{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Universidade Federal do Rio Grande do Sul (UFRGS) \n",
"Programa de Pós-Graduação em Engenharia Civil (PPGEC) \n",
"\n",
"# PEC00025: Introduction to Vibration Theory\n",
"\n",
"\n",
"### Class 11 - Free vibration of multi degree of freedom systems\n",
"\n",
"[1. Natural vibration modes and frequency](#section_1) \n",
"[1.1. The general solution for free vibration](#section_11) \n",
"[1.2. Natural vibration modes and frequencies](#section_12) \n",
"[1.3. Orthogonality of vibration modes](#section_13) \n",
"[2. Examples of modal properties assessment](#section_2) \n",
"[2.1. Example 1: steel plane truss](#section_21) \n",
"[2.2. Example 2: beam element](#section_22) \n",
"[2.3. Example 3: experimental 3-dof model](#section_23) \n",
"[3. Structural response to initial conditions](#section_3) \n",
"[4. Assignment](#section_4) \n",
"\n",
"---\n",
"_Prof. Marcelo M. Rocha, Dr.techn._ [(ORCID)](https://orcid.org/0000-0001-5640-1020) \n",
"_Porto Alegre, RS, Brazil_ \n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Importing Python modules required for this notebook\n",
"# (this cell must be executed with \"shift+enter\" before any other Python cell)\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pickle as pk\n",
"import scipy.linalg as sc\n",
"\n",
"from MRPy import MRPy\n",
"\n",
"# Load matrices generated in Class 10 (that notebook must be run firstly!)\n",
"\n",
"with open('resources/data/sample_KM.pk', 'rb') as target:\n",
" K1, M1, K2, M2, K3, M3 = pk.load(target)\n",
"\n",
"#target = open('resources/data/sample_KM.pk', 'rb')\n",
"#K1, M1, K2, M2, K3, M3 = pk.load(target)\n",
"#close(target)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Natural vibration modes and frequencies \n",
"\n",
"### 1.1. The general solution for free vibration \n",
"\n",
"Once the stiffness and mass matrices are defined for a given structure, the\n",
"undamped equilibrium matrix equation results to be a set of coupled equilibrium\n",
"equations, each one for one of the degrees of freedom. In matrix forms it reads:\n",
"\n",
"$$ \\mathbf{M} \\, \\ddot{\\vec{u}} + \\mathbf{K} \\, \\vec{u} = \\vec{F}(t) $$ \n",
"\n",
"where $\\vec{F}(t)$ is the (time dependent) external loads vector.\n",
"In case of free vibration we have:\n",
"\n",
"$$ \\mathbf{M} \\, \\ddot{\\vec{u}} + \\mathbf{K} \\, \\vec{u} = \\vec{0} $$ \n",
"\n",
"Let us now assume that there is a solution $\\vec{u}_k(t)$ such that:\n",
"\n",
"$$ \\vec{u}_k(t) = u_k(t) \\, \\vec{\\varphi}_k $$\n",
"\n",
"where $\\vec{\\varphi}_k$ is not time dependent. This assumption may be\n",
"understood as a separation of time and space dependence of $\\vec{u}_k(t)$.\n",
"Now the acceleration vector results to be:\n",
"\n",
"$$ \\ddot{\\vec{u}}_k(t) = \\ddot{u}_k(t) \\, \\vec{\\varphi}_k $$\n",
"\n",
"and the free vibration equation becomes:\n",
"\n",
"$$ \\ddot{u}_k(t) \\, \\mathbf{M} \\, \\vec{\\varphi}_k + \n",
" u_k(t) \\, \\mathbf{K} \\, \\vec{\\varphi}_k = \\vec{0} $$ \n",
"\n",
"Premultiplying this equation by $\\mathbf{K}^{-1}$ and dividing by $u_k(t)$ results:\n",
"\n",
"$$ \\frac{\\ddot{u}_k(t)}{u_k(t)} \\, \\mathbf{D} \\, \\vec{\\varphi}_k + \n",
" \\mathbf{I} \\vec{\\varphi}_k = \\vec{0} $$ \n",
"\n",
"where $\\mathbf{I}$ is the identity matrix and $\\mathbf{D} = \\mathbf{K}^{-1} \\, \n",
"\\mathbf{M}$ is called the _system dynamic matrix_.\n",
"Recalling that $\\vec{\\varphi}_k$ is not time dependent implies that the equation\n",
"above is only valid if the coefficient of matrix $\\mathbf{D}$ is constant in time.\n",
"We denote this constant quotient as $-\\omega_k^2$ and the condition becomes:\n",
"\n",
"$$ \\ddot{u}_k(t) + \\omega_k^2 u_k(t) = 0 $$\n",
"\n",
"The solution for this equation has the general form:\n",
"\n",
"$$ u_k(t) = u_{k0} \\sin \\left( \\omega_k t + \\theta_k \\right) $$\n",
"\n",
"which is the same form found for a single degree of freedom system.\n",
"However, the time function $u_k(t)$ is only part of the solution for $\\vec{u}(t)$,\n",
"corresponding to its time dependent amplitude. \n",
"There is still the need of finding the time independent vector, $\\vec{\\varphi}_k$,\n",
"and the free vibration frequency, $\\omega_k$.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2. Natural vibration modes and frequencies \n",
"\n",
"The general amplitude solution above implies that the acceleration vector is:\n",
"\n",
"$$ \\ddot{\\vec{u}}_k(t) = -\\omega_k^2 u_{k0} \n",
" \\sin \\left( \\omega_k t + \\theta_k \\right) \\, \\vec{\\varphi}_k $$\n",
"\n",
"Replacing this result in the free vibration equation and simplifying gives:\n",
"\n",
"$$ \\mathbf{K} \\, \\vec{\\varphi}_k = \\omega_k^2 \\, \\mathbf{M} \\, \\vec{\\varphi}_k $$ \n",
"\n",
"or, alternativelly, with the dynamic matrix:\n",
"\n",
"$$ \\mathbf{D} \\, \\vec{\\varphi}_k = \\lambda_k \\, \\vec{\\varphi}_k $$ \n",
"\n",
"with $\\lambda_k = 1\\,/\\,\\omega_k^2$.\n",
"The two equations above represent an eigenvalue-eigenvector problem, which\n",
"has as many solutions as the matrices order, $N$, which is also the number\n",
"of system degrees of freedom. \n",
"Each solution is a pair $\\left( \\omega_k, \\vec{\\varphi}_k \\right)$ or, \n",
"alternatively, $\\left( \\lambda_k, \\vec{\\varphi}_k \\right)$ if the \n",
"dynamic matrix is used.\n",
"\n",
"The eigenvalues $\\omega_k$ are called the _natural vibration frequencies_\n",
"of the strutural system, while the eigenvectors $\\vec{\\varphi}_k$ are\n",
"called the _vibration modes_, or _modal shapes_. \n",
"It is very important to keep in mind that _the modal shapes have \n",
"no prespecified scale_, what means that they can be multiplied by\n",
"any scale factor, $\\alpha$, and still remain solutions for the eigenproblem:\n",
"\n",
"$$ \\mathbf{K} \\, (\\alpha \\vec{\\varphi}_k) = \n",
" \\omega_k^2 \\, \\mathbf{M} \\, (\\alpha \\vec{\\varphi}_k) $$ \n",
"\n",
"Numerical algorithms for solving this eigenproblem are available in many\n",
"environments, including the best models of HP handheld calculators. \n",
"In Python, they are available in ```scipy.linalg``` module and will be\n",
"used in [section 2](#section_2) for the three examples provided in the previous class.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.3. Orthogonality of vibration modes \n",
"\n",
"The eigenvectors $\\vec{\\varphi}_k$ presents the important property of _orthogonality_\n",
"with respect to the stiffness and to the mass matrix.\n",
"This is a direct consequence of their symmetry, as shown in the following.\n",
"Let us start by considering two vibration modes $i$ and $j$ that are solutions for\n",
"the eigenproblem:\n",
"\n",
"\\begin{align*}\n",
"\\mathbf{M} \\, \\vec{\\varphi}_i &= \\lambda_i \\mathbf{K} \\, \\vec{\\varphi}_i \\\\\n",
"\\mathbf{M} \\, \\vec{\\varphi}_j &= \\lambda_j \\mathbf{K} \\, \\vec{\\varphi}_j\n",
"\\end{align*}\n",
"\n",
"Transposing the equation for mode $i$ above and recognizing that \n",
"$\\mathbf{M} = \\mathbf{M}^{\\intercal}$ and $\\mathbf{K} = \\mathbf{K}^{\\intercal}$ gives:\n",
"\n",
"$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \n",
" = \\lambda_i \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} $$\n",
"\n",
"Now, postmultiplying by $\\vec{\\varphi}_j$ gives:\n",
"\n",
"$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j\n",
" = \\lambda_i \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j $$\n",
"\n",
"On the other hand, the eigenproblem for mode $j$ above can be premultiplied by \n",
"$\\vec{\\varphi}_i^{\\intercal}$ to give:\n",
"\n",
"$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j\n",
" = \\lambda_j \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j $$\n",
"\n",
"Subtracting this last equation from the previous one results in:\n",
"\n",
"$$ (\\lambda_i - \\lambda_j) \\, \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j = 0 $$\n",
"\n",
"This condition can be satisfied if and only if:\n",
"\n",
"$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j = 0,\n",
" \\hspace{1cm} {\\rm for} \\; i \\neq j $$\n",
"\n",
"Starting again this demonstration with the $j$ eigenproblem solution leads also to:\n",
"\n",
"$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j = 0,\n",
" \\hspace{1cm} {\\rm for} \\; i \\neq j $$\n",
"\n",
"These are the two orthogonality conditions for the eigenvectors $\\vec{\\varphi}_k$.\n",
"In the next class they will be used to decouple the matrix equilibrium equation \n",
"into a set of scalar equations, one for each vibration mode. Once this orthogonality\n",
"condition has been stated, we observe that the eigenvectors $\\vec{\\varphi}_k$ constitutes\n",
"a base of independent vectors (of a _linear vector space_) that can be linearly combined \n",
"to represent the complete system response as:\n",
"\n",
"$$ \\vec{u}(t) = \\sum_{k = 1}^{N} u_k(t) \\, \\vec{\\varphi}_k = \\mathbf{\\Phi}\\vec{u}_k(t) $$\n",
"\n",
"where $\\mathbf{\\Phi}$ is the modal matrix, whose _columns_ are the the eigenvectors $\\vec{\\varphi}_k$.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Examples of modal properties assessment \n",
"\n",
"In the following sections, each of the three examples presented in the\n",
"last class are subjected to a modal analysis and the corresponding solutions,\n",
"for both natural frequencies and associated vibration modes, are plotted\n",
"for visualization.\n",
"\n",
"The eigenvalues and eigenvectors are solved with ```scipy``` function ```eig``` \n",
"from module ```linalg```. We define a general function to return natural\n",
"vibration frequencies, and the associated vibration modes, in ascending order:\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def vibration_modes(K, M):\n",
"\n",
"# Uses scipy to solve the standard eigenvalue problem\n",
" w2, Phi = sc.eig(K, M)\n",
"\n",
"# Ensure ascending order of eigenvalues\n",
" iw = w2.argsort()\n",
" w2 = w2[iw]\n",
" Phi = Phi[:,iw]\n",
"\n",
"# Eigenvalues to vibration frequencies\n",
" wk = np.sqrt(np.real(w2)) \n",
" fk = wk/2/np.pi\n",
"\n",
" return fk, wk, Phi\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1. Example 1: steel plane truss \n",
"\n",
"For the steel truss presented last class this is done as follows: \n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 3.93785233, 13.28874904, 23.0790977 , 32.38000947, 36.76923945])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fk1, wk1, Phi1 = vibration_modes(K1, M1)\n",
"\n",
"fk1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The script below shows the results as nodal displacements at the truss top.\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/AAAANBCAYAAABHyVXeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxb1Zk38N/VasuWFy3e4n3LTvbNjh0HSAq0lHQotKUF2sK0FOiQ5p2WrTMsL5C30FI6TcOQKUMoHZbOsA4Ni4EkjrNvDoEk3rd4lWRbtiVblqX7/qHFlu04MbElS/59Px9/It17dXXkHEt67vOccwRRFEUQERERERER0bQmCXQDiIiIiIiIiOjiGMATERERERERBQEG8ERERERERERBgAE8ERERERERURBgAE9EREREREQUBBjAExEREREREQUBBvBEREREREREQYABPBEREREREVEQkAW6Af7kdDrR3NwMtVoNQRAC3RwiIiIiIiIKcaIooqenB0lJSZBILi+HPqMC+ObmZqSkpAS6GURERERERDTDNDY2Ijk5+bLOMaMCeLVaDQCora2FRqMJcGsolNntdnz88cfYuHEj5HJ5oJtDIYx9jfyFfY38hX2N/IV9jfylo6MDGRkZ3nj0csyoAN5TNq9WqxEVFRXg1lAos9vtUKlUiIqK4gcCTSn2NfIX9jXyF/Y18hf2NfIXu90OAJMyjJuT2BEREREREREFAQbwREREREREREGAATwRERERERFREGAAT0RERERERBQEGMATERERERERBQEG8ERERERERERBgAE8ERERERERURBgAE9EREREREQUBBjAExERERHRjCWKIn7yk59Ao9FAEASUlZWhqKgImzdvDnTTiEZhAE9ERERERDPWRx99hJ07d+L9999HS0sLFixYEJB2fPOb30RqairCwsKQmJiIW2+9Fc3NzeM+pq2tDT/84Q+RlJQElUqFa665BpWVlT7HpKen47nnnhv12EcffRSLFy+exFdA/sAAnoiIiIiIZqyamhokJiYiLy8PCQkJkMlkAWnH+vXr8be//Q3l5eV48803UV1djW9/+9sXPF4URWzatAk1NTV49913cfLkSaSlpeHqq6+GxWLxY8vJnxjAExERERHRjPSHP/wBmzdvRkNDAwRBQHp6+pjHffjhh4iOjsZf/vKXKWvLL37xC6xevRppaWnIy8vDAw88gEOHDsFut495fGVlJQ4dOoTnn38eK1aswOzZs7F9+3b09vbitddem/DzC4Iw6udCvw8KHAbwREREREQ0I91555145JFHkJycjJaWFhw9enTUMa+//jpuvvlm/OUvf8Ftt912wXNFRkaO+3Pttddecrs6OjrwX//1X8jLy4NcLh/zGJvNBgAICwvzbpNKpVAoFCgtLb3k5/JoaWnx/lRVVSE7OxuFhYUTPg9NrcDUhxAREREREQVYREQE1Go1pFIpEhISRu3fvn07HnroIbz77rtYv379uOcqKysbd394ePhF23P//fdj27ZtsFqtWL16Nd5///0LHjtnzhykpaXhwQcfxAsvvICIiAg8++yzaG1tRUtLy6jz/vrXv/bZNjAwgHnz5nnve16/KIq48cYbER0djRdeeOGibSb/YgBPREREREQ0wptvvom2tjaUlpZi5cqVFz0+Ozv7sp/zl7/8Je644w7U19fjsccew2233Yb3338fgiCMOlYul+PNN9/EHXfcAY1GA6lUiquvvnrMTP8vf/lL/PCHP/TZ9m//9m8oKSkZdexDDz2EgwcP4ujRo5d00YH8K6hK6EtKSnD99dcjKSkJgiDgnXfeCXSTiIiIiIgoBC1evBh6vR4vvfQSRFG86PGTUUKv0+mQm5uLDRs24PXXX8euXbtw6NChCx6/bNkylJWVoaurCy0tLfjwww9hMpmQkZEx6rzZ2dk+PxqNZtT5/vrXv+L3v/893n77bSQnJ1+0veR/QZWBt1gsWLRoEX70ox/hxhtvDHRziIiIiIgoRGVlZeF3v/sdioqKIJVKsW3btnGPn4wS+uE8Fw08Y93HEx0dDcA1sd2xY8fwf//v/53QcwHAwYMHceedd+KFF17A6tWrJ/x48o+gCuCvvfbaCU3+QERERBMniiJsg0702x3oszvQN+BAT58NLVagocMKtUqJcLkU4XIpZNKgKuYjIpqQ3Nxc7N69G0VFRZDJZGOup+5xOSX0R44cwZEjR7B27VrExsaipqYG//qv/4qsrCysWbPGe9ycOXOwdetWfOtb3wIA/Pd//zf0ej1SU1Nx+vRp3Hfffdi0aRM2btw4oedvbW3Ft771LXz3u9/F1772NbS2tgJwTYqn1+u/8uuiyRdUAfxE2Ww2nytW3d3dAAC73X7B5RiIJoOnf7Gf0VRjX5tZhgJrJ/rsDm+A7b0/4ED/4Ih9A+77noB8wLPPdb9/0IG+Aeewc7mOHbtaVIb/d8p3ZmO5VECYXIowmQRh7qA+TCFx/eve7trm3icftm/Y7XD5sMf73Hbt44WCmYPva+Qvnj7mcDh87gOu91un0wm73Y7MzEx89NFH2LBhAwRBwNNPPz3pbZHJZHjzzTfxyCOPwGKxIDExERs3bsQrr7wCiUTibVt5eTk6Ojq898+fP48tW7agra0NiYmJ+P73v4+HH3541N+Pw+EYc5soirDb7fjiiy/Q1taGl19+GS+//LL3mLS0NFRWVk76651pJvP9TBAvZUDHNCQIAt5++21s2rTpgsc8+uijeOyxx0Ztf/XVV6FSqaawdURENJOIImB3Dv0MuH/sTmDAIQzd9m7z3BZ8tg09Vhg6l2PocXYnIGL0REZTSSqIUEgAuQRwiIFth1wCb1sUEkAhBeSSoe0KCSCXDrvt2Scd8Tj39uHHeh4r9e/LIiKiGcBqteKWW26B2WxGVFTUZZ0rpAP4sTLwKSkpaGlpgVar9UMraaay2+0oLi7Ghg0bLrh2J9FkYF8bnydj7clSj5Wx7nNno22DIzLWw7PUw257s9R23+P8zZP5Hp7VVvpktIey2qOz3a59yhGZ7+HZc6XM9Ri5O/M9vK/JZDIMDDrRN6ISwOa+3zfi9zPyd+WpBLCNqBbwVAL0Dw49xt/fUmQSYXRFgEKCMNmICoJhFQVhMinCFWNXFIyuLvD9vdJofF8jf2FfI38xmUxITEyclAA+pEvolUollErlqO1yuZx/pOQX7GvkL8HW17yBtTeAdgwFygPDgsABh2+ANyLoHnqM7/7+Yef2N4VU4g2kwxVSn6A5TC5xB3pDAbPnvnfb8PLzYcd4z6NwlaUHqqTc09cUCiByip9rrLH4PhcDhv2/24ZdBBi+3zVEYEQ/GvC9oDP8QsGgU0SvbRC9F58z6rLIJILPhQDP7TCZxPv/faGhBz77x9qmGLpgEMwXCoLtfY2CF/saTbXJ7F8hHcATEdHEjBVYuzKlYwfWvmOthwLroceMDrw9AZi/KaSSobHVIwJrT/b0UgPr4funS2AdigRB8P4fxEzh8wy/UODpnz5B/7ALAf1jXCgYfmFgZNWBz2NGXCjosQ2ixzY4ha/sAhcKRvwdDF08GNHPR12AGnnxQOI9bzBfKCAiCiZBFcD39vaiqqrKe7+2thZlZWXQaDRITU0NYMuIiPzL7nDC0GNDU0cvyrsEKM+2Y0AULimw9gk4RgXj/i8F9wTWw4OFsTLPYcOy2iMD75GB9cjMJANrGs/wCwVTSRRFDDic3mEao4N+x+igf8A5xsWD0UMWptuFggtVDCjHuiDmvXjgvhggEdFsBcx9dmhlMggCJyYgIvIIqgD+2LFjWL9+vff+li1bAAC33347du7cGaBWERFNHlEU0Wm1o627H63d/Wjv7ker2Ya2nn60mfvR1uO6b7LYho0NlgJnyya9LZcaWIcrho8BHrlfwsCayE0QBChlrvkFojF15boXulDQP+h7wW7ogt4FLgS4h6OM/RgHrFN6oUCG35zajTC5BPFRYYhXhyE+OgzxaiUSosMQFxWGhKgwxEcpER8VNuUXX4iIpougCuCLiooQpHPuERHBOjCIVnM/2rptaOvuHxak29Dqvt/ebcOA49Ky4DKJAL1aCcHehzhtDMLlslGB9aWMpR65zXNbKmHWiygYBfJCwejKn4tfCPDOaeHeb7ENorWrF9ZBAf12J+pNVtSbrOO2JTpcjoSoMMRFKd2BvW/AHx8VBl2kku9rRBT0giqAJyKajjzl7J6gvG1YQO6532bun1BmShuhcGeYXNklz09CtBJx6jAkRIdBo1LA4RjErl27cN11qzgBDxH51VRdKLDb7di1axeu2vA1dPQ53ZVH/aPeY9vdF0H77U6Y++ww99lR3tZzwfNKBECvVroDfd8Mvuv91ZXpjwpn2T4RTV8M4ImILuCrlbOPT6WQDmWHopTuDJH7i6P7i6RerYRSdmnloA7/zwVHROQXSrkUqaowpGpVFzxGFEV09w8OVTWZ+9HeYxsV8Lf39MMpwl0BZQNgvuA5vWX7nsB+5IVUd6afZftEFAgM4IloRrIODLqyOOZ+tHuzO6NL2ydSzh6n9g3IfUo53QG7OoxZciKiySIIAqLD5YgOlyM3Xn3B4xxOEaZeT3XUsAy+uR9tPTbvRdkuq/2Sy/ZjVPJxx+YnRIVBy7J9IppkDOCJKKTYHU4Ye20XHWve03/p5eyaCIU3AL9Q6aU2QgEJv6QREU1LUomAOPf793j67Q6fz4qhzxCbT5bfNuhEl9WOLuv4ZftSiQB9pHJUqX7csLH58VFhiApj2T4RXRoG8EQUFERRRJfVPmps+fBxkG3dNhh7J17OPjpTPjTWPC7q0svZiYgouIXJpUjVqi5ett83eNGx+YYeGxxOEa3u+xcr27/Y2HyW7RMRwACeiKaBvgHH6GzHiLHmbd02DAxOrJzd54vQGGPNI5XMeBAR0cQIgoBolRzRqouX7Rt7bd6svbdUf0RVmLnPVbZfZ7Ki7hLK9ocC/dFj8+OjlCzbJwpxDOCJaMoMOpww9NouOtac5exERBRqpBLB+7l0RfKFj+u3O0Zn8EeMzR9Ztn+u9RLK9t1j81m2TxRaGMAT0YRdrJzdc5vl7EREROMLk0uRpo1Amjbigsd4yvZbu4dn8IeGj3k+i0eX7V9YuFyK+Cgly/aJggwDeCLywXJ2IiKi6WV42f7shAuX7Q86nDBZBsYcmz/8vrnPjj67g2X7REGIATzRDDFV5ezekjzPUjojMugsZyciIvIPmXRoDfvx9A04hr4HXGBsfmt3Pwa+Ytn+8FL94UPeWLZPdPkYwBMFOU85u2eM3OjlbyZezh4ul/pkx8caa85ydiIiouAUrri0sn1zn903g+8dk2/zXgAw9k68bP9CS+olRIVBr2bZPtF4GMATTWN9Aw7vFfHxlk671HJ2qbucfexJ4NxjzaPCoGY5OxER0YwmCAJiVArEqBQXLds39g6MOza/1dyP7v7BSy7bj1XJx8zgeyv8opXQRrBsn2YmBvBEAeD5sBtrrHn7sHVluydQzj78w26sseZxUfywIyIiosklk0qQEO36rrFonOM8SYmRpfojExQDg050Wu3ovISy/aE5dsYemx8fzaQEhR4G8ESTrN/uQE1bL852CbAcb4LJYh91JdrYa4NzguXsI5d/GT7WnOVmRERENJ2FK6RI10UgXXfxsn3v96ZhY/N9Ztt3l+23mPvRYu7HqfGed5zvUVqVDF021/MSBQsG8ERfQb/dgcYOK2qNFtSZLK5yMKMFdUYLWrr73WPNpcDZLy94Dl45JiIiIhoyvGx/TsKFj5tIJWOf3YFaowW1RssFzibD/zv9KdK0EUjXui4wZOhU3ttxaiW/h9G0wgCe6AJsg54g3Yp6k2UoWDda0WzuG3dCuEilDGqpHdlJOiTGhI8Ozjl2i4iIiOgrGV62Px7rwOAFS/Xbu/vR0tWH5q4+9NmdONfaM2bJvso94V+GTuX61x3Yp+tU0EcyuCf/YwBPM9rAoBMNHaMD9DqTBc1dfeOWuUcqZUj3XKEddsU2TRuBKIWADz74ANddtwxyudx/L4iIiIiIAAAqhQzpOtkFy/btdjvee38XFq5eh/Nm26ikTVNnH6wDDpxt6cbZlu5Rj4/wBveugN57WxsBXaSCwT1NCQbwFPIGBp043+kKymuN7lJ309Ab83hBeoRnvJY2whusZ+hcy66M98Zst9un6NUQERER0WSRSYAMXQRyE2NG7bMNOnC+sw91xqGgvt7kGkLZ1NUHy4ADZ1q6cWaM4N6T6BmetfckerQRDO7pq2MATyHB7nD6vMHWmyyodY9Lb+rqg2OcKH14adTwbDpLo4iIiIhmLqVMiix9JLL0kaP2eYZaeio3Rw617LUN4oumbnzRNDq4Vytl3gn90rWqYZWcEYhVyfndk8bFAJ6CxqA7SK81WVBvdE0c53mzPN85fpAeLpciTavyZs8zhmXT9ZychIiIiIgmQCmTIjtOjew49ah9wyc7rjdZUWuyeCc7bjb3o8c2iNNNZpxuMo96rDpM5i3D9wb4OlcWPzZC4Y+XRtMcA3iaVgYdTjR39Xvf6DzZ9DqTFY0dVgyOE6SHySVI10Ygbdgbnaf8PT6KQToRERERTb0wuRQ58WrkxI8d3Dd4VjIyDlvJyGRBi7kfPf2D+Py8GZ+fHx3cR4fLvQH90LBOV4IqRsXgfqZgAE9+53CKaO7qGzVpXJ3RgsZOK+yOCwfpSpnEFaB7JwwZGp8erw6DhLO6ExEREdE0FSaXIjdejdwxgvu+gWHBvSdr7/6u3NrdD3OfHafOm3FqjOA+RiV3DwVVecvxPUNDo1WcUDmUMICnKeEJ0keukV5rsqCxY/wgXSGTIE0z9OaTplV5s+kJUQzSiYiIiCj0hCukmJ2gxuyE0cG9dWAQ9SbPLPlW7/fqepMFbd02dFntKLN2oayxa9RjY1Vyb3Vqmjvx5UmERYUxuA82DODpK3M6RTSb+7yzcXquEtYaLWjs6MOAw3nBxyqkEqR6Ju0YfqVQF4FEBulERERERF4qhQxzE6MwNzFq1D7rwOBQRat3vL1r7L2hx4ZOqx2dDV042dA16rHaCMWYw0/TdSqoGdxPSwzgaVxOp4jW7n7vVb7hY3XqO6wYGLxwkC6XCkjVqIbN6u658qdCUkw4pAzSiYiIiIgui0ohw7ykKMxLGh3c99oGXfNJDZst35PFN/baYLIMwGQZwIkxgntdpMI9v5R7Auhhk+tFKhlGBgp/8wSnU0RbT787i+4pzRla69I2TpAuk7iDdO9kGu71LnURDNKJiIiIiAIoUinD/KRozE+KHrWvp9+OetPQXFS17iC/3mSBsXfA+3OsvnPUY3WRyqElmIdl7dO1EYhgcD+l+NudIURRRFu3bdga6UPlNfUdFvTbxw/SUzQqn1kvPdn0pJgwyKQSP74SIiIiIiK6XOowORbMisaCWaOD++5+O+rdZfj1IypxOywDMPbaYOy14Wjd6OA+Tq0cCuhHjL1XKRh+Xi7+BkOIKIpo77ENG4s+tCxFvcmKPrvjgo+VSgSkxIYPBejDxqXPiglnkE5ERERENENEhcmxMDkaC5NHB/fmPvtQxa6netcd4Hda7WjvsaG9x4YjdR2jHhsfpfTOju+KNVwxR5omAuEKqT9eWtBjAB9kRFGEodfmGscybPbJWvcfj3Vg/CA9OTbcVeLuyaa7A/bk2HDIGaQTEREREdE4osPluCI5Blckx4zaZ7bavZPp+ax1b7Kgy2pHW7cNbd02HK4dHdwnRIV5Z8hP0/qudR8mZ3DvwQB+GhJFEcbeAZ+JJuqMVu9tyzhBukQAZsWGD62TPmw8SnKsCgoZg3QiIiIiIpp80So5FqlisCglZtS+LuuAO57xXeu+1mhBd/8gWrv70drdj0M1o4P7xOgwn6y9Z86tVM3MC+4ZwAeIKIowWQbGXMuxzmhFr23wgo8VBGBWTLg3QE/TDq3lmMIgnYiIiIiIppkYlQJLUhVYkhrrs10URXRZ7cPm6BrK2tcaLejpH0SLuR8t5n4crDH5PFYQgKTo8DGWwlMhVauCUhZ6wT0D+CkkiiI6rXafNdI9S7DVGS3ouUiQnhQd7i0byRg2eVyKJjwkOyMREREREc0sgiAgNkKB2AgFlo4R3HdYBoZiKG+FstUbTzV19aGpqw8HqscO7l2JTpXP2PtUTfAmPRnAT4JOy8CoNdKHXzG6kPGuGKXMwHIQIiIiIiIiD0EQoI1UQhupxLK00cG9yTLgE4MNz+JbBhze4L60yve8EgFIGlbR7InBgqGiOegC+O3bt+OZZ55BS0sL5s+fj+eeew4FBQVT/rwXGrNRZ7LC3Gcf97Ecs0FERERERDR5BEGALlIJXaQSy9M1PvvGm1Oszj3x9/nOPpzv7MO+SqPPYyUCkByr8qmC9lRFp2hUAZ/4O6gC+DfeeAObN2/G9u3bkZ+fjxdeeAHXXnstzpw5g9TU1Ms+/8VmTRwPZ00kIiIiIiIKPEEQoFcroVcrsWKM4P5Cq3rVGS3oszvQ0GFFQ4d1VHDvWdVreKznqaROjvXP0ttBFcA/++yzuOOOO3DnnXcCAJ577jl89NFHeP7557F169ZLPs+Xzd3obOwfc93C8XDdQiIiIiIiouAlCALi1GGIU4dhZcbo4L69xzZsSLR12FxmFvTbnag3WVFvsmJvhcHnsTJPcD8ia5+hi0CYwzlp7Z/0AL6xsRGPPPII/vM//3NSzzswMIDjx4/jgQce8Nm+ceNGHDhwYMzH2Gw22Gw27/3u7m4AwA/+8xgkStWYj4lTK5GqCXcH6q7SiTSNCmnacKgUF/p1OWG3T95/CgU/u93u8y/RVGFfI39hXyN/YV8jf2Ffo7FowqXQpERhaUqUz3ZRFNHWY3NNoOcO4j3/1ndYYRt0uqu3rQB8g3uJvW/S2ieIoihO2tkAnDp1CkuXLoXDceG1yr+K5uZmzJo1C/v370deXp53+1NPPYWXX34Z5eXlox7z6KOP4rHHHhu1fe4v30BCtAr6MBH6cBG6MLhuhwFKJtKJiIiIiIjoEjlFoHsAMPQLMPQDhj73v/0CjP3AQH8fGp+7GWazGVFRURc/4TgmnIF/7733xt1fU1PzlRtzKQRB8LkviuKobR4PPvggtmzZ4r3f3d2NlJQUfLalEFqtdkrbSTOb3W5HcXExNmzYALlcHujmUAhjXyN/YV8jf2FfI39hXyN/cDpFnKlvxtLnJud8Ew7gN23aBEEQMF7i/kIB9eXQ6XSQSqVobW312d7e3o74+PgxH6NUKqFUKkdtl8vl/CMlv2BfI39hXyN/YV8jf2FfI39hX6OplqpVT9q5JjxNXmJiIt588004nc4xf06cODFpjRtOoVBg2bJlKC4u9tleXFzsU1JPREREREREFIomHMAvW7Zs3CD9Ytn5y7Flyxb8+c9/xn/+53/i7Nmz+MUvfoGGhgbcddddU/J8RERERERERNPFhEvof/nLX8JisVxwf3Z2Nnbv3n1ZjbqQ73znOzCZTHj88cfR0tKCBQsWYNeuXUhLS5uS5yMiIiIiIiKaLiYcwBcUFIy7PyIiAuvWrfvKDbqYu+++G3ffffeUnZ+IiIiIiIhoOppwCT0RERERERER+R8DeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCQNAE8E8++STy8vKgUqkQExMT6OYQERERERER+VXQBPADAwO46aab8LOf/SzQTSEiIiIiIiLyO1mgG3CpHnvsMQDAzp07A9sQIiIiIiIiogAImgD+q7DZbLDZbN773d3dAAC73Q673R6oZtEM4Olf7Gc01djXyF/Y18hf2NfIX9jXyF8ms4+FdAC/detWb+Z+uN27d0OlUgWgRTTTFBcXB7oJNEOwr5G/sK+Rv7Cvkb+wr9FUs1qtk3augAbwjz766JgB9nBHjx7F8uXLv9L5H3zwQWzZssV7v7u7GykpKVi/fj20Wu1XOifRpbDb7SguLsaGDRsgl8sD3RwKYexr5C/sa+Qv7GvkL+xr5C8mk2nSzhXQAP7ee+/Fd7/73XGPSU9P/8rnVyqVUCqVo7bL5XL+kZJfsK+Rv7Cvkb+wr5G/sK+Rv7Cv0VSbzP4V0ABep9NBp9MFsglEREREREREQSFoxsA3NDSgo6MDDQ0NcDgcKCsrAwBkZ2cjMjIysI0jIiIiIiIimmJBE8D/67/+K15++WXv/SVLlgBwTUhXVFQUoFYRERERERER+Yck0A24VDt37oQoiqN+GLwTERERERHRTBA0ATwRERERERHRTMYAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIyALdAH8SRREA0NPTA7lcHuDWUCiz2+2wWq3o7u5mX6Mpxb5G/sK+Rv7Cvkb+wr5G/tLT0wNgKB69HDMqgDeZTACAjIyMALeEiIiIiIiIZhKTyYTo6OjLOseMCuA1Gg0AoKGh4bJ/cUTj6e7uRkpKChobGxEVFRXo5lAIY18jf2FfI39hXyN/YV8jfzGbzUhNTfXGo5djRgXwEolryH90dDT/SMkvoqKi2NfIL9jXyF/Y18hf2NfIX9jXyF888ehlnWMS2kFEREREREREU4wBPBEREREREVEQmFEBvFKpxCOPPAKlUhnoplCIY18jf2FfI39hXyN/YV8jf2FfI3+ZzL4miJMxlz0RERERERERTakZlYEnIiIiIiIiClYM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCMyYAH779u3IyMhAWFgYli1bhn379gW6SRRitm7dihUrVkCtViMuLg6bNm1CeXl5oJtFM8DWrVshCAI2b94c6KZQCGpqasIPfvADaLVaqFQqLF68GMePHw90syjEDA4O4te//jUyMjIQHh6OzMxMPP7443A6nYFuGgW5kpISXH/99UhKSoIgCHjnnXd89ouiiEcffRRJSUkIDw9HUVERvvzyy8A0loLaeH3Nbrfj/vvvx8KFCxEREYGkpCTcdtttaG5unvDzzIgA/o033sDmzZvx8MMP4+TJkygoKMC1116LhoaGQDeNQsjevXtxzz334NChQyguLsbg4CA2btwIi8US6KZRCDt69Ch27NiBK664ItBNoRDU2dmJ/Px8yOVyfPDBBzhz5gx+97vfISYmJtBNoxDzm9/8Bv/+7/+Obdu24ezZs3j66afxzDPP4I9//GOgm0ZBzmKxYNGiRdi2bduY+59++mk8++yz2LZtG44ePYqEhARs2LABPT09fm4pBbvx+prVasWJEyfwL//yLzhx4gTeeustVFRU4Jvf/OaEn2dGLCO3atUqLF26FM8//7x329y5c7Fp0yZs3bo1gC2jUGYwGBAXF4e9e/eisLAw0M2hENTb24ulS5di+/bteOKJJ7B48WI899xzgW4WhZAHHngA+/fvZ9UaTblvfOMbiI+Px4svvujdduONN0KlUuGVV14JYMsolAiCgLfffhubNm0C4Mq+JyUlYfPmzbj//vsBADabDfHx8fjNb36Dn/70pwFsLQWzkX1tLEePHsXKlStRX1+P1NTUSz53yGfgBwYGcPz4cWzcuNFn+8aNG3HgwIEAtYpmArPZDADQaDQBbgmFqnvuuQdf//rXcfXVVwe6KRSi3nvvPSxfvhw33XQT4uLisGTJEvzHf/xHoJtFIWjt2rX49NNPUVFRAQA4deoUSktLcd111wW4ZRTKamtr0dra6hMnKJVKrFu3jnECTTmz2QxBECZc1SabmuZMH0ajEQ6HA/Hx8T7b4+Pj0draGqBWUagTRRFbtmzB2rVrsWDBgkA3h0LQ66+/jhMnTuDo0aOBbgqFsJqaGjz//PPYsmULHnroIRw5cgT/9E//BKVSidtuuy3QzaMQcv/998NsNmPOnDmQSqVwOBx48skn8b3vfS/QTaMQ5okFxooT6uvrA9EkmiH6+/vxwAMP4JZbbkFUVNSEHhvyAbyHIAg+90VRHLWNaLLce++9+Pzzz1FaWhroplAIamxsxH333YePP/4YYWFhgW4OhTCn04nly5fjqaeeAgAsWbIEX375JZ5//nkG8DSp3njjDfz1r3/Fq6++ivnz56OsrAybN29GUlISbr/99kA3j0Ic4wTyJ7vdju9+97twOp3Yvn37hB8f8gG8TqeDVCodlW1vb28fdbWNaDL8/Oc/x3vvvYeSkhIkJycHujkUgo4fP4729nYsW7bMu83hcKCkpATbtm2DzWaDVCoNYAspVCQmJmLevHk+2+bOnYs333wzQC2iUPXLX/4SDzzwAL773e8CABYuXIj6+nps3bqVATxNmYSEBACuTHxiYqJ3O+MEmip2ux0333wzamtr8dlnn004+w7MgDHwCoUCy5YtQ3Fxsc/24uJi5OXlBahVFIpEUcS9996Lt956C5999hkyMjIC3SQKUVdddRVOnz6NsrIy78/y5cvx/e9/H2VlZQzeadLk5+ePWg6zoqICaWlpAWoRhSqr1QqJxPdrqVQq5TJyNKUyMjKQkJDgEycMDAxg7969jBNo0nmC98rKSnzyySfQarVf6Twhn4EHgC1btuDWW2/F8uXLsWbNGuzYsQMNDQ246667At00CiH33HMPXn31Vbz77rtQq9Xeqo/o6GiEh4cHuHUUStRq9ai5FSIiIqDVajnnAk2qX/ziF8jLy8NTTz2Fm2++GUeOHMGOHTuwY8eOQDeNQsz111+PJ598EqmpqZg/fz5OnjyJZ599Fj/+8Y8D3TQKcr29vaiqqvLer62tRVlZGTQaDVJTU7F582Y89dRTyMnJQU5ODp566imoVCrccsstAWw1BaPx+lpSUhK+/e1v48SJE3j//ffhcDi8sYJGo4FCobj0JxJniD/96U9iWlqaqFAoxKVLl4p79+4NdJMoxAAY8+ell14KdNNoBli3bp143333BboZFIL+93//V1ywYIGoVCrFOXPmiDt27Ah0kygEdXd3i/fdd5+YmpoqhoWFiZmZmeLDDz8s2my2QDeNgtzu3bvH/H52++23i6Ioik6nU3zkkUfEhIQEUalUioWFheLp06cD22gKSuP1tdra2gvGCrt3757Q88yIdeCJiIiIiIiIgl3Ij4EnIiIiIiIiCgUM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCMyIZeQ8nE4nmpuboVarIQhCoJtDREREREREIU4URfT09CApKQkSyeXl0GdUAN/c3IyUlJRAN4OIiIiIiIhmmMbGRiQnJ1/WOWZUAK9WqwEAtbW10Gg0AW4NhTK73Y6PP/4YGzduhFwuD3RzKISxr5G/sK+Rv7Cvkb+wr5G/dHR0ICMjwxuPXo4ZFcB7yubVajWioqIC3BoKZXa7HSqVClFRUfxAoCnFvkb+wr5G/sK+Rv7Cvkb+YrfbAWBShnFzEjsiIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIimrFEUcRPfvITaDQaCIKAsrIyFBUVYfPmzYFuGtEoDOCJiIiIiGjG+uijj7Bz5068//77aGlpwYIFCwLSjieffBJ5eXlQqVSIiYkZtd9kMuGaa65BUlISlEolUlJScO+996K7u3vc8/70pz9FVlYWwsPDodfrccMNN+DcuXM+xwiCgHfeeWfUY3/4wx9i06ZNl/GqaLIxgCciIiIiohmrpqYGiYmJyMvLQ0JCAmQyWUDaMTAwgJtuugk/+9nPxtwvkUhwww034L333kNFRQV27tyJTz75BHfddde45122bBleeuklnD17Fh999BFEUcTGjRvhcDim4mXQFGMAT0REREREM9If/vAHbN68GQ0NDRAEAenp6WMe9+GHHyI6Ohp/+ctfpqwtjz32GH7xi19g4cKFY+6PjY3Fz372MyxfvhxpaWm46qqrcPfdd2Pfvn3jnvcnP/kJCgsLkZ6ejqVLl+KJJ55AY2Mj6urqJtS+uro6CIIw6qeoqGhC56HLE5jLS0RERERERAF25513orCwEC+++CKOHj0KqVQ66pjXX38dP/nJT/DKK6/ghhtuuOC5IiMjx32ugoICfPDBB5fdZo/m5ma89dZbWLdu3SU/xmKx4KWXXkJGRgZSUlIm9HwpKSloaWnx3m9tbcXVV1+NwsLCCZ2HLg8DeCIiIiIimpEiIiKgVqshlUqRkJAwav/27dvx0EMP4d1338X69evHPVdZWdm4+8PDwy+nqV7f+9738O6776Kvrw/XX389/vznP1/0Mdu3b8evfvUrWCwWzJkzB8XFxVAoFKPOO/IChs1mw9e//nUA8Pkd9ff3Y9OmTVizZg0effTRSXlddGkYwBMREREREY3w5ptvoq2tDaWlpVi5cuVFj8/OzvZDq4Df//73eOSRR1BeXo6HHnoIW7Zswfbt28d9zPe//31s2LABLS0t+O1vf4ubb74Z+/fvR1hYmM95r776ap/H3X///WOOlb/jjjvQ09OD4uJiSCQcle1PQfXbLikpwfXXX4+kpKQLzpRIRERERER0uRYvXgy9Xo+XXnoJoihe9PjIyMhxf6699tpJaVdCQgLmzJmDG264AS+88AKef/55n9L2sURHRyMnJweFhYX4n//5H5w7dw5vv/32qPNmZ2f7/KjV6lHneuKJJ/Dhhx/ivffeG3M/Ta2gysBbLBYsWrQIP/rRj3DjjTcGujlERERERBSisrKy8Lvf/Q5FRUWQSqXYtm3buMf7q4R+OM+FBZvNNuHHTfQxgKsq4fHHH8cHH3yArKysCT+eLl9QBfDXXnvtpF25IiIiIiIiGk9ubi52796NoqIiyGQyPPfccxc89nJL6BsaGtDR0YGGhgY4HA7vBYHs7GxERkZi165daGtrw4oVKxAZGYkzZ87gV7/6FfLz872z5zc1NeGqq67CX/7yF6xcuRI1NTV44403sHHjRuj1ejQ1NeE3v/kNwsPDcd11102ofV988QVuu+023H///Zg/fz5aW1sBAAqFAhqN5rJeO126oArgJ8pms/lcWeru7gYA2O122O32QDWLQpTN7sCRuk7sqTDiYI0Jxi4pnjlbAolEgFQQIJEIkAgYdluAROK+794mFeC9LXHflnqOFQCpxLVch1QQIJXAdXvE/tG3Rz+P77kx1MZhtwX3cwzdHvG4Ua8H3ucbdeyIc0skl/jaRrXJtZ2GeN7L+J5GU419jfyFfY38xdPHPGO8h/c5URThdDpht9uRmZmJjz76CBs2bIAgCHj66aenpD2//vWv8corr3jvL1myBABQXFyMdevWQS6XY8eOHfjFL34Bm82G5ORkbNq0Cb/61a+8bbdarSgvL0d3dzfsdjukUilKSkrw3HPPobOzE/Hx8Vi7di327t2L2NhYn9c8ODg46u/O6XR6fw+HDx+G1WrFE088gSeeeMJ7TGFhIT755JMp+Z2Eisl8PxPESxnQMQ0JgoC3334bmzZtuuAxjz76KB577LFR21999VWoVKopbB3NFMZ+4EyngLNdAiq7BdidDC6nmgAREgEQANe/gmsyjzH/HX7cGMd7tvkeJ3qPueD5L3Lekf/6nM/T/oudb5zzDm+3BEC8SoRG6a//ASIiIiKaCKvViltuuQVmsxlRUVGXda6QDuDHysB71i/UarV+aCWFmn53ln1vhREllUbUmaw+++OjlCjM0SE/MwYN505hxYqVECRSOEXAKYpwOMURt0U4na77Y+8fui2KIhwiht0eeqxrG9zbXI8buu16nOe268d1nrGO9e7ztglDz+c+j0Mcavvw9vgcO+zc4hjnHOs1B+e70fSQrg1HQY4ea7O1WJUeiwhlSBdYUQDY7XYUFxdjw4YNkMvlgW4OhTD2NfIX9jXyF5PJhMTExEkJ4EP6G55SqYRSOTotJZfL+UdKl6zOaMGe8nbsqTDgUI0J/Xand59MImBZWiyKZsehaLYecxLUEAQBdrsdu86fwvIMHfvaBIgjAnpvgO+5UHGhCxQjLj74XNBwHzfmxZPhFxOcvhcpxjrv0HHDjhneprEuZrjP67mI4brt3j7WxRGfto19wWf467LZHaho60GdqQ91pga8cqgBcqmrXxbk6LEuV495iVGQSFgdQpODn6HkL+xr5C/sazTVJrN/hXQAT/RV9NsdOFRjwp5yA/ZWGFBrtPjsT4gKQ9FsPYpm65GfrYM6jG/4k0UQBMikDDQnwm634833diEqezn213SgpNKAxo4+HKrpwKGaDjzzUTm0EQqszdGhIEePwhwd4qLCLn5iIiIiIpp2giqA7+3tRVVVlfd+bW0tysrKoNFokJqaGsCWUbAbnmU/WG2CbdA3y748fSjLPjtezYnUaFoJlwEb5sXhukWzALj6875KA/ZWGHGw2giTZQDvljXj3bJmAMCcBDUKc/UoyNFhRboGYXJpIJtPRERERJcoqAL4Y8eOYf369d77W7ZsAQDcfvvt2LlzZ4BaRcGo3+7AwRoT9pYbsKe8fdRYdmbZKZil6yKQrovArWvSYXc4caK+E/sqjdhXacDnTWaca+3BudYe7CipgVImwapMLQpzdCjM1SMnLpIXqIiIiIimqaAK4IuKihCkc+7RNMAsO81EcqkrQF+VqcU/f202OiwD2F9lREmFAfsqjWjt7kdJhQElFQbg72eREBWGghwdCnL1WJutgyZCEeiXQERERERuQRXAE03ExbLsidGuLPu63DjkZ2uZZacZQROhwPWLknD9oiSIoojK9l5XAF9pxOEaE1q7+/Hfx8/jv4+fhyAAC2dFoyBHh8IcPZakxkIhkwT6JRARERHNWAzgKaTUerLs5a4Z4y+UZV8/Ow658SwVpplNEATkxquRG6/GnQWZ6Lc7cKyuEyWVroz8udYefH7ejM/Pm/Gn3dWIUEixJkuHwlzXhHjpWhX/hoiIiIj8iAE8BTVm2YkmT5hcirU5OqzN0eGh6+aivbsf+yqNKKk0oLTSNRneJ2fb8MnZNgBAiibcPbO9HnnZWkTx74uIiIhoSjGAp6BzsSz7inSNewI6ZtmJLkdcVBhuXJaMG5clw+kUcaalGyWVBuyrMOJYfQcaO/rw6uEGvHq4AVKJgCUpMa6APleHK5JjIOXa80RERESTigE8TXt9A5512V0T0NUzy07kdxKJgAWzorFgVjTuLsqGxTaIw7UmlFS4MvQ1BguO1XfiWH0nfv9JBaLD5cjP1qIwR4+CXD1mxYQH+iUQERERBT0G8DQtjZdll0sFLE9jlp0okCKUMlw5Jx5XzokHADR2WFHqnt1+f5UR5j47dp1uxa7TrQCALH0ECnL0WJerx6pMDVQKfvwQERERTRS/QdG0cLEse1J0GNa5l3jLz9YhUsmuSzSdpGhU+N7KVHxvZSoGHU583mT2LlV3sqET1QYLqg0W7DxQB4VUgmVpsSjM1aMgR4d5iVGQsNyeiIiI6KIYBVFAiKLozrIbsKfCgMPjZNnXz4lDThyz7ETBQiaVYGlqLJamxmLz1bkw99lxsNqIvRWuDH1TVx8O1phwsMaE33wI6CIVWJutQ2GuHmtzdIhThwX6JRARERFNSwzgyW+GZ9l3lxvQ0MEsO9FMEB0uxzULEnHNgkTvxbt9la5g/mCNCcbeAbxT1ox3ypoBAHMTo1CY41qqbnl6LMLk0gC/AiIiIqLpgRESTZmRWfZDNSYMjMiyD58xnll2otAnCAIy9ZHI1Efi9rx0DAw6caKh01tuf7rJjLMt3Tjb0o0XSmoQJpdgVYYWhbl6FObokM33CSIiIprBGMDTpOobcOBgjdEVtI+TZV8/W488ZtmJZjyFTILVmVqsztTiV9cApl6bezI8I/ZVGtDeY8PeCgP2VhgAuFadKMhxldvnZ+kQG6EI8CsgIiIi8h9GT3RZmGUnosmkjVTihsWzcMPiWRBFEeVtPdjnXqrucG0HWsz9+Nux8/jbsfMQBOCKWdHuyfD0WJIaA7lUEuiXQERERDRlGMDThF0syz4rJhzrZutRlMssOxF9dYIgYE5CFOYkROEfCzPRb3fgSG2Ht9y+vK0Hp86bceq8GX/8rAqRShnWZA2V26dpIwL9EoiIiIgmFSMruihRFFHjybKXt+NwbceYWfb17gnoOEaViKZCmFzqCs5z9QCAVnM/9lUaUFJpRGmlAZ1WO4rPtKH4TBsAIE2rQoF7Mry8LC3UYfJANp+IiIjosjGApzF5suy7zxmwp6IdjR19PvuZZSeiQEuIDsNNy1Nw0/IUOJ0ivmzuRkmlASUVBhyv70S9yYp6UwP+eqgBUomApakxKMzRoyBXj4WzoiHl2vNEREQUZBh1EYBLy7KvzNCgKJdZdiKafiQSAQuTo7EwORr3rM9Gr20Qh6pNKKl0ldvXGi04WteJo3Wd+F1xBWJUcuRn67zL1SXFhAf6JRARERFdFAP4Gcw6MIiD1Sb3BHRjZ9k9k8/lZWkRwSw7EQWJSKUMV8+Lx9Xz4gEAjR1WVzBfYcT+aiO6rHb8/fMW/P3zFgBAdlykOzuvw+oMLcIVXHueiIiIph9GZDOIJ8u++1w79lYYmGUnohkjRaPC91el4fur0jDocOLU+S7sdS9Vd6qxC1Xtvahq78V/7q+FQirBioxYV0Cfo8fcRDXfC4mIiGhaYAAf4phlJyLyJZNKsCxNg2VpGmzZkIsu6wAOVJtQUuEaP99s7sf+KhP2V5mw9YNz0EUqXaX2uTqszdZDr1YG+iUQERHRDMVoLcSIoohqgwV7yt1Z9poODDiGsuwKqcSVZZ+tR9FsPbL0zLIT0cwWo1LguoWJuG5hovc9dJ977PzBahOMvTa8dbIJb51sAgDMS4zyLlW3LD0WShnL7YmIiMg/GMCHAOvAIA5UmbCnoh17yg0438ksOxHRVyEIArLjIpEdF4kf5WfANujA8fpOlLjL7b9s7saZFtfPv++tRrhcitWZGhTkuJa3y9JH8KIoERERTRlGckGIWXYiIv9QyqTIy9IhL0uHB66dA0OPDfurjK5y+0ojjL027C43YHe5AQCQFB2GwlzX2Pn8bC1iVIoAvwIiIiIKJQzgg8TFsuzJse4se24c1jDLTkQ0JfRqJTYtmYVNS2ZBFEWcbenxltsfqe1As7kfrx9txOtHGyERgCuSY1CYo0Nhrh6LU2Igk0oC/RKIiIgoiDHKm6ZcWfZe97rsBhypHS/LHseyTSIiPxMEAfOSojAvKQo/XZeFvgEHDteavOX2le29KGvsQlljF/7tsyqolTLkZWtRkKPHulw9UjSqQL8EIiIiCjIM4KcRZtmJiIJXuEKKotlxKJodBwBo7upDaaURJZUGlFa51p7/6Ms2fPRlGwAgXavyjp1fk6VFJN/TiYiI6CL4bSGALiXLvipTg3W5zLITEQWbpJhw3LwiBTevSIHDKeKLJjNKKlzl9icaOlFnsqLOVI9XDtVDJhGwNC3WW26/ICkaEgnf74mIiMgXA3g/s9gGcaDahD3lrix7U9fYWfb1s11ZdpWC/0VERMFOKhGwKCUGi1Ji8POrctDTb8fBahNK3OPn601WHKntwJHaDvz24wrEquTIz9a5l6vTIyE6LNAvgYiIiKYBRodTjFl2IiIaSR0mx8b5Cdg4PwEAUG+yoKTSiH0VBhyoNqHTasf7n7fg/c9bAAC58ZHecvtVGRqEybn2PBER0UzEAH4KXCzLnqIJR1FuHIpm65llJyIipGkjcKs2AreuToPd4URZY5d3qbrPz3ehoq0XFW29eLG0FgqZBKsyNCjI0aEgR485CWpe+CUiIpohGDlOAlEUUdXuzrJXtONobeeYWXbX5EZ6ZOqYZSciorHJpRKsSNdgRboG/2fjbHRaBrC/2ugdP99i7se+SiP2VRoBnINerURBjg7rcvXIz9ZBF6kM9EsgIiKiKcIA/itilp2IiPwhNkKBb1yRhG9ckeQdlrXXvVTdoRoTDD02vHWiCW+daAIALJgV5Sq3z9FjWVosFDKuPU9ERBQqGFVeootm2d0ljcyyExHRVBEEAdlxamTHqXHH2gz02x04Xt/pLbc/29KNL5pcP8/vqYZKIcXqTC0Kc3QoyOVnExERUbBjAD8Oi20Q+6uM2FNhwN5xsuzr5+ixOpNZdiIi8q8wuRT52TrkZ+vwIID2nn7X2vMVrrXnjb0D+OxcOz471w4AmBUTjsJcHQpz9MjL0iFaJQ/sCyAiIqIJCbqIc/v27XjmmWfQ0tKC+fPn47nnnkNBQcGknHtklv1IbQfsDtG7n1l2IiKazuLUYfiHpcn4h6XJcDpFnG3tRom73P5YXSeauvrw2pFGvHakERIBWJwS457dXodFyTGQSVluT0RENJ0FVQD/xhtvYPPmzdi+fTvy8/Pxwgsv4Nprr8WZM2eQmpr6lc55sSx7qkaFotl6FM1mlp2IiIKHRCJgflI05idF42dFWbAODOJwTQf2Vhiwr9KAaoMFJxq6cKKhC3/4tBLqMBnys1xrzxfk6JCiUQX6JRAREdEIQRWNPvvss7jjjjtw5513AgCee+45fPTRR3j++eexdevWSz5PdXsv3vyyC3vKDThaN3aWfb07y57BLDsREYUAlUKG9XPisH5OHACgqasP+9wz25dWGWHus+PDL1vx4ZetAIBMXYR3qbo1WVoomJwnIiIKuAkH8H19fTh+/Dg0Gg3mzZvns6+/vx9/+9vfcNttt01aAz0GBgZw/PhxPPDAAz7bN27ciAMHDoz5GJvNBpvN5r3f3d0NAPj2jiOQKIcyCymx4ViXq0Nhjg6rMzQIV0i9+wYHByfzZdAMYbfbff4lmirsa/RVxUXIcOOSRNy4JBEOp4jTTWbsqzJhf5UJZefNqDFaUGO04OWD9ZBLBSxOjka8KCCpvgNXpMRCIuHFbZoafF8jf2Ffo6nWaxvEoZoOfHiyZtLOKYiiKF78MJeKigps3LgRDQ0NEAQBBQUFeO2115CYmAgAaGtrQ1JSEhwOx6Q10KO5uRmzZs3C/v37kZeX593+1FNP4eWXX0Z5efmoxzz66KN47LHHRm3P+MUbyNWHY26siHkxIvRhAJPsRERELtZBoNIsoNws4FyXAJPN90MyQiZidrSIuTEiZseIiFYEqKFERETTiCgCrX3A2S4BZzoF1PQIcIgCnDYrGp+7GWazGVFRUZf1HBPKwN9///1YuHAhjh07hq6uLmzZsgX5+fnYs2fPVx6DPlEjy9lFUbxgifuDDz6ILVu2eO93d3cjJSUFn/0iH7MS4qa0nTSz2e12FBcXY8OGDZDLOcszTR32NZpqoiiioaMPe8rb8M6hctRY5LAMOHDCJOCEyXVMblwkCnK0yM/WYkVaLMLk0vFPSjQOvq+Rv7Cv0WTotQ3iYHUH9lYaUVJpRIu532d/Smw4ViZF49lJer4JBfAHDhzAJ598Ap1OB51Oh/feew/33HMPCgoKsHv3bkRERExSs0bT6XSQSqVobW312d7e3o74+PgxH6NUKqFUKkdtV6vC+EdKfiGXy9nXyC/Y12gqZScokKZVQd91FldvXI8vWnpRUukaP3+6yYyK9l5UtPfixf31UMokWJmhwbpcPQpy9MiNj+RcMvSV8H2N/IV9jSZCFEVUtvdi97l27Ck34Fj96DnVVmdqUZSr986p1tHREZgAvq+vDzKZ70P+9Kc/QSKRYN26dXj11VcnqVmjKRQKLFu2DMXFxfjWt77l3V5cXIwbbrhhyp6XiIiIhihkEqzK1GJVpha//BrQYRlAaZUR+yoMKKk0oK3bhn2VRuyrNAI4i/goJQpy9N4J8TQRrLcnIqLg0utZuazcgL3l7WgekWVP06rcAXscVmdqfeZUm2wTCuDnzJmDY8eOYe7cuT7b//jHP0IURXzzm9+c1MaNtGXLFtx6661Yvnw51qxZgx07dqChoQF33XXXlD4vERERjU0TocA3FyXhm4uSvFmJkgoDSiqNOFxjQlu3Df9z/Dz+5/h5CAKwICkahbmuYH5paiwUMk5vT0RE04soiqho68We8gtn2ddkat3LjcchQzd1legjTSiA/9a3voXXXnsNt95666h927Ztg9PpxL//+79PWuNG+s53vgOTyYTHH38cLS0tWLBgAXbt2oW0tLQpe04iIiK6NIIgIDdejdx4Ne4syES/3YGjdR3YV2lESYUB51p7cLrJjNNNZvxpdzUiFFKsydKiIEePwlw90rUqltsTEVFA9NoGUVppxN6KduwtNwQ0yz6eCQXwDz74IB588MEL7t++fTu2b99+2Y0az91334277757Sp+DiIiILl+YXOoun9fjoevmoq27311e7xo/32EZwCdn2/HJ2XYAQHJsOApz9SjM0SEvW4eoMI5JJSKiqTEyy360rgODzqEsu9Izlj0AWfbxTHgdeCIiIqKvIj4qDN9eloxvL0uG0yniTEs39lYYsK/SgOP1nTjf2YdXDzfg1cMNkEoELE6JQWGOHgW5OixKjoGUa88TEdFl6Om3Y3+VCXsrXEH7yBnj07UqFM2Ow7rZeqzJ1E7LVVUYwBMREZHfSSQCFsyKxoJZ0bhnfTYstkEcqjF5y+1rjBYcr+/E8fpO/P6TCkSFybDWPRFeYa4es2LCA/0SiIhomhNFEeVtPdhTbsCe8nYcq+sMiiz7eBjAExERUcBFKGW4am48rprrWhq2scPqLbcvrTKiu38Qu063Ytdp13KymfoIFOboUZirw6oMLSKU/EpDRERDWfY95e3YWxGcWfbx8NOOiIiIpp0UjQq3rErFLatSMehw4tR5M/ZVGlBSYUBZYxdqDBbUGCzYeaAOcqmA5WkaFOTqUJijx7zEKEhYbk9ENCNcSpZ9TZbWOwFdehBk2cfDAJ6IiIimNZlUgmVpsViWFovNV+fC3GfHgSojStzl9k1dfThYY8LBGhOe/rAcukgF1ma7yu0LcnWIU4cF+iUQEdEkcmXZ3euyj5NlL5qtx+ogzLKPhwE8ERERBZXocDmuXZiIaxcmQhRF1Bot3rHzB2tMMPYO4J2yZrxT1gwAmJOgxrpc12z4y9NjQ+qLHBHRTODJsu8+58qyH68P7Sz7eBjAExERUdASBAGZ+khk6iNxe146BgadOF7f6Sq3rzTgi6ZunGvtwbnWHrxQUoMwuQSrMrQoyNFhXa4e2XGRXHueiGgaGp5l31NuQGu3b5Y9QxeBdbn6kMyyj4cBPBEREYUMhTsLsyZLi19dMwemXhtKq4woqXBNiNfeY8PeClfJ5RN/P4vE6DAUuGe3X5utQ2yEItAvgYhoRhJFEedah8ayj5Vlz8vSekvj07Shm2UfDwN4IiIiClnaSCVuWDwLNyye5S3B3FdhREmlAYdrO9Bi7sffjp3H346dhyAAV8yK9i5VtyQ1BnKpJNAvgYgoZHX327G/cmgsO7PsF8cAnoiIiGYEQRAwJyEKcxKi8I+Fmei3O3CktgMlFQbsqzSivK0Hp86bceq8Gdt2VyFSKcOaLC0Kc3QozJ252R4ioslysSx7mFyCNZnMso+HATwRERHNSGFyKQpzXdl2AGg197vHzhtRWmlAp9WO4jNtKD7TBgBI1ahQ4A7m12RpERUmD2TziYiCwsWy7Jm6CKyb7Zp8blWGhln2i2AAT0RERAQgIToMNy1PwU3LU+B0ivii2eyd3f54fScaOqz4r8MN+K/DDZBKBCxNjfGW2y+cFQ0p154nIoIoijjb0oM9Fe3YU27ACWbZJxUDeCIiIqIRJBIBVyTH4IrkGNyzPhu9tkEcqjahpNJVbl9rtOBoXSeO1nXi2eIKxKjkyM/WodA9IV5STHigXwIRkd94suy7y9uxt8KAtm6bz35m2ScPA3giIiKii4hUynD1vHhcPS8eANDYYXUF8xVG7K82ostqx98/b8HfP28BAGTHRXrL7VdlaKBS8CsXEYWOS8my52XpUDRbj6LcOKRqVQFsbWjhpwkRERHRBKVoVPj+qjR8f1UaBh1OnDrfhb3upepONXahqr0XVe29eGl/HRRSCVZkxKIgR4+CHB3mJUZx7XkiCjrd/XaUVhqx5yJZ9vWz47CSWfYpwwCeiIiI6DLIpBIsS9NgWZoGWzbkoss6gAPVJpRUGFBSYUCzuR/7q0zYX2XC//sA0EUq3dl5HdZm66FXKwP9EoiIRvFk2XeXt2NvuQHHGzrhYJY94BjAExEREU2iGJUC1y1MxHULEyGKIqoNFuxzj50/WG2CsdeGt0824e2TTQCAeYlRKMjVYV2OHsvSY6GUMWtFRIFh7rNjf9U4WXZ9BIpyXZPPMcseGAzgiYiIiKaIIAjIjotEdlwkfpSfAdugA8frO1HiLrf/srkbZ1pcPy/srUG4XIpVmRoU5uhRmKtDlj6S5fZENGVEUcSZlm7XEm8XyLLnu7Ps65hlnxYYwBMRERH5iVImRV6WDnlZOjxw7RwYemzYX2X0zm5v6LFhT7kBe8oNAICk6DDvUnX52VrEqBQBfgVEFOzMfb5j2dt7mGUPJgzgiYiIiAJEr1Zi05JZ2LRkFkRRxLnWHpRUuIL5I3UdaDb3441jjXjjWCMkAnBFcoxrqbpcPRanxEAulQT6JRDRNHexLHu4XIq8LK1rLPvsOKRomGWfzhjAExEREU0DgiBgbmIU5iZG4afrstA34MDhWpO33L6yvRdljV0oa+zCv31WBbVShjVZWhTm6lGYo2dpKxF5XSzLnqWPQNFsV5Z9RTqz7MGEATwRERHRNBSukLq/YMcBAFrMfdhX4Sq3L61yrT3/8Zk2fHymDQCQrlV5l6pbk6WFOkweyOYTkR+Joogvm7uxt8KAPeXtONHQxSx7iGIAT0RERBQEEqPDcfOKFNy8IgUOp4gvmszecvsTDZ2oM1lRZ6rHK4fqIZMIWJoai8JcHQpy9FgwKxpSCSfDIwolniz7bneW3cAs+4zAAJ6IiIgoyEglAhalxGBRSgx+flUOevrtOFhtwr5KV4a+3mTFkboOHKnrwG8/rkCsSo78bB0Kc10Z+sTo8EC/BCKaoEvJsudna7FudhyKcvXMsocoBvBEREREQU4dJsfG+QnYOD8BAFBvsqCk0oh9FQYcqDah02rH+5+34P3PWwAAufGR3nL7VRlahCuYmSOajsxWO/ZVuVamGC/Lvn52HFZkxEIp499yqGMAT0RERBRi0rQRuFUbgVtXp8HucKKssQv7KgzYW2nE5+e7UNHWi4q2XrxYWguFTIKV6Rpvuf2cBDXXnicKEE+WfU95O/aUG3CykVl28sUAnoiIiCiEyaUSrEjXYEW6Bls2zkanZQD7q43eCfFazP0orTKitMoI4Bz0aiUKcnRYl6tHfrYOukhloF8CUUi7WJY9Oy4SRbmuyeeYZScG8EREREQzSGyEAt+4IgnfuCIJoiii2tCLEncwf6jGBEOPDW+daMJbJ5oAAPOTorxj55enaaCQce15osvhdHrWZR87y65SSJGXpUPRbD3WMctOIzCAJyIiIpqhBEFAdpwa2XFq/HhtBvrtDhyv70RJpQElFUacbenGl82un+f3VEOlkGJ1phaFOToU5OqRqYtguT3RJTBb7SipHMqyG3uZZaevhgE8EREREQEAwuRS5GfrkJ+tw4PXAu09/SitNGJfpRH7Kg0w9g7gs3Pt+OxcOwBgVky4d+x8fpYO0SquPU8EjM6yn2joxLAkO7Ps9JUxgCciIiKiMcWpw/APS5PxD0uT4XSKONva7VqqrsKAY3WdaOrqw2tHGvHakUZIBGBRSgwKc/QozNVhUXIMZFKW29PMcbEse05cJIpmu7Lsy9OZZaevhgE8EREREV2URCJgflI05idF4651WbAODOJwTQdKKg3YV2lEVXsvTjZ04WRDF/7waSXUYTLkZ+lQkKtDYQ4zjBR6nM5hM8ZXGHBynCx70Ww9kmP5N0CXjwE8EREREU2YSiHD+jlxWD8nDgDQ1NWHUvfY+dIqI8x9dnz4ZSs+/LIVAJChi3CNnc/RY02WFhFKfg2l4NNlHcC+SiN2l7ejpMLILDv5XdC8cz755JP4+9//jrKyMigUCnR1dQW6SURERETkNismHN9ZkYrvrEiFwyni8/Nd3rHzJxq6UGu0oNZowcsH6yGXCliaGovCXD0Kc/SYnxQFiYST4dH0cylZ9vzsobHszLLTVAuaAH5gYAA33XQT1qxZgxdffDHQzSEiIiKiC5BKBCxJjcWS1Fj801U56O6342C1CSUVBpRUGtDY0YfDtR04XNuBZz4qhyZCgbXZOhTk6LAmIybQzacZrss6gJJKI/ZcJMu+fnYclqdzaUXyr6AJ4B977DEAwM6dOwPbECIiIiKakKgwOb42PwFfm58AAKgzWrCv0oC9FUYcrDaiwzKA9041471TzQAAqSDFL49+AqkgQCoRIAiuiwJSQYAgCJBKMOz2sGMEARJBgETiOkbivi+VCJAIGHbbfYx7m8R9bolkxDGC63FSiesYiec5JMKI4+DzGKkEQ8cIwx4rcbfZfczQ7bFe4wWO8d4e+3WNet1jtXvM1zrUvpnG6RRx+rwZu8vbsae8HWWNXT5Z9giFFHnZOm9p/KyY8MA1lma8oAngiYiIiCg0pOsikK6LwK1r0mF3OHGivtNbbv95kxkOUYBj0BnoZs5YQxcSxrjtcxFi7GNGXTjxXCBxXzgY85hLvLgy5oWTS764Mvx4AfbBQfxvlQSPP70XJsuAz+8gNz4SRbPjUJSrZ5adppWQDuBtNhtstqGSl+7ubgCA3W6H3W4PVLNoBvD0L/Yzmmrsa+Qv7Gs0lZamRGFpShTuuzITnb19+KB4N/ILCiCRSuF0Ak5RhMMpwimKcIrwue10inCI7vtODLstwiEConf/8GOHbouiCIf7caL3eYY9p/u+Qxy67XQ/x/Bjxzq397ZThOg+h+u2e7/ntY069/DX6Gqfc+T9YW3wPffwtrp+B0OPvbT/D4dThAOXeHDQkwAYcGXZs7QozNGhMEeLpOFZdtEBu90RsBZS8JvMz86ABvCPPvqotzT+Qo4ePYrly5d/pfNv3bp1zPPv3r0bKhUnmKCpV1xcHOgm0AzBvkb+wr5G/hCjBL48sm9Kzi11/0y6IEjQiiIguv91DvvXKQ7tcw771zlim+je5hxxDnHYOZwQfB83/HzDziGOfH6fc4x4nM9+YfT5PMdf5Hyjnh9AfBgwN1ZEpnoQMkkzYGhGmQEo88v/CM0UVqt10s4liKIYsMtrRqMRRqNx3GPS09MRFhbmvb9z505s3rz5kmahHysDn5KSgpaWFmi12q/cbqKLsdvtKC4uxoYNGyCXywPdHAph7GvkL+xr5C/sa+Qv7GvkLyaTCYmJiTCbzYiKirqscwU0A6/T6aDT6abs/EqlEkqlctR2uVzOP1LyC/Y18hf2NfIX9jXyF/Y18hf2NZpqk9m/gmYMfENDAzo6OtDQ0ACHw4GysjIAQHZ2NiIjIwPbOCIiIiIiIqIpFjQB/L/+67/i5Zdf9t5fsmQJANd49qKiogC1ioiIiIiIiMg/gmC6DZedO3dCdM8OOvyHwTsRERERERHNBEETwBMRERERERHNZAzgiYiIiIiIiIIAA3giIiIiIiKiIMAAnoiIiIiIiCgIMIAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiDAAJ6IiIiIiIgoCDCAJyIiIiIiIgoCDOCJiIiIiIiIggADeCIiIiIiIqIgwACeiIiIiIiIKAgwgCciIiIiIiIKAgzgiYiIiIiIiIIAA3giIiIiIiKiICALdAP8SRRFAEBPTw/kcnmAW0OhzG63w2q1oru7m32NphT7GvkL+xr5C/sa+Qv7GvlLT08PgKF49HLMqADeZDIBADIyMgLcEiIiIiIiIppJTCYToqOjL+scMyqA12g0AICGhobL/sURjae7uxspKSlobGxEVFRUoJtDIYx9jfyFfY38hX2N/IV9jfzFbDYjNTXVG49ejhkVwEskriH/0dHR/CMlv4iKimJfI79gXyN/YV8jf2FfI39hXyN/8cSjl3WOSWgHEREREREREU0xBvBEREREREREQWBGBfBKpRKPPPIIlEploJtCIY59jfyFfY38hX2N/IV9jfyFfY38ZTL7miBOxlz2RERERERERDSlZlQGnoiIiIiIiChYMYAnIiIiIiIiCgIM4ImIiIiIiIiCAAN4IiIiIiIioiAwYwL47du3IyMjA2FhYVi2bBn27dsX6CZRiNm6dStWrFgBtVqNuLg4bNq0CeXl5YFuFs0AW7duhSAI2Lx5c6CbQiGoqakJP/jBD6DVaqFSqbB48WIcP3480M2iEDM4OIhf//rXyMjIQHh4ODIzM/H444/D6XQGumkU5EpKSnD99dcjKSkJgiDgnXfe8dkviiIeffRRJCUlITw8HEVFRfjyyy8D01gKauP1Nbvdjvvvvx8LFy5EREQEkpKScNttt6G5uXnCzzMjAvg33ngDmzdvxsMPP4yTJ0+ioKAA1157LRoaGgLdNAohe/fuxT333INDhw6huLgYg4OD2LhxIywWS6CbRiHs6NGj2LFjB6644opAN4VCUGdnJ/Lz8yGXy/HBBx/gzJkz+N3vfoeYmJhAN41CzG9+8xv8+7//O7Zt24azZ8/i6aefxjPPPIM//vGPgW4aBTmLxYJFixZh27ZtY+5/+umn8eyzz2Lbtm04evQoEhISsGHDBvT09Pi5pRTsxutrVqsVJ06cwL/8y7/gxIkTeOutt1BRUYFvfvObE36eGbGM3KpVq7B06VI8//zz3m1z587Fpk2bsHXr1gC2jEKZwWBAXFwc9u7di8LCwkA3h0JQb28vli5diu3bt+OJJ57A4sWL8dxzzwW6WRRCHnjgAezfv59VazTlvvGNbyA+Ph4vvviid9uNN94IlUqFV155JYAto1AiCALefvttbNq0CYAr+56UlITNmzfj/vvvBwDYbDbEx8fjN7/5DX76058GsLUUzEb2tbEcPXoUK1euRH19PVJTUy/53CGfgR8YGMDx48exceNGn+0bN27EgQMHAtQqmgnMZjMAQKPRBLglFKruuecefP3rX8fVV18d6KZQiHrvvfewfPly3HTTTYiLi8OSJUvwH//xH4FuFoWgtWvX4tNPP0VFRQUA4NSpUygtLcV1110X4JZRKKutrUVra6tPnKBUKrFu3TrGCTTlzGYzBEGYcFWbbGqaM30YjUY4HA7Ex8f7bI+Pj0dra2uAWkWhThRFbNmyBWvXrsWCBQsC3RwKQa+//jpOnDiBo0ePBropFMJqamrw/PPPY8uWLXjooYdw5MgR/NM//ROUSiVuu+22QDePQsj9998Ps9mMOXPmQCqVwuFw4Mknn8T3vve9QDeNQpgnFhgrTqivrw9Ek2iG6O/vxwMPPIBbbrkFUVFRE3psyAfwHoIg+NwXRXHUNqLJcu+99+Lzzz9HaWlpoJtCIaixsRH33XcfPv74Y4SFhQW6ORTCnE4nli9fjqeeegoAsGTJEnz55Zd4/vnnGcDTpHrjjTfw17/+Fa+++irmz5+PsrIybN68GUlJSbj99tsD3TwKcYwTyJ/sdju++93vwul0Yvv27RN+fMgH8DqdDlKpdFS2vb29fdTVNqLJ8POf/xzvvfceSkpKkJycHOjmUAg6fvw42tvbsWzZMu82h8OBkpISbNu2DTabDVKpNIAtpFCRmJiIefPm+WybO3cu3nzzzQC1iELVL3/5SzzwwAP47ne/CwBYuHAh6uvrsXXrVgbwNGUSEhIAuDLxiYmJ3u2ME2iq2O123HzzzaitrcVnn3024ew7MAPGwCsUCixbtgzFxcU+24uLi5GXlxegVlEoEkUR9957L9566y189tlnyMjICHSTKERdddVVOH36NMrKyrw/y5cvx/e//32UlZUxeKdJk5+fP2o5zIqKCqSlpQWoRRSqrFYrJBLfr6VSqZTLyNGUysjIQEJCgk+cMDAwgL179zJOoEnnCd4rKyvxySefQKvVfqXzhHwGHgC2bNmCW2+9FcuXL8eaNWuwY8cONDQ04K677gp00yiE3HPPPXj11Vfx7rvvQq1We6s+oqOjER4eHuDWUShRq9Wj5laIiIiAVqvlnAs0qX7xi18gLy8PTz31FG6++WYcOXIEO3bswI4dOwLdNAox119/PZ588kmkpqZi/vz5OHnyJJ599ln8+Mc/DnTTKMj19vaiqqrKe7+2thZlZWXQaDRITU3F5s2b8dRTTyEnJwc5OTl46qmnoFKpcMsttwSw1RSMxutrSUlJ+Pa3v40TJ07g/fffh8Ph8MYKGo0GCoXi0p9InCH+9Kc/iWlpaaJCoRCXLl0q7t27N9BNohADYMyfl156KdBNoxlg3bp14n333RfoZlAI+t///V9xwYIFolKpFOfMmSPu2LEj0E2iENTd3S3ed999YmpqqhgWFiZmZmaKDz/8sGiz2QLdNApyu3fvHvP72e233y6Koig6nU7xkUceERMSEkSlUikWFhaKp0+fDmyjKSiN19dqa2svGCvs3r17Qs8zI9aBJyIiIiIiIgp2IT8GnoiIiIiIiCgUMIAnIiIiIiIiCgIM4ImIiIiIiIiCwIyYhd7D6XSiubkZarUagiAEujlEREREREQU4kRRRE9PD5KSkkYtmTlRMyqAb25uRkpKSqCbQURERERERDNMY2MjkpOTL+scMyqAV6vVAFxr8mk0mgC3hkKZ3W7Hxx9/jI0bN0Iulwe6ORTC2NfIX9jXyF/Y18hf2NfIXzo6OpCRkeGNRy/HjArgPWXzarUaUVFRAW4NhTK73Q6VSoWoqCh+INCUYl8jf2FfI39hXyN/YV8jf7Hb7QAwKcO4OYkdERERERERURBgAE9EREREREQUBBjAExEREREREQUBBvBEREREREREQYABPBEREREREVEQYABPREREREREFAQYwBMREREREREFAQbwREREREREREGAATwRERERERFREGAAT0REREREM5YoivjJT34CjUYDQRBQVlaGoqIibN68OdBNIxqFATwREREREc1YH330EXbu3In3338fLS0tWLBggd/bUFdXhzvuuAMZGRkIDw9HVlYWHnnkEQwMDHiPMZlMuOaaa5CUlASlUomUlBTce++96O7uHvfcO3bsQFFREaKioiAIArq6ukYdIwgC3nnnnVHbf/jDH2LTpk2X+epoMskC3QAiIiIiIqJAqampQWJiIvLy8gLWhnPnzsHpdOKFF15AdnY2vvjiC/zjP/4jLBYLfvvb3wIAJBIJbrjhBjzxxBPQ6/WoqqrCPffcg46ODrz66qsXPLfVasU111yDa665Bg8++KC/XhJNEQbwREREREQ0I/3hD3/A7t27Abiy0Glpaairqxt13IcffojvfOc7+OMf/4jbbrtt0tvhCbA9MjMzUV5ejueff94bwMfGxuJnP/uZ95i0tDTcfffdeOaZZ8Y9t2cowJ49ey6rjXV1dcjIyBi1fd26dZd9brp0DOCJiIiIiGhGuvPOO1FYWIgXX3wRR48ehVQqHXXM66+/jp/85Cd45ZVXcMMNN1zwXJGRkeM+V0FBAT744INLbpvZbIZGo7ng/ubmZrz11ltYt27dJZ/zcqSkpKClpcV7v7W1FVdffTUKCwv98vzkwgCeiIiIiIhmpIiICKjVakilUiQkJIzav337djz00EN49913sX79+nHPVVZWNu7+8PDwS25XdXU1/vjHP+J3v/vdqH3f+9738O6776Kvrw/XX389/vznP1/yecfzve99b9QFDJvNhq9//esA4PM76u/vx6ZNm7BmzRo8+uijk/L8dGmCKoAvKSnBM888g+PHj6OlpQVvv/02J1UgIiIiIqJJ9+abb6KtrQ2lpaVYuXLlRY/Pzs6elOdtbm7GNddcg5tuugl33nnnqP2///3v8cgjj6C8vBwPPfQQtmzZgu3bt1/28/7+97/H1Vdf7bPt/vvvh8PhGHXsHXfcgZ6eHhQXF0Mi4bzo/hRUAbzFYsGiRYvwox/9CDfeeGOgm0NERERERCFq8eLFOHHiBF566SWsWLECgiCMe/xklNA3Nzdj/fr1WLNmDXbs2DHmMQkJCUhISMCcOXOg1WpRUFCAf/mXf0FiYuL4L+giEhISRl2EUKvVo2atf+KJJ/Dhhx/iyJEjUKvVl/WcNHFBFcBfe+21uPbaawPdDCIiIiIiCnFZWVn43e9+h6KiIkilUmzbtm3c4y+3hL6pqQnr16/HsmXL8NJLL11SZlsURQCuUnd/ePPNN/H444/jgw8+QFZWll+ek3wFVQA/UTabzacze9ZItNvtsNvtgWoWzQCe/sV+RlONfY38hX2N/IV9jfzF08c8JeLD+5woinA6ncjIyMDHH3+MDRs2QCKRjDkm3SMtLe2Sn3Ok5uZmXH311UhJScHWrVvR3Nzs3ecZd/7BBx+gvb0dy5YtQ2RkJM6ePYsHH3wQeXl5mDVrFux2O5qamvC1r33NWzUAuCaba21tRXl5OQDg5MmTiIyMRGpqqs8keYODg6Pa53Q64XQ6Ybfb8cUXX+C2227DP//zPyM3NxeNjY0AAIVCMe5kezS572chHcBv3boVjz322Kjtu3fvhkqlCkCLaKYpLi4OdBNohmBfI39hXyN/YV8jfykvL4fVasWuXbu820wmE2pra73bHn74Yfz6179GfX09fvzjH096Gz799FNUVVWhqqpq1FJt77zzDgDg9OnT+Otf/4rGxkYMDg5Cp9Nh9erV+Id/+AdvO9va2lBRUYHPPvsMBoMBAPDaa6/hjTfe8J7vyiuvBAD8/Oc/x1VXXeXdfvz4ccjlcp/nPn/+PCwWC3bt2oVPP/0UVqsVW7duxdatW73HzJ8/H08++eTk/TJCkNVqnbRzCaKn7iLICIJw0UnsxsrAe5Y/0Gq1fmglzUT1HVYcrjaivuJL/OMNRYiJvPQZR4kmym63o7i4GBs2bBj1oUs0mdjXyF/Y12iqiaLo+r5WY0JjxZf4x03rER0RFuhmUQgzmUxITEyE2WxGVFTUZZ0rpDPwSqUSSqVy1Ha5XM4PBJo05j47DlYbUVJpRGmlEQ0dnitsUvxnRSmWpMYgP1uHtdk6LEqJgVzKmTpp8vF9jfyFfY38hX2NJpOhx4YD1a7vageqTWjq6nPvkeI/n9mH5WkarM3RoTBHj/lJUZBIxp+wjmgiJvO9LKQDeKKpYHc4UdbYhX0VBuyrMuJUYxecw+pY5FIBV8yKRl1bJ0w24GhdJ47WdeK5TyoRoZBiVabWG9DnxkdedEZTIiIiIpqYXtsgjtSaUFppwoFqI8619vjsV0gluCI5CjWtneiwAQdrTDhYY8IzH5UjViVHfrYrmF+bo0NSDKspafoIqgC+t7cXVVVV3vu1tbUoKyuDRqNBampqAFtGoUwURdQaLSitMqKkwohDNSb02gZ9jsmOi8TabB0Kc3VYlaGFQiJi165dWLC6CEfqzSitMuJAlRGdVjs+O9eOz861AwB0kUrkZ7sC+vxsHWbxA4KIiIhowjwJlv1VRuyvMuJkQxcGnb4jhecnRWFttg552TqsSI+FXBDx97/vwvzV63Cwtgv7Ko04WG1Cp9WO9z9vwfuftwAAsvQRKMjRoyBHh9WZWkQogyqEohATVL3v2LFjWL9+vff+li1bAAC33347du7cGaBWUSjqsg5gf5UJ+yoN2FdpHFZm5RKrkmNtjh4F2boxr8x6ZppM1aiQFR+N761MhdMp4mxrN/ZXGVFaZcKRWhOMvTa8W9aMd8tcM41m6iKQl63F2mwd1mTqEK1i6SARERHRSKIoorytB/urTNhfZcThGhMsAw6fY1I1KneSRIs1mVpoI32H1trtdggCkK6NQE5CDG5bkw67w4lTjV3uoZEGlDV2odpgQbXBgp0H6iCXCliSGovCHB3W5uixcFY0pCy3Jz8KqgC+qKgIQTrnHk1zA4NOnGjoRGmlEfsqDfi8yYzhXU0hlWB5eqx3bNS8xImPjZJIBMxPisb8pGj8pDALtkEHTjZ0uQN6Vyl+jdGCGqMFfz3UAIkALJwVjTx3uf2ytFiEyaWT/MqJiIiIgkNTV583w76/ypUIGU4TocCaLFciJD9Lh1TtxFedkkslWJ6uwfJ0DbZsyPXOdbSv0vXT0GHFkdoOHKntwG8/rkB0uBz52VoU5OixNluHFA1XuqKpFVQBPNFkEUUR1QaLN8N+qMYE64irtrnxka434xwdVmVooFJM7p+LUibF6kwtVmdq8X82zkZ3vx2Hqk04UG1CaZURVe29OHXejFPnzXh+TzWUMglWpGu8V5LnJ/GKLxEREYUus9WOgzWuRMf+KhNqjRaf/WFyCVZmaLHWPRxxbsLkTz4XHS7HNQsScc2CRABAvcmCfe6Ji/dXG2Hus2PX6VbsOt0KAMjQRaAgx5V8WZOlhTqM1ZQ0uRjA04zRYRlAaZWrHGpfpREt5n6f/bpIBdZmu8qh1mbrkBDt3+VEosLk2Dg/ARvnJwAAWs39rivM1a4rzW3dNlf7q4wAXB8oeVlD4+fTtSpOiEdERERBq9/uwPH6TnfAbsTpERWRUomAK5KjXRn2bB2WpMZAKfNvdWKaNgJp2gj8YHUaBh1OnDpv9lZwnmzsQq3RglqjBX85WA+pRMCSlBjX+PlcHa6YFQ0ZVyOiy8QAnkKWbdD1IbDP/ab6ZXO3b1m8TIKV6RrXVdKcqblqezkSosNw47Jk3Lgs2V0x0Ou+2mvCoWoTzH12fPBFKz74wnXFd1ZMuHdCvLwsHfTq0UsoEhEREU0XDqeIL5vN3oD9WF0nbINOn2M8EwXnZ+uwKlODqGmU0ZZJJViWFotlabG47+ocbzVlaZWr3L7WaMGx+k4cq+/E7z+pgDpMhvwsnXdI5lcp8SdiAE8hQxRFVLb3oqTCgNIqIw7XdKDP7lsWPydBjYIcHQpy9FiZoQmaMeWCICA7To3sODV+mJ+BQYcTnzeZsb/SlZE/0dCJpq4+/O3Yefzt2HkArtfqWa5uZYaGM6YSERFRQImiiDqT1bs6zwF3QmK4+Cil9/tLXpb/KyIvx8hqysYOqzuYN2B/leu1fvhlKz780pV8SdWovN9L12RpER0+fS5O0PTFb/QU1Iy9Nux3L+9WWmVAW7fvZCZ6tRIF2ToU5Lqu3Mapg+dDYDwyqQRLU2OxNDUWP78qB9aBQRyt63RNiFdpxJmWbpxr7cG51h68WFoLmUTAktQY7wfiopQYyFnCRURERFPM0GPDgeqhiedGruyjVsqw2jPxXLYWWfrIkBkSmKJR4XsrU/G9lalwOEWcbjJjX4UB+6qMOFHfiYYOK/7rcAP+67Br8uLFKTFYm6NHYQ6/q9GFMYCnoNJvd+BYXad38rkzLd0++5UyCVZlar1B++x4dch8CIxHpZBhXa4e63L1AABTrw0Ha0zeGe4bO/pwtK4TR+s68dwnlYhQSLEqU+sN6HPjQ+fDkoiIiALHYhvEkdoOb1n8udYen/1yqYBlabHIz9IhP2fmjAuXSgQsTonB4pQY/PyqHPTaBnG4xuQd6lltsOBEQxdONHTh3z6tRKRShjVZWu9ydZzriDwYwNO0JooizrX2oLTSiJJKA47UdowaGzUvMQoFua6xRFxqzUUbqcQ3rkjCN65IAgA0mKzYX230lqx1Wu347Fw7PjvXDgDQRSqxNlvrXbJu5Lr2RERERGPxrJvuCdhPNnRh0Om77PO8xCiszXFVQ65Ij530lX2CUaRShqvmxuOqufEAXEvkeSZa3u/+rlZ8pg3FZ9oAAMmx4d5y+7wsLWJUikA2nwKIfz007bR393sn/yitMsLQ41sWHx+ldM3m6f4g0EVysraLSdWqkKp1lXA5nSLOtHTjQLURpVUmHKl1raP6Tlkz3ilrBgBk6iK8y9WtydQhWsUxWURERORKrlS09XoD9sM1JlhGLMWbogn3Tjy3JlMLLb+rXdSsmHB8Z0UqvrPC9V3ty+ZulFQaUFppxLH6Dpzv7MNrRxrx2pFGSARgYXKMKzufrcOS1FgoZKFfxUAuDOAp4PoGHDhS1+G96jiy1CpcLsWqTA0K3GOCsuNY7n05JBIBC2ZFY8GsaPykMAu2QQdO1He5A3ojTjV2ocZoQY3RglcO1bs+JGZFe5erY5UDERHRzNLc1ecN2PdXuS78Dxerknur+PKzdJxd/TJJJAIWJkdjYXI07lmfDevAIA7XdHjL7Svbe3GqsQunGrvwx8+qEKGQYnWm1r2ykh5Z+gh+Vw5hDODJ7zwZYM+snEfrOjEwrCxeEIAFSdHe5d2WpcX6fY3PmUQpk2JNlhZrsrT4Pxtnw9xnx2H3+Pn91SZUtffi1HkzTp03Y/ueaihlEqxI13jHz89LioJ0Gi2/R0RERJfHbLXjYI0rWN9fZUSN0eKzP0wuwcoMrWv4XZYO8xKn11K8oUalkGH9nDisnxMHAGg192NfpWvVpdJKI0yWAXx6rh2fuodGJkWHoSBH7x22oIlguX0oYQBPfjHWG81wSdFhWOse18M3msCKDvddAqXV3O++4m7E/moj2rptrv/HKiN+4z4+L2toQrw0TrJCREQUVPrtDhyv7/R+3p9uMmP4MHaJACxKifEu7bY0LYbJlQBKiA7DTctTcNPylDETY83mfrxxrBFvHGtkYiwEMYCnKTFWqc9wLPUJHgnRYbhxWTJuXJYMURRRbehFaaVr/PzhGteaph980YoPvnCtaTorJhz52a6APi9LB72a496IiIimE4dTxJnmbm9Z/NG60ZMEZ8dFIt99gX5VJtcon66GD428a13WmENTTzeZcbrJVUkZLpdidabGu1wdh6YGHwbwNClGTrZxvL4TAw7fsvgrkmNcy7vlcLKNYCUIArLj1MiOU+OH+RkYdDjxeZMZ+90TDp5o6ERTVx/+duw8/nbsPABgToLam51fmaFBhJJvO0RERP4kiiLqTVZvwH6g2nUBfrj4KKVraTf3nDcJ0WEBai1djnCF1Gdp4eGTQ++rNMLYa8PucgN2lxsAcHLoYMRv0vSVNXf1eddj9yx3MdysmHAU5nK5i1Amk0qwNDUWS1Nj8fOrcmAdGMTROlcJXmmlEWdaunGutQfnWnvwYmktZBIBS1NjkZetxdpsHRalxEA+A9Z+JSIi8jdDjw0Hqocmnmvq6vPZr1bKsCrTNY59bY4OWXpmYkNRXFQY/mFpMv5hafKYyzO3ddvwP8fP43+OuxIv85NcS/5xeebpiwE8XbJe2yAO15i8ZfHVBt8JTSKVMqzJ0nrXqEznWOgZR6WQ+Vz1NfXacKDahAPVrqu+5zv7cKSuA0fqOvDcJ5XeoRSemWtz4/nlgYiI6Kuw2AZxpLbDm2UfuaqPXOq6iL42W4f8HB2umBUNGS+izyiCIGBuYhTmJkbhHwsz0W934Fhdpzchd6alG182u35e2FvjnaywIFuHglwdZser+T1tGmAATxfkcIo43WTGvgoD9lUZcaK+E4PDZjSRCMDilBjvGBpmU2kkbaQS1y9KwvWLkgAADT7le66qjeGzpurVSu94u/xsHZJiwgPZfCIiomnL7nDiVGMXSquMOFBlwokG3+9pADAvMco7E/mK9FioFPzqT0PC5FKsdU9u9yCGqjZKKlzJuvYeG0oqDCipMAC7XN/TPMF8frYOcWoOswgE/hWTj8YOq3cWy/1Vo8dHpWpU7gy7DmuydJzQhCYkVavCLdpU3LIq1Ttr6n73jPZH6zpg6LHhnbJmvFPWDADI1EV4g/k1mVpEq9jfiIhoZhJFERVtve6A3YhDNSZYBhw+xyTHhnvHMq/J1ELL8cw0AXq1EjcsnoUbFs+CKIqobO9FSYVrFalDNSYYemx462QT3jrZBMA1z5Gn8nZlhobl9n7CAH6G6+m342C1qyy+tMqI2hHrfKrDZMjP0rmXeNMhTRsRoJZSqBk+a+pP12XBNujAifoub0D/+fku1BgtqDFa8MqhekgEYOGsaO+EeEs5LouIiEJcc1ffsKVcXQHUcLEqOfKyda7vatk6pGpVAWophRpBEJAbr0ZuvBp3FmTCNuhaatAzlPaLpqF5jv5jXy0UMglWpmu8y9XNTYiCRMJy+6nAAH6GGXQ4ceq8GaXuP76TjV1wDCu3kkoELEmJQUGOHmtzdFiUzPFR5B9KmRRrsrRYk6XFP39tNsx9dhyuMXkD+mqDBafOm3HqvGsZFKVMghXpGm9APy8pClJ+UBARURAzW+046P7s219lRM2IxIpnTLJnuNm8RAZJ5B9KmRR5Wa4lgu+/Zg5MvTbsrzZ5l6trMbtmuy+tMgIfALpIBfKzdd4Z7uOjWG4/WRjAzwANJitKKg3YV2nAgWoTevoHffZn6CJcV8uydVidpUVUGMuUKfCiw+XYOD8BG+cnAABazf3eLzSlVUa099i8HxS/ARCjkmNNptYb0KdxEkUiIprm+u0OnKjv9M4Pc7rJjOHD2CUCsCglxru829K0GChlrD6jwNNGKvHNRUn45qIkiKKIaoPFOxneoRoTjL0DeLesGe+6h0Xmxkd6E4SrMjScj+Ey8DcXgsx9dhysHlrvsaHD6rM/OlyO/Gyt648oW4cUDcutaPpLiA7DjcuSceMy1zIoVe297mDehEM1JnRZ7fjgi1Z88EUrANcyhvnZroA+L0sHvZrjAImIKLAcThFnmru9AfvRug7YBp0+x2TpI1wzxWfrsCpTy/mGaNoTBAHZcZHIjovEj/IzMDDoxIkG1+z2pZVGfN5kRkVbLyraevFiaS0UUgmWpcWiINe1XB0rSSaGAXwI8MxCWuIuiz/V2OVz9VYmEbA0LdY9a6QeC2dFs9SYgpogCMiJVyMnXo0f5md4h4Z4MvQnGjrR1NWHvx07j78dc61rOidB7f1CtDJDgwgl3/6IiGhqiaKI+mErsBx0X3AeLk6t9H4+5WfrkBDNUmMKbgqZBKsztVidqcUvvwZ0WgZwoNrkzdA3dfXhYI0JB2tMePrDcmgi3OX22a7x81yFaHz8BhuERFFEncnq/SM4WG1Cr823LD5LH+Edc7IqU4tIBisUwmTuK7nL0mLxT1flwDrgWgvXFdCbcKZlaKKVP5fWui5qpca6vyxpuQQiERFNGs9SXJ7PoKauPp/9kUoZVmdqsTZbi7U5OmTpIznki0JabIQCX78iEV+/IhGiKKLWaPFWCh+sNqLDMoD/PdWM/z3lKrf3xDGFuTqsytAy6TICfxtBoss6dOWqpMI46sMgViV3TxShw9ocPWbxyhXNYCqFDEWz41A0Ow4AYOq14UD10IR45zv7cKSuA0fqOvD7T4AIhRSrM4fWn8+N55cpIiK6NBbb0EXj0iojzrX2+OyXS10Xjddm65CXzQmCaWYTBAGZ+khk6iNxe1467A4nyhq7sK/CgH1VRpxq7EK1wYJqgwU7D9R5/348y9UtYCUxA/jpamDQiZMN7qUa3EtqicPK4uVSAcvTNFib4xo7Mj+JY0eILkQbqcT1i5Jw/aIkAK6JHUu9y/IY0WW149Nz7fj0XDsA1zqonhl+87NZykVEREM8Qxf3V5m8w7YGh49dBDAvMco7D8tKTthFdEFyqWtVoRXpGmzZOBtmqx0Hql3xz75KAxo7+nC4tgOHazvw248rEKOSIz9L512uLjl25s3lxXeTacIze6NnKYaDNSZYBxw+x+TERQ4ri+eHAdFXlapV4RZtKm5ZlQqnU8SZlm5v5uRoXQcMPTa8U9aMd9wzp2bqIrzB/JpMLaJVnFCIiGimEEURFW293nlWDtWYYBnxHS05Ntw7jj0vSwttJCdOJfoqolVyXLswEdcuTAQA1JssKKk0orTSgANVrjkk/n66BX8/3QLA9R1trTs7vzpTA/UMWE2LEWAAdVgGsN99dam00ohmc7/Pfm2EAmvdy7sV5Og5qQnRFJBIBCyYFY0Fs6Lx03VZsA06cKK+yxvQf36+CzVGC2qMFrxyqB4SAVg4K9q7XN3StFiEybmkDxFRKGnu6vMG7PurTTD02Hz2e7KAns+CVO3MywIS+UOaNgK3aiNw6+o096TFXd7x82WNQ9/R/nKwHjKJgCWpMd7l6q6YFZrDVRjA+5Ft0IHj9Z0odXe6L5rNPmXxCpkEK9Jjvcu7cUkFIv9TyqRYk6XFmiwt/vlrs2Hus+NQjQkH3AF9tcGCU+fNOHXejO17qqGUSbAyQ4O8LNeXuHlJUTN+bBYRUbAxW+04WGPyBu01RovP/jC5q8zXk2XndzQi/3NNWqzBsjQNNl+di+5+Ow5Wm9yxlQF1JiuO1nXiaF0nni2uQFSYDHlZOhTk6lCQrQ+ZC20M4KeQKIqobO91XyUy4HBNB/rsviVXcxLU3onnVqZrEK5gJo9oOokOl+Nr8xPwtfkJAIAWcx/2Vw0F9O09Nu+V4N/AlZXJ84yfz9IhTavihHhERNNMv92BE/Wd3vlQTjeZfZbglQjAFckx3oB9aVoMlDJ+RyOaTqLCfL+jNXZYvXHX/iojuvsH8eGXrfjwy1YAQJpW5Yq7svVYk6VFdHhwltszgJ9kxl6buyze1Xnaun1LrnSRSvcsiq5sXVwUy+KJgklidDi+vSwZ316WDFEUUdXe6/0CeKimA11WO3adbsWu064Pi1kx7nGROa5xkTqOiyQi8juHU8SZ5m6UVhlxoNqII7UdsA06fY7J0kd4Z4pfnRm8X+6JZqoUjQq3rHLNceRwivj8fJe38vlEQyfqTVbUmxrw10MNkEoELEqO9s4vtjglJmjK7RnAX6Z+uwPH6jqxr8qAfRVGnGnp9tnvKa8tdI/FmJOgZjaOKEQIgoCceDVy4tX4UX6Ge2yW2Tt+/mRDJ5q6+vDGsUa8cawRgKvqxhPQr0zXcG1TIqIpIIoi6t0rjhyoNuJAtWvyq+Hi1EpvwJ6frUViNFccIQoVUomAJamxWJIai59flYNe2yAOuZfk3ldlRI3BghMNXTjR0IU/fFoJtVKGNVla73J107mCkt8cJ0gURZS39WBfhWt5g8M1plFXcOclRnn/85enc4IropnCNTYrFsvSYvFPV+XAOjB8bWATzrZ041xrD8619uDPpbWQSwUsSYl1