{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Universidade Federal do Rio Grande do Sul (UFRGS) \n", "Programa de Pós-Graduação em Engenharia Civil (PPGEC) \n", "\n", "# PEC00025: Introduction to Vibration Theory\n", "\n", "\n", "### Class 11 - Free vibration of multi degree of freedom systems\n", "\n", "[1. Natural vibration modes and frequency](#section_1) \n", "[1.1. The general solution for free vibration](#section_11) \n", "[1.2. Natural vibration modes and frequencies](#section_12) \n", "[1.3. Orthogonality of vibration modes](#section_13) \n", "[2. Examples of modal properties assessment](#section_2) \n", "[2.1. Example 1: steel plane truss](#section_21) \n", "[2.2. Example 2: beam element](#section_22) \n", "[2.3. Example 3: experimental 3-dof model](#section_23) \n", "[3. Structural response to initial conditions](#section_3) \n", "[4. Assignment](#section_4) \n", "\n", "---\n", "_Prof. Marcelo M. Rocha, Dr.techn._ [(ORCID)](https://orcid.org/0000-0001-5640-1020) \n", "_Porto Alegre, RS, Brazil_ \n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Importing Python modules required for this notebook\n", "# (this cell must be executed with \"shift+enter\" before any other Python cell)\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pickle as pk\n", "import scipy.linalg as sc\n", "\n", "from MRPy import MRPy\n", "\n", "# Load matrices generated in Class 10 (that notebook must be run firstly!)\n", "\n", "with open('resources/data/sample_KM.pk', 'rb') as target:\n", " K1, M1, K2, M2, K3, M3 = pk.load(target)\n", "\n", "#target = open('resources/data/sample_KM.pk', 'rb')\n", "#K1, M1, K2, M2, K3, M3 = pk.load(target)\n", "#close(target)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Natural vibration modes and frequencies <a name=\"section_1\"></a> \n", "\n", "### 1.1. The general solution for free vibration <a name=\"section_11\"></a> \n", "\n", "Once the stiffness and mass matrices are defined for a given structure, the\n", "undamped equilibrium matrix equation results to be a set of coupled equilibrium\n", "equations, each one for one of the degrees of freedom. In matrix forms it reads:\n", "\n", "$$ \\mathbf{M} \\, \\ddot{\\vec{u}} + \\mathbf{K} \\, \\vec{u} = \\vec{F}(t) $$ \n", "\n", "where $\\vec{F}(t)$ is the (time dependent) external loads vector.\n", "In case of free vibration we have:\n", "\n", "$$ \\mathbf{M} \\, \\ddot{\\vec{u}} + \\mathbf{K} \\, \\vec{u} = \\vec{0} $$ \n", "\n", "Let us now assume that there is a solution $\\vec{u}_k(t)$ such that:\n", "\n", "$$ \\vec{u}_k(t) = u_k(t) \\, \\vec{\\varphi}_k $$\n", "\n", "where $\\vec{\\varphi}_k$ is not time dependent. This assumption may be\n", "understood as a separation of time and space dependence of $\\vec{u}_k(t)$.\n", "Now the acceleration vector results to be:\n", "\n", "$$ \\ddot{\\vec{u}}_k(t) = \\ddot{u}_k(t) \\, \\vec{\\varphi}_k $$\n", "\n", "and the free vibration equation becomes:\n", "\n", "$$ \\ddot{u}_k(t) \\, \\mathbf{M} \\, \\vec{\\varphi}_k + \n", " u_k(t) \\, \\mathbf{K} \\, \\vec{\\varphi}_k = \\vec{0} $$ \n", "\n", "Premultiplying this equation by $\\mathbf{K}^{-1}$ and dividing by $u_k(t)$ results:\n", "\n", "$$ \\frac{\\ddot{u}_k(t)}{u_k(t)} \\, \\mathbf{D} \\, \\vec{\\varphi}_k + \n", " \\mathbf{I} \\vec{\\varphi}_k = \\vec{0} $$ \n", "\n", "where $\\mathbf{I}$ is the identity matrix and $\\mathbf{D} = \\mathbf{K}^{-1} \\, \n", "\\mathbf{M}$ is called the _system dynamic matrix_.\n", "Recalling that $\\vec{\\varphi}_k$ is not time dependent implies that the equation\n", "above is only valid if the coefficient of matrix $\\mathbf{D}$ is constant in time.\n", "We denote this constant quotient as $-\\omega_k^2$ and the condition becomes:\n", "\n", "$$ \\ddot{u}_k(t) + \\omega_k^2 u_k(t) = 0 $$\n", "\n", "The solution for this equation has the general form:\n", "\n", "$$ u_k(t) = u_{k0} \\sin \\left( \\omega_k t + \\theta_k \\right) $$\n", "\n", "which is the same form found for a single degree of freedom system.\n", "However, the time function $u_k(t)$ is only part of the solution for $\\vec{u}(t)$,\n", "corresponding to its time dependent amplitude. \n", "There is still the need of finding the time independent vector, $\\vec{\\varphi}_k$,\n", "and the free vibration frequency, $\\omega_k$.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2. Natural vibration modes and frequencies <a name=\"section_12\"></a> \n", "\n", "The general amplitude solution above implies that the acceleration vector is:\n", "\n", "$$ \\ddot{\\vec{u}}_k(t) = -\\omega_k^2 u_{k0} \n", " \\sin \\left( \\omega_k t + \\theta_k \\right) \\, \\vec{\\varphi}_k $$\n", "\n", "Replacing this result in the free vibration equation and simplifying gives:\n", "\n", "$$ \\mathbf{K} \\, \\vec{\\varphi}_k = \\omega_k^2 \\, \\mathbf{M} \\, \\vec{\\varphi}_k $$ \n", "\n", "or, alternativelly, with the dynamic matrix:\n", "\n", "$$ \\mathbf{D} \\, \\vec{\\varphi}_k = \\lambda_k \\, \\vec{\\varphi}_k $$ \n", "\n", "with $\\lambda_k = 1\\,/\\,\\omega_k^2$.\n", "The two equations above represent an eigenvalue-eigenvector problem, which\n", "has as many solutions as the matrices order, $N$, which is also the number\n", "of system degrees of freedom. \n", "Each solution is a pair $\\left( \\omega_k, \\vec{\\varphi}_k \\right)$ or, \n", "alternatively, $\\left( \\lambda_k, \\vec{\\varphi}_k \\right)$ if the \n", "dynamic matrix is used.\n", "\n", "The eigenvalues $\\omega_k$ are called the _natural vibration frequencies_\n", "of the strutural system, while the eigenvectors $\\vec{\\varphi}_k$ are\n", "called the _vibration modes_, or _modal shapes_. \n", "It is very important to keep in mind that _the modal shapes have \n", "no prespecified scale_, what means that they can be multiplied by\n", "any scale factor, $\\alpha$, and still remain solutions for the eigenproblem:\n", "\n", "$$ \\mathbf{K} \\, (\\alpha \\vec{\\varphi}_k) = \n", " \\omega_k^2 \\, \\mathbf{M} \\, (\\alpha \\vec{\\varphi}_k) $$ \n", "\n", "Numerical algorithms for solving this eigenproblem are available in many\n", "environments, including the best models of HP handheld calculators. \n", "In Python, they are available in ```scipy.linalg``` module and will be\n", "used in [section 2](#section_2) for the three examples provided in the previous class.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.3. Orthogonality of vibration modes <a name=\"section_13\"></a> \n", "\n", "The eigenvectors $\\vec{\\varphi}_k$ presents the important property of _orthogonality_\n", "with respect to the stiffness and to the mass matrix.\n", "This is a direct consequence of their symmetry, as shown in the following.\n", "Let us start by considering two vibration modes $i$ and $j$ that are solutions for\n", "the eigenproblem:\n", "\n", "\\begin{align*}\n", "\\mathbf{M} \\, \\vec{\\varphi}_i &= \\lambda_i \\mathbf{K} \\, \\vec{\\varphi}_i \\\\\n", "\\mathbf{M} \\, \\vec{\\varphi}_j &= \\lambda_j \\mathbf{K} \\, \\vec{\\varphi}_j\n", "\\end{align*}\n", "\n", "Transposing the equation for mode $i$ above and recognizing that \n", "$\\mathbf{M} = \\mathbf{M}^{\\intercal}$ and $\\mathbf{K} = \\mathbf{K}^{\\intercal}$ gives:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \n", " = \\lambda_i \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} $$\n", "\n", "Now, postmultiplying by $\\vec{\\varphi}_j$ gives:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j\n", " = \\lambda_i \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j $$\n", "\n", "On the other hand, the eigenproblem for mode $j$ above can be premultiplied by \n", "$\\vec{\\varphi}_i^{\\intercal}$ to give:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j\n", " = \\lambda_j \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j $$\n", "\n", "Subtracting this last equation from the previous one results in:\n", "\n", "$$ (\\lambda_i - \\lambda_j) \\, \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j = 0 $$\n", "\n", "This condition can be satisfied if and only if:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{K} \\, \\vec{\\varphi}_j = 0,\n", " \\hspace{1cm} {\\rm for} \\; i \\neq j $$\n", "\n", "Starting again this demonstration with the $j$ eigenproblem solution leads also to:\n", "\n", "$$ \\vec{\\varphi}_i^{\\intercal} \\, \\mathbf{M} \\, \\vec{\\varphi}_j = 0,\n", " \\hspace{1cm} {\\rm for} \\; i \\neq j $$\n", "\n", "These are the two orthogonality conditions for the eigenvectors $\\vec{\\varphi}_k$.\n", "In the next class they will be used to decouple the matrix equilibrium equation \n", "into a set of scalar equations, one for each vibration mode. Once this orthogonality\n", "condition has been stated, we observe that the eigenvectors $\\vec{\\varphi}_k$ constitutes\n", "a base of independent vectors (of a _linear vector space_) that can be linearly combined \n", "to represent the complete system response as:\n", "\n", "$$ \\vec{u}(t) = \\sum_{k = 1}^{N} u_k(t) \\, \\vec{\\varphi}_k = \\mathbf{\\Phi}\\vec{u}_k(t) $$\n", "\n", "where $\\mathbf{\\Phi}$ is the modal matrix, whose _columns_ are the the eigenvectors $\\vec{\\varphi}_k$.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Examples of modal properties assessment <a name=\"section_2\"></a> \n", "\n", "In the following sections, each of the three examples presented in the\n", "last class are subjected to a modal analysis and the corresponding solutions,\n", "for both natural frequencies and associated vibration modes, are plotted\n", "for visualization.