWvshBBCCCGk6VGaQtrAwABHjx6tc523r8Lk8XhYtWoVVq1aJfbrSHMlp6amJlauXFnjcA/S9FB7Ny/U3s0LtXfzQu3dvMiivXmMyzlACCGEEEIIaSaU4oYshBBCCCGENDZUSBNCCCGEECIFKqQJIYQQQgiRAhXShBBCCCGESIEKaTHt2rULNjY20NLSgrOzM3x8fOpc39vbG87OztDS0oKtrS327Nkjp0gJFyRp73PnzmH48OEwNjaGnp4e+vTpg+vXr8sxWtJQkuZ3hQcPHkBNTQ09evSQbYCEU5K2d2lpKX744QdYW1tDU1MT7du3x4EDB+QULWkoSdv72LFj6N69O3R0dGBubo45c+YgMzNTTtESad27dw/jxo1DmzZtwOPxcOHChXq34aRWY6ReJ0+eZOrq6szd3Z2FhoayJUuWsBYtWrD4+Pga14+JiWE6OjpsyZIlLDQ0lLm7uzN1dXV25swZOUdOpCFpey9ZsoRt3LiRPXr0iEVGRrIVK1YwdXV19uTJEzlHTqQhaXtXyMnJYba2tszV1ZV1795dPsGSBpOmvcePH8969+7NvLy8WGxsLPP392cPHjyQY9REWpK2t4+PD1NRUWF//PEHi4mJYT4+PqxLly5s4sSJco6cSMrT05P98MMP7OzZswwAO3/+fJ3rc1WrUSEthl69erGFCxdWWebg4MCWL19e4/rffvstc3BwqLJswYIF7N1335VZjIQ7krZ3TTp37sxWr17NdWhEBqRt7ylTprAff/yRrVy5kgppJSJpe//zzz9MX1+fZWZmyiM8wjFJ2/u3335jtra2VZZt376dtW3bVmYxEu6JU0hzVavR0I568Pl8BAYGVt5RsYKrqyt8fX1r3MbPz6/a+iNGjEBAQAAEAoHMYiUNJ017v00kEiE/Px8GBgayCJFwSNr2PnjwIKKjo7Fy5UpZh0g4JE17X7p0CS4uLti0aRMsLCxgb2+Pr7/+GsXFxfIImTSANO3dt29fJCUlwdPTE4wxpKam4syZMxgzZow8QiZyxFWtpjR3NlSUjIwMCIVCmJqaVlluamqKlJSUGrdJSUmpcf2ysjJkZGTA3NxcZvGShpGmvd/2+++/o7CwEB999JEsQiQckqa9X758ieXLl8PHxwdqanQIVSbStHdMTAzu378PLS0tnD9/HhkZGVi0aBGysrJonHQjJ0179+3bF8eOHcOUKVNQUlKCsrIyjB8/Hn/++ac8QiZyxFWtRj3SYuLxeFX+ZoxVW1bf+jUtJ42TpO1d4cSJE1i1ahVOnToFExMTWYVHOCZuewuFQkyfPh2rV6+Gvb29vMIjHJMkv0UiEXg8Ho4dO4ZevXph9OjR2LJlCw4dOkS90kpCkvYODQ3F4sWL8fPPPyMwMBDXrl1DbGwsFi5cKI9QiZxxUatRd0o9jIyMoKqqWu3sNS0trdqZTAUzM7Ma11dTU4OhoaHMYiUNJ017Vzh16hTmzp2Lv//+G8OGDZNlmIQjkrZ3fn4+AgICEBQUhC+++AJAeaHFGIOamhpu3LiBIUOGyCV2Ijlp8tvc3BwWFhbQ19evXNapUycwxpCUlAQ7OzuZxkykJ017r1+/Hv369cM333wDAOjWrRtatGiB/v3749dff6VflJsQrmo16pGuh4aGBpydneHl5VVluZeXF/r27VvjNn369Km2/o0bN+Di4gJ1dXWZxUoaTpr2Bsp7oj/55BMcP36cxtIpEUnbW09PD8+fP0dwcHDlY+HChejYsSOCg4PRu3dveYVOpCBNfvfr1w+vX79GQUFB5bLIyEioqKigbdu2Mo2XNIw07V1UVAQVlaqlkaqqKoD/eitJ08BZrSbRpYnNVMX0OR4eHiw0NJQtXbqUtWjRgsXFxTHGGFu+fDmbNWtW5foVU6osW7aMhYaGMg8PD5r+TolI2t7Hjx9nampqbOfOnSw5ObnykZOTo6i3QCQgaXu/jWbtUC6Stnd+fj5r27Yt++CDD1hISAjz9vZmdnZ2bN68eYp6C0QCkrb3wYMHmZqaGtu1axeLjo5m9+/fZy4uLqxXr16KegtETPn5+SwoKIgFBQUxAGzLli0sKCiocqpDWdVqVEiLaefOncza2pppaGgwJycn5u3tXfncxx9/zAYOHFhl/bt377KePXsyDQ0N1q5dO7Z79245R0waQpL2HjhwIANQ7fHxxx/LP3AiFUnz+01USCsfSds7LCyMDRs2jGlra7O2bdsyNzc3VlRUJOeoibQkbe/t27ezzp07M21tbWZubs5mzJjBkpKS5Bw1kdSdO3fq/C6WVa3GY4x+qyCEEEIIIURSNEaaEEIIIYQQKShdIb1r1y7Y2NhAS0sLzs7O8PHxqXN9Se6jfvLkSfB4PEycOJHjqAkhhBBCSFOjVIX0qVOnsHTpUvzwww8ICgpC//79MWrUKCQkJNS4fmxsLEaPHo3+/fsjKCgI33//PRYvXoyzZ89WWzc+Ph5ff/01+vfvL+u3QQghhBBCmgClGiPdu3dvODk5Yffu3ZXLOnXqhIkTJ2L9+vXV1v/uu+9w6dIlhIWFVS5buHAhnj59Cj8/v8plQqEQAwcOxJw5c+Dj44OcnBxcuHBBpu+FEEIIIYQoN6W5IQufz0dgYCCWL19eZbmrqyt8fX1r3Ka2+6h7eHhAIBBUzhO4Zs0aGBsbY+7cufUOFQGA0tJSlJaWVv4tEomQlZUFQ0NDunMhIYQQQkgjxBhDfn4+2rRpU22+cGkpTSGdkZEBoVBY433R374zTQVx7qP+4MEDeHh4IDg4WOxY1q9fj9WrV0v8HgghhBBCiGIlJiZydkMlpSmkK9R0X/S6eoHruo96fn4+Zs6cCXd3dxgZGYkdw4oVK+Dm5lb5d25uLqysrBAZGQkDAwOx90OUk0AgwJ07dzB48GC6U2UzQO3dvFB7Ny/U3s1LVlYW7O3toaury9k+laaQNjIygqqqao33RX+717lCffdRDwkJQVxcHMaNG1f5vEgkAgCoqakhIiIC7du3r7ZfTU1NaGpqVltuYGAg0f3ZiXISCATQ0dGBoaEhHXibAWrv5oXau3mh9m6euByGqzSzdmhoaMDZ2bnafdG9vLzQt2/fGrep7z7qDg4OeP78OYKDgysf48ePx+DBgxEcHAxLS0uZvR9CCCGEEKLclKZHGgDc3Nwwa9YsuLi4oE+fPti3bx8SEhKwcOFCAOVDLl69eoUjR44AKJ+hY8eOHXBzc8P8+fPh5+cHDw8PnDhxAgCgpaUFR0fHKq/RqlUrAKi2nBBCCCGEkDcpVSE9ZcoUZGZmYs2aNUhOToajoyM8PT1hbW0NAEhOTq4yp7SNjQ08PT2xbNky7Ny5E23atMH27dsxefJkRb0FQgghhBDSRChVIQ0AixYtwqJFi2p87tChQ9WWDRw4EE+ePBF7/zXtgxBCCCGEkLcpzRhpQgghhBBCGhMqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApUCFNCCGEEEKIFKiQJoQQQgghRApUSBNCCCGEECIFKqQJIYQQQgiRAhXShBBCCCGESIEKaUIIIYQQQqRAhTQhhBBCCCFSoEKaEEIIIYQQKVAhTQghhBBCiBSokCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkwFkhXVhYiHv37nG1O0IIIYQQQho1zgrpqKgoDB48mKvdEUIIIYQQ0qjR0A5CCCGEEEKkIHYhbWBgUOdjwIABsoyz0q5du2BjYwMtLS04OzvDx8enzvW9vb3h7OwMLS0t2NraYs+ePVWed3d3R//+/dG6dWu0bt0aw4YNw6NHj2T5FgghhBBCSBOgJu6KpaWl+Pzzz9G1a9can4+Pj8fq1as5C6wmp06dwtKlS7Fr1y7069cPe/fuxahRoxAaGgorK6tq68fGxmL06NGYP38+jh49igcPHmDRokUwNjbG5MmTAQB3797FtGnT0LdvX2hpaWHTpk1wdXVFSEgILCwsZPp+CCGEEEKI8hK7kO7RowcsLS3x8ccf1/j806dPZV5Ib9myBXPnzsW8efMAANu2bcP169exe/durF+/vtr6e/bsgZWVFbZt2wYA6NSpEwICArB58+bKQvrYsWNVtnF3d8eZM2dw69YtzJ49W6bvhxBCCCGEKC+xC+kxY8YgJyen1ucNDAxkWnjy+XwEBgZi+fLlVZa7urrC19e3xm38/Pzg6upaZdmIESPg4eEBgUAAdXX1atsUFRVBIBDAwMCg1lhKS0tRWlpa+XdeXh4AQCAQQCAQiP2eiHKqaGNq6+aB2rt5ofZuXqi9mxdZtLPYhfT3339f5/OWlpY4ePBggwOqTUZGBoRCIUxNTassNzU1RUpKSo3bpKSk1Lh+WVkZMjIyYG5uXm2b5cuXw8LCAsOGDas1lvXr19fY+37nzh3o6OiI83ZIE+Dl5aXoEIgcUXs3L9TezQu1d/NQVFTE+T7FLqQbCx6PV+Vvxli1ZfWtX9NyANi0aRNOnDiBu3fvQktLq9Z9rlixAm5ubpV/5+XlwdLSEoMHD4ahoaFY74MoL4FAAC8vLwwfPrzGXzVI00Lt3bxQezcv1N7NS2ZmJuf7VJpC2sjICKqqqtV6n9PS0qr1OlcwMzOrcX01NbVqBe/mzZuxbt063Lx5E926daszFk1NTWhqalZbrq6uTonYjFB7Ny/U3s0LtXfzQu3dPMiijZVmHmkNDQ04OztX+/nFy8sLffv2rXGbPn36VFv/xo0bcHFxqfKP+dtvv+GXX37BtWvX4OLiwn3whBBCCCGkyVGaQhoA3NzcsH//fhw4cABhYWFYtmwZEhISsHDhQgDlQy7evOBx4cKFiI+Ph5ubG8LCwnDgwAF4eHjg66+/rlxn06ZN+PHHH3HgwAG0a9cOKSkpSElJQUFBgdzfHyGEEEIIUR5KM7QDAKZMmYLMzEysWbMGycnJcHR0hKenJ6ytrQEAycnJSEhIqFzfxsYGnp6eWLZsGXbu3Ik2bdpg+/btlVPfAeU3eOHz+fjggw+qvNbKlSuxatUqubwvQgghhBCifKQqpHNycnDmzBlER0fjm2++gYGBAZ48eQJTU1OZ38Rk0aJFWLRoUY3PHTp0qNqygQMH4smTJ7XuLy4ujqPICCGEEEJIcyJxIf3s2TMMGzYM+vr6iIuLw/z582FgYIDz588jPj4eR44ckUWchBBCCCGENCoSj5F2c3PDJ598gpcvX1aZIm7UqFG4d+8ep8ERQgghhBDSWElcSD9+/BgLFiyottzCwqLWG6MQQgghhBDS1EhcSGtpaVXeEvtNERERMDY25iQoQgghhBBCGjuJC+kJEyZgzZo1lfcr5/F4SEhIwPLly6vMhkEIIYQQQkhTJnEhvXnzZqSnp8PExATFxcUYOHAgOnToAF1dXaxdu1YWMRJCCCGEENLoSDxrh56eHu7fv4/bt2/jyZMnEIlEcHJywrBhw2QRHyGEEEIIIY2S1DdkGTJkCIYMGcJlLIQQQgghhCgNsQrp7du3i73DxYsXSx0MIYQQQgghykKsQnrr1q1V/k5PT0dRURFatWoFoPxOhzo6OjAxMaFCmhBCCCGENAtiXWwYGxtb+Vi7di169OiBsLAwZGVlISsrC2FhYXBycsIvv/wi63gJIYQQQghpFCSeteOnn37Cn3/+iY4dO1Yu69ixI7Zu3Yoff/yR0+AIIYQQQghprCQupJOTkyvnkH6TUChEamoqJ0ERQgghhBDS2ElcSA8dOhTz589HQEAAGGMAgICAACxYsICmwCOEEEIIIc2GxIX0gQMHYGFhgV69ekFLSwuampro3bs3zM3NsX//flnESAghhBBCSKMj8TzSxsbG8PT0RGRkJMLDw8EYQ6dOnWBvby+L+JqUzIJSCIQMJrqaUFHhKTqcahhjSC8ohSqPB4MWGuDxGl+MIlF5jFpqqtDXUVd0ODUSCEXIKChFC0016Gk1zhj5ZSKkF5SilbY6WmhKPZ28TJUIhMgoKIWJrhY01CQ+55eLgtIy5BYLYKanBdVGmNMAkF3IR0mZEKa6Wo3yuAMA6fmlAACjlo3zuMMYQ1p+KTTVVNBKR0PR4dRIIBQhs4APbQ1V6Gs33uNORkEp9LTV0bKRHndKy4RIzy+FUUtNaKmrKjqcGhWWliG7iA9zfe1Ge9zJKeKjiC+EmV7jPe5wRepPsr29PRXPYmCM4erzZJx6nAjjlprQVFdBUnYx3rU1xLz+NtBUU3yiCkUMx/zjce1FCtq21oaIAcm5xRjd1RzT3rFqFElQIhBij3c0HsdlwcpAB8V8ITIL+ZjR2wojHc0VHR4AILdIgG23IhGTXoi2rbWRWyxAMV+IzwbYoretoaLDAwC8yinGNq/IyoNwen4pVFSApcPsYW+qq+jwAADhKXn481YUBEIRTPW0kJRdBMOWmnAbbo82rbQVHR4A4FFsFvZ6R0NLXRWtdNSRmF2M9sYt8OUQOxi0UHyhxRiDV2gqjvonwLCFBrTUVZGUXQRn69ZYMKA9tDUUf9wRiRhOByTi8rPXMNfXhgqv/PPp2tkMM9+1bhQFAr9MBHefGDyIyoCVgQ5Ky0RIzy/Fhy5tMb57m0ZR9BeUlmH7rZcIT8lH29bayC8pQ0GJAHPfs8V7dkaKDg8AkJZXgq03I5GaV4o2rbSQVciHSAR8ObQDurTRV3R4AIDo9ELs9I5FiaC8+EvOLUZLTTV85doRlgY6ig4PAPAkIRu770ZDTYUHw5YaSMwqhpWBDpYMs4NRS01FhwcAuBORhkMP4tBKp7yTJjGrCN3btsLCQe0bxcmTSMQ436fE7+rTTz+t8/kDBw5IHUxTU1omxA/nX8DaQAfus10qz24riut5hwPw+4fdYaKnpbAYc4r4+PrvZxjiYIK/5vau/PISihiOPozHomNPsPmj7gpNgFc5xfjuzDPM6mONJUPtKr+8ivlC7LobBe/IdKyZ4Ah1VcX1Woa8zsUvV0LhNrwjetkYVC7PKeJj47VwPIzJwuKhHRT6xesdmY79PjH4cUxndDT7r2hOzi3GqkshGOpgio/esVRYfABwOiARt8JSsWp8F5jr/1c0R6XlY/m555jTrx0GdzRRWHyMMWy/FYXk3GJsmdKjSs9fYHwW/nfsCb4f3Qld2yquOBAIRVh5KQQGOhrYN8u5ynHnRmgq5h15jI2Tu6Fta8UVB3klAnx35hl62xjg0JxelbkrEjGcCkjEgr8C8PtHPRTas5qaV4IVF0LxkYslFs3rXZm7JQIh3O/F4Ku/n2L9+10V2hnyMjUfP118gcVD7PD96E6Vy/NKBPj9egTuR2Xg2xEdFdoZ4h+TiT9vR2H5KAc4WvyXF2l5JVhzJRS9bQwwq087hcUHAE8yeLh4PRKrJzhWKZrjMgrx08UXmNbLCiO6mCkwQmCvdzQiUvKxcXK3Kifrz5JysPhEEL5ytYeztUEde5AtoYjhlyuhUFflYfdMJ+holNcMjDF4R6bjsyMBWDupK2yMWigsxiJ+GX64EML9jpmEJk6cWOUxZswYZm1tzfT19dmkSZMk3V2TkJubywCwjIyMymX8MiFbcCSA3Q5LrXW7qLR8NnWvH0vNLZZHmNXkFPLZzP0P2fOknFrXeRybyWZ5+LP8EoEcI/tPQmYhm7rXjyVkFta6zj/PX7Mvjj9h/DKhXGLi8/nswoULjM/nM8YYe5aYw2buf8iyCkpr3cbDJ4b9eiWEiUQiucT4tlthKWzRsUBWzC+r8XmhUMRWXXrBDj2IlW9gbzjiG8tWXnzBhMKa/41KBGVs0bFAdiMkRa5xVbR3aWkp+/VKCHO/F13rujmFfDbLw589TcyWX4BvKBOK2BfHn7Crz17Xuk5FTiVm1Z5TslRQImCzPfxZQFxmres8TcxmM9wfspwivhwjK8fn89mhUxfY1L2+LCa9oNb1boelsgVHAliJoOackrXw5Dw23d2PpeWV1LrOsYfx7MfzzxV23HnwMp3NP/yYFdTy/SESidjGf8LY7rtRco7sPyf9Y9nU3y+x4pKaj9/8MiFbdjKIXQx+JefI/vP7jQi2/WZkre2YXyJgcw4+Yo9ia88pWRIKReyr08HsbGBiresk5xSzafv8WGwdOSVLxfwy9unBR+yfgJcMAMvNzeVs3xIX0jURCoVswYIFbOPGjVzsTunUVEgvP/uUXXuRXO+20Wn5bIb7w1oPNLIiKBOyuYceifWF/zg2ky04EsAEcipUK+QW89m0feJ94V8KfsVWXnwhh6iqFtIJmYVs2j4/llNY/xf+jtsv2T7v2oswWXmamM3mHnpc7xe+SCRi3515yv55Xv/nlms3QlLYd2ee1vuFzy8TsrmHHsu1UK1o733eL9n2m5H1rp9TJP7nlmsrL75g558k1btexec2t1i+hapQKGILjgQw/5j6v/CDE7LZpwcfye0EuUJOQREbvu4Si0zOrnddcT+3XEvJLWZT9/qxjPzai+gKB+7HsD/E+NxyLSIlj318wJ8VldZ/3Fl16QU796T2IkxW7kWmscXHA9m58/91jNSkTChinx8V73PLtRP+8WzjP2H1rldQImAz9z+s8+RPVtZ7hrHj/vH1rpecU/65ravTSRZEIhFbfOIJ845IYxkZGZwX0pz8Fq6iooJly5ZVu5V4c3U+KAnGulpi/RRka9wS/xvcAT9fDKmcTlAefrsegQk9LNCtbat613VpZ4ChnUyw62607AP7F2MMK849x9cjOor1E/S47m2gp6WGM4FJcoiuXGmZCN+ff46Nk7uJdeHjokHtEZacB9/oDDlEVy6rkI/1nuH4/cPu9f4EzePx8MtERxx/lIDErCI5RQjEpBfgmH881kxwrHfoi7qqCn7/qDvWe4Yjt6j6fPayEpUHhLzKwxdDOtS7rr62Oja83w0rzj1HaZlQDtGVu/YiGRpqKpjY06LedS0NdPD1iI5Yce65XI87f9x6iSEOJlWGP9Wmu2UrTHKywLabkXKIrBxjDKsuh2G4BUM7w/p/gh7e2RRWhjo46p8gh+jKlQlFWH72GX6Z6AhDMcbFftK3HZJzS3AnPE0O0ZUrEQix+nIINn3Qrd7x+DweDz+O6Yyrz1IQlpwnpwjLhwzuuxeDXyd0Rn0jX1RVePjtg+7YdjMSmQWl8gkQQHBiDnxeZuBr1471rttCUw2bPuiGH84/R4lAvscdgVCEab2s6l3XTF8LP4zphG/PPoNQBmOVa7PvXgx6WrbCAHtjmeyfs0Gl0dHRKCsr42p3Sis2oxCXgl9jsRhfuBX6tDeEjZEOzj55JcPI/vMkIRvZRXyM695G7G0+cG6LmPQCPE3MkV1gbzj6MB49LVvByaq12NssGWaPy09fIylbPkXgtltRmPmutdgXovB4PPw6yRE7bkchr0T2RSBjDD9ffIEfxnQSe4YTdVUV/DKhC36++AJlQpGMIyy/mGvlpRCsf7+r2DNz6Gur45uRHbH6sgzGutUgp0iAa4kqWDmuk9hj3K0MdTCjtxW233op4+jKvcopxjH/BLG+cCs4WbVGT8tWOP5IPkXgi1e5SMgqkmgc/thubZCeXwr/mEwZRvafc09ewdJAB/b64n/JLxzQHnfD0xCbUSjDyP6z/XYUJvSwQAeTlmKtz+PxsHJcZ+y/H4PsQr6Moyv369VQfDagPUx0xbv+R1WFh42Tu+KXK6FyKQIZY1hzOQSrx3cRe2aOFppq+H50J/x8ST6dXvklAmz8JxzrJnUVe4y7ub425ve3xaZrETKOrlxKbgmO+Sfgu5EOYm/jaKGPQR2NcfBBrAwj+8/TxByEvM7Dx33byew1JC6k3dzcqjyWLVuGqVOnYsqUKZgyZYosYlQaAqEIP198gbWTukJNwgvfFg5sj4vBr5CaVyKj6MqVlgmx+XpElQtTxMHj8bBqfBdsvBaOIr5sT5gSs4pwJyIdn/azkWg7VRUeVo/vgpUXQ2RyZe6bEguAjPxSiS9A0dFQg9twe6y7GiajyP5z9skrdG6jV+UCH3FYG7bA2G5t5PILxM47UZjyjmWVCwvF4WTVGm1ba+PS09cyiuw/v92IxBgrkcQX3I50NEdybgmCErJlFFk5oYjhx/PPsWaCo8TTBH7azwY3Q1Nl/guEQCjChn/C8cMYyY47APDT2M7YdvMlcotle/KZmleCi09fY9FAW4m2U1HhYc1ER6y8FCLzk8/wlDzEpBeI9avDm7TUVbF8ZCesuRIqo8j+c+1FMlpoqGGghL1/hi018UnfdvhDDiefF4JfobtlK9gai3cyUsHRQh9dLfRxOiBRRpH9Z/P1CHw5tIPE07wOdjBBSZlQ5r98MlZ+ceHPYztLfNyZ3ssK/rFZiEkvkFF05UoEQmy8Fo7V47vI9EJ/iQvpoKCgKo9nz54BAH7//Xds27aN6/iq2bVrF2xsbKClpQVnZ2f4+PjUub63tzecnZ2hpaUFW1tb7Nmzp9o6Z8+eRefOnaGpqYnOnTvj/PnzUsV2xC8Bk53aSjVFl5qqCn4c0xlrLofK9Gx3551ozHzXWqq5UFvpaGDRoA7Y+E+4DCIrxxjDr1dD8eOYTlJdad7OqAUGdTTGId847oP7l0AowqUEFSwfJX7v35tc2hmgpaYa7kTI7qfWjIJSXAx+hc/6S1YUVHjfyQLR6QV48SqX48j+E5WWj5dp+RjTVbrpC78caoe/AxKRkiu7k0/f6AxoqqnARsqZAVeO7YJN1yJQzJddL9th3zi4djGT6mp4FRUeVo7rgtUyPu64+8RgsrOFVFN06Wqp4+sRHfGLjIvAX6+G4fvRDlJNu2fRShsTe7TBbhmefApFDOs8w/HT2M5Sbd+1rT4sW2vj6rNkjiP7T26RAH89jMdXEvwy8ibXLmZIzS3Bs6QcbgN7Q0ZBKc4GvsJ8KY+N8/vb4nqIbE8+A+OzwReK0Le9dNMXfj+6E/68JdtfPv95kYIOJi1hJ8W0qRUdc6svh8p0iMeO21GY088GrWU9JSlno63l4OTJk0xdXZ25u7uz0NBQtmTJEtaiRQsWH1/zIPeYmBimo6PDlixZwkJDQ5m7uztTV1dnZ86cqVzH19eXqaqqsnXr1rGwsDC2bt06pqamxh4+fCh2XBUXG87efbvBF51svxnJLgTVf7GQNMKSc9n/jgU2OMblZ5+xxzK6Ovhi8Cv2562GXRgjEonY3EOPWHyGbC722nErgn3vfrHOi1PqU1Raxqbuld3FXm6nguucjUUc6fklbIb7Q5lc7CUUitgnB/zZq+yiBu0nPDmPfXH8CUdRVVXML2+jzLyiKrO0SOp2WCpbezWU4+jKvcouYp8c8K91phNxefjEsGMP679YSBpRafnssyOPG3zc+fVKCLsTXvssSA1x/UUy++1aOGOs+qw84hKJRGzR0UAWmZInixDZwfsx7OjDuAbto1QgZNPdxbtIURorzj2rczYWcWQWlLLp7n4ymw1l6cmgKsdGado7Nr2AzT/c8M90TSraKLuwYRfk+UVnsB/OP+MoqqpyCssvqG5oG53wj5fZBfgRKTV/N8jiYkOJC+nBgwez7Ozsastzc3PZ4MGDuYipVr169WILFy6ssszBwYEtX768xvW//fZb5uDgUGXZggUL2Lvvvlv590cffcRGjhxZZZ0RI0awqVOnih1XRSEdHJUg9ja14ZcJ2Qz3hyyT46tay4QiNnP/Q06m2ssp5MvkQJddWH4ALRU0vHCLTS9gcw9xf6CLTS9gcw/6s/P1XOUtDt+oDPbzheccRfYf74g09svlEE72de5JItt55yUn+3rT0YdxnE21t/l6uFgz5Ehq4z9h7EZIitSF1ZuWnQpizxIbdmJTk0VHA9nL1IYXbkKhiM3y8Od8Ks6KEyYuZjCpOPnkeirOvGI+m7rXr3JqyIa09+ucIvYxByc2b+PqhImx8ll83E4FcxBVVf4xmZwVbpefvpLJTCNeISlsw1szYEjb3jtuv5RJp9f2m5HsEkdT7a0490wmU+ItP/uUk840kUjEPj34qM7pbaUhFIrYxwf8WXJO9eOZLAppie+ycffuXfD51S9YKCkpqXeYRUPw+XwEBgZi+fLlVZa7urrC19e3xm38/Pzg6upaZdmIESPg4eEBgUAAdXV1+Pn5YdmyZdXWqWuYSmlpKUpL/7tyNy+v/Epj0xbqEAga/lPK0qHtsd4zFOsmdmnwvioceBCHUV1M0FpbtcEx6qgDU5wtsOv2S3wxuD1HEQJrr4ZiyZD24DEhBA284MRCXwM92urh78cJmNRT/Isq68L+vUBluWt7hAUkN/jf0cVKD+eeJOJRTDp6WrbiJMZivhC77rzEnhk9Ofksjuligv+deIrI5BzOJtJPzSvBtefJcJ/lxEmMC96zxvyjQXjHSh+6WtzcOCg8JR8JmYVYNrR9ZYwNifVbVzu4/f0M+2c5cXbjoBuhqWhnqA3r1lqc/Dt+M7wDfrkSgi0fduMgunLHHyWifwdDmLZs+LFRjQd8PrAdNnqG4uexko+1rs2ma+FYNNAGqhBBIBA1qL2NdNQwoIMh/vKLxfRe3NzcqOK4890IewiFZRA2cJRQJ9MWaKWtiluhyRjA0Z0PS8tE2OoVgR1Tu3PyWXR1MMIXwa84Pe7klwjgcT8G+2ZWPTZK295z+lhi3pEn6GPTCq05um18THohnr/KwYL+1pz8O341tD2+OPkU7rOcoCnhOOba+MdmQZUHdLfQ5STGb13t8MuVEOyY2p2zcczHHyVioJ0hDHWq1ztcxPw2HmPiDYyrGAvdo0cP3L59GwYG/01fJBQKce3aNezduxdxcXGcBwkAr1+/hoWFBR48eIC+fftWLl+3bh0OHz6MiIjqV6na29vjk08+wffff1+5zNfXF/369cPr169hbm4ODQ0NHDp0CNOnT69c5/jx45gzZ06VYvlNq1atwurVq6stP378OHR0uLlb2NlYFXQ1YBJdPV6bjBLgfJwK5nUUgavx9owBByNVMMZKBFMO7tocmcvD8yweJttwd7GOUATsCVfBx3YitOTgBmkP03goKgOGtOFuTFehADj0UgULHUTgor66FK+C9noMXVpzF2NWKfB3jArmO4jqnSZKHIcjVTDMQgQLDm9wFZULBGeq4APbhn9+RAzYG6aC6R1E0OdwaN2jdB7y+cBQi4a3TUkZsD9CBQs6iaDO4Q09ufz85JQCJ2NU8BlHn5sKp6JV4GIsQnu9hu8rLh94mKaCqe25O+6IGLAvXAVTbUVoxcFdm4MyeEgrAUa05S6nS4WAe3h5TmtycGPG60k8mGgBPY24izGzBDgbp4L5HH1vnY5RgZORCB04+NxUiMsHfFPLjxUNJWLlbfKhrQgGHN7tOziTh+QiHkZZNjxGvrD8sz2vowgc9VkAAK4l8mCqA/Q0bPjnJ5cPHI8qPzbWdNwpKirC9OnTkZubCz09bj4MYv9T9OjRAzweDzweD0OGDKn2vLa2Nv78809OgqrL22csjLE6z2JqWv/t5ZLuc8WKFXBzc6v8Oy8vD5aWlhg8eDAMDQ3rfxNi6F9ShkXHg/D5B07QFHN6npowxrDwWDD++KQjrMScpk1cPfsVY+XlMOyd1LNBt6AtEQhx4q8n2D2vJ+e3IrfpmYcj/gnYNMGxQfvJKCjF6TMvsH9OTzCREF5eXhg+fDjU1RteoWsEv8brvFIsGCDZLCVvC03Og05hHL7hsEexAnuYgDwVXoN72W6FpaGXei7mD7fjKLL//HgxBGaOFnCyatWg/Rzyi8fMQaqY4tIWQHkPBhftPYoxLDoejC69O8LasGG5uOZqOH6abIw+ttwcbyoM5gvx2dEnWDS0J1o0IBcZY1h86hm2zGov9jRt4nqvWID/nQjGZ5Mbdmzkl4kw/68n2D63O1q9MTMCF+1t75KPXd6x2DapYbmYUyTAqVNP4f6pk8QzI9THqFMGfF5m4nspL5quEJNeiKu5L/E9hz2KFQQP4lCsrY4PnCSbpeRt/rFZsBamYPG46hdqNrS9M66Go7VDw3PxdEASJhkIMbOPdYP287ZRjGHJqWewc2kPuwbm4u9eL/HVWH0M7WTCUXTlhv6bi18O7g497YZ9py47/Qy/zbSBg1nNF0FmZnI/labYR8rY2FgwxmBra4tHjx7B2Pi/qW00NDRgYmICVVUOTm1rYWRkBFVVVaSkpFRZnpaWBlNT0xq3MTMzq3F9NTW1yoK3tnVq2ycAaGpqQlOz+imjuro6J4UVABioq2POe7bYe1/6K6AB4NTjBPTtYIT2ppJNgSYOa2N1DLA3wfmnKZgqxmTstfn9ZjTm9m+P1i056Np+S892hrj6IhW+sTkST8dUgTGGX/95jh/GdIa2lmblT0NctfdkFyt89lcgkvMEsJKywBIIRfjtRhS2Te3B2WfwTZ/0s8Wnhx/D1dFc4qnqKuSXCHD4YSIOznkH6g0ogGrz/eguWHQ8EAc/6SV10ZGQWQS/mGzsn+1S7eSQi/b+eZwj1lwJgftsF6mLDv+YTJSJGAZ0lGzqRXGoq6tj0WA77Lgbix+lnB0CAC49fY0ubfTRyUL8eeDFZfjvsXG3Txy+GSH+/LVv23PvJab0soKxfs0515D27tLWALbG6bgdmSnxFJlv2nQjFF+PdEALbQ67KP81pJM5/nmRhpCUQvSQcmiZUMSw7lpk+TzwGtzPjDC3f3vMOfQYrl3Mxbr5TE1KBELsvBuLfbOd62xPadv7u1GdMP9wAHrZGos9J/XbUnJLcC00DYfm9JJq1pj6/Dy+C1ace44DH78jdafX08QcpOSVYmS3hp3U1ERdHVg2vCO23Y7BLxOl7/S6+iwZtia66GpZ+w2fZPH9KPa3jbW1Ndq1aweRSAQXFxdYW1tXPszNzWVaRAPlxbqzszO8vLyqLPfy8qoy1ONNffr0qbb+jRs34OLiUvmPWds6te1TnkZ0MUNsRiEiUvKl2j4hswiez1MwR8L5mCXxcd92uPo8GWn50k1B9jguC1mFpRjeufYTl4Zyc7XHnrvRKCyVbv7r80Gv0MlMF53bcPib4BvK7+zVCasvh0g9FdCuO9GY8o6lVNOLiUNFhdfg6Rl/uRKKZcPtpf6yqY++jjqmvmOFvd7STUEmFDH8fOkFVo/v0qBfWOpiZaiD3jaGUt+Bs4hfhj9uvZR4HnhJDLA3RlYRX+qbL6XkluD040QsGMjd9RNvG9HFDIlZxQh5Ld30jM+TchGZVoDxEtyUSlL/G9wBh33jpJ6C7NqLFBjrakp0UypJfT+6E367Hg6BlPNfH7gfi9FdzaSa8lUcaqoq+HaEA9Y2YN79Df+E47OBttDV4r6AAoCWmmqY+54N/rwt3fzX7N8bZ60c11kmRTRQfqOWIQ4mOCblzZcq5mNeOY6767be1svGACLGpJ7/OrOgFMcfxeOLweLfDI8z4lyRePHif1N9Xbx4sc6HLFVMf+fh4cFCQ0PZ0qVLWYsWLVhcXPmUQMuXL2ezZs2qXL9i+rtly5ax0NBQ5uHhUW36uwcPHjBVVVW2YcMGFhYWxjZs2CD19HcZGRncvdl/peYWsxnuDyWeIUNQJmSzPfw5vxq2JqGvc9nnRwMkniEjv0Qg0yng3nQ3Io2tuvRC4u2Sc4rZzP0PmeCNKeC4mMWhJicfxbMdtyWfISP0NTfTGorjz1vSTc945elrtulaWP0rNpBIJGKfHw1goa8lvyJ7z90odvJR9SnguG5vQZmwfAadPMlnyFh58QXziUznJI66ZBWUsmn7/FhRqWTHHaFQxOYeesxepubLKLL/pOWVT88okHB6xqLSMjZtn1+tMyNx2d5+0Rls+VnJZ7KomHpSVlPAvelCUJJUU45yNa2hODZdC2OXn0o+k8XtsFS28mLdx32u2nvpySD2JD5L4u0O+8ayA/djGvTa4hAKRWy2hz9LkmLK0XVXQ9mNkBQZRFVVQYmgztysy5ITT8Sa8lVh09/xeDyWmppa+f+1PVRUVDgLrDY7d+5k1tbWTENDgzk5OTFvb+/K5z7++GM2cODAKuvfvXuX9ezZk2loaLB27dqx3bt3V9vn33//zTp27MjU1dWZg4MDO3v2rEQxybKQZoyxay+S2RoJpzPb6hXBzj1JlEk8NXG/Fy3xdGbLzz5jftGy+Teryc8XnrOboeIfDMoqi4Kq04vJqpAWiURsyYknLFCCg3HFgUeaokwaFdMzpkgwTdrrnCI2c/9DTqY1FEd6fgmbts+PFZaKP01a6OtctvCvmk8GZdHeESl5bO6hR6xMgunMboensp9kMF1ibbwj0iQuAvfcjZLZfNQ1OROQKPHJ58qLL+qcj5rr9l7vGcauPH0t9voVJ4Mhr7j7oq/v9b44/oQFxIl/3Cnml7GZ+x82eB54cZUKyk8+JekYSssrYdPd/5vWsDZctXdOIV/ijqGXqfls7qHHnE+XWJvY9AI228NfonsD+EVnsG/+5n66xNo8T8qRuGPu1OMEttUrQqx1G8U80qQ6WRfSjJWfEYrbE3gvMk0m84TWRSgUsf8dCxS7MD72MJ79fj1cxlFVVXHwj0oTr7ds4z9h7ExA9ZMRWRXSjDGW+++ctuKckQuF5YW3b5T8TkYYK++Jmu3hL1ZvWTG/jM328JdLD+WbfKMy2JfHn4j1BZVZUMqm7vVj6bXcpEJW7f13QCJb7yleL31segGbuf9hvUUB17bciGDH/cUrjB/FZsrtl5EKIpGIuZ0KZt4RaWKtf/5JUr1zrHPd3vwyIfvkgL/Yv5JsvxnJjvg17MYrkqo47ohzgiwSidh3Z56y2zK6OU5tEjIL2Qz3h2KdIJcKhOzTg49YWHL9/+ZctndgfBZbcCRArBPknKLym5rUNNexLF15+pr9fOG5WHmalF3Eprv7sQKO526vz36fGOZ+T7wbtTxLzGHzDj8Wu1NCFoU0t5cBE5n5ZkRHXA9JgXdkep3rPU/Khcf9WKyd1LBZKiSlosLDxsndsPNOVL3jFr1CU+Efm4mlw+zlFF05LXVV/P5hd/x4/kW9t5U+9CAWQsYw2bmtnKIrp6eljp/HdcaSk0EoqGNMN2MM6zzD8K6tIfq053bmhvq0N26JOf3a4avTT+scWykQivDNmWf49D0bzmduqE+f9obo294Qaz3D6hzTnV8iwNJTwfhpbGeZjS+vzQfObaHCK/+s1SUltwTLzz3Dpg+6yWx8eW2WDLWDf0wmboSk1LleREo+tt96iQ2Tu3E+c0NdeDwe1k5yxIEHsQhKyK5z3fsvM3A9JAUrZDi+vCbqqir4/aMeWHM5FAmZdd9W+tTjBGQUlGJmb+kv3paGnpY61k5yxFennyK3qO4x3Vu8ImFnqovBHbmduaE+lgY6+GJIByw9GYzSston0xaKGFace44p71jCwUw217XUxsmqNUY6muGniy8gquN6lyJ+GdxOBePbkQ4w09eSY4TAmG7mMNbVxO56riVJzy/F16efYv2kbg2awUcan/Zrh6i0Alx++rrO9WIzCrHhWhg2f9BdZuPLxSHWPNLbt28Xe4eLFy9uUEDKKC8vD/r6+sjIyOBs+rualAiEWHYqGMM7m+J9p+oF3p2INBz2jcMfU3pCX0c2F1bUJ6eIjy9PBGHBgPZ4763J/hljOB2QiPtRmfj9w+6cT+ckrvjMQiw/+xw/j+uMTuZVD7QiEcMft16ioLQMP47pVGNRIBAI4OnpidGjR8vkCmAACIzPxlavSGz6oFu1C3lKy4RYdSkEdia6+PQ92V1IWp/rISk49yQJGyd3Q6u3bkiQU8THd2ef4X2ntg2ataChDvvGISw5D6vGd6lWhCZlF2H52edwc7Wv84IuWbZ3xQmRjoYaFg+1q/ZlEJachzWXQ7Hu/a6c3ZhCUvwyEb76+yn6tjfE1Hcsq+WEb1QGdntHY+uUHnI/GamQVyLA4hNBmPWuNYZ2qn7h8sXgV7j2IgVbp/So92REVu39OqcYX51+iuWjHND9rVkyRCKGvfdikJhdhF8nOMrsYtf6vHiVi3WeYdjwfrdqMwgJhCKsvRoGY11N/E8RF3T9605EGo76xeO3D7vDoEXV405+iQArzj3H8M6mmNBDvNklZNHepx4n4GFMFn6d6FitCE3JLcF3Z59h0aD26M3x9JXiYoxh682XKC0T4mvXjtVuEhWVlo+fLoRgzYQusDOteRo5WSsTirD83HM4ttHDx33bVTvuBMZnYYtXJLZ81AOmeuKfjGRmZsLIyIjTeaTFKqRtbMT7subxeIiJiWlwUMpGXoU0UH62/cfNSLxMK8BHLpawMWqB1znF+DswCfra6vhupAO0NeTba/W2In4Zfr0aBn6ZCJOd2sJcXwvR6QU4+TgRPSxbYeHA9go9ewTKz7ZXXw6Bsa4mxnZrA4MWGnjxKhd/ByZhTFczTHmn9h4heRTSABCXUYjVl0PQrW0rDO9sCi11VQTEZeHS09eY+55NjQWDvD1LysHGa+EY3NGk8sTp/ssM3A5Pw7cjHaSeVotLdyPSsMc7GhN7WMClXWuUCETwCk3F06QcrB7fBdaGdReo8mjv048TcfnZa3zoYgnHNnrILhLg6rNkpOaX4JcJjtUKBnkTiRh23Y3C06RcfORiCTuTlkjOLcHZJ0nQUFPBD6M7yb3X6m0lAiE2/BOO3GIBJju1RdvW2ojNLMSpR4mwN9PFl0M6iHVXSVm2d3YhH6svh6Cllhom9rCAYUtNhCfn4VRAIoY6mGDmu9Zy7dGvSWJWEVZfDkFHM12M6GIGHQ01BCfm4HxQEmb2tsaoruYKjQ8oP8FcezUM79kZYYCdMdRUefCNysCN0FQsHWaPXja1T3/2Nlm1t290Bv68FYUx3czR28YAfKEIt8PS8CguCyvHdZH7r3Q1uRj8Cn8HJGGyswW6WrRCfokA116kIC6zEL9MdISJrnx7y9/GGMN+n1g8jMnEhy5t0dFMD+n5pTgf9AoCoQgrx3WWeDYWhRXSpG7yLKQrvM4pxvWQFCRkFcFUTwsju5ihnYJ6rGoTk16AG6GpSMktgbWhDsZ0M1d4Yr6JMYaQ13m4GZaKvOIy2Ju2xKiu5tCvZ0J4eRXSFTH6RWfiQXQG+GUidG3bCsM6mUBHQ7FFy5uEIoZbYakITMiGCo8HJ6vWGNzRGGoc3QqbCyUCIa6HpCDkdR601FTQ27Z86Ic4RYu82ju3SIB/XiQjOr0ALTTVMLijSbWeS0VLzSvB9ZAUxGUUwbClBkZ0MUUHE8X0WNUmPrMQ10NS8DqnBG1ba2NstzYS/Xwuj/YOS86DV2gqsov46GDSEmO6mlf7VUeRGGN4HJcNn5fpKOYL0cVCD66dzRR+svQmkYjhbmQaHsVmg4HByao1BnU0hqaaZB1JsmxvfpkI10NS8PxVLjRUVdDLxgDvdTBS2C8ONSkoLYPn82S8TM2HjoYaBtgbwdla/BMReUjLL8H1kFTEZRSitY46hnU2lXrYTqMrpFkNdwlsjhRRSBPFkWchTRSP2rt5ofZuXqi9mxdZFNJSdRl5eHjA0dERWlpa0NLSgqOjI/bv389JQIQQQgghhCgDiX+n+emnn7B161Z8+eWX6NOnDwDAz88Py5YtQ1xcHH799VfOgySEEEIIIaSxkbiQ3r17N9zd3TFt2rTKZePHj0e3bt3w5ZdfUiFNCCGEEEKaBYmHdgiFQri4uFRb7uzsjLKy2ue9JYQQQgghpCmRuJCeOXMmdu/eXW35vn37MGPGDE6CIoQQQgghpLGTai4bDw8P3LhxA++++y4A4OHDh0hMTMTs2bPh5uZWud6WLVu4iZIQQgghhJBGRuJC+sWLF3BycgIAREeX32LS2NgYxsbGePHiReV6zX1KPEIIIYQQ0rRJXEjfuXNHFnEQQgghhBCiVBrPrccIIYQQQghRIhL3SJeUlODPP//EnTt3kJaWBpFIVOX5J0+ecBYcIYQQQgghjZXEhfSnn34KLy8vfPDBB+jVqxeNhSaEEEIIIc2SxIX01atX4enpiX79+skiHkIIIYQQQpSCxGOkLSwsoKurK4tYCCGEEEIIURoSF9K///47vvvuO8THx8siHkIIIYQQQpSCxEM7XFxcUFJSAltbW+jo6EBdXb3K81lZWZwFRwghhBBCSGMlcSE9bdo0vHr1CuvWrYOpqSldbEgIIYQQQpoliQtpX19f+Pn5oXv37v9v787joqr3/4G/hh1URgFZVcQNUMv1K0LXzFJcMrTsl0txLdPk8i0XKq9mXbFF08q8aragaH1zu7llNyMpFVEWUcEFEBVZRBiQHVmGYebz+4PLXJEBZ8YZFHk9Hw8eD+czn3PO+8zbc857znzOOcaIh4iIiIioTdB5jLSXlxeqq6uNEUuLSkpKEBgYCKlUCqlUisDAQJSWlrY4jRACoaGhcHV1hbW1NZ566ikkJyer3y8uLsZbb70FT09P2NjYoEePHliwYAHKysqMvDZERERE1NbpXEh/+umnePvtt3H8+HEUFRWhvLy80Z+xzJo1C0lJSYiIiEBERASSkpIQGBjY4jRr167FunXrsGnTJiQkJMDZ2Rnjxo1DRUUFACA3Nxe5ubn4/PPPcfHiRWzfvh0RERF4/fXXjbYeRERERPRo0Hlox4QJEwAAzzzzTKN2IQQkEgmUSqVhIrtDamoqIiIiEBcXBx8fHwBAWFgYfH19kZaWBk9PzybTCCGwfv16LF++HC+88AIA4Pvvv4eTkxN27tyJ+fPnY+DAgdi3b596mt69e+OTTz7BK6+8grq6OpiZ6fzxEBEREVE7oXOleOzYMWPE0aLY2FhIpVJ1EQ0AI0eOhFQqRUxMjMZCOiMjAzKZDP7+/uo2S0tLjB49GjExMZg/f77GZZWVlcHW1pZFNBERERG1SOdqcfTo0c2+l5SUdD+xNEsmk8HR0bFJu6OjI2QyWbPTAICTk1Ojdicnp2bvgV1UVISPPvqo2SK7gVwuh1wuV79uGNKiUCigUChanJbavoYcM9ftA/PdvjDf7Qvz3b4YI8/3fdq1rKwMO3bswJYtW3D+/HmdhnaEhoZi5cqVLfZJSEgAAI232WsYTtKSu99vbpry8nI8++yz6N+/P1asWNHiPFevXq0x7mPHjsHGxqbFaenRERkZ+aBDoFbEfLcvzHf7wny3D1VVVQafp96F9NGjRxEeHo79+/fD3d0d06ZNw9atW3Wax5tvvokZM2a02Kdnz564cOEC8vPzm7x369atJmecGzg7OwOoPzPt4uKibi8oKGgyTUVFBSZMmICOHTviwIEDTR4yc7dly5YhJCRE/bq8vBzdu3fHmDFjYG9v3+K01PYpFApERkZi3Lhx9/y/Qm0f892+MN/tC/PdvhQVFRl8njoV0jk5Odi+fTvCw8NRWVmJl156CQqFAvv27UP//v11XriDgwMcHBzu2c/X1xdlZWU4ffo0RowYAQCIj49HWVkZ/Pz8NE7j4eEBZ2dnREZGYsiQIQCA2tpaREVFYc2aNep+5eXlGD9+PCwtLXHo0CFYWVndMx5LS0tYWlo2aTc3N+eG2I4w3+0L892+MN/tC/PdPhgjx1rf/m7SpEno378/UlJSsHHjRuTm5mLjxo0GD0gTb29vTJgwAfPmzUNcXBzi4uIwb948TJ48udGFhl5eXjhw4ACA+iEdixYtwqpVq3DgwAFcunQJr776KmxsbDBr1iwA9Wei/f39UVlZia1bt6K8vBwymQwymcwodx8hIiIiokeH1mekjxw5ggULFuBvf/sb+vbta8yYNNqxYwcWLFigvgtHQEAANm3a1KhPWlpao4epLFmyBNXV1QgODkZJSQl8fHxw5MgRdOrUCQBw9uxZxMfHAwD69OnTaF4ZGRno2bOnEdeIiIiIiNoyrQvp6OhohIeHY/jw4fDy8kJgYCCmT59uzNgasbOzw48//thiHyFEo9cSiQShoaEIDQ3V2P+pp55qMg0RERERkTa0Htrh6+uLsLAw5OXlYf78+di9ezfc3NygUqkQGRmpflogEREREVF7oPMjwm1sbDBnzhycPHkSFy9exNtvv41PP/0Ujo6OCAgIMEaMREREREQPHZ0L6Tt5enpi7dq1yMnJwa5duwwVExERERHRQ+++CukGpqammDp1Kg4dOmSI2RERERERPfQMUkgTEREREbU3LKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPbaaQLikpQWBgIKRSKaRSKQIDA1FaWtriNEIIhIaGwtXVFdbW1njqqaeQnJzcbN+JEydCIpHg4MGDhl8BIiIiInqktJlCetasWUhKSkJERAQiIiKQlJSEwMDAFqdZu3Yt1q1bh02bNiEhIQHOzs4YN24cKioqmvRdv349JBKJscInIiIiokeM2YMOQBupqamIiIhAXFwcfHx8AABhYWHw9fVFWloaPD09m0wjhMD69euxfPlyvPDCCwCA77//Hk5OTti5cyfmz5+v7nv+/HmsW7cOCQkJcHFxaZ2VIiIiIqI2rU2ckY6NjYVUKlUX0QAwcuRISKVSxMTEaJwmIyMDMpkM/v7+6jZLS0uMHj260TRVVVWYOXMmNm3aBGdnZ+OtBBERERE9UtrEGWmZTAZHR8cm7Y6OjpDJZM1OAwBOTk6N2p2cnJCVlaV+vXjxYvj5+WHKlClaxyOXyyGXy9Wvy8rKAADFxcVaz4PaLoVCgaqqKhQVFcHc3PxBh0NGxny3L8x3+8J8ty8NdZoQwmDzfKCFdGhoKFauXNlin4SEBADQOH5ZCHHPcc13v3/nNIcOHcLRo0eRmJioS9hYvXq1xrj79eun03yIiIiIqHUVFRVBKpUaZF4PtJB+8803MWPGjBb79OzZExcuXEB+fn6T927dutXkjHODhmEaMpms0bjngoIC9TRHjx5Feno6Onfu3GjaadOmYdSoUTh+/LjGeS9btgwhISHq16WlpXB3d0d2drbBEkMPr/LycnTv3h03btyAra3tgw6HjIz5bl+Y7/aF+W5fysrK0KNHD9jZ2Rlsng+0kHZwcICDg8M9+/n6+qKsrAynT5/GiBEjAADx8fEoKyuDn5+fxmk8PDzg7OyMyMhIDBkyBABQW1uLqKgorFmzBgCwdOlSzJ07t9F0jz32GL788ks899xzzcZjaWkJS0vLJu1SqZQbYjtia2vLfLcjzHf7wny3L8x3+2JiYrhLBNvEGGlvb29MmDAB8+bNw7fffgsAeOONNzB58uRGd+zw8vLC6tWr8fzzz0MikWDRokVYtWoV+vbti759+2LVqlWwsbHBrFmzANSftdZ0gWGPHj3g4eHROitHRERERG1SmyikAWDHjh1YsGCB+i4cAQEB2LRpU6M+aWlp6gv/AGDJkiWorq5GcHAwSkpK4OPjgyNHjqBTp06tGjsRERERPXraTCFtZ2eHH3/8scU+d1+FKZFIEBoaitDQUK2Xo8+VnJaWllixYoXG4R706GG+2xfmu31hvtsX5rt9MUa+JcKQ9wAhIiIiImon2sQDWYiIiIiIHjYspImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEJaS5s3b4aHhwesrKwwbNgwREdHt9g/KioKw4YNg5WVFXr16oVvvvmmlSIlQ9Al3/v378e4cePQtWtX2NrawtfXF7///nsrRkv3S9ftu8GpU6dgZmaGwYMHGzdAMihd8y2Xy7F8+XK4u7vD0tISvXv3Rnh4eCtFS/dL13zv2LEDgwYNgo2NDVxcXPDaa6+hqKiolaIlfZ04cQLPPfccXF1dIZFIcPDgwXtOY5BaTdA97d69W5ibm4uwsDCRkpIiFi5cKDp06CCysrI09r9+/bqwsbERCxcuFCkpKSIsLEyYm5uLvXv3tnLkpA9d871w4UKxZs0acfr0aXHlyhWxbNkyYW5uLs6dO9fKkZM+dM13g9LSUtGrVy/h7+8vBg0a1DrB0n3TJ98BAQHCx8dHREZGioyMDBEfHy9OnTrVilGTvnTNd3R0tDAxMRH//Oc/xfXr10V0dLQYMGCAmDp1aitHTro6fPiwWL58udi3b58AIA4cONBif0PVaiyktTBixAgRFBTUqM3Ly0ssXbpUY/8lS5YILy+vRm3z588XI0eONFqMZDi65luT/v37i5UrVxo6NDICffM9ffp08f7774sVK1awkG5DdM33b7/9JqRSqSgqKmqN8MjAdM33Z599Jnr16tWobcOGDaJbt25Gi5EMT5tC2lC1God23ENtbS3Onj2rfqJiA39/f8TExGicJjY2tkn/8ePH48yZM1AoFEaLle6fPvm+m0qlQkVFBezs7IwRIhmQvvnetm0b0tPTsWLFCmOHSAakT74PHTqE4cOHY+3atXBzc0O/fv3wzjvvoLq6ujVCpvugT779/PyQk5ODw4cPQwiB/Px87N27F88++2xrhEytyFC1Wpt5suGDUlhYCKVSCScnp0btTk5OkMlkGqeRyWQa+9fV1aGwsBAuLi5Gi5fujz75vtsXX3yByspKvPTSS8YIkQxIn3xfvXoVS5cuRXR0NMzMuAttS/TJ9/Xr13Hy5ElYWVnhwIEDKCwsRHBwMIqLizlO+iGnT779/PywY8cOTJ8+HTU1Nairq0NAQAA2btzYGiFTKzJUrcYz0lqSSCSNXgshmrTdq7+mdno46ZrvBrt27UJoaCj27NkDR0dHY4VHBqZtvpVKJWbNmoWVK1eiX79+rRUeGZgu27dKpYJEIsGOHTswYsQITJo0CevWrcP27dt5VrqN0CXfKSkpWLBgAf7xj3/g7NmziIiIQEZGBoKCglojVGplhqjVeDrlHhwcHGBqatrk22tBQUGTbzINnJ2dNfY3MzODvb290WKl+6dPvhvs2bMHr7/+On766SeMHTvWmGGSgeia74qKCpw5cwaJiYl48803AdQXWkIImJmZ4ciRI3j66adbJXbSnT7bt4uLC9zc3CCVStVt3t7eEEIgJycHffv2NWrMpD998r169Wo88cQTePfddwEAjz/+ODp06IBRo0bh448/5i/KjxBD1Wo8I30PFhYWGDZsGCIjIxu1R0ZGws/PT+M0vr6+TfofOXIEw4cPh7m5udFipfunT76B+jPRr776Knbu3MmxdG2Irvm2tbXFxYsXkZSUpP4LCgqCp6cnkpKS4OPj01qhkx702b6feOIJ5Obm4vbt2+q2K1euwMTEBN26dTNqvHR/9Ml3VVUVTEwal0ampqYA/nu2kh4NBqvVdLo0sZ1quH3O1q1bRUpKili0aJHo0KGDyMzMFEIIsXTpUhEYGKju33BLlcWLF4uUlBSxdetW3v6uDdE13zt37hRmZmbiq6++Enl5eeq/0tLSB7UKpANd83033rWjbdE13xUVFaJbt27ixRdfFMnJySIqKkr07dtXzJ0790GtAulA13xv27ZNmJmZic2bN4v09HRx8uRJMXz4cDFixIgHtQqkpYqKCpGYmCgSExMFALFu3TqRmJiovtWhsWo1FtJa+uqrr4S7u7uwsLAQQ4cOFVFRUer3Zs+eLUaPHt2o//Hjx8WQIUOEhYWF6Nmzp/j6669bOWK6H7rke/To0QJAk7/Zs2e3fuCkF1237zuxkG57dM13amqqGDt2rLC2thbdunUTISEhoqqqqpWjJn3pmu8NGzaI/v37C2tra+Hi4iJefvllkZOT08pRk66OHTvW4rHYWLWaRAj+VkFEREREpCuOkSYiIiIi0kObK6Q3b94MDw8PWFlZYdiwYYiOjm6xvy7PUd+9ezckEgmmTp1q4KiJiIiI6FHTpgrpPXv2YNGiRVi+fDkSExMxatQoTJw4EdnZ2Rr7Z2RkYNKkSRg1ahQSExPx3nvvYcGCBdi3b1+TvllZWXjnnXcwatQoY68GERERET0C2tQYaR8fHwwdOhRff/21us3b2xtTp07F6tWrm/T/+9//jkOHDiE1NVXdFhQUhPPnzyM2NlbdplQqMXr0aLz22muIjo5GaWkpDh48aNR1ISIiIqK2rc08kKW2thZnz57F0qVLG7X7+/sjJiZG4zTNPUd969atUCgU6vsEfvjhh+jatStef/31ew4VAQC5XA65XK5+rVKpUFxcDHt7ez65kIiIiOghJIRARUUFXF1dm9wvXF9tppAuLCyEUqnU+Fz0u59M00Cb56ifOnUKW7duRVJSktaxrF69GitXrtR5HYiIiIjowbpx44bBHqjUZgrpBpqei97SWeCWnqNeUVGBV155BWFhYXBwcNA6hmXLliEkJET9uqysDD169MCVK1dgZ2en9XyobVIoFDh27BjGjBnDJ1W2A8x3+8J8ty/Md/tSXFyMfv36oVOnTgabZ5sppB0cHGBqaqrxueh3n3VucK/nqCcnJyMzMxPPPfec+n2VSgUAMDMzQ1paGnr37t1kvpaWlrC0tGzSbmdnp9Pz2altUigUsLGxgb29PXe87QDz3b4w3+0L890+GXIYbpu5a4eFhQWGDRvW5LnokZGR8PPz0zjNvZ6j7uXlhYsXLyIpKUn9FxAQgDFjxiApKQndu3c32voQERERUdvWZs5IA0BISAgCAwMxfPhw+Pr64rvvvkN2djaCgoIA1A+5uHnzJn744QcA9Xfo2LRpE0JCQjBv3jzExsZi69at2LVrFwDAysoKAwcObLSMzp07A0CTdiIiIiKiO7WpQnr69OkoKirChx9+iLy8PAwcOBCHDx+Gu7s7ACAvL6/RPaU9PDxw+PBhLF68GF999RVcXV2xYcMGTJs27UGtAhERERE9ItpUIQ0AwcHBCA4O1vje9u3bm7SNHj0a586d03r+muZBRERERHS3NjNGmoiIiIjoYcJCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0oHUhrVAosGTJEvTp0wcjRozAtm3bGr2fn58PU1NTgwdIRERERPQw0rqQ/uSTT/DDDz8gKCgI/v7+WLx4MebPn9+ojxDC4AESERERET2MtC6kd+zYgS1btuCdd97Bxx9/jLNnz+LYsWN47bXX1AW0RCIxWqANNm/eDA8PD1hZWWHYsGGIjo5usX9UVBSGDRsGKysr9OrVC998802j98PCwjBq1Ch06dIFXbp0wdixY3H69GljrgIRERERPQK0LqRv3ryJgQMHql/37t0bx48fR2xsLAIDA6FUKo0S4J327NmDRYsWYfny5UhMTMSoUaMwceJEZGdna+yfkZGBSZMmYdSoUUhMTMR7772HBQsWYN++feo+x48fx8yZM3Hs2DHExsaiR48e8Pf3x82bN42+PkRERETUdmldSDs7OyM9Pb1Rm6urK44ePYqEhATMnj3b4MHdbd26dXj99dcxd+5ceHt7Y/369ejevTu+/vprjf2/+eYb9OjRA+vXr4e3tzfmzp2LOXPm4PPPP1f32bFjB4KDgzF48GB4eXkhLCwMKpUKf/75p9HXh4iIiIjaLjNtOz799NPYuXMnnnnmmUbtDcX0U089ZejYGqmtrcXZs2exdOnSRu3+/v6IiYnROE1sbCz8/f0btY0fPx5bt26FQqGAubl5k2mqqqqgUChgZ2fXbCxyuRxyuVz9ury8HED9BZkKhULrdaK2qSHHzHX7wHy3L8x3+8J8ty/GyLPWhfQHH3yAy5cva3zPzc0NJ06cwJEjRwwW2N0KCwuhVCrh5OTUqN3JyQkymUzjNDKZTGP/uro6FBYWwsXFpck0S5cuhZubG8aOHdtsLKtXr8bKlSubtB87dgw2NjbarA49AiIjIx90CNSKmO/2hfluX5jv9qGqqsrg89S6kHZ3d4e7u3uz77u4uLTK8I67L2gUQrR4kaOm/praAWDt2rXYtWsXjh8/Disrq2bnuWzZMoSEhKhfl5eXo3v37hgzZgzs7e21Wg9quxQKBSIjIzFu3DiNv2rQo4X5bl+Y7/aF+W5fioqKDD5PrQvpB83BwQGmpqZNzj4XFBQ0OevcwNnZWWN/MzOzJgXv559/jlWrVuGPP/7A448/3mIslpaWsLS0bNJubm7ODbEdYb7bF+a7fWG+2xfmu30wRo7bzJMNLSwsMGzYsCY/v0RGRsLPz0/jNL6+vk36HzlyBMOHD2/0YX722Wf46KOPEBERgeHDhxs+eCIiIiJ65LSZQhoAQkJCsGXLFoSHhyM1NRWLFy9GdnY2goKCANQPufjrX/+q7h8UFISsrCyEhIQgNTUV4eHh2Lp1K9555x11n7Vr1+L9999HeHg4evbsCZlMBplMhtu3b7f6+hERERFR29FmhnYAwPTp01FUVIQPP/wQeXl5GDhwIA4fPqweu52Xl9fontIeHh44fPgwFi9ejK+++gqurq7YsGEDpk2bpu6zefNm1NbW4sUXX2y0rBUrViA0NLRV1ouIiIiI2h69CunS0lLs3bsX6enpePfdd2FnZ4dz587ByckJbm5uho6xkeDgYAQHB2t8b/v27U3aRo8ejXPnzjU7v8zMTANFRkRERETtic6F9IULFzB27FhIpVJkZmZi3rx5sLOzw4EDB5CVlYUffvjBGHESERERET1UdB4jHRISgldffRVXr15tdIu4iRMn4sSJEwYNjoiIiIjoYaVzIZ2QkID58+c3aXdzc2v2wShERERERI8anQtpKysr9SOx75SWloauXbsaJCgiIiIiooedzoX0lClT8OGHH6qfVy6RSJCdnY2lS5c2uhsGEREREdGjTOdC+vPPP8etW7fg6OiI6upqjB49Gn369EGnTp3wySefGCNGIiIiIqKHjs537bC1tcXJkydx9OhRnDt3DiqVCkOHDsXYsWONER8RERER0UNJ7weyPP3003j66acNGQsRERERUZuhVSG9YcMGrWe4YMECvYMhIiIiImortCqkv/zyy0avb926haqqKnTu3BlA/ZMObWxs4OjoyEKaiIiIiNoFrS42zMjIUP998sknGDx4MFJTU1FcXIzi4mKkpqZi6NCh+Oijj4wdLxERERHRQ0Hnu3Z88MEH2LhxIzw9PdVtnp6e+PLLL/H+++8bNDgiIiIiooeVzoV0Xl6e+h7Sd1IqlcjPzzdIUEREREREDzudC+lnnnkG8+bNw5kzZyCEAACcOXMG8+fP5y3wiIiIiKjd0LmQDg8Ph5ubG0aMGAErKytYWlrCx8cHLi4u2LJlizFiJCIiIiJ66Oh8H+muXbvi8OHDuHLlCi5fvgwhBLy9vdGvXz9jxEdERERE9FDS+4Es/fr1Y/FMRERERO2WzoX0nDlzWnw/PDxc72CIiIiIiNoKnQvpkpKSRq8VCgUuXbqE0tJSPjKciIiIiNoNnQvpAwcONGlTqVQIDg5Gr169DBIUEREREdHDTue7dmiciYkJFi9e3ORR4kREREREjyqDFNIAkJ6ejrq6OkPNjoiIiIjooabz0I6QkJBGr4UQyMvLw6+//orZs2cbLLD2qrpWicjUfFy4UYo6lUA/p04Y198JXTtZGmV5KpVAXEYRYtOLUFqlgEtnKzzj5QRP505GWR4ApN+6jT9S8pFTUg1bazOM7GUPv94OMDWRGGV5JZW1OJIiQ2peBUwkEjzWzRbj+jujo6XeN61pkbxOiRNXCnEmqxjVtUr0tO+A8QOd4dbZ2ijLE0Ig6UYpTl4tREGFHA4dLTGqnwOGdO8MicQ4n+mN4ir8mZqPjMJKWFmYYmiPLhjj6QgLM4N9N2+kokaBP1MLkJxbBoVSwNO5EyYOdEZnGwujLE+lEjh5rRAJmcUoqZSjPE+CfgW34e3WxSjLA4DLsnIcu3wLsrJqSK3NMbKXPXx72xsth7cq5DiSIsO1gtswM5FgoJsU/v2dYW1hapTlyeuU+DO1AOdvlEJep0Kvrh0w1tsJrkbcLs5kleDk1UKUVNXCydYKT/btise6SY2yPADIKqpEZEo+sour0NHSDMN7dsGovl1hbmqc7aK8RoHfL9Xv2wCgv6stxno7Gm27qFOqEH21EKczi1Epr0MPOxuM9XZCT4cORlmeEAIpeeU4drkAsvIa2HewxF/6OmC4exejbRcF5TX4Pbl+u7A0N8Xg7p3xtJcjrMyNs11U1dbh6OUCJGXXH/P7OHbE+AHORj3mn84sRkx6EYor5XCRWuMZb0d4OdsaZXlA/TH/aGoBsour0MnKDD697PGXPsY75hdX1uKPlHxcltVvFwNcbTF+oPGO+RLR8HhCLY0ZM6bRaxMTE3Tt2hVPP/005syZAzMz4wTaYPPmzfjss8+Ql5eHAQMGYP369Rg1alSz/aOiohASEoLk5GS4urpiyZIlCAoKatRn3759+OCDD5Ceno7evXvjk08+wfPPP691TOXl5ZBKpSgsLIS9vb1e66VSCfwYn4XIlHw8+5gLhve0g7mpBKl55TiYmAu3LtYIGdcPHQz4HyEmvRBfHbuGET3t8bSXI+w6WiC7qAq/XcpDfnkNlk70hocBd5A5JVVYE5GGjpammPy4K9ztbVBapcCJq7dw8moh5j3ZC2M8HQ22vBqFEhv+vIor+bcxdYgrHnOTQqkSOJddikPnc/GXPvaY84QHzHQ8yCkUChw+fBiTJk2Cubm5ul0IgUPnc7En4QbG9XeCb297dLAww7WC2ziYdBNWZqZYMsET9h0Nt4O8dLMMnx9Jg6dzJ/j3d4KTrRXyy+WITMnHZVk53vH3xEA3wxUOJZW1WBNxGTUKJZ4b5Ip+Tp1QVatEbHohfk/Ox4wR3REwyNVgB7k6pQrhpzJw8loRnnvcBUN6dIGZiQSXcstwMDEXns4d8dbTfQ16kIu6cgvfRqXjL30d8GTfruhgLsFPEcdRZOOOylollk3yNuiXoqyiSqw+fBmOtpaYONAF3e2sUVxZi+Npt3A6oxj/O6YPfHvrt1/RpFJeh/V/XMGN4mpMGeyK/q62UCgFzmQW498X8jDW2xF/9e0JEwMd5IQQ+OlsDg4m3sTEx1zg42EHa3NTXJZV4ND5XEitzfDueC9Irc3vPTMtJd0oxbrIKxjUTYqnvRzRtZMlckvrC6SsokosmeCFfk6aTxY0t323pKC8Bp9GXIYEEgQMdkXvrh1QUVOHU9cK8WdqAWb7uWPCQBeDrZ+8TomwE9dxJqsEUwe7YVD3zgCA8zdK8XPSTQzq3hnBT/Ux6BfbI8kybI/JxBhPRzzRxwG21ma4fqsSv5zPRZ1KYNlELzjaWhlseVfzK7AmIg097GwwYaAz3LpY41aFHH+m5iMxuxSLx/XFMHe7+15OQ77/MmYcNhy7jsLbtZg6xA1ezp1Qo1AiPqMYv13Kw+THXTHjf7obbN/WcMw/kpyPZx93wf/07AILU1Ok5JXjYOJNuHa2Roh/P4MWf3HXi7Dx6FX8T087PO3lCPuOlrhRXIXfLuYhv1yOv0/0MugxP7e0Gqt/u4wOFvXH/J4ONiirViD6aiFOXLmFeaN6YYyX4Y75SpXAxqNXcelmGQIGu+FxNylUQiAxuxQ/n8+FX297TPW2hYuTI8rKymBra6AvD6IN2b17tzA3NxdhYWEiJSVFLFy4UHTo0EFkZWVp7H/9+nVhY2MjFi5cKFJSUkRYWJgwNzcXe/fuVfeJiYkRpqamYtWqVSI1NVWsWrVKmJmZibi4OK3jKisrEwBEYWGhXutVWFEjXt+eIH6IzRRKpUpjnxNXCsSMb2PF1fxyvZZxpzqlSnz6W6pYtv+CqKhRaOyTXVQpZofHi4hLefe9PCGE+O1ingjcGi+uFVRofL9KXidWHkoWK36+JBR1yvteXnZRpZgVFisik2Ua31epVOJfCdlidni8uFVRo9O8a2trxcGDB0Vtba26rVKuEIt2J4oNf1wRtc3Ef/5GiZjxbaxIyi7RaXmaqFQqEXYiXfzvjrMiv7xaY5/Cihrx5s5zIuxEulCpNP+/0sW5rOIW46+tU4oNf1wRi/ckiurauvteXn55tXg1PF78KyG72fgjk2Xi5bA4kV1Ued/LkyuUYsXPl0TooUvi9h3bxZ35vn7rtgjcarjt4tcLueLV8Phm4y+vrhXL9l8QX/x+udl9gy5S88rEjG9jRfSVWxrfVypV4ofYTPG3H8+I0qpajX10UVpVK4J/PCu+i0pvdrtOyCgSM76NFedvlNz38lQqlfj6+DWxeHeiKKmUa+yTV1ot5n2fIH46c0Pj+5q275ZEpRWIWWGxIiW3TOP71bV1YtXhFLHi50tCrjDMvu2VLXHiUNJNjduFSqUS/z6fK17ZEidySqrue3m1dUrx3v4LYvXh1Ga369S8MjErLFacuqr5/5WudsVniXnfJ4i8Us37tpJKuVi4yzD7ttraWvHPHw+K6d+cEnHpmo/hdUqV2BJ9XfztxzOivNow28W87xPEDzEZzW7XJ6/eMugxf21Eqli677woayb+G8X1x/zfLhpm3xZxKU+8siWu2fira+vER78Y7phfVl0r5v9wptntWqVSiX1nb4jpG/8QAERZmebtVR86F9JjxowRJSUlTdrLysrEmDFjDBFTs0aMGCGCgoIatXl5eYmlS5dq7L9kyRLh5eXVqG3+/Pli5MiR6tcvvfSSmDBhQqM+48ePFzNmzNA6rvsppK/mV4gZ3za/E75Tflm1CNwaL45dztd5OQ0q5QoRvONss//Z7iRXKMUHBy/e10FcpVKJzceuieUHLmh1EPn3+Vwx7/uEZjd2bZzLKhazwmK1Kq4u55Vr/fk3uPtAm19WLV7ZEidOXbv3QaS0sn5j35OQrfXymiy/TimW7rsgvo26ds+DiEqlEl8duyre23+h2QJfG79eyBVztcxLVFqBeGVLnJCVaT4IaqMhL1fzNX/xulN2UaV4OSxOnLyPg3hZda14fftp8dvF3Cbv3Z1vuUIplu47r9Xn35yG7ULbvOyMzxL/u+NsowJfV8fTCsTs8HhRqMUXx4YvTWky/Q/iN4orxczvYkWiFl8cSytrxevbEzR+/trSZbuoU6rE6sOp4uN/J4u6u/ZtuhTSP8ZlikW7tfvi+NvFXDE7PL7ZL77aSMwuETO/027f1nAyQZvPvzmlVdrnpVKuEAt2nRM/xGTovTylUiU++TVFfBZx72NOw8mERbsTRZVc/y/uhxJviMmfHhK3yu79mZ7V4djSnOyi+u1CmxMq+eXV4q9b48XRVP2P+VXyOvG/O86Kf2lxzGk4mbDmt9T7OuZ/fbx+36bNMf+X8zfF3O8T7uuL+/Vbt8XM72LF2azie/Y9dyXL4IW0zkM7TExMIJPJ4OjY+HR8QUEB3NzcoFAoDHOq/C61tbWwsbHBTz/91GjYxcKFC5GUlISoqKgm0zz55JMYMmQI/vnPf6rbDhw4gJdeeglVVVUwNzdHjx49sHjxYixevFjd58svv8T69euRlZWlMRa5XA65XK5+XV5eju7duyMvL0+noR1ns0qw8dh1fDZtoNbjoeQKJT44lIJB3aR42aeH1ssCgIIKOf6+/xKCnvSAj4f2P4ntTsjB2awSfDx1ACx1+KmwTqnCx4fT4NrZCvP+0lPrn8QSb5Tiyz+uYfXzA3T+Cf23SzL8ckGGNS8MQCcr7X6WLa6sxZL9lxDo0x2j+3W9Z3+FQoHIyEiMGzcO14tq8PHhywh9rj96d9XuJzGVSmDdH9cgIPD22L46/YR+W16HJfsu4bnHnTFxoLPW0/12SYZD5/OwdtpArT8XoP5n+e+iM3GztBofPOul9VjP67cqseKXFCyf5AUvHcfbR18rxPaYLKyd9hjsO2g31rO6VonlPyfDx8MO04d302l5eWU1WLr/EhaP7YPB//mJ/E535rvhp34hBMJOZuJGSTX+ocPnAgAKpQor/30ZHg42mOPnrvV2cTqzGF8dv461LwyEk44/oe9OyMGZrBJ8MqU/LLUcBlN4u35/8ZpfT/ylj25DS5Jzy7Hm9ytYNXUAunXRbhtWKFX48NfL6N7FWqf9BQCUVyuwZP8lPD/YFeMHOGk93c9JuYhMLcDaaQNhY1H/E7qmfN9NpRL4LPIqzE0kWPRMH6234WsFt7Hy36n4x7Pe6OvUUes4AeDPywX415mb+GzaQNhqOQymokaBJfsuIWCQi077CwDIKanGeweT8c64vnhcy3HlQghsOn4dZdUKLJvgqdMY2OpaJd47mIwn+tjjxaFuWk8Xe70I30VnYu0L2h9HG2yLycLV/HL4mt/AhPHN5/tOOSXVWH4wudn9RUvO55RhXeRVrNLh2CavU2HFLykY4GKLwJG6HfMLb8vx7r5LeGNUT/j20n4b3nvuJk5eLcLq5wfodM2EUiXwyeHLcLK1whujtN+Gz+eU4YvIq/hkan9072Kj9fIA4OS1Imw9lYnVzw+Asxb7xaKiIri4uBh0aIfWhfSFCxcAAIMHD8bRo0dhZ/ffQkypVCIiIgLffvstMjMzDRLY3XJzc+Hm5oZTp07Bz89P3b5q1Sp8//33SEtLazJNv3798Oqrr+K9995Tt8XExOCJJ55Abm4uXFxcYGFhge3bt2PWrFnqPjt37sRrr73WqFi+U2hoKFauXNmkfdmmXfDppt3GkXBLggvFErzcRwUrHYd3CgEcvmGCOgE810MFbfZVuZXA/kwT/L9eKjjpMbwzuUSCkzIJAvuqYKPFkK2qOmDnNRMMdRAY6qDTdzUAQFENsCvdBM/1UMFdizpMJYDImxKU1UowracKul7bU6eqX15vWwE/J+3iTS2RIEomwSt9VOiox/DOuAIJ0kolmNlbBW32VUU1wO7rJpjUXQUPPa4FzawAfr1hgpm9VbDT4nijUAF7M0zgZC0wxkVA16GBtxXAj9dM8JSLgFdn7T7TkzIJMiokmN5Lu8/kTipRv34qHbaLrArgl2wTTO+lQlc9toukIgnO3Krfjq212C5uK+r/n43oKjDIXvftoqAa+Nd1E0zzUMFFi+ONSgCHskxgbgJM7K7dZ3KnWmX9/7k+OmwX54skiL9Vv11os6+4kxDA0VwJiuTab8cNn4m2+4q7XSsDIm+a4OU+Kthq8b1NrqzPoVdngZGOuuewQgH8eNUEY1y12y6EAI7lSSCrkuClXiroOuxZqQL2ZprAwVLgaVfttuP0ciAiR/t9xd0SbkmQXCLBLC33bWW19ceLp90EPKW6f6ayqvp9lbbbhVJVfzy0tRDwd9N931ZdB+y4ZoL/0WE7PlcowblC7fcVdxIC+C3HBAol8Jy7bsf8Fz1UcNatNgUAXCmT4M+bEq23i+o6YGe6CQbZCQzvqnsOi+X129Xk7tptx0IAUTIJcioleMlD++NFVVUVZs2aZdBCWut0Dh48GBKJBBKJROMTDK2trbFx40aDBNWSu7/hCCFa/Najqf/d7brOc9myZY3uXtJwRvp2Bzdkd3DEG6M8mj1DUadUYe2Rq7B2luBfgX31vmr1WQA/nc1B5LUifBTQv8UzFH+mFiAuIQc/Bg+EnZZn+O42CcD4nDJ8duTKPc+mZBZV4h+HUhH6kvZnMjSZUq3Au/suoXs3Z0x+vPkLdSpq6vD+z8nwHWKPGf+j29nIO03+z5nixDol3vXv1+yFOrW1tfjg//5Ena0rflowUOszfHebhP+eTfn0+QEtnmVMyCzBnuPp+G6u7mfp7xTwn7NMC57ujeHuzd+BIre0Gst/TsHc8T20Okvf7PIU9WeZ7LtI8deRPZrdrmrrVPjsyBU4upvh4zG99b7QbTLqz6b8ca0Iq6b2V59l1OTn83m4mJyP3W8OaHH7aekM5STUX9j25R/XEPpcyxfnXrpZjjW/p2HVTC94u+h/V5znbsuxZP8lzBzQHWO9m79Qp7xagfd/TsFE3654foir3ssLUAms//MaLqoE3h7bp9mLc1Uqga+irkPeuRY/zfLU+04Vz6L+F5Sfz+fhk6kDWvxV4s/UAkSdvoGtbwyAi1T/C90m/edM8bv+/eDtZNNsvvPKavDewWS8PUW3X/XuNkWhxPKDKXDp2hkzhndrdruQK5QI/fdleHt3wGc6/Hpxt8n/+QUltrga70/ybPbiXCEE/i/+Bq7fLsWet/rrfaHbJAAx6fX7to+n9G/xV4nk3HJ8GpGG9bO1/1VPkyn/Ofv62iB3jOrr0Gy/4spaLD1wCTPGuGH8ACetfoHQJOA/vyxl2lgh6Mnmj/kKpQqfHbkKM0fgXy/31fni9gYNx/wjV4vw8ZR7HPMvFyDudA7+L3ig1r/q3W0SgMn/2S7u9ctiRmElVvySin/8v74YdD/H/Jr6Y76bmzMCBjV/zK+qrcOHv15Gn34dsEbHX6+Kior0jq9Z2o4ByczMFBkZGUIikYiEhASRmZmp/svNzRV1dfd/cVFL5HK5MDU1Ffv372/UvmDBAvHkk09qnGbUqFFiwYIFjdr2798vzMzM1OPfunfvLtatW9eoz7p160SPHj20jq1hjPStW7fEj3GZ4rVtp8XFnNIm/c5lFasvEjGUhrGMv17IbTKmKa+0Wiz56bz46Jdkg1z8JUT9mK35P5wRG/640uRCxSp5nfguKl3M2Xa62YtEdFVbpxSf/35ZLNqd2GRcmkqlEn+kyMSMb2PFmcx7j43S1m8Xc8WssFgRl17YZKxlmqxcvL4tXizc/LOQyzVfzKSrq/kV4pUtcWJXfFaT8bLFt+Xi438ni7f/lXRf42PvVF5dK97+V5L46JfkJhdkKeqUYvfpLPHKljiRWXjbIMtTqeov1Jn7fYK4omHMbVx6oXg5LE4cvqD/+Ni7xaYXihnf1l9sencObxRXikW7E8Wa31KbjI/VRJsxszdLqsScbafFN8evNdnWKuUKseGPKyLo/840ewGcruQKpfjwl2Tx7k9JTcaiK5Uq8euFXINvFwcTc0Tg1nhxTsM4xOSbZeK1bafFj3GZBlvepZulYuZ3sWLvmRtN8lRYUSM+OHhRLD9wQdQoDLNvK62sFW/tPCdW/5osdu1tnO8aRZ34PiZD/HVrvMi4ZZjtQqlUiU1Hr4rgH8+K9LsuwlapVCL6yi0x87tYcfQ+rom52/G0AjHzu1gRlVbQZLvILLwtgnecFV8f13/s/90aLlrfdvJ6k+2irLpWfP77ZfG/O86K4tuG2S6qa+vE8gMXxPsHLjYZi66oU4qDiTli5nexIvnmf8fH6npx6Z1UKpXYFZ8lXg2P13jMT8ouEa9siRP/Pm+4fVvDMf+X8zebbBd5pdVi6b7zIvTQJYNtF7cqakTQ/50R6yObHvOra+tE2In6Y/79XBNzJ8V/jvkLdp3TeMz/M7X+mK/vha2FhYUPfoz0g+Tj44Nhw4Zh8+bN6rb+/ftjypQpWL16dZP+f//73/HLL78gJSVF3fa3v/0NSUlJiI2NBQBMnz4dFRUVOHz4sLrPxIkT0blzZ+zatUuruO6+/V1uaTW+Pp6O7OIqdLezhhBAdnEV+jp2wt+e6m3w+0PWKJT4PiYT0VcL4Sy1QkdLM9wsrYalmQnmP9nb4PdNFULg9+R8/OvMDVhbmMKxkyUKb9eiokaBF4Z2w3OPuxj8Hp+XZeX45ng6bsvr0K2LDapq63CztBo+HvaYO8qjxTOP+iiprMU3J9KRkluObl1sYGYiwY2SKjjbWmHeX9xxKe64TrfHuheFUoWfzuTgt0t5cOhoic425sgrrYFKCMz264kn+jR/hkVfselFCD+VAVOJBK6drVFSVYtbFXJMGOiMGf/TXe8zJ825UVyFzcevIbe0Bu72NqhTCdworkJ/F1vMH91b719LmnNbXofvYzIRm14Et87WsLYwxY3iKnS0MsP8J3ujv6t2P+tpezs0lUrg8KU87D2bg46WZnDsZIX88hpU1dZh+v90x/gBzgbfLi7klGJLdAaqauvQ3c4Gt2vqkFdWg1F9HfBX354Gvyd0QXkNvj1xHVcLbqOHnTVMJBJkFlXB3c4GQU/1Nvi90mvrVNgZn4U/LxegaydLSK3NkVNSDTMTCeaO8jDI7c/u9kdyLtb/+yzcXJzh1qUDiivlKK5SIGCQK6YOdjX4dpF+6za+OZ6OospadO9ijVqlCjeKqzGkR2fMHdXLoLcFBOrHTYeduI5z2aXo1sUaVuamyCqqRJcOFvjfMX3Qu6tuY7fvRaUS2J94E4fO56KztTkcOloiv7wG8jolXvZxx1OeXQ2+XZzNKsbWkxmoUwq4dbFGeXUd8strMMbLEa+M7AFLs/9uF/rc7vBusrIafHXsWpNjfu+uHRE8pjccOxnutoBA/TH/h9hMRF25BRepdaNj/rxRvdS3QzQUIQQiU/KxO6H+mO/UyQq3bstRXq3AC0PdDHrL0wZX8iuw+dg1VNTU79uqa5XIKa3CiJ71x3x9bwVcVFQEBweH1h8jfejQIUycOBHm5uY4dOhQi30DAgIMEpgme/bsQWBgIL755hv4+vriu+++Q1hYGJKTk+Hu7o5ly5bh5s2b+OGHHwAAGRkZGDhwIObPn4958+YhNjYWQUFB2LVrF6ZNmwagfsz0k08+iU8++QRTpkzBzz//jPfffx8nT56Ej4+PVnE1dx/pOqUK+RX146xdbK0Mdl/WlhTelqNKroSjraXRbiB/p/IaBUorFZDamBt8h6+JvE6JgnI5LM1N0LWjpdFuyt9ACAFZeQ1UAnDsZAlzUxOD7HhbUlxZ/6XEsZOV0R6Ocaeq2joUlMvR2cbcaA9yuJNSJZBbWg0zUwmcOhl/uxBCoKBCjhqFEq6drXUecqBPvsuqFSiurIVjJ0uD3vu9ObV1KuSVVcPawrRVtguVSiCvvAYqlYBbZ+tW2bcV3ZajoqYOzlIro+7bGvI9Zux4FFcrIbU2RxcDf8nTuFylCrKyGpibmsDJtnVyWHhbDnmdCs5SK6M9NOZOZdUKlFbVwq6DhU4XPeurulaJwttyWFuYwqGZ+/cbcn/ecMyXAHCytTLaA0fudOs/+7aunVrvmF98uxZ2HS1g2wo5rK2r3y7qc2hx39uFMQpprfbwU6dOVd+pY+rUqc32k0gkUCqVBglMk+nTp6OoqAgffvgh8vLyMHDgQBw+fBju7u4AgLy8PGRnZ6v7e3h44PDhw1i8eDG++uoruLq6YsOGDeoiGgD8/Pywe/duvP/++/jggw/Qu3dv7NmzR+siuiVmpiZGe5pdcxw6WgKGPaHQIlsr81bZmBpYmpmiu50eV07oSSKRwEXaujm062Bh8LOzLbGxMENPB+MXew1MTSStnkNd73Jxv6TWrfPFsoGFmQnc7Y3zdDlNTEwkrb5vs+9oadCHGd2LtYUpenZovf835qYmrbpdmJhIDPoAFW209nZhbdG6x4sHccw31hMQm9Pax3wLMxP0sG+9HOpDq6OnSqXS+O8HITg4GMHBwRrf2759e5O20aNH49y5cy3O88UXX8SLL75oiPCIiIiIqJ0w/m85RERERESPIK3OSG/YsEHrGS5YsEDvYIiIiIiI2gqtCukvv/xSq5lJJBIW0kRERETULmhVSGdkZBg7DiIiIiKiNuW+xkgLIdCGbkNNRERERGQwehXSW7duxcCBA2FlZQUrKysMHDgQW7ZsMXRsREREREQPLZ1vHvvBBx/gyy+/xFtvvQVfX18AQGxsLBYvXozMzEx8/PHHBg+SiIiIiOhho3Mh/fXXXyMsLAwzZ85UtwUEBODxxx/HW2+9xUKaiIiIiNoFnYd2KJVKDB8+vEn7sGHDUFdXZ5CgiIiIiIgedjoX0q+88gq+/vrrJu3fffcdXn75ZYMERURERET0sNN5aAdQf7HhkSNHMHLkSABAXFwcbty4gb/+9a8ICQlR91u3bp1hoiQiIiIiesjoXEhfunQJQ4cOBQCkp6cDALp27YquXbvi0qVL6n4SicRAIRIRERERPXx0LqSPHTtmjDiIiIiIiNqU+3ogCxERERFRe6XzGemamhps3LgRx44dQ0FBAVQqVaP3z507Z7DgiIiIiIgeVjoX0nPmzEFkZCRefPFFjBgxgmOhiYiIiKhd0rmQ/vXXX3H48GE88cQTxoiHiIiIiKhN0HmMtJubGzp16mSMWIiIiIiI2gydC+kvvvgCf//735GVlWWMeIiIiIiI2gSdh3YMHz4cNTU16NWrF2xsbGBubt7o/eLiYoMFR0RERET0sNK5kJ45cyZu3ryJVatWwcnJiRcbEhEREVG7pHMhHRMTg9jYWAwaNMgY8RARERERtQk6j5H28vJCdXW1MWIhIiIiImozdC6kP/30U7z99ts4fvw4ioqKUF5e3ujPWEpKShAYGAipVAqpVIrAwECUlpa2OI0QAqGhoXB1dYW1tTWeeuopJCcnq98vLi7GW2+9BU9PT9jY2KBHjx5YsGABysrKjLYeRERERPRo0Hlox4QJEwAAzzzzTKN2IQQkEgmUSqVhIrvLrFmzkJOTg4iICADAG2+8gcDAQPzyyy/NTrN27VqsW7cO27dvR79+/fDxxx9j3LhxSEtLQ6dOnZCbm4vc3Fx8/vnn6N+/P7KyshAUFITc3Fzs3bvXKOtBRERERI8GnQvpY8eOGSOOFqWmpiIiIgJxcXHw8fEBAISFhcHX1xdpaWnw9PRsMo0QAuvXr8fy5cvxwgsvAAC+//57ODk5YefOnZg/fz4GDhyIffv2qafp3bs3PvnkE7zyyiuoq6uDmZnOHw8RERERtRM6V4qjR49u9r2kpKT7iaVZsbGxkEql6iIaAEaOHAmpVIqYmBiNhXRGRgZkMhn8/f3VbZaWlhg9ejRiYmIwf/58jcsqKyuDra1ti0W0XC6HXC5Xv24Y0qJQKKBQKHReP2pbGnLMXLcPzHf7wny3L8x3+2KMPN/3KdeysjLs2LEDW7Zswfnz540ytEMmk8HR0bFJu6OjI2QyWbPTAICTk1Ojdicnp2YfJlNUVISPPvqo2SK7werVq7Fy5com7ceOHYONjU2L09KjIzIy8kGHQK2I+W5fmO/2hfluH6qqqgw+T70L6aNHjyI8PBz79++Hu7s7pk2bhq1bt+o0j9DQUI0F6Z0SEhIAQOP9qhvGZbfk7vebm6a8vBzPPvss+vfvjxUrVrQ4z2XLliEkJKTRtN27d8eYMWNgb2/f4rTU9ikUCkRGRmLcuHFNHkhEjx7mu31hvtsX5rt9KSoqMvg8dSqkc3JysH37doSHh6OyshIvvfQSFAoF9u3bh/79++u88DfffBMzZsxosU/Pnj1x4cIF5OfnN3nv1q1bTc44N3B2dgZQf2baxcVF3V5QUNBkmoqKCkyYMAEdO3bEgQMH7rkxWVpawtLSskm7ubk5N8R2hPluX5jv9oX5bl+Y7/bBGDnWupCeNGkSTp48icmTJ2Pjxo2YMGECTE1N8c033+i9cAcHBzg4ONyzn6+vL8rKynD69GmMGDECABAfH4+ysjL4+flpnMbDwwPOzs6IjIzEkCFDAAC1tbWIiorCmjVr1P3Ky8sxfvx4WFpa4tChQ7CystJ7fYiIiIio/dD6PtJHjhzB3LlzsXLlSjz77LMwNTU1ZlyNeHt7Y8KECZg3bx7i4uIQFxeHefPmYfLkyY0uNPTy8sKBAwcA1A/pWLRoEVatWoUDBw7g0qVLePXVV2FjY4NZs2YBqD8T7e/vj8rKSmzduhXl5eWQyWSQyWRGu40fERERET0atD4jHR0djfDwcAwfPhxeXl4IDAzE9OnTjRlbIzt27MCCBQvUd+EICAjApk2bGvVJS0tr9DCVJUuWoLq6GsHBwSgpKYGPjw+OHDmCTp06AQDOnj2L+Ph4AECfPn0azSsjIwM9e/Y04hoRERERUVumdSHt6+sLX19f/POf/8Tu3bsRHh6OkJAQqFQqREZGonv37uoC1Rjs7Ozw448/tthHCNHotUQiQWhoKEJDQzX2f+qpp5pMQ0RERESkDZ0fEW5jY4M5c+bg5MmTuHjxIt5++218+umncHR0REBAgDFiJCIiIiJ66OhcSN/J09MTa9euRU5ODnbt2mWomIiIiIiIHnr3VUg3MDU1xdSpU3Ho0CFDzI6IiIiI6KFnkEKaiIiIiKi9YSFNRERERKQHFtJERERERHpgIU1EREREpAcW0kREREREemAhTURERESkBxbSRERERER6YCFNRERERKQHFtJERERERHpgIU1EREREpAcW0kREREREemAhTURERESkBxbSRERERER6YCFNRERERKQHFtJERERERHpgIU1EREREpAcW0kREREREemAhTURERESkBxbSRERERER6YCFNRERERKSHNlNIl5SUIDAwEFKpFFKpFIGBgSgtLW1xGiEEQkND4erqCmtrazz11FNITk5utu/EiRMhkUhw8OBBw68AERERET1S2kwhPWvWLCQlJSEiIgIRERFISkpCYGBgi9OsXbsW69atw6ZNm5CQkABnZ2eMGzcOFRUVTfquX78eEonEWOETERER0SPG7EEHoI3U1FREREQgLi4OPj4+AICwsDD4+voiLS0Nnp6eTaYRQmD9+vVYvnw5XnjhBQDA999/DycnJ+zcuRPz589X9z1//jzWrVuHhIQEuLi4tM5KEREREVGb1iYK6djYWEilUnURDQAjR46EVCpFTEyMxkI6IyMDMpkM/v7+6jZLS0uMHj0aMTEx6kK6qqoKM2fOxKZNm+Ds7KxVPHK5HHK5XP26rKwMAFBcXKzX+lHbolAoUFVVhaKiIpibmz/ocMjImO/2hfluX5jv9qWhThNCGGyebaKQlslkcHR0bNLu6OgImUzW7DQA4OTk1KjdyckJWVlZ6teLFy+Gn58fpkyZonU8q1evxsqVK5u09+vXT+t5EBEREVHrKyoqglQqNci8HmghHRoaqrEgvVNCQgIAaBy/LIS457jmu9+/c5pDhw7h6NGjSExM1CVsLFu2DCEhIerXpaWlcHd3R3Z2tsESQw+v8vJydO/eHTdu3ICtre2DDoeMjPluX5jv9oX5bl/KysrQo0cP2NnZGWyeD7SQfvPNNzFjxowW+/Ts2RMXLlxAfn5+k/du3brV5Ixzg4ZhGjKZrNG454KCAvU0R48eRXp6Ojp37txo2mnTpmHUqFE4fvy4xnlbWlrC0tKySbtUKuWG2I7Y2toy3+0I892+MN/tC/PdvpiYGO5eGw+0kHZwcICDg8M9+/n6+qKsrAynT5/GiBEjAADx8fEoKyuDn5+fxmk8PDzg7OyMyMhIDBkyBABQW1uLqKgorFmzBgCwdOlSzJ07t9F0jz32GL788ks899xz97NqRERERPSIaxNjpL29vTFhwgTMmzcP3377LQDgjTfewOTJkxtdaOjl5YXVq1fj+eefh0QiwaJFi7Bq1Sr07dsXffv2xapVq2BjY4NZs2YBqD9rrekCwx49esDDw6N1Vo6IiIiI2qQ2UUgDwI4dO7BgwQL1XTgCAgKwadOmRn3S0tLUd9AAgCVLlqC6uhrBwcEoKSmBj48Pjhw5gk6dOhk0NktLS6xYsULjcA969DDf7Qvz3b4w3+0L892+GCPfEmHIe4AQEREREbUTbebJhkREREREDxMW0kREREREemAhTURERESkBxbSRERERER6YCGtpc2bN8PDwwNWVlYYNmwYoqOjW+wfFRWFYcOGwcrKCr169cI333zTSpGSIeiS7/3792PcuHHo2rUrbG1t4evri99//70Vo6X7pev23eDUqVMwMzPD4MGDjRsgGZSu+ZbL5Vi+fDnc3d1haWmJ3r17Izw8vJWipfula7537NiBQYMGwcbGBi4uLnjttddQVFTUStGSvk6cOIHnnnsOrq6ukEgkOHjw4D2nMUitJuiedu/eLczNzUVYWJhISUkRCxcuFB06dBBZWVka+1+/fl3Y2NiIhQsXipSUFBEWFibMzc3F3r17Wzly0oeu+V64cKFYs2aNOH36tLhy5YpYtmyZMDc3F+fOnWvlyEkfuua7QWlpqejVq5fw9/cXgwYNap1g6b7pk++AgADh4+MjIiMjRUZGhoiPjxenTp1qxahJX7rmOzo6WpiYmIh//vOf4vr16yI6OloMGDBATJ06tZUjJ10dPnxYLF++XOzbt08AEAcOHGixv6FqNRbSWhgxYoQICgpq1Obl5SWWLl2qsf+SJUuEl5dXo7b58+eLkSNHGi1GMhxd861J//79xcqVKw0dGhmBvvmePn26eP/998WKFStYSLchuub7t99+E1KpVBQVFbVGeGRguub7s88+E7169WrUtmHDBtGtWzejxUiGp00hbahajUM77qG2thZnz55VPwimgb+/P2JiYjROExsb26T/+PHjcebMGSgUCqPFSvdPn3zfTaVSoaKiAnZ2dsYIkQxI33xv27YN6enpWLFihbFDJAPSJ9+HDh3C8OHDsXbtWri5uaFfv3545513UF1d3Roh033QJ99+fn7IycnB4cOHIYRAfn4+9u7di2effbY1QqZWZKharc082fBBKSwshFKphJOTU6N2JycnyGQyjdPIZDKN/evq6lBYWAgXFxejxUv3R5983+2LL75AZWUlXnrpJWOESAakT76vXr2KpUuXIjo6GmZm3IW2Jfrk+/r16zh58iSsrKxw4MABFBYWIjg4GMXFxRwn/ZDTJ99+fn7YsWMHpk+fjpqaGtTV1SEgIAAbN25sjZCpFRmqVuMZaS1JJJJGr4UQTdru1V9TOz2cdM13g127diE0NBR79uyBo6OjscIjA9M230qlErNmzcLKlSvRr1+/1gqPDEyX7VulUkEikWDHjh0YMWIEJk2ahHXr1mH79u08K91G6JLvlJQULFiwAP/4xz9w9uxZREREICMjA0FBQa0RKrUyQ9RqPJ1yDw4ODjA1NW3y7bWgoKDJN5kGzs7OGvubmZnB3t7eaLHS/dMn3w327NmD119/HT/99BPGjh1rzDDJQHTNd0VFBc6cOYPExES8+eabAOoLLSEEzMzMcOTIETz99NOtEjvpTp/t28XFBW5ubpBKpeo2b29vCCGQk5ODvn37GjVm0p8++V69ejWeeOIJvPvuuwCAxx9/HB06dMCoUaPw8ccf8xflR4ihajWekb4HCwsLDBs2DJGRkY3aIyMj4efnp3EaX1/fJv2PHDmC4cOHw9zc3Gix0v3TJ99A/ZnoV199FTt37uRYujZE13zb2tri4sWLSEpKUv8FBQXB09MTSUlJ8PHxaa3QSQ/6bN9PPPEEcnNzcfv2bXXblStXYGJigm7duhk1Xro/+uS7qqoKJiaNSyNTU1MA/z1bSY8Gg9VqOl2a2E413D5n69atIiUlRSxatEh06NBBZGZmCiGEWLp0qQgMDFT3b7ilyuLFi0VKSorYunUrb3/Xhuia7507dwozMzPx1Vdfiby8PPVfaWnpg1oF0oGu+b4b79rRtuia74qKCtGtWzfx4osviuTkZBEVFSX69u0r5s6d+6BWgXSga763bdsmzMzMxObNm0V6ero4efKkGD58uBgxYsSDWgXSUkVFhUhMTBSJiYkCgFi3bp1ITExU3+rQWLUaC2ktffXVV8Ld3V1YWFiIoUOHiqioKPV7s2fPFqNHj27U//jx42LIkCHCwsJC9OzZU3z99detHDHdD13yPXr0aAGgyd/s2bNbP3DSi67b951YSLc9uuY7NTVVjB07VlhbW4tu3bqJkJAQUVVV1cpRk750zfeGDRtE//79hbW1tXBxcREvv/yyyMnJaeWoSVfHjh1r8VhsrFpNIgR/qyAiIiIi0hXHSBMRERER6YGFNBERERGRHlhIExERERHpgYU0EREREZEeWEgTEREREemBhTQRERERkR5YSBMRERER6YGFNBERERGRHlhIExE9QkJDQzF48OAHtvwPPvgAb7zxhlZ933nnHSxYsMDIERERGQ+fbEhE1EZIJJIW3589ezY2bdoEuVwOe3v7Vorqv/Lz89G3b19cuHABPXv2vGf/goIC9O7dGxcuXICHh4fxAyQiMjAW0kREbYRMJlP/e8+ePfjHP/6BtLQ0dZu1tTWkUumDCA0AsGrVKkRFReH333/Xeppp06ahT58+WLNmjREjIyIyDg7tICJqI5ydndV/UqkUEomkSdvdQzteffVVTJ06FatWrYKTkxM6d+6MlStXoq6uDu+++y7s7OzQrVs3hIeHN1rWzZs3MX36dHTp0gX29vaYMmUKMjMzW4xv9+7dCAgIaNS2d+9ePPbYY7C2toa9vT3Gjh2LyspK9fsBAQHYtWvXfX82REQPAgtpIqJH3NGjR5Gbm4sTJ05g3bp1CA0NxeTJk9GlSxfEx8cjKCgIQUFBuHHjBgCgqqoKY8aMQceOHXHixAmcPHkSHTt2xIQJE1BbW6txGSUlJbh06RKGDx+ubsvLy8PMmTMxZ84cpKam4vjx43jhhRdw5w+hI0aMwI0bN5CVlWXcD4GIyAhYSBMRPeLs7OywYcMGeHp6Ys6cOfD09ERVVRXee+899O3bF8uWLYOFhQVOnToFoP7MsomJCbZs2YLHHnsM3t7e2LZtG7Kzs3H8+HGNy8jKyoIQAq6uruq2vLw81NXV4YUXXkDPnj3x2GOPITg4GB07dlT3cXNzA4B7nu0mInoYmT3oAIiIyLgGDBgAE5P/njdxcnLCwIED1a9NTU1hb2+PgoICAMDZs2dx7do1dOrUqdF8ampqkJ6ernEZ1dXVAAArKyt126BBg/DMM8/gsccew/jx4+Hv748XX3wRXbp0UfextrYGUH8WnIiorWEhTUT0iDM3N2/0WiKRaGxTqVQAAJVKhWHDhmHHjh1N5tW1a1eNy3BwcABQP8SjoY+pqSkiIyMRExODI0eOYOPGjVi+fDni4+PVd+koLi5ucb5ERA8zDu0gIqJGhg4diqtXr8LR0RF9+vRp9NfcXUF69+4NW1tbpKSkNGqXSCR44oknsHLlSiQmJsLCwgIHDhxQv3/p0iWYm5tjwIABRl0nIiJjYCFNRESNvPzyy3BwcMCUKVMQHR2NjIwMREVFYeHChcjJydE4jYmJCcaOHYuTJ0+q2+Lj47Fq1SqcOXMG2dnZ2L9/P27dugVvb291n+joaIwaNUo9xIOIqC1hIU1ERI3Y2NjgxIkT6NGjB1544QV4e3tjzpw5qK6uhq2tbbPTvfHGG9i9e7d6iIitrS1OnDiBSZMmoV+/fnj//ffxxRdfYOLEieppdu3ahXnz5hl9nYiIjIEPZCEiIoMQQmDkyJFYtGgRZs6cec/+v/76K959911cuHABZma8ZIeI2h6ekSYiIoOQSCT47rvvUFdXp1X/yspKbNu2jUU0EbVZPCNNRERERKQHnpEmIiIiItIDC2kiIiIiIj2wkCYiIiIi0gMLaSIiIiIiPbCQJiIiIiLSAwtpIiIiIiI9sJAmIiIiItIDC2kiIiIiIj2wkCYiIiIi0sP/B60O9hSp0/ruAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAJJCAYAAACHy9AqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrB0lEQVR4nOzdd1xT1/sH8E8CIWHvvUEQEFEBBzhwotKKWq0bt9VatUpb66h1tGq1Vq27Kmq1Dqyr2lKVugcOkCFDVKbIko3MkNzfH37lJ4JKQkISeN6vF6+Wm3NPnushyZNzz2AxDMOAEEIIIYQQIhK2rAMghBBCCCFEEVEiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDFQIk0IkajevXuDxWLJOgzyP5MnTwaLxUJqaqqsQ5ELV69eBYvFwooVK+ocl/Xf7YEDB8BisXDgwAGZxUAIER0l0oSQd2KxWCL9KJLXCdWbPxoaGrC0tMTgwYPx008/ITMzU9ZhKpTLly/X/lv+/fffsg6nySi5JYR8iLKsAyCEyK/ly5fXO7Zy5Upoa2tj/vz5DZ5z8OBBlJeXSzkyyfHw8MDHH38MACgvL0d2djZu376N8+fPY+XKlVi/fj3mzp0r4yjFt3btWixatAjm5uZSf659+/YBePUFLCgoqPbfVREo2t8tIUQ+UCJNCHmnt29/A68SaR0dnQYfAwArKyvpBiVhnp6eDV7LX3/9hWnTpmHevHlQU1PDtGnTmj84CTA1NYWpqanUn6eoqAinTp1Cly5dwOPx8PfffyMnJwfGxsZSf25JULS/W0KIfKChHYQQiWporOmbt8jPnTuHrl27Qk1NDebm5li2bBmEQiEA4PDhw+jUqRNUVVVhZWWFDRs2NPgcDMNg37596N69O7S0tKCmpgZPT8/aHlFJGDp0KE6dOgUAWLRoEcrKyuo8Xl5ejhUrVsDJyQk8Hg96enr46KOPcPv27Xp1rVixAiwWC1evXsX+/fvRvn17qKqqwtbWFlu2bKm9pl9//bW2PkdHRxw6dKheXY8fP8bChQvh7u4OfX392rKLFi3Cy5cv65VvaIz0m+OEHzx4gIEDB0JTUxPa2toYPny4WOOpjxw5goqKCgQEBGDixImoqanBwYMHGyz7Oqbk5GRs2LABjo6OUFVVhYuLC44dOwYA4PP5+P7772Frawsejwc3NzdcuHChXl2v/94qKyuxcOFCWFpagsfjoX379iL9Pbz9dzt58mRMmTIFADBlypQGhzDZ2NjAxsamUfW9VlBQgFmzZsHY2Bhqamro3LkzTp8+/d7YYmJiMGbMGJiamkJFRQXW1taYO3cu8vPzG319hBDpoB5pQkizOX36NC5evIhhw4ahe/fu+Oeff/Djjz+CYRjo6upi1apVGDp0KHr16oWTJ0/im2++gampKcaPH19bB8MwmDBhAo4cOQJHR0eMGzcOKioqCA0NxbRp0xAfH//OBFxUvXr1Qq9evXD9+nVcvnwZQ4YMAQBUVVWhX79+uHPnDtzd3TF//nzk5uYiODgYFy9eRHBwMD755JN69W3evBlXr17F0KFD0bdvX5w8eRJffvkl1NTUEB0djT///BMff/wx+vbti2PHjmHixImwtbVFjx49aus4deoUgoKC0KdPH/Tu3RtCoRB37tzBunXrcO3aNVy/fh0cDqdR1xceHo6ff/4ZvXv3xsyZMxEZGYkzZ87g4cOHiI2NBY/Ha/S/VVBQEDgcDsaMGQMVFRXMnTsXQUFB+Oabb955TmBgIO7evYshQ4ZASUkJx44dw7hx46Crq4vt27cjNjYWfn5+qKysxJEjR+Dv749Hjx7B1ta2Xl2ffvopYmJi8Omnn4LP5+P48eOYNm0acnJysHjx4kZfx2vDhg1DUVER/vrrLwwdOhQdO3YUuY63lZeXo3fv3nj48CG8vLzg4+ODZ8+eYfTo0fD19W3wnLNnz2LUqFFQUlKCv78/LC0tER8fj23btuHChQu4e/cudHV1mxwbIURMDCGEiAAAY21t/c7HfXx8mLffWvbv388AYDgcDnPv3r3a4yUlJYyRkRGjpqbGmJiYMElJSbWPpaenMyoqKoybm1udunbv3s0AYKZNm8bw+fza41VVVcyQIUMYAEx4ePgHr+PKlSsMAGbmzJnvLbds2TIGALNs2bLaY6tWrWIAMOPHj2eEQmHt8ejoaIbL5TK6urpMSUlJ7fHly5czABg9Pb0Gr1FbW5txdHRkcnNzax+7e/cuA4Dx9/evE09GRgZTVVVVL86VK1cyAJg//vijzvFJkyYxAJiUlJR61w6AOXbsWJ3yAQEBDADm6NGj7/13eVNkZGS9WMeOHcsAYG7evFmv/OuYHBwc6lzznTt3GACMjo4O06NHD+bly5e1jwUHBzMAmHnz5tWp6/Xfm4uLS51/86ysLMbU1JRRVlau82/++tqXL1/eYD1vev13u3///gav29ra+p2vhYbqe/13MGPGjDrHL1y4UNsebz5XXl4eo6WlxVhYWDBpaWl1zjly5AgDgJkzZ06Dz08IaR40tIMQ0mzGjx+Pzp071/6uqamJjz/+GOXl5fj8889hZ2dX+5ilpSV69OiBuLg41NTU1B7ftm0b1NXVsW3bNigr//9NNRUVFaxevRoAcPToUYnFbGZmBgDIy8urPXbgwAFwOBz89NNPdW7fu7m5YfLkySgsLMRff/1Vr6558+Y1eI3FxcVYunQpDA0Nax/r0qUL7OzsEB0dXacOc3NzqKio1Kt7zpw5AID//vuv0dfWq1cvjB49us6xqVOnAgDu37/f6HqCgoIAAAEBAbXHJk6cWOexhrx9zV27doWdnR2KioqwevVqqKur1z42YsQIcDicev8eb9alqalZ+7uJiQkCAwNRU1ODI0eONPpapOngwYNQUVHBqlWr6hz39fVFv379GixfUlKCtWvX1hvDPXbsWLi7u9cOhSGEyAYN7SCENJtOnTrVO/Z6IlxDt85NTU0hEAiQk5MDc3NzlJeX4+HDhzAzM8NPP/1UrzyfzwcAPHr0SGIxMwxT5/eSkhIkJyfD2dkZFhYW9cr37t0bv/32G6KiojBhwoQ6j4lz/Xfv3q0Xz/79+3HgwAHExsaiuLi4dow5AJGW7HN3d6937PU1FRUVNaqOqqoqHD58GDo6OrVDXwBgwIABMDU1xfHjx7FlyxZoaGjUO/dd/x7Jycn1/j2UlJRgZGSE58+fNxhHz54933ksKiqqUdciTaWlpUhJSYGLiwtMTEzqPd6zZ09cunSpzrE7d+7U/vfp06f1zqmsrEReXh7y8vJgYGAgncAJIe9FiTQhpNloaWnVO/a6V/l9j71OkAsLC8EwDJ4/f46VK1e+83nenhjYFFlZWQBQ23NaUlICAO9cjeJ1klRcXFzvMXGu/83eeOBVr/a2bdtgaWkJf39/mJqagsvlAni1okpVVVWjrgsAtLW13xmPQCBoVB2nT59GYWEhZsyYURsH8CrxHT9+PDZs2IDg4OAGVz0R59/j9d/C24yMjOode91GDbVFc3sdQ0NxAg3/PRUUFAAAtm/f/t66y8rKKJEmREYokSaEKIzXyZWHhwfCw8Ob5TmvXr0KALVDUl7HkJOT02D518cbSgSbKjc3F9u3b4ebmxvCwsKgpqZW+1h2dvZ7v1xIy+uhG3v27MGePXveWUbaywfm5ubC0tKyzrHXbdHQFwZJYLPZqK6ubvCxt5P3138Pubm5DZZv6O/p9TkPHz6Eq6trU0IlhEgJJdKEEIWhqakJZ2dnJCQkoKioCDo6OlJ9vmvXruHGjRswMjJC3759AbxKbuzs7PD06VM8f/683kYn165dA9DwUI2mSk5OBsMw6N+/f50kGgBu3Lgh8ef7kNTUVFy6dAnGxsbv3HwlNDQUYWFhSEhIgLOzs9RiuXHjBsaNG1fvGCB+WygpKQF4d++8rq4uHj58iJqamjrj9cvKyvDkyZM6ZbW0tGBra4unT58iOzu73vCOhtqva9euOHXqFMLCwiiRJkRO0WRDQohCmTdvHsrLyzFjxowGh3CkpKSItQ7y286ePYsRI0YAANatW1cncZ00aRL4fD4WL15cZwx1bGws9u/fD21tbQwbNqzJMbzN2toaAHD79u0646IzMjKwaNEiiT/fh+zfvx8Mw2DWrFnYu3dvgz9fffUVgPdPOpSE1atXo7S0tPb3nJwcbNy4EcrKyvUS7MbS09MD8OrftyGenp7g8/k4fPhw7TGGYbB48eIG/zYDAgJQXV2N77//vs7xixcv1hsfDbxav1pTUxNLly5FXFxcvcfLy8trx1ETQmSDeqQJIQpl5syZuHPnDn7//XfcunUL/fv3h5mZGXJycvDo0SPcvXsXR44ceedGGW8LDw+v3dmwsrISWVlZuHXrFpKSkqCqqort27dj8uTJdc5ZuHAh/vnnHxw6dAgJCQno168fXrx4geDgYPD5fBw8eLDOChKSYmpqihEjRuDkyZPw9PREv379kJOTg7///ht9+/ZFcnKyxJ/zXYRCYe1GO2//+7xp/Pjx+Oabb3Do0CGsXbu20Wtci8rOzg6urq4YMWJE7TrSubm5WL16dZ2VUkTh5eUFVVVVbN68GSUlJbXj5F9/aZkzZw7279+P6dOnIzQ0FIaGhrhx4waKiorQoUOHeiuMLFy4EKdOncKePXsQFxeHXr164dmzZzh+/Dg++ugj/PPPP3XKGxoa4ujRo/j000/RoUMHDBo0CE5OTqisrERaWhquXbsGb29vnD9/XqzrI4Q0HSXShBCF8nqHRD8/P+zZswd///03Xr58CSMjIzg4OGDDhg3o379/o+uLiIhAREQEAEBNTQ16enpo164dZsyYgYkTJza4vTaPx8Ply5exbt06BAcHY9OmTVBTU0OvXr2wZMmSOhuoSNqBAwdgY2ODkydPYuvWrbCyskJgYCC+/fbbBpfFk5bQ0FCkp6ejX79+7/3Soq+vjyFDhuDkyZM4d+5cgxvVSMLx48fx/fff4+jRo3jx4gUcHBywZs2aJo3N1tPTw4kTJ7BixQrs3LkTFRUVAP4/kW7fvj3Onz+PJUuW4MSJE9DQ0ICfnx9+/vnnessKAoC6ujquXbuGxYsX4/Tp03jw4AHatWuH4OBgFBcX10ukAeCjjz5CZGQkfv75Z/z3338IDQ2Furo6LCwsMGXKlHorwxBCmheLeXttJ0IIIURB9O7dG9euXau3TCEhhDQHGiNNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGGiNNCCGEEEKIGKhHmhBCCCGEEDFQIk0IIYQQQogYKJEmhBBCCCFEDJRIE0IIIYQQIgZKpAkhhBBCCBEDJdKEEEIIIYSIgRJpQgghhBBCxECJNCGEEEIIIWKgRJoQQgghhBAxUCJNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGSqQJIYQQQggRAyXShBBCCCGEiIESaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDFQIk0IIYQQQogYKJEmhBBCCCFEDJRIE0IIIYQQIgZKpAkhhBBCCBEDJdKEEEIIIYSIgRJpQgghhBBCxECJNCGEEEIIIWKgRJoQQgghhBAxUCJNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGhUukd+zYAVtbW/B4PHh4eODGjRvvLX/t2jV4eHiAx+PBzs4Ou3btemfZY8eOgcViYdiwYRKOmhBCCCGEtDQKlUgHBwdj/vz5WLp0KSIjI9GzZ08MHjwY6enpDZZPSUmBn58fevbsicjISCxZsgTz5s3DyZMn65VNS0vD119/jZ49e0r7MgghhBBCSAvAYhiGkXUQjdW1a1e4u7tj586dtcecnZ0xbNgwrF27tl75b7/9FmfPnkVCQkLtsVmzZiE6OhphYWG1xwQCAXx8fDBlyhTcuHEDRUVFOHPmjFSvhRBCCCGEKDZlWQfQWNXV1YiIiMCiRYvqHPf19cXt27cbPCcsLAy+vr51jg0cOBBBQUHg8/ngcDgAgFWrVsHQ0BDTpk374FARAKiqqkJVVVXt70KhEAUFBdDX1weLxRL10gghhBBCiJQxDIPS0lKYmZmBzZbMoAyFSaTz8vIgEAhgbGxc57ixsTGys7MbPCc7O7vB8jU1NcjLy4OpqSlu3bqFoKAgREVFNTqWtWvXYuXKlSJfAyGEEEIIka1nz57BwsJCInUpTCL92ts9vgzDvLcXuKHyr4+XlpZiwoQJ2LNnDwwMDBodw+LFixEYGFj7e3FxMaysrPD48WPo6ek1uh6imPh8Pq5cuYI+ffrU3tUgLRe1d+tC7d26UHu3LgUFBXB0dISmpqbE6lSYRNrAwABKSkr1ep9zc3Pr9Tq/ZmJi0mB5ZWVl6OvrIy4uDqmpqRgyZEjt40KhEACgrKyMxMRE2Nvb16uXy+WCy+XWO66npwd9fX2Rr40oFj6fDzU1Nejr69MbbytA7d26UHu3LtTerZMkh+EqzKodKioq8PDwQGhoaJ3joaGh8Pb2bvAcLy+veuUvXrwIT09PcDgcODk54eHDh4iKiqr98ff3R58+fRAVFQVLS0upXQ8hhBBCCFFsCtMjDQCBgYEICAiAp6cnvLy8sHv3bqSnp2PWrFkAXg25eP78OQ4ePAjg1Qod27ZtQ2BgIGbMmIGwsDAEBQXh6NGjAAAejwdXV9c6z6GjowMA9Y4TQgghhBDyJoVKpEePHo38/HysWrUKWVlZcHV1RUhICKytrQEAWVlZddaUtrW1RUhICBYsWIDt27fDzMwMW7ZswYgRI2R1CYQQQgghpIVQqEQaAGbPno3Zs2c3+NiBAwfqHfPx8cGDBw8aXX9DdRBCCCGEEPI2hRkjTQghhBBCiDyhRJoQQgghhBAxUCJNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGSqQJIYQQQggRAyXShBBCCCGEiIESaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDFQIk0IIYQQQogYKJEmhBBCCCFEDMqinvDkyRPcvn0b2dnZYLFYMDY2hre3NxwcHKQRHyGEEEIIIXKp0Yl0cXExJk6ciHPnzkFbWxtGRkZgGAYvXrxASUkJhgwZgoMHD0JLS0ua8RJCCCGEECIXGj20Y+7cuUhJSUFYWBgKCwuRmJiIx48fo7CwELdv30ZKSgrmzp0rzVgBADt27ICtrS14PB48PDxw48aN95a/du0aPDw8wOPxYGdnh127dtV5fM+ePejZsyd0dXWhq6uL/v374969e9K8BEIIIYQQ0gI0OpE+e/Ys9uzZg65du9Z7rGvXrvjtt9/w119/STS4twUHB2P+/PlYunQpIiMj0bNnTwwePBjp6ekNlk9JSYGfnx969uyJyMhILFmyBPPmzcPJkydry1y9ehVjx47FlStXEBYWBisrK/j6+uL58+dSvRZCCCGEEKLYRJpsyGKxxHpMUjZu3Ihp06Zh+vTpcHZ2xubNm2FpaYmdO3c2WH7Xrl2wsrLC5s2b4ezsjOnTp2Pq1KnYsGFDbZnDhw9j9uzZ6NixI5ycnLBnzx4IhUJcunRJ6tdDCCGEEEIUV6MT6SFDhmDGjBkIDw+v91h4eDhmzZoFf39/iQb3purqakRERMDX17fOcV9fX9y+fbvBc8LCwuqVHzhwIMLDw8Hn8xs8p7y8HHw+H3p6epIJnBBCCCGEtEiNnmy4detWjB07Fl26dIGOjg6MjIzAYrGQk5OD4uJiDBw4EFu2bJFaoHl5eRAIBDA2Nq5z3NjYGNnZ2Q2ek52d3WD5mpoa5OXlwdTUtN45ixYtgrm5Ofr37//OWKqqqlBVVVX7e0lJCQCAz+e/M0EnLcfrNqa2bh0+1N5Pcl7iZlI+qmuEaGemBS87PSixpX+HjkjH63aurKrGvdQCPCuogIWuKjytdaldWyB6P29dpNHOjU6kdXR08O+//+LRo0cICwurTV5NTEzg5eUFJycniQfXkLeHkDAMI9KQE4ZhGjwOAOvXr8fRo0dx9epV8Hi8d9a5du1arFy5st7xK1euQE1N7b3xk5YjNDRU1iGQZvR2e5fxgZOpbHCVADc9BipsBicTWVh7hoWh1kJYqMsoUNJkT4pZ2LblMhy0GRipAtcrgJXFLAy2FMKeFqZqkej9vHUoLy+XeJ0iryPt5OTUbEnzmwwMDKCkpFSv9zk3N7der/NrJiYmDZZXVlaGvr5+neMbNmzAmjVr8N9//8HNze29sSxevBiBgYG1v5eUlMDS0hJ9+vSpVy9pefh8PkJDQzFgwABwOBxZh0OkrKH2Tssvx3d/xWHZp23RzqxuZpX/sgqLTsehg6cNutrSEDFFc/RuGu48ScDR2b2hrf7/HSovq2qw5HQc7CyN8VF7ExlGSCSJ3s9bl/z8fInXKXIiLSsqKirw8PBAaGgohg8fXns8NDQUQ4cObfAcLy8vnDt3rs6xixcvwtPTs84L5ueff8aPP/6ICxcuwNPT84OxcLlccLncesc5HA69EFsRau/W5XV7ZxVXYNnZBGwe4w4T7fp3rkx0Odg5wROzD0dAT0MVLmbUhakozkZnIi67DBPaCKGtzqvz+tblcLBtvAfmHYuEkbYqvO0NZBgpkTR6P28dpNHGCrVFeGBgIPbu3Yt9+/YhISEBCxYsQHp6OmbNmgXgVU/xxIkTa8vPmjULaWlpCAwMREJCAvbt24egoCB8/fXXtWXWr1+P7777Dvv27YONjQ2ys7ORnZ2Nly9fNvv1kZaJYRjkllTiae5L5JZW1g4vIoqnki/AwhMxWPtJ+waT6NdUVZTwy6iO+OHveBSX09hLRRCXWYx/YjKxcogz3jVaUInNwoaRHbD9ylO8KK1quBAhpFVRmB5pABg9ejTy8/OxatUqZGVlwdXVFSEhIbC2tgYAZGVl1VlT2tbWFiEhIViwYAG2b98OMzMzbNmyBSNGjKgts2PHDlRXV2PkyJF1nmv58uVYsWJFs1wXaZkyiyqw90YKnuSWwkxbFTrqHBSV8ZFZXAEbfXVM7m4De0MNWYdJRPDjP/GY2sMWNgYfHgCtp66Crwe2xY//xOPnTzs0Q3REXBXVAvz4dwJ2jHf/4IRCVRUlLPvYBd//FYsd492bZelXIllF5dUoKudDR40DdQ61H2kahUqkAWD27NmYPXt2g48dOHCg3jEfHx88ePDgnfWlpqZKKDJCXhEKGey7lYI7yQWY168N3Cx06pV5nFOK7ZefQo2rhIWDnKDFo1uK8u7G0zxwlNjo09ao0ed4WOviQlw2riTminQeaV5bLj/BZ73soKuu0qhZ/U4mWnA21cK/sdnwa19/9Scif0or+TgYloawpHwYaKhAX4OLgrJq5JZUwrCGhX58AQ3tIGIRa2hHUVER9u7di8WLF6OgoAAA8ODBA9oNkLR6VTUCzA+OAleZjT0TPRpMogHA0VgTG0d3xBA3M8w8GIHHOaXNGygRSWUNsPt6Cr4Z2Fbkc7/s54Dd15LBFwilEBlpqsc5pcgorEAfJ9G+6HzWyw6HwtJQXl0jpciIpPwdk4mZhyLgZKKJg1O7YPOYTlj2sQs2je6IvQGdoK0CTD/0ANHPimQdKlFAIifSMTExcHR0xLp167BhwwYUFRUBAE6fPo3FixdLOj5CFEZ1jRDzjkZiuLs5ArxsGnXLt6udPraM7YSf/n2Efx9mNUOURBxn09mY08ceaiqi38RT5ypjuLs5jtxN/3Bh0qyEQgZrQxKwxE/0lah4HCVM8rbGgdupkg+MSERVjQBLTj/Eo6xSHJjSBf2cjcF+a+iOshIb7gYMto/tiJ1Xk/BPDL0PE9GInEgHBgZi8uTJePLkSZ21lgcPHozr169LNDhCFAXDMFh86iFGeliKfAvfUJOL3wI8cPlRLk5EZEgpQiKuiLRCAGjSUnYj3C0QGp9DEw/lzIkHGejhYAhTbVWxzh/YzgRhSfkorqB2lTcllXx8/scD9G1rhK8HtoWK8vvTHS1VDraN64RLCTmUTBORiNy9cv/+ffz222/1jpubm79zh0FS3/3UAhy9m47C8mqwWSwweNVz5W2vj16OhjDXEe+NncjGvlupcDbVxACXhtc0/xCOEhvrRrhh6ZlY1AiEGNPFSsIREnEIhAy2XknGR5ZNG5ahxGZhdh97bL38BN997CKh6EhTFJRV42xUJg5M6Sx2HSwWC9N62CLoRjICfUUf9kOk40VpFRYER+ErX0d0stJt9HnKSmysH+mGuUcjYazFhacNrQMvDXyBEGn55Xia+xIvSishZAAWCzDQ4MJYiwc7A3XoqqvIOsxGEzmR5vF4tVtivykxMRGGhoYSCaolK6uqwfd/xUFXjYNvBzvBWOv/e/WLyqtxOykfm0MfI7e0Cj0dDDC4vSkl1XLuYUYxItMLsXVspybVw2azsHqYK74/G4vj4c8wytNSQhEScZ2IeIb+zoZQz89pcl3e9gY4eDsNmUUVMKPXtMytP/8IXw9sC2Wlpq0C6+NoiN9vpyL/ZRX0NervL0Ca17OCciw8EYMfhrVDGyNNkc9XVmLj5087YOahcGwe3QmGmtSmksAwDMKS8hEc/gwlFXzYG2qgjZEGLPTUoMRiQcgwyHtZjbCkPPxxJw2F5dVQV1FGO3MteFjpooOlDngcJVlfRoNETqSHDh2KVatW4fjx4wBefSNPT0/HokWL6iwrR+orreTjiyOR+NzHHl729XdA1FFTgV97U/i1N0V1jRC3nuZhc+hjvHhZBQ8rXbQz14KTiRa0VTlQ5SihRsigqLwa+WXVyCquQGZRJbKLK5FZXIGS2luNLBhpceFkoglvewO0MaLl1iSpqkaAn84nYOtYySyDxWazsMrfFQtPxkCDq0wrAshQSSUfZ6MzsXdCJ1y8ECuROuf0bYOtl59i7SftJVIfEc+9lAKoKLPR0VKnyXWxWCzM8rHH7uvJWOzn3PTgiNie5r7EsjOx+PlTN1joqoldjwZXGcs+dsGyM7HYOYGWOGyqxzml+OnfR3Ax1cJSP2cYab17Df43vayqQezzYoSnFWLfrRRU1QjhYKQBD2s9eNrowkBOvriKnEhv2LABfn5+MDIyQkVFBXx8fJCdnQ0vLy+sXr1aGjG2CDUCIRYER2N+fwe4N+JWk4oyG32cjNDHyQjVNUI8fF6E+MwSXH6Ui5KKGlTwBVBisaCrzoGeugpMtFVhps2Du5UuzHR40FblgMViQShkkFNaifjMEhwKS0VyXhmGdjTHsI5mTe6JIcDeGykY18UaehK8DcVms/DTJ+3xZXAU1FSU0JuWTZOJrZee4IvebST6OnE110ZZVQ1S88oatRY1kbzqGiF+vfQYO8Z7SKzOrnb62H09GYVl1Qp1S7oliX1ejLX/JuDXsR1hpNm4RO19nEy00NlWD3/cSUOAl03TA2yljt1Lx+VHuVj7Sfs6d+AbQ4OrjG52+uhm96rjUShk8PTFS4SnFmJNSAIKyqqhylGCpZ7aqx9dVRhqcmGowYWeukqz5TgiJ9JaWlq4efMmLl++jAcPHkAoFMLd3R39+/eXRnwtxpZLT/Cxm2mjkui3qSiz4WGtBw9r0cdrsdksmGqrwlRbFf2cjVHJF+BERAYm778v8vgxUldOSSUepBVidm97idetrMTGL592wJwjkVBTUUaXJkx0I6JLevESWcWV8G5j0Kh1hUUxr18bbLn8BBtHdZRovaRxgm6mYJSnJbRVJbtm8OTuNth/OxWBAxwlWi/5sLvJ+dh+NQnbx7lDR01yX2SmeNvgs0MR8G5jQJtniYhhGGwMfQyBkMGuCR71VksRB5vNgqOxJhyNNTGu66t5RJV8ATIKK/CsoBxp+eWISCtE3ssq5L+shpBhIBAyMNFWRScrHfQTcYnLxhJ7Q5a+ffuib9++koylxYrJKEJGUYVcTEbhcZQwoZs1hriZYeW5OIQl5+NzH3u6dSWGzZeSEOjrKLV/Ox5HCb+O6YjZhx9AldMW7S20pfI8pL6fzydi6UfSuU3fxkgTSiwWHueUwtFY9DGcRHypeWV4kF6IWT6S641+rUcbA+y5kYLSSj40aYOlZsEwDIJupiAmoxg7x7tDnSvZPebYbBaWD3HBqr/jsTvAgz4nRbDt8lPwOEr4ok8bqT4Pj6OENkYa7xy2yjAMsoorEZ5WiO//igObXy7xGBr1V7dly5ZGVzhv3jyxg2mJBEIGP19IxObRHWUdSh3aahz8MqoDDtxOxcITMVj7SXsa6iGCtJeAEpeFdmbSTW7VucrYMrYTvjj8AMuHuMCBEi+pu/IoF22MNGCpJ/4Yyw+Z29cBP19MbPIEVdJ4QiGDlefisGqoq1QSIhaLhYBu1jh0Jw2ze0s3eSBA3ssqrDoXjw6WOvh1TEepJbmWempwMdXCxfgcDGxnIpXnaGnORmeisJyP74fIfoUiFosFMx1V+Ouowr+DGe7Ep2KbhJ+jUYn0pk2b6vz+4sULlJeXQ0dHB8CrnQ7V1NRgZGREifRbTkc+xwAXY7mczc1isTCluy3+icnCV39GY+OojlCSwO2X1uBCBht7P5P8kI6GaKtysHlMR8w9Eol1I9xgpS+9BK+1q64RYs+NZOyd5CnV57HSV4O2qjIeZhTTnYZm8ntYKvo5G0v1C1I/JyMcuJ2CKd62UFWRzxUGFF3+yyocvpuOiLRCfOXr+M7dYyXp8972mLL/PnwcDeV25Qh58SSnFH9FPsdvAZK/6yMJ0uiMalQXZEpKSu3P6tWr0bFjRyQkJKCgoAAFBQVISEiAu7s7fvjhB4kHqMiqagQ49SADYzrL95rAH7mZopeDIVb/kyDrUBTC/dRCGKuiWWcMG2hw8cuoDlh4MhqZRRXN9rytTdDNFIzpYiXWDoai+qJPG2y78kTqz0NeDem49TQf47tK972YzWZhdGcrHL1Hu1iKo6SSj8c5pbjx5AXOx2bjbHQmTkZk4FBYKtaEJGDqgftY8b9e6ANTOjdLEg38/y6Wu68nN8vzKarqGiFW/R2PNa3sDrfIV7ps2TJs3boVbdv+/3jftm3bYtOmTfjuu+8kGpyiOxGRgU/cLT64o5I8GOFhAV01DoJupsg6FLm371Yq+pg2bYMOcZjpqGLdCDd8dTwaDzOKm/35W7qs4gqEpxZgiFvzLDloqq0KC1013E8taJbna60q+QIs+ysWK/xdmmWM60ftTfFfQg6qagRSf66WoKJagH03UzBx3z0sPR2LUw+e42nuS5RW8sEwDNRUlGChq4aRHhbYHeCBrWM7wcfRsNnHKw9sZ4KoZ0XIf1nVrM+rSHZfT8KnnpYir86h6ETO8LKyshqcxS4QCJCT0/RNC1oKoZBByMMsDO1oJutQGm1O3zZ4nP2qN4A0LDK9EOa6qtCS0QpX1vrq2DXBA79eekLb2ErYun8fYeEgp2b9gP68tz12Xk0CwzDN9pytCcMw+P6vWEztYdukdYVFocRmYVgnc5yMeN4sz6fIItIKMO33+zDU5GL/5M7YOrYTFg12wpTutvjU0xJDO5pjcHtT9HEygqOxpkx7OV+vF77rWpLMYpBnzwrKEZ1R3GwdEfJE5L/Kfv36YcaMGQgPD6998w8PD8fMmTNpCbw3XHv8At72BuAo0O0NFouFFf7tsPNqEgrLqmUdjlzafT0Z03vYyDQGbTUOdk5wR2xmMeYfi0RuaaVM42kJbiflQV+Di7YmzTuZ00CDCxdTLdx8mtesz9tabAp9DGdTLfRp5rXYh3cyx7noTNQImv/OlaI4H5uNPddTsCvAA0M6mCnE/JwutnpIyy9HTgm9575t/YVELBrcvB0R8kLkLG/fvn0wNzdHly5dwOPxwOVy0bVrV5iammLv3r3SiFEhHbmXLvXxeNKgqqKExYOd8f3ZOOole8uj7JJXm9/IwW0rjhIb3w5ywme97PH1nzHYcukJ3XIUE18gxPYrTzG/v4NMnn9GLzvsvp4MoZBeb5LCMAw2XEiEEpuNKd1tm/35OUps+LU3wbmYzGZ/bkVwOykP52IysXVcJ2gp2FKBc/q2wbbLT2Udhlx5kF4IXTVOq11rW+RE2tDQECEhIXj06BH+/PNPHD9+HAkJCQgJCYGREe3ABrxKuIw0uRJdGL45tbfQhpOJJk5EZMg6FLmy/2YqpvZo/g/l93Ex08LvUzqjo6UOlpx+iG/+jMatp3kQUFLWaAdupWKEu4XM1v7VVuWgv7Mxjoc/k8nztzSllXwsCI6CgYYKvpTRlyMA+NTTEn+GZ9AXpLdkFJZj59UkbBjZQaHu2L7mZqGDwvJqZBRKfj1iRbXjylPM7Su715qsif1X7OjoCH9/fwwdOhSOjrST05sO3EqVSS+IJM3yscfZ6EwUldMQD+DVmqUllXy5/MbNYrHQy9EQvwV4Ym5fB0Q9K8Lk/few6lw8op8V0Z2F90jLL8PdlAIM72Qu0zjGd7XC3zFZdFehCQRCBmcin+OzgxEY380ak2X8HszjKKF3W0NciMuWaRzyRChksPyvOPww1FWhlwec5WOPvTdoYj4ARKQVwkZfHYaa8rfEb3MReY2nqVOnvvfxffv2iR1MS1BSyUfey6p37rKjKJTYLHzZzwEbQx9j1VBXWYcjc4fvpGN8V2tZh/FBVvpq+KJPG3zRpw0eZZfgr6hM/HwhEV72+pjS3aZZlnVTFEIhg1Xn4rHCv53Mx/UpK7GxaLATVp6Ll+rmEi0NwzCIyyzBPw+zEP2sCANcjLF/Sme5Wet3fFdrzPojAoNcTahNARy7/wy9HA1hY6Au61CaxNVcG1suPUHey6pmXQZVHgXdTMb3H7eTdRgyJXKPdGFhYZ2f3NxcXL58GadOnUJRUZEUQlQsITFZ+NhNcVbqeB9PGz2UVwsQ+7x1L7VWVSPA/dQCdG+jL+tQROJkooVvBznh4NQucDTWxLQD4bj+mFZkee3IvXT0cjSU6gYdonA114aDkQb+pCFVH/Q4pxQ/X3iEgKB7OBudiUHtTHB4eldM6W4rN0k08Gpn0s42eriaSK+74nI+Qh5mYUI3+e+QaIwp3W2x/1br7pVOzC6FtioHJtqynzckSyJ3T50+fbreMaFQiNmzZ8POzk4iQSmyC3HZ2DFePnf0EcfCgW2x8GQM9k/u3Gp7VP6OzsLHbqYKe/1sNgsDXIzRo40BVv0dh4SsEnzWy05hr0cS0vLLcPlRLvZOlO4OhqKa3acNPv8jAi6mWnA1px0P3yQUMgiJzcKpB89hpsPDCHcLfO3bVu7/jid522DOkQfo3bb51z6WJ9uuPMGcvm0UYnWOxuhmp4dd15JQWsmX2fwKWdt9PRlz+raRdRgyJ5GR/mw2GwsWLKi3lXhrk5ZfBhNtVYUe+/U2Iy0eOtvo4b+EXFmHIhMMw+BM1HMMk/EYWklQVVHCmuHtUV0jxJZLrXfWOV8gxHdnYrFqaDuw5exDXYnNwvqRblgTkoDUvDJZhyM34jKLMWn/PWQXV2LL2E74cVh7dLLSVYjEVFuVgx5tDHA2uvWu4JFbUom0/HJ0s1Osu3rvw2KxMKGbNf640zp3scwoLEeNUAhbBR+mIwkSmzKblJSEmpoaSVWnkM7GZGOkh4Wsw5C4yd42+P12aqucfX43pQAdLXXk6nZxU7BYLMzt54Byfg2C77fOD4CNoY8xprNVs23QISodNRVsHNURi089REJWiazDkbmj99Kx7fJTbB7dEdN72kGDq3jj/Cd3t8Gxe89QUd06dzvceS0Jn/e2l3UYEtfPyQi3nuahkt/62vXI3XRM9GoZw3SaSuREOjAwsM7PggULMGbMGIwePRqjR4+WRox17NixA7a2tuDxePDw8MCNGzfeW/7atWvw8PAAj8eDnZ0ddu3aVa/MyZMn4eLiAi6XCxcXlwaHrzRG3PMSuFvpiHWuPFPnKqN3W0OExLa+nfQO3UlrMWP63vTtQCdcfpTb6sa/33jyAkXlfHwk57tvmWjzsG1cJ6w//wjHw5+12pVXNoU+RnpBObaPc4e+Ak/q4iorYXJ3G+y+nizrUJpdUXk1nhWUo5OVrqxDkTg2m4URHub4s5UtXVldI8TD58Vwb4FtKg6RE+nIyMg6PzExMQCAX375BZs3b5Z0fHUEBwdj/vz5WLp0KSIjI9GzZ08MHjwY6ekN96ylpKTAz88PPXv2RGRkJJYsWYJ58+bh5MmTtWXCwsIwevRoBAQEIDo6GgEBARg1ahTu3r0rcnxdbPUU4lajOCZ0s8bRe+mtan3itPwy8JSVYCwHG7BIGpvNwtpPXg0haC29Ken55fjtWjK+/9hF1qE0ir4GF3sndUZhWTWmHLiP0PgcVNe0np3ytl95CmU2C98OcpK7ITji8HUxxsPnRXheVCHrUJrV0XvPMLaL4m1O1lhD3Mzwb2x2q9rF8nxcNga2o5VoajEKpEuXLsysWbPqHHNycmIWLVrUYPmFCxcyTk5OdY7NnDmT6datW+3vo0aNYgYNGlSnzMCBA5kxY8Y0Oq7i4mIGABOfktHocxTR77dTmFMPnsk6jGaz/K9Y5mFGUb3j1dXVzJkzZ5jq6moZRCVZ/z7MYn658EjWYUjdy0o+M25PGPOsoEzkc+WhvQteVjFBN5KZgKC7zNLTMcy1xFymkl8js3ik7UxkBrPibCwjFAqb/bml2d5Pc0uZ6b/fl8l1yUJ1jYAZuzuMEQjk93ol0d4HbqUwZ6OeSzAq+TZl/z2mtJIv6zDEkpeXxwBgiouLJVanyD3Sffv2bXCZu5KSEvTt27fpmf07VFdXIyIiAr6+vnWO+/r64vbt2w2eExYWVq/8wIEDER4eDj6f/94y76rzfYw0W17P5ZtGeVriRETr2KmrpJKP9ILyFr9ywiBXEyS9KGvRE9uEQgaLTj3E3L4Ocjsu+kN01VUwtYctDk7tgindbZGQVYJZhyIw58gDnI/NalG9YY9zSnEuOgtL/ZxbXI+XvaEGutnp48i91jE/IeRhFga5mrSIOwrv86mnRasZgvU4pxRmOjyFnKsgLSL/S1y9ehXV1fV3u6usrPzgeOWmyMvLg0AggLGxcZ3jxsbGyM5ueOeo7OzsBsvX1NQgLy8Ppqam7yzzrjoBoKqqClVV/78DWUnJqwlBfD6/NkFviZQAdLPRRWh8Fvq2NZR1OFJ15E4qRnYya7A9Xx9rKW09v58dfj7/CJtHu8k6FIljGAY/hCSih70uPCy1xGozeWtvKx0upnpbYaq3FQrKqnE2JgsBQXcxvoslBrYz/nAFcqy6RoiVZ+OwfoQrGKEAfGHzDzuSdntP6GyOmYcj0c1GB1Zysoa5NDAMgxPhz7B1TAe5ee00RBLtzWEBHS20cC0xB93tW87KJA05dDsFoz0t5LpN30cacTc6kX49FhoA4uPj6ySaAoEA58+fh7m59JcIe7uHgmGY9/ZaNFT+7eOi1rl27VqsXLmy3vErV65ATa3lvjECgEEN8Gs4G5VJLacH7G0CBjgZz8ZsFyFCUt9dLjQ0tNlikrbSPDZ2BGfARlPWkUjWhQwWlFkAj8UgJCu6SXXJa3sbAfjEADh3Mw+//wd8aicEV0EXmTmXzkZbdQbhNy7JOhSptncvdeCLfbmY7iQER2JrZ8mX1FKAU8bGtUsXZR1KozS1vU34wC9/sVHs1HI/G6sEQPhjNjzZKVDUabPl5eUSr7PRiXTHjq+2rWWxWA0O4VBVVcXWrVslGtybDAwMoKSkVK+nODc3t16P8msmJiYNlldWVoa+vv57y7yrTgBYvHgxAgMDa38vKSmBpaUl+vTpU1tvS/b0fCJMXIxb5AolAPBvbDZG6VXh43cs7cPn8xEaGooBAwaAw2kZC/G7l1Tix38eYbZfR1mHIjEHwtJgplSFbwc6NqkeRWnvYXi1XOPOayn4ZaSrwq1yEZFWCJ2qTCweLtvthpurva0ev0BIbA5+Gi77LeqlYemZOCwebQMbffleZ1iS7Z3wdwKsO5qjnZmWhKKTL8HhGZhmyYZfR8XdvTk/P1/idTY6kU5JSQHDMLCzs8O9e/dgaPj/t/ZVVFRgZGQEJSXpdYOoqKjAw8MDoaGhGD58eO3x0NBQDB06tMFzvLy8cO7cuTrHLl68CE9Pz9oXjJeXF0JDQ7FgwYI6Zby9vd8ZC5fLBZdb/0OKw+HI9QetpMzo1Qar/o5DV/uWObzjVFQWto1zB4fz/pdHS2pvS30O9DV5ePKiAi4t4ENg59UkFFXwsfQjF4klKYrQ3j0cjWGkrYavTsZixzgPaKvJd7yv8QVCbL2ajB3jPeTm31ja7d2/nRlSCyqxL+wZZvm0rDWWSyv5yC/jw8FER9ahNJok2numTxtsDH2MTaM7SiYoOcIwDC7E52LPRE9wFHhfBWm8pht9U8na2ho2NjYQCoXw9PSEtbV17Y+pqalUk+jXAgMDsXfvXuzbtw8JCQlYsGAB0tPTMWvWLACveoonTpxYW37WrFlIS0tDYGAgEhISsG/fPgQFBeHrr7+uLfPll1/i4sWLWLduHR49eoR169bhv//+w/z586V+PYrKRPvVRIOkFy9lHYrERaYXoo2hRqucSDGrlz1+u54k6zCahGEYbLyYiAq+AIsGObXInr4PcTTWxKJBzgg8HgW+gkxCPBSWhuGdLKCtKh9JdHOZ1sMWzwrKcSIiQ9ahSNTZ6Ez4K3Cvpbgs9dTAMAyeFUh++ICsPXxeDCcTzRazOZkkNSpbOHv2LAYPHgwOh4OzZ8++t6y/v79EAmvI6NGjkZ+fj1WrViErKwuurq4ICQmBtfWrW/BZWVl11pS2tbVFSEgIFixYgO3bt8PMzAxbtmzBiBEjast4e3vj2LFj+O6777Bs2TLY29sjODgYXbt2ldp1tARTe9gi6GYK1gxvL+tQJGr39WQsU5B1hiXNSl8Nymw2kl68hL2hhqzDEVlVjQBLTsWivbkWJne3lXU4MtXeQhufuFtg3b+P8J2c/z3nllbi2uMX2D+5s6xDaXYsFgurhrpiyamHYBgGn3payjokibgQl4PdAR6yDkMmpve0w94byVg51FXWoUjU0XvpmN7TTtZhyKVGJdLDhg1DdnY2jIyMMGzYsHeWY7FYEAikO8t69uzZmD17doOPHThwoN4xHx8fPHjw4L11jhw5EiNHjpREeK2Gk4kWXpRWIf9llcKNxXyXmIwiGGpyYaajKutQZGaWjx32XE/GTyMUawWP3JJKfHsyBhO9bNDHyUjW4ciFj9xMcTspD7eT8uBtbyDrcN5pw4VEfDOwbYtfIu1dlNgsrP2kPZacfohqgRDjuyr2Tqqxz4vRxlCj1fZcuppr49dLT1BQVg09dRVZhyMRpZV85JZUKWQHS3No1NAOoVAIIyOj2v9/14+0k2giXyZ6WePQnTRZhyExO68m4fPeLWusoqgcjDWR97IaReX1l7iUV3/HZCLweDSW+DlTEv2WxX7O2HrpKV5W1cg6lAbFPi+GEpvV4tdr/xA2m4U1w9sjs6gCP/4dr9A7yAbff4YxXVpGz7q4JnnZ4MDtVFmHITGtdahOY7XQhXdIc+jRxgDhqYUtYovp6GdFMNLkwlS79fZGvza6syWC7z+TdRgfVFzOR+DxKCRml2Lf5M5wMG5ha/dJgAZXGfP6OWBNSIKsQ2nQr5eeYH7/pq2q0lKw2Sx8M9AJ7cy1MPtwBArLFOfL7Gvl1TV4VlgOx1b+WuzeRh/Rz4pQXK6Yay2/iWEYnI/NxiBXE1mHIrcaNbRjy5Ytja5w3rx5YgdDFAuLxcKwTuY4HfkcY7tYyTqcJtlx9SlW+resMW3i6utkhH03UzC9px2U5PR2+40nL7DjShK+GdQW7la6sg5HrnnZ6+N8bBbuJuejq538LM95/fELOBprwFirZe8IK6rhnSzQxlATsw8/wNx+beR6WM7b/onJwkftTWUdhsyxWCxM72mLvTeT8ZVvW1mH0ySvJxlylVvnUJ3GaFQivWnTpkZVxmKxKJFuZfw7mGHKgXsY7WmpsGMcryTmoo2RBky06QMdeDVms3dbQ1x5lIv+LvK1U15FtQDrzj+CkGEQNNkTaiqtb3UVcQQOaIsvjjyAp42eXHw5EgoZ7L6ejB0T3GUdilxqb6GNvZM8sepcPG49zcP8/o7gKMn/DeSQh1nYPp7aFHh1x3bfzRQUllVDV4HHSh+9l44ZNMnwvRr1ykxJSWnUT3Kyou51Q8SlosyGt70Brj7OlXUoYqmqEWDP9WTM7t1G1qHIldGdLREcLl/DO6KfFWHa7/fRx8kIq4a6UhItAm01Dga5msjNkJ0zUc/R18kIWrzWtdydKNS5ylg30g1tTbQw9cB9PM0tlXVI7/U4pxTmuqr0uvwfFouFGb3ssPuG4uZFrycZ2tEkw/dq0ldchmFqt9wmrdf4rlY4cjf9wwXl0Ob/nmCStw3UW+G60e+jo6YCfXUVuVgrXCBk8Ot/T/D77VTsGO8OH8eWuRGQtI3tYoWQh1korpDtuM1KvgB/hmdgfDfFHg7WXPw7mOHnkR3w84VE7L6eJLcTEY/de4YxnalN3+Rtb4AnOaXILq6UdShiORNFkwwbQ6xEOigoCK6uruDxeODxeHB1dcXevXslHRtREDpqKjDXUUXs82JZhyKS+6kFyCmpxMB2NImiIRO6WePwHdl+QcoursSMg+Gw0FXFxtEdoaOmuLdIZU2JzcIXfdpg66UnMo3jUFgaxnSxpDGXIjDR5mHXBA9oq3Iw9cB9pOSVyTqkOir5Ajx98bLVr77SkK9822L9+UeyDkNkQiGDfx9mYbArjXn/EJET6WXLluHLL7/EkCFD8Oeff+LPP//EkCFDsGDBAnz33XfSiJEogKk9bLHvVoqsw2i07OJKbAp9jFUtbNF8SXI118bTFy9RXi2bpdPupxbgqz+jsPQjZ4zwsJBJDC2Nl70+MosrkJ4vm53XCsuqcf3JCwxxo14uUbFYLIzubIXVw12x+p947L+VAqGc9E5fiMvGwHbyNZ9CXjibakFLlYM7yfmyDkUklx7lopejIVSU5X9svqyJ/C+0c+dO7NmzB2vXroW/vz/8/f2xdu1a7N69G7t27ZJGjEQBWOuro7pGiKziClmH8kF5L6sQeDwKq4e3b5VbgYtiaAcznIvObPbn/TsmE0E3UrA7wJM2AZCwwAFtsTE0USbPvfXyU8zp00ZhJybLAwtdNewO8IQym4UZB8PlYjvqs1GZ8O9AX47eZcEAR2y9/AR8gVDWoTTa0XvpCr8aV3MROZEWCATw9PSsd9zDwwM1NfK56D9pHlO62+LArVRZh/FeCVklmHskEiv928HWQF3W4ci9j9xM8XdMVrPOhThwKwVhSfnYNq4TjV2XgjZGGtDgKSPqWVGzPm9qXhlySivlagk+RcVmsxDgZYPvh7jg+79icfhumszmK6XklUFfQwWaNHH0nbRVORjW0RxBNxXjrm30syLY6KtDW5XatDFETqQnTJiAnTt31ju+e/dujB8/XiJBEcXkYa2LxJzSZtlFTSBk8CC9EIfCUrH5v8fYfT0Jx8Of4drjF0jJK0N1zf9/82cYBo+yS7DibBx2Xk3CtnGdaPOORuJxlOBiqtVsSdfRe+lIzS/Hj8NcoawAy30pqi/7OeLX/x43a/K1MfQxvhpAm69IkrW+OoImdUZFtQCfHYpAZlHz3xHcdzMFk71tm/15Fc1IDwvEZBQpxFyi/bdSMKW7jazDUBhidfcEBQXh4sWL6NatGwDgzp07ePbsGSZOnIjAwMDachs3bpRMlERhjPZ8tSvetB7SeWOt5Atw4HYqbj7Jg7u1LjpZ6sDNQgcVfAGKyquRmleG649fIKOwHDWCV0kCA8DWQB2fuJvDzUJHKnG1ZOO6WmHr5afoJOWNT05HZiAmowirh7UHi0W3/qXJUJOLTla6uBif0yyTbSPSCqCrxqFltKSAzWZhek879HEywqJTDzHEzRQjPSya5TVUWFaNrOJKuJhpSf25FB2LxcIPQ13xxZEH2DHeA3pyurb045xSKLHZsNRTk3UoCkPkRDo2Nhbu7q8WXE9KSgIAGBoawtDQELGxsbXl6IOwdfJtZ4KAoLuY5GUt8R7FyPRCrD+fiAndrHFoWhf6G2sm1vrqKK3ko6CsWmpv/vdTC/BfQi62jOlE42ebyfSetpj+ezj6OhlJdbMPhmHw66Wn2DSqg9SegwD2hhrYN8kTu28k44sjD7BiSDsYSXnXyD/upGECLWPYaPoaXHz/cTssCI7CjvHuYg1dYxgGZdUC1AiE0OJxJP5+ueXSEywc6CTROls6kVvxypUr0oiDtBBKbBb8O5ghOPwZxne1lli9f4Y/w9XEF6+WgFKjcVvNbZSnJY6HP8MsH3uJ151T8moFld0TPeVi173WQk1FGcM6muPYvXQEeNlI7XlORz5Hd3t96GtwpfYc5BVlJTZm926DxOxSLDgehdm926B7G+lsMV7JF+BOSj7m9KXNrEThYqaFL/q0wezDD/DLqA4waMTr4kVpFUIeZuHW0zzUCBmoc5XBYbNQ9L814Xs6GGCEh0WTNzi6n1oAfXUVWOlTb7QoaCYPkbhPPS0xcd9dDO1oLpFVMfbfSkF6QTm2jqXeSlnp3dYIQTdTMLW7rUSXQ6quEWLhiRisGupKK6jIwAgPC0zcdxfDOplLZbJYUXk1Tj7IwIEpXSReN3m3tiaa2DuxM5aeeYiErBJM62Er8Tt4f0U9x9CO5nRnUAxdbPWgyXPCvKORGN3ZEh+7mdXrRCgsq0ZofA7+S8gBj6MEv/am+HVMJ6iq1F1/nS8Q4r/4HMz+4wEGtzfBmM5WYnVI1AiE2PzfY+wY59Gka2uNRP7kqqysxNatW3HlyhXk5uZCKKy7nMuDBw8kFhxRTEr/G7O3+1oSAn3bNqmuQ3fSkJZfjuVDXOgNW4Ze32k4E/UcozwtJVbvmpAEjO1ihTZGNHZWFpTYLMzysceWS0+w9CMXide/7nwiAgc4SnXoCGmYqooSfvm0A/beSMHXf8bgx2Gu9ZIwcVXXCHEmMhMHpnaWSH2tkbOpFvZN7ozDd9Mxef89GGhwYajJRWllDbKLK6DGVYavizF+GdXhvV9yOUpsDG5vCt92Jgi+/wyT9t3DosFOIm+Os+NqEka4W9AdXzGInEhPnToVoaGhGDlyJLp0oXGqpGG9HQ1x+E46sosrYaIt3ji9Y/fS8Ti7FKuGtqO/Mzkw3N0cU/bfx0h3C4ncGTj1IAOqKkoY5Eo7S8pSTwdDnH7wHLHPiyW6M114agFYLMDDWk9idRLRsFgszOhlhxtPXuCzQ+H4eWQHsd+P3xQc/gyfuJvT7pRNxOMoYVoPW0zrYYvCsmrkl1VDg6sMI02uyO+xSmwWxnW1gm87Y6w4GwdHY03M7m3fqLlK91IKkJpXhrk0TEcsIifS//zzD0JCQtC9e3dpxENaCBaLhQUDHLDu/CNsGt1R5PNPRGQgOqMYq4e5UhItJ7jKSujd1hAX43OanPzGZRYj5GE2fgug24jyYLGfMwKPR+HAlC4SGaf+sqoGv1x8jJ0T3CUQHWmqng6GMNdRxYLgKCzxc0Z7C/G/MBVX8HE+NgsHp3aVYIREV10FuhKYzG2gwcXWsZ3wV1Qmphy4j+VDXNDG6N3LvSZml2Lr5SfYMd6dPmvFJPL9NnNzc2hq0hq85MPamWnDTIeHkIdZIp33V9Rz3EvJx+phrjQmWs6M62qNI/fSm7T+cFF5NX78OwHrR7rR5EI5YajJhV97UxwKS5VIfSvOxmF+fwfoqMnnEl+tkZ2hBnZN8MCvlx6L/J78pp8vPML8/o702pVjLBYLwzqZ4+eRHbD+fCJ2XH2KimpBvXKXEnLw4z/x2Dy6I22o0wQiJ9K//PILvv32W6SlpUkjHtLCzOvngKP30pGSV9ao8ofvpuHW0zys/cSNkmg5pMFVhoeVLv5LyBXrfIGQwcITMVji5yy366i2VqM9LXHjSR6SXrxsUj2nHmTAQleVdjCUQ9pqHOyc4IGwpHxsvfRE5C/EN5/kgWGAzjY0XEcRmGjz8FuAB6z11DHzjwgsOhmDoJsp2Hb5Cabsv4f7qYXYM9GTVtRpIpETaU9PT1RWVsLOzg6amprQ09Or80PIm7jKSvh5ZAcsPf0QuaWV7yzHMAy2XHqCtPxyrBtBPZXybEYvW+y/lQK+QPjhwm/59b/H6O9i3KRby0Q62GwWVg9vj+V/xaGSX7/3qjHiM0sQ8jALc/s6SDg6IikcJTZWDW0HLVUOvjoe3ei2zi6uxI6rT/GdFCalEulhsVj4yM0UB6d2wdx+DnAy0UQ3O31sG+eORYOdwOPQOPemEnmM9NixY/H8+XOsWbMGxsbGNKaGfJCJNg8/DHPFl0ej8P0QFzib1t0Fq7CsGivPxaGdmTbm9aMPYHmnpqKMkR4WCLqZItK60n/HZKKwnI9AX8mt+kEky0Sbh1k+9lh86iE2juog0vv786IK/PhPPLaPc6cvwnKOxWJhkrcNrj1+gWm/38eiQe8fN533sgqBx6OwZnh7ia38QZqfuY4qzHVUZR1GiyNyIn379m2EhYWhQwfapYo0nr2hBn4d2xFr/kmAshIbPdoYgM1m4UFaIdLyyzC/vyM6WOrIOkzSSMM7mWPWHxF4mvuyUUvXhSXl45+YLGwd26kZoiNN0cPBAM8Ky7HyXHyjl518VlCOhSdisH6km0QmTJHm4eNoCFczLaz+JwEGmlx87mNfr/3uJudj839PsGpoO9gYqMsoUkLkl8hDO5ycnFBRUSGNWN6rsLAQAQEB0NbWhra2NgICAlBUVPTecxiGwYoVK2BmZgZVVVX07t0bcXFxtY8XFBRg7ty5aNu2LdTU1GBlZYV58+ahuLhYylfTOhlp8rB5TCfM7+8AFuvVAvDju1ph/5QulEQrGBaLhRX+7fD9X7F4WVXz3rIJWSXYeS0Jv4zqIPFt44l0jO1iBXtDdXx7MuaDt/7vJufj25Mx+PlTN1jq0Y5oikZfg4uNozuil4MhFp2Kwed/RGDjxUSsP/8Ik/bdw4W4HPw20QMOxrTIACENEblH+qeffsJXX32F1atXo3379uBw6s701NLSeseZTTNu3DhkZGTg/PnzAIDPPvsMAQEBOHfu3DvPWb9+PTZu3IgDBw7A0dERP/74IwYMGIDExERoamoiMzMTmZmZ2LBhA1xcXJCWloZZs2YhMzMTJ06ckMp1EMBCVw0WuvSBq+hMtVWxYIAj5h+LwpaxHaGmUv/t5H5qAbZceoLNoxt+nMivAC8bXEnMxbTf72N27zbwttev0zudXVyJnVefopIvxG8BHjTrX8H1cDBADwcDlFbykZZfDjaLhfn9HSW6kykhLZHIn2yDBg0CAPTr16/OcYZhwGKxIBCIN0nlfRISEnD+/HncuXMHXbu+Wrtyz5498PLyQmJiItq2rb97HsMw2Lx5M5YuXYpPPvkEAPD777/D2NgYR44cwcyZM+Hq6oqTJ0/WnmNvb4/Vq1djwoQJqKmpgbIyffAT8j6dbfQgFDKYcTAcX/u2RScrXQBAQVk19t5IRlZxJXZN8IA6bf+tkPq0NYK7pS723kzGrmtJ0FdXgYoyG3kvX20cMcnbmjZcaWE0eRyJbsxDSEsn8qfblStXpBHHe4WFhUFbW7s2iQaAbt26QVtbG7dv324wkU5JSUF2djZ8fX1rj3G5XPj4+OD27duYOXNmg89VXFwMLS0tSqIJaaSudvrYbKiBnVeT8OulJ1BiscDjKOFTTwv0bmsk6/BIE2mrcfCV76v32OIKPvgCIXRUOTRMhxBCIEYi7ePj887HoqKimhLLO2VnZ8PIqP4HspGREbKzs995DgAYGxvXOW5sbPzONbDz8/Pxww8/vDPJfq2qqgpVVVW1v5eUlAAA+Hw++Hz+e88liu91G1Nb/z8dHhuLB9VfcaUl/BtRe/8/NWUAymwwQgH4QsnffZQH1N6tC7V36yKNdm5yt2txcTEOHz6MvXv3Ijo6WqShHStWrMDKlSvfW+b+/fsA0ODM8dfDSd7n7cffdU5JSQk++ugjuLi4YPny5e+tc+3atQ3GfeXKFaip0djf1iI0NFTWIZBmRO3dulB7ty7U3q1DeXm5xOsUO5G+fPky9u3bh1OnTsHa2hojRoxAUFCQSHXMmTMHY8aMeW8ZGxsbxMTEICcnp95jL168qNfj/JqJiQmAVz3Tpqamtcdzc3PrnVNaWopBgwZBQ0MDp0+frjeB8m2LFy9GYGBg7e8lJSWwtLREnz59oK9Pu3m1dHw+H6GhoRgwYMAH/1aI4qP2bl2ovVsXau/WJT8/X+J1ipRIZ2Rk4MCBA9i3bx/KysowatQo8Pl8nDx5Ei4uou92ZGBgAAMDgw+W8/LyQnFxMe7du4cuXboAAO7evYvi4mJ4e3s3eI6trS1MTEwQGhqKTp1erV1bXV2Na9euYd26dbXlSkpKMHDgQHC5XJw9exY8Hu+D8XC5XHC59bfU5HA49EJsRai9Wxdq79aF2rt1ofZuHaTRxo2eLeLn5wcXFxfEx8dj69atyMzMxNatWyUeUEOcnZ0xaNAgzJgxA3fu3MGdO3cwY8YMfPzxx3UmGjo5OeH06dMAXg3pmD9/PtasWYPTp08jNjYWkydPhpqaGsaNGwfgVU+0r68vysrKEBQUhJKSEmRnZyM7O1sqq48QQgghhJCWo9E90hcvXsS8efPw+eefw8Gh+bdxPnz4MObNm1e7Coe/vz+2bdtWp0xiYmKdzVQWLlyIiooKzJ49G4WFhejatSsuXrwITc1XC8tHRETg7t27AIA2bdrUqSslJQU2NjZSvCJCCCGEEKLIGp1I37hxA/v27YOnpyecnJwQEBCA0aNHSzO2OvT09PDHH3+8twzDMHV+Z7FYWLFiBVasWNFg+d69e9c7hxBCCCGEkMZo9NAOLy8v7NmzB1lZWZg5cyaOHTsGc3NzCIVChIaGorS0VJpxEkIIIYQQIldEXlFfTU0NU6dOxc2bN/Hw4UN89dVX+Omnn2BkZAR/f39pxEgIIYQQQojcadLWVG3btsX69euRkZGBo0ePSiomQgghhBBC5J5E9nhVUlLCsGHDcPbsWUlURwghhBBCiNyTSCJNCCGEEEJIa0OJNCGEEEIIIWKgRJoQQgghhBAxUCJNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGSqQJIYQQQggRAyXShBBCCCGEiIESaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDEoTCJdWFiIgIAAaGtrQ1tbGwEBASgqKnrvOQzDYMWKFTAzM4Oqqip69+6NuLi4d5YdPHgwWCwWzpw5I/kLIIQQQgghLYrCJNLjxo1DVFQUzp8/j/PnzyMqKgoBAQHvPWf9+vXYuHEjtm3bhvv378PExAQDBgxAaWlpvbKbN28Gi8WSVviEEEIIIaSFUZZ1AI2RkJCA8+fP486dO+jatSsAYM+ePfDy8kJiYiLatm1b7xyGYbB582YsXboUn3zyCQDg999/h7GxMY4cOYKZM2fWlo2OjsbGjRtx//59mJqaNs9FEUIIIYQQhaYQPdJhYWHQ1tauTaIBoFu3btDW1sbt27cbPCclJQXZ2dnw9fWtPcblcuHj41PnnPLycowdOxbbtm2DiYmJ9C6CEEIIIYS0KArRI52dnQ0jI6N6x42MjJCdnf3OcwDA2Ni4znFjY2OkpaXV/r5gwQJ4e3tj6NChjY6nqqoKVVVVtb8XFxcDAAoKChpdB1FcfD4f5eXlyM/PB4fDkXU4RMqovVsXau/Whdq7dXmdpzEMI7E6ZZpIr1ixAitXrnxvmfv37wNAg+OXGYb54Ljmtx9/85yzZ8/i8uXLiIyMFCVsrF27tsG4HR0dRaqHEEIIIYQ0r/z8fGhra0ukLpkm0nPmzMGYMWPeW8bGxgYxMTHIycmp99iLFy/q9Ti/9nqYRnZ2dp1xz7m5ubXnXL58GUlJSdDR0alz7ogRI9CzZ09cvXq1wboXL16MwMDA2t+LiopgbW2N9PR0iTUMkV8lJSWwtLTEs2fPoKWlJetwiJRRe7cu1N6tC7V361JcXAwrKyvo6elJrE6ZJtIGBgYwMDD4YDkvLy8UFxfj3r176NKlCwDg7t27KC4uhre3d4Pn2NrawsTEBKGhoejUqRMAoLq6GteuXcO6desAAIsWLcL06dPrnNe+fXts2rQJQ4YMeWc8XC4XXC633nFtbW16IbYiWlpa1N6tCLV360Lt3bpQe7cubLbkpggqxBhpZ2dnDBo0CDNmzMBvv/0GAPjss8/w8ccf11mxw8nJCWvXrsXw4cPBYrEwf/58rFmzBg4ODnBwcMCaNWugpqaGcePGAXjVa93QBEMrKyvY2to2z8URQgghhBCFpBCJNAAcPnwY8+bNq12Fw9/fH9u2batTJjExsXbiHwAsXLgQFRUVmD17NgoLC9G1a1dcvHgRmpqazRo7IYQQQghpeRQmkdbT08Mff/zx3jJvz8JksVhYsWIFVqxY0ejnEWcmJ5fLxfLlyxsc7kFaHmrv1oXau3Wh9m5dqL1bF2m0N4uR5BoghBBCCCGEtBIKsSELIYQQQggh8oYSaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAi3Ug7duyAra0teDwePDw8cOPGjfeWv3btGjw8PMDj8WBnZ4ddu3Y1U6REEkRp71OnTmHAgAEwNDSElpYWvLy8cOHChWaMljSVqK/v127dugVlZWV07NhRugESiRK1vauqqrB06VJYW1uDy+XC3t4e+/bta6ZoSVOJ2t6HDx9Ghw4doKamBlNTU0yZMgX5+fnNFC0R1/Xr1zFkyBCYmZmBxWLhzJkzHzxHIrkaQz7o2LFjDIfDYfbs2cPEx8czX375JaOurs6kpaU1WD45OZlRU1NjvvzySyY+Pp7Zs2cPw+FwmBMnTjRz5EQcorb3l19+yaxbt465d+8e8/jxY2bx4sUMh8NhHjx40MyRE3GI2t6vFRUVMXZ2doyvry/ToUOH5gmWNJk47e3v78907dqVCQ0NZVJSUpi7d+8yt27dasaoibhEbe8bN24wbDab+fXXX5nk5GTmxo0bTLt27Zhhw4Y1c+REVCEhIczSpUuZkydPMgCY06dPv7e8pHI1SqQboUuXLsysWbPqHHNycmIWLVrUYPmFCxcyTk5OdY7NnDmT6datm9RiJJIjans3xMXFhVm5cqWkQyNSIG57jx49mvnuu++Y5cuXUyKtQERt73///ZfR1tZm8vPzmyM8ImGitvfPP//M2NnZ1Tm2ZcsWxsLCQmoxEslrTCItqVyNhnZ8QHV1NSIiImp3VHzN19cXt2/fbvCcsLCweuUHDhyI8PBw8Pl8qcVKmk6c9n6bUChEaWkp9PT0pBEikSBx23v//v1ISkrC8uXLpR0ikSBx2vvs2bPw9PTE+vXrYW5uDkdHR3z99deoqKhojpBJE4jT3t7e3sjIyEBISAgYhkFOTg5OnDiBjz76qDlCJs1IUrmawuxsKCt5eXkQCAQwNjauc9zY2BjZ2dkNnpOdnd1g+ZqaGuTl5cHU1FRq8ZKmEae93/bLL7+grKwMo0aNkkaIRILEae8nT55g0aJFuHHjBpSV6S1UkYjT3snJybh58yZ4PB5Onz6NvLw8zJ49GwUFBTROWs6J097e3t44fPgwRo8ejcrKStTU1MDf3x9bt25tjpBJM5JUrkY90o3EYrHq/M4wTL1jHyrf0HEin0Rt79eOHj2KFStWIDg4GEZGRtIKj0hYY9tbIBBg3LhxWLlyJRwdHZsrPCJhory+hUIhWCwWDh8+jC5dusDPzw8bN27EgQMHqFdaQYjS3vHx8Zg3bx6+//57RERE4Pz580hJScGsWbOaI1TSzCSRq1F3ygcYGBhASUmp3rfX3Nzcet9kXjMxMWmwvLKyMvT19aUWK2k6cdr7teDgYEybNg1//vkn+vfvL80wiYSI2t6lpaUIDw9HZGQk5syZA+BVosUwDJSVlXHx4kX07du3WWInohPn9W1qagpzc3Noa2vXHnN2dgbDMMjIyICDg4NUYybiE6e9165di+7du+Obb74BALi5uUFdXR09e/bEjz/+SHeUWxBJ5WrUI/0BKioq8PDwQGhoaJ3joaGh8Pb2bvAcLy+veuUvXrwIT09PcDgcqcVKmk6c9gZe9URPnjwZR44cobF0CkTU9tbS0sLDhw8RFRVV+zNr1iy0bdsWUVFR6Nq1a3OFTsQgzuu7e/fuyMzMxMuXL2uPPX78GGw2GxYWFlKNlzSNOO1dXl4ONrtuaqSkpATg/3srScsgsVxNpKmJrdTr5XOCgoKY+Ph4Zv78+Yy6ujqTmprKMAzDLFq0iAkICKgt/3pJlQULFjDx8fFMUFAQLX+nQERt7yNHjjDKysrM9u3bmaysrNqfoqIiWV0CEYGo7f02WrVDsYja3qWlpYyFhQUzcuRIJi4ujrl27Rrj4ODATJ8+XVaXQEQganvv37+fUVZWZnbs2MEkJSUxN2/eZDw9PZkuXbrI6hJII5WWljKRkZFMZGQkA4DZuHEjExkZWbvUobRyNUqkG2n79u2MtbU1o6Kiwri7uzPXrl2rfWzSpEmMj49PnfJXr15lOnXqxKioqDA2NjbMzp07mzli0hSitLePjw8DoN7PpEmTmj9wIhZRX99vokRa8Yja3gkJCUz//v0ZVVVVxsLCggkMDGTKy8ubOWoiLlHbe8uWLYyLiwujqqrKmJqaMuPHj2cyMjKaOWoiqitXrrz3s1hauRqLYeheBSGEEEIIIaKiMdKEEEIIIYSIQeES6R07dsDW1hY8Hg8eHh64cePGe8uLso/6sWPHwGKxMGzYMAlHTQghhBBCWhqFSqSDg4Mxf/58LF26FJGRkejZsycGDx6M9PT0BsunpKTAz88PPXv2RGRkJJYsWYJ58+bh5MmT9cqmpaXh66+/Rs+ePaV9GYQQQgghpAVQqDHSXbt2hbu7O3bu3Fl7zNnZGcOGDcPatWvrlf/2229x9uxZJCQk1B6bNWsWoqOjERYWVntMIBDAx8cHU6ZMwY0bN1BUVIQzZ85I9VoIIYQQQohiU5gNWaqrqxEREYFFixbVOe7r64vbt283eM679lEPCgoCn8+vXSdw1apVMDQ0xLRp0z44VAQAqqqqUFVVVfu7UChEQUEB9PX1aedCQgghhBA5xDAMSktLYWZmVm+9cHEpTCKdl5cHgUDQ4L7ob+9M81pj9lG/desWgoKCEBUV1ehY1q5di5UrV4p8DYQQQgghRLaePXsmsQ2VFCaRfq2hfdHf1wv8vn3US0tLMWHCBOzZswcGBgaNjmHx4sUIDAys/b24uBhWVlZ4/Pgx9PT0Gl0PUUx8Ph9XrlxBnz59aKfKVoDau3Wh9m5dqL1bl4KCAjg6OkJTU1NidSpMIm1gYAAlJaUG90V/u9f5tQ/tox4XF4fU1FQMGTKk9nGhUAgAUFZWRmJiIuzt7evVy+VyweVy6x3X09MTaX92opj4fD7U1NSgr69Pb7ytALV360Lt3bpQe7dOkhyGqzCrdqioqMDDw6PevuihoaHw9vZu8JwP7aPu5OSEhw8fIioqqvbH398fffr0QVRUFCwtLaV2PYQQQgghRLEpTI80AAQGBiIgIACenp7w8vLC7t27kZ6ejlmzZgF4NeTi+fPnOHjwIIBXK3Rs27YNgYGBmDFjBsLCwhAUFISjR48CAHg8HlxdXes8h46ODgDUO04IIYQQQsibFCqRHj16NPLz87Fq1SpkZWXB1dUVISEhsLa2BgBkZWXVWVPa1tYWISEhWLBgAbZv3w4zMzNs2bIFI0aMkNUlEEIIIYSQFkKhEmkAmD17NmbPnt3gYwcOHKh3zMfHBw8ePGh0/Q3VQQghhBBCyNsUZow0IYQQQggh8oQSaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDFQIk0IIYQQQogYKJEmhBBCCCFEDJRIE0IIIYQQIgZKpAkhhBBCCBEDJdKEEEIIIYSIgRJpQgghhBBCxECJNCGEEEIIIWKgRJoQQgghhBAxSCyRLisrw/Xr1yVVHSGEEEIIIXJNYon006dP0adPH0lVRwghhBBCiFyjoR2EEEIIIYSIodGJtJ6e3nt/evXqJc04a+3YsQO2trbg8Xjw8PDAjRs33lv+2rVr8PDwAI/Hg52dHXbt2lXn8T179qBnz57Q1dWFrq4u+vfvj3v37knzEgghhBBCSAug3NiCVVVV+Pzzz9G+ffsGH09LS8PKlSslFlhDgoODMX/+fOzYsQPdu3fHb7/9hsGDByM+Ph5WVlb1yqekpMDPzw8zZszAH3/8gVu3bmH27NkwNDTEiBEjAABXr17F2LFj4e3tDR6Ph/Xr18PX1xdxcXEwNzeX6vUQQgghhBDF1ehEumPHjrC0tMSkSZMafDw6OlrqifTGjRsxbdo0TJ8+HQCwefNmXLhwATt37sTatWvrld+1axesrKywefNmAICzszPCw8OxYcOG2kT68OHDdc7Zs2cPTpw4gUuXLmHixIlSvR5CCCGEEKK4Gp1If/TRRygqKnrn43p6elJNPKurqxEREYFFixbVOe7r64vbt283eE5YWBh8fX3rHBs4cCCCgoLA5/PB4XDqnVNeXg4+nw89Pb13xlJVVYWqqqra30tKSgAAfD4ffD6/0ddEFNPrNqa2bh2ovVsXau/Whdq7dZFGOzc6kV6yZMl7H7e0tMT+/fubHNC75OXlQSAQwNjYuM5xY2NjZGdnN3hOdnZ2g+VramqQl5cHU1PTeucsWrQI5ubm6N+//ztjWbt2bYO971euXIGamlpjLoe0AKGhobIOgTQjau/Whdq7daH2bh3Ky8slXmejE2l5wWKx6vzOMEy9Yx8q39BxAFi/fj2OHj2Kq1evgsfjvbPOxYsXIzAwsPb3kpISWFpaok+fPtDX12/UdRDFxefzERoaigEDBjR4V4O0LNTerQu1d+tC7d265OfnS7xOhUmkDQwMoKSkVK/3OTc3t16v82smJiYNlldWVq6X8G7YsAFr1qzBf//9Bzc3t/fGwuVyweVy6x3ncDj0QmxFqL1bF2rv1oXau3Wh9m4dpNHGCrOOtIqKCjw8POrdfgkNDYW3t3eD53h5edUrf/HiRXh6etb5x/z555/xww8/4Pz58/D09JR88IQQQgghpMVRmEQaAAIDA7F3717s27cPCQkJWLBgAdLT0zFr1iwAr4ZcvDnhcdasWUhLS0NgYCASEhKwb98+BAUF4euvv64ts379enz33XfYt28fbGxskJ2djezsbLx8+bLZr48QQgghhCgOhRnaAQCjR49Gfn4+Vq1ahaysLLi6uiIkJATW1tYAgKysLKSnp9eWt7W1RUhICBYsWIDt27fDzMwMW7ZsqV36Dni1wUt1dTVGjhxZ57mWL1+OFStWNMt1EUIIIYQQxSNWIl1UVIQTJ04gKSkJ33zzDfT09PDgwQMYGxtLfROT2bNnY/bs2Q0+duDAgXrHfHx88ODBg3fWl5qaKqHICCGEEEJIayJyIh0TE4P+/ftDW1sbqampmDFjBvT09HD69GmkpaXh4MGD0oiz1Sup5ON5YQV01Dgw0eK9d6USQgghhBAifSIn0oGBgZg8eTLWr18PTU3N2uODBw/GuHHjJBocASLTC7HjahJUlNmw1lNDQVk1Mgor0NPBABO6WUOdq1CjcwghhBCJ+NDyt4Q0B5GzsPv37+O3336rd9zc3PydG6MQ8ey9kYzY58VYN8INeuoqtceFQgYX47Mx/fdwzOvnAC97WruaEELeJSKtAFcevUBxBR+Oxhr42M0Mum+8pxLFUVrJx/5bqQhPKwSHzQIDQInNwmBXE3zsZgYVZYVaQ4G0ACIn0jwer3ZL7DclJibC0NBQIkERYPuVp6jiC7BpdMd637jZbBYGuZqih4Mhfvo3ARfisrHYzwlcZSUZRUsIIfKntJKPpadjYaTJxbBO5tBR4yD2eTECj0ehi60+ZvS0hbISJV6KIiGrBD/8HY8ZPe0wt2+b2s/G8uoanInMxKR99zC9py36OhlRT3ULxDAMckqqkF5QjrLqGlTxBdDgcuBorAEjrXdvoidtIifSQ4cOxapVq3D8+HEAr3YITE9Px6JFi+qshkHEdzY6E/kvq7HsY+f3vhlocJXx47D2+C8+B9N/D8ea4e1hqUdblBNCSHEFH18cfoAFAxzhYa1be9xCVw0D25ngz4gMzDkSiQ2jOkCDhsjJvcc5pVgTkoBt49zr3KEFADUVZYzraoVhncyw62oS/gzPwGI/J1jrq8soWtIUlXwBnua+RNKLl0h+UYbkvDKUVdWABcBIiwcrPTVo8JTBU2Yjs6gSZ6KeI7e0CkM7mGF4J3Ow2c37JUrkd48NGzbAz88PRkZGqKiogI+PD7Kzs+Hl5YXVq1dLI8ZWJSWvDGcin2N3gEejv1H3dzFGWxNNLDn9EJO8bNDfpeGdHolslVTyEfu8GNnFlagRMBAwDNRUlKClyoEWTxlaPA60VDnQ5CmD/b+2FzIMGObVf4FXX56op4WQ9+MLhPjqeBQWDmoLNwudeo+zWCyM8rSEvaE6Zh4Kx/qRHWCuo9r8gZJGKSqvxvK/4rB1XKd6SfSb1FSUEejbFmn5ZVgTkgAXU23M6m1Hd2vlnEDI4H5qAf6JyUJ6QTm4ymw4GmvC3kgdfZ2MMM1QHVq89+9IWMkX4Ni9dEz9/T7WDG8Ps2Z8PYucSGtpaeHmzZu4fPkyHjx4AKFQCHd3d/Tv318a8bUqQiGDH/6Ox6qh7US+3Wipp4a9kzyx+p8EhKcV4mtfR7plKQcYhsHVxBc4ei8dykosdLTUgZmOKtS5bLBZLJRX1yCjsAIlFXyUVPJRUlGD0ko+hP+bRMMCwGax8Dp3Lq2sAZvFQh8nQ4xwtwCPQx8Q0iAUMvg3NhshsVkoq+QjN5eN0/kP0NFKF596WjY56cotrcRfkZm4l1oAofBVW3vb62NsFyuoqlCbNtW2y08xpINZg0n0mzys9bB2uBu+Ph6N5f4ucDLRap4ASaMxDIOlZ2Kx2M8JBhrcRp1jra+OXRM8cD42G1P238fU7rbo50zDPeRNVY0Ah8LScPlRLrra6mOStw3aGGmIVRePo4TJ3W3Rx8kIXx2Pxgr/dmhrovnhEyVA7PtZffv2Rd++fSUZS6t37P4z9HQwgIWueMMzuMpKWDXUFX9FPcdnhyLw0yftZTpuqLXLKCzHirPxaGemhfUj3aCjJpnJTZV8AUIeZmHK/vuY1dsePo40N0GSnuaWYuW5ePg4GmLNsPZQ4wAhISHwHdgRMZkv8dO/j8BRYuGzXnYiJ16FZdXYdT0JyS/KMK6LFSZ520BFmY2qGgH+i8/F1AP3sfQjZ7iaa0vp6lq+hxnFSC8ox4IBjo0qb6Wvhm3jOmF+cBTm9nVAJ4vm+fAljfN3TBacjDU/+KXobSwWC4Pbm6KnoyEO3ErBgdupGOlhgUGuJtQBIQceZhRj7b8JGN3ZEn9M6yqx4RjW+urYPt4dc448wE+fuMFKX/rDXRuVSG/ZsqXRFc6bN0/sYFqz7OJKXIjLxr7JnZtc19CO5mhnpoX5wVGY07cNvO0NJBAhEcXtp3nYcTUJPw5zhY2BZMfp8ThK+MTdAoNdTbHyXBye5r7EtB62En2O1ura4xfYfysFGz7tAOP/fQnl8/kAAGUlNrra6aOrnT5S88qw61oSyqoF+KKP/QcT6uIKPn6/nYqItELM8rHH4sF1V9rhKivhIzdT9GhjgLnHIhE4wBEdLXWkco0tmVDI4OeLidg4qoNI5+lrcLFrggcWBEdhWAdTKUVHRFVaycfRe+nYP0X8z0UNrjLm9HXAtB4CnIrMwBeHH0BLlYOB7YzRw8EQXLpx2+zORWfiXHQmdox3l1gH05v01FWw4dMO+OZENPZM9ISainTnQLAY5n+DL9/D1rbuh/SLFy9QXl4OHR0dAK92OlRTU4ORkRGSk5OlEqg8Kykpgba2NvLy8qCvL95SdAuCozDLx16ityLKq2uw8mw89DRUML+/A40TkxA+n4+QkBD4+fmBw6k/butiXDZOPsjA5tGdpH6bnmEYrL+QCCNNLqZ0p2S6Ka49foHg++nYOKpjnR6r97V3en45dlx9ivJqAUZ3tkRXW73aIVUMwyA5rwyH76QjNb8M47taNWo1gdJKPmYeisDm0R3pjpKI/gx/hpdVNWK/FqprhFh8KhpVec/wy7RB4HI//CGfnl+Om0/z8DinFOXVNTDS5KGHgwG62Og1+6SnlmbDhUR0ttWT+F237OJK/JeQgxtPXqBGIIROZTbmfNIbtkY0tEfaTkRk4H5KAdZ80h5KUn593H6ahzNRz7F+5P9/sc7Pz4eBgQGKi4uhpSWZ9m5UIv2mI0eOYMeOHQgKCkLbtm0BvFr6bsaMGZg5cybGjx8vkcAUSVMT6QfphTj94Dl+GOYqheiA87FZOHQnDd995AJnU3qjaKr3JVZ/RT3H1cQXWDfCrdnWM2UYBt+ejMFgV1P0cTJqludsaeIzS7D+wiPsmuBR77bvh744Aa+G8fwVlYnI9EK8fkcVMgws9dQwwt0CHUTsXX6aW4qf/n2EPRM9aVxnI/EFQkwMuoffp3Zp0muvuroa3x84j+dsI3zepw287PTrtAHDMEjMKcWlhFzcSc6Hha4qfByN4GyqCXWuMrKKXiVpD9ILsXCgE9pb0DAdceSUVGLp6Vjsmdj4iffiKC6rwLbjoSjWsEJeGR8Tvazh42hIrzsp+C8+B//GZuPnkW7N9iVz3flH6Gipg4HtTABIJ5EWub972bJlOHHiRG0SDQBt27bFpk2bMHLkyFaZSDcFwzDYcukJNnwq2q1IUQxyNYWHtR5WnI2Di5kWZvayo4mIUnAlMReXH+Vi46iOUv+m/SYWi4VVQ10x7ff7aGeuBSNN6sUURXZxJVb9HYcd4+sn0Y1loauGL/q0kVhMbYw00c1OH3+GZ2BUZ0uJ1duSnYl8jo87mDb5CyyLxYKXMYNuPu1x+F4Gdl5Ngo6aCjR5yigqr8bLKgEcjTTQ18mowfdSAw0u2ltoo6CsGotPxcCvvSmGdjRvUkyt0a5rSZjzxlrR0qKmogxXPQZ+fu1QXvNqI7Sj99Lx/ZB2tJKLBD3KLsGRe+nYNcGjWe/UzO/vgCn778PLXv+DK3+IS+REOisrq3bM4JsEAgFycnIkElRr8m9sNrrY6jV6NrK4DDW52DauE05EZGDa7+FY4d8OthIeu9uaRT8rwqGwNOwY796sSfRrPI4Svv+4HVacfZUQksbhC4RYeDIGa4a3f++yWrIw2dsGk/bfw8B2JtBWk84HQEtRIxDi1IPnODC16XNMXtNTV0Gg76sOo5JKPsqqaqCjqtLo4Vp66irYMd4Di0/FAAAl0yIoKKvGs4KKZp8noK3KwVe+bZH04iUWnYzB1P+tAkGaprSSj5Vn47F1XKdm33mSq6yEOX3aYMt/T/Ddxy5SeQ6Rr6hfv36YMWMGwsPD8XpUSHh4OGbOnElL4Ino9dIvU5tpbCuLxcKnnpZY80l7rDoXh/OxtKW7JKTnl2Pd+UfYNLqjTGeDtzXRhL2hBkLj6QttY20MfYxPPSxgZyjekkvSpKzExuzebbDj2lNZhyL3zsVkYnB7E6nNA9HicWCqrSrynAclNgtrP3HDxbgchKcWSCW2lujA7VRM9raR2fPbG2pgz0RPnIvJxMmIDJnF0VL89O8jfNnfQeodhu/i3cYAOaVVSHrxUir1i5xI79u3D+bm5ujSpQt4PB64XC66du0KU1NT7N27VxoxtliHwtIwurNlsydf5jqq+C3AE5cScnAoLLVZn7ulKSyrxrcnY7Dh0w7QVpV9r+EXfdpg380UVNcIZR2K3Lv5JA9F5dUY0sFM1qG8U/c2Bkh5UYackkpZhyK3BELm1RAYT/kcAqPEZuGnEe3xy8XHyH9ZJetw5N7LqhpEpheiexvxJu5LCo+jhA0jO+B+agFOUDIttttJeVBis9DNTrbtuXBgW/x8PlEqdYucSBsaGiIkJASPHj3Cn3/+iePHjyMhIQEhISEwMqJbII1VWFaNa49fwF9GH+IqymysH+mG7JJKbL30RCYxKLoqvgALjkdh6UfOzbqL0vu8WhrPHMH302UdilzLf1mF7VeeYpmUbvVJ0kwfewTdTJF1GHLrn4dZGOBiLNdrA2vyOFji54wf/o6XdShy79i9dIzrYiUXk/3YbBbWDG+PiLQCnIl8LutwFE5FtQBbLz3FNwPbfriwlFnqqcHBWAM3nuZJvG6xB6s4OjrC398fQ4cOhaNj4xa+J//vl9BEzO/vKNPlkVgsFr4Z6ISXVTU4cpcSL1EIGWDpX/GY7G0jd5tnDO9kjn9js1FRLZB1KHJJKGSw9HQsln3sIvX1RSXBw1oXT3Nfori8/tyU1k4oZBB8Px1ju1jJOpQPam+hDQtdNfz7MEvWocitqhoBLj/Khe//VliQB2w2Cz8Oa4+L8dm4T8NzRPLLxUTM9LGDppQm+Ylqpo89Dt95JvF6Rf4UmTp16nsf37dvn9jBtBYPM4pRXSOEh7WurEMBAHw7yAnfnIiBoSYXA1yMZR2O3GMYBufS2OjbRRe928rfXRhlJTbGdbXCoTup+KyXvazDkTv7b6eim50eXMwUZynIAC9rHLqTijl9HWQdilz5NzYbfdoayXVv9Jvm9muDKfvvo6udvtxNbpUHZyKfY1hHc5lM2H4fJTYL60d2wMxD4fjpEzdY6kl/tzxFF5leiOIKvlx9RmpwldHHyQAnJFyvyD3ShYWFdX5yc3Nx+fJlnDp1CkVFRRIOr+URChlsuJiIbwY6yTqUWmw2C2s/aY/g++lIzC6VdThyjWEYrLvwGJoqDEZ7Wsg6nHfyczXF9cd5KK2kXsw3xT4vRkRaASbJcCKTOHo7GuJOcgHdZXiDUMjgyL00jOsq/73Rr3GVlfDtICf89G+CrEOROwIhg7+iMjG0k3zOWdDgKmPdCDcsOhWDl1U1sg5HrlXVCLDhYiKW+DnLOpR6Pukk+dVzRE6kT58+Xefn77//RnJyMsaMGYNu3bpJPMCW5kREBnq3NYShpmxmr76LijIbaz9xw8pzcSijN4kGCYUMVp6Lh5mOKvqaibSPUbNjs1mY6GWNP+7QkJ3XSir5WP1PAlYPay8X4y9F8WrFHQv8GSH525KK6mJ8Dno6GCrE8Jw3dbDUgbISGxFphbIORa5cjMtGXycjud6B10JXDQv6O2LRyRgIhfL9GSBLO64kYXxXa+jK4V0XjhT20JBIjWw2GwsWLMCmTZskUV2L9byoAn8/zEJAN2tZh9IgQ00u5vRtgxVn42QditwpqeRj7tFIuJhqYWI3xegB6+9sjJtPX6CST72YDPNqXPTXA9vK5Zt7Y3zU3hTnY7MhoA9wMAyDw3fT5Pa99EO+8W2LTaGPqS3/h2EYHLmnGGPdPW304GWvj62XaVnKhjzKLkHSi5cY7Co/49ylTWKpeVJSEmpqqCfzXWoEQiw7E4uV/u3keldBb3sDWOiq0dqZ/8MwDC4l5GDmwQhM7WGrULvMsdksjHC3wJ/UljhwOxUdLLTlZl6COJSV2PBxNMTlR7myDkXmLiXkopudPtS5itUb/ZquugoGtzfBkbtpsg5FLtx4kodOVroK057ju1ojt7SS1ux/S41AiNX/JOD7j10U7q5fU4j8VxsYGFjnd4ZhkJWVhX/++QeTJk2SWGAtzdp/H2F4J3OF2E3wiz72mH4wHF1s9VrtpAqGYXA7KR+7ryejk5UO9k7yVJg3+TcN6WCGiUH3MLazpVx/gZOm20/zEJlehF/HdJR1KE02posVvjoe1aonBQuFDPbfTsGuCYq9g+eYzlaYvP8e/NqbQl9GG1XIA4ZhsO9WCjaP7ijrUESyfEg7fHYoHLYGamhjpCnrcOTC7hvJ8O9gBiMtnqxDaVYif7JGRkbW+YmJebX96S+//ILNmzdLOr56duzYAVtbW/B4PHh4eODGjRvvLX/t2jV4eHiAx+PBzs4Ou3btqlfm5MmTcHFxAZfLhYuLC06fPi3RmLdfeQpNnrJcb/zwJmUlNlb5u+L7v2Jb3a3HgrJq7LmejAlBd3E3OR+bR3fE/P6OCplEA6/Ggw1yNcE/rXTJreQXL7HzWhLWjXBrET0k2qocmOuoIi6zWNahyMzZ6Ez0dTKWmyW1xKXEZiFwgCM2XJTOJhGK4tbTfLiZa0NHTbGGXL3ei2HZmTgUV9Ck7ocZxYjPLMFID/mdhC8tIifSV65cqfNz6dIlHDt2DJ999hmUlaWbbAQHB2P+/PlYunQpIiMj0bNnTwwePBjp6Q1PqEpJSYGfnx969uyJyMhILFmyBPPmzcPJkydry4SFhWH06NEICAhAdHQ0AgICMGrUKNy9e7fJ8fIFQqw6F4/qGiG+7KdYy1ZZ6athkKsJdl9PlnUozSIusxgLT0RjyamHsDVQx+9TuiDQV3HH075plKcl/gzPAMO0ri9FhWXVWHo6Fhs+7SDy1s7ybEp3W+y/lSrrMGSiukaI4PvPMEFB5il8SCerV0ONItNb58RDhmEQdDMZU3vYyjoUsRhp8vDtYCd8dTwaVTWtdy5KeXUN1v6bgB+GuraIDgtRiZxI9+3bt8Fl7kpKStC3b19JxPROGzduxLRp0zB9+nQ4Oztj8+bNsLS0xM6dOxssv2vXLlhZWWHz5s1wdnbG9OnTMXXqVGzYsKG2zObNmzFgwAAsXrwYTk5OWLx4Mfr169ek3vWqGgH+fZiFyfvvobONLhYMcFTIP65RnpaIzSxu0b1fBWXVCDwehT/upOPz3m2wK8AD/V2MW9QwCFUVJXjZ67eqsbUvq2ow71gkvvvYGcYt7DajjYE6KqoFyG2F24YfvZeOkR4Wcr2yg6i+9m2Lja104uGtp/lor4C90W/qaKmDsV0s8dXxaNQIhLIORyZ+/CcBn/e2bxEdT+IQuQv56tWrqK6urne8srLyg8MsmqK6uhoRERFYtGhRneO+vr64fft2g+eEhYXB19e3zrGBAwciKCgIfD4fHA4HYWFhWLBgQb0y70ukq6qqUFVVVft7SUkJAGDesWhwVNXBZrHgba+HbWM6QIOrDD5fcW/7LPNri8DjMdg9oRO4CrLpQWNFPivCpv+eYqGvI1zNX23O0Zi2el1Gkdp1jIcZAv98iJ72ugr5pU4UVXwB5gZH4wsfWzgaqjW5neSxvcd2NseBWylY0L+NrENpNiUVfFyIzcK+SR5SbYvmbm8tLhv92hrg8J0UjFWgycxNJRQy+O3aU2z81E2mry1JtHevNnooq6zGN39GYe1wV7nbUEaaDt9Nh76aMrrZ6MjVe+S7SCPGRifSr8dCA0B8fDyys7NrfxcIBDh//jzMzSW/0PVreXl5EAgEMDauO8nG2Ni4Tixvys7ObrB8TU0N8vLyYGpq+s4y76oTANauXYuVK1fWO+6nmwMN9f9NzivMwvVLLWMZOVcVFubsCcVwm5bzbTuhkIVbOSxMcBAiPToX6dGi1xEaGir5wKRIuYyNrcH/oo3ibOgnMoEQOPiEDS9jBjlx2QiR4EtQntqbYYBLCWzYVjxGCxq18l4nktnwMBDiwvl/m+X5mrO9tRlgZwIbypkPoa7YQ78b7V4uC4YC4PZV+XhdSaK9tcpYGPXrc4y3F4KnmNNqRBKZz0J8IQvj7IUICXks63Aapby8XOJ1NrqpO3bsCBaLBRaL1eAQDlVVVWzdulWiwTXk7d40hmHe28PWUPm3j4ta5+LFi+usXlJSUgJLS0v069sH+vr6H74IBeMHYPm5eOi0NYa3veJf34P0Ipy9kYKj8zqAqyz6EA4+n4/Q0FAMGDAAHI7ifOp1Lq3C8nMJmOfXUdahSIVQyGDR6VhM9zXCwHaSW9VCXtu72iwTVQIhhsnxDpuSEpleBOOq55g3vJ3Un0tW7W3evginojLxg59Lsz2nrBSWVyM4OAZ7J7tLZYMMUUiyvf3w6m9106Wn+MHfBdb6LXfVqz8jnqOwvAC/j5PvJX3flp+fL/E6G51Ip6SkgGEY2NnZ4d69ezA0NKx9TEVFBUZGRlBSkl7XiIGBAZSUlOr1FOfm5tbrUX7NxMSkwfLKysq1Ce+7yryrTgDgcrngcusvV8ThcOTqg1aSvvu4HaYdCEdHK31oqynuNeaUVOLXy0nYPdETGk1ciUPR2ttMjwMTbVUk5pbD1Vxb1uFIFMMwWH42Dt0djPBxR+kklvLW3sPcLTHlwD2M72bToofrvKyqwaZLSdgV4NGs//7N3d5d7A1xIjITCTllcLPQabbnlYWfLsTh28HOUOPJz7J/kmrvLvaG+EVfA8vOxMLLXh9Tutu2qKEexeV8/HQ+AXrqKtg0uhPYCnZt0nhNN/prhLW1NWxsbCAUCuHp6Qlra+vaH1NTU6km0cCrZN3Dw6Pe7ZfQ0FB4e3s3eI6Xl1e98hcvXoSnp2ftP+a7yryrztZKTUUZCwe1xYpzijtcRSBksPjUQ6wa6trkJFpRfdbLDntvtLyVWH65+Bg2+uqtauklFWU2utnq49rjF7IORWoYhsGyM7H4sr8DtFXl50uMtCwc5IR15x+16BUgjt9/BgtdNXSw1JF1KFJjpqOKvZM8oclTxuT99xD9rEjWITVJTkkl/ovPwZqQBMw9FokR7hb4ZqCTwiXR0tKobOLs2bMYPHgwOBwOzp49+96y/v7+EgmsIYGBgQgICICnpye8vLywe/dupKenY9asWQBeDbl4/vw5Dh48CACYNWsWtm3bhsDAQMyYMQNhYWEICgrC0aNHa+v88ssv0atXL6xbtw5Dhw7FX3/9hf/++w83b96U2nUoqk5Wuria+AJnIp9jWCfpjYeXlt9vp6KfsxHaGGnIOhSZsdRTA5vNQkpemUJsDtQYe64ng81mKewSWk0R4GWNBcFR8HE0bJG90lsvP4WbhTa62Sn+kLLGMNDgYrK3LdaGPMIKf+kPY2lut5PycPVxLraNdZd1KFLHYrEwurMV+jkbY2PoYxy5m46vBjrCSFO+VxEqreTjbnIBYp4XIzG7BNU1Qhhp8uBqoQ3/DmZYPFirRb7XNEWjEulhw4YhOzsbRkZGGDZs2DvLsVgsCATS+yY9evRo5OfnY9WqVcjKyoKrqytCQkJgbW0NAMjKyqqzprStrS1CQkKwYMECbN++HWZmZtiyZQtGjBhRW8bb2xvHjh3Dd999h2XLlsHe3h7BwcHo2rWr1K5Dkc3p2waf//EA1vpqtWugKoKMwnLcepqHvZM8ZR2KzM3p0wab/3uMX8d0knUoTXYiIgPPiyqwfEjLH1faEB01FbQ318atp/no4WAg63Akat/NFJRV1WBu39azMgkADHAxxu2kPFyMy4ZvOxNZhyMxF+Oy8WdEBraMUbzhAE1hoMHFmuHtEfu8GN+eiEE3u1fDPVTEmJ8jTXGZxdh1LRnVNQJ0b2OAfk5GmN3bHrwWtlqXNDQqkRYKhQ3+vyzMnj0bs2fPbvCxAwcO1Dvm4+ODBw8evLfOkSNHYuTIkZIIr8XjKLGxcXQHfHH4ARYNdkI7M8UYa7vufCIW+znTN2kAdoYa0FHlICKtAB7WerIOR2z3Uwtw5VEuto7t1KrbdVoPO8w5+gDe9votIkERChlsuJgIBsCiwU6tsm0XDXbC9N/D0dZEE9b6in3nKC2/DDuuJEGdq4ytYzu12sTM1Vwb+yZ3xrmYV3tMLPFzlou5KjUCITZcfIwXpVVYPNgJZjqqsg5J4bTOgaKkSbR4HGwd2wlzj0bicx97eLeR756w20l5MNbktuohHW/7sr8j5h2NxP4pnWU+a14cz4sqsPm/x/gtwLNFJI9Noa3GQS8HQ5yLycTQjoo35OpNGYXlWHE2Hr4uxhjVitZUfhtXWQnrRrjhq+PR2DquEww05GdS3ms1AiHuphTgfmoBnhdWgC8QokbIQInNghKbhYpqAcqrBTDR4mGStw1czFrwupuNxGKx4N/BDD3bGGDRqRj4tTeV6Wu2ki/Al8ci8ZGbGfw7mMksDkXXqER6y5Ytja5w3rx5YgdDFIeOmgp+C/DAd2diEZacjy/6tJHLngaGYfDbtWT8OqajrEORK3rqKvjE3Rx7biRjdm/FunVeyRdg0ckY/PSJW6udNPq2id7WmLzvPvo6GUGTp3iT8oor+Nhx5SnSC8qxaLATfenFqwlrK4e2w4LgKOya4AF1OflbZxgGf4Zn4HTkc/RwMICPoyGs9NTAUWZDmc0CwwA1QgZcZbZcfibIA111FewY74EVZ+NQWFaNyd2bf35HdY0Q845GYpK3DbrLeWeYvGvUK3PTpk2NqozFYlEi3YqoqShj46iOuBCXjWm/34e3vQH82pvCRl9Nbm7HXk18gU5WOgq9Ba20DO9kjnnHohCRVggPa8UZ777u/CNM6W4DS72Wu0arqLjKSpjbrw1+vpCIVUNdZR1Oo1XXCHHoThquJuYqxN2t5uZorIm5fR0w92gktoztJPMvjkXl1fj2ZAw62+jh4LQuCnk3S14osVlYNbQdVp6Lx9F76RjbxapZn3/V33H4xN2CkmgJaNSrMiUlRdpxEAU2sJ0JBjgb41ZSHvbfSkFGYQVYACx0VWFroA4HY010sNRp9g8BhmGw71YKto9v+TPExcFisbB6uCtmHYrAuhFuCpGYXk3MhVDIoK+T5DZcaSm87Q1wPjYbVx7loo+TkazDeS+GYRDyMBt/3EnDqM4W+H1Kl1Y/ROddutjqQYkNfP5HBLaM6QRdddl0CmQVV+Cr49FyM7a3JWCxWFg+xAWBx6NhrqOKXo6GHz5JAk49yICeOheDXFvOZFZZalJm09AugaR1YrNZ6OlgiJ4Or94IBEIGmUUVSM4rQ3xmCQ6FpYEBg3FdrdHLwaBZ/mYuxOXA294AWgp4q7u5aPE4+PnTDvj6eDR+GNYObYw0P3hOYVk1Sir50FblNGtPf/7LKuy+nox9kzs323MqmiV+zphxMBw2Bupyu7xh0ouXWPNPAjxsdLF/Sme6/d8IHtZ6WOLnjDlHH+CnT5r/S++L0ip8dTwaaz9pr/CTH+UNi8XC2k/aY8bBcDgYa8BUW7qT/Z4VlOOvqEwE0QpWEiNWIh0UFIRNmzbhyZMnAAAHBwfMnz8f06dPl2hwRHEpsVmw1FODpZ4afBwNMQOvbgvuu5WKP+6kYYV/O5hLcXawQMjg0J1U7JlIbxYfYq6jil/HdMSS0w/R0VIH47paQ+9/vV4CIYMnuaWISCtERFohCsqqoaumAl01FRSVV+PFyyp0stTBtB52Ut3xkmEYLPsrFks/cqbE6z14HCX8PLIDFgRHYd0IN1jJ0RbFQiGDndeS8DCjGCuHtoOFrvzEpgicTbWwboQbFp18iAUDHJptxZ2qGgG+/jMaq4a2oyRaSngcJaz0b4elp2OxZ6Kn1HZCZBgGP/4Tj5X+irWtt7wTOZFetmwZNm3ahLlz58LLywsAEBYWhgULFiA1NRU//vijxIMkLYOOmgoCBzgiJa8M356IwZy+baS20cLfMZno62QMNRX5mKAj74y0eNgz0RNXE19g5bk4vKysAQCwWEAbI014WOtiiZ9zvdUDGIbBraf5mH0kAuO6WOMjN1OpxPfH3XS4W+kqzHKLsmSizcOGUR2w8EQ0pve0Q5+2sh/mUVRejUUnH6J3W0PsnOBOdzHFZKGrhl0BHvjmz2g8K6holo2xfvg7HhO9rBt1t4qIz85QA4NdTbDjylPM7ecglee4GJ8DJxMt2Mjp3SpFJXKWsXPnTuzZswdjx46tPebv7w83NzfMnTuXEmnyQbYG6tg90QMLgqNQwRdI/IO+RiDEsXvPsH8KDQEQBYvFQh8nI5HG17JYLPRwMEAXWz38fOER4jKL8c3AthJNlJ7mluJa4gvsDvCQWJ0tnbmOKvZO7IzN/z3GsXvp+NTDEt5t9GXyxTL2eTFW/5OAJX7OaG9BX4SaSoOrjG3j3LE2JAFPc18icICj1MaXB99Ph746F/2caU5CcxjpYYHA49GIelaEjhLeQr28ugYHbqXS56IUiPyuKhAI4OlZ/3a5h4cHampqJBIUafnUVJSxZWwnzDkSCS2eskRvU56KfI6P3ExpCEAzUlFmY+lHLjgUlorlZ+Ow0r+dRJLpqhoBVpyNxy+jOtBkNBGpqihhsZ8zcksrcS46CyePZ4AveLWhFkeJDR01Feipc2BnoAFnUy04GGtIfBWGExEZuBiXjR3j3WU2Sa4lUmKz8N3HLjh6Lx3z/zeMR1VFsu93Uc+KcDXxBbaPo8nazYXFYuH7j13wxZEH2D+lM7jKkmvT7VeeYkYvW/pclAKR3zUnTJiAnTt31ju+e/dujB8/XiJBkdaBq6yEjaM6YGPoY2QUlkukzuoaIc5EPscoz9a7mYMsBXjZwM5AHT/9+6h2MnJT/HLxMSZ0s4axFk8C0bVORpo8TOthi50TPLB3UmfsndQZm8d0xPz+DvBrbwoVZTb+jsnEjIPhWHgiGjef5DW57apqBPjuzEOk5Zdh5wQPSqKlZGwXK4zpYonPDoUju7hSYvXmvazCun8f4acRbvQFtpnpqqsgoJs1tl9+KrE6k1+8RGpeOa12JCViTza8ePEiunXrBgC4c+cOnj17hokTJyIwMLC23MaNGyUTJWmxNHkc/PSJG749GYPfAjybvETeH3fSMNLDAirKNJFCViZ3t8WOq0+x5dJTfNlf/LF+VxJzUVZVQ0s0SQFXWQnGWkow1uKhnZk2hvxvV7NnBeU4Hfkcv11PwpjOVhjkaiLyxKfkFy+x/GwcJnnZoL/L/7V352FRlm0bwM8Bhk0BRXZFwIXFXUEUzNxxSdHU3IpcyuT1LRcqw6zEFk0rM7csQm1xyzUrIin3wA1BRBAVEUQZEFBA2Qbm/v7wkzdkcWaYYZHzdxwcNc/czzPXcDnDNffcC/9wa5t3ewvYmhkh4OcYLB5Z++Ez8jIFFu2JRZBvZ5gZccWj+jCyqy3+iJPh0u3cWs8LEUJgxR+X8cHoThqKjh6ncrURFxeHXr16wdLSEklJSUhKSoKlpSV69eqFuLg4REdHIzo6GjExMVoIl55G9ubGWDjUGYF7Y2vVE5ZbKMeRxEyMa+TbJD8N5g7sgKLSMvx4KkWt89PuFmDzyWS8zzf/OmVvbox5QzriGz93yPKK4BdyGnui0lBSqnjiuUII/HgqBctDE7ByQjcW0XXIyaIZvn7RHV/9fRV/XExX+zpCCHz4azwm9GoDFxtOLqxP74/uhBWhl8uHY6nrjzgZurcxaxT7BDRWKnf/HTlyRBtxUBPn4WiOuFu5+O5EMmY/206ta2w8eg3+A9rzq8gGYtFwFyzedxG/x6artJpHcWkZFu+7iOXPd+V4vnpirK+HV55xwot92mLf+VuYseUMnnW2xPierWH12DCb0jIFjiTewY+nUjDIxRLf+nnwNVgPzIyl+PqlXlj26yUk3bmP/w7qoPI8hZCTybAxM9Ta6jukPEsTA7zg0QbfHEvC64PV+2bvQXEpfjqVwgmGWsa1wajBmO7tiDd/voDT17PRR8Vl8dLuFuBG1gMsHummpehIVRKJBB+P64L5O2NgbKCr1OosCoXA+wfiMMObW4A3BIZSXUzr0xZTetvj6JVMrPjjMu4WlMDUUApDqQ5yHsghL1Ogf0cLrJvSU6tridOTSXV18NHYLtgacQNv7Y7FJ893UfrD6J+XZA83y3m+q5ajJGX5drfDf7efx5WMfDhbq/4NweeHEjF3YAeNTlqkylQupIuKirBu3TocOXIEmZmZUCgqfu1w/vx5jQVHTYtEIsFH47rgtR/P4UuLZpV6vmqyKiwRAcNctBgdqUNPVwerJ3fHgp0xKJaXYUSX6nu6FAqBD3+LR3f7Flxuq4HR0ZFgsKs1BrtaQwiB+8WlKJIr0MJYqvGVPqh2JBIJZvZzwpHETMz5MQpfTOpeaf33x4XFyXDwwi2smdyTa3w3IA9X8eiMt/dcwNaZnirNVzh3IwdF8jI809FCixESoEYhPWvWLISHh2PixInw9PTki440qpmBHpb5dkHgvov4xs9dqT/Sf1xMh0MrY47pa6AM9HTx1ZSeWHrwEi7L8vHfQR0q5TW3UI4PfomDd/tWmNy7bT1FSsqQSCQwMZTChAupNGiDXKzQuoUR3tgejTd9nOHhWHmJ0dIyBdYfuQZZbhG+mtKTH4oaIBszQ4zpZofNJ5Uf9lgkL8Pq8Cv4+iWuvV8XVC6kf//9d4SGhqJfv37aiIcIHayaY3JveyzZfxErJ3Sr8cNa2t0CbDudipAZ3Aq8IdPX08Hy57vg4IXbmL75DEZ1tUWvti1RqlDgn2vZOHH1DgKGVf3HnojU42xtgo0v9sJXf1/FN8evY0RnG7jYmKBUIXA+5S7+SsjAJA97LBjqXN+hUg1e8GiD136MwgAXS6WGeKwOv4KZ/Zy46kodUbmQbt26NUxM2PNH2jW8sw0y84ux7Nd4fDC6U5WTl3IL5QjcexErxnflGLBGQCKRYGyP1hje2QZ/J2Tit9jbkOrqoEfbFnjt2XYqL7NGRE/Wspk+gnw7I7fg4apGYXEySHV10K2NGTbP6M0JvY2ARCLB8ue74o0d57HxRXeY17Au+++x6SgpVWAYV82pMyoX0l988QXeeecdbNq0CQ4ODtqIiQgA4NfXATvPpGL+rhh8NLYzWhj/780j7W4BAvdexNvDXTgprZExlOriuW62XBmAqA6ZGUsxrieXBm2sLE0MsHRMZ8zfGY2vpvSsspg+duUODl64hfXcjbJOqVxIe3h4oKioCO3atYOxsTGk0opfHeTk5GgsOKIpnm3hamuKeTtj0M6iGZwsmuFKRj4y8orx0bgucLJoVt8hEhERaZ2brSmWPOeGuduiMH+IM/q2M4dEIoG8TIHNJ5MRdzuPY93rgcqF9NSpU3Hr1i0sX74c1tbWnGxIWtfDvgW+n9kbVzPv4/a9QgxysULbVuyFJiKipsXVxhTfvuyBDYevYePRa9DX1YFcIeDb3Q5rp/RgTVYPVC6kIyIiEBkZie7du2sjHqIqSSQSOFubqLWWJhER0dPC1FCKxaO4Z0JDoXL/v6urKwoLC7URS43u3r0LPz8/mJmZwczMDH5+frh3716N5wghEBQUBDs7OxgZGWHgwIG4dOlS+f05OTl444034OLiAmNjY7Rt2xbz5s1Dbm6ulp8NERERETV2KhfSn376Kd58800cPXoU2dnZyMvLq/CjLdOmTUNMTAzCwsIQFhaGmJgY+Pn51XjOqlWrsHr1aqxfvx5nz56FjY0Nhg0bhvz8fADA7du3cfv2bXz++ee4ePEitm7dirCwMLzyyitaex5ERERE9HRQeWjHiBEjAABDhgypcFwIAYlEgrKyMs1E9i8JCQkICwvDqVOn0KdPHwBAcHAwvLy8kJiYCBeXyjvaCSGwZs0aLFmyBOPHjwcAfP/997C2tsb27dsxZ84cdOnSBXv37i0/p3379vjkk0/w0ksvobS0FHp63EGdiIiIiKqmcqV45MgRbcRRo8jISJiZmZUX0QDQt29fmJmZISIiospCOjk5GTKZDD4+PuXHDAwMMGDAAERERGDOnDlVPlZubi5MTU1ZRBMRERFRjVSuFgcMGFDtfTExMbWJpVoymQxWVlaVjltZWUEmk1V7DgBYW1dclNza2hopKSlVnpOdnY2PPvqo2iL7keLiYhQXF5fffjSkRS6XQy6X13guNX6PcsxcNw3Md9PCfDctzHfToo0817rbNTc3F9u2bcN3332HCxcuqDS0IygoCMuWLauxzdmzZwGgyiVdHg0nqcnj91d3Tl5eHp577jl06tQJS5curfGaK1asqDLuI0eOwNiYy7I1FeHh4fUdAtUh5rtpYb6bFua7aSgoKND4NdUupA8fPozNmzdj3759cHBwwIQJExASEqLSNV5//XVMmTKlxjaOjo6IjY1FRkZGpfvu3LlTqcf5ERsbGwAPe6Ztbf+3g1pmZmalc/Lz8zFixAg0b94c+/fvr7TJzOMWL16MgICA8tt5eXmwt7fHoEGD0KpVqxrPpcZPLpcjPDwcw4YNe+K/FWr8mO+mhfluWpjvpiU7O1vj11SpkE5LS8PWrVuxefNmPHjwAJMmTYJcLsfevXvRqVMnlR/cwsICFhYWT2zn5eWF3NxcnDlzBp6engCA06dPIzc3F97e3lWe4+TkBBsbG4SHh6Nnz54AgJKSEhw7dgwrV64sb5eXl4fhw4fDwMAABw8ehKGh4RPjMTAwgIGBQaXjUqmUL8QmhPluWpjvpoX5blqY76ZBGzlWevm7UaNGoVOnToiPj8e6detw+/ZtrFu3TuMBVcXNzQ0jRozA7NmzcerUKZw6dQqzZ8/G6NGjK0w0dHV1xf79+wE8HNKxYMECLF++HPv370dcXBxmzJgBY2NjTJs2DcDDnmgfHx88ePAAISEhyMvLg0wmg0wm08rqI0RERET09FC6R/rQoUOYN28e/vOf/6Bjx47ajKlK27Ztw7x588pX4fD19cX69esrtElMTKywmcqiRYtQWFiIuXPn4u7du+jTpw8OHToEE5OHu+NFRUXh9OnTAIAOHTpUuFZycjIcHR21+IyIiIiIqDFTupA+ceIENm/eDA8PD7i6usLPzw+TJ0/WZmwVmJub46effqqxjRCiwm2JRIKgoCAEBQVV2X7gwIGVziEiIiIiUobSQzu8vLwQHByM9PR0zJkzBzt37kTr1q2hUCgQHh5evlsgEREREVFToPIW4cbGxpg1axZOnjyJixcv4s0338Snn34KKysr+Pr6aiNGIiIiIqIGR+VC+t9cXFywatUqpKWlYceOHZqKiYiIiIiowatVIf2Irq4uxo0bh4MHD2rickREREREDZ5GCmkiIiIioqaGhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamh0RTSd+/ehZ+fH8zMzGBmZgY/Pz/cu3evxnOEEAgKCoKdnR2MjIwwcOBAXLp0qdq2I0eOhEQiwYEDBzT/BIiIiIjoqdJoCulp06YhJiYGYWFhCAsLQ0xMDPz8/Go8Z9WqVVi9ejXWr1+Ps2fPwsbGBsOGDUN+fn6ltmvWrIFEItFW+ERERET0lNGr7wCUkZCQgLCwMJw6dQp9+vQBAAQHB8PLywuJiYlwcXGpdI4QAmvWrMGSJUswfvx4AMD3338Pa2trbN++HXPmzClve+HCBaxevRpnz56Fra1t3TwpIiIiImrUGkWPdGRkJMzMzMqLaADo27cvzMzMEBERUeU5ycnJkMlk8PHxKT9mYGCAAQMGVDinoKAAU6dOxfr162FjY6O9J0FERERET5VG0SMtk8lgZWVV6biVlRVkMlm15wCAtbV1hePW1tZISUkpv71w4UJ4e3tj7NixSsdTXFyM4uLi8tu5ubkAgJycHKWvQY2XXC5HQUEBsrOzIZVK6zsc0jLmu2lhvpsW5rtpeVSnCSE0ds16LaSDgoKwbNmyGtucPXsWAKocvyyEeOK45sfv//c5Bw8exOHDhxEdHa1K2FixYkWVcTs7O6t0HSIiIiKqW9nZ2TAzM9PIteq1kH799dcxZcqUGts4OjoiNjYWGRkZle67c+dOpR7nRx4N05DJZBXGPWdmZpafc/jwYSQlJaFFixYVzp0wYQL69++Po0ePVnntxYsXIyAgoPz2vXv34ODggNTUVI0lhhquvLw82Nvb4+bNmzA1Na3vcEjLmO+mhfluWpjvpiU3Nxdt27aFubm5xq5Zr4W0hYUFLCwsntjOy8sLubm5OHPmDDw9PQEAp0+fRm5uLry9vas8x8nJCTY2NggPD0fPnj0BACUlJTh27BhWrlwJAAgMDMSrr75a4byuXbviyy+/xJgxY6qNx8DAAAYGBpWOm5mZ8YXYhJiamjLfTQjz3bQw300L89206Ohobopgoxgj7ebmhhEjRmD27Nn45ptvAACvvfYaRo8eXWHFDldXV6xYsQLPP/88JBIJFixYgOXLl6Njx47o2LEjli9fDmNjY0ybNg3Aw17rqiYYtm3bFk5OTnXz5IiIiIioUWoUhTQAbNu2DfPmzStfhcPX1xfr16+v0CYxMbF84h8ALFq0CIWFhZg7dy7u3r2LPn364NChQzAxManT2ImIiIjo6dNoCmlzc3P89NNPNbZ5fBamRCJBUFAQgoKClH4cdWZyGhgYYOnSpVUO96CnD/PdtDDfTQvz3bQw302LNvItEZpcA4SIiIiIqIloFBuyEBERERE1NCykiYiIiIjUwEKaiIiIiEgNLKSJiIiIiNTAQlpJGzduhJOTEwwNDeHu7o4TJ07U2P7YsWNwd3eHoaEh2rVrh02bNtVRpKQJquR73759GDZsGCwtLWFqagovLy/8+eefdRgt1Zaqr+9H/vnnH+jp6aFHjx7aDZA0StV8FxcXY8mSJXBwcICBgQHat2+PzZs311G0VFuq5nvbtm3o3r07jI2NYWtri5kzZyI7O7uOoiV1HT9+HGPGjIGdnR0kEgkOHDjwxHM0UqsJeqKdO3cKqVQqgoODRXx8vJg/f75o1qyZSElJqbL99evXhbGxsZg/f76Ij48XwcHBQiqVij179tRx5KQOVfM9f/58sXLlSnHmzBlx5coVsXjxYiGVSsX58+frOHJSh6r5fuTevXuiXbt2wsfHR3Tv3r1ugqVaUyffvr6+ok+fPiI8PFwkJyeL06dPi3/++acOoyZ1qZrvEydOCB0dHfHVV1+J69evixMnTojOnTuLcePG1XHkpKrQ0FCxZMkSsXfvXgFA7N+/v8b2mqrVWEgrwdPTU/j7+1c45urqKgIDA6tsv2jRIuHq6lrh2Jw5c0Tfvn21FiNpjqr5rkqnTp3EsmXLNB0aaYG6+Z48ebJ47733xNKlS1lINyKq5vuPP/4QZmZmIjs7uy7CIw1TNd+fffaZaNeuXYVja9euFW3atNFajKR5yhTSmqrVOLTjCUpKShAVFVW+o+IjPj4+iIiIqPKcyMjISu2HDx+Oc+fOQS6Xay1Wqj118v04hUKB/Px8mJubayNE0iB1871lyxYkJSVh6dKl2g6RNEidfB88eBAeHh5YtWoVWrduDWdnZ7z11lsoLCysi5CpFtTJt7e3N9LS0hAaGgohBDIyMrBnzx4899xzdREy1SFN1WqNZmfD+pKVlYWysjJYW1tXOG5tbQ2ZTFblOTKZrMr2paWlyMrKgq2trdbipdpRJ9+P++KLL/DgwQNMmjRJGyGSBqmT76tXryIwMBAnTpyAnh7fQhsTdfJ9/fp1nDx5EoaGhti/fz+ysrIwd+5c5OTkcJx0A6dOvr29vbFt2zZMnjwZRUVFKC0tha+vL9atW1cXIVMd0lStxh5pJUkkkgq3hRCVjj2pfVXHqWFSNd+P7NixA0FBQdi1axesrKy0FR5pmLL5Lisrw7Rp07Bs2TI4OzvXVXikYaq8vhUKBSQSCbZt2wZPT0+MGjUKq1evxtatW9kr3Uioku/4+HjMmzcPH3zwAaKiohAWFobk5GT4+/vXRahUxzRRq7E75QksLCygq6tb6dNrZmZmpU8yj9jY2FTZXk9PD61atdJarFR76uT7kV27duGVV17B7t27MXToUG2GSRqiar7z8/Nx7tw5REdH4/XXXwfwsNASQkBPTw+HDh3C4MGD6yR2Up06r29bW1u0bt0aZmZm5cfc3NwghEBaWho6duyo1ZhJferke8WKFejXrx/efvttAEC3bt3QrFkz9O/fHx9//DG/UX6KaKpWY4/0E+jr68Pd3R3h4eEVjoeHh8Pb27vKc7y8vCq1P3ToEDw8PCCVSrUWK9WeOvkGHvZEz5gxA9u3b+dYukZE1Xybmpri4sWLiImJKf/x9/eHi4sLYmJi0KdPn7oKndSgzuu7X79+uH37Nu7fv19+7MqVK9DR0UGbNm20Gi/Vjjr5LigogI5OxdJIV1cXwP96K+npoLFaTaWpiU3Uo+VzQkJCRHx8vFiwYIFo1qyZuHHjhhBCiMDAQOHn51fe/tGSKgsXLhTx8fEiJCSEy981Iqrme/v27UJPT09s2LBBpKenl//cu3evvp4CqUDVfD+Oq3Y0LqrmOz8/X7Rp00ZMnDhRXLp0SRw7dkx07NhRvPrqq/X1FEgFquZ7y5YtQk9PT2zcuFEkJSWJkydPCg8PD+Hp6VlfT4GUlJ+fL6Kjo0V0dLQAIFavXi2io6PLlzrUVq3GQlpJGzZsEA4ODkJfX1/06tVLHDt2rPy+6dOniwEDBlRof/ToUdGzZ0+hr68vHB0dxddff13HEVNtqJLvAQMGCACVfqZPn173gZNaVH19/xsL6cZH1XwnJCSIoUOHCiMjI9GmTRsREBAgCgoK6jhqUpeq+V67dq3o1KmTMDIyEra2tuLFF18UaWlpdRw1qerIkSM1/i3WVq0mEYLfVRARERERqYpjpImIiIiI1NDoCumNGzfCyckJhoaGcHd3x4kTJ2psr8o+6jt37oREIsG4ceM0HDURERERPW0aVSG9a9cuLFiwAEuWLEF0dDT69++PkSNHIjU1tcr2ycnJGDVqFPr374/o6Gi8++67mDdvHvbu3VupbUpKCt566y30799f20+DiIiIiJ4CjWqMdJ8+fdCrVy98/fXX5cfc3Nwwbtw4rFixolL7d955BwcPHkRCQkL5MX9/f1y4cAGRkZHlx8rKyjBgwADMnDkTJ06cwL1793DgwAGtPhciIiIiatwazYYsJSUliIqKQmBgYIXjPj4+iIiIqPKc6vZRDwkJgVwuL18n8MMPP4SlpSVeeeWVJw4VAYDi4mIUFxeX31YoFMjJyUGrVq24cyERERFRAySEQH5+Puzs7CqtF66uRlNIZ2VloaysrMp90R/fmeYRZfZR/+effxASEoKYmBilY1mxYgWWLVum8nMgIiIiovp18+ZNjW2o1GgK6Ueq2he9pl7gmvZRz8/Px0svvYTg4GBYWFgoHcPixYsREBBQfjs3Nxdt27bFlStXYG5urvR1qHGSy+U4cuQIBg0axJ0qmwDmu2lhvpsW5rtpycnJgbOzM0xMTDR2zUZTSFtYWEBXV7fKfdEf73V+5En7qF+6dAk3btzAmDFjyu9XKBQAAD09PSQmJqJ9+/aVrmtgYAADA4NKx83NzVXan50aJ7lcDmNjY7Rq1YpvvE0A8920MN9NC/PdNGlyGG6jWbVDX18f7u7ulfZFDw8Ph7e3d5XnPGkfdVdXV1y8eBExMTHlP76+vhg0aBBiYmJgb2+vtedDRERERI1bo+mRBoCAgAD4+fnBw8MDXl5e+Pbbb5Gamgp/f38AD4dc3Lp1Cz/88AOAhyt0rF+/HgEBAZg9ezYiIyMREhKCHTt2AAAMDQ3RpUuXCo/RokULAKh0nIiIiIjo3xpVIT158mRkZ2fjww8/RHp6Orp06YLQ0FA4ODgAANLT0yusKe3k5ITQ0FAsXLgQGzZsgJ2dHdauXYsJEybU11MgIiIioqdEoyqkAWDu3LmYO3dulfdt3bq10rEBAwbg/PnzSl+/qmsQERERET2u0YyRJiIiIiJqSFhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEalC6k5XI5Fi1ahA4dOsDT0xNbtmypcH9GRgZ0dXU1HiARERERUUOkdCH9ySef4IcffoC/vz98fHywcOFCzJkzp0IbIYTGAyQiIiIiaoiULqS3bduG7777Dm+99RY+/vhjREVF4ciRI5g5c2Z5AS2RSLQW6CMbN26Ek5MTDA0N4e7ujhMnTtTY/tixY3B3d4ehoSHatWuHTZs2Vbg/ODgY/fv3R8uWLdGyZUsMHToUZ86c0eZTICIiIqKngNKF9K1bt9ClS5fy2+3bt8fRo0cRGRkJPz8/lJWVaSXAf9u1axcWLFiAJUuWIDo6Gv3798fIkSORmppaZfvk5GSMGjUK/fv3R3R0NN59913MmzcPe/fuLW9z9OhRTJ06FUeOHEFkZCTatm0LHx8f3Lp1S+vPh4iIiIgaL6ULaRsbGyQlJVU4Zmdnh8OHD+Ps2bOYPn26xoN73OrVq/HKK6/g1VdfhZubG9asWQN7e3t8/fXXVbbftGkT2rZtizVr1sDNzQ2vvvoqZs2ahc8//7y8zbZt2zB37lz06NEDrq6uCA4OhkKhwN9//63150NEREREjZeesg0HDx6M7du3Y8iQIRWOPyqmBw4cqOnYKigpKUFUVBQCAwMrHPfx8UFERESV50RGRsLHx6fCseHDhyMkJARyuRxSqbTSOQUFBZDL5TA3N682luLiYhQXF5ffzsvLA/BwQqZcLlf6OVHj9CjHzHXTwHw3Lcx308J8Ny3ayLPShfT777+Py5cvV3lf69atcfz4cRw6dEhjgT0uKysLZWVlsLa2rnDc2toaMpmsynNkMlmV7UtLS5GVlQVbW9tK5wQGBqJ169YYOnRotbGsWLECy5Ytq3T8yJEjMDY2Vubp0FMgPDy8vkOgOsR8Ny3Md9PCfDcNBQUFGr+m0oW0g4MDHBwcqr3f1ta2ToZ3PD6hUQhR4yTHqtpXdRwAVq1ahR07duDo0aMwNDSs9pqLFy9GQEBA+e28vDzY29tj0KBBaNWqlVLPgxovuVyO8PBwDBs2rMpvNejpwnw3Lcx308J8Ny3Z2dkav6bShXR9s7CwgK6ubqXe58zMzEq9zo/Y2NhU2V5PT69Swfv5559j+fLl+Ouvv9CtW7caYzEwMICBgUGl41KplC/EJoT5blqY76aF+W5amO+mQRs5bjQ7G+rr68Pd3b3S1y/h4eHw9vau8hwvL69K7Q8dOgQPD48Kv8zPPvsMH330EcLCwuDh4aH54ImIiIjoqdNoCmkACAgIwHfffYfNmzcjISEBCxcuRGpqKvz9/QE8HHLx8ssvl7f39/dHSkoKAgICkJCQgM2bNyMkJARvvfVWeZtVq1bhvffew+bNm+Ho6AiZTAaZTIb79+/X+fMjIiIiosaj0QztAIDJkycjOzsbH374IdLT09GlSxeEhoaWj91OT0+vsKa0k5MTQkNDsXDhQmzYsAF2dnZYu3YtJkyYUN5m48aNKCkpwcSJEys81tKlSxEUFFQnz4uIiIiIGh+1Cul79+5hz549SEpKwttvvw1zc3OcP38e1tbWaN26taZjrGDu3LmYO3dulfdt3bq10rEBAwbg/Pnz1V7vxo0bGoqMiIiIiJoSlQvp2NhYDB06FGZmZrhx4wZmz54Nc3Nz7N+/HykpKfjhhx+0EScRERERUYOi8hjpgIAAzJgxA1evXq2wRNzIkSNx/PhxjQZHRERERNRQqVxInz17FnPmzKl0vHXr1tVujEJERERE9LRRuZA2NDQs3xL73xITE2FpaamRoIiIiIiIGjqVC+mxY8fiww8/LN+vXCKRIDU1FYGBgRVWwyAiIiIiUleZQuDghdv44Jc4fPrHZcSm3avvkCpRuZD+/PPPcefOHVhZWaGwsBADBgxAhw4dYGJigk8++UQbMVI17j4owfrDV/Hq92fh/2MU9kenobRMUd9hEREREdVKZn4RZm49i+z7xXjt2XYY090W20+n4pPf46FQiPoOr5zKq3aYmpri5MmTOHz4MM6fPw+FQoFevXph6NCh2oiPqnEkMRPfnbgO/wHt4T+gPUrKFNgblYY5P0Zh1cRuaNW88hbm1DgIIfBLzG38FnsbCgEY6+tiurcjejua13doREQNUtytXBy5nIm8IjncbE0xqqstDKW69R0WqSn7fjHm74jBR+M6o4OVCQCgTUvg0wndsCcqDe/uv4gV47tCIpHUc6S12JBl8ODBGDx4sCZjISX9euE2wuMzsHlGbxjoPXyj0NPVgZ+XIzwczbFgVww2veSOZgaNar8dAlBYUoY3d8egh30LrJ/WC4ZSXWTmF+HL8Ks4ceUOFgx1ho5O/b9xEBE1BFn3i7H04CVYNjfAmO62MDOS4nzqPczcchZvDO4A7w4W9R0iqai0TIFFe2LxwZhO5UX0v010b4P8IjmCT1zHa8+2r4cIK1Kq0lq7dq3SF5w3b57awdCTRSRlIeySDGun9IRuFQWVm60p5g3piMB9F7F2So8G8WmNlFNcWobXt5/Hq/3bwat9q/LjViaGWDG+K7b8k4xVfyYicKRrPUZJRNQwJN25j/f2x+GDMZ3gZmtafryDlQnGdLPD4n2xuHO/GGN7aHejONKsb09cx4guNhVy+rgZ3o5YsCsG0al30bNtyzqMrjKlCukvv/yywu07d+6goKAALVq0APBwp0NjY2NYWVmxkNaizLwibDhyDcEve1RZRD/S29EcZ5JzsO/8LUxwb1OHEVJtfPhrPKZ6tq1QRP/bzH5O+PzPRPx89iYm9bav4+iIiBqOlOwHeP9AHL6a2gNWJoaV7jfS18UXk3pgwa4YtGpmgGc6sme6Mbh+5z5iUu/hGz/3GttJJBIEjemM13ecx5YZntDXU3nKn8Yo9cjJycnlP5988gl69OiBhIQE5OTkICcnBwkJCejVqxc++ugjbcfbZAkh8P4vcfhgdGcY6z/588+cZ9vhQMwt5DwoqYPoqLZ+vXAb5s30MbSTdY3tFg5zxp+XZLiWeb+OIiMialjuFZQgcO9FfDGpe5VF9CO6OhJ8NrEbvj52DRl5RXUYIalrVVgi3h/dSalv01s208ckD3t8d/J6HURWPZVL+Pfffx/r1q2Di4tL+TEXFxd8+eWXeO+99zQaHP3P9jOp6O1oDhebyuOFqqKnq4MFQ52x5q8rWo6Maiszvwg/n7uJeUM6PrGtro4EHz/fBR/91rBmLRMR1YWHnUqXEDjSFbZmRk9sbyjVxTLfznj/QByE4HtmQ3b8yh04WjSDvbmx0uf4drfDmeQcZN8v1mJkNVN5Nlp6enr5GtL/VlZWhoyMDI0ERRXdyHqAwwmZCH7ZQ6Xz3B1a4qdTKbh+5z7aWTbXUnRUW6vCHo57luoq97nW1swI/TtaYF/0LUzk0B2VRFzLwi8xt5H9oASOrYwxxbMtOljV/WtDoRDILy4FAJga6nEug4aUlCrw5yUZDsVn4EFxKR79VhVCoKWxPnq0bYFhnayVKsCoYdpx5iY625miu30Lpc/pYGWC7vYt8FtsOsZ0t9NecKQ2IQS+PX4dX7/US6XzJBIJ3hjcEV/9fRUfju2ipehqpnIhPWTIEMyePRshISFwd3eHRCLBuXPnMGfOHC6BpwWlZQosPXgJnzzfRa3VGv47qAM2Hk3C5y9010J0VFtRKTkwkuqis52ZSudN93bEjC1nMKyTNcyMpFqK7ukhL1Pg/QNxMDWSYuEwZ1iaGOCyLA8bjlyDjZkhAoY5K/1BRl15RXLsjUrDP9eyIARgZiSFAJBb+LBjwt2hJSb0agMbs+q/qqbqHUnMxLfHrmNUVxt86NsZLZvpV7g/50EJzt3IwReHruBOfjGe62oL3x52XCKtEbmakY/DlzPx7RPGz1bl1f5OmLnlLAa6WMLEkO+ZDc2flzLQr4OFWrlxd2iJ7yNuIOnOfbSvh05DlQvpzZs3Y/r06fD09IRU+vAJl5aWYvjw4fjuu+80HmBTt+lYEny726FNS+W/6vi3DlbNoVAIJGc9gJNFMw1HR7VRphBY89dVrJ3SU+Vzpbo6eGNwR3wZfgVBvp21EN3TQ6EQeGv3BYzobIORXW3Lj3e2M8OXk3vgt9jb+O+281g9uQeaa2HJyDKFwPcRN3D0yh1M87THhhd7lS9b+Yi8TIFT17Px8e/xMDWS4s1hzlwLXklCCHxx6Aryi+TYPKM3jPSrLozNm+nDp7MNfDrboEhehl8v3MbsH87B09EcM59x0kruSXOK5GUI+vUSvpzUQ61OJQM9Xfx3UAes+esq3h/dSQsRkroUCoGfTqU8cYJhTd70ccaqPxOxYZpqPdqaoHIXjKWlJUJDQ3H58mXs3r0bP//8MxISEhAaGgorKyttxNhkxd3KRWLGfYzvVbule+YOao+NR65pKCrSlN3nbsKnk3WlnjNl9W3XCrmFclzJyNdwZE+Xb45fR29H8wpF9L+N7maH155th9e3n8eD/x9uoSlXM/Ixc+tZGOvr4vuZvTGii22lIhp4+MGof0dLrJ/WC5M87BHw8wV8H3GDYzqfQAiBZb/Gw8rUAMvGdqm2iH6coVQXL3jY44dZnuhkZ4o5P57Dln+S62xn2Kz7xYi/nYe7nAyutE//uIxZ/ZxgZar+Nzb9Olgg50EJEmV8z2xIQuPSMdDFslZ7Xzi0agZrE0Ocu5GjwciUo/Z3mc7OzvD19cXYsWPh7OysyZgIDz99Lw9NwDLfzrUeP9nBygTyMgVuZD3QUHRUW7mFcvwWm46pnm1rdZ2AYc5YfYgTSqtz6XYuEtLz8GKfmn/PHo7m+O+gDnhjRzQKSjRTTP8Vn4HloQn4bGI3TPFsq/TruId9C2yZ0RulCoEFu2JwX8PF/dNk/eFraGtujJe9HNU6XyKRYIibNX6c1QfN9PUwY8tZXLyVq9kg/59CIbDvfBr8Qk5jRehl/H7xNj44eAn+P0bh+h2uwlOTv+Ifzr8a4lbzqkbKeHu4C744lFjr65BmlCkEtp9OxYt9HGp9rdcHd8C6w9fqvANC5fJ/1qxZNd6/efNmtYOh//nsz0S82t8J5mr2Vj5u7qAO2HQsCZ9O6KaR6z2tSssU2Bd9C6EX06EjkUAIAQM9XbzYty36d7TU2OOs+esKXh/cAXq1HJdrb24Mh1bGiLiWxR28HqNQCKwKS8RnL3RTqojt7WiOsmcF5u2ILt9VUh1CCHx3IhnXMu9jk597lT3QT6KjI8Erzzjh9PVsvPbDOXz2Qne0bsEJcv/2V3wGMvKL8NHg2k8w0tGRYFJvewxxs8Inv8cjO10HzxaXoqVUM2NpU7ML8P4vcRjoYonvpntU+Ddx+14hluy/iBn9nDDAWXPvMU+LjLwibIlIRsj03hq5nl0LI7jYmOBoYiYGuvBb9Pr2W+xtDOtkrfS3STUxb6YPTydz/HkpAyO62GggOuWo/Ff87t27FX4yMzNx+PBh7Nu3D/fu3dNCiE3PoUsylCkEBrvW/tP3I87WJsgvLsXte4Uau+bTJjO/CLN/OIfiUgWCX/bA5hm9sWWmJ1ZO6IaIpGzM3xmNvKLKK9ao6tLtXOQWyNG3XdUbr6hq7qAO+PpYEpfDe8wvF27hWWfLGteZfVzfdq0ws58T5u2IRpG8TOXHLClV4N39cVAIgU8ndFWriP63Pu1aYeWEbnjr5wu4xdduucz8h8WVsuvNKqtVcwOsHN8Fnc0F/rMtGkcSM2t9zV8v3MZ7v8Th43FdMLOfU6V/E3YtjLDJzx0/RqYgKqXuv5ZuyBQKgSX7L2KZb2eNTgr1H9AewSeua2UojxAChSVlKOP78ROVlimw88zNWn8z+2+z+jnhh8gbdTZMC1CjR3r//v2VjikUCsydOxft2rXTSFBNWXLWA2w7naryUnfKmN2/Hb49fp2T06ogyy3Cwl0x+HBsZ3S0rrhWt5mxFO+McEVUSg78f4zCqvHq//7KFAIrwxLx+Qua+2bAzEiKwa5WOBBzC+N7cTk84OHkvZ/PpmHrLNV7sfp1sECpQmDhrhismdJD6d6Guw9K8ObuC5jS2x4+nTXXG2JvboxVE7vhzZ9jsHpSD9ixZxrLfo3HB6M71/qDSnVczAT8J/TC+mPJ+O1COpY856byt4MFJaX46LcEtDSWImS6R42rwhjo6WLNlB6Y/f05bHyxl9rzJp42G49ewxA3a3SwUm7/BGU1M9CDb3c77Dh7E1PcNbMc3r2CEmw8moSE9DyYGknxoLgUNqaGCPBxVunDfFOy93waRnWz1eiHJCN9Xfh2t8Ouczc1MlxEGRpZ70lHRwcLFy6stJU4qaagpBTvHbiITyd01cp2lz3sWyDtbiGy6nHh8oYor0iOgJ9j8OmErpWK6H9zdzDHJ893xVt7LiJbzU2ytp9OgU8na42/sb7YxwG7z6Wp1Yv6NNoTlYaxPezULrQGOFuWT/qTK9GzEZWSg7nbzuNNH2eNFtGP2JsbY9WE7nh7z4UmP2Y6LE6G9hbNlN6cSl1G+rp4d5Qbpns74I0d5/FLzC2lx16evp6NV7aew3NdbbFohHJrxDc30MO7o9yw7NdLtQ39qXDqejauZz3AlN72Wrn+RHd7/BknQ74GvmWMTMrG3G3nMcTVCj++0gcbpvXC1pmemO7tiIW7YnC2HibANXQFJaU4EH1bK/md6N4GoRfTNTbf5Uk0Vq0lJSWhtLRpv8HXRkmpAgG7LuCNwR21ulnAK884Ycs/yVq7fmOjUAgs2h2Lt4e7wKHVk5cHdLJohk/Hd8GOJB3cyFZt8mZGXhH+SsjENA1+jfWIvp4OXvZyQMhJ5lahEPj1wu1a984PcrXCuB6tMXd7DO5W89mzpFSBDUeu4cfIFHzzsrvK64Grom0rYywY6ozAvbFNdhhPcWkZtkYkY+6gDnX2mN3atMDWmZ5Iu1uI6VvOIjw+o9rfvyy3CO8duIhfLtzGNy+745mOqs1b6NrGDJYmBjhx9Y4mQm+0su4X46u/ruKjsV20tlmRro4E/xnYHhuP1e49MyxOhp9OpSD4ZQ/0eWy4nputKb7188A3x5LqZTWJhizkRDJm9HPUyvr9ero6mOHthE3H6mbrcJWHdgQEBFS4LYRAeno6fv/9d0yfPl1jgTUlRfIyvLn7Asb3aq2xcbPV6dvOHJuOJSGvSA5TLkqP4BPX0d/ZAj3btlT6nNYtjODXUYH3f4nHigndlVqfu0whsGR/HJY856bWGqjKGNHFBjO3nkX2/eImvQbx8at34N2+lUa+1RnWyRoOLQ0Q8EMmUv9IxHPd7dC6hTFyHpQgIikLfydkYlLvNpg7sH2d7E7Y29EcVzPu46u/r2LhsKa3WtL206mY5GFf55uoSHV18N9BHeDnJce2U6nYGpEMF2tTuNqYwECqg4y8IkSn3iufJNpLhfeTx80b0hFzfoyCd3sL6GrpvaIhKylV4J09sfhgTKdaLYemjH4dLLD9dAos1HyrOHRJht9ib2PNlB7VFoTNDPTw5eQemPNjFCcN/7+s+8WISr2L1wdr7wPxUDcr7I1Kq5M9NFT+5xMdHV3hJzY2FgDwxRdfYM2aNZqOr5KNGzfCyckJhoaGcHd3x4kTJ2psf+zYMbi7u8PQ0BDt2rXDpk2bKrXZu3cvOnXqBAMDA3Tq1KnKceDakpFXBP+fojDJQ7PjKqsjkUjwspcDfoxM0fpjNXRxt3Jx8VauWj3EZvrA5xO7Ysn+i0otXfVl+BX4dLKGcw1DR2pLIpFg3pCHW6U2ZdtPp2KaBsfGOVk0w2xXBUZ3s8HJq9lYe/gqfou9jXaWzfDjK554vmebOt3ie1qftsjML0JEUladPWZD8KC4FOHxGRjbo3br6teGqaEU/xnYHj+90gfT+tjD1OhhodfFzgyfTuiGDdN61aqIBgATQyl8Olnjt9jbmgi5URFCYOnBOEzqbQ83W9M6eczAEc74JUVH5cmBfydk4JeY21g9qfoi+hETQymWP98V7+2/2KgmIWbmF+H32HR8d+I6fjyVgqiUuxqJf81fV/DG4I5afd+USCRY8pwbPv4tXvvf4IlGZOfOnUIqlYrg4GARHx8v5s+fL5o1ayZSUlKqbH/9+nVhbGws5s+fL+Lj40VwcLCQSqViz5495W0iIiKErq6uWL58uUhISBDLly8Xenp64tSpU0rHlZubKwCIrKwspc8pLVOIXWdSxUvfnRLXMvOVPk8TFAqFeDH4lHhQLNfYNcvKFOJG1n1xLTNflJSWaey62lJSWiZeDD4l7uQXqX5uSYk4cOCAKCkpERm5heLF4FPiTHJ2te2DjyeJlX8k1CZclbz1c4yITr1bZ4/XkCTK8kTg3gsavea/891Q3C+SiynfRIrcwoYTk7at/euK+DMuXeuP0xDyXVhSKqYFR4qyMkW9xVAfvj56TXx7LKlOH7OkpES8880vYm34ZaXPOXI5Q/j/eE4UyUtVeqztp1Pq/Pmp42pGvnhj+3nx+vbz4uezqeKfa3fE3wkysfpQopgWHCm+PZYkCktUe+6PnL6eLQL3xmo44ur9GHlDBB//3+88KytLABC5ubkaewyVC+lBgwaJu3fvVjqem5srBg0apImYquXp6Sn8/f0rHHN1dRWBgYFVtl+0aJFwdXWtcGzOnDmib9++5bcnTZokRowYUaHN8OHDxZQpU5SOS9lCuqxMIa7I8sSGI1fF1G8jxQ8RyUJeT0VnWFy6WPf3lVpfJ/t+sVj+e7x46btT4oMDF8VHv14SMzafFoF7Y8WtuwUaiFQ71h++KvafT1Pr3Mf/0OYXycXCndFi5R8J4t6D//3xzb5fLAL3xoovDiUKhaLu/iDm3C8W04IjVX6TfxoE7o0VibI8jV6zIRRWVTmbnC3e+jmmvsOoE3cfFAu/kNN18jpqKPkOPp4kfrtwu15jqEs7TqeIDw5crNP3SiEe5nv//gPi9W3nxKmkJ3eGHb+SKWZ/f1atQlKhUIhZW86I9HuF6oSqdWVlCrHp6DXh/+M5kZL1oNo2v164JaZ8EykirinfeSiEEHmFJWLKN5HiXkHdvbYUCoWYuy1KnP3/zi5tFNIqD0A6evQoSkoqb2taVFT0xGEWtVFSUoKoqCgEBgZWOO7j44OIiIgqz4mMjISPj0+FY8OHD0dISAjkcjmkUikiIyOxcOHCSm1qGqZSXFyM4uL/zT7Ky8sDAHz0WzwMmpmgVCGgUIj//y9QVFoGxf/P9nZq1QwDnC0ws6899HR1IBRlkCvqfqWFQR3Nse3UDcju2aGVmkstxafnYcUfiXhjcHu8NaziWKfLsny8s+cCJnm0wYjOmlsPWxOS7jxA7M27mN2vLeRy1WdsPzrn0X8NdICV4zvj+NUsvLU7pnyVB6muDqZ7tUUfJ/M6nYjbXF+Cye6tse6vK5g/pO4mZdW3uwUluJNXCCdzQ7XyWp3H891QdG9tgr/ipQi9cAvDOj3dG0tsOHwVs/s51MnrqKHke1IvO/hvj8ZQl1Zam1fRUPx8Lg1xt/MQNNqtzhctkMvlkEiApaOcsWDPJTSTSqpdEeaPOBl+uyjDFxO7QhcKyOWqr1W8cEh7fBoaj88mdq1t6BpVUqrAe79cQtfWZvhqUldIJJJqXwPD3Szh7dQSX4RfxcGYNLzt4wwTw5rLSYVCIHDPRSwY0h7GenX7+vrY1w3/3R6DoDFuMJVo/nGVLqQfjYUGgPj4eMhksvLbZWVlCAsLQ+vW2hu7lpWVhbKyMlhbVyzKrK2tK8TybzKZrMr2paWlyMrKgq2tbbVtqrsmAKxYsQLLli2rdNxVpKGZMIaODqCj+3AAuo4E0NN5+F8AgADuJSahIexQ6m4ABGy+g8ntVX8zuJAtwek7ErzYXoGs+DsIja/c5nkLYMeROzh6SuBZ24YxLkwhgODLOpjUToE//qjdGMTw8PBKx0a3AB6tkCWRANkJtxGaUKuHUVvEFR0YZl+BffP6efy6dihNgvbNgNDQUK1cv6p817cOCuDL33WQn6SAYd3Ov6szuSXAqes66FJ2DaGX6+5xG0K+LeQSrNoehm7mDeP9UxuOp0sgK5RgopMCYWE36i2Of44dxsgWwNvb7sDLSqCbucCjIbzFZUDoTR2UCeB5RwUOh9fub0dOhg7W7ryJDnUzDPyJCkuBn67pwMtKoFXOTfzxR5xS53nqAldzJZi8LhXDWgu4tKj636lCALuv68DBREAWl4ZQ5S6vUSNaAv/dkgUfyyfPaVKV0oV0jx49IJFIIJFIMHjw4Er3GxkZYd26dRoNriqPD04XQtQ4YL2q9o8fV/WaixcvrrB6SV5eHuzt7TFuxCC0aqXdVTc0TXYwHladbeHhoNwEGSEENh1PRkFpEX6e6vrElRFGC4GPfr+MEjszjOuhmYXva2PbmZuYZCHwYh/1l6CTy+UIDw/HsGHDINXQFsLa4DWwBPN2XsC60T3QwrjhxqkJJaUK7PzxPFZPddd4711Dz7dVp2wcvnwHS0a51snjxafn4feLMqTdLUTrFkYY18NWq5Nol/4aj2WTW6Nra+0tLfhvDSnf/YtKsXB3LAJH9arXOLRBXqbAJ6GJaNNOHysGtqvTCbsV4ngs32PlZfjmRDJ+TrmHdpbNkFsoR26hHNOHOeBZFZczrE6/Qjnm7bqAuS/0gp4Wln9TRX6RHPN2xWLpC+3Rw76FWtd4tbgUq/+6hr8elGBOf6cKPfopOQVY8Ucixj1jjed71m8NMKKgBIt2nNb4dZUupJOTkyGEQLt27XDmzBlYWlqW36evrw8rKyvo6mqvS8TCwgK6urqVeoozMzMr9Sg/YmNjU2V7PT298oK3ujbVXRMADAwMYGBQeXkxqVRa72+8qgoc1Qn+P0Zhk587zIxqjr1IXoZ3D1xE19ZmWDHEWek3vqCxXTF/ZzRsWzRTeV1VTZLlFuHolSxsnt5bI8VWQ8+3lZkU743ujMD9l7DhxV51vmRYXQq9dAvPdbODgYH2doRrqPl+1sUGv1zIQGJmAbposdgskpfhw9/iIQTg19cBDq2MkZz1AN9H3oCRVBeLR7lp/N9YSvYD5BWVoZdj3b9vNIR8m0ul6GhlgkuyB2oXOaq6da8Qfydk4Pqdh+vkO7YyRr8OFuhg1VxjxW56biHe2x+HCe5tMKqrrUauWVuP8i2VSvHmcDeUKQRu3S2EmZEUZhruiLCQSvFcNzsciM3Q6PbYqrpfXIqFu+Pw1nDXWv37aiGV4sNxXZF05z5+jExBctY1SHUlkJcJWJoYYMlzndDOsv6/GrUyk+Lzid3w/X80fGGNjbauA56enuI///lPhWNubm41TjZ0c3OrcMzf37/SZMORI0dWaDNixAitTDZsqKJT74rXfjhb42obGXmFwi/ktDiamKnWYxSWlIqXQ06Ly+manQimLIVCIeb+FCWuaGAiWkOZjKSsY4mZwv/Hc2rPsm7oFAqF8As5rdFVaP6tMeQ7M69IvPTdKVGqpVUe8gpLxPTNp8WRyxlV3v93gkzM3HJG5BdpNgcLd0aLqxl1+57R0PJ9M+eBmL/jvNYf596DEhG494KYt+O8CL8kEylZD8SNrPvicEKGWPpLnHjpu1Pi57OptXofUSgUYm/UTeEXclpczajb1aqqU1/5lpeWiWnBkeK+hl8zyiooLhWztpwpn4Snadp6L6qteptsePDgQYwcORJSqRQHDx6ssa2vr68GyvuqBQQEwM/PDx4eHvDy8sK3336L1NRU+Pv7A3g45OLWrVv44YcfAAD+/v5Yv349AgICMHv2bERGRiIkJAQ7duwov+b8+fPx7LPPYuXKlRg7dix++eUX/PXXXzh58qTWnkdD08O+Bcb3aoMFu2KwckI3NH9sEfyjiZn49vh1fDi2MzpYqfcVrqFUF19M6o43tkdj00vuGv+E/yR/xMnQ0bp5jVuAP62edX747ZH/T1FYNaEbrEw1uz35I3lFcqRmFyC3UA59PR20aWmk1V06H4lKuYtOtqYw1tfu5g0NmaWJAUZ2scVPp1Iw3dtRo9cukpdh/s4YzBvSsdo1kge7WsPMSIoFO6Px9UvuGtmtLCE9D3q6ErXfc54WbVoaQ+BhT7G2NvO4mpGP93+Jw9vDXeH+2DA/h1bNMMjVCkXyMhyMuY1Xvz8Hd4eW8PNygIUKGz9FpdzFxiPX0MuhJTZP96j3IQ31TU9XB68+0w7fHEtCgI9LnT52SakCC3ZF45VnnODhaK6Vx2hKmwkp9Zdn3LhxkMlksLKywrhx46ptJ5FIUFamvRUoJk+ejOzsbHz44YdIT09Hly5dEBoaCgeHh5svpKenIzU1tby9k5MTQkNDsXDhQmzYsAF2dnZYu3YtJkyYUN7G29sbO3fuxHvvvYf3338f7du3x65du9CnTx+tPY+GaHhnG5gZSTH7+3MY7GoFV1sTZOQVIyxOhvZWzRAyvTeM9Gv3ta1FcwMEjnTFor0XsPFF9zp7oeUWyLHtdAo2z+hdJ4/XED3rbAlbM0Ms/DkGE3q1wbgerWs1vKVIXoa4W7k4l3IXMan3UFxaBlMjKRzMjdHCWB9FpWXYd74AaXcL0aW1GWZ6O2qtgN/yzw28P7qTVq7dmEzpbY+ZW89iRBcbWGvody2EwHsH4uDn5fDEjUbcHcwxvlcxPv4tHsvGdqn1Y6/9+yqWPOdW6+s8DWZ4O+L7iBt4d5Tmfx+Jsnx8+NslrJvaC5Ym1RfGhlJdTOptjxc82iAiKRvv7Y9DC2MpJri3QU/7FlUWxgUlDzfR+S02HW1aGuHTCd1qfIymZqCLJbadToUstwg2Ztp5f3xcaZkCb+2+gBfc7eHdof6GWj5NJEKIp3c6cB3Jy8uDmZkZsrKyGt1kw8eVlCoQkZSFG1kP0LKZPp7taImWai6PV53d524iJbsAbw3X/qdwIQQW7IrBDG9HlbYBr4lcLkdoaChGjRpV72MoVVVSqsCPp1Jw+HIGBjpbYZCrJZwsmlf7oUYIgXsFcqTmFOBa5n1cSLuH1JwC6OvqoGtrM3g4mqOHfYtqP2QJIRCVchebjiXB3cEcrz3bTqMfoK5m5CPkZDI+ndBNY9d8XGPKd6IsHxuOXMPaqT01cr0fI2/gQUkZ/Ae0V/qcL8OvwNLEAC/1VX93yZNXs3Di6h0s1kLh+CQNNd8ztpzBuqk9YWKouZhu3yvEmz9fwPppPdFKhd7lR65l3kfoxXREp96FVFcHrVsawVCqi/wiOdLvFUFHR4KhblYY0dm2zr+FVFZ95/vS7Vx8H3EDqyZ21/pjKRQCi/ddhHeHVvW6Q2h9ys7OhoWFBXJzc2FqqpllU5rud6FUJX09HQx0sQK0WOO+4GGPoIOXEBaXjhFdtDvR5OdzN+FsbaKxIrqx09fTwSvPOOFlLwecvJaFHWduIiX7AcoUolKB++gjdgtjfbQ1N4aTZTO8+kw72JsbKT3pSCKRwMPRHMEOLbE7Kg1zfozCl5O7a6wYCD5xHa89q3yR97RzsTFBm5ZG+DshA0Pcard++6XbuYhIysaGaaqtGDF/SEfM3xUDFxsT9Fbja+PSMgW+PnYNm15yV/ncp9lkD3v8fC4NrzzjpJHrFcnL8M7eWKwY31WtIhoAOlg1x7whHQEAxaVlSL9XhOJSBUwM9WBlYtDkh28oo7PdwwnCl27nlv+/Nggh8OFv8ejRtkWTLaK1RalCeu3atUpfcN68eWoHQ03Hkufc8NoP59DeUnvjlq9l3sehSxn49mUPrVy/MZPq6mCQixUGuVTeyEM8YflHdUgkEkzysEcHq+b4z0/nsXpS91oP9UjPLcSDkjJ0sKr/2eANybwhHTFzy1n0bdcKzQzU6yu5X1yKT35PwPppvVQeAqSjI8GK8V3x2g/nsGZyD5XzvONMKsZ0s9Noz+vTwKezDfxCTmO6l4NGCtSVYZcxw9sRjhbNNBAdYKCnq7FrNTUBw1zw7v6LCJnuoZVlAIUQ+OLQFbRpaVSvq4Q8rZR6l/3yyy+VuphEImEhTUqR6upg1cTumLcjWqml91SVWyjHB7/EYfWkHk1q0oMmaHM9115tW2LZ2M6YvzMGqyZ2g725sdrXCjmRjFn9NNM79zQxlOriv4M6YGXYZXyoxlhlIQTePxCH+UM6wlzNYV3NDfTw4djOWLQ3FsEveyg9+fBeQQn+vJSB72d5qvW4TzNdHQmGulnjUHxGrZeMO3k1C/IyRa2/tSDNsDEzhHf7Vth9Lg2Tettr9NpCCKwMS4SJoR5e7d9Oo9emh5R6d0tOTlbq5/r169qOl54iliYGeGekKwL3xkKh0NxQ/eLSMgTsisE7I1zrbAIHKa+9ZXN8Pqk7Fu2Jxc2cArWukZ5biJScgkorDNBDz3S0gFRXB4cuVb9Da3V+iEyBi40J+rSr3XyPDlYmmORhjxUqbEf44a/xeNPHmR9+qzGptz12nb1Zq2vkFsqx4cg1rUxcJPXN8HbEr7G3cSe/WGPXFELgo98SYGligP8O6qCx61JFtfp+SAgBzlWk2uhh3wI+na2x5ECcRopphULg3X1xmNanLbrX0QYGpLrWLYzw2QvdsGhPLG7dK1T5/K/+uor5/z82k6q2aIQLfohMQXqu8r/f86l3ceZGDuY8q5meq1FdbSHVlWB/dNoT2+47n4Y25sacz1CD5gZ6cLUxwZnkHLWvsezXS3hruEuTXi6yIdLT1UHgSFcsD03QyPVKShV4e08s2ls109i4eqqaWoV0SEgIunTpAkNDQxgaGqJLly747rvvNB0bNRHP92yDnm1b4N39F2tVTJeWKfDO3lj0bWfOrywbgTYtjbFqYje89fMFlYq96NS7EAJa3cXvaWCgp4sPx3bG4n0XUVz65GVJZblF+CwsEcuf76rR4T1vD3fB4ct3auwdP5Ocg0OXMjBvMHvNnmT2sw/XHlbH77HpsDUz5Dc5DVRnOzO0bmGEgxdu1+o6uQVy/OenKIzobIMX+6i/eg4pR+VC+v3338f8+fMxZswY7N69G7t378aYMWOwcOFCvPfee9qIkZqASR728HA0x5u7L6BIrvpa5DkPSuD/03kMdrXCCx6aHWNG2mNvboxPJ3RFwK4LkOUWPbF9cWkZPj+UiMWjXOsgusavnWVz+PV1wDt7YlFapqi2Xfb9Yry5OwYrxnfV+HwFPV0dfPFCd4RdkiH4+PVKH5bD4mTYdCwJX0zqzlUelGDR3AAdrU0QcS1LpfPScwux40wq5g9x1lJkpAkLhnbEgehbuJKRr9b5Cel58P8pCvOHdsTQTuxQqgsqf7fz9ddfIzg4GFOnTi0/5uvri27duuGNN97Axx9/rNEAqemY6N4GViYGeOX7s3h3lJtSSwEJIfDnpQz8EHkDS55T7hxqWBxaNcPy8V2xcFcMvppS/SoPQggs/eUSXnnGCS2MNbu2+dNsiJs1CuVleGNHNFZO7AbTx1bDuJKRj6W/XEKQb2etrbqgr/ewmN52OhV+m0/D07EVjPR1cCb5LtpbNcOml9yhr8ciWln/GdAe/91+Hp5O5kp9+CgtU+DdfRfx4djO/D03cHq6Olg5oRvm7YjG55O6K72bpRACu87exOHLmWqvC07qUbmQLisrg4dH5eXE3N3dUVpaqpGgqOl61tkSrrYm+PSPy5Dq6GC6tyPcbE0qfdVcJC/DkcuZ2HXuJnrat8TmGb1hKK3dzotUf5wsmuHj57tgwa4YfDyuC9pZVlzS7tHyTU4WzTDYlb0sqhrdzQ52LYzwn5+i8GxHS3g4mqNYXoZD8Rm4c78Ya6b00NhuiNWRSCR4qa8DJrq3wWVZPgpKSjHJw54fitRgZizFc91ssf1MKl72cnxi+7V/X4VvD7tKrytqmCxNDMqHvQX5doaLTc1LxF7LzMenfyTCw7ElNr3kXqtda0l1KhfSL730Er7++musXr26wvFvv/0WL774osYCo6bLysQQqyf1wJWMfOw6exPXMu+jmYEuWhrro6RUgZwHJZBIgP4dLfHVlJ4a/yqa6kd7y+b4/IXu+OCXOHSyM8ML7m1gbWqIy7I8bDhyDc90sICfEkUDVa1X25b4fqYn/knKRsS1LBhIdTDJwx6d7DSzu5eyDKW66MGJwLU2ycMec348h34dLNC+hgL5+JU7yMgrRoCP9neSJc2xNzfGumk9Ebj3Ino7toSfl0OlCaLJWQ+w9Z9kZD8oQZBvJ7Rpqf5yoqQ+tabthoSE4NChQ+jbty8A4NSpU7h58yZefvllBAQElLd7vNgmUoWztQneH90JwMMe6LsFJZDq6sDcWJ+fuJ9Sdi2MEPyyByKSsvHN8SRk5hXDybIZlozqhLat+EeitvR0dTDA2RIDnC3rOxSqJV0dCT4e1xUBP8fg65eqXov/ws172PJPMr7mLpGNkkVzAwS/7I5fY9Px+vZoSHUlsDIxxIOSUtzJL0ablkZ4sY8DJ17XM5UL6bi4OPTq9XDL2KSkhzOHLS0tYWlpibi4uPJ22tzUgZoeQ6kubM2UGytGjZtEIkG/Dhbo18GivkMhatBszAwRONIVr28/j1UTu1V4j/zjYjp2R6Xhq6k9OeytEZNIJPDtbgff7nYokpch+0EJjKS6am+WRJqnciF95MgRbcRBREREKurWpgWWjumMd/ddhI2ZISybGyD2Vi662JlxEudTxlCqq/TkQ6o7XJGdiIioEetg1RxbZnri1r1C5NwvwZwB7dHMgH/eieqCyq+0oqIirFu3DkeOHEFmZiYUioprk54/f15jwREREZFyWrcwYo8lUR1TuZCeNWsWwsPDMXHiRHh6enIsNBERERE1SSoX0r///jtCQ0PRr18/bcRDRERERNQoqDwLoXXr1jAxqXlxcCIiIiKip53KhfQXX3yBd955BykpKdqIh4iIiIioUVB5aIeHhweKiorQrl07GBsbQyqtuAh8Tk6OxoIjIiIiImqoVC6kp06dilu3bmH58uWwtrbmZEMiIiIiapJULqQjIiIQGRmJ7t27ayMeIiIiIqJGQeUx0q6urigsLNRGLEREREREjYbKhfSnn36KN998E0ePHkV2djby8vIq/GjL3bt34efnBzMzM5iZmcHPzw/37t2r8RwhBIKCgmBnZwcjIyMMHDgQly5dKr8/JycHb7zxBlxcXGBsbIy2bdti3rx5yM3N1drzICIiIqKng8pDO0aMGAEAGDJkSIXjQghIJBKUlZVpJrLHTJs2DWlpaQgLCwMAvPbaa/Dz88Ovv/5a7TmrVq3C6tWrsXXrVjg7O+Pjjz/GsGHDkJiYCBMTE9y+fRu3b9/G559/jk6dOiElJQX+/v64ffs29uzZo5XnQURERERPB5UL6SNHjmgjjholJCQgLCwMp06dQp8+fQAAwcHB8PLyQmJiIlxcXCqdI4TAmjVrsGTJEowfPx4A8P3338Pa2hrbt2/HnDlz0KVLF+zdu7f8nPbt2+OTTz7BSy+9hNLSUujpqfzrISIiIqImQuVKccCAAdXeFxMTU5tYqhUZGQkzM7PyIhoA+vbtCzMzM0RERFRZSCcnJ0Mmk8HHx6f8mIGBAQYMGICIiAjMmTOnysfKzc2FqalpjUV0cXExiouLy28/GtIil8shl8tVfn7UuDzKMXPdNDDfTQvz3bQw302LNvJc6y7X3NxcbNu2Dd999x0uXLiglaEdMpkMVlZWlY5bWVlBJpNVew4AWFtbVzhubW1d7WYy2dnZ+Oijj6otsh9ZsWIFli1bVun4kSNHYGxsXOO59PQIDw+v7xCoDjHfTQvz3bQw301DQUGBxq+pdiF9+PBhbN68Gfv27YODgwMmTJiAkJAQla4RFBRUZUH6b2fPngWAKterfjQuuyaP31/dOXl5eXjuuefQqVMnLF26tMZrLl68GAEBARXOtbe3x6BBg9CqVasaz6XGTy6XIzw8HMOGDau0IRE9fZjvpoX5blqY76YlOztb49dUqZBOS0vD1q1bsXnzZjx48ACTJk2CXC7H3r170alTJ5Uf/PXXX8eUKVNqbOPo6IjY2FhkZGRUuu/OnTuVepwfsbGxAfCwZ9rW1rb8eGZmZqVz8vPzMWLECDRv3hz79+9/4ovJwMAABgYGlY5LpVK+EJsQ5rtpYb6bFua7aWG+mwZt5FjpQnrUqFE4efIkRo8ejXXr1mHEiBHQ1dXFpk2b1H5wCwsLWFhYPLGdl5cXcnNzcebMGXh6egIATp8+jdzcXHh7e1d5jpOTE2xsbBAeHo6ePXsCAEpKSnDs2DGsXLmyvF1eXh6GDx8OAwMDHDx4EIaGhmo/HyIiIiJqOpReR/rQoUN49dVXsWzZMjz33HPQ1dXVZlwVuLm5YcSIEZg9ezZOnTqFU6dOYfbs2Rg9enSFiYaurq7Yv38/gIdDOhYsWIDly5dj//79iIuLw4wZM2BsbIxp06YBeNgT7ePjgwcPHiAkJAR5eXmQyWSQyWRaW8aPiIiIiJ4OSvdInzhxAps3b4aHhwdcXV3h5+eHyZMnazO2CrZt24Z58+aVr8Lh6+uL9evXV2iTmJhYYTOVRYsWobCwEHPnzsXdu3fRp08fHDp0CCYmJgCAqKgonD59GgDQoUOHCtdKTk6Go6OjFp8RERERETVmShfSXl5e8PLywldffYWdO3di8+bNCAgIgEKhQHh4OOzt7csLVG0wNzfHTz/9VGMbIUSF2xKJBEFBQQgKCqqy/cCBAyudQ0RERESkDJW3CDc2NsasWbNw8uRJXLx4EW+++SY+/fRTWFlZwdfXVxsxEhERERE1OCoX0v/m4uKCVatWIS0tDTt27NBUTEREREREDV6tCulHdHV1MW7cOBw8eFATlyMiIiIiavA0UkgTERERETU1LKSJiIiIiNTAQpqIiIiISA0spImIiIiI1MBCmoiIiIhIDSykiYiIiIjUwEKaiIiIiEgNLKSJiIiIiNTAQpqIiIiISA0spImIiIiI1MBCmoiIiIhIDSykiYiIiIjUwEKaiIiIiEgNLKSJiIiIiNTAQpqIiIiISA0spImIiIiI1MBCmoiIiIhIDSykiYiIiIjUwEKaiIiIiEgNLKSJiIiIiNTQaArpu3fvws/PD2ZmZjAzM4Ofnx/u3btX4zlCCAQFBcHOzg5GRkYYOHAgLl26VG3bkSNHQiKR4MCBA5p/AkRERET0VGk0hfS0adMQExODsLAwhIWFISYmBn5+fjWes2rVKqxevRrr16/H2bNnYWNjg2HDhiE/P79S2zVr1kAikWgrfCIiIiJ6yujVdwDKSEhIQFhYGE6dOoU+ffoAAIKDg+Hl5YXExES4uLhUOkcIgTVr1mDJkiUYP348AOD777+HtbU1tm/fjjlz5pS3vXDhAlavXo2zZ8/C1ta2bp4UERERETVqjaKQjoyMhJmZWXkRDQB9+/aFmZkZIiIiqiykk5OTIZPJ4OPjU37MwMAAAwYMQERERHkhXVBQgKlTp2L9+vWwsbFRKp7i4mIUFxeX387NzQUA5OTkqPX8qHGRy+UoKChAdnY2pFJpfYdDWsZ8Ny3Md9PCfDctj+o0IYTGrtkoCmmZTAYrK6tKx62srCCTyao9BwCsra0rHLe2tkZKSkr57YULF8Lb2xtjx45VOp4VK1Zg2bJllY47OzsrfQ0iIiIiqnvZ2dkwMzPTyLXqtZAOCgqqsiD9t7NnzwJAleOXhRBPHNf8+P3/PufgwYM4fPgwoqOjVQkbixcvRkBAQPnte/fuwcHBAampqRpLDDVceXl5sLe3x82bN2Fqalrf4ZCWMd9NC/PdtDDfTUtubi7atm0Lc3NzjV2zXgvp119/HVOmTKmxjaOjI2JjY5GRkVHpvjt37lTqcX7k0TANmUxWYdxzZmZm+TmHDx9GUlISWrRoUeHcCRMmoH///jh69GiV1zYwMICBgUGl42ZmZnwhNiGmpqbMdxPCfDctzHfTwnw3LTo6mltro14LaQsLC1hYWDyxnZeXF3Jzc3HmzBl4enoCAE6fPo3c3Fx4e3tXeY6TkxNsbGwQHh6Onj17AgBKSkpw7NgxrFy5EgAQGBiIV199tcJ5Xbt2xZdffokxY8bU5qkRERER0VOuUYyRdnNzw4gRIzB79mx88803AIDXXnsNo0ePrjDR0NXVFStWrMDzzz8PiUSCBQsWYPny5ejYsSM6duyI5cuXw9jYGNOmTQPwsNe6qgmGbdu2hZOTU908OSIiIiJqlBpFIQ0A27Ztw7x588pX4fD19cX69esrtElMTCxfQQMAFi1ahMLCQsydOxd3795Fnz59cOjQIZiYmGg0NgMDAyxdurTK4R709GG+mxbmu2lhvpsW5rtp0Ua+JUKTa4AQERERETURjWZnQyIiIiKihoSFNBERERGRGlhIExERERGpgYU0EREREZEaWEgraePGjXBycoKhoSHc3d1x4sSJGtsfO3YM7u7uMDQ0RLt27bBp06Y6ipQ0QZV879u3D8OGDYOlpSVMTU3h5eWFP//8sw6jpdpS9fX9yD///AM9PT306NFDuwGSRqma7+LiYixZsgQODg4wMDBA+/btsXnz5jqKlmpL1Xxv27YN3bt3h7GxMWxtbTFz5kxkZ2fXUbSkruPHj2PMmDGws7ODRCLBgQMHnniORmo1QU+0c+dOIZVKRXBwsIiPjxfz588XzZo1EykpKVW2v379ujA2Nhbz588X8fHxIjg4WEilUrFnz546jpzUoWq+58+fL1auXCnOnDkjrly5IhYvXiykUqk4f/58HUdO6lA134/cu3dPtGvXTvj4+Iju3bvXTbBUa+rk29fXV/Tp00eEh4eL5ORkcfr0afHPP//UYdSkLlXzfeLECaGjoyO++uorcf36dXHixAnRuXNnMW7cuDqOnFQVGhoqlixZIvbu3SsAiP3799fYXlO1GgtpJXh6egp/f/8Kx1xdXUVgYGCV7RctWiRcXV0rHJszZ47o27ev1mIkzVE131Xp1KmTWLZsmaZDIy1QN9+TJ08W7733nli6dCkL6UZE1Xz/8ccfwszMTGRnZ9dFeKRhqub7s88+E+3atatwbO3ataJNmzZai5E0T5lCWlO1God2PEFJSQmioqLKN4J5xMfHBxEREVWeExkZWan98OHDce7cOcjlcq3FSrWnTr4fp1AokJ+fD3Nzc22ESBqkbr63bNmCpKQkLF26VNshkgapk++DBw/Cw8MDq1atQuvWreHs7Iy33noLhYWFdREy1YI6+fb29kZaWhpCQ0MhhEBGRgb27NmD5557ri5CpjqkqVqt0exsWF+ysrJQVlYGa2vrCsetra0hk8mqPEcmk1XZvrS0FFlZWbC1tdVavFQ76uT7cV988QUePHiASZMmaSNE0iB18n316lUEBgbixIkT0NPjW2hjok6+r1+/jpMnT8LQ0BD79+9HVlYW5s6di5ycHI6TbuDUybe3tze2bduGyZMno6ioCKWlpfD19cW6devqImSqQ5qq1dgjrSSJRFLhthCi0rEnta/qODVMqub7kR07diAoKAi7du2ClZWVtsIjDVM232VlZZg2bRqWLVsGZ2fnugqPNEyV17dCoYBEIsG2bdvg6emJUaNGYfXq1di6dSt7pRsJVfIdHx+PefPm4YMPPkBUVBTCwsKQnJwMf3//ugiV6pgmajV2pzyBhYUFdHV1K316zczMrPRJ5hEbG5sq2+vp6aFVq1Zai5VqT518P7Jr1y688sor2L17N4YOHarNMElDVM13fn4+zp07h+joaLz++usAHhZaQgjo6enh0KFDGDx4cJ3ETqpT5/Vta2uL1q1bw8zMrPyYm5sbhBBIS0tDx44dtRozqU+dfK9YsQL9+vXD22+/DQDo1q0bmjVrhv79++Pjjz/mN8pPEU3VauyRfgJ9fX24u7sjPDy8wvHw8HB4e3tXeY6Xl1el9ocOHYKHhwekUqnWYqXaUyffwMOe6BkzZmD79u0cS9eIqJpvU1NTXLx4ETExMeU//v7+cHFxQUxMDPr06VNXoZMa1Hl99+vXD7dv38b9+/fLj125cgU6Ojpo06aNVuOl2lEn3wUFBdDRqVga6erqAvhfbyU9HTRWq6k0NbGJerR8TkhIiIiPjxcLFiwQzZo1Ezdu3BBCCBEYGCj8/PzK2z9aUmXhwoUiPj5ehISEcPm7RkTVfG/fvl3o6emJDRs2iPT09PKfe/fu1ddTIBWomu/HcdWOxkXVfOfn54s2bdqIiRMnikuXLoljx46Jjh07ildffbW+ngKpQNV8b9myRejp6YmNGzeKpKQkcfLkSeHh4SE8PT3r6ymQkvLz80V0dLSIjo4WAMTq1atFdHR0+VKH2qrVWEgracOGDcLBwUHo6+uLXr16iWPHjpXfN336dDFgwIAK7Y8ePSp69uwp9PX1haOjo/j666/rOGKqDVXyPWDAAAGg0s/06dPrPnBSi6qv739jId34qJrvhIQEMXToUGFkZCTatGkjAgICREFBQR1HTepSNd9r164VnTp1EkZGRsLW1la8+OKLIi0trY6jJlUdOXKkxr/F2qrVJELwuwoiIiIiIlVxjDQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBHRUyQoKAg9evSot8d///338dprrynV9q233sK8efO0HBERkfZwZ0MiokZCIpHUeP/06dOxfv16FBcXo1WrVnUU1f9kZGSgY8eOiI2NhaOj4xPbZ2Zmon379oiNjYWTk5P2AyQi0jAW0kREjYRMJiv//127duGDDz5AYmJi+TEjIyOYmZnVR2gAgOXLl+PYsWP4888/lT5nwoQJ6NChA1auXKnFyIiItINDO4iIGgkbG5vyHzMzM0gkkkrHHh/aMWPGDIwbNw7Lly+HtbU1WrRogWXLlqG0tBRvv/02zM3N0aZNG2zevLnCY926dQuTJ09Gy5Yt0apVK4wdOxY3btyoMb6dO3fC19e3wrE9e/aga9euMDIyQqtWrTB06FA8ePCg/H5fX1/s2LGj1r8bIqL6wEKaiOgpd/jwYdy+fRvHjx/H6tWrERQUhNGjR6Nly5Y4ffo0/P394e/vj5s3bwIACgoKMGjQIDRv3hzHjx/HyZMn0bx5c4wYMQIlJSVVPsbdu3cRFxcHDw+P8mPp6emYOnUqZs2ahYSEBBw9ehTjx4/Hv78I9fT0xM2bN5GSkqLdXwIRkRawkCYiesqZm5tj7dq1cHFxwaxZs+Di4oKCggK8++676NixIxYvXgx9fX38888/AB72LOvo6OC7775D165d4ebmhi1btiA1NRVHjx6t8jFSUlIghICdnV35sfT0dJSWlmL8+PFwdHRE165dMXfuXDRv3ry8TevWrQHgib3dREQNkV59B0BERNrVuXNn6Oj8r9/E2toaXbp0Kb+tq6uLVq1aITMzEwAQFRWFa9euwcTEpMJ1ioqKkJSUVOVjFBYWAgAMDQ3Lj3Xv3h1DhgxB165dMXz4cPj4+GDixIlo2bJleRsjIyMAD3vBiYgaGxbSRERPOalUWuG2RCKp8phCoQAAKBQKuLu7Y9u2bZWuZWlpWeVjWFhYAHg4xONRG11dXYSHhyMiIgKHDh3CunXrsGTJEpw+fbp8lY6cnJwar0tE1JBxaAcREVXQq1cvXL16FVZWVujQoUOFn+pWBWnfvj1MTU0RHx9f4bhEIkG/fv2wbNkyREdHQ19fH/v37y+/Py4uDlKpFJ07d9bqcyIi0gYW0kREVMGLL74ICwsLjB07FidOnEBycjKOHTuG+fPnIy0trcpzdHR0MHToUJw8ebL82OnTp7F8+XKcO3cOqamp2LdvH+7cuQM3N7fyNidOnED//v3Lh3gQETUmLKSJiKgCY2NjHD9+HG3btsX48ePh5uaGWbNmobCwEKamptWe99prr2Hnzp3lQ0RMTU1x/PhxjBo1Cs7OznjvvffwxRdfYOTIkeXn7NixA7Nnz9b6cyIi0gZuyEJERBohhEDfvn2xYMECTJ069Yntf//9d7z99tuIjY2Fnh6n7BBR48MeaSIi0giJRIJvv/0WpaWlSrV/8OABtmzZwiKaiBot9kgTEREREamBPdJERERERGpgIU1EREREpAYW0kREREREamAhTURERESkBhbSRERERERqYCFNRERERKQGFtJERERERGpgIU1EREREpAYW0kREREREavg/7QD64UyeNDAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Build the modal responses as harmonic functions with given properties\n", "uk = MRPy.harmonic(NX=3, N=2048, fs=512, X0=u0i, f0=fk3, phi=thi)\n", "\n", "f5 = uk.plot_time(5, figsize=(8,6), axis_t=(0, 1, -0.04, 0.04))\n", "\n", "#uk.plot_time(4, figsize=(8,6), axis_t=(0, 1, -0.005, 0.005))\n", "\n", "# Calculate the NODAL responses superposing all modal responses\n", "uN = MRPy(np.matmul(Phi3, uk), fs=512)\n", "\n", "f4 = uN.plot_time(4, figsize=(8,6), axis_t=(0, 1, -0.04, 0.04))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that the system response contains all natural 3 system natural frequencies, as can be confirmed\n", "by taking a look at the periodograms:\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 5.41499969 15.17249196 21.92488612]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAGeCAYAAAAaHEKjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA9gklEQVR4nO3de5xdVX3//9c7k8uEkDABkhjCJVxiNIAiItCiMlW5hJaGeoV+/RKUFvgV+sWqVbx9BX/qDy0VvhSEBqVCv1iMN4gtLWJ0uBUMd0KAQAgBQmICIRcmt7l9fn/sNcnJycw+eyY5OZM57+fjcR5z9t5r7fPZa3Yyn7P22msrIjAzMzPrzZBaB2BmZmYDm5MFMzMzy+VkwczMzHI5WTAzM7NcThbMzMwsl5MFMzMzy+VkwWw3JqlF0jW1jqMoSZdKeqrWcRQl6UeS/r3WcZjVmpMFqwuSxkn6vqQlkjZLWiFprqSTdnEcu/SPu6RmSZFeXZLWSXpS0v+RdPCuiqPEFcCJJfHtlD/GZcdZ/npbH+rvW7bpYuCTOxpfgc/frZIoqz9Dax2A2S7yc2AP4FxgETCe7I/WPrUMqjeShkVE+07c5eHAG8CewDuBzwDzJf1pRNy9Ez8nV0S0Aq1V/Iju4yz1Wn93FhFrdyycXUvSUKAzPNue7WwR4Zdfg/oFNAEBfKhCuSXApcD/JfuD9gfg82Vl9gJmASuBN4G7gWPKyhwP/BZYD6wF5gL7AT9KcZS+JgPN6f1pwDygDfgz4FDg9hTHeuBR4M/KPqsFuCbnmLr3vW/Z+gbgXuAFoKFk/enAI8Am4EXgW8Dwsjb6KvDPwDpgKfD3Zfs+H3gu7eM14E5gaNp2KfBUyfvy9mhObXdN2T7HABuAD/flOMvKHJl+F+vS7+4J4E/S76A8jh+lOj8C/r2sva8D/pEsKXmNrPdhBHAtsAZ4GfifZZ99ObAQ2Jja8LtAY9p2Tg+ff07adiDwyxTvm8AvgP1L9nsp8FTaxwtAJ7Bnrf/N+TX4Xr4MYfWg+9vsn0tqrFD2s8AzwNHA14FvS/owgCQB/wFMIvtj/i7gHuC3kiamMu8EfkfWe3ECWeIwm6wX72LgAeBfgInp9UrJZ3+H7A/x24Dfk/UC/CdwEllvwM+BXxTpVq8kIjqBK4FD0nEg6RTgFuAasm/onwY+Cny7rPrfAfPJ2ug7wHcl/VHaxzFkfzQvA6YCHwL+q5cwriBrm9+wtT3+G7gB+EtJI0rKnkX2O/xVf48Z+DGwHDiW7JgvJUtoXgE+ksocnuK4OGc//4PsD/dxZEnAVcBtZAnSMcBNwA8k7VdSZz1Ze74d+BvgTOAradtPyJKPhWxth5+k8+02YALwAbLEZj/gtrSt28HAXwIfIztPNhVoC7O+qXW24pdfu+JF9sfgDbL/SB8g+0N1XFmZJcBdZet+ANyX3n+A7A/WyLIyjwNfSO9vAR7MiaOF7b81N5N9m/xIgeN4EPhq3v562fd237jJkpIAPp6W7wG+VlbmjHTMKmmjfysr83x3TMCHyXpTRvcSz6WknoW0/CNKvrmndSOA14EzS9b9HriiwHG2lr2WlpRZB8zsSzuVx5fa+4GSZZH1LswpWTeMrHfooznxXgAs6q1d0rqTyHoKJpesOwToIvWSpXrtwIRa/dvyqz5e7lmwuhARPyf7VnY62bf1PwYelPTlsqIP9LA8Lb1/N9m4h9cktXa/gCPILhlA9o11bj/DfLh0QdIoSd+V9LSk1emzjiHrmt4Zur+ddl/ffjfwlbJj+zEwCnhLSb0ny/azjGwMCMBdwEvAi5JukTRT0ui+BBURm4F/JfsmjqRpZL0BNxao/ifAUSWv95Vs+x7ZN/7fSvrKDvTQbDn+iAiyS1LzS9a1A6vZ2iZI+qik+yT9IbXrlVT+Pb4dWBYRS0r2vZisvaeVlFsaESv6eSxmhThZsLoREZsi4q6I+EZE/DHwQ+BSScML7mIIsIJt/xgdRfYN/WupjLavVtj6suUryLqWv0Y2GPMosjENReOtpPsPzuL0cwjZ5YOjSl7vAKaw7SDB8oGXkeoSEW+SXZ74ONm1+y8Bz5Z1yRfxA+CDkg4kG5T6QEQ8XaDeixGxqOT14pYgIy4lO+bbyJLFJyV9uo9xQc/H32ubSDoeuJVs7MbpZAnlV8l6IPKIrYlcudL15eeN2U7nuyGsnj1N9m+gkazbGLIxBqWOJxvDANkAwwlAV/qG15NHyS5X9KaNbHBhEe8Fbk69IqTxFoeSXRvfIZIayO6IeIHsMgpksb8tIhbtyL4jooNskOJvJX2d7Jv3n5ENDC3XY3tExAJJvwf+muzWxa+Ul+lnbM+TXTa5WtJ1wF+R9Vh0//6L/m764gTg1Yj4f7tXSDqorExP7fA0MEnS5O7eBUmHkPWQFUmczHYaJws26EnaB/gp2R+FJ8kGpx0DfAGYGxHrSoofL+lLwM/IrmOfTTagDbKBePcDt0v6AvAsWff8qcBvIuJe4B/ILm/MIhvot4msK/zXEfEy2TX/YyVNJrumXn6bX6nngL+QdDvZN9evkyU2/TE+3Va3J1lvwd+RfcM9LbLBjgDfAP5d0ktkAw87yC6xHBsRXyjyIZK67+K4h+zY/gQYzdaEq9wSYLqkqcAqYG1svWX0BuB6smP/SR+Ps9QbZH+IryA7D5aQJX3vJRsLAdmlkwD+VNKvgI2R3ea5MzxH9kf/f5Bd1jqFbMBmqSXAQZKOJuuReZPsfHsCuEXS/yLrafgnsqTutzspNrNCfBnC6kEr2cDAi8ludVxANsL/x8Anysp+j+yP6WPAN4H/HRE/gy3Xp08j+4/6BrLR67PJRv0vS2UeJ7sD4G3pM39PNvK9+w/gFWTfIp8m69rPu279WbJv5feSjbN4ML3vjwVkdwI8RpYUPAa8IyLu6S4QEXcCf0r2B35eel1C9serqDVkgyJ/Q5ZMfR74q5RI9eQGskTiYbL2OKFk20/I2mp2urxRRPdxlr7eTzZQcCzZnQoLyW5HfICsjYmIV8mSsW+RXWraaRNnRcSvyJLIq8iS1ZOA/11W7OfAHWTjXV4Dzkrn2xlpuYXsLps/AGekbWa7jHzOmWUkLSG7s+CKWsdikMY5vAycGBH31zoes3rmyxBmNqBIGkY218C3gMecKJjVni9DmNlAcwLZGILjyAY4mlmN+TKEmZmZ5XLPgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlmtorQOopaampjjssMNqHcZuYf369YwaNarWYQx4bqfi3FbFuJ2KcTsV98gjj7weEeP6Uqeuk4UJEybw8MMP1zqM3UJLSwvNzc21DmPAczsV57Yqxu1UjNupOEkv9bWOL0OYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlquqyYKkUyUtlLRI0iU9bJekq9P2JyUdXamupL0l3SXp+fRzbNk+D5TUKunz1Tw2MzOzelG1ZEFSA3AtMB2YBpwlaVpZsenAlPQ6D7iuQN1LgLkRMQWYm5ZLXQn8504/IDMzszpVzZ6FY4FFEbE4ItqAW4EZZWVmADdH5kGgSdLECnVnADel9zcBZ3TvTNIZwGJgQXUOyczMrP4MreK+JwGvlCwvBY4rUGZShboTImI5QEQslzQeQNIo4IvASUCvlyAknUfWi8G4ceNoaWnp00HVq9bWVrdVAW6n4txWxbidinE7VVc1kwX1sC4KlilSt9xlwJUR0Sr1VD3tJGIWMAtg6tSp0dzcXGG3BtDS0oLbqjK3U3Fuq2LcTsW4naqrmsnCUuCAkuX9gWUFywzPqbtC0sTUqzARWJnWHwd8VNJ3gSagS9KmiLhmZxyMmZlZvarmmIWHgCmSDpY0HDgTmFNWZg5wdror4nhgbbrEkFd3DjAzvZ8J3A4QEe+LiMkRMRm4Cvi2EwUzM7MdV7WehYjokHQRcCfQANwYEQskXZC2Xw/cAZwGLAI2AJ/Kq5t2fTkwW9K5wMvAx6p1DGZmZlbdyxBExB1kCUHpuutL3gdwYdG6af0q4IMVPvfSfoRrZmZmPfAMjmZmZpbLyYKZmZnlcrJgZmZmuZws2A7p7Apee3NzrcMwM7MqcrJgO+TV1Ru57bFXax2GmZlVUe7dEJJOIXv2wiSyGRSXAbdHxH9VPzTbHaze0Mabm9prHYaZmVVRr8mCpKuAtwI3k820CNlMiv9L0vSIuLj64dlAt3pDG+s2ddQ6DDMzq6K8noXTIuKt5Ssl/QR4DnCyYKzZ0E7rZicLZmaDWd6YhU2Sju1h/XuATVWKx3Yzqze0MWp4Q63DMDOzKsrrWTgHuE7SaLZehjgAWJe2mbF2YztjRg6rdRhmZlZFvSYLEfEocJykt5ANcBSwNCL+sKuCs4GvK2BIziPBzcxs91fx2RApOXCCYGZmVqc8z4LtsKh1AGZmVlVOFmynyB4gamZmg1FusiBpiKSndlUwtnvaY3gDG9s7ax2GmZlVSW6yEBFdwBOSDtxF8dhuaHTjUN70xExmZoNWxQGOwERggaR5wPrulRHx51WLynYLmzs6Gd4gRjcO481N7UwY01jrkMzMrAqKJAuXVT0K2y2t2dBO0x7DGd041FM+m5kNYkVunbxb0kHAlIj4jaQ9AE/ZZ6ze0MbYPYYzpnGYL0OYmQ1iFe+GkPTXwM+Af06rJgG3VTEm202sXt/O2FHDGNM4lHUb/eRJM7PBqsitkxcCJ5BN80xEPA+Mr2ZQtntYk3oWRrtnwcxsUCuSLGyOiLbuBUlD8Tw8Bqze0J6ShaG8uck9C2Zmg1WRZOFuSV8GRko6Cfgp8KvqhmW7g9Ub2mjaYxh7DG9gQ5vnWTAzG6yKJAuXAK8B84HzgTuAr1YzKNs9tHV00TisAUnuajIzG8SK3DrZDNwSETdUORYzMzMbgIokC+cA10taBdybXvdFxOpqBma7Fz+k2sxs8Coyz8LZAJL2Az4KXAvsV6SuDW6+9GBmVh8q/sGX9EngfcCRwOvANWS9C2ZmZlYHivQOXAW8AFwP/C4illQzINs9uZfBzGzwqng3RETsC3waaAS+JWmepH8tsnNJp0paKGmRpEt62C5JV6ftT0o6ulJdSXtLukvS8+nn2LT+JEmPSJqffn6gSIzWP11d4XEKZmZ1osh0z2OAA4GDgMnAXkBXgXoNZOMbpgPTgLMkTSsrNh2Ykl7nAdcVqHsJMDcipgBz0zJkl0hOj4gjgZlAoYTG+mfdpnbGjBy2ZVlAhPsXzMwGoyLzLNwHnA48CXwiIqZGxMwC9Y4FFkXE4jQD5K3AjLIyM4CbI/Mg0CRpYoW6M4Cb0vubgDMAIuKxiFiW1i8AGiWNKBCn9UM2e+PWZGHUiAbWe2ImM7NBqcjdEO8AkDSavl2angS8UrK8FDiuQJlJFepOiIjlKbblknp6TsVHgMciYnP5BknnkfViMG7cOFpaWooeT11rbW3dpq0WrelkQ3vQsm4RAMteaefXG15i78Yi+efgVd5O1ju3VTFup2LcTtVV5G6II8i69PfOFvUaMDMinqpUtYd15clGb2WK1O35Q6XDge8AJ/e0PSJmAbMApk6dGs3NzUV2W/daWloobauuZ1ew96gRHHVAEwCtTy7jrRNG89YJo2sT4ABR3k7WO7dVMW6nYtxO1VXka+As4LMRcVBEHAh8Lq2rZClwQMny/sCygmXy6q5IlypIP1d2F5K0P/BL4OyIeKFAjNZPq9dvexliTOMwP6bazGyQKpIsjIqI33UvREQLMKpAvYeAKZIOljQcOBOYU1ZmDnB2uivieGBtusSQV3cO2QBG0s/bASQ1Af8BfCki7i8Qn+2A7CFSw7csZ0+e9GOqzcwGoyLJwmJJX5M0Ob2+CrxYqVJEdAAXAXcCzwCzI2KBpAskXZCK3QEsBhYBNwB/k1c31bkcOEnS88BJaZlU/jDga5IeT6+exjPYTvDmpg7GNG69ijW6cRjr/JhqM7NBqcikTJ8GLgN+kZbvAT5VZOcRcQdZQlC67vqS9wFcWLRuWr8K+GAP678JfLNIXLZzSFuHloxxz4KZ2aDVa7IgqRG4gOzb+nzgcxHhr47Wo9GNw5wsmJkNUnmXIW4CjiFLFKYD/7BLIrLdUuOwIWxs9zwLZmaDUd5liGlpNkQk/RCYt2tCst2RJE//bGY2SOX1LGy55JAGHJqZmVkdyutZeKekdem9gJFpOT0GIMZUPTobsPwUCDOz+tFrshARDbsyENt9bGzrpHHY9p1STiDMzAan+p7I3/pl9YY2xpZMyGRmZoObkwXrsyxZGLbdeg9wNDMbnJwsWJ+t2dDungUzszriZMH6bPWGNsaO2j5ZkKCryyMXzMwGGycL1merN7TT1MNliD1HDKW1zXfZmpkNNk4WrM/WbmijaeT2PQt+TLWZ2eDkZMH6rL0zGD50+1PHj6k2MxucnCzYTuOHSZmZDU5OFmynyXoWfBnCzGywcbJgfdbb/Q6+DGFmNjg5WbA+2dTeydAhPU+/NGbkMNa5Z8HMbNBxsmB98uhLq3n3QWN73OaeBTOzwcnJgvXJwznJwoihDbR1dO3iiMzMrNqcLFiftHV00TjMDyQ1M6snThassDUb2thr5PYzN5byZM9mZoOPkwUr7IEXVvFHh+5T6zDMzGwXc7JghT29fB3TJo6pdRhmZraLOVmwwiJgSC+3TXbL32pmZrsjJwtWyGsbuth/7Mhah2FmZjXgZMEKWbCqk/dO2bdiOQ9wNDMbfJwsWCGrNgb7j92jYrkGiY5Oz7VgZjaYOFmwirq6ovBghNGNQ2nd7FkczcwGEycLVtHTy9dx0Ohip8qEMY08+vLqKkdkg8nvF6/iO//1LJ1dvohlNlBVNVmQdKqkhZIWSbqkh+2SdHXa/qSkoyvVlbS3pLskPZ9+ji3Z9qVUfqGkU6p5bPViY1snP334Fd6+T7FZG0878i283trGdS0v+HKEVXTf86/z+Ctr+PC7JnHFrxdmvVhmNuBULVmQ1ABcC0wHpgFnSZpWVmw6MCW9zgOuK1D3EmBuREwB5qZl0vYzgcOBU4Hvp/1YP6xct4lrf7eI61oWMfOPJzNqWLHrEJL4+DEHcNK08Xzj359m6eoNVY7UdldPvtbBwhVvcv6JhzJlwmj+9MiJ/J+5zxPhhMFsoBlaxX0fCyyKiMUAkm4FZgBPl5SZAdwc2f8OD0pqkjQRmJxTdwbQnOrfBLQAX0zrb42IzcCLkhalGB6o4jHuViKC9s5gc0cnm9q7aN3cwbqN7azb1M4b69tYunojm9s7QWL0iKH85bEHMnbUcABe7uNnHTZ+NF8+7e3c9N9LWL+5gwDGjx7BIeP2pGmPYew1MnvtOWIokmdnqBcRweutbdy/6HVWbgi++d6Dt2w7YtJebO7o5Lq7X+Bvmg+rYZRmVq6aycIk4JWS5aXAcQXKTKpQd0JELAeIiOWSxpfs68Ee9tWrtZuDK+96rvKR7KCg+GRF5WXz6lYqW7rc/X740CGMGDqEEcMaGD1iKGNGDmV04zAO328vTjn8LTv1IVGNwxo4/8RDs8+P4LU3N7P49fW88sZGntq4lrUb21m/uXNLbP05nt70pc13piVL2nisvfrn1EBU5PcHsM+o4Ux9y2g+dND2zxl590F7094ZfO+u57acE1TY72C3K86p0r6c8n+LPf0OBqJ6/re3K1QzWejp3CrvX+ytTJG6/fk8JJ1HdskDYPNnT576VIX9WmZf4PVaB7EbcDsV57Yqxu1UjNupuKl9rVDNZGEpcEDJ8v7AsoJlhufUXSFpYupVmAis7MPnERGzgFkAkh6OiGP6clD1ym1VjNupOLdVMW6nYtxOxUl6uK91qnk3xEPAFEkHSxpONvhwTlmZOcDZ6a6I44G16RJDXt05wMz0fiZwe8n6MyWNkHQw2aDJedU6ODMzs3pRtZ6FiOiQdBFwJ9AA3BgRCyRdkLZfD9wBnAYsAjYAn8qrm3Z9OTBb0rlk4+4+luoskDSbbBBkB3BhRHRW6/jMzMzqher5NiVJ56XLElaB26oYt1Nxbqti3E7FuJ2K609b1XWyYGZmZpV5umczMzPLVbfJQqWpqC0jaYmk+ZIe788I2sFM0o2SVkp6qmRdr9OR16te2ulSSa+m8+pxSafVMsaBQNIBkn4n6RlJCyRdnNb7nCqT01Y+r0pIapQ0T9ITqZ0uS+v7fE7V5WWINA30c8BJZLdcPgScFRFP51asQ5KWAMdEhO9fLiPp/UAr2SykR6R13wXeiIjLUxI6NiK+WMs4a62XdroUaI2IK2oZ20CSbgWfGBGPShoNPAKcAZyDz6lt5LTVx/F5tYWy6XFHRUSrpGHAfcDFwIfp4zlVrz0LW6aijog2oHs6abPCIuIe4I2y1TPIpiEn/TxjV8Y0EPXSTlYmIpZHxKPp/ZvAM2Sz0PqcKpPTVlYiMq1pcVh6Bf04p+o1WehtmmnbXgC/lvRImv3S8m0zHTkwvkL5enaRsqfN3uiu9W1Jmgy8C/g9PqdylbUV+LzahqQGSY+TTWB4V0T065yq12ShP9NJ16sTIuJosieAXpi6lM121HXAocBRwHLgH2sazQAiaU/g58BnImJdreMZyHpoK59XZSKiMyKOIpvV+FhJR/RnP/WaLBSaGtogIpalnyuBX5JdwrHerUjXU7uvq66sUL4uRcSK9J9YF3ADPq8ASNeVfw7cEhG/SKt9TvWgp7byedW7iFhD9pTmU+nHOVWvyUKRqajrnqRRafAQkkYBJwN+8Fa+3qYjtxLd/1Elf4HPq+7BaD8EnomI75Vs8jlVpre28nm1LUnjJDWl9yOBDwHP0o9zqi7vhgBIt9RcxdbppL9V24gGHkmHkPUmQDY1+I/dTltJ+jegmexpdyuArwO3AbOBA0nTkUdEXQ/u66Wdmsm6igNYApzffQ21Xkl6L3AvMB/oSqu/THYt3udUiZy2OgufV1tIegfZAMYGss6B2RHxDUn70Mdzqm6TBTMzMyumXi9DmJmZWUFOFszMzCyXkwUzMzPLNbTWAdRSU1NTHHbYYbUOY7ewfv16Ro0aVeswBjy3U3Fuq2LcTsW4nYp75JFHXo+IcX2pU9fJwoQJE3j4YT8bqYiWlhaam5trHcaA53Yqzm1VjNupGLdTcZJe6msdX4YwMzOzXE4WzMzMLJeTBTMzM8vlZMHMzMxyOVkwMzOzXE4WzMzMLJeTBTMzM8vlZMHMzMxyOVkwMzOzXE4WzMzMLJeTBTMzM8vlZMHMzMxyOVkwMzOzXE4WzMzMLFdVkwVJp0paKGmRpEt62C5JV6ftT0o6ulJdSXtLukvS8+nn2LJ9HiipVdLnq3lsZmZm9aJqyYKkBuBaYDowDThL0rSyYtOBKel1HnBdgbqXAHMjYgowNy2XuhL4z51+QGZmZnWqmj0LxwKLImJxRLQBtwIzysrMAG6OzINAk6SJFerOAG5K728CzujemaQzgMXAguockpmZWf0ZWsV9TwJeKVleChxXoMykCnUnRMRygIhYLmk8gKRRwBeBk4BeL0FIOo+sF4Nx48bR0tLSp4OqV62trW6rAtxOxbmtinE7FeN2qq5qJgvqYV0ULFOkbrnLgCsjolXqqXraScQsYBbA1KlTo7m5ucJuDaClpQW3VWVup+LcVsW4nYpxO1VXNZOFpcABJcv7A8sKlhmeU3eFpImpV2EisDKtPw74qKTvAk1Al6RNEXHNzjgYMzOzelXNMQsPAVMkHSxpOHAmMKeszBzg7HRXxPHA2nSJIa/uHGBmej8TuB0gIt4XEZMjYjJwFfBtJwpmZmY7rmo9CxHRIeki4E6gAbgxIhZIuiBtvx64AzgNWARsAD6VVzft+nJgtqRzgZeBj1XrGMzMzKy6lyGIiDvIEoLSddeXvA/gwqJ10/pVwAcrfO6l/QjXzMzMeuAZHM3MzCyXkwUzMzPL5WTBzMzMcjlZMDMzs1xOFszMzCxXv5IFSf97ZwdiZmZmA1N/exb+aqdGYWZmZgNWr/MsSFrX2yZgZHXCMTMzs4Emb1KmNcB7ImJF+QZJr2xf3MzMzAajvMsQNwMH9bLtx1WIxczMzAagXnsWIuKrOdu+WJ1wzMzMbKDxrZNmZmaWy8mCmZmZ5XKyYGZmZrlykwVJQyQ9tauCMTMzs4EnN1mIiC7gCUkH7qJ4zMzMbIDJm2eh20RggaR5wPrulRHx51WLyszMzAaMIsnCZVWPwszMzAasislCRNwt6SBgSkT8RtIeQEP1QzMzM7OBoOLdEJL+GvgZ8M9p1STgtirGZGZmZgNIkVsnLwROANYBRMTzwPhqBmVmZmYDR5FkYXNEtHUvSBoKRPVCMjMzs4GkSLJwt6QvAyMlnQT8FPhVdcMyMzOzgaJIsnAJ8BowHzgfuAPo9SFTZmZmNrgUuXWyGbglIm6ocixmZmY2ABVJFs4Brpe0Crg3ve6LiNXVDMzMzMwGhiLzLJwNIGk/4KPAtcB+ReqamZnZ7q/iH3xJnwTeBxwJvA5cQ9a7YMbq9W3MW/IGpxz+llqHYmZmVVKkd+Aq4AXgeuB3EbGkmgHZ7uWlNzbw1KtrnSyYmQ1iFe+GiIh9gU8DjcC3JM2T9K9Fdi7pVEkLJS2SdEkP2yXp6rT9SUlHV6oraW9Jd0l6Pv0cm9afJOkRSfPTzw8UidF2zPI1G3ntzc21DsPMzKqoyHTPY4ADgYOAycBeQFeBeg1k4xumA9OAsyRNKys2HZiSXucB1xWoewkwNyKmAHPTMmSXSE6PiCOBmUChhMZ2zLK1m2gc5keFmJkNZkXmWbgPOB14EvhEREyNiJkF6h0LLIqIxWkGyFuBGWVlZgA3R+ZBoEnSxAp1ZwA3pfc3AWcARMRjEbEsrV8ANEoaUSBO2wHrNrYzptFjXc3MBrMid0O8A0DSaPo2zfMk4JWS5aXAcQXKTKpQd0JELE+xLZfU03MqPgI8FhHb9Y9LOo+sF4Nx48bR0tJS9HjqWmtra49ttWRJNhN4S8vyXRzRwNRbO9n23FbFuJ2KcTtVV5G7IY4g69LfO1vUa8DMiHiqUtUe1pUnG72VKVK35w+VDge+A5zc0/aImAXMApg6dWo0NzcX2W3da2lpoae2erT9OQBOPHEKUk+/tvrSWzvZ9txWxbidinE7VVeRyxCzgM9GxEERcSDwubSukqXAASXL+wPLCpbJq7siXaog/VzZXUjS/sAvgbMj4oUCMdpOMKZxKOs2ddQ6DDMzq5IiycKoiPhd90JEtACjCtR7CJgi6WBJw4EzgTllZeYAZ6e7Io4H1qZLDHl155ANYCT9vB1AUhPwH8CXIuL+AvHZDmrv7GLoEDFu9Aheb/UdEWZmg1WRZGGxpK9JmpxeXwVerFQpIjqAi4A7gWeA2RGxQNIFki5Ixe4AFgOLgBuAv8mrm+pcDpwk6XngpLRMKn8Y8DVJj6dXT+MZbCdZsW4TbxnTyL57jvDtk2Zmg1iRYeyfBi4DfpGW7wE+VWTnEXEHWUJQuu76kvcBXFi0blq/CvhgD+u/CXyzSFy2cyxfu4mJTY2MGz2C51a8WetwzMysSnpNFiQ1AheQfVufD3wuItp3VWA28C1bs5HD99uLvUcN5/5Fr9c6HDMzq5K8yxA3AceQJQrTgX/YJRHZbmP52k3s19RI08hhrNngPNLMbLDKuwwxLc2GiKQfAvN2TUi2u9jQ1skew7NTqC8TcJiZ2e4lr2dhy1fFNODQzMzM6lBez8I7Ja1L7wWMTMsiG5s4purRmZmZWc31mixEhJ8OZGZmZoXmWTDbzqb2TkYM3Xr6pO6m2gVkZmZV42TB+qX7Tohue40cxtqNviPCzGwwcrJg/bJszUYm7jVyy/K+nvLZzGzQcrJg/bJszUb2K00W9hzOSk/5bGY2KDlZsH5ZsW4TE/YasWV5/OgRvN7aVsOIzMysWpwsWL+0dQYjhm69YcYPkzIzG7ycLNhOsdfIYazzAEczs0HJyYL1T9ltkpI85bOZ2SDlZMHMzMxyOVmwPlu3qZ09G/NmCjczs8HEyYL12fI1m9ivaWTlgmZmNig4WbA+W7Z22wmZugno6vLIBTOzwcbJgvVZ1rPQuN36sXsMY43viDAzG3ScLFifrXxzE+NHb58seMpnM7PBycmC9VlXV9AwRNutH+eJmczMBiUnC7bTuGfBzGxwcrJgfdK6uYMhPfQqgKd8NjMbrJwsWJ/c9tirzDhqUo/bxjQOZd2mjl0ckZmZVZuTBSssInhp1XoO3ndUj9ulnnsczMxs9+ZkwQp7cPEb/NGh+9Q6DDMz28WcLFhhLc+t5MS3jq91GGZmtos5WbBC3tjUxfjRjT3eMmlmZoObkwUr5P5XO/jI0T0PbCw1RNDpKZ/NzAaVqiYLkk6VtFDSIkmX9LBdkq5O25+UdHSlupL2lnSXpOfTz7El276Uyi+UdEo1j62ebO7oZHMnNO0xvGLZvUcNZ5XnWjAzG1SqlixIagCuBaYD04CzJE0rKzYdmJJe5wHXFah7CTA3IqYAc9MyafuZwOHAqcD3035sB7R3dvF/H3yZ97ylWFOecvhb+Jf/XsKN973I+s2+jdLMbDAYWsV9HwssiojFAJJuBWYAT5eUmQHcHBEBPCipSdJEYHJO3RlAc6p/E9ACfDGtvzUiNgMvSlqUYnigisc4qGxo62BVaxur1rexYNlalq3ZSMOQIbxn8lg6O4olCxPGNPLFU9/GK29s4Pq7X2B4wxCmTBjN/mNHsl/TSMbuMcy3WBoAGzuCe59/jSdeWcOm9i6OmDSGEw7bl9GNw2odWt3a2NbJ/FfXsmDZWg4YuwfHTB5bqEfRBr9qJguTgFdKlpcCxxUoM6lC3QkRsRwgIpZL6h6ePwl4sId99Wrt5uDKu56rfCS7UJA96rk/ZUtHCqhse0/7lSBKKo0c3sA+o4az754jOPGt49h/7B5btrW8WjCo5IC99+BzJ0/lzU3tvPzGBpat2cQjL63mjfVt2x3DNjGVbctbztOXsjvTkiVtPNY+sM6pXSXv97XdtgiWL23nI4cM4dz3HsKIoUOY/+pa/vXBl2jd1MGwhiE97qce7axzqtLvJyJoHNbAkZP24vR37sfLb2zgpw8vZd2mdiQN+N9BPf/b2xWqmSz0dG7l/W0oLVOkbn8+D0nnkV3yANj82ZOnPlVhv5bZF3i91kHsBtxOxe17hduqCJ9Txbidipva1wrVTBaWAgeULO8PLCtYZnhO3RWSJqZehYnAyj58HhExC5gFIOnhiDimLwdVr9xWxbidinNbFeN2KsbtVJykh/tap5p3QzwETJF0sKThZIMP55SVmQOcne6KOB5Ymy4x5NWdA8xM72cCt5esP1PSCEkHkw2anFetgzMzM6sXVetZiIgOSRcBdwINwI0RsUDSBWn79cAdwGnAImAD8Km8umnXlwOzJZ0LvAx8LNVZIGk22SDIDuDCiOis1vGZmZnVC0XU7wQ6ks5LlyWsArdVMW6n4txWxbidinE7FdeftqrrZMHMzMwq83TPZmZmlqtuk4VKU1FbRtISSfMlPd6fEbSDmaQbJa2U9FTJul6nI69XvbTTpZJeTefV45JOq2WMA4GkAyT9TtIzkhZIujit9zlVJqetfF6VkNQoaZ6kJ1I7XZbW9/mcqsvLEGka6OeAk8huuXwIOCsins6tWIckLQGOiQjfv1xG0vuBVrJZSI9I674LvBERl6ckdGxEfLGWcdZaL+10KdAaEVfUMraBJN0KPjEiHpU0GngEOAM4B59T28hpq4/j82oLZdPljoqIVknDgPuAi4EP08dzql57FrZMRR0RbUD3dNJmhUXEPcAbZatnkE1DTvp5xq6MaSDqpZ2sTEQsj4hH0/s3gWfIZqH1OVUmp62sRGRa0+Kw9Ar6cU7Va7LQ2zTTtr0Afi3pkTT7peXbZjpyYHyF8vXsImVPm73RXevbkjQZeBfwe3xO5SprK/B5tQ1JDZIeJ5vA8K6I6Nc5Va/JQn+mk65XJ0TE0WRPAL0wdSmb7ajrgEOBo4DlwD/WNJoBRNKewM+Bz0TEulrHM5D10FY+r8pERGdEHEU2q/Gxko7oz37qNVkoNDW0QUQsSz9XAr8ku4RjvVuRrqd2X1ddWaF8XYqIFek/sS7gBnxeAZCuK/8cuCUifpFW+5zqQU9t5fOqdxGxhuwpzafSj3OqXpOFIlNR1z1Jo9LgISSNAk4G/OCtfL1NR24luv+jSv4Cn1fdg9F+CDwTEd8r2eRzqkxvbeXzaluSxklqSu9HAh8CnqUf51Rd3g0BkG6puYqt00l/q7YRDTySDiHrTYBsavAfu522kvRvQDPZ0+5WAF8HbgNmAweSpiOPiLoe3NdLOzWTdRUHsAQ4v/saar2S9F7gXmA+0JVWf5nsWrzPqRI5bXUWPq+2kPQOsgGMDWSdA7Mj4huS9qGP51TdJgtmZmZWTL1ehjAzM7OCnCyYmZlZLicLZmZmlmtorQOopaampjjssMNqHcZuYf369YwaNarWYQx4bqfi3FbFuJ2KcTsV98gjj7weEeP6Uqeuk4UJEybw8MN+NlIRLS0tNDc31zqMAc/tVJzbqhi3UzFup+IkvdTXOr4MYWZmZrmcLJiZmVkuJwtmZmaWy8mCmZmZ5XKyYGZmZrmcLJiZmVkuJwtmZmaWy8mCmZmZ5XKyYGZmZrmcLJiZmVkuJwtmZmaWy8mCmZmZ5XKyYGZmZrmcLJiZmVmuqiYLkk6VtFDSIkmX9LBdkq5O25+UdHSlupL2lnSXpOfTz7Fl+zxQUqukz1fz2MzMzOpF1ZIFSQ3AtcB0YBpwlqRpZcWmA1PS6zzgugJ1LwHmRsQUYG5aLnUl8J87/YDMzMzqVDV7Fo4FFkXE4ohoA24FZpSVmQHcHJkHgSZJEyvUnQHclN7fBJzRvTNJZwCLgQXVOSQzM7P6M7SK+54EvFKyvBQ4rkCZSRXqToiI5QARsVzSeABJo4AvAicBvV6CkHQeWS8G48aNo6WlpU8HVa9aW1vdVgW4nYpzWxXjdirG7VRd1UwW1MO6KFimSN1ylwFXRkSr1FP1tJOIWcAsgKlTp0Zzc3OF3RpAS0sLbqvK3E7Fua2KcTsV43aqrmomC0uBA0qW9weWFSwzPKfuCkkTU6/CRGBlWn8c8FFJ3wWagC5JmyLimp1xMGZmZvWqmmMWHgKmSDpY0nDgTGBOWZk5wNnprojjgbXpEkNe3TnAzPR+JnA7QES8LyImR8Rk4Crg204UzMzMdlzVehYiokPSRcCdQANwY0QskHRB2n49cAdwGrAI2AB8Kq9u2vXlwGxJ5wIvAx+r1jGYmZlZdS9DEBF3kCUEpeuuL3kfwIVF66b1q4APVvjcS/sRrpmZmfXAMziamZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZrtxkQdIpks6VNLls/aerGpWZmZkNGL0mC5K+DXwFOBKYK+lvSzZfVO3AzMzMbGDI61k4HfhARHwGeDcwXdKVaVvvD18wMzOzQSUvWRgaER0AEbGGLHkYI+mnZM9uMDMzszqQlyy8IOnE7oWI6IyIc4GFwNurHpmZmZkNCHnJwseAeeUrI+KrbPtESDMzMxvEen02RERszNn2anXCMTMzs4HG8yyYmZlZLicLZmZmlqvSpExDJD21q4IxMzOzgSc3WYiILuAJSQfuonjMzMxsgOl1gGOJicACSfOA9d0rI+LPqxaVmZmZDRhFkoXLqh6FmZmZDVgVk4WIuFvSQcCUiPiNpD2AhuqHZmZmZgNBxbshJP018DPgn9OqScBtVYzJzMzMBpAit05eCJwArAOIiOeB8dUMyszMzAaOIsnC5oho616QNBSI6oVkZmZmA0mRZOFuSV8GRko6Cfgp8KvqhmVmZmYDRZFk4RLgNWA+cD5wB/DVagZlZmZmA0eRWyebgVsi4oYqx2JmZmYDUJFk4RzgekmrgHvT676IWF3NwMzMzGxgKDLPwtkAkvYDPgpcC+xXpK6ZmZnt/ir+wZf0SeB9wJHA68A1ZL0LZmZmVgeK9A5cBbwAXA/8LiKWVDMgMzMzG1gq3g0REfsCnwYagW9JmifpX4vsXNKpkhZKWiTpkh62S9LVafuTko6uVFfS3pLukvR8+jk2rT9J0iOS5qefHygSo5mZmeUrMt3zGOBA4CBgMrAX0FWgXgPZ+IbpwDTgLEnTyopNB6ak13nAdQXqXgLMjYgpwNy0DNklktMj4khgJlAooTEzM7N8ReZZuA84HXgS+ERETI2ImQXqHQssiojFaQbIW4EZZWVmADdH5kGgSdLECnVnADel9zcBZwBExGMRsSytXwA0ShpRIE4zMzPLUeRuiHcASBpN36Z5ngS8UrK8FDiuQJlJFepOiIjlKbblknp6TsVHgMciYnP5BknnkfViMG7cOFpaWooeT11rbW11WxXgdirObVWM26kYt1N1Fbkb4giyLv29s0W9BsyMiKcqVe1hXXmy0VuZInV7/lDpcOA7wMk9bY+IWcAsgKlTp0Zzc3OR3da9lpYW3FaVuZ2Kc1sV43Yqxu1UXUUuQ8wCPhsRB0XEgcDn0rpKlgIHlCzvDywrWCav7op0qYL0c2V3IUn7A78Ezo6IFwrEaGZmZhUUSRZGRcTvuhciogUYVaDeQ8AUSQdLGg6cCcwpKzMHODvdFXE8sDZdYsirO4dsACPp5+0AkpqA/wC+FBH3F4jPzMzMCigyz8JiSV9j690FnwRerFQpIjokXQTcCTQAN0bEAkkXpO3Xkz2U6jRgEbAB+FRe3bTry4HZks4FXgY+ltZfBBwGfC3FC3ByRGzpeTAzM7O+K5IsfBq4DPhFWr6H9Ee9koi4gywhKF13fcn7AC4sWjetXwV8sIf13wS+WSQuMzMzK67XZEFSI3AB2bf1+cDnIqJ9VwVmZmZmA0PemIWbgGPIEoXpwD/skojMzMxsQMm7DDEtzYaIpB8C83ZNSGZmZjaQ5PUsbLnkEBEduyAWMzMzG4DyehbeKWldei9gZFoW2djEMVWPzszMzGqu12QhIhp2ZSBmZmY2MBWZlMnMzMzqmJMFMzMzy+VkwczMzHI5WTAzM7NcThbMzMwsl5MFMzMzy+VkwczMzHI5WTAzM7NcThbMzMwsl5MFMzMzy+VkwczMzHI5WTAzM7NcThbMzMwsl5MF2yEvrVrP7IdfqXUYZmZWRU4WbIf8+5PLWfDq2lqHYWZmVeRkwfotInhzUwcTm0aydkN7rcMxM7MqcbJg/fbwS6s55qCxvH/KOO55/rVah2NmZlXiZMH67e6Fr3Hi1HG8feJonlm+rtbhmJlZlThZsH7Z1N7JkCFiWMMQJNEwRHR2Ra3DMjOzKnCyYP3y22dX8qG3j9+y/K4Dm3j8ldU1jMjMzKrFyYL1y5NL13LkpL22LP/RIfty/6JVNYzIdlcb2jp44AWfO2YD2dBaB2C7n1Wtm9l71DAkbVk3cngDm9o7axiV7a7+6beL2NjWyaHjRjF+TGOtwzGzHrhnwfrsP+Yv50/fsd926/drGsmrazbWICLbXd3++Kv80SH78PlTpjLrnsW1DsfMeuFkwfpk2ZqNvLRqA5OaRm637QNvG89vn11Zg6hsd7RifRcvr9rA+986jj1HDOWEKfvyX0/9odZhmVkPqposSDpV0kJJiyRd0sN2Sbo6bX9S0tGV6kraW9Jdkp5PP8eWbPtSKr9Q0inVPLZ69F9P/YFb573M358ytcft+zWNZLl7FqyAto4ufv1SO+efeOiWdX8ydTyPvbyatRs9wZfZQFO1ZEFSA3AtMB2YBpwlaVpZsenAlPQ6D7iuQN1LgLkRMQWYm5ZJ288EDgdOBb6f9mM7aGNbJz97ro2GIeKzJ0+lcVjvzdo4rIH5S9eyoa1jF0Zou4vNHZ08/soavn3HM5wyeRjDh277X9D5Jx7KrHteqFF01q2js6vWIdgAU80BjscCiyJiMYCkW4EZwNMlZWYAN0dEAA9KapI0EZicU3cG0Jzq3wS0AF9M62+NiM3Ai5IWpRge6C3AdW3BrHteIHby9AA7srvyWKJkb5XijFSgu1yk90Gkn9A9JLH0ffly98eoZP0HDxzKSdMmVIx/5h9P5oEXVnH/C6+zoW3bAY+l+6v0uRII0T2GsrvMlmWV7mXbbVs/b/syvZXti7yqL7zYxkLV9o9dX86/iucUsV250vMstqzbep6VxlH6u40IhjcM4e0Tx/C3HziM+Q9vP+vn3qOGc+SkJr7364VI2uZYus+fBimdH+k8Sb/MrefKtr+h7c+L3u3IeVEtL7zYznND+n5Obf9/ybbruyLo6Aw6t/yHsbVCw5AhdHZ1bWmQYUPEkCHa5t9laVNVare8f4s7y6IX23l+iMe9VEs1k4VJQOnjCJcCxxUoM6lC3QkRsRwgIpZL6r7ZfxLwYA/72oak88h6MQA2n3/iYU8VPaA6ty/weq2D2A24nYpzWxXjdirG7VRcz9eSc1QzWegplSz/HtNbmSJ1+/N5RMQsYBaApIcj4pgK+zXcVkW5nYpzWxXjdirG7VScpIf7WqeaAxyXAgeULO8PLCtYJq/uinSpgvSze/h9kc8zMzOzPqpmsvAQMEXSwZKGkw0+nFNWZg5wdror4nhgbbrEkFd3DjAzvZ8J3F6y/kxJIyQdTDZocl61Ds7MzKxeVO0yRER0SLoIuBNoAG6MiAWSLkjbrwfuAE4DFgEbgE/l1U27vhyYLelc4GXgY6nOAkmzyQZBdgAXRkSlKQVn7bQDHvzcVsW4nYpzWxXjdirG7VRcn9tKsbNvBTAzM7NBxTM4mpmZWS4nC2ZmZparbpOFSlNRW0bSEknzJT3en9ttBjNJN0paKempknW9Tkder3ppp0slvZrOq8clnVbLGAcCSQdI+p2kZyQtkHRxWu9zqkxOW/m8KiGpUdI8SU+kdrosre/zOVWXYxbSNNDPASeR3XL5EHBWRDydW7EOSVoCHBMRnuykjKT3A61ks5AekdZ9F3gjIi5PSejYiPhiLeOstV7a6VKgNSKuqGVsA0m6FXxiRDwqaTTwCHAGcA4+p7aR01Yfx+fVFsqmNx0VEa2ShgH3ARcDH6aP51S99ixsmYo6ItqA7umkzQqLiHuAN8pWzyCbhpz084xdGdNA1Es7WZmIWB4Rj6b3bwLPkM1C63OqTE5bWYnItKbFYekV9OOcqtdkobdppm17Afxa0iNpqmzLt8105MD4CuXr2UXKnjZ7o7vWtyVpMvAu4Pf4nMpV1lbg82obkhokPU42geFdEdGvc6pek4X+TCddr06IiKPJngB6YepSNttR1wGHAkcBy4F/rGk0A4ikPYGfA5+JiHW1jmcg66GtfF6ViYjOiDiKbFbjYyUd0Z/91Guy4KmhC4qIZennSuCXZJdwrHe9TUduJSJiRfpPrAu4AZ9XAKTryj8HbomIX6TVPqd60FNb+bzqXUSsIXtK86n045yq12ShyFTUdU/SqDR4CEmjgJMBP6UzX2/TkVuJ7v+okr/A51X3YLQfAs9ExPdKNvmcKtNbW/m82pakcZKa0vuRwIeAZ+nHOVWXd0MApFtqrmLrdNLfqm1EA4+kQ8h6EyCbGvzHbqetJP0b0Ez2aNwVwNeB24DZwIGk6cgjoq4H9/XSTs1kXcUBLAHO776GWq8kvRe4F5gPdKXVXya7Fu9zqkROW52Fz6stJL2DbABjA1nnwOyI+IakfejjOVW3yYKZmZkVU6+XIczMzKwgJwtmZmaWy8mCmZmZ5XKyYGZmZrmcLJiZmVkuJwtmdUBSZ8mT+B5PU+QOCpLeJekH6f05kq4p294i6Zic+rdKmlLtOM12Z0NrHYCZ7RIb05Sv20kT3CjNerc7+jLwzR2ofx3wBeCvd044ZoOPexbM6pCkyZKekfR94FHgAEl/L+mh9BCey0rKfkXSQkm/kfRvkj6f1m/5xi5p3/Q48+4H1/xDyb7OT+ubU52fSXpW0i0pUUHSeyT9t6QnJM2TNFrSvZKOKonj/jTJTOlxjAbeERFPFDjmPy/pWVko6cW06V7gQ5L85cmsF/7HYVYfRqYnzwG8CPwdMBX4VET8jaSTgSlkc+kLmJMeGraebDr0d5H9f/Eo8EiFzzoXWBsR75E0Arhf0q/TtncBh5M9i+V+4ARJ84CfAJ+IiIckjQE2Aj8AzgE+I+mtwIiIeLLss45h+yl9P5Fm+Ot2GEBEzCFN6y5pNnB3Wt8laRHwzgLHZlaXnCyY1YdtLkOkMQsvRcSDadXJ6fVYWt6TLHkYDfwyIjakekWeoXIy8A5JH03Le6V9tQHzImJp2tfjwGRgLbA8Ih4C6H7SoqSfAl+T9PfAp4Ef9fBZE4HXytb9JCIuKjnWltKNkr5A1h7XlqxeCeyHkwWzHjlZMKtf60veC/j/IuKfSwtI+gy9P769g62XMhvL9vW3EXFn2b6agc0lqzrJ/g9ST58RERsk3QXMAD5O1otQbmPZZ+eS9EHgY0D5o9Yb077MrAces2BmAHcCn5a0J4CkSZLGA/cAfyFpZBofcHpJnSXAu9P7j5bt6/9JjxBG0lvTU0t78yywn6T3pPKjS8YP/AC4GniolwfdPEO6zFCJpIOA7wMfj4jyxOCtwIIi+zGrR+5ZMDMi4teS3g48kMYctgKfjIhHJf0EeBx4iWwwYLcrgNmS/ifw25L1PyC7vPBoGsD4GnBGzme3SfoE8E/pMbobyR6l2xoRj0haB/xLL3WflbSXpNER8WaFwzwH2Af4ZTrGZRFxmqQJZJcl6vbphGaV+KmTZlaYpEvJ/ohfsYs+bz+gBXhbb7d2Svo74M2I+EE/P+PvgHUR8cN+B2o2yPkyhJkNSJLOBn4PfKXCHBDXse1YiL5aA9y0A/XNBj33LJiZmVku9yyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZrv8f+x8TEakbR7MAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f5 = uN.plot_freq(5, figsize=(8,6), axis_f=(0, 30, 0.0, 5e-4))\n", "\n", "print(fk3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Assignments \n", "\n", "1. Desenvolver no FTool um modelo que tenha uma dimensão predominante (p.e. torre, passarela, edifício alto, etc.). O modelo após simplificação deve contar com pelo menos 10 graus de liberdade em deslocamento (vertical ou horizontal). A massa concentrada por grau de liberdade deve ser tal que a frequência fundamental do sistema esteja abaixo de 2Hz e acima de 0.2Hz.\n", "2. Para o modelo anteriormente desenvolvido, calcular as frequências naturais de vibração livre e as formas modais, plotando estes resultados para visualização.\n", "3. Calcular a resposta e vibração livre para um impulso unitário no grau de liberdade de maior amplitude de vibração no primeiro modo.\n", "4. Relatório com deduções, gráficos e resultados (nome do arquivo P2_T2_xxxxxxxx.pdf).\n", "\n", "Prazo: 10 de maio de 2021.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Appendix: Save all matrices to be used next class." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "data = (wk1, Phi1, wk2, Phi2, wk3, Phi3)\n", "\n", "with open('resources/data/sample_VM.pk', 'wb') as target:\n", " pk.dump(data, target)\n", "\n", "#with open('resources/data/sample_VM.pk','rb') as target:\n", "# wk1, Phi1, wk2, Phi2, wk3, Phi3 = pk.load(target)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 2 }