TYKUo8UVyTGQB8nVXyKi6cZTBXmgyoTSKiOauvp89kcqZVidqfFOPJcdFzltv6AT0eSKVMpw9bx4XD0vHgDQ1NWH0koDSipdVZRdVjs+PtOGj8+0AXCtLOHJzudn6abVCkQM4C9Be08/SiuNrhKMKuOomUjj1EoU5OhRmKtDXpYOejVLZIkIUClkKJodh6LZcQBcXy4PVpu8w2yauvpwpK4DR+o68PtPXB8uqzLcXy5zdMjhl0sioguy2AZxpK4D+ytdVU/nWnt89sulrgycZxz7ouTQnJGaiCZuVkw4vrMiFd9Z4Sq3/7LZ7B0Cfby+E+c7+/DakQa8dqTBOyeGJ0G7JDWwCRcG8GPotztwpLbDVWJROfoDIUwuwepMLdZm61CYq+eXbCK6JLpIJa5flITrFyVBFEU0dFixv8o963G16+rvp+fa8em5dgCA3lPemaXF2hwdyzuJaEazO5zuMa2u982TjZ2wO0SfY+YmRmFttmsi0ZUZGqgU/KpLROOTSgRckRyDK5JjcM/6bNfFwdoOlLhjwar2XpQ1dqGssQt//KwKEQrXikVrs3UoyNUjUxfh11gw6N7Vtm/fjmeeeQYtLS2YP38+nnvuORQUFFzWOZ1OEWdbu7HPnWU/UteBgRFl8QtmRXnLKJalxXImUiK6LIIgIE0bgTRtBG5ZlQqnU8SZlm7v+PkjtR0w9Njw9skmvH2yCQCQ6ZlgKUsX1LOnEhFdClEUUdHWg1J3ievh2g702gZ9jpkVE+4qcc12vS9yolAiulwRShnWz4nD+jmuCsoWc583TiytMqLDMoBPzrbjk7OuhItnwuKCXFe5fWyEYkrbF1QB/BtvvIHNmzdj+/btyM/PxwsvvIBrr70WZ86cQWpq6oTO1dbd77PMgLF3wGd/YnSYd3m3/CwttPxAIKIpJJEIWDArGgtmReOn67JcSxw1dLrXJDbh8/NdqDFYUGOw4C8H6yERgIXJMcjLiIXM7MpMyRnPE1GQM/TY8NnZFvx3pQRPnN4Lw4jvZzEqOfKzXAF7frYWqZrpO9EUEYWGxOhw3Lw8BTcvT/EmXDxx5LE63wmLBQFYOCvaFdDn6LEsLRYK2eSW2wuiKIoXP2zI2bNncejQIaxZswZz5szBuXPn8Ic//AE2mw0/+MEPcOWVV05qA4dbtWoVli5diueff967be7cudi0aRO2bt160cd3d3cjOjoaRU++j1rfyeKhUkixOnNo5sEsvX9LISi02O127Nq1C9dddx3kjKpoEpj77DhU4y63rzKi2mDx2a8Ok6EwV48rZ8ehaLaeFx1p0vF9jaaC0ynii2YzPjvXjt3n2nHqvNlnv2c1H8849nmJUZBI+P2MJgff1+hy9Q04cLjW5M3Ql7f5Dr0Ol0uxOlODJQly3HfdUpjNZkRFRV3Wc04oA//hhx/ihhtuQGRkJKxWK95++23cdtttWLRoEURRxNe+9jV89NFHUxLEDwwM4Pjx43jggQd8tm/cuBEHDhwY8zE2mw0229CEc93drqi92mCFNEyFhUlRyM/SIj9biyUpMT5XRwYHB0edj+hS2e12n3+JLpdKBlyZq8WVuVoAs9Fi7sfBGtcHxu6zrejpH8TfP2/B3z9vgSAAV8yKRlGuDutn6zEvkctX0uXj+xpNlp7+QZRWGbGnwoiSytFVkPMSIzFL0o1brlyKFRlaKIet5uNwDMLh8HeLKVTxfY0ul0wA8jNjkZ8ZC3wtB23d/ThQ3YHSKhP2V5tgsgxgd7kBn35unbTnnFAGPi8vD1deeSWeeOIJvP7667j77rvxs5/9DE8++SQA4OGHH8bRo0fx8ccfT1oDPZqbmzFr1izs378feXl53u1PPfUUXn75ZZSXl496zKOPPorHHnts1PYHtr2GhfHhiOCFNiIKAU4RqO8FznRK8GWngCarb7AeJRcxN0bE/FgRs2NEhHEKDyLyI1EE2vuBLzsFnOkUUN0jwCkOvU8pJa73pvmxrveq6KkdPkpE5BdOEWixAuVmAV+09uGzx787KRn4CQXw0dHROH78OLKzs+F0OqFUKnH48GEsXboUAPDFF1/g6quvRmtr62U1aiyeAP7AgQNYs2aNd/uTTz6JV155BefOnRv1mLEy8CkpKWhpaYFWq530NhJ52O12FBcXY8OGDSzJoik1Vl9r7e5HSYUru7W/2gTrwFC6Si4VsCItFkWz9SjK1SFDFxGoplOQ4fsaTYTN7sDhuk7sKTdgT4URjZ2+a7JnaFXe96HlI8aIsq+Rv7Cvkb+YTCYkJib6v4R+OIlEgrCwMMTExHi3qdVqmM3mCz/oMuh0Okil0lEXB9rb2xEfHz/mY5RKJZTK0eNA5XI5/0jJL9jXyF+G97UUrRzfX6PG99dkwDboWhbTM760zmTFgZoOHKjpwFMflCNdq0LR7DhcOScOqzI1XGGDLorva3QhzV192F3ueq/ZX2VCn33o4qFCKsGqTA3Wu99v0i/h4iH7GvkL+xpNtcnsXxMK4NPT01FVVYXs7GwAwMGDB31mf29sbERiYuKkNW44hUKBZcuWobi4GN/61re824uLi3HDDTdMyXMSEQU7pUzqXgJTj0eun48aQy8+O9eOPeUGHK41oc5kxc4Dddh5oA4qhRT52TpcOScO62fHISE6LNDNJ6JpbNDhRFljFz47147PzrXjXKvv5E3xUUrv+0l+tg4RyqBa/IiIaFqa0Dvpz372MziGzRyyYMECn/0ffPDBlM5Cv2XLFtx6661Yvnw51qxZgx07dqChoQF33XXXlD0nEVEoydRHIlMfiTsLMtFrG0RppRG7z7Vjd3k72ntsKD7ThuIzbQCAeYlRri/fc+KwOCUGUs78TDTjdVoGsLfCgM/OtaOk0oAu69DkX4IALEmJ8b5vzEuM4gSaRESTbEIB/MUCZc9kdlPlO9/5DkwmEx5//HG0tLRgwYIF2LVrF9LS0qb0eYmIQlGkUoZrFiTgmgUJ3nVNPZm0U+e7cKalG2daurFtdxViVXKsy9Vj/Zw4rMvVI0bFWaaIZgJRFHG2pQe7y13vDScbOuEcNntSdLjnvUGPdblx0ETwvYGIaCoFXS3T3XffjbvvvjvQzSAiCikSiYAFs6KxYFY0/umqHJh6bdhTbsDu8naUVBjQabXjnbJmvFPWDIkALEuLxfo5rrGss+O5TB1RKLEODGJ/lck93KYdLeZ+n/1zEtTev/8lKTGQSSUXOBMREU22oAvgiYho6mkjlbhxWTJuXJaMQYcTx+s78Zl7cqqKtl4crevE0bpOPP1hOZKiw7xf5vOydAhXcCI8omBTb7J4K3AO13RgwOH07guTS5CfpcN6d2n8rJjwALaUiGhmYwBPRETjkkklWJWpxapMLR68di4aO6zY4y6nPVBtQrO5H/91uAH/dbgBCpkEazK1uNId0KdoVIFuPhGNYWDQiWN1rhUqPitvR43B4rM/RROOK2fHoWhOHNZkahEm54U5IqLpgAE8ERFNSIpGhVvXpOPWNenoG3DgYI0Ru8+5JrVq6urD3goD9lYY8Mh7XyI7LtI7C/Xy9FjIWWpLFDDtPf3Yc841NGZfpRG9tkHvPplEwPL0WO/Ftyx9JIfGEBFNQwzgiYjoKwtXSHHlnHhcOScej4siKtt7vWW4x+s7UdXei6r2XuwoqYE6TIbCnKGJ8PRqZaCbTxTSnE4RnzeZ8dk51/CX001mn/26SAWKZrsusBXk6hAVxnWwiYimOwbwREQ0KQRBQG68Grnxaty1Lgtmqx0llQbsPteOPRUGdFgG8PfTLfj76RYIAnDFrGjv2PkFSdGQcJk6ostm7rNjX6UBu88ZsLeiHcbeAZ/9VyRHY/1s19/dwln8uyMiCjYM4ImIaEpEq+S4flESrl+UBIdTxKnzXdjjHm/7RVM3Tp0349R5M577pBJ6tRJFuXpcOScOa3N0UDMTSHRJRFFE1YjKl8Fh67xFKmUoyHFNQFc0W484dVgAW0tERJeLATwREU05qUTA0tRYLE2NxZaNs9HW3e+dCK+00ghDjw3/ffw8/vv4ecgkAlaka1xj5+fEIUsfwbG4RMP02x04WGPCbnfQfr6zz2d/lj7C+/ezPE0DhYxzTxARhQoG8ERE5HfxUWH4zopUfGdFKmyDDhyt7cRu9zJ1NUYLDtaYcLDGhCd3nUWqRuUNRlZlaDgbNs1ITV19rnXZz7Vjf7UR/fahZd4UMglWZ2px5Ww9rpwTj1QtV38gIgpVDOCJiCiglDIp1ubosDZHh3/5xjzUGV3rUe8ud61H3dBhxc4Dddh5oA7hcinys3XugF6PxGiuR02hadDhxImGLu8EdOVtPT77E6PDUOQey56frYVKwa90REQzAd/tiYhoWknXReDHazPw47UZsNgGUVplxG53QN/WbcMnZ9vwydn/z959x1ddn/0ff53snZCdkEF2wl6yR5ChiIPWbR1ttbZ3tRW5teC4q/an4qjWtlRbrHfd1fZ2VEFQkBH2XgrZk0DIInud5JzfHycciAwZSQ7n5P18PPLQnPE9V8In53yv7/W5Pp+jAKSG+1q3vRoR0w9nLcgldqy6sY112eWszqwgI7uC2maj9T4nA4yM6Wdd+DE13FetJSIifZASeBERuWR5u7twxaBwrhgUjtls5tvDddbe+d0lNWSW1ZNZVs+ra/MI8HJlaudCeFOTQwjwcrN1+CJndXxMH79AtbukBvOJ9ee6jOkpSSH089aYFhHp65TAi4iIXTAYDAzu78/g/v7cf3lSl2rluqxyapqM/GfPYf6z53CXauW0lFDSIlStlEvD6WaVnEyzSkRE5GyUwIuIiF0K9HbjByOi+MGIqNP2C+8oOsaOomO8+GWW+oXFpgo613VY27muQ1vHiQXotK6DiIicD53BiIiI3XNxdmJMXCBj4gJZODuV0ppmS4Wzc8XuI7Ut/HNbMf/cVqwVu6XHtbWb2FZQbV2MsaCyscv92llBREQulBJ4ERFxOP0DPLl9XCy3j4s97Z7ZGdmWRcKe/PwACSHeTOuszo8eoD2z5cKU17WwpnN9hg05lTS2dVjvc3EyMCYu0Jq0xwd7q6VDREQuiBJ4ERFxaB6uzkxLsfTCP3WtmdzyBlZ3JvM7io6RV9FIXkUBf99QgI+7C5OTgpmWGkp6Sgihvh62Dl8uUR0mM3sP1Vh72b8pretyf7CPO9NSLAvQTUoKxtfD1UaRioiII1ECLyIifYbBYCApzJekMF9+PjWB2mYjG3Iqrf3JVY1tLP+mjOXflAEwNMrfkvynhjK0vz9OWlCsT6ttNpKRXcGazHLWZldQ3djW5f5hUf7Wbd4GR2q8iIhI91MCLyIifZa/pytzhkYwZ2gEJpOZfaW11oXw9pfWsu+Q5euPX+cQ7OPG1GRLcjY5ORg/VVQdntlsJuekGRs7i47RYTqxz5uvuwtTkkOY1rl1YYivuw2jFRGRvkAJvIiICODkZGB4dADDowOYPzOZ8roW1mZVWHqacyupbGjjo12H+GjXIVycDIwe0M+63VdCiI96mh1Ei7GDTXmVnRdyKiitae5yf2Koj6WXPSWU0QP64eqsNRNERKT3KIEXERE5jVA/D266LJqbLoumrd3EjkLLquKrs8rJr2hkS341W/KrefaLTKIDPa1T7cfHB2lVcTtz6FiTdZHDTXlVtLaf2ObNzcWJ8fFB1os10YHatUBERGxHCbyIiMj3cHNxYkJiMBMSg3n86oEUVTVap1Vvza+mpLqZtzcX8fbmIjxcnZiYEGzthY4M0L7elxpjh4mdRcdYk2Vpl8g+2tDl/kh/D+u/34SEYDzddEFGREQuDUrgRUREzlNskDc/mRjHTybG0dTWzsbcKmvvfFldC19nlvN1ZjkAqeG+1mRwRHQALppybRNVDa2WloiscjKyK6hvabfe52SAUbH9rP9OKWG+aokQEZFLkhJ4ERGRi+Dl5sLMgWHMHBiG2Wzm4JF6637gu4uPkVlWT2ZZPa+tzcPf05UpySFcnhrC1ORQAr3dbB2+wzKbzXx7uM46U2LvoRrMJ9afo5+XK+kplu0CpyaHEOClfwsREbn0KYEXERHpJgaDgYGRfgyM9OO+aYkca2xjXbZlIbx12RXUNhv5fO9hPt97GCcDDI8OsCyIlhrKwAg/VX0vUkNrOxtyKjq3BaygvL61y/0DI/ysv+/h0QE4a5s3ERGxM0rgRUREekg/bzfmjujP3BH9ae8wsaekxloRziyrZ1dxDbuKa/j9V9mE+3kwLTWEaSmhTEwMxttdH9HnIr/Css3bmqxythVUY+w4UWb3cnNmUqJlPYJpKaGE+3vYMFIREZGLp7MDERGRXuDi7MToAYGMHhDIb65M5XBNs3URtY25VZTVtfDPbSX8c1sJbs5OjI0PZFqKpSd7QLC3rcO/ZLS2d7CtoNq65kBhVVOX+wcEeVl72cfEBeLuogXoRETEcSiBFxERsYHIAE9+NDaWH42NpcXYwZb8KstWZlnllFQ3sz6nkvU5lfxu6QHig72tSellAwJxc+lbC+GV1bZY1xXYmFtJU1uH9T5XZwNj4k5c7IgP8bFhpCIiIj1LCbyIiIiNebg6dy6oFsqTZjN5FY3Wfcm3F1aTX9lI/oYC3thQgI+7S+e0cMt0+1A/x5sW3mEys6ekxvo7OHCkrsv9ob7uTEsJZVpqCJOSQvBRu4GIiPQR+sQTERG5hBgMBhJDfUgM9eFnU+KpazGyIaeyc2G2ciob2ljxbRkrvi0DYHB/Py5PsSzMNiwqACc7XZitpqmNjJxK1nQu+Ffd2Ga9z2CAYVGWBf8u71zwz15/ThERkYuhBF5EROQS5ufhylVDIrhqSAQmk5n9pbXWZH7voVq+Ka3jm9I6/rQ6lyBvN6amhHB5aiiTk0Lw93S1dfhnZDabyTpab+1l31l0DNNJ27z5erhYttxLCWVqSgjBPu62C1ZEROQSoQReRETETjg5GRgWHcCw6AAenJlMRX0ra7MsK7Cvz66kqrGNj3eV8vGuUpydDIyK7WetWieF+th8m7rmtg425VVak/bDtS1d7k8O87GuGD8qth+uzn2r119EROT7KIEXERGxUyG+7tw4OpobR0dj7DCxvbCaNZnlrMmqILe8gW0F1WwrqOa55Zn0D/C0JvPjE4LwcO2d1dlLqpusW+dtzq+ird1kvc/dxYkJCUFcnmrp/48O9OqVmEREROyVEngREREH4OrsxISEYCYkBPPYHCiuarKu3L45v4rSmmbe2VLEO1uK8HC1PPb4yvb9Azy7LQ5jh4kdhcesr51b3tDl/v4BnkxLtUzzHx8fjKebtnkTERE5V3aTwD/zzDMsW7aMPXv24ObmRk1Nja1DEhERuWTFBHlx14QB3DVhAE1t7WzKrWJ1577zR2pbrFXx/+HE1PXLO6euu5zn1PWK+lbWZVewJrOcjJwK6lvarfddilP5RURE7JXdJPBtbW3ceOONjB8/njfeeMPW4YiIiNgNLzcXZgwMY8bAMMxmM5ll9azJOrF4XPbRBrKPNvC3dfn4HV88LjWUqckhBJ1m8TiTycw3h2utvez7Smsxn7QAXaC3G+nJIUxLDWVKUgj+XpfuYnoiIiL2xG4S+KeeegqAN99807aBiIiI2DGDwUBahB9pEX78Mj2RmqY2a/V8bXYFNU1Glu47wtJ9RzAYYHh0AJenhDIhvh97qgxkfPINGTlVVNS3djnu8e3s0ju3s3PWNm8iIiLdzm4S+AvR2tpKa+uJE4y6ujoAjEYjRqPRVmFJH3B8fGmcSU/TWJOL5e1q4KpBoVw1KJQOk5m9h2pZm1XBmuxKMsvq2V1cw+7iGl4CwBk4bHmemzMTEoKYlhLMlKRgwvw8rMc0dbRj6rDFTyOOQO9r0ls01qS3dOcYc+gEftGiRdbK/cnWrFmDl5dWupWet3LlSluHIH2Expp0p1QgNQ5qIuFAjYEDxwxk1xnwc4WB/cwMCjCT4NeOi9NhOHqYnUdtHbE4Ir2vSW/RWJOe1tTU1G3HsmkC/+STT542wT7Z9u3bGT169AUd/5FHHmH+/PnW7+vq6oiOjmbatGkEBQVd0DFFzoXRaGTlypXMnDkTV1f1fkrP0ViT3qKxJr1FY016i8aa9JaqqqpuO5ZNE/j777+fW2655ayPGTBgwAUf393dHXf3UxffcXV11R+p9AqNNektGmvSWzTWpLdorElv0ViTntad48umCXxwcDDBwcG2DEFERERERETELthND3xxcTHV1dUUFxfT0dHBnj17AEhMTMTHx8e2wYmIiIiIiIj0MLtJ4H/729/y1ltvWb8fMWIEYFmQLj093UZRiYiIiIiIiPQOJ1sHcK7efPNNzGbzKV9K3kVERERERKQvsJsEXkRERERERKQvUwIvIiIiIiIiYgeUwIuIiIiIiIjYASXwIiIiIiIiInZACbyIiIiIiIiIHVACLyIiIiIiImIHlMCLiIiIiIiI2AEl8CIiIiIiIiJ2QAm8iIiIiIiIiB1QAi8iIiIiIiJiB5TAi4iIiIiIiNgBJfAiIiIiIiIidkAJvIiIiIiIiIgdUAIvIiIiIiIiYgdcbB1AbzKbzQDU19fj6upq42jEkRmNRpqamqirq9NYkx6lsSa9RWNNeovGmvQWjTXpLfX19cCJfPRi9KkEvqqqCoC4uDgbRyIiIiIiIiJ9SVVVFf7+/hd1jD6VwAcGBgJQXFx80b84kbOpq6sjOjqakpIS/Pz8bB2OODCNNektGmvSWzTWpLdorElvqa2tJSYmxpqPXow+lcA7OVla/v39/fVHKr3Cz89PY016hcaa9BaNNektGmvSWzTWpLccz0cv6hjdEIeIiIiIiIiI9DAl8CIiIiIiIiJ2oE8l8O7u7jzxxBO4u7vbOhRxcBpr0ls01qS3aKxJb9FYk96isSa9pTvHmsHcHWvZi4iIiIiIiEiP6lMVeBERERERERF7pQReRERERERExA4ogRcRERERERGxA0rgRUREREREROxAn0ngX331VeLi4vDw8GDUqFGsX7/e1iGJg1m0aBGXXXYZvr6+hIaGMnfuXLKysmwdlvQBixYtwmAwMG/ePFuHIg6otLSU22+/naCgILy8vBg+fDg7d+60dVjiYNrb23n88ceJi4vD09OT+Ph4fve732EymWwdmti5jIwMrrnmGiIjIzEYDHz66add7jebzTz55JNERkbi6elJeno63377rW2CFbt2trFmNBpZsGABQ4YMwdvbm8jISO68804OHz583q/TJxL4Dz/8kHnz5vHYY4+xe/duJk+ezOzZsykuLrZ1aOJA1q1bx3333ceWLVtYuXIl7e3tzJo1i8bGRluHJg5s+/btLFmyhKFDh9o6FHFAx44dY+LEibi6urJ8+XIOHDjASy+9REBAgK1DEwfz/PPP89e//pXFixdz8OBBXnjhBV588UX+/Oc/2zo0sXONjY0MGzaMxYsXn/b+F154gZdffpnFixezfft2wsPDmTlzJvX19b0cqdi7s421pqYmdu3axf/8z/+wa9cuPv74Y7Kzs7n22mvP+3X6xDZyY8eOZeTIkbz22mvW29LS0pg7dy6LFi2yYWTiyCoqKggNDWXdunVMmTLF1uGIA2poaGDkyJG8+uqrPP300wwfPpxXXnnF1mGJA1m4cCEbN27UrDXpcVdffTVhYWG88cYb1tuuv/56vLy8eOedd2wYmTgSg8HAJ598wty5cwFL9T0yMpJ58+axYMECAFpbWwkLC+P555/n5z//uQ2jFXv23bF2Otu3b2fMmDEUFRURExNzzsd2+Ap8W1sbO3fuZNasWV1unzVrFps2bbJRVNIX1NbWAhAYGGjjSMRR3XfffcyZM4cZM2bYOhRxUJ999hmjR4/mxhtvJDQ0lBEjRvD666/bOixxQJMmTeLrr78mOzsbgL1797JhwwauuuoqG0cmjqygoICysrIueYK7uztTp05VniA9rra2FoPBcN6z2lx6JpxLR2VlJR0dHYSFhXW5PSwsjLKyMhtFJY7ObDYzf/58Jk2axODBg20djjigDz74gF27drF9+3ZbhyIOLD8/n9dee4358+fz6KOPsm3bNn7961/j7u7OnXfeaevwxIEsWLCA2tpaUlNTcXZ2pqOjg2eeeYZbb73V1qGJAzueC5wuTygqKrJFSNJHtLS0sHDhQm677Tb8/PzO67kOn8AfZzAYunxvNptPuU2ku9x///3s27ePDRs22DoUcUAlJSU88MADfPXVV3h4eNg6HHFgJpOJ0aNH8+yzzwIwYsQIvv32W1577TUl8NKtPvzwQ959913ef/99Bg0axJ49e5g3bx6RkZHcddddtg5PHJzyBOlNRqORW265BZPJxKuvvnrez3f4BD44OBhnZ+dTqu3l5eWnXG0T6Q6/+tWv+Oyzz8jIyCAqKsrW4YgD2rlzJ+Xl5YwaNcp6W0dHBxkZGSxevJjW1lacnZ1tGKE4ioiICAYOHNjltrS0ND766CMbRSSO6uGHH2bhwoXccsstAAwZMoSioiIWLVqkBF56THh4OGCpxEdERFhvV54gPcVoNHLTTTdRUFDA6tWrz7v6Dn2gB97NzY1Ro0axcuXKLrevXLmSCRMm2CgqcURms5n777+fjz/+mNWrVxMXF2frkMRBTZ8+nf3797Nnzx7r1+jRo/nRj37Enj17lLxLt5k4ceIp22FmZ2cTGxtro4jEUTU1NeHk1PW01NnZWdvISY+Ki4sjPDy8S57Q1tbGunXrlCdItzuevOfk5LBq1SqCgoIu6DgOX4EHmD9/PnfccQejR49m/PjxLFmyhOLiYn7xi1/YOjRxIPfddx/vv/8+//nPf/D19bXO+vD398fT09PG0Ykj8fX1PWVtBW9vb4KCgrTmgnSrBx98kAkTJvDss89y0003sW3bNpYsWcKSJUtsHZo4mGuuuYZnnnmGmJgYBg0axO7du3n55Zf56U9/auvQxM41NDSQm5tr/b6goIA9e/YQGBhITEwM8+bN49lnnyUpKYmkpCSeffZZvLy8uO2222wYtdijs421yMhIbrjhBnbt2sXSpUvp6Oiw5gqBgYG4ubmd+wuZ+4i//OUv5tjYWLObm5t55MiR5nXr1tk6JHEwwGm//vGPf9g6NOkDpk6dan7ggQdsHYY4oM8//9w8ePBgs7u7uzk1NdW8ZMkSW4ckDqiurs78wAMPmGNiYsweHh7m+Ph482OPPWZubW21dWhi59asWXPa87O77rrLbDabzSaTyfzEE0+Yw8PDze7u7uYpU6aY9+/fb9ugxS6dbawVFBScMVdYs2bNeb1On9gHXkRERERERMTeOXwPvIiIiIiIiIgjUAIvIiIiIiIiYgeUwIuIiIiIiIjYASXwIiIiIiIiInagT2wjd5zJZOLw4cP4+vpiMBhsHY6IiIiIiIg4OLPZTH19PZGRkTg5XVwNvU8l8IcPHyY6OtrWYYiIiIiIiEgfU1JSQlRU1EUdo08l8L6+vgAUFBQQGBho42jEkRmNRr766itmzZqFq6urrcMRB6axJr1FY016i8aa9BaNNekt1dXVxMXFWfPRi9GnEvjj0+Z9fX3x8/OzcTTiyIxGI15eXvj5+ekDQXqUxpr0Fo016S0aa9JbNNaktxiNRoBuaePWInYiIiIiIiIidkAJvIiIiIiIiIgdUAIvIiIiIiIiYgeUwIuIiIiIiIjYASXwIiIiIiIiInZACbyIiIiIiIiIHVACLyIiIiIiImIHlMCLiIiIiIiI2AEl8CIiIiIi0meZzWbuvfdeAgMDMRgM7Nmzh/T0dObNm2fr0EROoQReRERERET6rC+//JI333yTpUuXcuTIEQYPHmyTOK699lpiYmLw8PAgIiKCO+64g8OHD1vv37t3L7feeivR0dF4enqSlpbGH//4x3M+vtlsZvbs2RgMBj799NMu953uNoAf//jHzJ079wJ/IukJLrYOQERERERExFby8/OJiIhgwoQJNo1j2rRpPProo0RERFBaWspDDz3EDTfcwKZNmwDYuXMnISEhvPvuu0RHR7Np0ybuvfdenJ2duf/++7/3+K+88goGg6GnfwzpYUrgRURERESkT/rjH//ImjVrAEsVOjY2lsLCwlMet2LFCm6++Wb+/Oc/c+edd/ZILA8++KD1/2NjY1m4cCFz587FaDTi6urKT3/60y6Pj4+PZ/PmzXz88cffm8Dv3buXl19+me3btxMREXFB8RUWFhIXF3fK7VOnTmXt2rUXdEw5f0rgRURERESkT7rnnnuYMmUKb7zxBtu3b8fZ2fmUx3zwwQfce++9vPPOO1x33XVnPJaPj89ZX2vy5MksX778nOKqrq7mvffeY8KECbi6up7xcbW1tQQGBp71WE1NTdx6660sXryY8PDwc3r904mOjubIkSPW78vKypgxYwZTpky54GPK+VMCLyIiIiIifZK3tze+vr44OzufNrl99dVXefTRR/nPf/7DtGnTznqsPXv2nPV+T0/P741nwYIFLF68mKamJsaNG8fSpUvP+NjNmzfzr3/9i2XLlp31mA8++CATJkw468UHgFtvvfWUCxitra3MmTMHoMvvqKWlhblz5zJ+/HiefPLJ7/25pPsogRcREREREfmOjz76iKNHj7JhwwbGjBnzvY9PTEy86Nd8+OGHufvuuykqKuKpp57izjvvZOnSpaf0rn/77bdcd911/Pa3v2XmzJlnPN5nn33G6tWr2b179/e+9h/+8AdmzJjR5bYFCxbQ0dFxymPvvvtu6uvrWblyJU5OWhe9N9nVbzsjI4NrrrmGyMjIM66UKCIiIiIicrGGDx9OSEgI//jHPzCbzd/7eB8fn7N+zZ49+3uPERwcTHJyMjNnzuSDDz7giy++YMuWLV0ec+DAAS6//HJ+9rOf8fjjj5/1eKtXryYvL4+AgABcXFxwcbHUb6+//nrS09O7PDY8PJzExMQuX76+vqcc8+mnn2bFihV89tlnp71fepZdVeAbGxsZNmwYP/nJT7j++uttHY6IiIiIiDiohIQEXnrpJdLT03F2dmbx4sVnfXx3TKE/2fGLBq2trdbbvv32Wy6//HLuuusunnnmme89xsKFC7nnnnu63DZkyBD+8Ic/cM0115xXPGCZlfC73/2O5cuXk5CQcN7Pl4tnVwn87Nmzz+nKlYhIX1FY1Uhtm62jEBERcUzJycmsWbOG9PR0XFxceOWVV8742IuZQr9t2za2bdvGpEmT6NevH/n5+fz2t78lISGB8ePHA5bkfdq0acyaNYv58+dTVlYGWHrTQ0JCACgtLWX69Om8/fbbjBkzhvDw8NP29sfExJx2Rfmz+eabb7jzzjtZsGABgwYNsr6+m5vb9y6kJ93HrhL489Xa2trlilVdXR0ARqMRo9Foq7CkDzg+vjTOpKfkVTTy/JdZrMmqBFx479BGpiaHMCUpmJExAbg621WHlNgBva9Jb9FYk95yfIwd7/E+ecyZzWZMJhNGo5H4+Hi+/PJLZs6cicFg4IUXXuj2WFxcXPjoo4944oknaGxsJCIiglmzZvHOO+/g5OSE0Wjkgw8+oKKigvfee4/33nvP+tzY2FhycnIAy4rzWVlZ1NXVnfVvqL29/ZT7T3ebyWSy/h62bt1KU1MTTz/9NE8//bT1MVOmTGHVqlXd8WtwWN35fmYwn0tDxyXIYDDwySefMHfu3DM+5sknn+Spp5465fb3338fLy+vHoxORKRnNBhheYkTm44aMGHACTNmwMyJxW08nM2k+JtJC7B8BbjbLl4REZFLUVULbChzws0ZUgNMxPiAs+H7nydyIZqamrjtttuora3Fz8/voo7l0An86Srwx/cvDAoK6oUopa8yGo2sXLmSmTNnnnXvTpFz1Wrs4O2txby6toCG1nYApqeGMP/yePZs24hL9BA25tWwPreSY01dr/KmhvkwJTlY1Xm5KHpfk96isSY9qa7ZyGsZBby1uQhjx4k0yNfDhfHxgUxODGZSYhBR/c6vX13kbKqqqoiIiOiWBN6hp9C7u7vj7n5q6cnV1VUfCNIrNNbkYpnNZpbuO8LzKzI5dKwZgIERfjx+dRoTEoIxGo3kusJVI6O5eWw8HSYz+w7VsDargrXZFew7VEPm0QYyjzawZH0hvu4uTEwMJj0lhPSUUML9PWz8E4q90fua9BaNNelOxg4T/9xWzCurcqhutCweMz4+kJbaSvKb3KhtbuerA+V8daAcgLhgb6YkBTM5KYTxCUF4uzt02iQ9rDvfyzQSRUQuUbuKj/H00gPsKq4BIMzPnYdmpfDDkVE4O51+np+zk4ERMf0YEdOPB2cmU9XQyvqcStZmlZORU0l1Yxsrvi1jxbeWhWdSw31JTwklPSWEUbH9VJ0XERGHYjabWZ1ZzrNfHCSvohGAhBBvHp8zkInxASxfvpwrrpxGZnkT67MryMipYFdxDQWVjRRUNvLW5iJcnQ2MjOnHlOQQpiSFMCjSD6czfA6L9DS7SuAbGhrIzc21fl9QUMCePXsIDAwkJibGhpGJiHSfkuomnl+RydJ9RwDwdHXmF1MT+NmUOLzczu9tO8jHnbkj+jN3RH86TGb2l9ayNquctVkV7D1UQ2ZZPZll9fx1XZ6q8yIi4lAOHK7jmS8OsDG3CoBAbzcenJHELWNicHV2si4s5uxkYHh0AMOjA/jV9CTqWoxszqtifU4FGdmVFFc3sbWgmq0F1bz4ZRaB3m5MSgxmclIwU5JDCPPT56X0HrtK4Hfs2MG0adOs38+fPx+Au+66izfffNNGUYmIdI+6FiN/WZPLPzYW0tZuwmCAG0dF8d+zUrrl5ODkE5R5M5KpbmwjI7virNX5qSkhpCeHMnqAqvMiImIfjta18NJXWfx75yHMZnBzduKnk+L45bQE/Dy+fyqzn4crVwwK54pBlu3XiqoayciuICOnks15VVQ3tvHZ3sN8tvcwAClhvkxJtky3HxMXiIerc4/+fNK32VUCn56ejp2uuScickbtnX15fzipL29CQhCPzUljUKR/j71uoLfbOVXn/7YuHx93FyZ1VuenpoQQ4a/FfURE5NLS1NbO6xkF/HVdHs1Gy9ZwVw+NYMGVqUQHXvgOVLFB3twx3ps7xg/A2GFid3FNZ3W+gn2ltWQdrSfraD2vry/A3cWJMXGBTEkKYUpyCMlhPhgMmm4v3ceuEngREUdiNptZk1XOs19kklveAEB8iDePXZXG5amhvfqBf7rq/PqcCtZmVbAuu0LVeRERuWSZTGY+3l3Ki19mcrTOsgPViJgAHp8zkFGx/br1tVydLQn6mLhA/ntWCsca29iQW2mdbl9W18L6nErW51TyzBcHCfNzZ3JSCJM7F8QL9Hbr1nik71ECLyJiAwcO1/HsFwfZkFsJQD8vVx6cmcytnX15thbo7cZ1w/tz3fD+mKzV+QrWZpezp+TU6vzExCDrYniqzouISG/ZlFfJM8sO8u3hOgCi+nmycHYqc4ZE9MqF8H7eblwzLJJrhkViNpvJLW8gI6eSjOwKthZUcbSulf/beYj/23kIgwEGR/pbe+dHxvTDzcX2n/liX5TAi4j0ovK6Fl76Kpt/7Syx9uX9ZOIAfjktEX/PS3O7JCcnA8OiAxgWHcADM5K6VOczsiuoamzjy2+P8uW3RwFLL2B6qqrzIiLSc/IqGlj0RSarDlo+e3zdXbj/8kTumjDAZj3oBoOBpDBfksJ8uXtSHC3GDnYUHmN9jmU2W2ZZPftLa9lfWsura/PwdnNmfEIQkzun2w8I8tJ0e/leSuBFRHpBc1sHr6/P56/r8mhqs/TlzRkawcKL7Muzhe+rzh/vBVR1XkREutuxxjb++HUO724pot1kxtnJwI/GxvDA9CSCfNxtHV4XHq7OTEoKZlJSMI9clUa5dXp9BetzKqlqbGPVwXJWHbTsPR/Vz7Nzq7pgxicEX7IX9sW2lMCLiPQgk8nMJ7tLefHLLMrqWgAYHh3A/1ydxqjYQBtHd/G+W50/1thGRk4F6zp7509bne9cCG90bKCmDoqIyDlpbe/g7U1F/Hl1DnUt7QBcnhrKo1elkhjqa+Pozk2onwfXj4ri+lFRmExmDhypY33ndPsdRdUcOtbM+1uLeX9rsXVtmuPT7Yf298dFM9oEJfAiIj1mS34VTy87wDellr68/gGeLJidyjVDe6cvzxb6nWt1PsNSnZ+QEMS0VFXnRUTk9MxmMyu+KWPR8kyKq5sASIvw4/E5aUxMDLZxdBfOycnA4P7+DO7vz3+lJ9DU1s6W/CoysivJyKkgv6KRnUXH2Fl0jFdW5eDn4cKkzoXwpiSH0D9An5l9lRJ4EZFull/RwKLlmaw8YKk6+7i7cN+0RH4y0XZ9ebZwLtX5rw4c5asDqs6LiMip9pTU8MyyA2wvPAZAiK87D89K4fpRUTg7OdaFcC83Fy5PDePy1DAADh1rYkOOJZnfkFNJXUs7X+wv44v9lt1g4kO8O7eqC2ZsXBDe7krr+gr9S4uIdJOaJktf3jubT/Tl3Tommnkzkgm+xPrybOG71flvDndW57NOrc57uzkzMTHY2jsfqUqDiEifUVrTzAsrMvnPnsMAeLg6ce+UBH4+Jb7PJKpR/by4ZUwMt4yJocNkZu+hGtZ3Vuf3lNSQX9FIfkUjb24qxNXZwOjYQCYnBzMlKYSBEX44OdgFDjmhb/wFiIj0oLZ2E29vLuRPX5/oy5uWEsKjV6WRFGYffXm9zcnJwNCoAIZGBfDr6d9fnU8O87Em86rOi4g4pvoWI6+tzeONDQW0tpsAuH5kFA9dkdyn26ycnQyMjOnHyJh+PDAjidpmI5vzKq3b1R061szm/Co251fxwoosgrzdmJRkSeYnJwUT6udh6x9BupESeBGRC3S8L++5FZkUVVn68lLDfXlsThqTk0JsHJ19+b7qfPbRBrKPNrBE1XkREYfT3mHiwx0l/GFlNpUNbQCMiw/k8TkDGdzf38bRXXr8PV25cnAEVw6OwGw2U1jVxPocy9aum/OqqGps4z97DltnMKSG+3aubh/C6AH9+lQ7nyNSAi8icgH2ltTw9Hf68v57ZjI3jo52uL683na66vz63ErWZpWTkV1BZcMZqvPJIYweoOq8iIg9WZddwTPLDpB9tAGAuGBvHpmdysyBYQ674Gt3MhgMxAV7ExfszZ3jB9DWbmJX8bHOhL6Sbw7XkllWT2ZZPUsy8nF3cWJsfBBTOle3Twr10e/ZziiBFxE5D6U1zby4IpNPT+7LmxzPz6cm9Jm+vN7Wz9uNa4dFcu2wSEwmM98ermNNVvkZq/MTEoNJTwkhPSVUq/SKiFyissrqeeaLg2RkVwAQ4OXKA9OT+NHYWF2IvQhuLk6Miw9iXHwQD18BVQ2tbMittO4/f7SulYxsS7WeZQcJ9/OwblU3KTGYft5utv4R5HvobFNE5Bw0tLbz2tpc/r7+RF/eD0f056ErUjSFuxc5ORkYEuXPkCh/fj09iZqmNjJyulbnVx44at0BQNV5EZFLS0V9Ky+vzObD7cWYzODqbOCu8QP41eVJ+Hu52jo8hxPk425tUTObzWQfbWB9jmW9mW0F1ZTVtfDvnYf4985DGAwwpL+/tXd+ZGw/XLX3/CVHCbyIyFm0d5j4145DvLwym8qGVgDGxAXy+Jw0hkYF2DY4IcDr1Or82qxy1mZXsLv4mKrzIiKXiBZjB29sKODVNbk0tnUAMHtwOAtnpxIb5G3j6PoGg8FASrgvKeG+3DM5nhZjB9sKqq3T7bOO1rPvUC37DtWyeE0uPu4ujIsPYmqyZf/5AcH6d7oUKIEXETmDddkVPLvsIFlH6wEYEOTFI1elMUt9eZekk6vzv+qszq/PqWTNGarzSaE+1mT+MlXnRUR6hMlk5rO9h3lhRSaHa1sAGBblz2NzBjImLtDG0fVtHq7OlsXtkkN4bA4crWthfefK9htyK6lubGPVwaOsOmj53IwJ9GJykiWZn5AYhJ+HZkzYghJ4EZHvyD5azzPLDrKusy/P39PSl3f7OPXl2ZMALzeuGRbJNWeozueUN5BT3sDr6wvwsq5sr+q8iEh32V5YzdNLD7D3UC0Akf4e/ObKVK4dFql9yi9BYX4e3DAqihtGRVk/NzM6V7ffWXSM4uom3ttazHtbi3F2MjAiOoApyZbp9kOjArSIby9RAi8i0qmivpU/rMrmg20n+vLuHD+AX12eSICXFnWxZ2eqzq/t3He+sqH1jNX50QP64e6iLXdERM5VUVUjzy3PZPk3ZQB4uznzy2mJ3D0pTluY2YmTPzfvm5ZIQ2s7W/KqWJ9TwfqcSvIrG9lRdIwdRcd4eWU2/p6uTEoMZkrndHutD9RzlMCLSJ93vC/vtbV5NLS2A3DlIEtfnvq9HNN3q/MHjliq82uyTl+dn5BwvDofQlQ/L1uHLyJySaptMvLn1Tm8tbkQY4cZJwPcfFkM82cmE+Lrbuvw5CL4uLswY2AYMwaGAVBS3WSdbr8xr5LaZiPL9h9h2f4jACSEeFv3nh8bH4iXm9LO7qLfpIj0WSaTmc/3HeaFFVmU1jQDMDTKn8euSmNsfJCNo5Pe4uRkYHB/fwb39+f+y09fnT+5BzAx1If05BCmpao6LyICYOww8e6WIv74dQ41TUYAS1/1VWmkhPvaODrpCdGBXtw2NobbxsbQ3mFi76EaMrItW9XtKakhr6KRvIpG/rGxEDdnJ0YP6Gedbp8W7qcWiougBF5E+qQdhdX8v2UH2VtSA0CEvwe/uTKF64b114dKH3em6vzarAp2FR8jt7yB3PIG/r5B1XkR6dvMZjMrDxxl0fJMCiobAcv2nY9elUZ6SqiNo5Pe4uLsxKjYQEbFBvLgzGRqm4xsyqvs7J+vpLSmmU15VWzKq+K55RDs4965GJ5lur1mZ5wfJfAi0qcUVTXy/IpMvth/oi/vv9ITuHtSPJ5uqqRKV9+tztc2GVmfW8HaLMvXmarz6SmhXBan6ryIOK5vSmv5f0sPsLWgGoBgHzfmz0zhptFRuGjv8D7N38uV2UMimD0kArPZTH5lI+uzK8jIqWRzXhWVDa18sruUT3aXApAW4ceU5GCmJIVoZts5UAIvIn1CbZORxWtyeHPTyX150Tw4M5lQXw9bhyd2wt/LlauHRnL1UFXnRaRvKqtt4cUvs/h49yHMZnBzceKeSXH8V3oCvtpWTL7DYDCQEOJDQogPP54YR2t7B7uKasjIqWB9TgXflNZx8Ijl62/r8vFwdWJcfBCTk0KYmhxMQoiPtu79DiXwIuLQjB0m3ttSxCsn9eVNTgrmsTlppIb72Tg6sWdnq86vy66gol7VeRFxHI2t7fxtXR5L1ufTYjQBMHd4JA9fmaqtN+Wcubs4Mz4hiPEJQSy4MpXKhlY25layLtuyun1Ffat1ltv/w7L14OSkECYnBzMpMVi7AqEEXkQclNlsZtXBchZ9cZD8zr68pFAfHp2TRnpyiK7mSrc7XXV+XXYFa7PK2Vl0uup8EFNTQklPDiE6UNV5Ebk0dZjMfLTzEC9+lUVFfSsAo2P78fjVAxkeHWDb4MTuBfu4c93w/lw3vD9ms5nMsnrrVnVbC6o5XNvChztK+HBHCQYDDI0KYGpSMJOTQxgeHYBrH2zXUAIvIg7nm9Janl52gC35lr68IG83HpyZzC2XRasvT3rFydX5+6YlnqE6X86qg+WAZbudaSmhqs6LyCVlQ04lTy87QGZZPQAxgV48MjuVKweH60K4dDuDwUBahB9pEX7cOyWB5rYOthVWk5FtmW6ffbSBvSU17C2p4U+rc/F1d2F8QhCTk0OYmhRCTFDfuBiuBF5EHMbp+vLunhTHL9WXJzZ2tur8ruLj2+0UqDovIpeE3PJ6nv0ik9WZlouMvh4uPDA9iTvGx+oCo/QaTzdnpiaHMDU5BIAjtc3Wvec35FZS02TkqwNH+eqApVUtNsiLKUmWrerGJwQ57LmfEngRsXuNre38LSOf1zPyaTZ2AHDtsEh+c2WKFg6TS84p1flmIxtyKi2L4Z2hOp+eEkp6Sghj4gJ18iwiPaaqoZVXVuXw/rZiOkxmXJwM3D4ulgemJ9HPW73HYlsR/p7cNDqam0ZH02Ey801pLes7t6rbVXyMoqom3qkq4p0tRbg4GRgZ04/JScFMSQ5hcH9/nB1km2Al8CJit4735f3+qyzKO/vyRsX24/E5aYyI6Wfj6ETOjb+nK3OGRjBnqGW7HcvK9qdW59/YUICnq6U6n56q6ryIdJ8WYwdvbirkL6tzqW9tB2DmwDAemZ1KfIiPjaMTOZWzk4Fh0QEMiw7g/suTqG8xsiX/xHT7wqomthVWs62wmpdWZhPg5cqkRMtWdZOTg4nwt9+FF5XAi4hd2phbydPLDnLwSB0A0YGePDI7jdnqyxM7ZjAYGBTpz6DIU6vz67IrKK9v5evMcr7OVHVeRC6e2Wxm6b4jPL8ik0PHmgEYFOnH43MGMj4hyMbRiZw7Xw9XZg4MY+bAMACKq5rIyKkgI7uCzXlV1DQZWbrvCEv3HQEsCxtPTgphSnIwY+OC8HSzn89PJfAiYldyyxtY9MVBawLj6+HCry9P4s4J6ssTx3Om6vy6rAp2Fh87fXU+xbJVnarzInI2O4uO8cyyA+wqrgEgzM+dh69I5Ycj+uPkIFONpe+KCfLi9qBYbh8Xi7HDxN6SGjKyK8jIqWTvoRpyyhvIKW/gfzcW4ObixJgBgdbp9qnhvpd0MUgJvIjYhaqGVv74dQ7vbbX05Tk7Gbh9bAwPzEgmUH150gecrjq/Mbezdz7ru9X5b4kP8SY9OZRpqarOi8gJJdVNPL8i01qJ9HR15hdTE/jZlDi83JQaiONxdXZi9IBARg8IZP6sFGqa2tiYW9WZ0FdwpLaFDbmVbMitZNHyTEJ83ZmcaEnmJyUFE+zjbusfoQv9lYrIJa21vYM3Nxay+KS+vBlpYTxyVSoJ6suTPszf05WrhkRw1ZDTV+fzKxrJryjgfzeqOi8iUNdi5C9rcvnHxkLa2k0YDHDjqCj+e1YKYX4etg5PpNcEeLl1md2WV9Fo7Z3fkl9NRX0rH+8u5ePdpYClreT4dPtRsbbf6lUJvIhcksxmM8v2W/rySqotfXkDI/x4/Oo0JiQE2zg6kUvLhVbnj/fOe7iqOi/iqNo7TPxzWzF/WJVDdWMbABMTg3j0qjQGRfrbODoR2zIYDCSG+pAY6sNPJ8XR2t7BzsJjrMupYH12JQeO1PHtYcvXX9fl4enqbNl7PimYyUkhJIR49/p0e7tL4F999VVefPFFjhw5wqBBg3jllVeYPHmyrcMSkW60q/gYTy890ZcX6uvOw1ek8MORUQ6zBYhIT/pudf7gkXrWZluS+Z1Fp1bnxx+vzieHEhOk6ryIIzCbzazJKufZLzLJLW8ALAtfPjYnjWkpoZd0j6+Irbi7ODMhMZgJicE8MhvK61vYmFvJ+uxKMnIqqWxoZXVmOas712LqH+Bp7Z2fmBCMv1fP7z3fLQm82WzulTeBDz/8kHnz5vHqq68yceJE/va3vzF79mwOHDhATExMj7++iPSskuomXvgyi8/3HgYsfXk/nxrPvVPi1ZcncoEMBgMDI/0YGOnHL9O7VufXZVdwtO7kkxFV50UcwYHDdTz7xUE25FYCEOjtxrwZSdw6JgZXZycbRydiP0J9PfjBiCh+MCIKk8lMZlk9GTmW6fbbC45RWtPMB9tL+GB7CU4GGBYdYJlunxTM8OgAXHrg761bzojd3d3Zu3cvaWlp3XG4M3r55Ze5++67ueeeewB45ZVX+PLLL3nttddYtGhRj762iPScuhYjr67J4383Flj78m4YaenLC/dXX55Id7rQ6vzE+H62Dl1Evkd5XQsvfZXNv3aWYDaDm7MTP5k4gF9OS8Tfs+crgyKOzMnpxAXxX0xNoKmtna0Fx/eeryS3vIHdxTXsLq7hT1/n4OvuwoTEIKYkhzA4uPsS+fNK4OfPn3/a2zs6OnjuuecICrLsF/nyyy9ffGTf0dbWxs6dO1m4cGGX22fNmsWmTZtO+5zW1lZaW1ut39fVWfaLfvaLg8wcFsfY+EB83FXVk+5nNBq7/FdOr73DxIc7S/nj17kca7L8rsbHB7LwymQGRvgB+h1+H401uVhJIZ4khcTys4mx1LcY2ZhXTUZOJRnZlRyt7zpVMNTDmR2mA0xLCWXMgH64qzovPUDva+evua2DNzYW8vqGQpraOgC4anAYD81KIrqfpS1Gv89TaazJxXA1wKT4fkyK7wdXJnO4ppmNeVVsyK1iY14Vtc3tfPntUb789iim1qZue12D2Ww2n+uDnZycGDZsGAEBAV1uX7duHaNHj8bb29LEv3r16m4L8LjDhw/Tv39/Nm7cyIQJE6y3P/vss7z11ltkZWWd8pwnn3ySp5566pTbo+f9Cyd3L5wMZuJ8IDXARGqAmShvUHutSM8zm+FAjYH/FDlxtNnyRxfqYea6WBOD+plRW56I7ZnNcLjJ8rd68JgTBfVg4sQfp6uTmSQ/MwP7mUkLMBOsyTIivc5khh2VBpYWO1HbZvn7jPUx84MBHcT52jg4kT7MZIaSBsisNZBZ40R+ZRNFr9xMbW0tfn5+F3Xs8yo/P/PMM7z++uu89NJLXH755dbbXV1defPNNxk4cOBFBXMuvttrf7b++0ceeaTLrIG6ujqio6P54fBwdpQZOXSsmbx6yKt3ZlkJ9PNyZUJCEJMTg5iYGES4ttSQC2Q0Glm5ciUzZ87E1VVT1k6WWVbPcyuy2ZhXBVj+7n41LYFbLotSX94F0FiT3lJd38xfP11LnXcUG3KrOVrfyoEaAwdqLPfHBXkxJTmYqUnBqs7LRdH72rnZWlDNohVZfHu4HoD+AR48NDOJOUPCtUDdOdJYk95SVHqUpFe651jnlcA/8sgjzJgxg9tvv51rrrmGRYsW9dpgDw4OxtnZmbKysi63l5eXExYWdtrnuLu74+7ufsrt/3P1QIKCgiiqsuz5l5FTyea8Ko41GVm2v4xl+y2vkRzmw5SkECYnhzBWC/nIBXB1ddUHQqfy+hZe/iqbf+0owdTZl/fjiQO4T3153UJjTXpaoC8MDzJz1VVDcHFxIbOsnrVZFazNKmdn0TEKqpoo2FzMW5uL8XB1Ynx8EOkplsXwYoO8bR2+2CG9r51efkUDi5ZnsvLAUQB83V345bREfjJxgM5VL5DGmvS0fr6e3Xas824Av+yyy9i5cyf33Xcfo0eP5t133+2Vq3xubm6MGjWKlStX8oMf/MB6+8qVK7nuuusu6JixQd7cMd6bO8YPwNhhYndxTeciBBXsK60l+2gD2Ucb+PuGAtxcnBgbF9iZ0AeTEuarq5si56C5rYPX1+fz13V51r68OUMiWHBlqrarErFTBoOBtAg/0iL8+K/0BOpajGzKrWRNZgXrsisoq2thTVYFa7IqAIgL9mZqcgjTUkN1QVzkAtU0tfHHr3N4Z3MR7SYzzk4Gbh0TzbwZyQT7nFqwEhHHdEEruPn4+PDWW2/xwQcfMHPmTDo6Oro7rtOaP38+d9xxB6NHj2b8+PEsWbKE4uJifvGLX1z0sV2dnRgTF8iYuEAeuiKF6sY2y55/ORVkZFdSVtfC+pxK1udUwheWfaknJ4UwJTmYSYnBBOmNU6QLk8nMp3tKeWFFFmV1LQAMjw7g8TlpjB4QaOPoRKQ7+Xm4cuXgCK4cbFnZ/pTqfGUjBZWNvLmpUNV5kfPU1m7i7c2F/OnrHOpa2gGYlhLCo1elkRSmRneRvuailmC/5ZZbmDRpEjt37iQ2Nra7Yjqjm2++maqqKn73u99x5MgRBg8ezBdffNEjrx3o7cY1wyK5ZlgkZrOZ3PIG1nVuEbC1oIry+lY+2nWIj3YdAmBwfz9LdT4phFGx/XBzUS+v9F1b8qt4ZtlB9pfWAtA/wJMFs1O5ZmiEZq6IOLjvVufrW47vO1/B2qwzV+fTU0IYFx+k6rxIJ7PZzIpvynhuRSZFVZYVrFPDfXlsThqTk0JsHJ2I2MpF76EWFRVFVFRUd8RyTn75y1/yy1/+stdeDywnI0lhviSF+XLP5HhajB3sKDzG+hzLVMHMsnq+Ka3jm9I6Xl2bh5ebM+PjLXv+TU4KJi7YW0mL9AkFlY0s+uIgX3X25fm4u/DLaQn8dGKcTspF+ijf71Tns46eqM7vKDy1Oj8uPoj05BDSU0IZEKzqvPRNe0tqeHrZAbYXHgMgxNed/56ZzI2jo3HWlkkifZo2Qb8AHq7OTEoKZlJSMI9clUa5dXq9pUJf1djG15nlfN25b27/AE+mJIcwJSmYCYnBWrBLHM53+/KcDHDb2Bj15YlIFwaDgdRwP1LD/fjF1NNX54//P58fUHVe+pzSmmZeXJHJp3sOA+Dh6sS9k+P5+dQEvN112i4iSuC7RaifB9ePiuL6UVGYTGYOHKljfU4lGdkV7CiqprSmmX9uK+af24pxMlj6gC3V+RCGRfnjoq2zxE4d78v78+pcapuNAKR39uUlqy9PRL7H+VTn3V2cGJ+g6rw4pobWdl5bm8vf1xfQ2m4C4Icj+/PwFSlE+Hff6tUiYv+UwHczJycDg/v7M7i/P/+VnkBjaztbC6rIyK4kI6eC/IpGdhXXsKu4hldW5eDn4cLExGDrgnhR/bQqt1z6zGYzX357lOeWH6TwpL68R69KY0qy+vJE5PydvjpfxbrsctZmVXCktmt1fkCQF+kpoUxNCWG8qvNip9o7TPxrxyFeXplNZUMrAGPjAnl8zkCGRPnbODoRuRQpge9h3u4uXJ4axuWplr3qDx1rsk6335BTSV1LO8u/KWP5N5a95+ODva298+PigzRdSi45+w7V8PTSg2wrrAYg2Medh2apL09EupelOh/OlYPDMZvNZB9tYE1WubU6X1jVxJubClWdF7uVkV3BM8sOknW0HoABQV48clUaswaGae0kETkjZYe9LKqfF7eOieHWMTF0mMzsPVTD+s7q/J6SGvIrG8nvnC7o6mxgVGy/zv75EAZG+OGkBEls5HBNMy9+mcUnu0sBcHdx4t4plr48H11oEpEeZDAYSAn3JSXcV9V5sXvZR+t5ZtlB1mVbdmLw93TlgelJ3D4uVrsYicj30lm3DTk7GRgZ04+RMf14YEYStc1GNudVktHZP3/oWDNb8qvZkl/NCyuyCPJ2Y1JS53T7pGBC/Txs/SNIH9DQ2s5f1+bx+vr8E315I/rz0BUpRAaoL09Eet/pqvNrsyzJ/I6i6lOq8+Pig0hPsVTn41SdFxupqG/lD6uy+WBbMSYzuDobuHP8AH51eSIBXm62Dk9E7IQS+EuIv2fXxXwKq5pYn1NBRnYFm/OqqGps4z97DvOfzpVJU8N9rdPtLxsQqAqDdKsOk5l/7Sjhpa9O9OWNiQvk8TlpDI0KsG1wIiKdTq7O/3xqAg2t7SetbF/OkdoW1mVbtn196vMDxAZ5Wabap4aqOi+9osXYwRsbCnhtbR4Nre0AXDkonIWzU9XuISLnTQn8JcpgMBAX7E1csDd3jh9AW7uJXcXHOhP6Sr45XEtmWT2ZZfUsycjH3cWJsfFBTEkKZkpyCEmhPuqfkgt2ur68hbPTuGKQ+vJE5NLm4+7CFYPCuWLQ6avzRVVNvLW5iLc2F6k6Lz3KZDLz+b7DvLAii9KaZgCGRvnz2FVpjI0PsnF0ImKvlMDbCbfOk4xx8UE8fAVUNbSyIbfSuiDe0bpWMrIt1XqWHSTcz4PJScFMTg5hUmIwgd6amiXf73R9eb+ensQd6ssTETt0tur8uqxyDp+pOp8Syrj4IDzdVJ2XC7OjsJr/t+wge0tqAIjw9+A3V6Zw3bD+Ws9IRC6KEng7FeTjznXD+3Pd8P7WCsP6HMtJyLaCasrqWvj3zkP8e+chDAYY0t+fyUnBTEkKYURMPyVj0kVlQyt/WJnNPzv78lycLH15v56uvjwRcRzfrc7nlJ+ozm8vPLU6PzbesrL9tFRV5+XcFFU18vyKTL7Yb9ldyNvNmf9KT+DuSfG6ICQi3UIJvAM4ucJwz+R4WowdbCuotk63zzpaz75Dtew7VMtf1uTh7ebM+IRgpiRbEvrYIC9Ni+6jWowd/O/GAl5dc6Iv74pBYSycnaaTVRFxaAaDgeQwX5LDfLl3iqU6vym3kjUnVeePz2z73VJV5+XsapuMLF6Tw5ubCjF2mHEywM2XRfPgzGRCfbXosIh0HyXwDsjD1dmy9VxyCI/NgaN1LazvXNl+Q24l1Y1trDp4lFUHjwIQHejZubJ9CBMSg/DzcLXxTyA9zWw289nern15Q/r78/gc9eWJSN/k4+7CrEHhzDqH6vzxtjZLQh9CXLC3LoT3UcYOE+9tKeKVr3OoaTICMDkpmMfmpJEa7mfj6ETEESmB7wPC/Dy4YVQUN4yKwmQy8+3hOjI6V7ffWXSMkupm3t9azPtbi3F2MjAiOsCS0CcHMzQqAGf1ajmU0/XlPXxFCnOHqy9PRATOXJ1fm13BuqwKSmuaT6rOQ0ygV+dCeCGMjw9Wdb4PMJvNrDpYzqIvDpJf2QhAUqgPj85JIz05RBd0RKTHKIHvY5ycDAyJ8mdIlD/3TUukobWdrflVZGRXsD6nkvzKRnYUHWNH0TH+sCobf09XJiUGWxfE6699v+1WcVUTz604aO3L83Jz5r+mJnDPZPXliYiczXer87nlDazNqmBNVjnbC6sprm7i7c1FvK3qfJ/wTWktzyw7yOb8KgCCvN14cGYyt1wWjYuz1hgSkZ6lBL6P83F3YXpaGNPTwgAoqW6yTrffmFdJbbORZfuPsGz/EQASQryZnBTC1OQQxsYH4uWmIXSpq202snh1Dm9tKqKtw4STAW4aHc38WerLExE5XwaDgaQwX5LCfPnZlHhV5/uQstoWfv9VFh/tOoTZbNkh6O5JcfwyPQFftR+KSC9R9iVdRAd6cdvYGG4bG0N7h4m9h2rIyLZsVbenpIa8ikbyKhp5c1Mhbs5OjB7QzzrdPi3cT1OwLyHGDhPvby3mlVXZHDupL+/Rq9JIi1BfnohIdzhTdX5tdjnbCk6tzo+NCyQ9JZT0lBDiVZ23C42t7fwtI5/XM/JpNnYAcO2wSH5zZQpR/bxsHJ2I9DVK4OWMXJydGBUbyKjYQB6cmUxtk5FNeZWd/fOVlNY0symvik15VTy/AoJ93JicFMLkpGAmJQWrumsj1r685QfJr7D05SWG+vCY+vJERHrUd6vzja3tbMqrsi6GV1rTzPqcStbnVPL/lloWkU1PDmVaqqrzl6IOk5mPdh3i919mUV7fCsCo2H48PieNETH9bBydiPRVSuDlnPl7uTJ7SASzh0RgNpvJr2xkfWfv/Ob8Kiob2vhkdymf7C4FIC3CjylJwUxJDmFUbD88XHVi0tNO15c3b2Yyt6ovT0Sk13m7uzBzYBgzB4ZhNpvJq2hgTeaJ6nxJdTPvbCninS2qzl9qNuZW8vSygxw8UgdYLrY8MjuN2YPD9e8iIjalBF4uiMFgICHEh4QQH348MY7W9g52FdWQkVPB+pwKvimt4+ARy9ffMvLxcLUs6mPZri6YxFAffQB2ozP15f1XeoK2BRQRuQQYDAYSQ31JDD2/6nx6SgjjE4K05kwvyS1vYNEXB/k6sxwAXw8Xfn15EndOiMXdRYUIEbE9fRpIt3B3cWZ8QhDjE4JYcGUqlQ2tbMytZF1nhb6ivtXSE5hVAVi2LpvcWZ2fmBBMP283G/8E9qmprZ2/rctnyXf68h6+IoXoQPXliYhcqk5XnT/+OXmm6vzU5BCmpYaqOt8DqhvbeGVVNu9tLabDZMbZycDtY2N4YEYygTpHEZFLiBJ46RHBPu5cN7w/1w3vj9lsJutovXWruq0F1RypbeFfOw7xrx2HMBhgaFSAdbr98OgAXDXd+6xO15c3MiaAx68eyEj15YmI2JWTq/P3TLZU5zfnVbE221KdP3TsRHX+6WUHVZ3vRq3tHby5sZDFa3Kpb2kHYEZaKAtnp5EY6mPj6ERETqV3fOlxBoOB1HA/UsP9uHdKAs1tHWwrrO5M6CvIPtrA3pIa9pbU8OfVufi4uzA+IYgpyZbp9rFB3rb+ES4pmzr78g6c1Je38Mo0rhqivjwREUfg7e7CjIFhzDiX6ryzE2PjLdX59JRQEkJUnT8XZrOZL/aX8dyKg5RUNwMwMMKPx+ekMSEx2MbRiYicmRJ46XWebs5MTbbsJQ+W/m1L73wlG3IqONZkZOWBo6w8cBSA2CAvy3T7JEuloa/utZpb3sBzyw+y6uCJvrxfXZ7IXRMGqC9PRMRBnW91Pqqfp2Xf+eRQJiSqOn86u4qP8cyyg+wsOgZAqK87D1+Rwg9HRuGs7XBF5BKnd3WxuXB/D24aHc1No6PpMJn59nAtGdkVZORUsqvoGEVVTRRVFfPulmKcnQyMjAlgSlIIk5NDGNLf3+E/bKsb2/jjqmzeVV+eiEifd2p1vpG1WeWsy65ga341h4418+4Wy2emqvNdlVQ38cKXWXy+9zAAnq7O/HxqPPdOideFDhGxG3q3kkuKs5OBoVEBDI0K4P7Lk6hvMbIlv5r1ORVkZFdQWNXE9sJjbC88xksrswnwcmViYjBTk0KYnBxMhL+nrX+EbtPa3sFbmwr582r15YmIyKks1XkfEkN9uGdyPE1t7WzKVXX+u+pajLy6Jo//3VhAW7sJgwFuGBnFf89KIdzfw9bhiYicl77xzi12y9fD1bpKL0BxVZN1q7pNuVXUNBlZtu8Iy/YdASAx1KezOh/MuLggPN3sb2q5+vJERORCeLmdX3V+TFygJaFPCSEhxPG2d23vMPHP7SW8sjKbqsY2AMbHB/H41WkMivS3cXQiIhdGCbzYlZggL24PiuX2cbEYO0zsLamxTrffd6iG3PIGcssb+N+NBbg5O3FZXD9LQp8UQlqE7yV/crK7+BhPf6cv76ErUrhefXkiInIeTled35xXZVkML7uckupmNuRWsiH3RHV+anII01LsvzpvNptZm1XBM18cJLe8AYD4YG8evSqN6Wmhl/y5gIjI2djvu7P0ea7OToweEMjoAYHMn5VCTVMbG3OrrNPtD9e2sDG3io25VSxankmwjztTkoKZnBzMpMQQQnzdbf0jWJ2uL+/eKfH8fKr68kRE5OJ5ubkwPS2M6WmW6nx+ZWPnyvbl1ur8e1uLeW+rfVfnDx6p49kvDrI+pxKAfl6uzJuRzG1jY7RFrYg4BGUG4jACvNyYMzSCOUMjrFMHj29VtyW/msqGVj7eXcrHu0sBy7T041vVjRrQzyYruZ+uL+/6kVE8pL48ERHpIQaDgYQQHxJCfLh7Utz3Vuf7B3T2zqeEMiEhCG/3S+/0sby+hZe/yuZfO0owmcHN2YkfTxzAfdMS8ffsm7vXiIhjuvTegUW6wclTB386KY7W9g52Fh4jI6eSjOwKDhyps379dV0enq7OjIsPZEqyZbp9T6/U295h4oPtJfzhO315j81JY3B/9eWJiEjvOWt1vqCa0pqu1fnL4vqRnhzKtFTbV+eb2zr4+/p8XluXR1NbBwBzhkSw4MpUYoK8bBaXiEhPUQIvfYK7izMTEoOZkBjMwtmpVNS3siG3gvXZlWTkVFLZ0MqarArWZFUA0D/Ak8lJwUxOCmFSYjD+Xt1z9f54X96zXxwk56S+vEeuSmOG+vJERMTGTled35LfWZ3PqqC4usnanvbMF7arzptMZj7dU8qLX2ZxpLYFgGHRAfzPnDRGDwjslRhERGxBCbz0SSG+7vxgRBQ/GBGFyWQms6zeurr99oJjlNY088H2Ej7YXoKTAYZGBVin2w+PDsDlAvroMsvqeGaZ+vJERMR+eLm5cHlqGJennl91Pj0lhMTQnqnOb8mv4pllB9lfWgtYLrr/5soUrhkaiZMWfBURB6cEXvo8JycDAyP9GBjpxy+mJtDc1sGWgqrO6nwFueUN7CmpYU9JDX/6OgdfdxcmJAYxOSmEqckhRAeefYred/vyXJ0N/GRinPryRETErlxIdX5qSgjpySFMTAy+6Op8QWUjzy0/yJffHgXAx92FX05L4KcT4/Bwtb9tY0VELoTdJPDPPPMMy5YtY8+ePbi5uVFTU2PrkMRBebo5My0llGkpoQAcrmm2rGyfU8mGnEpqm418+e1R6wnEgCAva+/8+IQgfDpPUNo64C9r81myvsDal3fVkHAWXJlKbJC3bX44ERGRbvLd6nzB8ep8dgVb8qsorWnm/a3FvL+1GFdng2Vl+wuoztc0tfGnr3N5e3Mh7SYzTga4dUwMD85MJtjn0tlRRkSkN9hNAt/W1saNN97I+PHjeeONN2wdjvQhkQGe3HxZDDdfFkOHycz+0lrWZ1eQkVPBruIaCquaKNxcxNubi3BxMjAyth/D+vvx7z3O1LTlAurLExERx2YwGIgP8SE+xLJ4bHNbB1vyq1iTVX7B1fm2dhNvby3gT1/nUNtsBCA9JYRHr0ojOcy3t39EEZFLgt0k8E899RQAb775pm0DkT7N2cnA8OgAhkcH8KvpSdS1GNmcd3zv+UqKq5vYVlDNtoJqwECkvwcLZqeqL09ERPoUTzdnpqWGMi019Jyq85cNCLQuhjegnzt7qwy8/OdNFFU3AZAS5stjc9KYkhxi459MRMS27CaBvxCtra20trZav6+rqwPAaDRiNBptFZY4EE9nuDw5iMuTg2AOFFU3sSG3ip2F1TjVHeaJ28bg6+VBR0c7HR22jlYc0fH3Mr2nSU/TWJOLER3gzh1jo7hjbBTNbR1sLawmI7uSdTmVFFc3symvik15VTz7RSZ+Hi7UtTgDTQT7uDFveiI3jOyPs5NB40+6ld7XpLd05xgzmM1mc7cdrRe8+eabzJs375x64J988klr5f5k77//Pl5e2htURERExNbKm+FgjYGDNQZyag20mw24GsxMizQzvb8JD61PJyJ2rqmpidtuu43a2lr8/Pwu6lg2rcCfKcE+2fbt2xk9evQFHf+RRx5h/vz51u/r6uqIjo5m2rRpBAUFXdAxRc6F0Whk5cqVzJw5E1dXrTQvPUdjTXqLxpr0hua2DvYUV1P4zXZumKOxJj1L72vSW6qqqrrtWDZN4O+//35uueWWsz5mwIABF3x8d3d33N1PXZ3U1dVVf6TSKzTWpLdorElv0ViTnuTq6sr4xBCOZWusSe/RWJOe1p3jy6YJfHBwMMHBwbYMQURERERERMQu2M0idsXFxVRXV1NcXExHRwd79uwBIDExER8fH9sGJyIiIiIiItLD7CaB/+1vf8tbb71l/X7EiBEArFmzhvT0dBtFJSIiIiIiItI7nGwdwLl68803MZvNp3wpeRcREREREZG+wG4SeBEREREREZG+TAm8iIiIiIiIiB1QAi8iIiIiIiJiB5TAi4iIiIiIiNgBJfAiIiIiIiIidkAJvIiIiIiIiIgdUAIvIiIiIiIiYgeUwIuIiIiIiIjYASXwIiIiIiIiInZACbyIiIiIiIiIHVACLyIiIiIiImIHlMCLiIiIiIiI2AEl8CIiIiIiIiJ2QAm8iIiIiIiIiB1wsXUAvclsNgNQX1+Pq6urjaMRR2Y0GmlqaqKurk5jTXqUxpr0Fo016S0aa9JbNNakt9TX1wMn8tGL0acS+KqqKgDi4uJsHImIiIiIiIj0JVVVVfj7+1/UMfpUAh8YGAhAcXHxRf/iRM6mrq6O6OhoSkpK8PPzs3U44sA01qS3aKxJb9FYk96isSa9pba2lpiYGGs+ejH6VALv5GRp+ff399cfqfQKPz8/jTXpFRpr0ls01qS3aKxJb9FYk95yPB+9qGN0QxwiIiIiIiIi0sOUwIuIiIiIiIjYgT6VwLu7u/PEE0/g7u5u61DEwWmsSW/RWJPeorEmvUVjTXqLxpr0lu4cawZzd6xlLyIiIiIiIiI9qk9V4EVERERERETslRJ4ERERERERETugBF5ERERERETEDiiBFxEREREREbEDfSaBf/XVV4mLi8PDw4NRo0axfv16W4ckDmbRokVcdtll+Pr6Ehoayty5c8nKyrJ1WNIHLFq0CIPBwLx582wdijig0tJSbr/9doKCgvDy8mL48OHs3LnT1mGJg2lvb+fxxx8nLi4OT09P4uPj+d3vfofJZLJ1aGLnMjIyuOaaa4iMjMRgMPDpp592ud9sNvPkk08SGRmJp6cn6enpfPvtt7YJVuza2caa0WhkwYIFDBkyBG9vbyIjI7nzzjs5fPjweb9On0jgP/zwQ+bNm8djjz3G7t27mTx5MrNnz6a4uNjWoYkDWbduHffddx9btmxh5cqVtLe3M2vWLBobG20dmjiw7du3s2TJEoYOHWrrUMQBHTt2jIkTJ+Lq6sry5cs5cOAAL730EgEBAbYOTRzM888/z1//+lcWL17MwYMHeeGFF3jxxRf585//bOvQxM41NjYybNgwFi9efNr7X3jhBV5++WUWL17M9u3bCQ8PZ+bMmdTX1/dypGLvzjbWmpqa2LVrF//zP//Drl27+Pjjj8nOzubaa68979fpE9vIjR07lpEjR/Laa69Zb0tLS2Pu3LksWrTIhpGJI6uoqCA0NJR169YxZcoUW4cjDqihoYGRI0fy6quv8vTTTzN8+HBeeeUVW4clDmThwoVs3LhRs9akx1199dWEhYXxxhtvWG+7/vrr8fLy4p133rFhZOJIDAYDn3zyCXPnzgUs1ffIyEjmzZvHggULAGhtbSUsLIznn3+en//85zaMVuzZd8fa6Wzfvp0xY8ZQVFRETEzMOR/b4SvwbW1t7Ny5k1mzZnW5fdasWWzatMlGUUlfUFtbC0BgYKCNIxFHdd999zFnzhxmzJhh61DEQX322WeMHj2aG2+8kdDQUEaMGMHrr79u67DEAU2aNImvv/6a7OxsAPbu3cuGDRu46qqrbByZOLKCggLKysq65Anu7u5MnTpVeYL0uNraWgwGw3nPanPpmXAuHZWVlXR0dBAWFtbl9rCwMMrKymwUlTg6s9nM/PnzmTRpEoMHD7Z1OOKAPvjgA3bt2sX27dttHYo4sPz8fF577TXmz5/Po48+yrZt2/j1r3+Nu7s7d955p63DEweyYMECamtrSU1NxdnZmY6ODp555hluvfVWW4cmDux4LnC6PKGoqMgWIUkf0dLSwsKFC7ntttvw8/M7r+c6fAJ/nMFg6PK92Ww+5TaR7nL//fezb98+NmzYYOtQxAGVlJTwwAMP8NVXX+Hh4WHrcMSBmUwmRo8ezbPPPgvAiBEj+Pbbb3nttdeUwEu3+vDDD3n33Xd5//33GTRoEHv27GHevHlERkZy11132To8cXDKE6Q3GY1GbrnlFkwmE6+++up5P9/hE/jg4GCcnZ1PqbaXl5efcrVNpDv86le/4rPPPiMjI4OoqChbhyMOaOfOnZSXlzNq1CjrbR0dHWRkZLB48WJaW1txdna2YYTiKCIiIhg4cGCX29LS0vjoo49sFJE4qocffpiFCxdyyy23ADBkyBCKiopYtGiREnjpMeHh4YClEh8REWG9XXmC9BSj0chNN91EQUEBq1evPu/qO/SBHng3NzdGjRrFypUru9y+cuVKJkyYYKOoxBGZzWbuv/9+Pv74Y1avXk1cXJytQxIHNX36dPbv38+ePXusX6NHj+ZHP/oRe/bsUfIu3WbixImnbIeZnZ1NbGysjSISR9XU1ISTU9fTUmdnZ20jJz0qLi6O8PDwLnlCW1sb69atU54g3e548p6Tk8OqVasICgq6oOM4fAUeYP78+dxxxx2MHj2a8ePHs2TJEoqLi/nFL35h69DEgdx33328//77/Oc//8HX19c668Pf3x9PT08bRyeOxNfX95S1Fby9vQkKCtKaC9KtHnzwQSZMmMCzzz7LTTfdxLZt21iyZAlLliyxdWjiYK655hqeeeYZYmJiGDRoELt37+bll1/mpz/9qa1DEzvX0NBAbm6u9fuCggL27NlDYGAgMTExzJs3j2effZakpCSSkpJ49tln8fLy4rbbbrNh1GKPzjbWIiMjueGGG9i1axdLly6lo6PDmisEBgbi5uZ27i9k7iP+8pe/mGNjY81ubm7mkSNHmtetW2frkMTBAKf9+sc//mHr0KQPmDp1qvmBBx6wdRjigD7//HPz4MGDze7u7ubU1FTzkiVLbB2SOKC6ujrzAw88YI6JiTF7eHiY4+PjzY899pi5tbXV1qGJnVuzZs1pz8/uuusus9lsNptMJvMTTzxhDg8PN7u7u5unTJli3r9/v22DFrt0trFWUFBwxlxhzZo15/U6fWIfeBERERERERF75/A98CIiIiIiIiKOQAm8iIiIiIiIiB1QAi8iIiIiIiJiB5TAi4iIiIiIiNiBPrGN3HEmk4nDhw/j6+uLwWCwdTgiIiIiIiLi4MxmM/X19URGRuLkdHE19D6VwB8+fJjo6GhbhyEiIiIiIiJ9TElJCVFRURd1jD6VwPv6+gJQUFBAYGCgjaMRR2Y0Gvnqq6+YNWsWrq6utg5HHJjGmvQWjTXpLRpr0ls01qS3VFdXExcXZ81HL0afSuCPT5v39fXFz8/PxtGIIzMajXh5eeHn56cPBOlRGmvSWzTWpLdorElv0ViT3mI0GgG6pY1bi9iJiIiIiIiI2AEl8CIiIiIiIiJ2QAm8iIiIiIiIiB1QAi8iIiIiIiJiB5TAi4iIiIiIiNgBJfAiIiIiIiIidkAJvIiIiIiIiIgdUAIvIiIiIiIiYgeUwIuIiIiISJ9lNpu59957CQwMxGAwsGfPHtLT05k3b56tQxM5hRJ4ERERERHps7788kvefPNNli5dypEjRxg8eLBN4rj22muJiYnBw8ODiIgI7rjjDg4fPnzK4958802GDh2Kh4cH4eHh3H///Wc9bllZGXfccQfh4eF4e3szcuRI/u///q/LYwwGA59++ukpz/3xj3/M3LlzL+bHkm7mYusAREREREREbCU/P5+IiAgmTJhg0zimTZvGo48+SkREBKWlpTz00EPccMMNbNq0yfqYl19+mZdeeokXX3yRsWPH0tLSQn5+/lmPe8cdd1BbW8tnn31GcHAw77//PjfffDM7duxgxIgRPf1jSTdTBV5ERERERPqkP/7xj8ybN4/i4mIMBgMDBgw47eNWrFiBv78/b7/9do/F8uCDDzJu3DhiY2OZMGECCxcuZMuWLRiNRgCOHTvG448/zttvv81tt91GQkICgwYN4pprrjnrcTdv3syvfvUrxowZQ3x8PI8//jgBAQHs2rXrvOIrLCzEYDCc8pWenn6hP7JcACXwIiIiIiLSJ91zzz088cQTREVFceTIEbZv337KYz744ANuuukm3n77be68884zHsvHx+esX7Nnzz7nuKqrq3nvvfeYMGECrq6uAKxcuRKTyURpaSlpaWlERUVx0003UVJSctZjTZo0iQ8//JDq6mpMJhMffPABra2t5514R0dHc+TIEevX7t27CQoKYsqUKed1HLk4mkIvIiIiIiJ9kre3N76+vjg7OxMeHn7K/a+++iqPPvoo//nPf5g2bdpZj7Vnz56z3u/p6fm98SxYsIDFixfT1NTEuHHjWLp0qfW+/Px8TCYTzz77LH/84x/x9/fn8ccfZ+bMmezbtw83N7fTHvPDDz/k5ptvJigoCBcXF7y8vPjkk09ISEjo8rhbb70VZ2fnLre1trYyZ84cgC6/o5aWFubOncv48eN58sknv/fnku6jBF5EREREROQ7PvroI44ePcqGDRsYM2bM9z4+MTHxol/z4Ycf5u6776aoqIinnnqKO++8k6VLl2IwGDCZTBiNRv70pz8xa9YsAP75z38SHh7OmjVruOKKK057zMcff5xjx46xatUqgoOD+fTTT7nxxhtZv349Q4YMsT7uD3/4AzNmzOjy3AULFtDR0XHKMe+++27q6+tZuXIlTk6a1N2b7CqBz8jI4MUXX2Tnzp0cOXKETz75RKsiioiIiIhItxs+fDi7du3iH//4B5dddhkGg+Gsj/fx8Tnr/ZMnT2b58uVnfUxwcDDBwcEkJyeTlpZGdHQ0W7ZsYfz48URERAAwcOBA6+NDQkIIDg6muLj4tMfLy8tj8eLFfPPNNwwaNAiAYcOGsX79ev7yl7/w17/+1frY8PDwUy5C+Pr6UlNT0+W2p59+mhUrVrBt2zZ8fX3P+vNI97OrBL6xsZFhw4bxk5/8hOuvv97W4YiIiIiIiINKSEjgpZdeIj09HWdnZxYvXnzWx3fHFPqTmc1mwDKNHWDixIkAZGVlERUVBVh65SsrK4mNjT3tMZqamgBOqZI7OztjMpnOKx6wzEr43e9+x/Lly0+Zgi+9w64S+NmzZ5/X4g8iIiIiIiIXKjk5mTVr1pCeno6LiwuvvPLKGR97MVPot23bxrZt25g0aRL9+vUjPz+f3/72tyQkJDB+/HhrLNdddx0PPPAAS5Yswc/Pj0ceeYTU1FRrf35paSnTp0/n7bffZsyYMaSmppKYmMjPf/5zfv/73xMUFMSnn37KypUru/TXn4tvvvmGO++8kwULFjBo0CDKysoAcHNzIzAw8IJ/djk/dpXAn6/W1lbrFSuAuro6AIxGo3U7BpGecHx8aZxJT9NYk55m7DDx752l/H1DIf44ETv0GIOi+tk6LHFgel+T3nJ8jB3v8T55zJnNZmvPeXx8PF9++SUzZ87EYDDwwgsvdHssLi4ufPTRRzzxxBM0NjYSERHBrFmzeOedd3BycrLG9sYbb/DQQw8xZ84cnJycmDx5Mp9//rk1/qamJrKysqirq7M+5z//+Q+PPfYY11xzDQ0NDSQkJPDGG28wc+bMLj9ze3v7KX93JpPJ+nvYunUrTU1NPP300zz99NPWx0yZMoVVq1Z1++/EkXTn+5nBfHxuhp0xGAzf2wP/5JNP8tRTT51y+/vvv4+Xl1cPRiciImLfzGbYW21gWbET5S0n+j4NmLksxMxV0Sb6udswQBERETvR1NTEbbfdRm1tLX5+fhd1LIdO4E9XgT++f2FQUFAvRCl9ldFoZOXKlcycOdO6d6dIT9BYk56wvfAYL3yVzZ6SWgACvV25e0IMK3flsKfK0kfp5uLEneNi+MWUOPw9Nfak++h9TXqLxpr0lqqqKiIiIrolgXfoKfTu7u64u59aHnB1ddUfqfQKjTXpLRpr0h2yj9bz/PJMvs4sB8DLzZl7Jsfzs8lxeDhDVEMW/YeO58WvcthaUM3fNxTyrx2HuG9aIndNGICHq/P3vILIudP7mvQWjTXpad05vhw6gRcREZHvd6S2mZe/yuajXYcwmcHZycCtY6L59fQkQn09gBP9e8Oi/Png3nGszargueWZZB2tZ9HyTN7aVMj8WSn8YER/nJ3OvtWSiIiIXBi7SuAbGhrIzc21fl9QUMCePXsIDAwkJibGhpGJiIjYn9pmI6+tzeMfGwtobbdsJzR7cDgPX5FCfMiZ9zM2GAxMSw1lSnIIn+wu5eWvsjhc28JD/97L39fns+DKVNJTQr53z2QRERE5P3aVwO/YscO6RQLA/PnzAbjrrrt48803bRSViIiIfWkxdvDO5iIWr8mlttlSWR8TF8jC2amMjDn3FeadnQzcMCqKq4dG8NamQv6yJpfMsnp+8uZ2xsUHsnB2GsOjA3ropxAREel77CqBT09Px07X3BMREbG5DpOZT3eX8vLKbEprmgFIDvNhwZWpXJ4aesEVcw9XZ34+NYFbLovh1bW5/GNTIVvyq5n7l43MGRLBQ1ekEBfs3Z0/ioiISJ9kVwm8iIiInD+z2cza7AqeX55JZlk9ABH+Hjw4M5nrR0Z1W8+6v5crj1yVxl0TBvDySktP/bL9R/jy2zJuHRPDr6cnEeKrvedEREQulBJ4ERERB7bvUA2Lvshkc34VAH4eLvxyWiI/7sFV4yMDPPn9jcO4Z3IcL6zIYnVmOe9sKeKjXYf42eR4fjYlHh93nYKIiIicL316ioiIOKDCykZe/CqLZfuOAJZ92388YQC/TE8gwMutV2JIDffjf398GVvyq1i0PJO9JTX88esc3ttaxK+nJ3HrmBhcnZ16JRYRERFHoAReRETEgVQ2tPLnr3N4b2sx7SYzBgP8YER/5s9MJqqfl01iGhcfxKe/nMDyb8p48cssCiob+e1/vuV/NxTw8BWpXDUkXCvWi4iInAMl8CIiIg6gsbWdv68vYElGHo1tHQCkp4Sw4MpU0iL8bBydZeu5q4ZEMHNgGB9sL+GPq3IorGrivvd3MSzKn4Wz0xifEGTrMEVERC5pSuBFRETsmLHDZE2IKxtaARgW5c+C2alMSAi2cXSncnV24o5xsfxwRH/rBYe9h2q59fUtl9QFBxERkUuREngRERE7ZDabu0xJBxgQ5GU3U9K93V14YEYSt42N4c+rc3h/azFrsypYl13BD0dEMX9WMv0DPG0dpoiIyCVFCbyIiIid2dq5KNyekhoAgrzdeGCGfS4KF+Lrzu+uG8xPJ8ZZF937aNchPt93uNcX3RMREbnUKYEXERGxE1ll9Ty/IpPVmeUAeLk5O8y2bAOCvfnLbSO5d3INi5YfZEt+NUsy8vlgW3GPb3snIiJiL+z7015ERKQPOFzTzMsrs/lo1yHMZnBxMnDrmBh+NT2RUF8PW4fXrYZFB/DPn41jbXYFzy/PJLOsnueWZ/LWpkIenJnM9SOjcHa6tNsDREREeooSeBERkUtUbZORV9fm8o9NhbS1mwCYMySCh65IIS7Y28bR9RyDwcC0lFCmJIXw6e5SXl6ZTWlNM7/5v328sb6ABbNTmJYSesn3+YuIiHQ3JfAiIiKXmBZjB29tKuQva3Kpa2kHYGxcII9clcbw6ADbBteLnJ0MXD8qijlDI3hncxGL1+SSdbSen765gzFxgTwyO5URMf1sHaaIiEivUQIvchGMHSaKqprILW8gr+L4VyPFVY0EOjvTEXWEq4dF4eZiX4tKiYhtdJjMfLK7lJe/yuJwbQsAKWG+LJydSnpKSJ+tOHu4OvOzKfHcNDqaV9fl8o+NhWwrqOYHr25i9uBwHr4ihfgQH1uHKSJ2oqS6ife2FvPp7kO0tTrzUeVOEkP9SAj1JiHEh8RQH4K83frse65c2pTAi5yD2majJTkvtyTox5P14qom2k3m0z7nGAbm/3s/zy7P4ubLorl1TAxR/bx6OXIRsQdms5m1WRU8v8LS8w0Q4e/B/JnJ/FA931b+Xq48MjuNu8YP4A+dawIs/6aMrw4c5ZbLonlgRpLDrQkgIt2jw2RmXXY572wuYm12BWbr6ZuBjJwqMnKqujze39OVhBBLQp8Q6mP5b4g3MYFeuNjZbh/iWJTAi3Qymcwcrm0mr6LxREW9M2GvbGg94/O83Zy7vLEnhPgQ5uvK60s3savWi6P1rfxlTR6vrc3j8tRQbh8Xy5SkEJx0Qi4iwJ6SGp7rXHUdwM/DhfumJXKXVl0/o8gAT168cRj3TI7nhRWZfJ1Zzntbi/lkdyn3TI7nXgdYlV9EukdlQyv/2lHCe1uKKa1ptt4+OSmYW0b3J2vfTsISh1JQ1WydSVlyrInaZiO7imvYVVzT5XiuzgZig7xPJPedFfv4EG98PVx7+aeTvkifbtLntBg7yD+pip5X0UheeQP5lQ20GE1nfF64nweJoZ1JujVh9yHMz/2UKVZGo5Ero828dM9kMnKreXdLMRtyK1l1sJxVB8uJCfTiR2NjuHF0NIHe2t9YpC8qqGzk919msWz/EQDcXJz4yYQB/DI9EX8vnQSei5RwX9748WVsza9i0fJM9pTU8Kevc3hvSxG/np7ErWNi1MIk0geZzWZ2Fh3jnS1FLN9fRluH5fzO39OVm0ZHcdvYWOKCvTEajbQXwlWjo3B1PfG+22LsoLCqkbzyk88XG8grb6TZ2EFueQO55Q3A0S6vG+bnbj0/PPl8McLfQ9PxpdsogReHZDabqWpss1bQT+5RL61pPmnaVFeuzgbigk9cUT3eCxUf4nNB1RxXZyeuHBzBlYMjyKto4L0txfzfzhKKq5tYtDyTl1Zmc/WQCG4fH8uI6AC9uYv0ARX1rfzp6xz+ua2YdpMZgwGuHxnF/JnJRAZ42jo8uzQ2PohPfjmBFd+U8eKXWeRXNvLEZ9/yvxsLeGhWCnOGRGjWk0gf0NDazqe7S3l3S5G1HQks21PeMS6Wq4dGnNPMJg9XZ1LD/UgN9+tyu8lkpqyupevaR51Jfnl9K0frLF+b8rpOx/dycya+s2KfeNKU/NggL820kvOmBF7sWnuHieLqphN96eUnquq1zcYzPs/f0/VENb1z6lNCiA9R/Tx7rK8pIcSH314zkIevSOHzvYd5Z0sR+0tr+Xh3KR/vLmVghB93jI/luuGReLnpT1PE0TS0tvN6Rj6vr8+nqa0DgMtTQ/nNlSmnnCTK+TMYDMweEsGMgWF8uL2EV1blUFTVxK/+uZvX1+ez8MpUJiQG2zpMEekBWWX1vLuliE92l9LQatm5w8PVieuG9ef2cbEMifLvltdxcjIQGeBJZIAnU5JDutxX12K0zPA8KbnPLW+gqKqJprYOvimt45vSuq7HM0B0oFeXNszjyb1maMqZKEsQu1B//E3xpDfEvIpGiqoaMXacvpxuMEB0P6/TLkASaMOVRT3dnLnpsmhuuiyavSU1vLOliM/3HubAkToe+Xg/zy47yPWjorh9XAyJob42iVFEuo+xw8QH24r549c5VDa0AZZq0COzUxkXH2Tj6ByPq7MTt4+L5Qcj+vPGhgL+ti6PfYdque3vW5maHMLC2amkReiCiYi9a2s3seLbMt7dUsS2gmrr7fHB3tw+LpbrR0b1ajuSn4crw6MDTtnq03i82PSdhZBzyxuob2mnqKqJoqomVmd2PV4/L1drgenkWaFR/by0sGkfpwReLhlms5kjtS2nXe39aN2ZF5HzdD0xLen4G1xiqA8Dgrwv+WlJw6IDGBYdwONz0vi/nYd4d0sRhVVNvLmpkDc3FTIuPpA7xg1g1qAwXLXiqYhdMZvNfLG/jBe/zKSwqgmAuGBvHr4ihdmDw9Uy08O83V349fQkbhsbw+LVuby7pYh12RVk5FTwg+H9mT8rWTuDiNih0ppm3t9axIfbS6wXRZ2dDMwaGMbt42KZkBB0Sb2/ujo7Wc9RT2Y2m6lsaDupMHViXabSmmaONRnZXniM7YXHujzPzdnJ0u4ZetK5b4hlET1vLd7ZJ+hfWXpdi7GDoqqmU6a851U0WKeVnk6or3uXK5DHq+oRfh5239sY4OXGPZPj+enEODbmVfLO5iJWHTzKlvxqtuRXE+Lrzq2XRXPr2Bgi/NUjK3Kp25xXxXPLD7L3UC0AwT7uPDAjiVsui9bFuF4W7OPOk9cO4icTB/Dil1ks3XeEj3eXsnTfEe6aEMsv0xPpp6mqIpc0k8lMRk4F724pYnVmOcd38A3zc+eWy2K4dUwM4f72tYWkwWAgxNedEF/3U2ZjNbd1kF95IqE/fq6cX9FAa7uJrKP1ZB2tP+WYkf4ep+yMlBDqQ6jvqQsui/1SAi895lhjG7mnSdJLqps4w9bpuDgZiA3yOmXKe3yID/6ejr8qs5OTgclJIUxOCuFwTTMfbCvmn9tLLIterc5l8ZpcZqSFccf4WCYmBNv9hQsRR3PwSB3Pr8hkbVYFYNlm8t4pCdwzOU6VERuLDfJm8W0juXdKDc8tz2RTXhWvry/gg+0l/DI9kZ9M1LZ9Ipea6sY2/r2jhPe2FlNc3WS9fWJiELePjWXGQMecoejp5sygSH8GRXbt3TeZzJTWNJ90fm05t86vaKCyoY3DtS0crm1hfU5ll+f5uLt8p6XUu3MRPW/t1GGHdDYhF6XDZObQsePV9K5bs1U3tp3xeb4eLl37ejq32ogJ9HLIN+ILERngyfxZKfxqehJffXuUd7YUsiW/mq8OHOWrA0cZEOTF7eNiuWFUFAFeqh6J2FJpTTMvf5XNx7sPYTZbLkbeNjaGX12eRIivu63Dk5MMjQrgvXvGkpFTyXPLM60XXd7aVMj8mclcPypK/aUiNmQ2m9ldUsO7m4tYuv8Ibe2WLeB8PVy4YVQUPxobS2Koz/ccxTE5ORmIDvQiOtCLaSmhXe6raWrr0n6aV26p2BdVN9HQ2s7eQ7XWWWHHOTsZiA30Iv47M1wTQ3y0neklTAm8nJPG1nYKKhtP2TajoKrR+sZ6Ov0DPLtc6Ts+BT7ER1N5zpWrsxNzhkYwZ2gEOUfreW9rMR/tPERhVRNPLzvIi19mcc2wSO4YF8uw7yycIiI9q6apjVfX5vHmpkLre+GcoRE8PCuFAcHeNo5OzsRgMDA1OYTJicF8uqeUl77KprSmmd98tI/X1+ez4MpUpqeF6nNKpBc1tbXznz2HeXdLEd8ePrFa++D+ftwxLpZrhmmXnrMJ8HJjVKwbo2L7dbm9tb2D4uOtq9+Zkt/Q2k5+ZSP5lY2sOtj1eME+bpbEvrPQdrzw1j/AUzNAbUx/BWJlNpspr289Zcp7XnkDh2tbzvg8d5fji2n4nLQlmzdxwd56o+1mSWG+PHntIB6+IoXP9h7mnc1FHDhSx//tPMT/7TzEkP7+1g85TzdNBRXpKS3GDt7cVMira3Kpa7FsWTQuPpBHZqfpQpodcXIy8MORUVw1JIJ3txSxeE0uOeUN3PP2DsYMCGThVamMjOn3/QcSkQuWW17Pu1uK+WjXIeo730/dXZy4emgkd4yPZViUvy6mXQR3F2eSwnxJCuu6s9F3z/tzT5qSf6S2hcqGNiobqrus8G85nlNnYt91Sn58sI/OPXuJsqs+qK3dRHF1I7nlp+6dfnzvzNP57pW4hFDLFJvIAE9NN+xl3u4u3Domhlsuiz4xzWzfEfaX1vKbj/bx9LID3DAqmtvHxRAf0jenmYn0hA6TmY92HeIPK7M50nlhMzXclwWzU0lPDtFJpp3ycHXmnsnx3Dg6mr+uy+N/NxSwrbCaH766iSsHhfPwlSmnrCAtIhfO2GFi5YGjvLO5iM35VdbbY4O8uH2spT1Qi0v2LIPBQJifB2F+HkxIDO5yX0NrOwUnT8c/PvO2spHWdhMHj9Rx8EjdKcc8PvM28TtT8oN9bLd9syNSAu/AapuMlkUuTtML03GGVeScDJaFfrpOebck7OqzvvQYDAZGxvRjZEw/Hr96IP/eUcK7W4soqW7mfzcW8L8bC5iUGMzt42KYkRaGi9YXELkgZrOZNVnlPL88y7ryb/8AT+bPTGbuiP66iOkg/D1dWXBlKneOj+WVlTn8e2cJK74tY+XBo9x8WTTzpicR6mdfK12LXEqO1Dbzz20lfLCtmPJ6yxbBTgaYnhbGHeNimZSoBXovBT7uLgyJ8mdIVNdF9E5e+yq3/MT6V7kVDdQ0GSmtaaa0ppmM7Iouz/PzcDlpcWqtfXWxlMDbueOrUZ485T23/MRqlGdyptUoY4K8cHfR9Bd7FOjtxs+nJvCzyfHWrVa+zixnQ24lG3IrCffz4JYx0dw6JoYwnYCKnLPdxcdYtDzTOo3Q39OV+6clcsf4WK1a7qAi/D15/oah3D05jhdWZLHq4FHe31rMJ7tKuWdyHPdOicfXQws8iZwLk8nMprwq3tlSyKqD5dYiUrCPO7d2npdEBmiLXHvg7GQgNsib2CBvLk8N63JfdWPbabeILqluoq6lnd3FNewurunynOO7T3VZ2DrUsqe9n95jz0gJvJ34vv0gzyTC36PLla7jfxxhflpEzlE5ORlITwklPSWUQ8ea+Oe2Yj7cXkJZXQuvrMrhz6tzmTXQcqV7fEKQxoHIGeRXNPD7r7L4Yn8ZAG4uTvxk4gB+OTVRq/P2Eclhvvz9rtFsK6hm0fKD7C6u4c+rc3lvazG/ujyRH42N1RZMImdQ22Tk3zstW8AVVDZabx8bF8gd42OZNTBcfz8OJNDbjUDvQC4bENjl9hZjB4VVjd/ZrcpSvW82dnQm+o3A0S7PC/V1ty5+fXJyH+Hn0ednaSiBv4SYzWYqG9q6DOzjFfXSmuYzPs/N2YkBwd+5ehXiQ1yINz7ad7hPi+rnxcNXpPLA9GRWfFvGu5uL2FZYzfJvylj+TRkJId78aGws14+Kwt9TCYkIQHl9C3/6Ood/biuhw2TGyQDXj4ziwZnJqhL1UWPiAvn4vybw5bdlvLAii/zKRp76/AD/2FjIQ1ekcPWQiD5/Qily3L5DNbyzuYjP9h62Fpl83V344cj+/GhcLMnfWUxNHJuHqzOp4X6khvt1ud1kMlNW13JS1f5E3lNe32r9OnmNBABPV+euSX1nkj8gyLvPzIpTdmcDxg4TxdVNXQbr8cF7fDXj0wnwcrUsCvGdq1FR/TzV2yxn5ebixLXDIrl2WCSZZXW8t6WYj3cdIq+ikd8tPcALX2Yyd3h/bh8Xy+D+/t9/QBEH1NDazpKMfP6+Pp+mtg4ApqeG8psrU0kJ1wlnX2cwGLhycAQz0sL4cEcJr6zKobi6iV//czevZ+SzcHYqE7+zEJRIX9Hc1sHn+yxbwO07aa/xtAjLFnDXDY/EW0UlOYmTk4HIAE8iAzyZnBTS5b66FiP5XWYdW3KmwkpL1f6b0jq+Ke26iJ7BANH9vL7TImzZHSvQwRZE1F9SDzrT4CuqasTYcfpF5L47+BJDTwxARxt8Yhup4X78v7mDWTA7lU92l/LeliIyy+r5YHsJH2wvYXh0ALePi+XqoRF95kqm9G1t7Sb+ua2YP32dQ1WjZe2Q4dEBPDI7lbHxQTaOTi41Ls5O/GhsLD8Y0Z831hfwt4x89pfW8qO/b2VKcggLrkxhUKQuhErfkF/RwHtbi/n3jhJrEcrN2Yk5QyO4fVwsI2MC1Kon583Pw5Xh0QEM/862rMYOEyXVTeRVNHZue3diC7z6lnaKq5sorm5iTVbXRfT6ebl2qdbbexFUCfxFMpnMHKlr6Zqkd059P7665ulo+ofYmo+7C3eMi+X2sTHsKDrGu1uK+GL/EfaU1LCnpIanlx3gptHR/GhsDLFB3rYOV6Tbmc1mlu47wu+/yqKoqgmA+GBvHr4ihSsHh+ukU87Ky82FX01P4raxMZ198UVkZFewPqeCucP7M39mMtGBXrYOU6TbtXeYWHWwnHe3FLEht9J6e3SgJz8aG8uNo6II8nG3YYTiqFydLXvQx4f4MHPgiUX0ztSGnFfRwKFjzRxrMrKj6Bg7io51Od7xNuSTc7HEEF/iQ7wv6Rkjl25kZ/Dqq6/y4osvcuTIEQYNGsQrr7zC5MmTe/x1z7QAQ35Fo3Wq5emcbgGGxFAfwrUAg1wiDAYDlw2wLDryP1cP5MPtJby/tZjSmmaWZOSzJCOfKckh3D42hstTQ+3ySqXId23Kq+S55ZnWqZ7BPu7Mm5HEzZdFa0sbOS9BPu48ee0gfjoxjt9/lcVnew/zye5Slu07wh3jY7l/WqL2sxaHcLSuhQ+2lfDPbcWU1bUAlpmjl6eEcvu4WKYkh2hLTbEJg8FAiK87Ib7ujPvOzLnmtg4KKhstW2ufZiHw7KMNZB9tOOWYl/JC4HaVwH/44YfMmzePV199lYkTJ/K3v/2N2bNnc+DAAWJiYrrlNaob205MyTjpH7nkWBPm08961xYI4jCCfdy5b1oiv5iawNosy9X1tdkVZHR+Rfp7cNvYGG66LJpQX21FJ/bn4JE6nlueybrOPWq93Zz5+dQE7p4Ud0lfbZdLX0yQF3+6dQQ/mxzPcysOsjG3ijc2FPCv7SX8Ij2Bn06Mw9NNM+zEvpjNZjbnV/HuliK++vYo7Z1bwAV5u3HzZZYt4DTTRC5lnm7ODIz0Y2DkqYvofXcr7uO5X2VDG0dqWzhS29JllglYzhtOJPTe1vwvNsi713ZVsKuzlZdffpm7776be+65B4BXXnmFL7/8ktdee41Fixad83HaO0wUVjaedprFsSbjGZ/n6+HynZXeLVdkYgK9VLERh+LsZGB6WhjT08IormrivW1F/HvHIQ7XtvD7r7J5ZVUOVw4O5/ZxsYyNC7T5lUiR73PoWBMvf5XNJ3tKMZstF15vHxfL/ZcnEqypntKNhkT58+7dY1mfY5nlceBIHS9+mcXbmwt5cEYyN4yK0kwmueTVNhv5eNch3t1S1LnFl8Vl3deW+wAAJ0JJREFUA/px+7hYrhwcjruLLkiJ/XJyMhAd6EV0oBfpKV3vq2lq+85C45aKfVF1E41tHew7VNtlsUawnDvHBJ60iN5JM7ADvLp3FtZFJfDHjh3jrbfeIicnh4iICO666y6io6O7K7Yu2tra2LlzJwsXLuxy+6xZs9i0adNpn9Pa2kpr64k+9Lo6y2qFE15YR4fLmbcC6h/gQXywNwkh3sSHeFv/P8jb7fSJiqkDo+nM0+il7zEajV3+a88i/Fx5aEYiv5oax4pvj/L+9kPsKq5h6b4jLN13hMQQb24bE83c4RH4asZJr3OksdYTjjW18beMAt7eUmxdPHTO4HAenJlIbGfVSL+7c6Oxdn7GxwXwyS/G8vn+Ml5ZlcOhmhYWfryfv6/P56GZSVyeGqKLn2egsWY73x6u4/1tJXy+7wjNRssWcN5uzlw3PILbLos+sSOH2YSx8357prEmp+PtamBopA9DI3263N7WbtlJLL+ysXMafqPl/ysbaWy1TNUvqGxk1cHyLs8L9HYlyusMU7kvgMFsPtPE8FNFRkayf/9+goKCKCgoYMKECQAMGTKEgwcPUl9fz5YtW0hNTe22AI87fPgw/fv3Z+PGjdbXBXj22Wd56623yMrKOuU5Tz75JE899dQpt0fP+xfuHp6EekKop5kwTwjzNBPqaSbUAzTDTeTsDjXCxjIndlQaaDNZTkDdnMyMDjEzKcxEf615JzbW1gEZZQZWlTrR3GEZo0l+Jq6NNRHj8z1PFulm7SbYcNTAV4ecaGy3jMd4XzPXxnYQpx0KxcaMJthdZWBjmROFDScuKkV4mpkYbuKyYDMedjVnV6R3mc1QZ4SjzQaONkN553+PNhuoabP8TZlamyh55SZqa2vx8/P7niOe3Xkl8E5OTpSVlREaGsqtt95KWVkZy5Ytw8vLi9bWVm644QY8PDz497//fVFBnc7xBH7Tpk2MHz/eevszzzzDO++8Q2Zm5inPOV0FPjo6ml2ZBQwcEKlF5KTHGI1GVq5cycyZM3F1ddyqdH2LkU/3HOG9bSVdptiNjAngtjHRXDkoDPde6gfqq/rKWDtXHSYzH+8+zB9X53K0zvL+nxrmw8NXJDM5MUgVz4ugsXbx6luMLFlfyJubi2jprF7OTAvlv2cmkRCiK5/Haaz1jqLqJv65rYSPdx+2tpC6Ohu4YmAYt42JZnSs428Bp7EmPa2xtZ3CqiZ25x3ip9OHd0sCf8HX07Zu3crf//53vLwsUxDd3d15/PHHueGGGy4qoDMJDg7G2dmZsrKyLreXl5cTFhZ22ue4u7vj7n5qb2NMsC/u7loRVnqeq6urQ38gBLq68tPJCfxkUjxbC6p5Z0sRX35Txq7iGnYV1/Ds8izrVnRa5KZnOfpY+z5ms5mvD5bzwpeZ1tVk+wd48t+zkpk7vL8u2Hajvj7WLkagqysLrxrIjyfG88qqbP61o4SVB8tZnVXBTaOjmTcjiTA/LRB6nMZa9+swmVmdaVmk9vhinmB5v7xtbAw3jY4mxLfvrQuisSY9JcDVleE+nkR34+y/807gj1+Ja21tPSVxDgsLo6Ki4nRPu2hubm6MGjWKlStX8oMf/MB6+8qVK7nuuut65DVF5NwYDAbGxQcxLj6I8voWPtxWwvvbijlS28Jf1+Xxt4w80pNDuGN8LFOTQ7XNjHSrXcXHeO6LTLYVVgMQ4OXK/dMSuX1cLB6u6omSS0+4vwfPXT+UuyfF8cKXWaw8cJR/bivmk92HuGdSPD+fGq81RaRbVdS38q8dJ7aJBcsWcFOTQ7h9bCzTUvXZLGIvzjuBnz59Oi4uLtTV1ZGdnc2gQYOs9xUXFxMcHNytAZ5s/vz53HHHHYwePZrx48ezZMkSiouL+cUvftFjryki5yfU14NfTU/iv9ITWJ1ZzjtbilifU8marArWZFXQP8CTH42zXOXX6t9yMfIqGnhxRRYrvrXMzHJ3ceKnk+L4xdQE/D2V/MilLynMl9fvHM32wmqeW57JzqJjLF6Ty/vbirl/WiI/Ghejlb7lgpnNZrYVVPPu1mJWfHPEupBnPy9XbhodzW1jY4gNUuuGiL05rwT+iSee6PL98enzx33++edMnjz54qM6g5tvvpmqqip+97vfceTIEQYPHswXX3xBbGxsj72miFwYF2cnZg0KZ9agcAoqG3l/axH/2nGI0ppmXliRxSsrc5g9JJw7xsUyKrafw/fZSfcpr2vhla9z+HB7CR0mM04GuHFUNPNmJhHhf+YdRkQuVZcNCOT/fjGerw4c5YUVmeRVNPK7pQf4x6YCHpqVwjVDtW6PnLv6FiOf7i7lnS1F1pYisKxPc/u4WK4aEqHZSSJ27LwWsbN3dXV1+Pv7U1lZSVBQkK3DEQdmNBr54osvuOqqq9RTdZIWYwdL9x3hnS1F7C2psd6eGu7L7eNimTuiPz7uWur2fPSlsVbfYmRJRj5/X19As9GydeeMtFB+c2UqyWFayrun9aWxZkvtHSb+vfMQf1iZTXm9ZSHGwf39WHhlGpOSem6W46VEY+3CHDxSx7tbivh0dymNbZb3SE9XZ+aOiORHY2MZ3N/fxhFeejTWpLdUVVURHBxs20XsRETOl4erMzeMiuKGUVHsP1TLu1uK+M/eUjLL6nn80294bnkmPxjRn9vHxZ7Ya1b6vLZ2E+9vLeLPq3OpamwDYERMAI/MTmNMXKCNoxPpXi7OTtw6JobrhkfyvxsK+Ou6fL4preP2N7YyOSmYBVemKhETq9b2DpbvL+PdLUXsKDpmvT0hxJs7xsXyw1FR+Gk9BRGHogReRGxiSJQ/z98wlEevSuOjXYd4d0sR+ZWNvLOliHe2FDFmQCC3j4/lykHhuGkruj7JZDKzdP8Rfv9lFsXVTQDEB3vzmytTuGJQuNouxKF5ublw/+VJ3DY2lj+vzuHdzvVE1uds4LrhkTw0K0W7e/RhJdVNvL+tmH9tL7Fe2HRxMnDFoHBuHxfLuPhAvUeKOCgl8CJiU/5ervx0Uhw/mTiATXlVvLuliK8OHGVbYTXbCqsJ9nHj5suiuW1sLP0D1N/cV2zMreS55ZnsL60FIMTXnXkzkvj/7d17XFV1vv/x9+Z+EVRAQAR2KCjeUVDxfklJK8tp0iyxzrGZX87RRrpqU6eaOaVpk3lOlo0zTc6AdrfSygte0khRRCFTES+4AVEQRVBRQNi/PyjOeLrMWLAXe+/X8/HgD5a690cfH7brvb5rfT93JUTIzZULOnAeAb4eemZiT80YGqU/bjysj3NK9HFOiT7bf0rJiWY9OCZGAb6MxnUG9Q1WbcsvU1pmobYeLtO3D8GG+nvpnkGRmjogQsGMIQQcHgEeQKtgMpk0NDpIQ6ODdLryit7aXai3swpVWlWjV7ce07LPj2lMbLCSE80aEdOBDZ0c1IGSSi1cf1jbv5lP3MbTTQ+M6Kz7h0fJx4P/suC8IgJ89N9T++nXwztr4fo8fXGkXG9+eULv7ynWzFFdNGNolLw92JjMEZ29WKN39xRr5S6LiisuNx0fHhOk5ESzbowN5sIm4EQ4GwLQ6oS29dJD47pq9phobTpYqrRdFn159Kw2HSrTpkNligzw0bRBkZqcEMHKk4MoOletxen5+ijnpKxWyd3VpGmDzHpwTLQCGTcINOnVqa1S7x+kL46c0Qvr8nSgpEovbjisv+04oYfGddXk+HDCnAOwWq3aW1ih1J0Wfbb/tGrrGyRJbb3dNTk+XNMSzYoKYgQc4IwI8ABaLXdXF03o3VETenfUsTMXtTKzUO9lF6nwXLUWrMvTS+n5urV3RyUPNqtfRDue97NDFZdq9erWo/r7TkvTCeptfcP0SFJX5hMDP2J4TAcN7RKktV+V6MUNh1VccVlPrN6vv3xxXI+Pj1VSjxA+E+3QpZqr+ijnpFJ3WpR3+kLT8b7hbZWcaNbEvmGMgAOcHAEegF3o0qGNnp7YQ4/e1FVrc0uUmmnR1yertHrfSa3ed1I9w/yVnGjW7XFh3GptBy7X1uvNHQVa9vkxXbhyVZI0NDpQ88Z3V+9wdtgG/hUuLibdHtdJ43uFamVmoV7ZckTHzlzSA6nZije31xMTYpVwA5Ma7EF+6QWlZVq0eu9JXaxp/Ez0dHPR7XFhSk40q094O2MLBNBqcJYLwK74eLjprgGRmpIQodxvRtGtzS3RgZIqPbF6v+Z/dki/7B+u5MRIRQcziq61uVrfoA/2Fuvl9CM6XXVFktSjo7/mTYjV8JggVgyBn8DTzVUzhkXpzoRwLd92XH/JOK5sS4XufH2nxvUI0dzx3fg8bIVqrzZow4HTSs20aHfBuabjnYN8NS3RrDv7h6utDyPgAFyLAA/ALplMJsVFtFNcRDs9eXN3vZ/duMHPibPVWrHjhFbsOKHBnQOVnGhWUs8QufNMqKGsVqs2HSrTovV5OlJ2UZIU3t5bjyZ10219w9iUEGgG/l7uevSmbpo+2Kwlm47o3T1FSj9Yqs2HSnXXgAiljO2qEHYpN9zJ85f11q5CvZ1VpPKLNZIkVxeTxnUP0fTBZg3pEsjFTAA/iAAPwO619/XQr0d01v3DopRxtFypmRZtPlSqncfPaufxswr289TUgZG6e2CEOrZlFJ2tZVsq9MK6Q8o6USFJaufjrtmjozV9sFmebjzLCTS3EH8vLbijt+4fFqVF6/O08WCp3tpdpA/3ndT9w6L0wMgu8vdiZdeWGhqs+uJouVJ3WrQlr1QN34yAC/bz1N0DI3X3wEiFtuXiCoB/jgAPwGG4uJg0omsHjejaQSXnL+ut3YV6a3eRyi7U6H82H9GrW49qbPfGUXRDuwSx6tvCjp25qEXr87ThQKkkycvdRTOGRmnmKMIDYAvRwW20/N4E7TlxTgvW5SnbUqFXtx7Tql2Fmj0mRsmJkVxEa2EVl2r1XnaRVu4qlOVsddPxIV0CNT3RrLE9uEMMwPUhwANwSGHtvPVIUjc9OCZGGw+eVupOi3YVnNOGA6XacKBUUUG+jaPo4iN4xrCZlVVd0cvf3L5b32CVi0maktB4+y4rTIDtJdwQoPdnDlb6wVItXJ+nY2cu6b8+Oag3vyzgMZYWYLValVN0XmmZhVr7VYlqrzZO2PDzctOd8eGaNsis6OA2BlcJwF4R4AE4NA83F93aJ0y39glTfukFrfxml9+C8kt67tNDenHDYd3Wt3GX374R7Ywu165duFKnP207rjcyCnS5rl6SNK5HiB6/qZtiQthACzCSyWRSUs9QjYkN1vvZxXp5U76KKy4r5Z0cLd9+XPMmxGpE1w5Gl2nXqmuvak1OidJ2NU5J+VbPMH9NTzTrNqakAGgGfIoAcBpdQ/z0+9t76fHxsfo4p3EU3aFTVXovu1jvZRerz7dzdvuEyduD20r/VTVX67Uys1BLtx7VuUu1kqR4c3vNmxCrAYywAloVN1cXTR0YqdvjOumvXxbo9c+P6eCpKt37190aFh2keRNi1asToxyvx9Gyi0rLtOiDvcVNYzEbLx531PREs+Ii2rEpHYBmQ4AH4HR8Pd10z6DGTe32Fp5XWqZFn351Sl8VV+rx97/Sc58c1OSECE0bFKnOHbjN8Yc0NFi19qsS/XHjYRWduyxJ6tzBV3PHxyqpRwgnrEAr5u3hqlmjo3X3wEgt3XJUqZknlHG0XLe+kqHb+obp0aRuigz0MbrMVquuvkHpB0uVlmnRjmNnm46bA32aHs9q7+thYIUAHBUBHoDTMplMije3V7y5vZ66pbve+2YUXdG5y3ojo0BvZBRoWHSQkhPNGts9WG5sNNQk40i5Xlh/qOk20WA/T6WM7aopCeH8OwF2JMDXQ09P7KF/H3qDXtp4WB/llGhNbonWfX1K0waZ9eCYaAW28TS6zFbjVOVlvbW7SG/vLlTZhcYRcC4m6cbuIUpONGt4NBukAmhZBHgAkBTYxlMzR3bRr4d31vb8M0rLtGjL4TJlHC1XxtFyhfp76e6BkZo6MMKp5yh/fbJSC9fn6Ysj5ZKkNp5umjmys2YMi+LZTsCORQT4aMnUfvrV8M5NP+MrdpzQ+9nFemBEZ90/3Hl/xq1Wq748elZpmRalHypV/Tcz4ILaeGrqgAjdPShSndoxohSAbTjnJzEA/ABXF5NGxwZrdGywis5V663dhXonq0inq67o5U35emXLESX1bFxpGdw50GluEy86V920OidJ7q4mJSea9eCYGAVwmyjgMHp1aqvU+wddc5fNS+n5+numRSljY3RXQoTT3GVTWV2n9/cWa2WmRcfLLzUdHxQVoOREs27qGSoPN+f4twDQehDgAeAHRAT46PHxsZozNkbrvz6ttEyLsk5U6LP9p/XZ/tPq0sFXyYlm3dE/XG29HXMU3blLtVq65ajSMi2qrW8chXR7XOPzsREBPB8LOKphMUFa02XYNftcPPnh13ojo0CP3xSrm3o67j4X+4srlZp5QmtyS3SlrvFzr42nm+7o30nJiWZ1ZaoGAAMR4AHgn/B0c9XtcZ10e1wn5Z2uUlqmRR/uPaljZy7p92sPatH6w7o9rnEUnaPs3ny5tr5ph+oLNY27KrNDNeBcXFxMuj2ukyb06qiVuyx6ZctRHT9zSTPTstU/sp2euLm7w0yauFJXr7W5JUrLtCi3uLLpeGyon6YPNmtSXCf5enLaDMB4fBIBwHWIDfXXc5N6a96E7vpw30ml7bTocOkFvZ1VpLezihQX0U7TE826pU9Hebnb3yi6q/UNTTOiS6saN2jqGeaveRNiNTyGGdGAM/Jwc9G/D43SnfHhWr79uP7yRYH2Fp7X5Nd3amz3EM0d300xdroqXVB+SSszLXovu1iVl+skSR6uLrq5d6imDzarf2R7h73TAIB9IsADwE/QxtNN0xPNSh4UqawTFUrLtGjd16eUU3ReOUXn9dyn/zuKzhzoa3S5/5TValX6wVIt2nBYR8suSpLC23vrsZu6aWKfMHZVBiA/L3c9ktRN0xPNWrL5iN7JKtKmQ6XakleqyfERShkXo45tW/9mblfrG7Q5r0xpmZamDTmlxs+8aYPMmpIQzs77AFotAjwA/Awmk0kDowI0MCpAZy700Lt7irRqV6FOnr+s5duPa/n24xrRtYOmJ5o1JjZYrq0wCO85cU4vrMvTHkuFJKm9j7seHBOjaYmR8nSzv7sIALSsYH8vzf9Fb80YGqUXN+Rpw4FSvbOnSB/lnNSMYVGaObJLq9wXpKzqit7OKtJbuwt1qvKKJMlkkkZ3C9b0RLNGdO3QKj+jAeAfEeABoJl08PPUrNHRmjmyi7bmlSltl0Xb8s9o+zdfndp56+6BEbprQKQ6+Bm/unO07IIWrj+s9IOlkiQvdxf9alhn/b+RneXv1fpOvgG0LtHBbfSn6QnKtlTohXWHlHWiQss+P6a3dhdq9uhoTR9sNvwioNVqVebxc0rLtGjDgdO6+s0IuEBfD00ZEKF7BkayIScAu0KAB4Bm5upi0tgeIRrbI0SWs5e0aleh3t1TpJPnL+uPG/P135uPaHyvjkoeFKmBUQE2f76ytOqKlmzK1ztZRWqwNtY7JSFCKWNjnHrGPYCfJt7cXu8+MFibD5Vp4fo8HSm7qOc+PaQ3vzyhR5K6alJcJ5s/hlN1pU6rs4uVtquw6bEgSUowt9f0wWaN7xVq+MUFAPgpCPAA0ILMgb564ubuemhcV322/5TSMi3aW3hea3NLtDa3RF1D2ig50axf9OskvxZe9a66Uqc/bTumNzIKmkYjJfUI0ePjYxUd3KZF3xuAYzOZGi9cjurWQR/sLdbi9HydPH9ZD7+bqz9/UaB5E2I1IiaoxS9YHiipVFqmRR/tK9HlunpJko+Hq37Rr3EEXPeO/i36/gDQ0gjwAGADXu6uuqN/uO7oH66vT1Zq5a7GE8z80ot6+uMDemFdnib166TkQWb1CGveE8yaq/VKyyzU0i1HVFHduMtyvLm9npgQqwQHGQEFoHVwc3XRXQMidVvfTnpzR4GWfX5Mh05V6b6/7taQLoF6YkJ39Q5v3lGUV+rq9dn+U0rNtGhf4fmm411D2mh6olmTbHCBFABshQAPADbWq1NbLbijj564ubtWZxcrNdOiY2cab7VftatQCeb2Sk40a0Lvn3eLZ0ODVWtyS/THjYdVXHFZktSlg6/mjo/VuB4hjEYC0GK8PVz1H6OidfeASL269aj+vtOiHcfOauLSDE3sG6ZHk7r+7AkdhWertXKXRe/uKWq6OOnuajL0ESUAaGkEeAAwiL+Xu/5taJTuG3LDNZss7bFUaI+lQv/1iUfTKLrr3WRpe/4ZvbAuTwdPVUmSQvw99dDYrrozPlxuri4t8dcBgO9o7+uhp27tofuG3KCX0/P1Yc5Jrc0t0fqvT2naILNmj4lW0HWMbKtvsGprXplSMy3afuSMrI170imsrZemJZo1JSGiVWwSCgAthQAPAAYzmUwa3CVQg7sENo05WrWrUKerruj1bcf0p+3HNLpbsJITIzWy64+Povv6ZKVeWJenjKONs439PN00c1QXzRgaJW8PNmwCYIyIAB8tvitOvxreWQvX52lb/hmt2HFC7+0p0gMju+j+YVHy9fzh09IzF2quGdP5rZFdOyi5FY/pBIDmRoAHgFYk2N9Lv70xRv8xqos255UpLdOiL46Ua0tembbklSm8vbemDTJrSkK4Av9h1aqoolpLNh/XmtwSSY23kU5PvEGzx0QrwNfDqL8OAFyjR5i//jZjoHYcLdeCdXnaf7JSi9Pz9fedFqWMjdFdAyKafq/VatXugsa7k9Z9fUp19Y3L7e183HVXQoTuGRT5s2/DBwB7Q4AHgFbIzdVFN/UM1U09Q1VQfkkrMy16L7tYxRWXtXB9nl5Oz9fNvUM1Ka6jVhe46NHdXzad3E6KC9MjSd2YbQyg1RoSHaSPZw3Vp/tP6cUNh1V4rlpPffS1/ppRoDljuijjtEmvLt2p/H8YAdcvsp2SB5l1S5+O8nLnjiIAzokADwCtXFSQr566tYcevamb1uaWKC3TotziSn2UU6KPckokuUiyanhMkOaOj1WvTs27wzMAtAQXF5Mm9g3TTT1DtWqXRf+z5aiOl1/SnHe/kuQq6aK83V01qV+Ypg0y89kGALKjAP/888/r008/VU5Ojjw8PHT+/HmjSwIAm/Jyd9XkhAhNTojQV8Xnv7mt9LTau9bpD5MTNCo21OgSAeC6ebi56N+GRumX8eH68/bjSs20yMNaq1+PjtXkAWa19WYEHAB8y262Iq6trdXkyZP1m9/8xuhSAMBwfcLbadGdfbX3yTF6pE+9hnYJNLokAPhZ/Lzc9XBSN+1+YrR+F1ev+wYT3gHg/7KbFfjf//73kqQVK1YYWwgAAAAAAAawmxV4AAAAAACcmd2swP8UNTU1qqmpafq+qqpKklRXV6e6ujqjyoIT+La/6DO0NHoNtkKvwVboNdgKvQZbac4eMzTAP/vss023xv+QrKwsJSQk/KTXX7Bgwfe+/tatW+Xjw3gltLz09HSjS4CToNdgK/QabIVeg63Qa2hp1dXVzfZaJqvVam22V7tO5eXlKi8v/9Hfc8MNN8jLy6vp+xUrViglJeVf2oX++1bgIyIidOrUKQUGsuETWk5dXZ3S09M1btw4ubuzAQ9aDr0GW6HXYCv0GmyFXoOtnD17Vh07dlRlZaX8/f1/1msZugIfFBSkoKCgFnt9T09PeXp6fue4u7s7P6SwCXoNtkKvwVboNdgKvQZbodfQ0pqzv+zmGfjCwkKdO3dOhYWFqq+vV05OjiQpOjpabdq0MbY4AAAAAABamN0E+Kefflp/+9vfmr7v16+fpMbn2UeNGmVQVQAAAAAA2IbdjJFbsWKFrFbrd74I7wAAAAAAZ2A3AR4AAAAAAGdGgAcAAAAAwA4Q4AEAAAAAsAMEeAAAAAAA7AABHgAAAAAAO0CABwAAAADADhDgAQAAAACwAwR4AAAAAADsAAEeAAAAAAA7QIAHAAAAAMAOEOABAAAAALADBHgAAAAAAOwAAR4AAAAAADtAgAcAAAAAwA4Q4AEAAAAAsANuRhdgS1arVZJ04cIFubu7G1wNHFldXZ2qq6tVVVVFr6FF0WuwFXoNtkKvwVboNdjKhQsXJP1vHv05nCrAnz17VpIUFRVlcCUAAAAAAGdy9uxZtW3b9me9hlMF+ICAAElSYWHhz/6HA35MVVWVIiIiVFRUJH9/f6PLgQOj12Ar9BpshV6DrdBrsJXKykpFRkY25dGfw6kCvItL4yP/bdu25YcUNuHv70+vwSboNdgKvQZboddgK/QabOXbPPqzXqMZ6gAAAAAAAC2MAA8AAAAAgB1wqgDv6empZ555Rp6enkaXAgdHr8FW6DXYCr0GW6HXYCv0GmylOXvNZG2OvewBAAAAAECLcqoVeAAAAAAA7BUBHgAAAAAAO0CABwAAAADADhDgAQAAAACwA04T4F977TVFRUXJy8tL8fHx+uKLL4wuCQ5mwYIFGjBggPz8/BQcHKxJkybp8OHDRpcFJ7BgwQKZTCalpKQYXQoc0MmTJ5WcnKzAwED5+PgoLi5O2dnZRpcFB3P16lU99dRTioqKkre3tzp37qw//OEPamhoMLo02Lnt27dr4sSJCgsLk8lk0kcffXTNr1utVj377LMKCwuTt7e3Ro0apQMHDhhTLOzaj/VaXV2d5s6dq969e8vX11dhYWG69957VVJSct3v4xQB/p133lFKSoqefPJJ7du3T8OHD9eECRNUWFhodGlwINu2bdOsWbOUmZmp9PR0Xb16VUlJSbp06ZLRpcGBZWVlafny5erTp4/RpcABVVRUaOjQoXJ3d9e6det08OBBvfTSS2rXrp3RpcHBLFy4UK+//rqWLl2qQ4cOadGiRXrxxRf1yiuvGF0a7NylS5fUt29fLV269Ht/fdGiRVq8eLGWLl2qrKwshYaGaty4cbpw4YKNK4W9+7Feq66u1t69e/Wf//mf2rt3r1avXq38/Hzddttt1/0+TjFGbtCgQerfv7+WLVvWdKx79+6aNGmSFixYYGBlcGRnzpxRcHCwtm3bphEjRhhdDhzQxYsX1b9/f7322mt67rnnFBcXpyVLlhhdFhzIvHnz9OWXX3LXGlrcrbfeqpCQEL3xxhtNx375y1/Kx8dHqampBlYGR2IymfThhx9q0qRJkhpX38PCwpSSkqK5c+dKkmpqahQSEqKFCxfqgQceMLBa2LP/22vfJysrSwMHDpTFYlFkZOS//NoOvwJfW1ur7OxsJSUlXXM8KSlJO3bsMKgqOIPKykpJUkBAgMGVwFHNmjVLt9xyi8aOHWt0KXBQa9asUUJCgiZPnqzg4GD169dPf/7zn40uCw5o2LBh2rx5s/Lz8yVJubm5ysjI0M0332xwZXBkBQUFOn369DU5wdPTUyNHjiQnoMVVVlbKZDJd911tbi1TTutRXl6u+vp6hYSEXHM8JCREp0+fNqgqODqr1aqHH35Yw4YNU69evYwuBw7o7bff1t69e5WVlWV0KXBgx48f17Jly/Twww/rd7/7nXbv3q3f/va38vT01L333mt0eXAgc+fOVWVlpWJjY+Xq6qr6+no9//zzuvvuu40uDQ7s2yzwfTnBYrEYURKcxJUrVzRv3jzdc8898vf3v64/6/AB/lsmk+ma761W63eOAc1l9uzZ+uqrr5SRkWF0KXBARUVFmjNnjjZu3CgvLy+jy4EDa2hoUEJCgubPny9J6tevnw4cOKBly5YR4NGs3nnnHaWlpWnVqlXq2bOncnJylJKSorCwMN13331GlwcHR06ALdXV1Wnq1KlqaGjQa6+9dt1/3uEDfFBQkFxdXb+z2l5WVvadq21Ac3jwwQe1Zs0abd++XeHh4UaXAweUnZ2tsrIyxcfHNx2rr6/X9u3btXTpUtXU1MjV1dXACuEoOnbsqB49elxzrHv37vrggw8MqgiO6rHHHtO8efM0depUSVLv3r1lsVi0YMECAjxaTGhoqKTGlfiOHTs2HScnoKXU1dVpypQpKigo0JYtW6579V1ygmfgPTw8FB8fr/T09GuOp6ena8iQIQZVBUdktVo1e/ZsrV69Wlu2bFFUVJTRJcFB3Xjjjdq/f79ycnKavhISEjRt2jTl5OQQ3tFshg4d+p1xmPn5+TKbzQZVBEdVXV0tF5drT0tdXV0ZI4cWFRUVpdDQ0GtyQm1trbZt20ZOQLP7NrwfOXJEmzZtUmBg4E96HYdfgZekhx9+WNOnT1dCQoIGDx6s5cuXq7CwUDNnzjS6NDiQWbNmadWqVfr444/l5+fXdNdH27Zt5e3tbXB1cCR+fn7f2VvB19dXgYGB7LmAZvXQQw9pyJAhmj9/vqZMmaLdu3dr+fLlWr58udGlwcFMnDhRzz//vCIjI9WzZ0/t27dPixcv1owZM4wuDXbu4sWLOnr0aNP3BQUFysnJUUBAgCIjI5WSkqL58+crJiZGMTExmj9/vnx8fHTPPfcYWDXs0Y/1WlhYmO68807t3btXn3zyierr65uyQkBAgDw8PP71N7I6iVdffdVqNputHh4e1v79+1u3bdtmdElwMJK+9+vNN980ujQ4gZEjR1rnzJljdBlwQGvXrrX26tXL6unpaY2NjbUuX77c6JLggKqqqqxz5syxRkZGWr28vKydO3e2Pvnkk9aamhqjS4Od27p16/een913331Wq9VqbWhosD7zzDPW0NBQq6enp3XEiBHW/fv3G1s07NKP9VpBQcEPZoWtW7de1/s4xRx4AAAAAADsncM/Aw8AAAAAgCMgwAMAAAAAYAcI8AAAAAAA2AECPAAAAAAAdoAADwAAAACAHSDAAwAAAABgBwjwAAAAAADYAQI8AAAAAAB2gAAPAAAAAIAdIMADAAAAAGAHCPAAAOB7nTlzRqGhoZo/f37TsV27dsnDw0MbN240sDIAAJyTyWq1Wo0uAgAAtE6fffaZJk2apB07dig2Nlb9+vXTLbfcoiVLlhhdGgAATocADwAAftSsWbO0adMmDRgwQLm5ucrKypKXl5fRZQEA4HQI8AAA4EddvnxZvXr1UlFRkfbs2aM+ffoYXRIAAE6JZ+ABAMCPOn78uEpKStTQ0CCLxWJ0OQAAOC1W4AEAwA+qra3VwIEDFRcXp9jYWC1evFj79+9XSEiI0aUBAOB0CPAAAOAHPfbYY3r//feVm5urNm3aaPTo0fLz89Mnn3xidGkAADgdbqEHAADf6/PPP9eSJUuUmpoqf39/ubi4KDU1VRkZGVq2bJnR5QEA4HRYgQcAAAAAwA6wAg8AAAAAgB0gwAMAAAAAYAcI8AAAAAAA2AECPAAAAAAAdoAADwAAAACAHSDAAwAAAABgBwjwAAAAAADYAQI8AAAAAAB2gAAPAAAAAIAdIMADAAAAAGAHCPAAAAAAANgBAjwAAAAAAHbg/wPBCzkU85dFwAAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f1 = plt.figure(1, figsize=(12,10), clear=True)\n",
"x = np.arange(0, 14, 2)\n",
"\n",
"for k in range(5):\n",
" qk = np.zeros(7)\n",
" qk[1:-1] = Phi1[:,k]\n",
" qk /= np.max(np.abs(qk)) # adjust scale for unity amplitude\n",
" \n",
" plt.subplot(5,1,k+1)\n",
" plt.plot(x, qk)\n",
" \n",
" plt.xlim( 0.0, 12.0);\n",
" plt.ylim(-1.5, 1.5); plt.ylabel(str(k+1));\n",
" plt.text(10, 1, 'fk = {0:3.1f}Hz'.format(fk1[k]));\n",
" plt.grid(True)\n",
"\n",
"plt.xlabel('x');\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2. Example 2: beam element \n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The interpolation functions could not be dumped with ```pickle```, so we must re-create\n",
"them for visualizing the modal shapes:\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Beam length discretization\n",
"L = 1\n",
"\n",
"# Defining a list of lambda functions\n",
"phi = []\n",
"phi.append(lambda xi: 1 - 3*xi*xi + 2*xi*xi*xi)\n",
"phi.append(lambda xi: L*(xi - 2*xi*xi + xi*xi*xi))\n",
"phi.append(lambda xi: 3*xi*xi - 2*xi*xi*xi)\n",
"phi.append(lambda xi: L*(-xi*xi + xi*xi*xi ))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Furthermore, the stiffness matrix is not positive definite, for no \n",
"boundary conditions have been applied so far (it is a bar \"floating in space\").\n",
"It is necessary to restrain at least two degrees of freedom to suppress a \n",
"free body motion.\n",
"For instance, to model a cantilever beam we can restrain $u_1 = 0$ and $u_2 = 0$,\n",
"what implies that the first two rows and two columns of $\\mathbf{K}$ and \n",
"$\\mathbf{M}$ can be removed:\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"K2 = K2[2:,2:]\n",
"M2 = M2[2:,2:]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the eigenvalues problem can be solved:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[-0.58747258 0.13007598]\n",
" [-0.80924407 0.99150403]]\n"
]
}
],
"source": [
"fk2, wk2, Phi2 = vibration_modes(K2, M2)\n",
"\n",
"print(Phi2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For the visualization below, the vibration modes are a linear combination of the \n",
"interpolation functions (for the remaining degrees of freedom), each one multiplied \n",
"by the resulting eingenvector coordinate.\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAF3CAYAAAALl5VRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABHpElEQVR4nO3deZjcZZ3v/c+31t67k16yhwQSwhJliyCOSgPiEIZDlINeYFxwlhxHmTnqM2f0ebyOMjPnOnJGzjg6iIg+HEXRDI8OECEsijQgiAYwLAETYghJZ+t0p7fq7trv549fdXd1p3pJL7/q7rxfl3X9trvq921y2/nUnbvuMuecAAAAAPgnUOwCAAAAgJMNIRwAAADwGSEcAAAA8BkhHAAAAPAZIRwAAADwGSEcAAAA8FlRQ7iZ3WVmLWb26gjXG82s08y25x5f9rtGAAAAYKqFinz/70u6TdLdo7R52jl3tT/lAAAAANOvqCPhzrmnJB0rZg0AAACA32bDnPCLzewlM3vYzM4udjEAAADAZBV7OspYXpR0inMuZmZXSbpf0upCDc1sk6RNklRSUnLB8uXLfSsSM182m1UgMBvec8JP9AsUQr9AIfQLFLJr165W51z9RJ5rzrmprufECjBbIelB59zacbTdK2mdc651tHZr1qxxO3funJoCMSc0NTWpsbGx2GVghqFfoBD6BQqhX6AQM3vBObduIs+d0W/pzGyhmVlu/0J59bYVtyoAAABgcoo6HcXMfiKpUVKdmTVL+oqksCQ55+6QdJ2kvzaztKQ+Sde7Yg/dAwAAAJNU1BDunLthjOu3yVvCEAAAAJgzZvR0FAAAAGAuIoQDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAIzDN7/5TZ155pnauHGjbr75Zt16661Tfo9MJqPzzjtPV1999YhtmpqadO655+rss8/WJZdcIknauXOnzj333IFHVVWV/vVf/1WSdOONN+qnP/3pkNeoqKiY8tpxYkLFLgAAAGA2uP322/Xwww9r5cqVuvnmm6flHt/4xjd05plnqqurq+D1jo4OffrTn9Yjjzyi5cuXq6WlRZK0Zs0abd++XZIX5JcsWaIPfvCD01IjpgYj4QAAAGP4l3/5F+3Zs0fXXHONvv71rw+59t3vflfr169XX1/fpO7R3Nyshx56SH/5l385Ypsf//jHuvbaa7V8+XJJUkNDw3FtHn/8cZ122mk65ZRTxrznl7/85YHR8yVLluiTn/zkxH8AnBBCOAAAwBg+//nPa/HixXriiSf0uc99buD8bbfdpp///Oe6//77VVpaOuQ599xzz5ApIv2P6667ruA9PvvZz+qf//mfFQiMHM927dql9vZ2NTY26oILLtDdd999XJvNmzfrhhtuGHLuv/23/zakhn7/+I//qO3bt+vJJ59UbW2tbrrppvH858AUKOp0FDO7S9LVklqcc2sLXDdJ35B0laReSTc65170t0oAAIDj/fCHP9TSpUt1//33KxwOH3d948aN2rhx47he68EHH1RDQ4MuuOACNTU1jdgunU7rhRde0OOPP66+vj5dfPHFeuc736nTTz9dkpRMJrVlyxZ99atfHfK8r33ta0PCf/6ccOecNm7cqM997nO64IILxlUvJq/Yc8K/L+k2Sce/jfOsl7Q697hI0rdzWwAAgKJau3attm/frubmZq1cufK46/fcc4++9rWvHXd+1apVx31Q8plnntGWLVu0detWxeNxdXV16aMf/ah+9KMfDWm3dOlS1dXVqby8XOXl5Xrve9+rl156aSCEP/zwwzr//PO1YMGCcf8cN998s5YuXcpUFJ8VdTqKc+4pScdGabJB0t3O85ykGjNb5E91AAAAIzvvvPP0ne98R9dcc40OHjx43PWNGzdq+/btxz2GB3BJ+upXv6rm5mbt3btXmzdv1mWXXXZcAJekDRs26Omnn1Y6nVZvb69++9vf6swzzxy4/pOf/OS4qSijefDBB/WLX/xC3/zmN8f9HEyNYo+Ej2WJpP15x825c4eGNzSzTZI2SVJ9ff2o/5SDk08sFqNP4Dj0CxRCv0AhsVhM8XhczzzzjKqrq7V3716VlpZq3bp1+tjHPqZLLrlEt956q6qrqyd9r+3bt6utrW2gH27ZskWSdM0110iSVq9erVWrVsnM9Gd/9mdqbW1VU1OT4vG4Hn74YX30ox8d0ocPHz6sHTt2qK6ubuBcJpNRU1OT/vt//+86dOiQzjrrLEnSu971Lv35n//5pH8GjM2cc8UtwGyFpAdHmBP+kKSvOud+nTt+XNLfO+deGO0116xZ43bu3Dkd5WKWampqUmNjY7HLwAxDv0Ah9AsUQr9AIWb2gnNu3USeO9NXR2mWtCzveKmk4/+9BwAAAJhFZnoI3yLp4+Z5p6RO59xxU1EAAACA2aTYSxT+RFKjpDoza5b0FUlhSXLO3SFpq7zlCXfLW6KQj+0CAABg1itqCHfOjfrxXedNWP+MT+UAAAAAvpjp01EAAACAOYcQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+KyoIdzMrjSznWa228y+WOB6o5l1mtn23OPLxagTAAAAmEqhYt3YzIKSviXpCknNkraZ2Rbn3GvDmj7tnLva9wIBAACAaVLMkfALJe12zu1xziUlbZa0oYj1AAAAAL4o2ki4pCWS9ucdN0u6qEC7i83sJUkHJf2dc25HoRczs02SNklSfX29mpqaprZazGqxWIw+gePQL1AI/QKF0C8w1YoZwq3AOTfs+EVJpzjnYmZ2laT7Ja0u9GLOuTsl3SlJa9ascY2NjVNXKWa9pqYm0ScwHP0ChdAvUAj9AlOtmNNRmiUtyzteKm+0e4Bzrss5F8vtb5UUNrM6/0oEAAAApl4xQ/g2SavNbKWZRSRdL2lLfgMzW2hmltu/UF69bb5XCgAAAEyhok1Hcc6lzewmSY9KCkq6yzm3w8w+lbt+h6TrJP21maUl9Um63jk3fMoKAAAAMKsUc054/xSTrcPO3ZG3f5uk2/yuCwAAAJhOfGMmAAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgs6KGcDO70sx2mtluM/tigetmZt/MXX/ZzM4vRp0AAADAVCpaCDezoKRvSVov6SxJN5jZWcOarZe0OvfYJOnbvhYJAAAATINijoRfKGm3c26Pcy4pabOkDcPabJB0t/M8J6nGzBb5XSgAAAAwlUJFvPcSSfvzjpslXTSONkskHRrthfd2ZbX6S1tlMuX+JzPJZLmtZGYyKe/68dcs18DyXiNgpmAg98jbH3J++LWAKTTQRgoFAgoETEHTwLX+1wjl2gfNFAoGFA6awsGAQkFTJBhQKGAKhwIKBwIKh3LXAgFFQqZQIKBwoefkncs/Hw4GFAzYxP8EAQAAMCETDuFm9knn3P+ZxL0LpT83gTb99WySN2VFlQ3L9P7loYGGTpJz3l5u453rv+4GruSuu8HrBdpmnZRxTtncfjab20pKZ6Wk8q7lPTJOcrnnZYZfl5R1Q5+XyeaeM/p/x0kxyXtjYFI4KIUDpnBAuYcpFPDOh4ad798PBSz3vAJtRjkfCUqRgCmSe+3pFovF1NTUNO33wexCv0Ah9AsUQr/AVJvMSPg/SJpMCG+WtCzveKmkgxNoI0lyzt0p6U5JWrNmjfvWf3n/JEqbWTJZp1Qmm3s4pTNZJTNZpTNu4Fwqk1U6m1Uy7ZTOZoeez7hh7QdfJ5XJKpk7n0hnlExnlUhnlUh590ikMwP7sVRWiWRGiXR2sF06rVRmcm8TQgFTaTioaDio0khApeGgSnIPb987VxoJKhrytqV510py10py10rynlMWCaksGtS2Z3+txsbGqfkDwZzR1NREv8Bx6BcohH6BqTZqCDezl0e6JGnBJO+9TdJqM1sp6YCk6yV9ZFibLZJuMrPN8qaqdDrnRp2KMhd501q8cDkTZbNeyE+kskpkvNA+GNQzubDuHcdT3nFfKqNEKqO+ZEZ9qYziqbxzqf5zGXX0pRTvzCieHmzb/6bgREV+9bDKI7lgHgmqLBrKHXvnyqNBlYa97UCbSFDl0ZBKI0GV586VRwevlUVCTOkBAAAnbKyR8AWS/lRS+7DzJunZydzYOZc2s5skPSopKOku59wOM/tU7vodkrZKukrSbkm9kj45mXtiegQCppKBNwlhX+6ZzmQVz4X6vqQX2PuDfH+A7w/tPYm0duzcrQVLlqs3mVZPIqPeZFq9SW97sCM10K43mVFPMp2bvjQ+0VDguGBeEfXCfEU0rMqSwf2KkpAqoyGVR702lSX9bb39aCggM0I9AABz3Vgh/EFJFc657cMvmFnTZG/unNsqL2jnn7sjb99J+sxk74O5JxQMqCIYUEV0fDOqmjL71Nh4xrjaOueUSGeHhPLeZEa9CW+/r/9cgeP+9rFEWi3dcfUkMuqOpxRLpJUdR7APBUwVJSGVR4YG9P7wnh/YK3Lny6O5ayX9wT6symhIAUboAQCYsUZNMM65vxjl2vCpI8CcYGYDc9Jrp+g1nXOKp7LqTqQUi3uj8f37sURaPYm0uhPp3LXB/VgirY7epPa39w5c60lmxvEzSBWRkKpKvZH4qpKwqkq9gF5VktsOHOfa5LWtLAnN2OlPAADMBcVcohA4aZiZ94HSSFANlZN7rUzWqSfpBfJYfFh4j6fVFU+pK55Wdzylrr7cNp7SwY64uhPdA+fGGpmPhAJeeC8JqbLU2w4J7FFvW1UaUmU0rOqysKpLw6opDauqNEyIBwBgFIRwYJYJBiwXjsNS9cRewzmnnmRGXX2pgeA+NLSn1dWX28ZzbfpSOtDRN7CfSI/+4diScEDVpf3BPKKq/v2yoduqXHD3zkVUVRJSKFjM7xEDAGD6EcKBk5CZeXPKxzmnvpBEOqPuuDf63tmXUldfSh19qcH93qQ6+1Lq6PXONbf3asdBb793jCk1FdHQQIDPD+z9o+39wX54mGcuPABgtiCEA5iQaCioaEVQdRXRE35uMp1VZy6wew8vsHf2Dgb5zt7B62+0xAbOjbY8ZcCkmrKIasrCmlcW0bwyb3R9XllY88ojw85F1BH3ls6MhBh5BwD4ixAOwHeRUED1lVHVV55YgO//gGt/OO8fbR88Tqm9NzmwPdAR146DXTrWkxxx+sxnm7z142vKIppfPnKAH9gvi2heeUTlkSDLSQIAJowQDmDWyP+A68LqkhN6bl8yo/be5JCQ/rvtO1S/ZIXae71Af6w3qfbelPYd61V7T1Jd8fSIrxcO2kAwzw/oXpgPa355VLXlXrDvf5QR3AEAOYRwACcFL7yXanFN6cC5imO71Ni4esTnpDPeqHt/SG/vTam9J5kL8/3nvP03W3v0Ym+HOnqTSmUKLz0TDQWGhPLacm9U3Qvr0YHw3n+tujTMHHcAmKMI4QAwglAwoNqKqGpPYN67c06xRFrHepJq60nqWMwbYT/W4z3aYl5wb+tJam9bj47FkiOu/R4waV5umsxgWB8M795+dEiwZ347AMwOhHAAmEJm5n1raUlYp9SWj+s58ZQ3VaY/oPeH9WM9uQCf23+jJaZjuZF4N8I675XRUF5Azxt1r/ACe21FRHUVUdVVRAntAFBEhHAAKLKScFCLqku1qLp07MbyvrCpfypMf1hv60mqvX/0PRfUD3UOfjB1pFVlqkvDXjDPC+i1FRHVVkRVVx5RXaU3t722IqqqkhBz2gFgihDCAWCWCQZsYJrMqoax2/dPkWmLJdUaS6g1llRbT2LguH/7RktMv9nTpo7eVMHXiQQDuYA+OKpe3x/ay6MDgZ1RdgAYGyEcAOa4/CkyK+rGniKTymTV3pPU0VxA7w/sA8exhNp6knrjSLdae5JKjrD8I6PsADAyQjgAYIhwMKCGqhI1VI29DORIo+yt3UNH23cd6R5zlL2uIjKwfnxdRfT4/QpvtJ012gHMBYRwAMCETdkoe3dCR3Mh/kBHXNv3d+pYT0LZAh9ALQ0Hc+G8QGjPBfX63HFJODgNPzUATB4hHADgmxMZZc9knY715AX03PZod0Ktue2eoz363ZvH1D7CCHtlSWgwmOeFc+9cRPUVJaqv9KbJhIPMYQfgn6KEcDObL+nfJa2QtFfSh51z7QXa7ZXULSkjKe2cW+dflQCAYgoGbGCkeyzJdHZgGszRWDwX1HMBPvd4/WCXnupOqDtR+JtQ55WFVV8ZVTDVp/sO//64UfX+0fb55REF+RIlAJNUrJHwL0p63Dl3i5l9MXf8hRHaXuqca/WvNADAbBMJBfKWeawetW08lRkYXc8fVe/f/+OBXr24r11HuxOKp47/0GnApNqKqBpybxAaKqNqqCxRQ1X/uZKBa0yHATCSYoXwDZIac/s/kNSkkUM4AABTpiQc1LL5ZVo2v6zg9aamJjU2Nso5p55kZkhAzx9Zb+mOq6U7oR0Hu9QWKzx/vbo07IX0qlxQrxz8wGl+cK+IsjoMcLIxN9LXrk3nTc06nHM1ecftzrl5Bdq9KaldkpP0HefcnaO85iZJmySpvr7+gnvvvXfK68bsFYvFVFFRUewyMMPQL1DIRPpF1jl1JZw6Ek6dydw2kbeND+6nC/y1GwlKNVFTTdRUPWzr7QdUHTVVhKUAYb0o+H2BQi699NIXJjpdetpCuJn9UtLCApe+JOkH4wzhi51zB82sQdIvJP2Nc+6pse69Zs0at3PnzokXjzmnf2QLyEe/QCHT2S+cc+rsS6klfzS9K6GW7tyjK547n1CswNz1cNBUV5E37aUqbzpM3og7HzSdevy+QCFmNuEQPm3TUZxz7xvpmpkdMbNFzrlDZrZIUssIr3Ewt20xs/skXShpzBAOAMBMZGaqKYuopiyi0xdUjtq2N5lWS5c3d90L6vFcUPf2m9u9uevHepIF