\n", "\n", "The eigenvalues and eigenvectors are solved with ```scipy``` function ```eig``` \n", "from module ```linalg```. We define a general function to return natural\n", "vibration frequencies, and the associated vibration modes, in ascending order:\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def vibration_modes(K, M):\n", "\n", "# Uses scipy to solve the standard eigenvalue problem\n", " w2, Phi = sc.eig(K, M)\n", "\n", "# Ensure ascending order of eigenvalues\n", " iw = w2.argsort()\n", " w2 = w2[iw]\n", " Phi = Phi[:,iw]\n", "\n", "# Eigenvalues to vibration frequencies\n", " wk = np.sqrt(np.real(w2)) \n", " fk = wk/2/np.pi\n", "\n", " return fk, wk, Phi\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.1. Example 1: steel plane truss <a name=\"section_21\"></a> \n", "\n", "For the steel truss presented last class this is done as follows: \n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "fk1, wk1, Phi1 = vibration_modes(K1, 2*M1)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The script below shows the results as nodal displacements at the truss top.\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/AAAANBCAYAAABHyVXeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhb1Zk/8O/VasuWZWvxFu9b9j0hJI4dB0gotBQYCqW0QBdKW6AlzQw/1hmWKWQKhUKbhoEZSigdWjrDWspmIInj7AsOIYv3LV4l2ZZtyZZl6f7+0GLLdpyY2JIlfz/P4yfSvVdXR86xpPe+7zlHEEVRBBERERERERFNa5JgN4CIiIiIiIiIzo0BPBEREREREVEIYABPREREREREFAIYwBMRERERERGFAAbwRERERERERCGAATwRERERERFRCGAAT0RERERERBQCGMATERERERERhQBZsBsQSC6XC83NzVCr1RAEIdjNISIiIiIiojAniiJ6enqQnJwMieTCcugzKoBvbm5GampqsJtBREREREREM0xjYyNSUlIu6BwzKoBXq9UAgNraWmi12iC3hsKZw+HAxx9/jI0bN0Iulwe7ORTG2NcoUNjXKFDY1yhQ2NcoUDo6OpCZmemLRy/EjArgvWXzarUaMTExQW4NhTOHwwGVSoWYmBh+INCUYl+jQGFfo0BhX6NAYV+jQHE4HAAwKcO4OYkdERERERERUQhgAE9EREREREQUAhjAExEREREREYUABvBEREREREREIYABPBEREREREVEIYABPREREREREFAIYwBMRERERERGFAAbwRERERERERCGAATwREREREc1Yoiji9ttvh1arhSAIKCsrQ1FRETZt2hTsphGNwgCeiIiIiIhmrI8++gjbt2/He++9h5aWFixYsCDgbairq8OPfvQjZGZmIjIyEtnZ2Xj44YcxMDAw7uN6e3tx1113ISUlBZGRkZg7dy6ef/55v2MyMjLw7LPPjnrsI488giVLlkziq6BAkAW7AURERERERMFSU1ODpKQkrFmzJmhtOH36NFwuF1544QXk5OTgyy+/xI9//GNYrVb85je/OevjfvnLX2LHjh3485//jIyMDHz88ce44447kJycjKuvvjqAr4AChRl4IiIiIiKakZ577jls2rQJDQ0NEAQBGRkZYx734YcfQqPR4E9/+tOUtONrX/saXn75ZWzcuBFZWVn45je/iX/5l3/Bm2++Oe7j9u3bh1tvvRVFRUXIyMjA7bffjsWLF+Pw4cMTboMgCKN+zvb7oOBhAE9ERERERDPSbbfdhocffhgpKSloaWnBoUOHRh3z17/+FTfccAP+9Kc/4ZZbbjnruaKjo8f9ueKKKybUNovFAq1WO+4xa9euxbvvvoumpiaIoogdO3agoqICl19++YSeCwBaWlp8P1VVVcjJyUFhYeGEz0NTiyX0REREREQ0I0VFRUGtVkMqlSIxMXHU/m3btuGBBx7AO++8g/Xr1497rrKysnH3R0ZGnne7qqur8fvf/x5PP/30uMf97ne/w49//GOkpKRAJpNBIpHgv//7v7F27Vq/4+6991489NBDftsGBgYwb948333v6xdFEddddx00Gg1eeOGF824zBQYDeCIiIiIiohHeeOMNtLW1obS0FBdddNE5j8/JyZmU521ubsbXvvY1XH/99bjtttvGPfZ3v/sd9u/fj3fffRfp6ekoKSnBHXfcgaSkJFx22WW+4+655x58//vfH/XYkpKSUed84IEHsG/fPhw6dGhCFx0oMEIqgC8pKcFTTz2FI0eOoKWlBW+99RauueaaYDeLiIiIiIjCzJIlS3D06FG8/PLLWLlyJQRBGPf46OjocfcXFBTggw8+GPeY5uZmrF+/HqtXr8aLL7447rF9fX144IEH8NZbb+HrX/86AGDRokUoKyvDb37zG78AXq/Xj7rAMFZ5/p///Gf89re/xc6dO5GSkjLu81NwhFQAb7VasXjxYvzgBz/AddddF+zmEBERERFRmMrOzsbTTz+NoqIiSKVSbN26ddzjL7SEvqmpCevXr8fy5cvx8ssvQyIZf7oyh8MBh8Mx6jipVAqXyzXuY8eyb98+3HbbbXjhhRdw8cUXT/jxFBghFcBfccUVE578gYiIiCZGFEXYB13odzjR53Cib8CJnj47WmxAQ4cNapUSkXIpIuVSyKScD5eIwldeXh527NiBoqIiyGSyMddT97qQEvrm5mYUFRUhLS0Nv/nNb2A0Gn37ho/NnzNnDrZs2YJrr70WMTExWLduHe655x5ERkYiPT0du3btwp/+9Cc888wzE3r+1tZWXHvttbjxxhtx+eWXo7W1FYD7YoDBYPjKr4smX0gF8BNlt9tht9t997u7uwEMXa0imire/sV+RlONfW1mGQqsXehzOH0Btu/+gBP9gyP2DXjuewPyAe8+9/3+QSf6BlzDzuU+VhTHaoEM/3Gs1G+LXCogQi5FhEyCCE9QH6GQuP/1bHdv8+yTD9s37HakfNjj/W679/FCwczB9zUKFG8fczqdfvcB9/uty+WCw+FAVlYWPvroI2zYsAGCIODJJ5+c9LZ88MEHqKqqQlVV1ajS9YGBAd/t8vJydHR0+Nr66quv4qGHHsJ3v/tddHR0IC0tDY899hh+9KMf+b0ep9M56m/K6XRCFEU4HA58+eWXaGtrwyuvvIJXXnnFd0x6ejoqKysn/fXONJP5fiaI4tgf0dOdIAjnHAP/yCOP4NFHHx21/bXXXoNKpZrC1hER0UwiioDDNfQz4PlxuIABpzB027fNe1vw2zb0WGHoXM6hxzlcgIjxx2BONqkgQiEB5BLAKQa3HXIJfG1RSACFFJBLhrYrJIBcOuy2d590xOM824cf632sNLAvi4iIZgCbzYabbroJFosFMTExF3SusA7gx8rAp6amoqWlBTqdLgCtpJnK4XCguLgYGzZsgFwuD3ZzKIyxr43Pm7H2ZqnHylj3ebLR9sERGevhWepht31Zaof/cYHmzXwPz2or/TLaQ1nt0dlu9z7liMz38Oy5UuZ+jNyT+R7e12QyGQYGXegbUQlg99zvG/H7Gfm78lYC2EdUC3grAfoHhx4T6G8pMokwuiJAIUGEbEQFwbCKggiZFJGKsSsKRlcX+P9eaTS+r1GgsK9RoJjNZiQlJU1KAB/WJfRKpRJKpXLUdrlczj9SCgj2NQqUUOtrvsDaF0A7hwLlgWFB4IDTP8AbEXQPPcZ/f/+wcweaQirxBdKRCqlf0Bwhl3gCvaGA2Xvft214+fmwY3znUbjL0oNVUu7tawoFMP58yxdurLH4fhcDhv2/24ddBBi+3z1EYEQ/GvC/oDP8QsGgS0SvfRC99vHbdqFkEsHvQoD3doRM4vv/PtvQA7/9Y21TDF0wCOULBaH2vkahi32Nptpk9q+wDuCJiGhixgqs3ZnSsQNr/7HWQ4H10GNGB97eACzQFFLJ0NjqEYG1N3t6voH18P3TJbAOR4Ig+P4PYqfweYZfKPD2T7+gf9iFgP4xLhQMvzAwsurA7zEjLhT02AfRYx+cwld2lgsFI/4Ohi4ejOjnoy5Ajbx4IPGdN5QvFBARhZKQCuB7e3tRVVXlu19bW4uysjJotVqkpaUFsWVERIHlcLpg7LGjqaMX5V0ClKfaMSAK5xVY+wUco4LxwJeCewPr4cHCWJnniGFZ7ZGB98jAemRmkoE1jWf4hYKpJIoiBpwu3zCN0UG/c3TQP+Aa4+LB6CEL0+1CwdkqBpRjXRDzXTzwXAyQiGi2AZY+B3Qy2TnX3iYimklCKoA/fPgw1q9f77u/efNmAMCtt96K7du3B6lVRESTRxRFdNocaOvuR2t3P9q7+9FqsaOtpx9tln609bjvm632YWODpcCpsklvy/kG1pGK4WOAR+6XMLAm8hAEAUqZe34BDaauXPdsFwr6B/0v2A1d0DvLhQDPcJSxH+OEbUovFMjw62M7ECGXICEmAgnqCCRoIpCgViJRE4H4mAgkxkQgIUaJhJiIKb/4QkQ0XYRUAF9UVIQQnXOPiAi2gUG0WvrR1m1HW3f/sCDdjlbP/fZuOwac55cFl0kEGNRKCI4+xOtiESmXjQqsz2cs9cht3ttSCbNeRKEomBcKRlf+nPtCgG9OC89+q30QrV29sA0K6He4UG+2od5sG7ctmkg5EmMiEB+j9AT2/gF/QkwE9NFKvq8RUcgLqQCeiGg68paze4PytmEBufd+m6V/QpkpXZTCk2FyZ5e8P4kaJeLVEUjURECrUsDpHMT777+PK69cxQl4iCigpupCgcPhwPvvv49LN1yOjj6Xp/Kof9R7bLvnImi/wwVLnwOWPgfK23rOel6JABjUSk+g75/Bd7+/ujP9MZEs2yei6YsBPBHRWXy1cvbxqRTSoexQjNKTIfJ8cfR8kTSolVDKzq8c1Bn4ueCIiAJCKZciTRWBNJ3qrMeIooju/sGhqiZLP9p77KMC/vaefrhEeCqg7AAsZz2nr2zfG9iPvJDqyfSzbJ+IgoEBPBHNSLaBQXcWx9KPdl92Z3Rp+0TK2ePV/gG5XymnJ2BXRzBLTkQ0WQRBgCZSDk2kHHkJ6rMe53SJMPd6q6OGZfAt/WjrsfsuynbZHOddth+rko87Nj8xJgI6lu0T0SRjAE9EYcXhdMHUaz/nWPOe/vMvZ9dGKXwB+NlKL3VRCkj4JY2IaFqSSgTEe96/x9PvcPp9Vgx9htj9svz2QRe6bA502cYv25dKBBiilaNK9eOHjc1PiIlATATL9ono/DCAJ6KQIIoiumyOUWPLh4+DbOu2w9Q78XL20ZnyobHm8THnX85OREShLUIuRZpOde6y/b7Bc47NN/bY4XSJaPXcP1fZ/rnG5rNsn4gABvBENA30DThHZztGjDVv67ZjYHBi5ex+X4TGGGserWTGg4iIJkYQBGhUcmhU5y7bN/XafVl7X6n+iKowS5+7bL/ObEPdeZTtDwX6o8fmJ8QoWbZPFOYYwBPRlBl0umDstZ9zrDnL2YmIKNxIJYLvc2lRytmP63c4R2fwR4zNH1m2f7r1PMr2PWPzWbZPFF4YwBPRhJ2rnN17m+XsRERE44uQS5Gui0K6Luqsx3jL9lu7h2fwh4aPeT+LR5ftn12kXIqEGCXL9olCDAN4IvLDcnYiIqLpZXjZ/uzEs5ftDzpdMFsHxhybP/y+pc+BPoeTZftEIYgBPNEMMVXl7L6SPO9SOiMy6CxnJyIiCgyZdGgN+/H0DTiHvgecZWx+a3c/Br5i2f7wUv3hQ95Ytk904RjAE4U4bzm7d4zc6OVvJl7OHimX+mXHxxprznJ2IiKi0BSpOL+yfUufwz+D7xuTb/ddADD1Trxs/2xL6iXGRMCgZtk+0XgYwBNNY30DTt8V8fGWTjvfcnapp5x97EngPGPNYyKgZjk7ERHRjCYIAmJVCsSqFOcs2zf1Dow7Nr/V0o/u/sHzLtuPU8nHzOD7Kvw0SuiiWLZPMxMDeKIg8H7YjTXWvH3YurLdEyhnH/5hN9ZY8/gYftgRERHR5JJJJUjUuL9rLB7nOG9SYmSp/sgExcCgC502BzrPo2x/aI6dscfmJ2iYlKDwwwCeaJL1O5yoaevFqS4B1iNNMFsdo65Em3rtcE2wnH3k8i/Dx5qz3IyIiIims0iFFBn6KGToz1227/veNGxsvt9s+56y/RZLP1os/Tg23vOO8z1Kp5Khy+5+XqJQwQCe6CvodzjR2GFDrcmKOrPVXQ5msqLOZEVLd79nrLkUOHXirOfglWMiIiKiIcPL9ucknv24iVQy9jmcqDVZUWuynuVsMvzH8U+RrotChs59gSFTr/Ldjlcr+T2MphUG8ERnYR/0Buk21JutQ8G6yYZmS9+4E8JFK2VQSx3ISdYjKTZydHDOsVtEREREX8nwsv3x2AYGz1qq397dj5auPjR39aHP4cLp1p4xS/ZVngn/MvUq97+ewD5Dr4IhmsE9BR4DeJrRBgZdaOgYHaDXma1o7uobt8w9WilDhvcK7bArtum6KMQoBHzwwQe48srlkMvlgXtBRERERAQAUClkyNDLzlq273A48O5772PhxetwxmIflbRp6uyDbcCJUy3dONXSPerxUb7g3h3Q+27roqCPVjC4pynBAJ7C3sCgC2c63UF5rclT6m4eemMeL0iP8o7X0kX5gvVMvXvZlfHemB0OxxS9GiIiIiKaLDIJkKmPQl5S7Kh99kEnznT2oc40FNTXm91DKJu6+mAdcOJkSzdOjhHcexM9w7P23kSPLorBPX11DOApLDicLr832HqzFbWecelNXX1wjhOlDy+NGp5NZ2kUERER0cyllEmRbYhGtiF61D7vUEtv5ebIoZa99kF82dSNL5tGB/dqpcw3oV+GTjWskjMKcSo5v3vSuBjAU8gY9ATptWYr6k3uieO8b5ZnOscP0iPlUqTrVL7seeawbLqBk5MQERER0QQoZVLkxKuRE68etW/4ZMf1ZhtqzVbfZMfNln702AdxvMmC402WUY9VR8h8Zfi+AF/vzuLHRSkC8dJommMAT9PKoNOF5q5+3xudN5teZ7ahscOGwXGC9Ai5BBm6KKQPe6Pzlr8nxDBIJyIiIqKpFyGXIjdBjdyEsYP7Bu9KRqZhKxmZrWix9KOnfxBfnLHgizOjg3tNpNwX0A8N63QnqGJVDO5nCgbwFHBOl4jmrr5Rk8bVmaxo7LTB4Tx7kK6USdwBum/CkKHx6QnqCEg4qzsRERERTVMRcinyEtTIGyO47xsYFtx7s/ae78qt3f2w9Dlw7IwFx8YI7mNVcs9QUJWvHN87NFSj4oTK4YQBPE0Jb5A+co30WrMVjR3jB+kKmQTp2qE3n3SdypdNT4xhkE5ERERE4SdSIcXsRDVmJ44O7m0Dg6g3e2fJt/m+V9ebrWjrtqPL5kCZrQtljV2jHhunkvuqU9M9iS9vIiwmgsF9qGEAT1+ZyyWi2dLnm43Te5Ww1mRFY0cfBpyusz5WIZUgzTtpx/ArhfooJDFIJyIiIiLyUSlkmJsUg7lJMaP22QYGhypafePt3WPvjT12dNoc6GzowucNXaMeq4tSjDn8NEOvgprB/bTEAJ7G5XKJaO3u913lGz5Wp77DhoHBswfpcqmANK1q2Kzu3it/KiTHRkLKIJ2IiIiI6IKoFDLMS47BvOTRwX2vfdA9n9Sw2fK9WXxTrx1m6wDM1gEcHSO410crPPNLeSaAHja5XrSSYWSw8DdPcLlEtPX0e7Lo3tKcobUu7eME6TKJJ0j3TabhWe9SH8UgnYiIiIgoiKKVMsxP1mB+smbUvp5+B+rNQ3NR1XqC/HqzFabeAd/P4frOUY/VRyuHlmAelrXP0EUhisH9lOJvd4YQRRFt3fZha6QPldfUd1jR7xg/SE/VqvxmvfRm05NjIyCTSgL4SoiIiIiI6EKpI+RYMEuDBbNGB/fd/Q7Ue8rw60dU4nZYB2DqtcPUa8ehutHBfbxaORTQjxh7r1Iw/LxQ/A2GEVEU0d5jHzYWfWhZinqzDX0O51kfK5UISI2LHArQh41LnxUbySCdiIiIiGiGiImQY2GKBgtTRgf3lj7HUMWut3rXE+B32hxo77GjvceOg3Udox6bEKP0zY7vjjXcMUe6NgqRCmkgXlrIYwAfYkRRhLHX7h7HMmz2yVrPH49tYPwgPSUu0l3i7s2mewL2lLhIyBmkExERERHRODSRcixKicWilNhR+yw2h28yPb+17s1WdNkcaOu2o63bjgO1o4P7xJgI3wz56Tr/te4j5AzuvRjAT0OiKMLUO+A30USdyea7bR0nSJcIwKy4yKF10oeNR0mJU0EhY5BORERERESTT6OSY7EqFotTY0ft67INeOIZ/7Xua01WdPcPorW7H63d/dhfMzq4T9JE+GXtvXNupWlnXnDPAD5IRFGE2Tow5lqOdSYbeu2DZ32sIACzYiN9AXq6bmgtx1QG6URERERENM3EqhRYmqbA0rQ4v+2iKKLL5hg2R9dQ1r7WZEVP/yBaLP1osfRjX43Z77GCACRrIsdYCk+FNJ0KSln4BfcM4KeQKIrotDn81kj3LsFWZ7Ki5xxBerIm0lc2kjls8rhUbWRYdkYiIiIiIppZBEFAXJQCcVEKLBsjuO+wDgzFUL4KZZsvnmrq6kNTVx/2Vo8d3LsTnSq/sfdp2tBNejKAnwSd1oFRa6QPv2J0NuNdMUqdgeUgREREREREXoIgQBethC5aieXpo4N7s3XALwYbnsW3Djh9wX1plf95JQKQPKyi2RuDhUJFc8gF8Nu2bcNTTz2FlpYWzJ8/H88++ywKCgqm/HnPNmajzmyDpc8x7mM5ZoOIiIiIiGjyCIIAfbQS+mglVmRo/faNN6dYnWfi7zOdfTjT2YfdlSa/x0oEICVO5VcF7a2KTtWqgj7xd0gF8K+//jo2bdqEbdu2IT8/Hy+88AKuuOIKnDx5EmlpaRd8/nPNmjgezppIREREREQUfIIgwKBWwqBWYuUYwf3ZVvWqM1nR53CiocOGhg7bqODeu6rX8FjPW0mdEheYpbdDKoB/5pln8KMf/Qi33XYbAODZZ5/FRx99hOeffx5btmw57/OcaO5GZ2P/mOsWjofrFhIREREREYUuQRAQr45AvDoCF2WODu7be+zDhkTbhs1lZkW/w4V6sw31Zht2VRj9HivzBvcjsvaZ+ihEOF2T1v5JD+AbGxvx8MMP449//OOknndgYABHjhzBfffd57d948aN2Lt375iPsdvtsNvtvvvd3d0AgO/98TAkStWYj4lXK5GmjfQE6u7SiXStCum6SKgUZ/t1ueBwTN5/CoU+h8Ph9y/RVGFfo0BhX6NAYV+jQGFfo7FoI6XQpsZgWWqM33ZRFNHWY3dPoOcJ4r3/1nfYYB90eaq3bQD8g3uJo2/S2ieIoihO2tkAHDt2DMuWLYPTefa1yr+K5uZmzJo1C3v27MGaNWt825944gm88sorKC8vH/WYRx55BI8++uio7XPveR2JGhUMESIMkSL0EXDfjgCUTKQTERERERHReXKJQPcAYOwXYOwHjH2ef/sFmPqBgf4+ND57AywWC2JiYs59wnFMOAP/7rvvjru/pqbmKzfmfAiC4HdfFMVR27zuv/9+bN682Xe/u7sbqamp+GxzIXQ63ZS2k2Y2h8OB4uJibNiwAXK5PNjNoTDGvkaBwr5GgcK+RoHCvkaB4HKJOFnfjGXPTs75JhzAX3PNNRAEAeMl7s8WUF8IvV4PqVSK1tZWv+3t7e1ISEgY8zFKpRJKpXLUdrlczj9SCgj2NQoU9jUKFPY1ChT2NQoU9jWaamk69aSda8LT5CUlJeGNN96Ay+Ua8+fo0aOT1rjhFAoFli9fjuLiYr/txcXFfiX1REREREREROFowgH88uXLxw3Sz5WdvxCbN2/Gf//3f+OPf/wjTp06hV/+8pdoaGjAT3/60yl5PiIiIiIiIqLpYsIl9Pfccw+sVutZ9+fk5GDHjh0X1Kiz+fa3vw2z2YzHHnsMLS0tWLBgAd5//32kp6dPyfMRERERERERTRcTDuALCgrG3R8VFYV169Z95Qadyx133IE77rhjys5PRERERERENB1NuISeiIiIiIiIiAKPATwRERERERFRCGAAT0RERERERBQCGMATERERERERhQAG8EREREREREQhgAE8ERERERERUQhgAE9EREREREQUAhjAExEREREREYUABvBEREREREREIYABPBEREREREVEIYABPREREREREFAIYwBMRERERERGFAAbwRERERERERCGAATwRERERERFRCGAAT0RERERERBQCGMATERERERERhQAG8EREREREREQhgAE8ERERERERUQhgAE9EREREREQUAhjAExEREREREYUABvBEREREREREIYABPBEREREREVEIYABPREREREREFAIYwBMRERERERGFAAbwRERERERERCGAATwRERERERFRCGAAT0RERERERBQCGMATERERERERhQAG8EREREREREQhgAE8ERERERERUQhgAE9EREREREQUAhjAExEREREREYUABvBEREREREREISBkAvjHH38ca9asgUqlQmxsbLCbQ0RERERERBRQIRPADwwM4Prrr8fPfvazYDeFiIiIiIiIKOBkwW7A+Xr00UcBANu3bw9uQ4iIiIiIiIiCIGQC+K/CbrfDbrf77nd3dwMAHA4HHA5HsJpFM4C3f7Gf0VRjX6NAYV+jQGFfo0BhX6NAmcw+FtYB/JYtW3yZ++F27NgBlUoVhBbRTFNcXBzsJtAMwb5GgcK+RoHCvkaBwr5GU81ms03auYIawD/yyCNjBtjDHTp0CCtWrPhK57///vuxefNm3/3u7m6kpqZi/fr10Ol0X+mcROfD4XCguLgYGzZsgFwuD3ZzKIyxr1GgsK9RoLCvUaCwr1GgmM3mSTtXUAP4u+66CzfeeOO4x2RkZHzl8yuVSiiVylHb5XI5/0gpINjXKFDY1yhQ2NcoUNjXKFDY12iqTWb/CmoAr9frodfrg9kEIiIiIiIiopAQMmPgGxoa0NHRgYaGBjidTpSVlQEAcnJyEB0dHdzGEREREREREU2xkAng/+3f/g2vvPKK7/7SpUsBuCekKyoqClKriIiIiIiIiAJDEuwGnK/t27dDFMVRPwzeiYiIiIiIaCYImQCeiIiIiIiIaCZjAE9EREREREQUAhjAExEREREREYUABvBEREREREREIYABPBEREREREVEIYABPREREREREFAIYwBMRERERERGFAAbwRERERERERCGAATwRERERERFRCGAAT0RERERERBQCGMATERERERERhQAG8EREREREREQhgAE8ERERERERUQhgAE9EREREREQUAmTBbkAgiaIIAOjp6YFcLg9yayicORwO2Gw2dHd3s6/RlGJfo0BhX6NAYV+jQGFfo0Dp6ekBMBSPXogZFcCbzWYAQGZmZpBbQkRERERERDOJ2WyGRqO5oHPMqABeq9UCABoaGi74F0c0nu7ubqSmpqKxsRExMTHBbg6FMfY1ChT2NQoU9jUKFPY1ChSLxYK0tDRfPHohZlQAL5G4h/xrNBr+kVJAxMTEsK9RQLCvUaCwr1GgsK9RoLCvUaB449ELOscktIOIiIiIiIiIphgDeCIiIiIiIqIQMKMCeKVSiYcffhhKpTLYTaEwx75GgcK+RoHCvkaBwr5GgcK+RoEymX1NECdjLnsiIiIiIiIimlIzKgNPREREREREFKoYwBMRERERERGFAAbwRERERERERCGAATwRERERERFRCJgxAfy2bduQmZmJiIgILF++HLt37w52kyjMbNmyBStXroRarUZ8fDyuueYalJeXB7tZNANs2bIFgiBg06ZNwW4KhaGmpiZ873vfg06ng0qlwpIlS3DkyJFgN4vCzODgIB566CFkZmYiMjISWVlZeOyxx+ByuYLdNApxJSUluOqqq5CcnAxBEPD222/77RdFEY888giSk5MRGRmJoqIinDhxIjiNpZA2Xl9zOBy49957sXDhQkRFRSE5ORm33HILmpubJ/w8MyKAf/3117Fp0yY8+OCD+Pzzz1FQUIArrrgCDQ0NwW4ahZFdu3bhzjvvxP79+1FcXIzBwUFs3LgRVqs12E2jMHbo0CG8+OKLWLRoUbCbQmGos7MT+fn5kMvl+OCDD3Dy5Ek8/fTTiI2NDXbTKMz8+te/xn/+539i69atOHXqFJ588kk89dRT+P3vfx/splGIs1qtWLx4MbZu3Trm/ieffBLPPPMMtm7dikOHDiExMREbNmxAT09PgFtKoW68vmaz2XD06FH867/+K44ePYo333wTFRUV+OY3vznh55kRy8itWrUKy5Ytw/PPP+/bNnfuXFxzzTXYsmVLEFtG4cxoNCI+Ph67du1CYWFhsJtDYai3txfLli3Dtm3b8Ktf/QpLlizBs88+G+xmURi57777sGfPHlat0ZT7xje+gYSEBLz00ku+bddddx1UKhVeffXVILaMwokgCHjrrbdwzTXXAHBn35OTk7Fp0ybce++9AAC73Y6EhAT8+te/xk9+8pMgtpZC2ci+NpZDhw7hoosuQn19PdLS0s773GGfgR8YGMCRI0ewceNGv+0bN27E3r17g9QqmgksFgsAQKvVBrklFK7uvPNOfP3rX8dll10W7KZQmHr33XexYsUKXH/99YiPj8fSpUvxX//1X8FuFoWhtWvX4tNPP0VFRQUA4NixYygtLcWVV14Z5JZROKutrUVra6tfnKBUKrFu3TrGCTTlLBYLBEGYcFWbbGqaM32YTCY4nU4kJCT4bU9ISEBra2uQWkXhThRFbN68GWvXrsWCBQuC3RwKQ3/9619x9OhRHDp0KNhNoTBWU1OD559/Hps3b8YDDzyAgwcP4he/+AWUSiVuueWWYDePwsi9994Li8WCOXPmQCqVwul04vHHH8d3vvOdYDeNwpg3FhgrTqivrw9Gk2iG6O/vx3333YebbroJMTExE3ps2AfwXoIg+N0XRXHUNqLJctddd+GLL75AaWlpsJtCYaixsRF33303Pv74Y0RERAS7ORTGXC4XVqxYgSeeeAIAsHTpUpw4cQLPP/88A3iaVK+//jr+/Oc/47XXXsP8+fNRVlaGTZs2ITk5Gbfeemuwm0dhjnECBZLD4cCNN94Il8uFbdu2TfjxYR/A6/V6SKXSUdn29vb2UVfbiCbDz3/+c7z77rsoKSlBSkpKsJtDYejIkSNob2/H8uXLfducTidKSkqwdetW2O12SKXSILaQwkVSUhLmzZvnt23u3Ll44403gtQiClf33HMP7rvvPtx4440AgIULF6K+vh5btmxhAE9TJjExEYA7E5+UlOTbzjiBporD4cANN9yA2tpafPbZZxPOvgMzYAy8QqHA8uXLUVxc7Le9uLgYa9asCVKrKByJooi77roLb775Jj777DNkZmYGu0kUpi699FIcP34cZWVlvp8VK1bgu9/9LsrKyhi806TJz88ftRxmRUUF0tPTg9QiClc2mw0Sif/XUqlUymXkaEplZmYiMTHRL04YGBjArl27GCfQpPMG75WVlfjkk0+g0+m+0nnCPgMPAJs3b8bNN9+MFStWYPXq1XjxxRfR0NCAn/70p8FuGoWRO++8E6+99hreeecdqNVqX9WHRqNBZGRkkFtH4UStVo+aWyEqKgo6nY5zLtCk+uUvf4k1a9bgiSeewA033ICDBw/ixRdfxIsvvhjsplGYueqqq/D4448jLS0N8+fPx+eff45nnnkGP/zhD4PdNApxvb29qKqq8t2vra1FWVkZtFot0tLSsGnTJjzxxBPIzc1Fbm4unnjiCahUKtx0001BbDWFovH6WnJyMr71rW/h6NGjeO+99+B0On2xglarhUKhOP8nEmeIP/zhD2J6erqoUCjEZcuWibt27Qp2kyjMABjz5+WXXw5202gGWLdunXj33XcHuxkUhv7+97+LCxYsEJVKpThnzhzxxRdfDHaTKAx1d3eLd999t5iWliZGRESIWVlZ4oMPPija7fZgN41C3I4dO8b8fnbrrbeKoiiKLpdLfPjhh8XExERRqVSKhYWF4vHjx4PbaApJ4/W12tras8YKO3bsmNDzzIh14ImIiIiIiIhCXdiPgSciIiIiIiIKBwzgiYiIiIiIiEIAA3giIiIiIiKiEMAAnoiIiIiIiCgEzIhl5LxcLheam5uhVqshCEKwm0NERERERERhThRF9PT0IDk5GRLJheXQZ1QA39zcjNTU1GA3g4iIiIiIiGaYxsZGpKSkXNA5ZlQAr1arAQC1tbXQarVBbg2FM4fDgY8//hgbN26EXC4PdnMojLGvUaCwr1GgsK9RoLCvUaB0dHQgMzPTF49eiBkVwHvL5tVqNWJiYoLcGgpnDocDKpUKMTEx/ECgKcW+RoHCvkaBwr5GgcK+RoHicDgAYFKGcXMSOyIiIiIiIqIQwACeiIiIiIiIKAQwgCciIiIiIiIKAQzgiYiIiIiIiEIAA3giIiIiIiKiEMAAnoiIiIiIiCgEMIAnIiIiIiIiCgEM4ImIiIiIiIhCAAN4IiIiIiKasURRxO233w6tVgtBEFBWVoaioiJs2rQp2E0jGoUBPBERERERzVgfffQRtm/fjvfeew8tLS1YsGBBUNpx9OhRbNiwAbGxsdDpdLj99tvR29t73o//yU9+AkEQ8Oyzz/ptz8jIGLUNAB555BEsWbLkwhpNAccAnoiIiIiIZqyamhokJSVhzZo1SExMhEwmC3gbmpubcdlllyEnJwcHDhzAhx9+iBMnTuD73//+eT3+7bffxoEDB5CcnDy1DaWgYwBPREREREQz0nPPPYdNmzahoaEBgiAgIyNjzOM+/PBDaDQa/OlPf5qSdrz33nuQy+X4wx/+gNmzZ2PlypX4wx/+gDfeeANVVVXjPrapqQl33XUX/ud//gdyufwrt0EQhFE/Z/t9UPAE/vISERERERHRNHDbbbehsLAQL730Eg4dOgSpVDrqmL/+9a+4/fbb8eqrr+Lqq68+67mio6PHfa6CggJ88MEHY+6z2+1QKBSQSIbyq5GRkQCA0tJS5OTkjPk4l8uFm2++Gffccw/mz58/7vOfS0tLi++21WrF1772NaxevfqCzkmTjwE8ERERERHNSFFRUVCr1ZBKpUhMTBy1f9u2bXjggQfwzjvvYP369eOeq6ysbNz93oB8LJdccgk2b96Mp556CnfffTesViseeOABAP6B9Ui//vWvIZPJ8Itf/GLc57733nvx0EMP+W0bGBjAvHnzfPe9r18URVx33XXQaDR44YUXxj0vBR4DeCIiIiIiohHeeOMNtLW1obS0FBdddNE5jz9blvx8zJ8/H6+88go2b96M+++/H1KpFL/4xS+QkJAwZlUAABw5cgTPPfccjh49CkEQxj3/PffcM2o8/e9+9zuUlJSMOvaBBx7Avn37cOjQoXEvOlBwhNQY+JKSElx11VVITk6GIAh4++23g90kIiIiIiIKQ0uWLIHBYMDLL78MURTPeXx0dPS4P1dcccW4j7/pppvQ2tqKpqYmmM1mPPLIIzAajcjMzBzz+N27d6O9vR1paWmQyWSQyWSor6/HP//zP48au67X65GTk+P3o9VqR53zz3/+M37729/irbfeQkpKyjlfMwVeSGXgrVYrFi9ejB/84Ae47rrrgt0cIiIiIiIKU9nZ2Xj66adRVFQEqVSKrVu3jnv8hZTQD5eQkAAA+OMf/4iIiAhs2LBhzONuvvlmXHbZZX7bLr/8ctx88834wQ9+cF7PNdy+fftw22234YUXXsDFF1884cdTYIRUAH/FFVec88oVERERERHRZMjLy8OOHTtQVFQEmUw25nrqXhdSQg8AW7duxZo1axAdHY3i4mLcc889+I//+A/Exsb6jpkzZw62bNmCa6+9FjqdDjqdzu8ccrkciYmJmD179oSeu7W1Fddeey1uvPFGXH755WhtbQUASKVSGAyGC3pdNLlCKoCfKLvdDrvd7rvf3d0NAHA4HHA4HMFqFoUpu8OJg3Wd2Flhwr4aM0xdUjx1qgQSiQCpIEAiESARMOy2AInEc9+zTSrAd1viuS31HisAUol7SQ+pIEAqcS/3MXL/6Nujn8f/3Bhq47Dbguc5hm6PeNyo1wPf8406dsS5JZLzfG2j2oRzjvGaabzvZXxPo6nGvkaBwr5GgeLtY06n0+8+4J7IzeVyweFwICsrCx999BE2bNgAQRDw5JNPTkl79u/fj4cffhi9vb2YPXs2/vCHP+B73/ueX7vKy8vR0dEx7t+H0+kctf9s20RRhMPhwJdffom2tja88soreOWVV3zHpKeno7KycpJe4cw1me9ngng+AzqmIUEQ8NZbb+Gaa6456zGPPPIIHn300VHbX3vtNahUqilsHc0Upn7gZKeAU10CKrsFOFwMLqeaABESARAA97+CezKPMf8dftwYx3u3+R8n+o456/nPcd6R//qdz9v+c51vnPMOb7cEQIJKhFYZqP8BIiIiIpoIm82Gm266CRaLBTExMRd0rrAO4MfKwKempqKlpWVUuQnR+ej3ZNl3VZhQUmlCndnmtz8hRonCXD3ys2LRcPoYVq68CIJECpcIuEQRTpc44rYIl8t9f+z9Q7dFUYRTxLDbQ491b4Nnm/txQ7fdj/Pedv+4zzPWsb59vjZh6Pk853GKQ20f3h6/Y4edWxzjnGO95tB8N5oeMnSRKMg1YG2ODqsy4hClDOsCKwoCh8OB4uJibNiwAXK5PNjNoTDGvkaBwr5GgWI2m5GUlDQpAXxYf8NTKpVQKkenpeRyOf9I6bzVmazYWd6OnRVG7K8xo9/h8u2TSQQsT49D0ex4FM02YE6iGoIgwOFw4P0zx7AiU8++NgHiiIDeF+B7L1Sc7QLFiIsPfhc0PMeNefFk+MUEl/9FirHOO3TcsGOGt2msixme83ovYrhve7aPdXHEr21jX/AZ/rrsDicq2npQZ+5DnbkBr+5vgFzq7pcFuQasyzNgXlIMJBJWh9Dk4GcoBQr7GgUK+xpNtcnsX2EdwBN9Ff0OJ/bXmLGz3IhdFUbUmqx++xNjIlA024Ci2Qbk5+ihjuAb/mQRBAEyKQPNiXA4HHjj3fcRk7MCe2o6UFJpRGNHH/bXdGB/TQee+qgcuigF1ubqUZBrQGGuHvExEcFuNhERERF9BSEVwPf29qKqqsp3v7a2FmVlZdBqtUhLSwtiyyjUDc+y76s2wz7on2VfkTGUZZ+doOZEajStRMqADfPiceXiWQDc/Xl3pRG7KkzYV22C2TqAd8qa8U5ZMwBgTqIahXkGFOTqsTJDiwi5NJjNJyIiIqLzFFIB/OHDh7F+/Xrf/c2bNwMAbr31Vmzfvj1IraJQ1O9wYl+NGbvKjdhZ3j5qLDuz7BTKMvRRyNBH4ebVGXA4XTha34ndlSbsrjTiiyYLTrf24HRrD14sqYFSJsGqLB0Kc/UozDMgNz6aF6iIiIiIpqmQCuCLiooQonPu0TTALDvNRHKpO0BflaXDv1w+Gx3WAeypMqGkwojdlSa0dvejpMKIkgoj8I9TSIyJQEGuHgV5BqzN0UMbpQj2SyAiIiIij5AK4Ikm4lxZ9iSNO8u+Li8e+Tk6ZtlpRtBGKXDV4mRctTgZoiiisr3XHcBXmnCgxozW7n7875Ez+N8jZyAIwMJZGhTk6lGYa8DStDgoZJJgvwQiIiKiGYsBPIWVWm+Wvdw9Y/zZsuzrZ8cjL4GlwjSzCYKAvAQ18hLUuK0gC/0OJw7XdaKk0p2RP93agy/OWPDFGQv+sKMaUQopVmfrUZjnnhAvQ6fi3xARERFRADGAp5DGLDvR5ImQS7E2V4+1uXo8cOVctHf3Y3elCSWVRpRWuifD++RUGz451QYASNVGema2N2BNjg4x/PsiIiIimlIM4CnknCvLvjJD65mAjll2ogsRHxOB65an4LrlKXC5RJxs6UZJpRG7K0w4XN+Bxo4+vHagAa8daIBUImBpaqw7oM/TY1FKLKRce56IiIhoUjGAp2mvb8C7Lrt7Arp6ZtmJAk4iEbBglgYLZmlwR1EOrPZBHKg1o6TCnaGvMVpxuL4Th+s78dtPKqCJlCM/R4fCXAMK8gyYFRsZ7JdAREREFPIYwNO0NF6WXS4VsCKdWXaiYIpSynDJnARcMicBANDYYUOpZ3b7PVUmWPoceP94K94/3goAyDZEoSDXgHV5BqzK0kKl4McPERER0UTxGxRNC+fKsidrIrDOs8Rbfo4e0Up2XaLpJFWrwncuSsN3LkrDoNOFL5osvqXqPm/oRLXRimqjFdv31kEhlWB5ehwK8wwoyNVjXlIMJCy3JyIiIjonRkEUFKIoerLsRuysMOLAOFn29XPikRvPLDtRqJBJJViWFodlaXHYdFkeLH0O7Ks2YVeFO0Pf1NWHfTVm7Ksx49cfAvpoBdbm6FGYZ8DaXD3i1RHBfglERERE0xIDeAqY4Vn2HeVGNHQwy040E2gi5fjagiR8bUGS7+Ld7kp3ML+vxgxT7wDeLmvG22XNAIC5STEozHUvVbciIw4RcmmQXwERERHR9MAIiabMyCz7/hozBkZk2YfPGM8sO1H4EwQBWYZoZBmiceuaDAwMunC0odNXbn+8yYJTLd041dKNF0pqECGXYFWmDoV5BhTm6pHD9wkiIiKawRjA06TqG3BiX43JHbSPk2VfP9uANcyyE814CpkEF2fpcHGWDv/va4C51+6ZDM+E3ZVGtPfYsavCiF0VRgDuVScKct3l9vnZesRFKYL8CoiIiIgCh9ETXRBm2YloMumilbh6ySxcvWQWRFFEeVsPdnuWqjtQ24EWSz/+dvgM/nb4DAQBWDRL45kMz4ClabGQSyXBfglEREREU4YBPE3YubLss2IjsW62AUV5zLIT0VcnCALmJMZgTmIMflyYhX6HEwdrO3zl9uVtPTh2xoJjZyz4/WdViFbKsDp7qNw+XRcV7JdARERENKkYWdE5iaKIGm+WvbwdB2o7xsyyr/dMQMcxqkQ0FSLkUndwnmcAALRa+rG70oiSShNKK43otDlQfLINxSfbAADpOhUKPJPhrcnWQR0hD2bziYiIiC4YA3gakzfLvuO0ETsr2tHY0ee3n1l2Igq2RE0Erl+RiutXpMLlEnGiuRsllUaUVBhxpL4T9WYb6s0N+PP+BkglApalxaIw14CCPAMWztJAyrXniYiIKMQw6iIA55dlvyhTi6I8ZtmJaPqRSAQsTNFgYYoGd67PQa99EPurzSipdJfb15qsOFTXiUN1nXi6uAKxKjnyc/S+5eqSYyOD/RKIiIiIzokB/AxmGxjEvmqzZwK6sbPs3snn1mTrEMUsOxGFiGilDJfNS8Bl8xIAAI0dNncwX2HCnmoTumwO/OOLFvzjixYAQE58tCc7r8fFmTpEKrj2PBEREU0/jMhmEG+WfcfpduyqMDLLTkQzRqpWhe+uSsd3V6Vj0OnCsTNd2OVZqu5YYxeq2ntR1d6LP+6phUIqwcrMOHdAn2vA3CQ13wuJiIhoWmAAH+aYZSci8ieTSrA8XYvl6Vps3pCHLtsA9labUVLhHj/fbOnHnioz9lSZseWD09BHK92l9nl6rM0xwKBWBvslEBER0QzFaC3MiKKIaqMVO8s9WfaaDgw4h7LsCqnEnWWfbUDRbAOyDcyyE9HMFqtS4MqFSbhyYZLvPXS3Z+z8vmozTL12vPl5E978vAkAMC8pxrdU3fKMOChlLLcnIiKiwGAAHwZsA4PYW2XGzop27Cw34kwns+xERF+FIAjIiY9GTnw0fpCfCfugE0fqO1HiKbc/0dyNky3un//cVY1IuRQXZ2lRkOte3i7bEMWLokRERDRlGMmFIGbZiYgCQymTYk22Hmuy9bjvijkw9tixp8rkLrevNMHUa8eOciN2lBsBAMmaCBTmucfO5+foEKtSBPkVEBERUThhAB8izpVlT4nzZNnz4rGaWXYioilhUCtxzdJZuGbpLIiiiFMtPb5y+4O1HWi29OOvhxrx10ONkAjAopRYFObqUZhnwJLUWMikkmC/BCIiIgphjPKmKXeWvdezLrsRB2vHy7LHs2yTiCjABEHAvOQYzEuOwU/WZaNvwIkDtWZfuX1ley/KGrtQ1tiF331WBbVShjU5OhTkGrAuz4BUrSrYL4GIiIhCDAP4aYRZdiKi0BWpkKJodjyKZscDAJq7+lBaaUJJpRGlVe615z860YaPTrQBADJ0Kt/Y+dXZOkTzPZ2IiIjOgd8Wguh8suyrsrRYl8csOxFRqEmOjcQNK1Nxw8pUOF0ivmyyoKTCXW5/tKETdWYb6sz1eHV/PWQSAcvS43zl9guSNZBI+H5PRERE/hjAB5jVPoi91WbsLHdn2Zu6xs6yr5/tzrKrFPwvIiIKdVKJgMWpsVicGoufX5qLnn4H9lWbUeIZP19vtuFgbQcO1nbgNx9XIE4lR36O3rNcnQGJmohgvwQiIiKaBhgdTjFm2YmIaCR1hBwb5ydi4/xEAEC92YqSShN2Vxixt9qMTpsD733Rgve+aAEA5CVE+8rtV2VqESHn2vNEREQzEQP4KXCuLHuqNhJFefEomm1glp2IiJCui8LNuijcfHE6HE4Xyhq7fEvVfXGmCxVtvaho68VLpbVQyCRYlalFQa4eBbkGzElU88IvERHRDMHIcRKIooiqdk+WvaIdh2o7x8yyuyc3MiBLzyw7ERGNTS6VYGWGFisztPjnjbPRaR3AnmqTb/x8i6UfuytN2F1pAnAaBrUSBbl6rMszID9HD320MtgvgYiIiKYIA/iviFl2IiIKhLgoBb6xKBnfWJTsG5a1y7NU3f4aM4w9drx5tAlvHm0CACyYFeMut881YHl6HBQyrj1PREQULhhVnqdzZtk9JY3MshMR0VQRBAE58WrkxKvxo7WZ6Hc4caS+01duf6qlG182uX+e31kNlUKKi7N0KMzVoyCPn01EREShjgH8OKz2QeypMmFnhRG7xsmyr59jwMVZzLITEVFgRcilyM/RIz9Hj/sBtPf0u9eer3CvPW/qHcBnp9vx2el2AMCs2EgU5ulRmGvAmmw9NCp5cF8AERERTUjIRZzbtm3DU089hZaWFsyfPx/PPvssCgoKJuXcI7PsB2s74HCKvv3MshMR0XQWr47APy1LwT8tS4HLJeJUazdKPOX2h+s60dTVh78cbMRfDjZCIgBLUmM9s9vrsTglFjIpy+2JiIims5AK4F9//XVs2rQJ27ZtQ35+Pl544QVcccUVOHnyJNLS0r7SOc+VZU/TqlA024Ci2cyyExFR6JBIBMxP1mB+sgY/K8qGbWAQB2o6sKvCiN2VRlQbrTja0IWjDV147tNKqCNkyM92rz1fkKtHqlYV7JdAREREI4RUNPrMM8/gRz/6EW677TYAwLPPPouPPvoIzz//PLZs2XLe56lu78UbJ7qws9yIQ3VjZ9nXe7LsmcyyExFRGFApZFg/Jx7r58QDAJq6+rDbM7N9aZUJlj4HPjzRig9PtAIAsvRRvqXqVmfroGBynoiIKOgmHMD39fXhyJEj0Gq1mDdvnt++/v5+/O1vf8Mtt9wyaQ30GhgYwJEjR3Dffff5bd+4cSP27t075mPsdjvsdrvvfnd3NwDgWy8ehEQ5lFlIjYvEujw9CnP1uDhTi0iF1LdvcHBwMl8GzRAOh8PvX6Kpwr5GX1V8lAzXLU3CdUuT4HSJON5kwe4qM/ZUmVF2xoIakxU1Jite2VcPuVTAkhQNEkQByfUdWJQaB4mEF7dpavB9jQKFfY2mWq99EPtrOvDh5zWTdk5BFEXx3Ie5VVRUYOPGjWhoaIAgCCgoKMBf/vIXJCUlAQDa2tqQnJwMp9M5aQ30am5uxqxZs7Bnzx6sWbPGt/2JJ57AK6+8gvLy8lGPeeSRR/Doo4+O2p75y9eRZ4jE3DgR82JFGCIAJtmJiIjcbINApUVAuUXA6S4BZrv/h2SUTMRsjYi5sSJmx4rQKILUUCIiomlEFIHWPuBUl4CTnQJqegQ4RQEuuw2Nz94Ai8WCmJiYC3qOCWXg7733XixcuBCHDx9GV1cXNm/ejPz8fOzcufMrj0GfqJHl7KIonrXE/f7778fmzZt997u7u5GamorPfpmPWYnxU9pOmtkcDgeKi4uxYcMGyOWc5ZmmDvsaTTVRFNHQ0Yed5W14e385aqxyWAecOGoWcNTsPiYvPhoFuTrk5+iwMj0OEXLp+CclGgff1yhQ2NdoMvTaB7GvugO7Kk0oqTShxdLvtz81LhIXJWvwzCQ934QC+L179+KTTz6BXq+HXq/Hu+++izvvvBMFBQXYsWMHoqKiJqlZo+n1ekilUrS2tvptb29vR0JCwpiPUSqVUCqVo7arVRH8I6WAkMvl7GsUEOxrNJVyEhVI16lg6DqFyzaux5ctvSipdI+fP95kQUV7Lyrae/HSnnooZRJclKnFujwDCnINyEuI5lwy9JXwfY0ChX2NJkIURVS292LH6XbsLDficP3oOdUuztKhKM/gm1Oto6MjOAF8X18fZDL/h/zhD3+ARCLBunXr8Nprr01Ss0ZTKBRYvnw5iouLce211/q2FxcX4+qrr56y5yUiIqIhCpkEq7J0WJWlwz2XAx3WAZRWmbC7woiSSiPauu3YXWnC7koTgFNIiFGiINfgmxBPG8V6eyIiCi293pXLyo3YVd6O5hFZ9nSdyhOwx+PiLJ3fnGqTbUIB/Jw5c3D48GHMnTvXb/vvf/97iKKIb37zm5PauJE2b96Mm2++GStWrMDq1avx4osvoqGhAT/96U+n9HmJiIhobNooBb65OBnfXJzsy0qUVBhRUmnCgRoz2rrt+L8jZ/B/R85AEIAFyRoU5rmD+WVpcVDIOL09ERFNL6IooqKtFzvLz55lX52l8yw3Ho9M/dRVoo80oQD+2muvxV/+8hfcfPPNo/Zt3boVLpcL//mf/zlpjRvp29/+NsxmMx577DG0tLRgwYIFeP/995Genj5lz0lERETnRxAE5CWokZegxm0FWeh3OHGorgO7K00oqTDidGsPjjdZcLzJgj/sqEaUQorV2ToU5BpQmGdAhk7FcnsiIgqKXvsgSitN2FXRjl3lxqBm2cczoQD+/vvvx/3333/W/du2bcO2bdsuuFHjueOOO3DHHXdM6XMQERHRhYuQSz3l8wY8cOVctHX3e8rr3ePnO6wD+ORUOz451Q4ASImLRGGeAYW5eqzJ0SMmgmNSiYhoaozMsh+q68CgayjLrvSOZQ9Cln08E14HnoiIiOirSIiJwLeWp+Bby1Pgcok42dKNXRVG7K404kh9J8509uG1Aw147UADpBIBS1JjUZhrQEGeHotTYiHl2vNERHQBevod2FNlxq4Kd9A+csb4DJ0KRbPjsW62AauzdNNyVRUG8ERERBRwEomABbM0WDBLgzvX58BqH8T+GrOv3L7GZMWR+k4cqe/Ebz+pQEyEDGs9E+EV5hkwKzYy2C+BiIimOVEUUd7Wg53lRuwsb8fhus6QyLKPhwE8ERERBV2UUoZL5ybg0rnupWEbO2y+cvvSKhO6+wfx/vFWvH/cvZxsliEKhbkGFObpsSpThyglv9IQEdFQln1neTt2VYRmln08/LQjIiKiaSdVq8JNq9Jw06o0DDpdOHbGgt2VRpRUGFHW2IUaoxU1Riu2762DXCpgRboWBXl6FOYaMC8pBhKW2xMRzQjnk2Vfna3zTUCXEQJZ9vEwgCciIqJpTSaVYHl6HJanx2HTZXmw9Dmwt8qEEk+5fVNXH/bVmLGvxownPyyHPlqBtTnucvuCPD3i1RHBfglERDSJ3Fl2z7rs42TZi2YbcHEIZtnHwwCeiIiIQoomUo4rFibhioVJEEURtSarb+z8vhozTL0DeLusGW+XNQMA5iSqsS7PPRv+ioy4sPoiR0Q0E3iz7DtOu7PsR+rDO8s+HgbwREREFLIEQUCWIRpZhmjcuiYDA4MuHKnvdJfbVxrxZVM3Trf24HRrD14oqUGEXIJVmToU5OqxLs+AnPhorj1PRDQNDc+y7yw3orXbP8ueqY/CujxDWGbZx8MAnoiIiMKGwpOFWZ2tw//72hyYe+0orTKhpMI9IV57jx27Ktwll7/6xykkaSJQ4Jndfm2OHnFRimC/BCKiGUkURZxuHRrLPlaWfU22zlcan64L3yz7eBjAExERUdjSRStx9ZJZuHrJLF8J5u4KE0oqjThQ24EWSz/+dvgM/nb4DAQBWDRL41uqbmlaLORSSbBfAhFR2Orud2BP5dBYdmbZz40BPBEREc0IgiBgTmIM5iTG4MeFWeh3OHGwtgMlFUbsrjShvK0Hx85YcOyMBVt3VCFaKcPqbB0Kc/UozJu52R4ioslyrix7hFyC1VnMso+HATwRERHNSBFyKQrz3Nl2AGi19HvGzptQWmlEp82B4pNtKD7ZBgBI06pQ4AnmV2frEBMhD2bziYhCwrmy7Fn6KKyb7Z58blWmlln2c2AAT0RERAQgUROB61ek4voVqXC5RHzZbPHNbn+kvhMNHTb8z4EG/M+BBkglApalxfrK7RfO0kDKteeJiCCKIk619GBnRTt2lhtxlFn2ScUAnoiIiGgEiUTAopRYLEqJxZ3rc9BrH8T+ajNKKt3l9rUmKw7VdeJQXSeeKa5ArEqO/Bw9Cj0T4iXHRgb7JRARBYw3y76jvB27Koxo67b77WeWffIwgCciIiI6h2ilDJfNS8Bl8xIAAI0dNncwX2HCnmoTumwO/OOLFvzjixYAQE58tK/cflWmFioFv3IRUfg4nyz7mmw9imYbUJQXjzSdKoitDS/8NCEiIiKaoFStCt9dlY7vrkrHoNOFY2e6sMuzVN2xxi5Utfeiqr0XL++pg0IqwcrMOBTkGlCQq8e8pBiuPU9EIae734HSShN2niPLvn52PC5iln3KMIAnIiIiugAyqQTL07VYnq7F5g156LINYG+1GSUVRpRUGNFs6ceeKjP2VJnxHx8A+milJzuvx9ocAwxqZbBfAhHRKN4s+47yduwqN+JIQyeczLIHHQN4IiIiokkUq1LgyoVJuHJhEkRRRLXRit2esfP7qs0w9drx1udNeOvzJgDAvKQYFOTpsS7XgOUZcVDKmLUiouCw9Dmwp2qcLLshCkV57snnmGUPDgbwRERERFNEEATkxEcjJz4aP8jPhH3QiSP1nSjxlNufaO7GyRb3zwu7ahApl2JVlhaFuQYU5umRbYhmuT0RTRlRFHGypdu9xNtZsuz5niz7OmbZpwUG8EREREQBopRJsSZbjzXZetx3xRwYe+zYU2XyzW5v7LFjZ7kRO8uNAIBkTYRvqbr8HB1iVYogvwIiCnWWPv+x7O09zLKHEgbwREREREFiUCtxzdJZuGbpLIiiiNOtPSipcAfzB+s60Gzpx+uHG/H64UZIBGBRSqx7qbo8A5akxkIulQT7JRDRNHeuLHukXIo12Tr3WPbZ8UjVMss+nTGAJyIiIpoGBEHA3KQYzE2KwU/WZaNvwIkDtWZfuX1ley/KGrtQ1tiF331WBbVShtXZOhTmGVCYa2BpKxH5nCvLnm2IQtFsd5Z9ZQaz7KGEATwRERHRNBSpkHq+YMcDAFosfdhd4S63L61yrz3/8ck2fHyyDQCQoVP5lqpbna2DOkIezOYTUQCJoogTzd3YVWHEzvJ2HG3oYpY9TDGAJyIiIgoBSZpI3LAyFTesTIXTJeLLJouv3P5oQyfqzDbUmevx6v56yCQClqXFoTBPj4JcAxbM0kAq4WR4ROHEm2Xf4cmyG5llnxEYwBMRERGFGKlEwOLUWCxOjcXPL81FT78D+6rN2F3pztDXm204WNeBg3Ud+M3HFYhTyZGfo0dhnjtDn6SJDPZLIKIJOp8se36ODutmx6Moz8Ase5hiAE9EREQU4tQRcmycn4iN8xMBAPVmK0oqTdhdYcTeajM6bQ6890UL3vuiBQCQlxDtK7dflalDpIKZOaLpyGJzYHeVe2WK8bLs62fHY2VmHJQy/i2HOwbwRERERGEmXReFm3VRuPnidDicLpQ1dmF3hRG7Kk344kwXKtp6UdHWi5dKa6GQSXBRhtZXbj8nUc2154mCxJtl31nejp3lRnzeyCw7+WMAT0RERBTG5FIJVmZosTJDi80bZ6PTOoA91SbfhHgtln6UVplQWmUCcBoGtRIFuXqsyzMgP0cPfbQy2C+BKKydK8ueEx+Nojz35HPMshMDeCIiIqIZJC5KgW8sSsY3FiVDFEVUG3tR4gnm99eYYeyx482jTXjzaBMAYH5yjG/s/Ip0LRQyrj1PdCFcLu+67GNn2VUKKdZk61E024B1zLLTCAzgiYiIiGYoQRCQE69GTrwaP1ybiX6HE0fqO1FSaURJhQmnWrpxotn98/zOaqgUUlycpUNhrh4FeQZk6aNYbk90Hiw2B0oqh7Lspl5m2emrYQBPRERERACACLkU+Tl65Ofocf8VQHtPP0orTdhdacLuSiNMvQP47HQ7PjvdDgCYFRvpGzufn62HRsW154mA0Vn2ow2dGJZkZ5advjIG8EREREQ0pnh1BP5pWQr+aVkKXC4Rp1q73UvVVRhxuK4TTV19+MvBRvzlYCMkArA4NRaFuQYU5umxOCUWMinL7WnmOFeWPTc+GkWz3Vn2FRnMstNXwwCeiIiIiM5JIhEwP1mD+cka/HRdNmwDgzhQ04GSSiN2V5pQ1d6Lzxu68HlDF577tBLqCBnys/UoyNOjMJcZRgo/LtewGeMrjPh8nCx70WwDUuL4N0AXjgE8EREREU2YSiHD+jnxWD8nHgDQ1NWHUs/Y+dIqEyx9Dnx4ohUfnmgFAGTqo9xj53MNWJ2tQ5SSX0Mp9HTZBrC70oQd5e0oqTAxy04BFzLvnI8//jj+8Y9/oKysDAqFAl1dXcFuEhERERF5zIqNxLdXpuHbK9PgdIn44kyXb+z80YYu1JqsqDVZ8cq+esilApalxaEwz4DCXAPmJ8dAIuFkeDT9nE+WPT9naCw7s+w01UImgB8YGMD111+P1atX46WXXgp2c4iIiIjoLKQSAUvT4rA0LQ6/uDQX3f0O7Ks2o6TCiJJKIxo7+nCgtgMHajvw1Efl0EYpsDZHj4JcPVZnxga7+TTDddkGUFJpws5zZNnXz47HigwurUiBFTIB/KOPPgoA2L59e3AbQkREREQTEhMhx+XzE3H5/EQAQJ3Jit2VRuyqMGFftQkd1gG8e6wZ7x5rBgBIBSnuOfQJpIIAqUSAILgvCkgFAYIgQCrBsNvDjhEESAQBEon7GInnvlQiQCJg2G3PMZ5tEs+5JZIRxwjux0kl7mMk3ueQCCOOg99jpBIMHSMMe6zE02bPMUO3x3qNZznGd3vs1zXqdY/V7jFf61D7ZhqXS8TxMxbsKG/HzvJ2lDV2+WXZoxRSrMnR+0rjZ8VGBq+xNOOFTABPREREROEhQx+FDH0Ubl6dAYfThaP1nb5y+y+aLHCKApyDrmA3c8YaupAwxm2/ixBjHzPqwon3AonnwsGYx5znxZUxL5yc98WV4ccLcAwO4u9VEjz25C6YrQN+v4O8hGgUzY5HUZ6BWXaaVsI6gLfb7bDbh0peuru7AQAOhwMOhyNYzaIZwNu/2M9oqrGvUaCwr9FUWpYag2WpMbj7kix09vbhg+IdyC8ogEQqhcsFuEQRTpcIlyjCJcLvtsslwil67rsw7LYIpwiIvv3Djx26LYoinJ7Hib7nGfacnvtOcei2y/Mcw48d69y+2y4Roucc7tue/d7XNurcw1+ju32ukfeHtcH/3MPb6v4dDD32/P4/nC4RTpznwSFPAmDAnWXP1qEwV4/CXB2Sh2fZRSccDmfQWkihbzI/O4MawD/yyCO+0vizOXToEFasWPGVzr9ly5Yxz79jxw6oVJxggqZecXFxsJtAMwT7GgUK+xoFQqwSOHFw95ScW+r5mXQhkKAVRUD0/Osa9q9LHNrnGvava8Q20bPNNeIc4rBzuCD4P274+YadQxz5/H7nGPE4v/3C6PN5jz/H+UY9P4CECGBunIgs9SBkkmbA2IwyI1AWkP8RmilsNtuknUsQRTFol9dMJhNMJtO4x2RkZCAiIsJ3f/v27di0adN5zUI/VgY+NTUVLS0t0Ol0X7ndROficDhQXFyMDRs2QC6XB7s5FMbY1yhQ2NcoUNjXKFDY1yhQzGYzkpKSYLFYEBMTc0HnCmoGXq/XQ6/XT9n5lUollErlqO1yuZx/pBQQ7GsUKOxrFCjsaxQo7GsUKOxrNNUms3+FzBj4hoYGdHR0oKGhAU6nE2VlZQCAnJwcREdHB7dxRERERERERFMsZAL4f/u3f8Mrr7ziu7906VIA7vHsRUVFQWoVERERERERUWCEwHQbbtu3b4fomR10+A+DdyIiIiIiIpoJQiaAJyIiIiIiIprJGMATERERERERhQAG8EREREREREQhgAE8ERERERERUQhgAE9EREREREQUAhjAExEREREREYUABvBEREREREREIYABPBEREREREVEIYABPREREREREFAIYwBMRERERERGFAAbwRERERERERCGAATwRERERERFRCGAAT0RERERERBQCGMATERERERERhQAG8EREREREREQhQBbsBgSSKIoAgJ6eHsjl8iC3hsKZw+GAzWZDd3c3+xpNKfY1ChT2NQoU9jUKFPY1CpSenh4AQ/HohZhRAbzZbAYAZGZmBrklRERERERENJOYzWZoNJoLOseMCuC1Wi0AoKGh4YJ/cUTj6e7uRmpqKhobGxETExPs5lAYY1+jQGFfo0BhX6NAYV+jQLFYLEhLS/PFoxdiRgXwEol7yL9Go+EfKQVETEwM+xoFBPsaBQr7GgUK+xoFCvsaBYo3Hr2gc0xCO4iIiIiIiIhoijGAJyIiIiIiIgoBMyqAVyqVePjhh6FUKoPdFApz7GsUKOxrFCjsaxQo7GsUKOxrFCiT2dcEcTLmsiciIiIiIiKiKTWjMvBEREREREREoYoBPBEREREREVEIYABPREREREREFAIYwBMRERERERGFgBkTwG/btg2ZmZmIiIjA8uXLsXv37mA3icLMli1bsHLlSqjVasTHx+Oaa65BeXl5sJtFM8CWLVsgCAI2bdoU7KZQGGpqasL3vvc96HQ6qFQqLFmyBEeOHAl2syjMDA4O4qGHHkJmZiYiIyORlZWFxx57DC6XK9hNoxBXUlKCq666CsnJyRAEAW+//bbfflEU8cgjjyA5ORmRkZEoKirCiRMngtNYCmnj9TWHw4F7770XCxcuRFRUFJKTk3HLLbegubl5ws8zIwL4119/HZs2bcKDDz6Izz//HAUFBbjiiivQ0NAQ7KZRGNm1axfuvPNO7N+/H8XFxRgcHMTGjRthtVqD3TQKY4cOHcKLL76IRYsWBbspFIY6OzuRn58PuVyODz74ACdPnsTTTz+N2NjYYDeNwsyvf/1r/Od//ie2bt2KU6dO4cknn8RTTz2F3//+98FuGoU4q9WKxYsXY+vWrWPuf/LJJ/HMM89g69atOHToEBITE7Fhwwb09PQEuKUU6sbrazabDUePHsW//uu/4ujRo3jzzTdRUVGBb37zmxN+nhmxjNyqVauwbNkyPP/8875tc+fOxTXXXIMtW7YEsWUUzoxGI+Lj47Fr1y4UFhYGuzkUhnp7e7Fs2TJs27YNv/rVr7BkyRI8++yzwW4WhZH77rsPe/bsYdUaTblvfOMbSEhIwEsvveTbdt1110GlUuHVV18NYssonAiCgLfeegvXXHMNAHf2PTk5GZs2bcK9994LALDb7UhISMCvf/1r/OQnPwliaymUjexrYzl06BAuuugi1NfXIy0t7bzPHfYZ+IGBARw5cgQbN270275x40bs3bs3SK2imcBisQAAtFptkFtC4erOO+/E17/+dVx22WXBbgqFqXfffRcrVqzA9ddfj/j4eCxduhT/9V//FexmURhau3YtPv30U1RUVAAAjh07htLSUlx55ZVBbhmFs9raWrS2tvrFCUqlEuvWrWOcQFPOYrFAEIQJV7XJpqY504fJZILT6URCQoLf9oSEBLS2tgapVRTuRFHE5s2bsXbtWixYsCDYzaEw9Ne//hVHjx7FoUOHgt0UCmM1NTV4/vnnsXnzZjzwwAM4ePAgfvGLX0CpVOKWW24JdvMojNx7772wWCyYM2cOpFIpnE4nHn/8cXznO98JdtMojHljgbHihPr6+mA0iWaI/v5+3HfffbjpppsQExMzoceGfQDvJQiC331RFEdtI5osd911F7744guUlpYGuykUhhobG3H33Xfj448/RkRERLCbQ2HM5XJhxYoVeOKJJwAAS5cuxYkTJ/D8888zgKdJ9frrr+PPf/4zXnvtNcyfPx9lZWXYtGkTkpOTceuttwa7eRTmGCdQIDkcDtx4441wuVzYtm3bhB8f9gG8Xq+HVCodlW1vb28fdbWNaDL8/Oc/x7vvvouSkhKkpKQEuzkUho4cOYL29nYsX77ct83pdKKkpARbt26F3W6HVCoNYgspXCQlJWHevHl+2+bOnYs33ngjSC2icHXPPffgvvvuw4033ggAWLhwIerr67FlyxYG8DRlEhMTAbgz8UlJSb7tjBNoqjgcDtxwww2ora3FZ599NuHsOzADxsArFAosX74cxcXFftuLi4uxZs2aILWKwpEoirjrrrvw5ptv4rPPPkNmZmawm0Rh6tJLL8Xx48dRVlbm+1mxYgW++93voqysjME7TZr8/PxRy2FWVFQgPT09SC2icGWz2SCR+H8tlUqlXEaOplRmZiYSExP94oSBgQHs2rWLcQJNOm/wXllZiU8++QQ6ne4rnSfsM/AAsHnzZtx8881YsWIFVq9ejRdffBENDQ346U9/GuymURi588478dprr+Gdd96BWq32VX1oNBpERkYGuXUUTtRq9ai5FaKioqDT6TjnAk2qX/7yl1izZg2eeOIJ3HDDDTh48CBefPFFvPjii8FuGoWZq666Co8//jjS0tIwf/58fP7553jmmWfwwx/+MNhNoxDX29uLqqoq3/3a2lqUlZVBq9UiLS0NmzZtwhNPPIHc3Fzk5ubiiSeegEqlwk033RTEVlMoGq+vJScn41vf+haOHj2K9957D06n0xcraLVaKBSK838icYb4wx/+IKanp4sKhUJctmyZuGvXrmA3icIMgDF/Xn755WA3jWaAdevWiXfffXewm0Fh6O9//7u4YMECUalUinPmzBFffPHFYDeJwlB3d7d49913i2lpaWJERISYlZUlPvjgg6Ldbg920yjE7dixY8zvZ7feeqsoiqLocrnEhx9+WExMTBSVSqVYWFgoHj9+PLiNppA0Xl+rra09a6ywY8eOCT3PjFgHnoiIiIiIiCjUhf0YeCIiIiIiIqJwwACeiIiIiIiIKAQwgCciIiIiIiIKATNiFnovl8uF5uZmqNVqCIIQ7OYQERERERFRmBNFET09PUhOTh61ZOZEzagAvrm5GampqcFuBhEREREREc0wjY2NSElJuaBzzKgAXq1WA3CvyafVaoPcGgpnDocDH3/8MTZu3Ai5XB7s5lAYY1+jQGFfo0BhX6NAYV+jQOno6EBmZqYvHr0QMyqA95bNq9VqxMTEBLk1FM4cDgdUKhViYmL4gUBTin2NAoV9jQKFfY0ChX2NAsXhcADApAzj5iR2RERERERERCGAATwRERERERFRCGAAT0RERERERBQCGMATERERERERhQAG8EREREREREQhgAE8ERERERERUQhgAE9EREREREQUAhjAExEREREREYUABvBEREREREREIYABPBERERERzViiKOL222+HVquFIAgoKytDUVERNm3aFOymEY3CAJ6IiIiIiGasjz76CNu3b8d7772HlpYWLFiwICjtePzxx7FmzRqoVCrExsae9bjt27dj0aJFiIiIQGJiIu66665xz/uTn/wE2dnZiIyMhMFgwNVXX43Tp0/7HSMIAt5+++1Rj/3+97+Pa6655iu8GpoqDOCJiIiIiGjGqqmpQVJSEtasWYPExETIZLKgtGNgYADXX389fvazn531mGeeeQYPPvgg7rvvPpw4cQKffvopLr/88nHPu3z5crz88ss4deoUPvroI4iiiI0bN8LpdE72S6AACE7vJCIiIiIiCrLnnnsOO3bsAODOQqenp6Ourm7UcR9++CG+/e1v4/e//z1uueWWKWnLo48+CsCdYR9LZ2cnHnroIfz973/HpZde6ts+f/78cc97++23+25nZGTgV7/6FRYvXoy6ujpkZ2efd/vq6uqQmZk5avu6deuwc+fO8z4PXRhm4ImIiIiIaEa67bbb8PDDDyMlJQUtLS04dOjQqGP++te/4oYbbsCf/vSncYP36OjocX+uuOKKC2prcXExXC4XmpqaMHfuXKSkpOCGG25AY2PjeZ/DarXi5ZdfRmZmJlJTUyf0/KmpqWhpafH9fP7559DpdCgsLJzoS6ELwAw8ERERERHNSFFRUVCr1ZBKpUhMTBy1f9u2bXjggQfwzjvvYP369eOeq6ysbNz9kZGRF9JU1NTUwOVy4YknnsBzzz0HjUaDhx56CBs2bMAXX3wBhUJx1sdu27YN/+///T9YrVbMmTMHxcXFo47/zne+A6lU6rfNbrfj61//OgD4/Y76+/txzTXXYPXq1XjkkUcu6HXRxIRUAF9SUoKnnnoKR44cQUtLC9566y1OqkBERERERJPujTfeQFtbG0pLS3HRRRed8/icnJwpbY/L5YLD4cDvfvc7bNy4EQDwl7/8BYmJidixY8e4Y+G/+93vYsOGDWhpacFvfvMb3HDDDdizZw8iIiJ8x/z2t7/FZZdd5ve4e++9d8yx8j/60Y/Q09OD4uJiSCQs6g6kkPptW61WLF68GFu3bg12U4iIiIiIKIwtWbIEBoMBL7/8MkRRPOfxU11Cn5SUBACYN2+eb5vBYIBer0dDQ8O4j9VoNMjNzUVhYSH+7//+D6dPn8Zbb73ld0xiYiJycnL8ftRq9ahz/epXv8KHH36Id999d8z9NLVCKgN/xRVXXHDHJyIiIiIiOpfs7Gw8/fTTKCoqglQqPWcScapL6PPz8wEA5eXlSElJAQB0dHTAZDIhPT19QucSRRF2u33CbXjjjTfw2GOP4YMPPpjQBHg0eUIqgJ8ou93u1zG7u7sBAA6HAw6HI1jNohnA27/Yz2iqsa9RoLCvUaCwr1GgePuYt0R8eJ8TRREulwuZmZn4+OOPsWHDBkgkEjz99NNnPd/5BNHj9euGhgZ0dHSgtrYWTqfTN6FeTk4OoqOjkZmZiauuugq/+MUv8Pzzz0OtVuOhhx7C7NmzsXbtWjgcDjQ1NeHyyy/Hyy+/jJUrV6Kmpgb/+7//iw0bNkCv16O5uRlPPfUUIiMjsWHDBr/2DA4Ojmqfy+Xyle5/+eWXuOWWW/Av//IvyMvL802ep1AooNVqz/naZ7LJfD8L6wB+y5YtvuUYhtuxYwdUKlUQWkQzTXFxcbCbQDME+xoFCvsaBQr7GgVKeXk5bDYb3n//fd82s9mM2tpa37YHH3wQDz30EOrr6/HDH/5wStoxfEk7AL5x9//+7/+OhQsXAnBPNPfSSy/hyiuvhEQiwfz587F582bf30tbWxsqKirw2WefwWg0oqOjA2+99RZ+85vfwGq1QqPRYP78+fj3f/93HD582O/5jxw5Arlc7rftzJkzsFqteP/99/Hpp5/CZrNhy5Yt2LJli++Y+fPn4/HHH5+S30m4sNlsk3YuQTyfAR3TkCAI55zEbqwMvHf5A51OF4BW0kxU32HDgWoT6itO4MdXFyE2+sLKpYjG43A4UFxcjA0bNoz60CWaTOxrFCjsazTVRFF0f1+rMaOx4gR+fM16aKIizv1Aoq/IbDYjKSkJFosFMTExF3SusM7AK5VKKJXKUdvlcjk/EGjSWPoc2FdtQkmlCaWVJjR0eK+wSfHHilIsTYtFfo4ea3P0WJwaC7k0pOaOpBDB9zUKFPY1ChT2NZpMxh479la7v6vtrTajqavPs0eKPz61GyvStVibq0dhrgHzk2MgkQhBbS+Fl8l8LwvrAJ5oKjicLpQ1dmF3hRG7q0w41tgF17A6FrlUwKJZGtS1dcJsBw7VdeJQXSee/aQSUQopVmXpfAF9XkI0BIEfEERERESTqdc+iIO1ZpRWmrG32oTTrT1++xVSCRalxKCmtRMddmBfjRn7asx46qNyxKnkyM9xB/Nrc/VIjmU1JU0fIRXA9/b2oqqqyne/trYWZWVl0Gq1SEtLC2LLKJyJoohakxWlVSaUVJiwv8aMXvug3zE58dFYm6NHYZ4eqzJ1UEhEvP/++1hwcREO1ltQWmXC3ioTOm0OfHa6HZ+dbgcA6KOVyM9xB/T5OXrM4gcEERER0YR5Eyx7qkzYU2XC5w1dGHT5jxSenxyDtTl6rMnRY2VGHOSCiH/8433Mv3gd9tV2YXelCfuqzei0OfDeFy1474sWAEC2IQoFuQYU5OpxcZYOUcqQCqEozIRU7zt8+DDWr1/vu79582YAwK233ort27cHqVUUjrpsA9hTZcbuSiN2V5qGlVm5xankWJtrQEGOfswrs96ZJtO0KmQnaPCdi9Lgcok41dqNPVUmlFaZcbDWDFOvHe+UNeOdsmYAQJY+CmtydFibo8fqLD00KpYOEhEREY0kiiLK23qwp8qMPVUmHKgxwzrg9DsmTavyJEl0WJ2lgy7af2itw+GAIAAZuijkJsbiltUZcDhdONbY5RkaaURZYxeqjVZUG63YvrcOcqmApWlxKMzVY22uAQtnaSBluT0FUEgF8EVFRQjROfdomhsYdOFoQydKK03YXWnEF00WDO9qCqkEKzLifGOj5iVNfGyURCJgfrIG85M1uL0wG/ZBJz5v6PIE9O5S/BqTFTUmK/68vwESAVg4S4M1nnL75elxiJBLJ/mVExEREYWGpq4+X4Z9T5U7ETKcNkqB1dnuREh+th5puomvOiWXSrAiQ4sVGVps3pDnm+tod6X7p6HDhoO1HThY24HffFwBTaQc+Tk6FOQasDZHj1QtV7qiqRVSATzRZBFFEdVGqy/Dvr/GDNuIq7Z5CdHuN+NcPVZlaqFSTO6fi1ImxcVZOlycpcM/b5yN7n4H9lebsbfajNIqE6rae3HsjAXHzljw/M5qKGUSrMzQ+q4kz0/mFV8iIiIKXxabA/tq3ImOPVVm1Jqsfvsj5BJclKnDWs9wxLmJkz/5nCZSjq8tSMLXFiQBAOrNVuz2TFy8p9oES58D7x9vxfvHWwEAmfooFOS6ky+rs3VQR7CakiYXA3iaMTqsAyitcpdD7a40ocXS77dfH63A2hx3OdTaHD0SNYFdTiQmQo6N8xOxcX4iAKDV0u++wlztvtLc1m13t7/KBMD9gbIme2j8fIZOxQnxiIiIKGT1O5w4Ut/pCdhNOD6iIlIqEbAoRePOsOfosTQtFkpZYKsT03VRSNdF4XsXp2PQ6cKxMxZfBefnjV2oNVlRa7LiT/vqIZUIWJoa6x4/n6fHolkayLgaEV0gBvAUtuyD7g+B3Z431RPN3f5l8TIJLsrQuq+S5k7NVdsLkaiJwHXLU3Dd8hRPxUCv52qvGfurzbD0OfDBl6344Ev3Fd9ZsZG+CfHWZOthUI9eQpGIiIhounC6RJxotvgC9sN1nbAPuvyO8U4UnJ+jx6osLWKmUUZbJpVgeXoclqfH4e7Lcn3VlKVV7nL7WpMVh+s7cbi+E7/9pALqCBnys/W+IZlfpcSfiAE8hQ1RFFHZ3ouSCiNKq0w4UNOBPod/WfycRDUKcvUoyDXgokxtyIwpFwQBOfFq5MSr8f38TAw6XfiiyYI9le6M/NGGTjR19eFvh8/gb4fPAHC/Vu9ydRdlajljKhEREQWVKIqoM9t8q/Ps9SQkhkuIUfq+v6zJDnxF5IUYWU3Z2GHzBPNG7Klyv9YPT7TiwxPu5EuaVuX7Xro6WwdN5PS5OEHTF7/RU0gz9dqxx7O8W2mVEW3d/pOZGNRKFOToUZDnvnIbrw6dD4HxyKQSLEuLw7K0OPz80lzYBgZxqK7TPSFepQknW7pxurUHp1t78FJpLWQSAUvTYn0fiItTYyFnCRcRERFNMWOPHXurhyaeG7myj1opw8XeiedydMg2RIfNkMBUrQrfuSgN37koDU6XiONNFuyuMGJ3lQlH6zvR0GHD/xxowP8ccE9evCQ1FmtzDSjM5Xc1OjsG8BRS+h1OHK7r9E0+d7Kl22+/UibBqiydL2ifnaAOmw+B8agUMqzLM2BdngEAYO61Y1+N2TfDfWNHHw7VdeJQXSee/aQSUQopVmXpfAF9XkL4fFgSERFR8FjtgzhY2+Eriz/d2uO3Xy4VsDw9DvnZeuTnzpxx4VKJgCWpsViSGoufX5qLXvsgDtSYfUM9q41WHG3owtGGLvzu00pEK2VYna3zLVfHuY7IiwE8TWuiKOJ0aw9KK00oqTTiYG3HqLFR85JiUJDnHkvEpdbcdNFKfGNRMr6xKBkA0GC2YU+1yVey1mlz4LPT7fjsdDsAQB+txNocnW/JupHr2hMRERGNxbtuujdg/7yhC4Mu/2Wf5yXFYG2uuxpyZUbcpK/sE4qilTJcOjcBl85NAOBeIs870fIez3e14pNtKD7ZBgBIiYv0lduvydYhVqUIZvMpiPjXQ9NOe3e/b/KP0ioTjD3+ZfEJMUr3bJ6eDwJ9NCdrO5c0nQppOncJl8sl4mRLN/ZWm1BaZcbBWvc6qm+XNePtsmYAQJY+yrdc3eosPTQqjskiIiIid3Kloq3XF7AfqDHDOmIp3lRtpG/iudVZOuj4Xe2cZsVG4tsr0/Dtle7vaieau1FSaURppQmH6ztwprMPfznYiL8cbIREABamxLqz8zl6LE2Lg0IW/lUM5MYAnoKub8CJg3UdvquOI0utIuVSrMrSosAzJignnuXeF0IiEbBglgYLZmlwe2E27INOHK3v8gT0Jhxr7EKNyYoakxWv7q93f0jM0viWq2OVAxER0czS3NXnC9j3VLkv/A8Xp5L7qvjys/WcXf0CSSQCFqZosDBFgzvX58A2MIgDNR2+cvvK9l4ca+zCscYu/P6zKkQppLg4S+dZWcmAbEMUvyuHMQbwFHDeDLB3Vs5DdZ0YGFYWLwjAgmSNb3m35elxAV/jcyZRyqRYna3D6mwd/nnjbFj6HDjgGT+/p9qMqvZeHDtjwbEzFmzbWQ2lTIKVGVrf+Pl5yTGQTqPl94iIiOjCWGwO7KtxB+t7qkyoMVn99kfIJbgoU+cefpetx7yk6bUUb7hRKWRYPyce6+fEAwBaLf3YXeledam00gSzdQCfnm7Hp56hkcmaCBTkGnzDFrRRLLcPJwzgKSDGeqMZLlkTgbWecT18owkuTaT/Eiitln7PFXcT9lSb0NZtd/8/Vpnwa8/xa7KHJsRL5yQrREREIaXf4cSR+k7f5/3xJguGD2OXCMDi1Fjf0m7L0mOZXAmiRE0Erl+RiutXpI6ZGGu29OP1w414/XAjE2NhiAE8TYmxSn2GY6lP6EjUROC65Sm4bnkKRFFEtbEXpZXu8fMHatxrmn7wZSs++NK9pums2Ejk57gD+jXZehjUHPdGREQ0nThdIk42d/vK4g/VjZ4kOCc+GvmeC/SrsrhG+XQ1fGjkT9dljzk09XiTBceb3JWUkXIpLs7S+par49DU0MMAnibFyMk2jtR3YsDpXxa/KCXWvbxbLifbCFWCICAnXo2ceDW+n5+JQacLXzRZsMcz4eDRhk40dfXhb4fP4G+HzwAA5iSqfdn5izK1iFLybYeIiCiQRFFEvdnmC9j3VrsvwA+XEKN0L+3mmfMmURMRpNbShYhUSP2WFh4+OfTuShNMvXbsKDdiR7kRACeHDkX8Jk1fWXNXn289du9yF8PNio1EYR6XuwhnMqkEy9LisCwtDj+/NBe2gUEcqnOX4JVWmnCypRunW3twurUHL5XWQiYRsCwtDmtydFibo8fi1FjIZ8Dar0RERIFm7LFjb/XQxHNNXX1++9VKGVZlucexr83VI9vATGw4io+JwD8tS8E/LUsZc3nmtm47/u/IGfzfEXfiZX6ye8k/Ls88fTGAp/PWax/EgRqzryy+2ug/oUm0UobV2TrfGpUZHAs946gUMr+rvuZeO/ZWm7G32n3V90xnHw7WdeBgXQee/aTSN5TCO3NtXgK/PBAREX0VVvsgDtZ2+LLsI1f1kUvdF9HX5uiRn6vHolkayHgRfUYRBAFzk2IwNykGPy7MQr/DicN1nb6E3MmWbpxodv+8sKvGN1lhQY4eBXl6zE5Q83vaNMAAns7K6RJxvMmC3RVG7K4y4Wh9JwaHzWgiEYAlqbG+MTTMptJIumglrlqcjKsWJwMAGvzK99xVG8NnTTWolb7xdvk5eiTHRgaz+URERNOWw+nCscYulFaZsLfKjKMN/t/TAGBeUoxvJvKVGXFQKfjVn4ZEyKVY65nc7n4MVW2UVLiTde09dpRUGFFSYQTed39P8wbz+Tl6xKs5zCIY+FdMfho7bL5ZLPdUjR4flaZVeTLseqzO1nNCE5qQNJ0KN+nScNOqNN+sqXs8M9ofquuAsceOt8ua8XZZMwAgSx/lC+ZXZ+mgUbG/ERHRzCSKIiraej0Buwn7a8ywDjj9jkmJi/SNZV6dpYOO45lpAgxqJa5eMgtXL5kFURRR2d6Lkgr3KlL7a8ww9tjx5udNePPzJgDueY68lbcXZWpZbh8gDOBnuJ5+B/ZVu8viS6tMqB2xzqc6Qob8bL1niTc90nVRQWophZvhs6b+ZF027INOHK3v8gX0X5zpQo3JihqTFa/ur4dEABbO0vgmxFvGcVlERBTmmrv6hi3l6g6ghotTybEmR+/+rpajR5pOFaSWUrgRBAF5CWrkJahxW0EW7IPupQa9Q2m/bBqa5+i/dtdCIZPgogytb7m6uYkxkEhYbj8VGMDPMINOF46dsaDU88f3eWMXnMPKraQSAUtTY1GQa8DaXD0Wp3B8FAWGUibF6mwdVmfr8C+Xz4alz4EDNWZfQF9ttOLYGQuOnXEvg6KUSbAyQ+sL6Oclx0DKDwoiIgphFpsD+zyffXuqTKgZkVjxjkn2Djebl8QgiQJDKZNiTbZ7ieB7vzYH5l479lSbfcvVtVjcs92XVpmADwB9tAL5OXrfDPcJMSy3nywM4GeABrMNJZVG7K40Ym+1GT39g377M/VR7qtlOXpcnK1DTATLlCn4NJFybJyfiI3zEwEArZZ+3xea0ioT2nvsvg+KXwOIVcmxOkvnC+jTOYkiERFNc/0OJ47Wd/rmhzneZMHwYewSAVicGutb3m1ZeiyUMlafUfDpopX45uJkfHNxMkRRRLXR6psMb3+NGabeAbxT1ox3PMMi8xKifQnCVZlazsdwAfibC0OWPgf2VQ+t99jQYfPbr4mUIz9H5/4jytEjVctyK5r+EjURuG55Cq5b7l4Gpaq91xPMm7G/xowumwMffNmKD75sBeBexjA/xx3Qr8nWw6DmOEAiIgoup0vEyeZuX8B+qK4D9kGX3zHZhij3TPE5eqzK0nG+IZr2BEFATnw0cuKj8YP8TAwMunC0wT27fWmlCV80WVDR1ouKtl68VFoLhVSC5elxKMhzL1fHSpKJYQAfBryzkJZ4yuKPNXb5Xb2VSQQsS4/zzBppwMJZGpYaU0gTBAG5CWrkJqjx/fxM39AQb4b+aEMnmrr68LfDZ/C3w+51Teckqn1fiC7K1CJKybc/IiKaWqIoon7YCiz7PBech4tXK32fT/k5eiRqWGpMoU0hk+DiLB0uztLhnsuBTusA9labfRn6pq4+7KsxY1+NGU9+WA5tlKfcPsc9fp6rEI2P32BDkCiKqDPbfH8E+6rN6LX7l8VnG6J8Y05WZekQzWCFwpjMcyV3eXocfnFpLmwD7rVw3QG9GSdbhiZa+e/SWvdFrbQ4z5clHZdAJCKiSeNdisv7GdTU1ee3P1opw8VZOqzN0WFtrh7ZhmgO+aKwFhelwNcXJeHri5IgiiJqTVZfpfC+ahM6rAP4+7Fm/P2Yu9zeG8cU5umxKlPHpMsI/G2EiC7b0JWrkgrTqA+DOJXcM1GEHmtzDZjFK1c0g6kUMhTNjkfR7HgAgLnXjr3VQxPinensw8G6Dhys68BvPwGiFFJcnDW0/nxeAr9MERHR+bHahy4al1aZcLq1x2+/XOq+aLw2R481OZwgmGY2QRCQZYhGliEat67JgMPpQlljF3ZXGLG7yoRjjV2oNlpRbbRi+94639+Pd7m6BawkZgA/XQ0MuvB5g2epBs+SWuKwsni5VMCKdC3W5rrHjsxP5tgRorPRRStx1eJkXLU4GYB7YsdS37I8JnTZHPj0dDs+Pd0OwL0OqneG3/wclnIREdEQ79DFPVVm37CtweFjFwHMS4rxzcNyESfsIjorudS9qtDKDC02b5wNi82BvdXu+Gd3pRGNHX04UNuBA7Ud+M3HFYhVyZGfrfctV5cSN/Pm8uK7yTThnb3RuxTDvhozbANOv2Ny46OHlcXzw4Doq0rTqXCTLg03rUqDyyXiZEu3L3NyqK4Dxh473i5rxtuemVOz9FG+YH51lg4aFScUIiKaKURRREVbr2+elf01ZlhHfEdLiYv0jWNfk62DLpoTpxJ9FRqVHFcsTMIVC5MAAPVmK0oqTSitNGJvlXsOiX8cb8E/jrcAcH9HW+vJzl+cpYV6BqymxQgwiDqsA9jjubpUWmlCs6Xfb78uSoG1nuXdCnINnNSEaApIJAIWzNJgwSwNfrIuG/ZBJ47Wd/kC+i/OdKHGZEWNyYpX99dDIgALZ2l8y9UtS49DhJxL+hARhZPmrj5fwL6n2gxjj91vvzcL6P0sSNPNvCwgUSCk66Jwsy4KN1+c7pm0uMs3fr6sceg72p/21UMmEbA0Lda3XN2iWeE5XIUBfADZB504Ut+JUk+n+7LZ4lcWr5BJsDIjzre8G5dUIAo8pUyK1dk6rM7W4V8unw1LnwP7a8zY6wnoq41WHDtjwbEzFmzbWQ2lTIKLMrVYk+3+EjcvOWbGj80iIgo1FpsD+2rMvqC9xmT12x8hd5f5erPs/I5GFHjuSYu1WJ6uxabL8tDd78C+arMntjKizmzDobpOHKrrxDPFFYiJkGFNth4FeXoU5BjC5kIbA/gpJIoiKtt7PVeJjDhQ04E+h3/J1ZxEtW/iuYsytIhUMJNHNJ1oIuW4fH4iLp+fCABosfRhT9VQQN/eY/ddCf413FmZNd7x89l6pOtUnBCPiGia6Xc4cbS+0zcfyvEmi98SvBIBWJQS6wvYl6XHQinjdzSi6SQmwv87WmOHzRd37akyobt/EB+eaMWHJ1oBAOk6lTvuyjFgdbYOmsjQLLdnAD/JTL12T1m8u/O0dfuXXOmjlZ5ZFN3ZuvgYlsUThZIkTSS+tTwF31qeAlEUUdXe6/sCuL+mA102B94/3or3j7s/LGbFesZF5rrHReo5LpKIKOCcLhEnm7tRWmXC3moTDtZ2wD7o8jsm2xDlmyn+4qzQ/XJPNFOlalW4aZV7jiOnS8QXZ7p8lc9HGzpRb7ah3tyAP+9vgFQiYHGKxje/2JLU2JApt2cAf4H6HU4cruvE7iojdleYcLKl22+/t7y20DMWY06imtk4ojAhCAJyE9TITVDjB/mZnrFZFt/4+c8bOtHU1YfXDzfi9cONANxVN96A/qIMLdc2JSKaAqIoot6z4sjeahP2VrsnvxouXq30Bez5OTokabjiCFG4kEoELE2Lw9K0OPz80lz02gex37Mk9+4qE2qMVhxt6MLRhi4892kl1EoZVmfrfMvVTecKSn5znCBRFFHe1oPdFe7lDQ7UmEddwZ2XFOP7z1+RwQmuiGYK99isOCxPj8MvLs2FbWD42sBmnGrpxunWHpxu7cF/l9ZCLhWwNDXOPQlSrg6LUmIhD5Grv0RE0423CnJvlRmlVSY0dfX57Y9WynBxltY38VxOfPS0/YJORJMrWinDZfMScNm8BABAU1cfSiuNKKl0V1F22Rz4+GQbPj7ZBsC9soQ3O5+frZ9WKxAxgD8P7T39KK00uUswqkyjZiKNVytRkGtAYZ4ea7L1MKhZIktEgEohQ9HseBTNjgfg/nK5r9rsG2bT1NWHg3UdOFjXgd9+4v5wWZXp+XKZq0cuv1wSEZ2V1T6Ig3Ud2FPprno63drjt18udWfgvOPYF6eE54zURDRxs2Ij8e2Vafj2Sne5/Ylmi28I9JH6Tpzp7MNfDjbgLwcbfHNieBO0S9OCm3BhAD+GfocTB2s73CUWlaM/ECLkElycpcPaHD0K8wz8kk1E50UfrcRVi5Nx1eJkiKKIhg4b9lR5Zj2udl/9/fR0Oz493Q4AMHjLO7N1WJurZ3knEc1oDqfLM6bV/b75eWMnHE7R75i5STFYm+OeSPSiTC1UCn7VJaLxSSUCFqXEYlFKLO5cn+O+OFjbgRJPLFjV3ouyxi6UNXbh959VIUrhXrFobY4eBXkGZOmjAhoLhty72rZt2/DUU0+hpaUF8+fPx7PPPouCgoILOqfLJeJUazd2e7LsB+s6MDCiLH7BrBhfGcXy9DjOREpEF0QQBKTropCui8JNq9Lgcok42dLtGz9/sLYDxh473vq8CW993gQAyPJOsJStD+nZU4mIzocoiqho60Gpp8T1QG0Heu2DfsfMio10l7jmuN8XOVEoEV2oKKUM6+fEY/0cdwVli6XPFyeWVpnQYR3AJ6fa8ckpd8LFO2FxQZ673D4uSjGl7QupAP7111/Hpk2bsG3bNuTn5+OFF17AFVdcgZMnTyItLW1C52rr7vdbZsDUO+C3P0kT4VveLT9bBx0/EIhoCkkkAhbM0mDBLA1+si7bvcRRQ6dnTWIzvjjThRqjFTVGK/60rx4SAViYEos1mXGQWdyZKTnjeSIKccYeOz471YL/rZTgV8d3wTji+1msSo78bHfAnp+jQ5p2+k40RUThIUkTiRtWpOKGFam+hIs3jjxc5z9hsSAAC2dp3AF9rgHL0+OgkE1uub0giqJ47sOGnDp1Cvv378fq1asxZ84cnD59Gs899xzsdju+973v4ZJLLpnUBg63atUqLFu2DM8//7xv29y5c3HNNddgy5Yt53x8d3c3NBoNih5/D7X+k8VDpZDi4qyhmQezDYEthaDw4nA48P777+PKK6+EnFEVTQJLnwP7azzl9lUmVButfvvVETIU5hlwyex4FM028KIjTTq+r9FUcLlEfNlswWen27HjdDuOnbH47feu5uMdxz4vKQYSCb+f0eTg+xpdqL4BJw7Umn0Z+vI2/6HXkXIpLs7SYmmiHHdfuQwWiwUxMTEX9JwTysB/+OGHuPrqqxEdHQ2bzYa33noLt9xyCxYvXgxRFHH55Zfjo48+mpIgfmBgAEeOHMF9993nt33jxo3Yu3fvmI+x2+2w24cmnOvudkft1UYbpBEqLEyOQX62Dvk5OixNjfW7OjI4ODjqfETny+Fw+P1LdKFUMuCSPB0uydMBmI0WSz/21bg/MHacakVP/yD+8UUL/vFFCwQBWDRLg6I8PdbPNmBeEpevpAvH9zWaLD39gyitMmFnhQkllaOrIOclRWOWpBs3XbIMKzN1UA5bzcfpHITTGegWU7ji+xpdKJkA5GfFIT8rDrg8F23d/dhb3YHSKjP2VJthtg5gR7kRn35hm7TnnFAGfs2aNbjkkkvwq1/9Cn/9619xxx134Gc/+xkef/xxAMCDDz6IQ4cO4eOPP560Bno1Nzdj1qxZ2LNnD9asWePb/sQTT+CVV15BeXn5qMc88sgjePTRR0dtv2/rX7AwIRJRvNBGRGHAJQL1vcDJTglOdAposvkH6zFyEXNjRcyPEzE7VkQEp/AgogASRaC9HzjRKeBkp4DqHgEuceh9SilxvzfNj3O/V2mmdvgoEVFAuESgxQaUWwR82dqHzx67cVIy8BMK4DUaDY4cOYKcnBy4XC4olUocOHAAy5YtAwB8+eWXuOyyy9Da2npBjRqLN4Dfu3cvVq9e7dv++OOP49VXX8Xp06dHPWasDHxqaipaWlqg0+kmvY1EXg6HA8XFxdiwYQNLsmhKjdXXWrv7UVLhzm7tqTbDNjCUrpJLBaxMj0PRbAOK8vTI1EcFq+kUYvi+RhNhdzhxoK4TO8uN2FlhQmOn/5rsmTqV731oxYgxouxrFCjsaxQoZrMZSUlJgS+hH04ikSAiIgKxsbG+bWq1GhaL5ewPugB6vR5SqXTUxYH29nYkJCSM+RilUgmlcvQ4ULlczj9SCgj2NQqU4X0tVSfHd1er8d3VmbAPupfF9I4vrTPbsLemA3trOvDEB+XI0KlQNDsel8yJx6osLVfYoHPi+xqdTXNXH3aUu99r9lSZ0ecYuniokEqwKkuL9Z73m4zzuHjIvkaBwr5GU20y+9eEAviMjAxUVVUhJycHALBv3z6/2d8bGxuRlJQ0aY0bTqFQYPny5SguLsa1117r215cXIyrr756Sp6TiCjUKWVSzxKYBjx81XzUGHvx2el27Cw34kCtGXVmG7bvrcP2vXVQKaTIz9HjkjnxWD87HomaiGA3n4imsUGnC2WNXfjsdDs+O92O063+kzclxCh97yf5OXpEKUNq8SMiomlpQu+kP/vZz+AcNnPIggUL/PZ/8MEHUzoL/ebNm3HzzTdjxYoVWL16NV588UU0NDTgpz/96ZQ9JxFROMkyRCPLEI3bCrLQax9EaaUJO063Y0d5O9p77Cg+2Ybik20AgHlJMe4v33PisSQ1FlLO/Ew043VaB7CrwojPTrejpNKILtvQ5F+CACxNjfW9b8xLiuEEmkREk2xCAfy5AmXvZHZT5dvf/jbMZjMee+wxtLS0YMGCBXj//feRnp4+pc9LRBSOopUyfG1BIr62ING3rqk3k3bsTBdOtnTjZEs3tu6oQpxKjnV5BqyfE491eQbEqjjLFNFMIIoiTrX0YEe5+73h84ZOuIbNnqSJ9L43GLAuLx7aKL43EBFNpZCrZbrjjjtwxx13BLsZRERhRSIRsGCWBgtmafCLS3Nh7rVjZ7kRO8rbUVJhRKfNgbfLmvF2WTMkArA8PQ7r57jHss5O4DJ1ROHENjCIPVVmz3CbdrRY+v32z0lU+/7+l6bGQiaVnOVMREQ02UIugCcioqmni1biuuUpuG55CgadLhyp78RnnsmpKtp6caiuE4fqOvHkh+VI1kT4vsyvydYjUsGJ8IhCTb3Z6qvAOVDTgQGny7cvQi5BfrYe6z2l8bNiI4PYUiKimY0BPBERjUsmlWBVlg6rsnS4/4q5aOywYaennHZvtRnNln78z4EG/M+BBihkEqzO0uEST0CfqlUFu/lENIaBQRcO17lXqPisvB01Rqvf/lRtJC6ZHY+iOfFYnaVDhJwX5oiIpgMG8ERENCGpWhVuXp2Bm1dnoG/AiX01Juw47Z7UqqmrD7sqjNhVYcTD755ATny0bxbqFRlxkLPUliho2nv6sfO0e2jM7koTeu2Dvn0yiYAVGXG+i2/ZhmgOjSEimoYYwBMR0VcWqZDikjkJuGROAh4TRVS29/rKcI/Ud6KqvRdV7b14saQG6ggZCnOHJsIzqJXBbj5RWHO5RHzRZMFnp93DX443Wfz266MVKJrtvsBWkKdHTATXwSYimu4YwBMR0aQQBAF5CWrkJajx03XZsNgcKKk0YsfpduysMKLDOoB/HG/BP463QBCARbM0vrHzC5I1kHCZOqILZulzYHelETtOG7Groh2m3gG//YtSNFg/2/13t3AW/+6IiEINA3giIpoSGpUcVy1OxlWLk+F0iTh2pgs7PeNtv2zqxrEzFhw7Y8Gzn1TCoFaiKM+AS+bEY22uHmpmAonOiyiKqBpR+TI4bJ23aKUMBbnuCeiKZhsQr44IYmuJiOhCMYAnIqIpJ5UIWJYWh2Vpcdi8cTbauvt9E+GVVppg7LHjf4+cwf8eOQOZRMDKDK177PyceGQbojgWl2iYfocT+2rM2OEJ2s909vntzzZE+f5+VqRroZBx7gkionDBAJ6IiAIuISYC316Zhm+vTIN90IlDtZ3Y4VmmrsZkxb4aM/bVmPH4+6eQplX5gpFVmVrOhk0zUlNXn3td9tPt2FNtQr9jaJk3hUyCi7N0uGS2AZfMSUCajqs/EBGFKwbwREQUVEqZFGtz9Vibq8e/fmMe6kzu9ah3lLvXo27osGH73jps31uHSLkU+Tl6T0BvQJKG61FTeBp0unC0ocs3AV15W4/f/iRNBIo8Y9nzc3RQKfiVjohoJuC7PRERTSsZ+ij8cG0mfrg2E1b7IEqrTNjhCejbuu345FQbPjnVBgCYk6j2LXu1NC0OUk7IRSGswzqAXRXt+Oy0ESUVRlj6HL59EgFYlhbnm/hxTqKaQ0uIiGYgBvBERDRtRSlluHx+Ii6fnwhRFP8/e/cd3mZ59n38K+9tx7a84hFvO3uRPQkJCYFCyyhQRlvoeAotaVoaKPSB9gXCKJQWCm0oBcootA+jhZBAQoaz9068ZzziFe8lW3r/kKPEJIEM24rk3+c4fIBvSbdOO5clnfd5ndfFobIGW+/8npI6Misayaxo5KV1eQT5uDOzeyG8mSlGgnw87B2+yFc6MaZPXKDaU1KH5eT6cz3G9IxkI4N8NaZFRAY6JfAiIuIQDAYDwwcHMnxwIPdentyjWrk+q5K6FhP/2VvGf/aW9ahWzk4NIz1S1Uq5NJxpVsmpNKtERES+ihJ4ERFxSMG+HnxzTDTfHBN9xn7hnUXH2Vl0nGc+y1K/sNhVQfe6Duu613Xo6Dq5AJ3WdRARkfOhTzAiIuLw3FxdmBAfzIT4YB5YkEZpXau1wtm9Ynd5fRv/3F7MP7cXa8Vu6XMdnWa2F9TaFmMsqG7ucbt2VhARkQulBF5ERJzO4CBvbpsUx22T4s64Z3ZGtnWRsEc/Pkyi0ZfZ3dX58UO0Z7ZcmMqGNtZ2r8+wMaea5o4u221uLgYmxAfbkvaEUF+1dIiIyAVRAi8iIk7Ny92V2anWXvjffsNCbmUTa7qT+Z1Fx8mraiavqoC/bSzAz9ON6cmhzE4LY1aqkTB/L3uHL5eoLrOFfUfrbL3sB0sbetwe6ufJ7FTrAnTTkkPx93K3U6QiIuJMlMCLiMiAYTAYSA73Jzncnx/NTKS+1cTGnGpbf3JNcwcrDlaw4mAFACOjA63Jf1oYIwcH4qIFxQa0+lYTGdlVrM2sZF12FbXNHT1uHxUdaNvmbXiUxouIiPQ+JfAiIjJgBXq7s3BkJAtHRmI2W9hfWm9bCO9AaT37j1q//vhFDqF+HsxMsSZn01NCCVBF1elZLBZyTpmxsavoOF3mk/u8+Xu6MSPFyOzurQuN/p52jFZERAYCJfAiIiKAi4uB0TFBjI4JYvHcFCob2liXVWXtac6tprqpg/d3H+X93UdxczEwfsgg23ZfiUY/9TQ7iTZTF5vzqrsv5FRRWtfa4/akMD9rL3tqGOOHDMLdVWsmiIhI/1ECLyIicgZhAV7cdFkMN10WQ0enmZ2F1lXF12RVkl/VzNb8Wrbm1/LEp5nEBHvbptpPTgjRquIO5ujxFtsih5vzamjvPLnNm4ebC5MTQmwXa2KCtWuBiIjYjxJ4ERGRr+Hh5sKUpFCmJIXy8NVDKapptk2r3pZfS0ltK//YUsQ/thTh5e7C1MRQWy90VJD29b7UmLrM7Co6ztosa7tE9rGmHrdHBXrZ/v2mJIbi7aELMiIicmlQAi8iInKe4kJ8+d7UeL43NZ6Wjk425dbYeucrGtr4IrOSLzIrAUiL8Lclg2NignDTlGu7qGlqt7ZEZFWSkV1FY1un7TYXA4yLG2T7d0oN91dLhIiIXJKUwIuIiFwEHw835g4NZ+7QcCwWC0fKG237ge8pPk5mRSOZFY28vC6PQG93ZqQYuTzNyMyUMIJ9PewdvtOyWCwcKmuwzZTYd7QOy8n15xjk486sVOt2gTNTjAT56N9CREQufUrgRUREeonBYGBoVABDowK4Z3YSx5s7WJ9tXQhvfXYV9a0mPt5Xxsf7ynAxwOiYIOuCaGlhDI0MUNX3IjW1d7Ixp6p7W8AqKhvbe9w+NDLA9vseHROEq7Z5ExERB6MEXkREpI8M8vXgujGDuW7MYDq7zOwtqbNVhDMrGtldXMfu4jp+/3k2EQFezE4zMjs1jKlJofh66i36XORXWbd5W5tVyfaCWkxdJ8vsPh6uTEuyrkcwOzWMiEAvO0YqIiJy8fTpQEREpB+4ubowfkgw44cE86v5aZTVtdoWUduUW0NFQxv/3F7CP7eX4OHqwsSEYGanWnuyh4T62jv8S0Z7ZxfbC2ptaw4U1rT0uH1IiI+tl31CfDCeblqATkREnIcSeBERETuICvLmOxPj+M7EONpMXWzNr7FuZZZVSUltKxtyqtmQU83vPjlMQqivLSm9bEgwHm4DayG8ivo227oCm3Kraenost3m7mpgQvzJix0JRj87RioiItK3lMCLiIjYmZe7a/eCamE8arGQV9Vs25d8R2Et+dXN5G8s4NWNBfh5unVPC7dOtw8LcL5p4V1mC3tL6my/g8PlDT1uD/P3ZHZqGLPTjExLNuKndgMRERkg9I4nIiJyCTEYDCSF+ZEU5scPZiTQ0GZiY05198JslVQ3dbDyUAUrD1UAMHxwAJenWhdmGxUdhIuDLsxW19JBRk41a7sX/Ktt7rDdZjDAqGjrgn+Xdy/456g/p4iIyMVQAi8iInIJC/By56oRkVw1IhKz2cKB0npbMr/vaD0HSxs4WNrAn9bkEuLrwcxUI5enhTE92Uigt7u9wz8ri8VC1rFGWy/7rqLjmE/Z5s3fy8265V5qGDNTjYT6edovWBERkUuEEngREREH4eJiYFRMEKNigvj53BSqGttZl2VdgX1DdjU1zR18sLuUD3aX4upiYFzcIFvVOjnMz+7b1LV2dLE5r9qWtJfVt/W4PSXcz7Zi/Li4Qbi7DqxefxERka+jBF5ERMRBGf09uXF8DDeOj8HUZWZHYS1rMytZm1VFbmUT2wtq2V5Qy5MrMhkc5G1L5icnhuDl3j+rs5fUtti2ztuSX0