7iPNL/OWcGyoygX03GNBVcng9JiqqKIh5q0DxVCsOeFbJH1C0i257QPDG5hZuaSAc647t/9+Sf/oa5UAABRJWSSkFXWhMddfT6azao0lCo6uH80F912Hu9UaSyhdYOL6vLJwLpiXaEEupC+o8sL7gqrBeeyMrANTq1gh/BZJ95rZX0jaJ+lDkjf9RNL3nHNXSVog6b7cB1VCkn7snHukSPUCADAjRUIBLa4p1eKa0lHbZbNOx3qTg6PqXQkd6YrrSHdcR7q8qTC7DnfraCyhzLCwbibVlkfUUOkF9IHQXhXVgsqSgdH12vKIQoR1YFyKEsKdc22SLi9w/qCkq3L7eySd43NpAADMSYGAN5+8riKqs1Q1YrtM1qmtZ3Day5H+sJ4L6ke643r1YJdaYwkN/1hZwKS6imGj6UOCe27OenlEAdZax0mOb8wEAAADggHLfdCzRKOtuZ7OZNUaS+YCenzgg6VHuhI60h3XgY64fr+vQ20F5qyHcl/ENNIUmP4R9pqyMEs3Ys4ihAMAgBMWCga0sLpEC6tLRm2XTGd1NOaNpveH9PwR9rfaevW7vcfU0Zs67rmRYED1ldGBkfT+0fT+KTD9wb2qhHXWMfsQwgEAwLSJhAJaUlOqJWPMWe//JtP+qS/989WP5kbW32iJ6de7W9UdP37pxmgoMOoUmP4AXxEl9mDmoDcCAICiG+ubTPv1L93ohfT+KTDedJgjXXG9frBLT3S1qDeZOe65FdGQGqqiWjgw7cUL6wtzHzRdWF2i+oqoIiE+XIrpRwgHAACzxniXbowl0l5Q7/QC+uFcWO8faf/dm8fU0h1XKnP8so11Fd5KMAurB0fUOw6llP3DkYHwPr+MD5dicgjhAABgzqmIhlRRX6HT6kf+qvls1qm9N5m3Akw8F9YHj19u7lBrzPtw6fd3PD/w3HDQhizZ2P9YWJ2bs17NFBiMjp4BAABOSoGAqbYiqtqKqM5aPPKyjalMVlsea9LKs89TS1dchzu9qTBHOr1567uOdOvXb7SqO3H8fPWRpsDk7zdUljAF5iRECAcAABhFOBhQbWlA5y+fN2q7ntwUmMNd3pchncgUmNryyOAc9eqS46bDMAVm7iGEAwAATIHyaEin1lfo1FGmwDjndKwnObCe+pFOL6Afzi3heLgrrlcOdKmt5/gvQxppCszwD5cyBWZ24E8JAADAJ2Z5U2BG+ebSVCaro9154fwEpsCUR4LenPTcaHqh6TBMgSk+QjgAAMAMEw4GtLimVIvHWF+9fwrM8A+X9k+H2bb3mFq6Ekpmssc9d7QpMP37TIGZPoRwAACAWWq8U2Dae1O50fSJTYEZa311psCcOP6LAQAAzGFmpvnlEc0vj4xrCkz+h0nzP1z6RktsglNgct9eyhSYIQjhAAAA8G0KTENViRYWWF/9ZJsCQwgHAADAuJ3IFJjBgB7X4c68FWG6JzYFJn+/siQ8zT/p9CKEAwAAYErlT4E5c9E0ToHJD+h502FmwxSYooRwM/uQpJslnSnpQufc8yO0u1LSNyQFJX3POXeLb0UCAABgWp3IFJiW7oQOd8bV0p1bsjFvOszzb7Wf8BSY/JH12nL/p8AUayT8VUnXSvrOSA3MLCjpW5KukNQsaZuZbXHOveZPiQAAAJgJyqMhrYyGtLKufMQ2k5kCEwqYGiqjY66vPpVTYIoSwp1zr0veP1WM4kJJu51ze3JtN0vaIIkQDgAAgCFOZApMayxx3Gh6/4dLdx+N6Zk/tqo7PvYUmMmYyXPCl0jan3fcLOmikRqb2SZJmySpvr5eTU1N01ocZpdYLEafwHHoFyiEfoFC6BdzU4mkUySdUpI7aOi/ElU8HVFHwqk97rxtIquOuFN7Iq7WY31645Ab6WXHZdpCuJn9UtLCApe+5Jx7YDwvUeDciD+tc+5OSXdK0po1a1xjY+N4ysRJoqmpSfQJDEe/QCH0CxRCv0AhdvPEnzttIdw5975JvkSzpGV5x0slHZzkawIAAABFNzPXbPFsk7TazFaaWUTS9ZK2FLkmAAAAYNKKEsLN7INm1izpYkkPmdmjufOLzWyrJDnn0pJukvSopNcl3euc21GMegEAAICpVKzVUe6TdF+B8wclXZV3vFXSVh9LAwAAAKbdTJ6OAgAAAMxJhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGdFCeFm9iEz22FmWTNbN0q7vWb2ipltN7Pn/awRAAAAmC6hIt33VUnXSvrOONpe6pxrneZ6AAAAAN8UJYQ7516XJDMrxu0BAACAoprpc8KdpMfM7AUz21TsYgAAAICpMG0j4Wb2S0kLC1z6knPugXG+zJ845w6aWYOkX5jZH5xzT41wv02S+oN6wsxePfGqMYfVSWJaE4ajX6AQ+gUKoV+gkDUTfeK0hXDn3Pum4DUO5rYtZnafpAslFQzhzrk7Jd0pSWb2vHNuxA984uRDn0Ah9AsUQr9AIfQLFDKZhUNm7HQUMys3s8r+fUnvl/eBTgAAAGBWK9YShR80s2ZJF0t6yMwezZ1fbGZbc80WSPq1mb0k6XeSHnLOPVKMegEAAICpVKzVUe6TdF+B8wclXZXb3yPpnAne4s6JV4c5ij6BQugXKIR+gULoFyhkwv3CnHNTWQgAAACAMczYOeEAAADAXDVrQ7iZXWlmO81st5l9scB1M7Nv5q6/bGbnF6NO+Gsc/WJjrj+8bGbPmtlEpzxhFhmrX+S1e4eZZczsOj/rQ3GMp1+YWaOZbTezHWb2pN81wn/j+Huk2sx+bmYv5frFJ4tRJ/xjZneZWctIy19PNHPOyhBuZkFJ35K0XtJZkm4ws7OGNVsvaXXusUnSt30tEr4bZ794U9Ilzrm3S/onMcdvzhtnv+hv978kPepvhSiG8fQLM6uRdLuka5xzZ0v6kN91wl/j/H3xGUmvOefOkdQo6X+bWcTXQuG370u6cpTrE8qcszKEy1svfLdzbo9zLilps6QNw9pskHS38zwnqcbMFvldKHw1Zr9wzj3rnGvPHT4naanPNcJ/4/l9IUl/I+lnklr8LA5FM55+8RFJ/+Gc2yd531nhc43w33j6hZNUaWYmqULSMUlpf8uEn3JfFHlslCYTypyzNYQvkbQ/77g5d+5E22BuOdE/87+Q9PC0VoSZYMx+YWZLJH1Q0h0+1oXiGs/vi9MlzTOzJjN7wcw+7lt1KJbx9IvbJJ0p6aCkVyT9V+dc1p/yMENNKHMWZYnCKWAFzg1f5mU8bTC3jPvP3MwulRfC3z2tFWEmGE+/+FdJX3DOZbzBLZwExtMvQpIukHS5pFJJvzGz55xzu6a7OBTNePrFn0raLukySadJ+oWZPe2c65rm2jBzTShzztYQ3ixpWd7xUnnvSE+0DeaWcf2Zm9nbJX1P0nrnXJtPtaF4xtMv1knanAvgdZKuMrO0c+5+XypEMYz375FW51yPpB4ze0re91cQwueu8fSLT0q6xXlrPO82szclnSHviwVxcppQ5pyt01G2SVptZitzH4a4XtKWYW22SPp47hOr75TU6Zw75Heh8NWY/cLMlkv6D0kfYzTrpDFmv3DOrXTOrXDOrZD0U0mfJoDPeeP5e+QBSe8xs5CZlUm6SNLrPtcJf42nX+yT968jMrMFktZI2uNrlZhpJpQ5Z+VIuHMubWY3yVvFICjpLufcDjP7VO76HZK2yvv2zd2SeuW9c8UcNs5+8WVJtZJuz416pp1z64pVM6bfOPsFTjLj6RfOudfN7BFJL0vKSvqec67gEmWYG8b5++KfJH3fzF6RNw3hC8651qIVjWlnZj+RtxJOnZk1S/qKpLA0uczJN2YCAAAAPput01EAAACAWYsQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+KyoIdzM7jKzFjN7dYTrjWbWaWbbc48v+10jAAAAMNVCRb7/9yXdJunuUdo87Zy72p9yAAAAgOlX1JFw59xTko4VswYAAADAb7NhTvjFZvaSmT1sZmcXuxgAAABgsoo9HWUsL0o6xTkXM7OrJN0vaXWhhma2SdImSSopKblg+fLlvhWJmS+bzSoQmA3vOeEn+gUKoV+gEPoFCtm1a1erc65+Is8159xU13NiBZitkPSgc27tONrulbTOOdc6Wrs1a9a4nTt3Tk2BmBOamprU2NhY7DIww9AvUAj9AoXQL1CImb3gnFs3kefO6Ld0ZrbQzCy3f6G8etuKWxUAAAAwOUWdjmJmP5HUKKnOzJolfUVSWJKcc3dIuk7SX5tZWlKfpOtdsYfuAQAAgEkqagh3zt0wxvXb5C1hCAAAAMwZM3o6CgAAADAXEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAMbhm9/8ps4880xt3LhRN998s2699dYpv0cmk9F5552nq6++esj5f/u3f9OaNWt09tln6+///u8LPveRRx7RmjVrtGrVKt1yyy0D548dO6YrrrhCq1ev1hVXXKH29nZJUlNT03H3ufHGG/XTn/50in8qFEIIBwAAGIfbb79dW7du1T333DNt9/jGN76hM888c8i5J554Qg888IBefvll7dixQ3/3d3933PMymYw+85nP6OGHH9Zrr72mn/zkJ3rttdckSbfccosuv/xyvfHGG7r88suHBHQUDyEcAABgDP/yL/+iPXv26JprrtHXv/71Ide++93vav369err65vUPZqbm/XQQw/pL//yL4ec//a3v60vfvGLikajkqSGhobjnvu73/1Oq1at0qmnnqpIJKLrr79eDzzwgCTpgQce0Cc+8QlJ0ic+8Qndf//9Y9by/PPP69xzz9W5556rt73tbTKzSf1sOB4hHAAAYAyf//zntXjxYj3xxBP63Oc+N3D+tttu089//nPdf//9Ki0tHfKce+65ZyDI5j+uu+66gvf47Gc/q3/+539WIDA0nu3atUtPP/20LrroIl1yySXatm3bcc89cOCAli1bNnC8dOlSHThwQJJ05MgRLVq0SJK0aNEitbS0DLR7+umnh9S2ZcsWSdK6deu0fft2bd++XVdeeWXB0XdMTqiYNzezuyRdLanFObe2wHWT9A1JV0nqlXSjc+5Ff6sEAAA43g9/+EMtXbpU999/v8Lh8HHXN27cqI0bN47rtR588EE1NDToggsuUFNT05Br6XRa7e3teu6557Rt2zZ9+MMf1p49e4aMTjvnjnvN8Yxev+c979GDDz44cHzjjTcOuX7vvffqxRdf1GOPPTaunwPjV+yR8O9LunKU6+slrc49Nkn6tg81AQAAjGnt2rXau3evmpubC14/kZHwZ555Rlu2bNGKFSt0/fXX61e/+pU++tGPSvJGta+99lqZmS688EIFAgG1trYOef7SpUu1f//+gePm5mYtXrxYkrRgwQIdOnRIknTo0KGC01kK2bFjh77yla9o8+bNCgaD43oOxq+oIdw595SkY6M02SDpbud5TlKNmS3ypzoAAICRnXfeefrOd76ja665RgcPHjzu+saNGwemdOQ/Cq0+8tWvflXNzc3au3evNm/erMsuu0w/+tGPJEkf+MAH9Ktf/UqSNzUlmUyqrq5uyPPf8Y536I033tCbb76pZDKpzZs365prrpEkXXPNNfrBD34gSfrBD36gDRs2jPmzdXZ26vrrr9fdd9+t+vr6E/sPc5J4fu9oEXZsRZ2OMg5LJO3PO27OnTs0vKGZbZI3Wq76+vrj/ikHJ7dYLEafwHHoFyiEfoFCYrGY4vG4nnnmGVVXV2vv3r0qLS3VunXr9LGPfUyXXHKJbr31VlVXV0/6Xtu3b1dbW9tAPzzttNP0s5/9TCtXrlQ4HNbnPvc5Pfnkk2ptbdWtt946sNrJpk2b9N73vlfZbFbr16/X0aNH1dTUpHe/+936h3/4B912221qaGjQzTffrKampuPuI0mHDx/Wjh079Pzzz2vPnj264YYbBq5973vfm/TPNhcc7snq/9uV1AtHMpN6HSs0h8hPZrZC0oMjzAl/SNJXnXO/zh0/LunvnXMvjPaaa9ascTt37pyOcjFLNTU1qbGxsdhlYIahX6AQ+gUKoV/gWE9S33z8Df3oubcUDQX0qUtO09++7/QXnHPrJvJ6M30kvFnSsrzjpZKO//ceAAAAYBrEUxn9n2f26vYndqs3ldH171imz77vdNVXRvW3k3jdmR7Ct0i6ycw2S7pIUqdz7ripKAAAAMBUymSd7vv9AX39F7t0oKNPl5/RoC+uP0OrF1ROyesXe4nCn0hqlFRnZs2SviIpLEnOuTskbZW3POFueUsUfrI4lQIAAOBk4JzTL147oq89ulNvtMS0dkmVvnbd2/WuVXVjP/kEFDWEO+duGOO6k/QZn8oBAADASey5PW36X4/8Qb/f16FT68p1+8bztX7twmn5xtCZPh0FAAAAmFavHujU1x7dqSd3HdXCqhLdcu3bdN0FSxUKTt9q3oRwAAAAnJT2tvbof/9il37+0kFVl4b1/1x1hj5+8QqVhKf/y4kI4QAAADipHO6M699+9Yb+fdt+hYMB3XTpKv3Ve09VdWnYtxoI4QAAADgptHTFdXvTH/Xj3+1TNuv0kYuW66bLVqmhssT3WgjhAAAAmNNauuO6o2mP7vntW0pnna47f6luumyVls0vK1pNhHAAAADMSa2xhL7z5B/1w+feUirjdO15S/Q3l63W8trihe9+hHAAAADMKW2xhO58ao/u/s1bSqQz+sB5S/S3l63WirryYpc2gBAOAACAOeFYT1LffXqPfvDsXsVTGW04d4n+5rJVOrW+otilHYcQDgAAgFntcGdc3316j378232KpzO65pzF+pvLVmtVw8wL3/0I4QAAAJiV9rX16ttP/lE/e6FZGee04dzF+nTjaVrVUFns0sZECAcAAMCssutIt25/Yre2vHRQoWBAH37HUv2X955W1NVOThQhHAAAALPCy80duu1Xu/XYa0dUFgnqL969Un/1nlPVUOX/Ot+TRQgHAADAjOWc02/2tOnbTX/U02+0qqokpL+9fLU++a4VmlceKXZ5E0YIBwAAwIyTzmS19dXD+u5Te/TKgU7VVUT0hSvP0EffuVyVJf59vfx0IYQDAABgxogl0vr3bft116/f1IGOPp1aX66vXvs2ffC8JSoJB4td3pQhhAMAAKDojnTF9f1n9+qe595SVzytC1fM183XnK3Lz2hQIGDFLm/KFTWEm9mVkr4hKSjpe865W4Zdb5T0gKQ3c6f+wzn3j37WCAAAgOmz60i37nxqjx7YfkCZrNOVaxfqr95zqs5bPq/YpU2rooVwMwtK+pakKyQ1S9pmZlucc68Na/q0c+5q3wsEAADAtMhmnZ7cdVT/59m9emrXUZWGg/rIhcv15+9eqVNqZ85Xy0+nYo6EXyhpt3NujySZ2WZJGyQND+EAAACYA7rjKf30hWbd/Zu39GZrjxoqo/q/rjhdH33nKbN6pZOJKGYIXyJpf95xs6SLCrS72MxeknRQ0t8553YUejEz2yRpkyTV19erqalpaqvFrBaLxegTOA79AoXQL1AI/WJyDvdk9cu3Uvr1gbTiGWlVTUCfOieqdQuCCgUO6KVtB4pdou+KGcILzbB3w45flHSKcy5mZldJul/S6kIv5py7U9KdkrRmzRrX2Ng4dZVi1mtqahJ9AsPRL1AI/QKF0C9OXDbr9NQbR/X9Z/eqaedRRYIBXf32JfrEu1bonGU1xS6v6IoZwpslLcs7XipvtHuAc64rb3+rmd1uZnXOuVafagQAAMAJ6OxL6T9ebNYPf/OW9rT2qL4yqs9fcbpuuHC56iujxS5vxihmCN8mabWZrZR0QNL1kj6S38DMFko64pxzZnahpICkNt8rBQAAwIicc9q+v0M//u0+/fzlg4qnsjp3WY2+cf25Wr92kSKhQLFLnHGKFsKdc2kzu0nSo/KWKLzLObfDzD6Vu36HpOsk/bWZpSX1SbreOTd8ygoAAACKIJZI64HtB3TPc/v02qEulUWCuvb8pfrIhcu1dkl1scub0Yq6TrhzbqukrcPO3ZG3f5uk2/yuCwAAACPbcbBTP/7tPt3/+wPqSWZ05qIq/Y8PrNWGcxfPia+U9wPfmAkAAIAx9STSeuiVQ/rxb/dp+/4ORUMB/adzFmvjRct17rIamc29b7WcToRwAAAAFOSc0wtvteve5/frwZcPqTeZ0Wn15fry1WfpP5+/VNVljHpPFCEcAAAAQxzpiutnLzbrp883a09rj8ojQf2nty/Wh9+xVOcvn8eo9xQghAMAAEDJdFaPv35E9z6/X0/uOqqsky5cOV+fvnSV1q9dqPIosXEq8V8TAADgJOWc0ysHOnXf7w/oge0HdawnqYVVJfrrxtN03QXLtLKuvNglzlmEcAAAgJPM/mO9uv/3B3Tf9gPac7RHkWBA7zurQR9et0zvWV2vYIDpJtONEA4AAHASaO9J6sFXDumB3x/Q82+1S5IuWjlfm95zqtavXcSHLH1GCAcAAJij4qmMHn+9Rff9/oCe3NWiVMZpdUOF/v7KNdpw7hItqSktdoknLUI4AADAHJJIZ/TrN1r10MuH9IvXjqg7kVZDZVQ3vmuFPnDeEp21qIrVTWYAQjgAAMAsl0xn9czuVj348iE99tphdcfTqi4N68q1C7Xh3CW6+LRa5nnPMIRwAACAWSiVyerZP7bpoZcP6tEdR9TZl1JlSUjvP2uhrj5nkf7ktDpFQoFil4kREMIBAABmiUQ6o2f/2KZHXz2sR3ccVntvShXRkN5/1gL92dsX6d2r6xQNBYtdJsaBEA4AADCDdcdTemLnUT2247Cadh5VLJFWeSSo9521QFe/fbHes7pOJWGC92xDCAcAAJhhWrrj+uVrLXp0x2E9+8dWpTJOdRUR/adzFun9Zy3Uu1bVMuI9yxHCAQAAisw5pz8e7dGv/nBEj+44ohf3tcs5afn8Mt34rhV6/9kLdf7yeXy4cg4pagg3syslfUNSUNL3nHO3DLtuuetXSeqVdKNz7kXfCwUAAJhi8VRGv33zmJ74Q4t+9YcW7TvWK0k6a1GVPnv56frTtQu0ZkElywnOUUUL4WYWlPQtSVdIapa0zcy2OOdey2u2XtLq3OMiSd/ObQEAAGadw51xPbHTC93P7G5VbzKjaCigP1lVp79676m6dE29ls4rK3aZ8MGYIdzMzpC0RNJvnXOxvPNXOucemcS9L5S02zm3J/d6myVtkJQfwjdIuts55yQ9Z2Y1ZrbIOXdotBfOOqmzNyULSCYpYKaAmcwkM++4/7x3jneYAABg6qUyWb20v0NP7jqqx19v0WuHuiRJS2pKde35S3T5GQt08Wm1fLDyJDRqCDezv5X0GUmvS/p/zey/OuceyF3+n5ImE8KXSNqfd9ys40e5C7VZImnUEL6vO6tz/vGxEyomFDCFgqZwIKBwKKBQwBQOBhQOmkJB7ziSOx8KBhQJBhQKmkKBgCIhbxsNBVQSDqok3L8N5p3LnQ8Fh7UJKJp3riwSYr4XAACzlHNOb7X16uk3juqpN1r1mz+2KZZIKxgwXbB8nr5w5Rm67IwGnb6ggkHAk9xYI+F/JekC51zMzFZI+qmZrXDOfUPeIPNkFHq+m0Abr6HZJkmbJKmqYak+ckZETt6ouOT9nyKbe3ZWksudzzoNtEtnpYxzyrist5/NKONcbl/KxKWEc+rJShnnnUs7KZN1yjgplZWSGadkVkplRih0HCIBqSQkRYOmkpCpJChF+7dBU0lIKgmaoiGpNLctyduWhU2lIaks5LUN8H9yxWIxNTU1FbsMzDD0CxRCv0Aho/WLnpTTa20Z7WjN6NW2jFr7vARQV2pa1xDU2tqozqwNqjyckLRfh/6wX4f+4F/tmJnGCuHB/ikozrm9ZtYoL4ifosmH8GZJy/KOl0o6OIE2ytV3p6Q7JWnNmjXuf954xSTLmxznnJKZrOKprBKpjOKprOLpjOL9+6ncfjqreDIzcK036T1iibR6E2n1JDPqTaYVS2TUmUirtzejnmRaPYm0UpmxY76ZVBEJqao0rMqSkKpKvG1lyfBz4ePOVeWOo6HArH+33tTUpMbGxmKXgRmGfoFC6BcoJL9f9CUzeuGtdv1mT6ue/WObXtrfoayTKqIhXXxag967uk7vWV2vU2rLZv3fn5g+Y4Xww2Z2rnNuuyTlRsSvlnSXpLdN8t7bJK02s5WSDki6XtJHhrXZIumm3HzxiyR1jjUffKYwM0VDQW8Nz9LwtNwjmc6qN+kF9Z5EOvfIqDueUnc8ra54Sl3xtLrjKXX15bbxlA53xfVGi3e9O55WJjt6mI+EAqopDWteWUTVZWHVlIZVUxZWTVnE25b2b/POlYVVGg7yywcAMOvFUxm93pbRi4/t1HN7jun3+9uVyjgFA6a3LanWTZeu0ntOr9e5y2oUDvI18RifsUL4xyWl808459KSPm5m35nMjZ1zaTO7SdKj8pYovMs5t8PMPpW7foekrfKWJ9wtb4nCT07mnnNNJBRQJBRRzSQ+RO2cU28yMxDau3PBvatvMMh39qXU2ZtSe29SHb0p7TvWq5ebveNEOjtyfcHAQCCvKR0M8PPLI5pXHtH88ohqc/u1ueOKaIjgDgAoqkQ6o+37OvSbPW16bk+bXtzXoWQ6q4Dt1tol1frzP1mpd55Wq3WnzFNlyfQMtGHuGzWEO+eaR7n2zGRv7pzbKi9o55+7I2/fyftgKKaJmak8GlJ5NKSF1SUn/Px4KqOO3pQ6+pJq70mpsy+ZO055297kwPX9x3r1Sm9Kx3qTSo4Q3iPBgOaVhzW/PKr5uW1teUTzyiKaXxEZ2K+t8EL7vLIIH2QFAExKR29SL7zVrm172/X83mN6+UCnkumszLw1uz/+zlNU0XtQf37NJaoidGOK8I2ZmJSScFALq4MnFOD7R9+P9STV1pNUe257rCcxcNx/7UB7h9p6kuqOpwu+lplUnRtd7x9Nr62Iqq4iqrqKSG4b1aFYVp19KVWVMNIOACcz55z2H+vTtr3H9PxbXuh+o8VbgTkcNK1dUq0b37VC606Zp4tW1qq6zAvdTU0tBHBMKUI4fJc/+r5s/vjm0iTTWXX09of1wcfQ0J7Qm609en5vu471JgdWwOn3f//6MUWCAdVV9Ad1L6T379dXRnPH3nlG2QFg9utJpPXKgU5t39+h7fs69OK+drV0JyRJlSUhXXDKPH3gvCVad8o8nbOshvW64RtCOGaFSCighqoSNVSNb8Q9ncnqWG9SbbGkWmMJPb3tJdUvPVWtPQm1dnvnjsYSev1Qt9p6EgVXmgmYNL98cDR9MLwPHWWvq4yotjyqSIgP4wBAMWWyTrtbYtq+v13b93fo9/s6tOtI98Byxcvnl+ni02q1bsV8vWPFPJ3eUKkAgy0oEkI45qRQMKCGyhI1VHqhPXMgpMb3nlqwrXNOXX1pHY0l1BpLDAR37zG4/9a+HrXFkupNZgq+TnVpeDCcV0ZVXxHNja575/JH2qMhRloAYDKyWad9x3r1yoFOvXqwUy/v79TLzR3qyf2OrioJ6ZxlNXr/WQt07vIanbO0RrUV0SJXDQwihOOkZ2aqLguruiysVQ0VY7bvTaa90fSehFq7B4N6W250vbU7qdcPdump7oS6E4XnsleVhAZCeaHA3n++jsAOAMpknfYcjenVg5169UCXXj3QqdcOdg38jo0EAzpjUaX+8wVLdc7SGp27vEYra8sZ5caMRggHTlBZJKTltSEtrx17Pns8lRkYUT/anRtdz22HBPZYYsQPn1aVhHKB3Avq9RXHj64T2AHMFd3xlHYd6dbrh7q183C3dhzs1OuHutWX8ka4S8IBnbmoSh84b4nWLqnS2YurdfqCSqYEYtYhhAPTqCQc1NJ5ZVo678QC+0BQ7x6cFnM0ljixwD7C6Ho9gR3ADJDOZLW3rVd/ONylnYe90P2Hw11qbu8baFMRDenMRZW6/sJlWru4Wm9bWq1T68oV4gtxMAcQwoEZ4kQDe1tPbnR9IKj3h/ZcYD/cpafeGDmwV5aEvFH1MUbX6yqirBYAYMJSmazeauvR7paY3jgS0+6jMW+/JTbwnRHBgGllXbnOXVajGy5crjULKnXGokotqSllWVnMWYRwYBYqCQe1pKZUS2pKx2zbH9hbu/NH1genyPQH9tbuhLrGCuzDR9f7AzyBHTjpdcdTequtV7tbYoOPozHtbe1ROju4AtWSmlKd1lChd51WqzULq3TGwkqtaqjgdwdOOoRwYI6baGAvNB3maPc4Ans0/0OnkYGpMf3TZPLXZOcvXWB26exL6a22Hr3Z2qO32nq1t83bvtXWo9ZYcqBdMGA6pbZMq+or9P6zFmhVQ4VWN1Tq1PpylUeJHoBECAeQZzKBffh0mNbuhP5wuFut3a2jBvbB0fTBuev1eYG9/5jADky/TNappTuuA+19am7vGwjZXujuUXtvakj7RdUlWlFbrivOWqBTasu1orZMp9VX6JTacj4oCYyBEA5gQk4ksCfSGbXlrxAzbDpMa3dCOw9369ejBPbScFDzyyOaVx7WvLKIt9+/LY9ofpl3bX5uv6YsQggAhomnMjrY0aeDHXEd6Oj1wnZHnw609+lgZ58OdcSHTB0xkxZXl2pFXZnWv22RVtSW6ZTacq2sK9fy+WW8OQYmgRAOYNpFQ0EtrinV4hMI7MOnw7T3JHWst3/rzT1t70mOuBa75I20zxsI6eG8sO6F94NH0ip785hqysKqKQ2rqjRMqMCs5JxTZ19KLd0JHemKq6UroSPd3ralO64DHd7odmssMeR5AZMWVJVoSU2pzl8+T4vf7r2xXjKvVEtrSrWMoA1MG0I4gBnlRAK7JCXTWXX0egH9WE9S7T2pgbDenhfaW2NJ7ToSU3vv0G89/bff/2bY/QOqKQururT/EVF1aXjIuZoyL7DXlOa3C7NsGqZcXzKjtp6EjvV4/bstlhwM2t2DYftIV2JgpZF8ldGQ6quiWlxdqsvPaNCSeYMhe0lNqRZWlyhMvwWKghAOYFaLhAJqqCpRQ1XJuJ8TT2XU3pvUY08+q1PPfLs6elPq7Mt79KbU0ZdUZ19Kze29eu1gSh19qSHhvZCKaEjVuRH1ymhIFSUhVZaEVJHbryoJqyJa+Fx/W9Zvn5ucc+pJZtTVl1JXPKWuvrTac28c8x9tPbk3jj1JtfUkFE8dH6wlL1w3VEXVUFmiC5bP04KqEtVXRrWgqkQN/duqqMoi/DUPzFT8vxPASackHNSi6lKdUhXUe1bXj/t5yXRWXfFUXmj3gvqQEN+bUlc8re54Ske64vrj0bRi8bS642klM4UDVb5IMOCF9FxQ7w/spZGQysJBlUaCKss9SiOhwf1wUGWR0LDrQZVHQioNB/n67glKZ7LqTWXUm8ioN5lWbzKj3mRGPcn0wLmehPfn2x+uu+KDQbszF7q742ll8uZaD1cW8T7zUFseUV1FRKsXVKi2PKL55VHNLw/ntt51wjUwNxTl/8VmNl/Sv0taIWmvpA8759oLtNsrqVtSRlLaObfOvyoBYKhIKDCwgstEJNKZgUAeywW37nhKsUT+cVqxRGqgXXcirUOdcfX1B79kRn3JzJAPz4239mgooGgomNsGhp4LBxQJBhQNe8eD+/3tggoFTaGAKRgIKGhSMBjIHdvAdnA/MORc//mJfO+Kc1I665QZ9hg455wy2azSGaesGzyfTGeVyD28/czAufzjZCarRMrb9iUzOtbVq+xTj6knmSk4xWMkZZGgqkrCqir1/oWjvjKq0+rLVVUaHnK+qjSsypLQwAeL55dHmHcNnISK9Vb6i5Ied87dYmZfzB1/YYS2lzrnWv0rDQCmRzQUVLQiqNoJhvh8ybQXGHtTg8G8f4S2f78vb+Q2ns4MBM3BbWYgkPYk0mrPXSsUWk809M80kVBA0eDgG4/+Nxb5xxUlIZVUB9UQiuvU5YtVFvX+JcH7l4WQyqPevziURwfPlUW848qSEHOrAZyQYoXwDZIac/s/kNSkkUM4AGCYSC44Vivsy/28kefs4Ah0ZnDEOZ3NKpvV0OsD26wyuWvpzMSDfChoCpopFDQFzBQKBI4bZc/fDwRsMGAHAyf01edNTU1qbFw74VoBYDzMOf9HN8yswzlXk3fc7pybV6Ddm5LaJTlJ33HO3TnKa26StEmS6uvrL7j33nunvG7MXrFYTBUVFcUuAzMM/QKF0C9QCP0ChVx66aUvTHS69LSNhJvZLyUtLHDpSyfwMn/inDtoZg2SfmFmf3DOPVWoYS6g3ylJa9ascY2NjSdaMuYwb2SrsdhlYIahX6AQ+gUKoV9gqk1bCHfOvW+ka2Z2xMwWOecOmdkiSS0jvMbB3LbFzO6TdKGkgiEcAAAAmC2K9SmSLZI+kdv/hKQHhjcws3Izq+zfl/R+Sa/6ViEAAAAwTYoVwm+RdIWZvSHpityxzGyxmW3NtVkg6ddm9pKk30l6yDn3SFGqBQAAAKZQUVZHcc61Sbq8wPmDkq7K7e+RdI7PpQEAAADTjkVNAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8VJYSb2YfMbIeZZc1s3SjtrjSznWa228y+6GeNAAAAwHQp1kj4q5KulfTUSA3MLCjpW5LWSzpL0g1mdpY/5QEAAADTJ1SMmzrnXpckMxut2YWSdjvn9uTabpa0QdJr014gAAAAMI2KEsLHaYmk/XnHzZIuGqmxmW2StEmS6uvr1dTUNK3FYXaJxWL0CRyHfoFC6BcohH6BqTZtIdzMfilpYYFLX3LOPTCelyhwzo3U2Dl3p6Q7JWnNmjWusbFxPGXiJNHU1CT6BIajX6AQ+gUKoV9gqk1bCHfOvW+SL9EsaVne8VJJByf5mgAAAEDRzeQlCrdJWm1mK80sIul6SVuKXBMAAAAwacVaovCDZtYs6WJJD5nZo7nzi81sqyQ559KSbpL0qKTXJd3rnNtRjHoBAACAqVSs1VHuk3RfgfMHJV2Vd7xV0lYfSwMAAACm3UyejgIAAADMSYRwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnRQnhZvYhM9thZlkzWzdKu71m9oqZbTez5/2sEQAAAJguoSLd91VJ10r6zjjaXuqca53megAAAADfFCWEO+delyQzK8btAQAAgKKa6XPCnaTHzOwFM9tU7GIAAACAqTBtI+Fm9ktJCwtc+pJz7oFxvsyfOOcOmlmDpF+Y2R+cc0+NcL9NkvqDesLMXj3xqjGH1UliWhOGo1+gEPoFCqFfoJA1E33itIVw59z7puA1Dua2LWZ2n6QLJRUM4c65OyXdKUlm9rxzbsQPfOLkQ59AIfQLFEK/QCH0CxQymYVDZux0FDMrN7PK/n1J75f3gU4AAABgVivWEoUfNLNmSRdLesjMHs2dX2xmW3PNFkj6tZm9JOl3kh5yzj1SjHoBAACAqVSs1VHuk3RfgfMHJV2V298j6ZwJ3uLOiVeHOYo+gULoFyiEfoFC6BcoZML9wpxzU1kIAAAAgDHM2DnhAAAAwFw1a0O4mV1pZjvNbLeZfbHAdTOzb+auv2xm5xejTvhrHP1iY64/vGxmz5rZRKc8YRYZq1/ktXuHmWXM7Do/60NxjKdfmFmjmW03sx1m9qTfNcJ/4/h7pNrMfm5mL+X6xSeLUSf8Y2Z3mVnLSMtfTzRzzsoQbmZBSd+StF7SWZJuMLOzhjVbL2l17rFJ0rd9LRK+G2e/eFPSJc65t0v6JzHHb84bZ7/ob/e/JD3qb4UohvH0CzOrkXS7pGucc2dL+pDfdcJf4/x98RlJrznnzpHUKOl/m1nE10Lht+9LunKU6xPKnLMyhMtbL3y3c26Pcy4pabOkDcPabJB0t/M8J6nGzBb5XSh8NWa/cM4965xrzx0+J2mpzzXCf+P5fSFJfyPpZ5Ja/CwORTOefvERSf/hnNsned9Z4XON8N94+oWTVGlmJqlC0jFJaX/LhJ9yXxR5bJQmE8qcszWEL5G0P++4OXfuRNtgbjnRP/O/kPTwtFaEmWDMfmFmSyR9UNIdPtaF4hrP74vTJc0zsyYze8HMPu5bdSiW8fSL2ySdKemgpFck/VfnXNaf8jBDTShzFmWJwilgBc4NX+ZlPG0wt4z7z9zMLpUXwt89rRVhJhhPv/hXSV9wzmW8wS2cBMbTL0KSLpB0uaRSSb8xs+ecc7umuzgUzXj6xZ9K2i7pMkmnSfqFmT3tnOua5towc00oc87WEN4saVne8VJ570hPtA3mlnH9mZvZ2yV9T9J651ybT7WheMbTL9ZJ2pwL4HWSrjKztHPufl8qRDGM9++RVudcj6QeM3tK3vdXEMLnrvH0i09KusV5azzvNrM3JZ0h74sFcXKaUOacrdNRtklabWYrcx+GuF7SlmFttkj6eO4Tq++U1OmcO+R3ofDVmP3CzJZL+g9JH2M066QxZr9wzq10zq1wzq2Q9FNJnyaAz3nj+XvkAUnvMbOQmZVJukjS6z7XCX+Np1/sk/evIzKzBZLWSNrja5WYaSaUOWflSLhzLm1mN8lbxSAo6S7n3A4z+1Tu+h2Stsr79s3dknrlvXPFHDbOfvFlSbWSbs+Neqadc+uKVTOm3zj7BU4y4+kXzrnXzewRSS9Lykr6nnOu4BJlmBvG+fvinyR938xekTcN4QvOudaiFY1pZ2Y/kbcSTp2ZNUv6iqSwNLnMyTdmAgAAAD6brdNRAAAAgFmLEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AJzEze4eZvWxmJWZWbmY7zGxtsesCgLmOL+sBgJOcmf0PSSWSSiU1O+e+WuSSAGDOI4QDwEnOzCKStkmKS3qXcy5T5JIAYM5jOgoAYL6kCkmV8kbEAQDTjJFwADjJmdkWSZslrZS0yDl3U5FLAoA5L1TsAgAAxWNmH5eUds792MyCkp41s8ucc78qdm0AMJcxEg4AAAD4jDnhAAAAgM8I4QAAAIDPCOEAAACAzwjhAAAAgM8I4QAAAIDPCOEAAACAzwjhAAAAgM8I4QAAAIDP/n/aE80e0s6N0gAAAABJRU5ErkJggg==\n",
"text/plain": [
"