NHp9l2m6ebC1MSQ7g8zdr/HxPs0y8xiYiIOCol8CIiIk7A3dWFKYmhTEkM5aGFUFzTYlu5fUt+DaV1rby5tYg3txbh5W6974mV7QcHefdaHKYuMzsLj9ueO7eyqcftg4O8mZ1mneY/OSEUbw9t8yYiInKuHCaBf/zxx1m+fDl79+7Fw8ODuro6e4ckIiJyyYoN8eHOKUO4c8oQWjo62Zxbw5rufefL69tsVfHfcHLq+uXdU9fdznPqelVjO+uzq1ibWUlGThWNbZ222y7FqfwiIiKOymES+I6ODm688UYmT57Mq6++au9wREREHIaPhxtXDA3niqHhWCwWMisaWZt1cvG47GNNZB9r4q/r8wk4sXhcWhgzU4yEnGHxOLPZwsGyelsv+/7SeiynLEAX7OvBrBQjs9PCmJFsJNDn0l1MT0RExJE4TAL/29/+FoDXX3/dvoGIiIg4MIPBQHpkAOmRAfxkVhJ1LR226vm67CrqWkx8sr+cT/aXYzDA6JggLk8NY0rCIPbWGMj48CAZOTVUNbb3OO+J7exmdW9n56pt3kRERHqdwyTwF6K9vZ329pMfMBoaGgAwmUyYTCZ7hSUDwInxpXEmfU1jTS6Wr7uBq4aFcdWwMLrMFvYdrWddVhVrs6vJrGhkT3Ede4rreBYAV6DM+jgPV6YkhjA7NZQZyaGEB3jZzmnu6sTcZY+fRpyBXtekv2isSX/pzTHm1An80qVLbZX7U61duxYfH610K31v1apV9g5BBgiNNelNaUBaPNRFweE6A4ePG8huMBDgDkMHWRgWZCExoBM3lzI4VsauY/aOWJyRXtekv2isSV9raWnptXPZNYF/9NFHz5hgn2rHjh2MHz/+gs7/4IMPsnjxYtv3DQ0NxMTEMHv2bEJCQi7onCLnwmQysWrVKubOnYu7u3o/pe9orEl/0ViT/qKxJv1FY036S01NTa+dy64J/L333svNN9/8lfcZMmTIBZ/f09MTT8/TF99xd3fXH6n0C4016S8aa9JfNNakv2isSX/RWJO+1pvjy64JfGhoKKGhofYMQURERERERMQhOEwPfHFxMbW1tRQXF9PV1cXevXsBSEpKws/Pz77BiYiIiIiIiPQxh0ng//d//5c33njD9v2YMWMA64J0s2bNslNUIiIiIiIiIv3Dxd4BnKvXX38di8Vy2peSdxERERERERkIHCaBFxERERERERnIlMCLiIiIiIiIOAAl8CIiIiIiIiIOQAm8iIiIiIiIiANQAi8iIiIiIiLiAJTAi4iIiIiIiDgAJfAiIiIiIiIiDkAJvIiIiIiIiIgDUAIvIiIiIiIi4gCUwIuIiIiIiIg4ACXwIiIiIiIiIg5ACbyIiIiIiIiIA1ACLyIiIiIiIuIAlMCLiIiIiIiIOAA3ewfQnywWCwCNjY24u7vbORpxZiaTiZaWFhoaGjTWpE9prEl/0ViT/qKxJv1FY036S2NjI3AyH70YAyqBr6mpASA+Pt7OkYiIiIiIiMhAUlNTQ2Bg4EWdY0Al8MHBwQAUFxdf9C9O5Ks0NDQQExNDSUkJAQEB9g5HnJjGmvQXjTXpLxpr0l801qS/1NfXExsba8tHL8aASuBdXKwt/4GBgfojlX4REBCgsSb9QmNN+ovGmvQXjTXpLxpr0l9O5KMXdY5eiENERERERERE+pgSeBEREREREREHMKASeE9PTx555BE8PT3tHYo4OY016S8aa9JfNNakv2isSX/RWJP+0ptjzWDpjbXsRURERERERKRPDagKvIiIiIiIiIijUgIvIiIiIiIi4gCUwIuIiIiIiIg4ACXwIiIiIiIiIg5gwCTwL730EvHx8Xh5eTFu3Dg2bNhg75DEySxdupTLLrsMf39/wsLCuO6668jKyrJ3WDIALF26FIPBwKJFi+wdijih0tJSbrvtNkJCQvDx8WH06NHs2rXL3mGJk+ns7OThhx8mPj4eb29vEhIS+N3vfofZbLZ3aOLgMjIyuOaaa4iKisJgMPDRRx/1uN1isfDoo48SFRWFt7c3s2bN4tChQ/YJVhzaV401k8nEkiVLGDFiBL6+vkRFRXHHHXdQVlZ23s8zIBL49957j0WLFvHQQw+xZ88epk+fzoIFCyguLrZ3aOJE1q9fzz333MPWrVtZtWoVnZ2dzJs3j+bmZnuHJk5sx44dLFu2jJEjR9o7FHFCx48fZ+rUqbi7u7NixQoOHz7Ms88+S1BQkL1DEyfz1FNP8Ze//IUXX3yRI0eO8PTTT/PMM8/wwgsv2Ds0cXDNzc2MGjWKF1988Yy3P/300zz33HO8+OKL7Nixg4iICObOnUtjY2M/RyqO7qvGWktLC7t37+Y3v/kNu3fv5oMPPiA7O5tvfOMb5/08A2IbuYkTJzJ27Fhefvll27H09HSuu+46li5dasfIxJlVVVURFhbG+vXrmTFjhr3DESfU1NTE2LFjeemll3jssccYPXo0zz//vL3DEifywAMPsGnTJs1akz539dVXEx4ezquvvmo7dv311+Pj48Obb75px8jEmRgMBj788EOuu+46wFp9j4qKYtGiRSxZsgSA9vZ2wsPDeeqpp/jRj35kx2jFkX15rJ3Jjh07mDBhAkVFRcTGxp7zuZ2+At/R0cGuXbuYN29ej+Pz5s1j8+bNdopKBoL6+noAgoOD7RyJOKt77rmHhQsXcsUVV9g7FHFS//3vfxk/fjw33ngjYWFhjBkzhldeecXeYYkTmjZtGl988QXZ2dkA7Nu3j40bN3LVVVfZOTJxZgUFBVRUVPTIEzw9PZk5c6byBOlz9fX1GAyG857V5tY34Vw6qqur6erqIjw8vMfx8PBwKioq7BSVODuLxcLixYuZNm0aw4cPt3c44oTeffdddu/ezY4dO+wdijix/Px8Xn75ZRYvXsyvf/1rtm/fzs9+9jM8PT2544477B2eOJElS5ZQX19PWloarq6udHV18fjjj3PLLbfYOzRxYidygTPlCUVFRfYISQaItrY2HnjgAW699VYCAgLO67FOn8CfYDAYenxvsVhOOybSW+69917279/Pxo0b7R2KOKGSkhLuu+8+Pv/8c7y8vOwdjjgxs9nM+PHjeeKJJwAYM2YMhw4d4uWXX1YCL73qvffe46233uKdd95h2LBh7N27l0WLFhEVFcWdd95p7/DEySlPkP5kMpm4+eabMZvNvPTSS+f9eKdP4ENDQ3F1dT2t2l5ZWXna1TaR3vDTn/6U//73v2RkZBAdHW3vcMQJ7dq1i8rKSsaNG2c71tXVRUZGBi+++CLt7e24urraMUJxFpGRkQwdOrTHsfT0dN5//307RSTO6v777+eBBx7g5ptvBmDEiBEUFRWxdOlSJfDSZyIiIgBrJT4yMtJ2XHmC9BWTycRNN91EQUEBa9asOe/qOwyAHngPDw/GjRvHqlWrehxftWoVU6ZMsVNU4owsFgv33nsvH3zwAWvWrCE+Pt7eIYmTmjNnDgcOHGDv3r22r/Hjx/Od73yHvXv3KnmXXjN16tTTtsPMzs4mLi7OThGJs2ppacHFpefHUldXV20jJ30qPj6eiIiIHnlCR0cH69evV54gve5E8p6Tk8Pq1asJCQm5oPM4fQUeYPHixdx+++2MHz+eyZMns2zZMoqLi/nxj39s79DEidxzzz288847/Oc//8Hf39826yMwMBBvb287RyfOxN/f/7S1FXx9fQkJCdGaC9Krfv7znzNlyhSeeOIJbrrpJrZv386yZctYtmyZvUMTJ3PNNdfw+OOPExsby7Bhw9izZw/PPfcc3//+9+0dmji4pqYmcnNzbd8XFBSwd+9egoODiY2NZdGiRTzxxBMkJyeTnJzME088gY+PD7feeqsdoxZH9FVjLSoqihtuuIHdu3fzySef0NXVZcsVgoOD8fDwOPcnsgwQf/7zny1xcXEWDw8Py9ixYy3r16+3d0jiZIAzfr322mv2Dk0GgJkzZ1ruu+8+e4chTujjjz+2DB8+3OLp6WlJS0uzLFu2zN4hiRNqaGiw3HfffZbY2FiLl5eXJSEhwfLQQw9Z2tvb7R2aOLi1a9ee8fPZnXfeabFYLBaz2Wx55JFHLBERERZPT0/LjBkzLAcOHLBv0OKQvmqsFRQUnDVXWLt27Xk9z4DYB15ERERERETE0Tl9D7yIiIiIiIiIM1ACLyIiIiIiIuIAlMCLiIiIiIiIOAAl8CIiIiIiIiIOYEBsI3eC2WymrKwMf39/DAaDvcMRERERERERJ2exWGhsbCQqKgoXl4uroQ+oBL6srIyYmBh7hyEiIiIiIiIDTElJCdHR0Rd1jgGVwPv7+wNQUFBAcHCwnaMRZ2Yymfj888+ZN28e7u7u9g5HnJjGmvQXjTXpLxpr0l801qS/1NbWEh8fb8tHL8aASuBPTJv39/cnICDAztGIMzOZTPj4+BAQEKA3BOlTGmvSXzTWpL9orEl/0ViT/mIymQB6pY1bi9iJiIiIiIiIOAAl8CIiIiIiIiIOQAm8iIiIiIiIiANQAi8iIiIiIiLiAJTAi4iIiIiIiDgAJfAiIiIiIiIiDkAJvIiIiIiIiIgDUAIvIiIiIiIi4gCUwIuIiIiIyIBlsVj44Q9/SHBwMAaDgb179zJr1iwWLVpk79BETqMEXkREREREBqzPPvuM119/nU8++YTy8nKGDx/e7zEUFhZy1113ER8fj7e3N4mJiTzyyCN0dHTY7rNv3z5uueUWYmJi8Pb2Jj09nT/+8Y9fe+68vDy++c1vYjQaCQgI4KabbuLYsWM97mMwGPjoo49Oe+x3v/tdrrvuuov98aQXudk7ABEREREREXvJz88nMjKSKVOm2C2GzMxMzGYzf/3rX0lKSuLgwYP84Ac/oLm5md///vcA7Nq1C6PRyFtvvUVMTAybN2/mhz/8Ia6urtx7771nPG9zczPz5s1j1KhRrFmzBoDf/OY3XHPNNWzduhUXF9VzHY0SeBERERERGZD++Mc/snbtWsBahY6Li6OwsPC0+61cuZJvf/vbvPDCC9xxxx29Hsf8+fOZP3++7fuEhASysrJ4+eWXbQn897///R6PSUhIYMuWLXzwwQdnTeA3bdpEYWEhe/bsISAgAIDXXnuN4OBg1qxZwxVXXHHOMRYWFhIfH3/a8ZkzZ7Ju3bpzPo9cHF1yERERERGRAenuu+/mkUceITo6mvLycnbs2HHafd59911uuukm/vGPf3xl8u7n5/eVXwsWLDiv2Orr6wkODr6o+7S3t2MwGPD09LQd8/LywsXFhY0bN55XPDExMZSXl9u+9uzZQ0hICDNmzDiv88jFUQVeREREREQGJF9fX/z9/XF1dSUiIuK021966SV+/etf85///IfZs2d/5bn27t37lbd7e3ufc1x5eXm88MILPPvss2e9z5YtW/jXv/7F8uXLz3qfSZMm4evry5IlS3jiiSewWCwsWbIEs9lMeXl5j/vecsstuLq69jjW3t7OwoULAXr8jtra2rjuuuuYPHkyjz766Dn/XHLxlMCLiIiIiIh8yfvvv8+xY8fYuHEjEyZM+Nr7JyUl9crzlpWVMX/+fG688UbuvvvuM97n0KFDXHvttfzv//4vc+fOPeu5jEYj//73v/mf//kf/vSnP+Hi4sItt9zC2LFjT0vW//CHP5w2pX7JkiV0dXWddt677rqLxsZGVq1apT76fuZQv+2MjAyuueYaoqKizrpSooiIiIiIyMUaPXo0RqOR1157DYvF8rX3740p9GVlZcyePZvJkyezbNmyM97n8OHDXH755fzgBz/g4Ycf/tpzzps3j7y8PCorK6murubNN9+ktLT0tH72iIgIkpKSenz5+/ufdr7HHnuMlStX8t///veMt0vfcqgKfHNzM6NGjeJ73/se119/vb3DERERERERJ5WYmMizzz7LrFmzcHV15cUXX/zK+1/sFPrS0lJmz57NuHHjeO21185Y2T506BCXX345d955J48//vjX/gynCg0NBWDNmjVUVlbyjW9847weD9ZZCb/73e9YsWIFiYmJ5/14uXgOlcAvWLDgvBd/EBFxZoU1zdR3fP39RERE5PylpKSwdu1aZs2ahZubG88///xZ73sxU+jLysqYNWsWsbGx/P73v6eqqsp224m+80OHDjF79mzmzZvH4sWLqaioAKy96UajEbBeBJgzZw7/+Mc/bNP+X3vtNdLT0zEajWzZsoX77ruPn//856Smpp5XjAcPHuSOO+5gyZIlDBs2zPb8Hh4eX7vYnvQeh0rgz1d7ezvt7e227xsaGgAwmUyYTCZ7hSUDwInxpXEmfSWvqpmnPstibVY14MbbRzcxM8XIjORQxsYG4e7qUB1S4gD0uib9RWNN+suJMXaix/vUMWexWDCbzZhMJhISEvjss8+YO3cuBoOBp59+utdjWbFiBbm5ueTm5hIdHd3jto4O65X6d999l6qqKt5++23efvtt2+1xcXHk5OQA0NLSQlZWFg0NDbaf5/Dhwzz44IPU1tYSFxfHAw88wH333Xfa31hnZ+dpx8xms+33sG3bNlpaWnjsscd47LHHbPeZMWMGq1ev7r1fhhPqzdczg+VcGjouQQaDgQ8//JDrrrvurPd59NFH+e1vf3va8XfeeQcfH58+jE5EpG80mWBFiQubjxkwY8AFCxbAgsF2Hy9XC6mBFtKDrF9Bnmc/n4iIyEBU0wYbK1zwcIW0IDOxfuBq+PrHiVyIlpYWbr31Vurr6wkICLioczl1An+mCvyJ/QtDQkL6IUoZqEwmE6tWrWLu3Lm4u7vbOxxxAu2mLv6xrZiX1hXQ1N4JwJw0I4svT2Dv9k24xYxgU14dG3KrOd7S8ypvWrgfM1JCVZ2Xi6LXNekvGmvSlxpaTbycUcAbW4owdZ1Mg/y93JicEMz0pFCmJYUQPejct3wT+To1NTVERkb2SgLv1FPoPT098fQ8vfTk7u6uNwTpFxprcrEsFguf7C/nqZWZHD3eCsDQyAAevjqdKYmhmEwmct3hqrExfHtiAl1mC/uP1rEuq4p12VXsP1pH5rEmMo81sWxDIf6ebkxNCmVWqpFZqWFEBHrZ+ScUR6PXNekvGmvSm0xdZv65vZjnV+dQ22ydkj45IZi2+mryWzyob+3k88OVfH64EoD4UF9mJIcyPdnI5MQQfD2dOm2SPtabr2UaiSIil6jdxcd57JPD7C6uAyA8wJNfzkvlW2OjcXU58zw/VxcDY2IHMSZ2ED+fm0JNUzsbcqpZl1VJRk41tc0drDxUwcpD1oVn0iL8mZUaxqxUI+PiBqk6LyIiTsVisbAms5InPj1CXlUzAIlGXx5eOJSpCUGsWLGCK+fPJrOyhQ3ZVWTkVLG7uI6C6mYKqpt5Y0sR7q4GxsYOYkaKkRnJRoZFBeBylvdhkb7mUAl8U1MTubm5tu8LCgrYu3cvwcHBxMbG2jEyEZHeU1LbwlMrM/lkfzkA3u6u/HhmIj+YEY+Px/m9bIf4eXLdmMFcN2YwXWYLB0rrWZdVybqsKvYdrSOzopHMikb+sj5P1XkREXEqh8saePzTw2zKrQEg2NeDn1+RzM0TYnF3dbEtLObqYmB0TBCjY4L46ZxkGtpMbMmrYUNOFRnZ1RTXtrCtoJZtBbU881kWwb4eTEsKZXpyKDNSjIQH6P1S+o9DJfA7d+5k9uzZtu8XL14MwJ133snrr79up6hERHpHQ5uJP6/N5bVNhXR0mjEY4MZx0fxiXmqvfDg49QPKoitSqG3uICO76iur8zNTjcxKCWP8EFXnRUTEMRxraOPZz7P4966jWCzg4erC96fF85PZiQR4ff1U5gAvd64cFsGVw6zbtxXVNJORXUVGTjVb8mqobe7gv/vK+O++MgBSw/2ZkWKdbj8hPhgvd9c+/flkYHOoBH7WrFk46Jp7IiJn1dndl/eHU/rypiSG8NDCdIZFBfbZ8wb7epxTdf6v6/Px83RjWnd1fmaqkchALe4jIiKXlpaOTl7JKOAv6/NoNVm3hrt6ZCRL5qcRE3zhO1DFhfhy+2Rfbp88BFOXmT3Fdd3V+Sr2l9aTdayRrGONvLKhAE83FybEBzMj2ciMFCMp4X4YDJpuL73HoRJ4ERFnYrFYWJtVyROfZpJb2QRAgtGXh65K5/K0sH59wz9TdX5DThXrsqpYn12l6ryIiFyyzGYLH+wp5ZnPMjnWYN2BakxsEA8vHMq4uEG9+lzurtYEfUJ8ML+Yl8rx5g425lbbpttXNLSxIaeaDTnVPP7pEcIDPJmebGR694J4wb4evRqPDDxK4EVE7OBwWQNPfHqEjbnVAAzycefnc1O4pbsvz96CfT24dvRgrh09GLOtOl/FuuxK9pacXp2fmhRiWwxP1XkREekvm/OqeXz5EQ6VNQAQPcibBxaksXBEZL9cCB/k68E1o6K4ZlQUFouF3MomMnKqyciuYltBDcca2vm/XUf5v11HMRhgeFSgrXd+bOwgPNzs/54vjkUJvIhIP6psaOPZz7P5164SW1/e96YO4Sezkwj0vjS3S3JxMTAqJohRMUHcd0Vyj+p8RnYVNc0dfHboGJ8dOgZYewFnpak6LyIifSevqomln2ay+oj1vcff0417L0/izilD7NaDbjAYSA73Jzncn7umxdNm6mJn4XE25Fhns2VWNHKgtJ4DpfW8tC4PXw9XJieGML17uv2QEB9Nt5evpQReRKQftHZ08cqGfP6yPo+WDmtf3sKRkTxwkX159vB11fkTvYCqzouISG873tzBH7/I4a2tRXSaLbi6GPjOxFjum5NMiJ+nvcPrwcvdlWnJoUxLDuXBq9KptE2vr2JDTjU1zR2sPlLJ6iPWveejB3l3b1UXyuTE0Ev2wr7YlxJ4EZE+ZDZb+HBPKc98lkVFQxsAo2OC+M3V6YyLC7ZzdBfvy9X5480dZORUsb67d/6M1fnuhfDGxwVr6qCIiJyT9s4u/rG5iBfW5NDQ1gnA5Wlh/PqqNJLC/O0c3bkJC/Di+nHRXD8uGrPZwuHyBjZ0T7ffWVTL0eOtvLOtmHe2FdvWpjkx3X7k4EDcNKNNUAIvItJntubX8NjywxwstfblDQ7yZsmCNK4Z2T99efYw6Fyr8xnW6vyUxBBmp6k6LyIiZ2axWFh5sIKlKzIprm0BID0ygIcXpjM1KdTO0V04FxcDwwcHMnxwIP8zK5GWjk625teQkV1NRk4V+VXN7Co6zq6i4zy/OocALzemdS+ENyPFyOAgvWcOVErgRUR6WX5VE0tXZLLqsLXq7Ofpxj2zk/jeVPv15dnDuVTnPz98jM8PqzovIiKn21tSx+PLD7Oj8DgARn9P7p+XyvXjonF1ca4L4T4eblyeFs7laeEAHD3ewsYcazK/MaeahrZOPj1QwacHrLvBJBh9u7eqC2VifAi+nkrrBgr9S4uI9JK6Fmtf3ptbTvbl3TIhhkVXpBB6ifXl2cOXq/MHy7qr81mnV+d9PVyZmhRq652PUqVBRGTAKK1r5emVmfxnbxkAXu4u/HBGIj+akTBgEtXoQT7cPCGWmyfE0mW2sO9oHRu6q/N7S+rIr2omv6qZ1zcX4u5qYHxcMNNTQpmRbGRoZAAuTnaBQ04aGH8BIiJ9qKPTzD+2FPKnL0725c1ONfLrq9JJDneMvrz+5uJiYGR0ECOjg/jZnK+vzqeE+9mSeVXnRUScU2ObiZfX5fHqxgLaO80AXD82ml9emTKg26xcXQyMjR3E2NhB3HdFMvWtJrbkVdu2qzt6vJUt+TVsya/h6ZVZhPh6MC3ZmsxPTw4lLMDL3j+C9CIl8CIiF+hEX96TKzMpqrH25aVF+PPQwnSmJxvtHJ1j+brqfPaxJrKPNbFM1XkREafT2WXmvZ0l/GFVNtVNHQBMSgjm4YVDGT440M7RXXoCvd2ZPzyS+cMjsVgsFNa0sCHHurXrlrwaapo7+M/eMtsMhrQI/+7V7Y2MHzJoQLXzOSMl8CIiF2BfSR2Pfakv7xdzU7hxfIzT9eX1tzNV5zfkVrMuq5KM7Cqqm85SnU8xMn6IqvMiIo5kfXYVjy8/TPaxJgDiQ315cEEac4eGO+2Cr73JYDAQH+pLfKgvd0weQkenmd3Fx7sT+moOltWTWdFIZkUjyzLy8XRzYWJCCDO6V7dPDvPT79nBKIEXETkPpXWtPLMyk49O7cubnsCPZiYOmL68/jbI14NvjIriG6OiMJstHCprYG1W5Vmr81OSQpmVamRWaphW6RURuURlVTTy+KdHyMiuAiDIx5375iTznYlxuhB7ETzcXJiUEMKkhBDuvxJqmtrZmFtt23/+WEM7GdnWaj3LjxAR4GXbqm5aUiiDfD3s/SPI19CnTRGRc9DU3snL63L524aTfXnfGjOYX16Zqinc/cjFxcCI6EBGRAfysznJ1LV0kJHTszq/6vAx2w4Aqs6LiFxaqhrbeW5VNu/tKMZsAXdXA3dOHsJPL08m0Mfd3uE5nRA/T1uLmsViIftYExtyrOvNbC+opaKhjX/vOsq/dx3FYIARgwNtvfNj4wbhrr3nLzlK4EVEvkJnl5l/7TzKc6uyqW5qB2BCfDAPL0xnZHSQfYMTgnxOr86vy6pkXXYVe4qPqzovInKJaDN18erGAl5am0tzRxcAC4ZH8MCCNOJCfO0c3cBgMBhIjfAnNcKfu6cn0GbqYntBrW26fdaxRvYfrWf/0XpeXJuLn6cbkxJCmJli3X9+SKj+nS4FSuBFRM5ifXYVTyw/QtaxRgCGhPjw4FXpzFNf3iXp1Or8T7ur8xtyqll7lup8cpifLZm/TNV5EZE+YTZb+O++Mp5emUlZfRsAo6IDeWjhUCbEB9s5uoHNy93VurhdipGHFsKxhjY2dK9svzG3mtrmDlYfOcbqI9b3zdhgH6YnW5P5KUkhBHhpxoQ9KIEXEfmS7GONPL78COu7+/ICva19ebdNUl+eIwny8eCaUVFcc5bqfE5lEzmVTbyyoQAf28r2qs6LiPSWHYW1PPbJYfYdrQcgKtCLX81P4xujorRP+SUoPMCLG8ZFc8O4aNv7Zkb36va7io5TXNvC29uKeXtbMa4uBsbEBDEjxTrdfmR0kBbx7SdK4EVEulU1tvOH1dm8u/1kX94dk4fw08uTCPLRoi6O7GzV+XXd+85XN7WftTo/fsggPN205Y6IyLkqqmnmyRWZrDhYAYCvhys/mZ3EXdPitYWZgzj1ffOe2Uk0tXeyNa+GDTlVbMipJr+6mZ1Fx9lZdJznVmUT6O3OtKRQZnRPt9f6QH1HCbyIDHgn+vJeXpdHU3snAPOHWfvy1O/lnL5cnT9cbq3Or806c3V+SuKJ6ryR6EE+9g5fROSSVN9i4oU1ObyxpRBTlwUXA3z7slgWz03B6O9p7/DkIvh5unHF0HCuGBoOQElti226/aa8aupbTSw/UM7yA+UAJBp9bXvPT0wIxsdDaWdv0W9SRAYss9nCx/vLeHplFqV1rQCMjA7koavSmZgQYufopL+4uBgYPjiQ4YMDuffyM1fnT+0BTArzY1aKkdlpqs6LiACYusy8tbWIP36RQ12LCcDaV31VOqkR/naOTvpCTLAPt06M5daJsXR2mdl3tI6MbOtWdXtL6siraiavqpnXNhXi4erC+CGDbNPt0yMC1EJxEZTAi8iAtLOwlv+3/Aj7SuoAiAz04lfzU7l21GC9qQxwZ6vOr8uqYnfxcXIrm8itbOJvG1WdF5GBzWKxsOrwMZauyKSguhmwbt/566vSmZUaZufopL+4ubowLi6YcXHB/HxuCvUtJjbnVXf3z1dTWtfK5rwaNufV8OQKCPXz7F4MzzrdXrMzzo8SeBEZUIpqmnlqZSafHjjZl/c/sxK5a1oC3h6qpEpPX67O17eY2JBbxbos69fZqvOzUsO4LF7VeRFxXgdL6/l/nxxmW0EtAKF+Hiyem8pN46Nx097hA1qgjzsLRkSyYEQkFouF/OpmNmRXkZFTzZa8Gqqb2vlwTykf7ikFID0ygBkpocxINmpm2zlQAi8iA0J9i4kX1+bw+uZT+/Ji+PncFML8vewdnjiIQB93rh4ZxdUjVZ0XkYGpor6NZz7L4oM9R7FYwMPNhbunxfM/sxLx17Zi8iUGg4FEox+JRj++OzWe9s4udhfVkZFTxYacKg6WNnCk3Pr11/X5eLm7MCkhhOnJRmamhJJo9NPWvV+iBF5EnJqpy8zbW4t4/pS+vOnJoTy0MJ20iAA7RyeO7Kuq8+uzq6hqVHVeRJxHc3snf12fx7IN+bSZzABcNzqK++enaetNOWeebq5MTgxhcmIIS+anUd3UzqbcatZnW1e3r2pst81y+39Ytx6cnmxkekoo05JCtSsQSuBFxElZLBZWH6lk6adHyO/uy0sO8+PXC9OZlWLU1VzpdWeqzq/PrmJdViW7is5UnQ9hZmoYs1KMxASrOi8il6Yus4X3dx3lmc+zqGpsB2B83CAevnooo2OC7BucOLxQP0+uHT2Ya0cPxmKxkFnRaNuqbltBLWX1bby3s4T3dpZgMMDI6CBmJocyPcXI6Jgg3Adgu4YSeBFxOgdL63ls+WG25lv78kJ8Pfj53BRuvixGfXnSL06tzt8zO+ks1flKVh+pBKzb7cxODVN1XkQuKRtzqnls+WEyKxoBiA324cEFacwfHqEL4dLrDAYD6ZEBpEcG8MMZibR2dLG9sJaMbOt0++xjTewrqWNfSR1/WpOLv6cbkxNDmJ5iZGaykdiQgXExXAm8iDiNM/Xl3TUtnp+oL0/s7Kuq87uLT2y3U6DqvIhcEnIrG3ni00zWZFovMvp7uXHfnGRunxynC4zSb7w9XJmZYmRmihGA8vpW297zG3OrqWsx8fnhY3x+2NqqFhfiw4xk61Z1kxNDnPaznxJ4EXF4ze2d/DUjn1cy8mk1dQHwjVFR/Gp+qhYOk0vOadX5VhMbc6qti+GdpTo/KzWMWalGJsQH68OziPSZmqZ2nl+dwzvbi+kyW3BzMXDbpDjum5PMIF/1Hot9RQZ6c9P4GG4aH0OX2cLB0no2dG9Vt7v4OEU1LbxZU8SbW4twczEwNnYQ05NDmZFiZPjgQFydZJtgJfAi4rBO9OX9/vMsKrv78sbFDeLhhemMiR1k5+hEzk2gtzsLR0aycKR1ux3ryvanV+df3ViAt7u1Oj8rTdV5Eek9baYuXt9cyJ/X5NLY3gnA3KHhPLggjQSjn52jEzmdq4uBUTFBjIoJ4t7Lk2lsM7E1/+R0+8KaFrYX1rK9sJZnV2UT5OPOtCTrVnXTU0KJDHTchReVwIuIQ9qUW81jy49wpLwBgJhgbx5ckM4C9eWJAzMYDAyLCmRY1OnV+fXZVVQ2tvNFZiVfZKo6LyIXz2Kx8Mn+cp5amcnR460ADIsK4OGFQ5mcGGLn6ETOnb+XO3OHhjN3aDgAxTUtZORUkZFdxZa8GupaTHyyv5xP9pcD1oWNpycbmZESysT4ELw9HOf9Uwm8iDiU3Momln56xJbA+Hu58bPLk7ljivryxPmcrTq/PquKXcXHz1ydT7VuVafqvIh8lV1Fx3l8+WF2F9cBEB7gyf1XpvGtMYNxcZKpxjJwxYb4cFtIHLdNisPUZWZfSR0Z2VVk5FSz72gdOZVN5FQ28fdNBXi4uTBhSLBtun1ahP8lXQxSAi8iDqGmqZ0/fpHD29usfXmuLgZumxjLfVekEKy+PBkAzlSd35Tb3Tuf9eXq/CESjL7MSgljdpqq8yJyUkltC0+tzLRVIr3dXfnxzER+MCMeHw+lBuJ83F1dGD8kmPFDglk8L5W6lg425dZ0J/RVlNe3sTG3mo251SxdkYnR35PpSdZkflpyKKF+nvb+EXrQX6mIXNLaO7t4fVMhL57Sl3dFejgPXpVGovryZAAL9HbnqhGRXDXizNX5/Kpm8qsK+PsmVedFBBraTPx5bS6vbSqko9OMwQA3jovmF/NSCQ/wsnd4Iv0myMejx+y2vKpmW+/81vxaqhrb+WBPKR/sKQWsbSUnptuPi7P/Vq9K4EXkkmSxWFh+wNqXV1Jr7csbGhnAw1enMyUx1M7RiVxaLrQ6f6J33std1XkRZ9XZZeaf24v5w+ocaps7AJiaFMKvr0pnWFSgnaMTsS+DwUBSmB9JYX58f1o87Z1d7Co8zvqcKjZkV3O4vIFDZdavv6zPw9vd1br3fHIo05ONJBp9+326vcMl8C+99BLPPPMM5eXlDBs2jOeff57p06fbOywR6UW7i4/z2Ccn+/LC/D25/8pUvjU22mm2ABHpS1+uzh8pb2RdtjWZ31V0enV+8onqfEoYsSGqzos4A4vFwtqsSp74NJPcyibAuvDlQwvTmZ0adkn3+IrYi6ebK1OSQpmSFMqDC6CysY1NudVsyK4mI6ea6qZ21mRWsqZ7LabBQd623vmpiaEE+vT93vO9ksBbLJZ+eRF47733WLRoES+99BJTp07lr3/9KwsWLODw4cPExsb2+fOLSN8qqW3h6c+y+HhfGWDty/vRzAR+OCNBfXkiF8hgMDA0KoChUQH8ZFbP6vz67CqONZz6YUTVeRFncLisgSc+PcLG3GoAgn09WHRFMrdMiMXd1cXO0Yk4jjB/L745JppvjonGbLaQWdFIRo51uv2OguOU1rXy7o4S3t1RgosBRsUEWafbJ4cyOiYItz74e+uVT8Senp7s27eP9PT03jjdWT333HPcdddd3H333QA8//zzfPbZZ7z88sssXbq0T59bRPpOQ5uJl9bm8fdNBba+vBvGWvvyIgLVlyfSmy60Oj81YZC9QxeRr1HZ0Mazn2fzr10lWCzg4erC96YO4Sezkwj07vvKoIgzc3E5eUH8xzMTaenoZFvBib3nq8mtbGJPcR17iuv40xc5+Hu6MSUphBkpRoaH9l4if14J/OLFi894vKuriyeffJKQEOt+kc8999zFR/YlHR0d7Nq1iwceeKDH8Xnz5rF58+YzPqa9vZ329nbb9w0N1v2in/j0CHNHxTMxIRg/T1X1pPeZTKYe/5Uz6+wy896uUv74RS7HW6y/q8kJwTwwP4WhkQGAfodfR2NNLlay0ZtkYxw/mBpHY5uJTXm1ZORUk5FdzbHGnlMFw7xc2Wk+zOzUMCYMGYSnqvPSB/S6dv5aO7p4dVMhr2wspKWjC4Crhofzy3nJxAyytsXo93k6jTW5GO4GmJYwiGkJg2B+CmV1rWzKq2Fjbg2b8mqob+3ks0PH+OzQMcztLb32vAaLxWI51zu7uLgwatQogoKCehxfv34948ePx9fX2sS/Zs2aXgvwhLKyMgYPHsymTZuYMmWK7fgTTzzBG2+8QVZW1mmPefTRR/ntb3972vGYRf/CxdMHF4OFeD9ICzKTFmQh2hfUXivS9ywWOFxn4D9FLhxrtf7RhXlZuDbOzLBBFtSWJ2J/FguUtVj/Vo8cd6GgEcyc/ON0d7GQHGBh6CAL6UEWQjVZRqTfmS2ws9rAJ8Uu1HdY/z7j/Cx8c0gX8f52Dk5kADNboKQJMusNZNa5kF/dQtHz36a+vp6AgICLOvd5lZ8ff/xxXnnlFZ599lkuv/xy23F3d3def/11hg4delHBnIsv99p/Vf/9gw8+2GPWQENDAzExMXxrdAQ7K0wcPd5KXiPkNbqyvAQG+bgzJTGE6UkhTE0KIUJbasgFMplMrFq1irlz5+Lurilrp8qsaOTJldlsyqsBrH93P52dyM2XRasv7wJorEl/qW1s5S8fraPBN5qNubUca2zncJ2Bw3XW2+NDfJiREsrM5FBV5+Wi6HXt3GwrqGXpyiwOlTUCMDjIi1/OTWbhiAgtUHeONNakvxSVHiP5+d4513kl8A8++CBXXHEFt912G9dccw1Lly7tt8EeGhqKq6srFRUVPY5XVlYSHh5+xsd4enri6el52vHfXD2UkJAQimqse/5l5FSzJa+G4y0mlh+oYPkB63OkhPsxI9nI9BQjE7WQj1wAd3d3vSF0q2xs47nPs/nXzhLM3X153506hHvUl9crNNakrwX7w+gQC1ddNQI3NzcyKxpZl1XFuqxKdhUdp6CmhYItxbyxpRgvdxcmJ4QwK9W6GF5ciK+9wxcHpNe1M8uvamLpikxWHT4GgL+nGz+ZncT3pg7RZ9ULpLEmfW2Qv3evneu8G8Avu+wydu3axT333MP48eN56623+uUqn4eHB+PGjWPVqlV885vftB1ftWoV11577QWdMy7El9sn+3L75CGYuszsKa7rXoSgiv2l9WQfayL7WBN/21iAh5sLE+ODuxP6UFLD/XV1U+QctHZ08cqGfP6yPs/Wl7dwRCRL5qdpuyoRB2UwGEiPDCA9MoD/mZVIQ5uJzbnVrM2sYn12FRUNbazNqmJtVhUA8aG+zEwxMjstTBfERS5QXUsHf/wihze3FNFptuDqYuCWCTEsuiKFUL/TC1Yi4pwuaAU3Pz8/3njjDd59913mzp1LV1dXb8d1RosXL+b2229n/PjxTJ48mWXLllFcXMyPf/zjiz63u6sLE+KDmRAfzC+vTKW2ucO6519OFRnZ1VQ0tLEhp5oNOdXwqXVf6unJRmakhDItKZQQvXCK9GA2W/hobylPr8yioqENgNExQTy8MJ3xQ4LtHJ2I9KYAL3fmD49k/nDryvanVeermymobub1zYWqzoucp45OM//YUsifvsihoa0TgNmpRn59VTrJ4Wp0FxloLmoJ9ptvvplp06axa9cu4uLieiums/r2t79NTU0Nv/vd7ygvL2f48OF8+umnffLcwb4eXDMqimtGRWGxWMitbGJ99xYB2wpqqGxs5/3dR3l/91EAhg8OsFbnk42MixuEh5t6eWXg2ppfw+PLj3CgtB6AwUHeLFmQxjUjIzVzRcTJfbk639h2Yt/5KtZlnb06PyvVyKSEEFXnRbpZLBZWHqzgyZWZFNVYV7BOi/DnoYXpTE822jk6EbGXi95DLTo6mujo6N6I5Zz85Cc/4Sc/+Um/PR9YP4wkh/uTHO7P3dMTaDN1sbPwOBtyrFMFMysaOVjawMHSBl5al4ePhyuTE6x7/k1PDiU+1FdJiwwIBdXNLP30CJ939+X5ebrxk9mJfH9qvD6UiwxQ/l+qzmcdO1md31l4enV+UkIIs1KMzEoNY0ioqvMyMO0rqeOx5YfZUXgcAKO/J7+Ym8KN42Nw1ZZJIgOaNkG/AF7urkxLDmVacigPXpVOpW16vbVCX9PcwReZlXzRvW/u4CBvZqQYmZEcypSkUC3YJU7ny315Lga4dWKs+vJEpAeDwUBaRABpEQH8eOaZq/Mn/p+PD6s6LwNOaV0rz6zM5KO9ZQB4ubvww+kJ/GhmIr6e+tguIkrge0VYgBfXj4vm+nHRmM0WDpc3sCGnmozsKnYW1VJa18o/txfzz+3FuBisfcDW6ryRUdGBuGnrLHFQJ/ryXliTS32rCYBZ3X15KerLE5GvcT7VeU83FyYnqjovzqmpvZOX1+Xytw0FtHeaAfjW2MHcf2UqkYG9t3q1iDg+JfC9zMXFwPDBgQwfHMj/zEqkub2TbQU1ZGRXk5FTRX5VM7uL69hdXMfzq3MI8HJjalKobUG86EFalVsufRaLhc8OHePJFUcoPKUv79dXpTMjRX15InL+zlydr2F9diXrsqoor+9ZnR8S4sOs1DBmphqZrOq8OKjOLjP/2nmU51ZlU93UDsDE+GAeXjiUEdGBdo5ORC5FSuD7mK+nG5enhXN5mnWv+qPHW2zT7TfmVNPQ1smKgxWsOGjdez4h1NfWOz8pIUTTpeSSs/9oHY99coTthbUAhPp58st56ssTkd5lrc5HMH94BBaLhexjTazNqrRV5wtrWnh9c6Gq8+KwMrKreHz5EbKONQIwJMSHB69KZ97QcK2dJCJnpeywn0UP8uGWCbHcMiGWLrOFfUfr2NBdnd9bUkd+dTP53dMF3V0NjIsb1N0/b2RoZAAuSpDETsrqWnnmsyw+3FMKgKebCz+cYe3L89OFJhHpQwaDgdQIf1Ij/FWdF4eXfayRx5cfYX22dSeGQG937puTzG2T4rSLkYh8LX3qtiNXFwNjYwcxNnYQ912RTH2riS151WR0988fPd7K1vxatubX8vTKLEJ8PZiW3D3dPjmUsAAve/8IMgA0tXfyl3V5vLIh/2Rf3pjB/PLKVKKC1JcnIv3vTNX5dVnWZH5nUe1p1flJCSHMSrVW5+NVnRc7qWps5w+rs3l3ezFmC7i7Grhj8hB+enkSQT4e9g5PRByEEvhLSKB3z8V8Cmta2JBTRUZ2FVvyaqhp7uA/e8v4T/fKpGkR/rbp9pcNCVaFQXpVl9nCv3aW8OznJ/vyJsQH8/DCdEZGB9k3OBGRbqdW5380M5Gm9s5TVravpLy+jfXZ1m1ff/vxYeJCfKxT7dPCVJ2XftFm6uLVjQW8vC6PpvZOAOYPi+CBBWlq9xCR86YE/hJlMBiID/UlPtSXOyYPoaPTzO7i490JfTUHy+rJrGgks6KRZRn5eLq5MDEhhBnJocxIMZIc5qf+KblgZ+rLe2BBOlcOU1+eiFza/DzduHJYBFcOO3N1vqimhTe2FPHGliJV56VPmc0WPt5fxtMrsyitawVgZHQgD12VzsSEEDtHJyKOSgm8g/Do/pAxKSGE+6+EmqZ2NuZW2xbEO9bQTka2tVrP8iNEBHgxPTmU6SlGpiWFEuyrqVny9c7Ul/ezOcncrr48EXFAX1WdX59VSdnZqvOpYUxKCMHbQ9V5uTA7C2v5f8uPsK+kDoDIQC9+NT+Va0cN1npGInJRlMA7qBA/T64dPZhrRw+2VRg25Fg/hGwvqKWioY1/7zrKv3cdxWCAEYMDmZ4cyoxkI2NiBykZkx6qm9r5w6ps/tndl+fmYu3L+9kc9eWJiPP4cnU+p/JkdX5H4enV+YkJ1pXtZ6epOi/npqimmadWZvLpAevuQr4ervzPrETumpagC0Ii0iuUwDuBUysMd09PoM3UxfaCWtt0+6xjjew/Ws/+o/X8eW0evh6uTE4MZUaKNaGPC/HRtOgBqs3Uxd83FfDS2pN9eVcOC+eBBen6sCoiTs1gMJAS7k9KuD8/nGGtzm/OrWbtKdX5EzPbfveJqvPy1epbTLy4NofXNxdi6rLgYoBvXxbDz+emEOavRYdFpPcogXdCXu6u1q3nUow8tBCONbSxoXtl+4251dQ2d7D6yDFWHzkGQEywd/fK9kamJIUQ4OVu559A+prFYuG/+3r25Y0YHMjDC9WXJyIDk5+nG/OGRTDvHKrzJ9rarAm9kfhQX10IH6BMXWbe3lrE81/kUNdiAmB6cigPLUwnLSLAztGJiDNSAj8AhAd4ccO4aG4YF43ZbOFQWQMZ3avb7yo6TkltK+9sK+adbcW4uhgYExNkTehTQhkZHYSrerWcypn68u6/MpXrRqsvT0QEzl6dX5ddxfqsKkrrWk+pzkNssE/3QnhGJieEqjo/AFgsFlYfqWTpp0fIr24GIDnMj18vTGdWilEXdESkzyiBH2BcXAyMiA5kRHQg98xOoqm9k235NWRkV7Ehp5r86mZ2Fh1nZ9Fx/rA6m0Bvd6YlhdoWxBusfb8dVnFNC0+uPGLry/PxcOV/ZiZy93T15YmIfJUvV+dzK5tYl1XF2qxKdhTWUlzbwj+2FPEPVecHhIOl9Ty+/Ahb8msACPH14OdzU7j5shjcXLXGkIj0LSXwA5yfpxtz0sOZkx4OQElti226/aa8aupbTSw/UM7yA+UAJBp9mZ5sZGaKkYkJwfh4aAhd6upbTby4Joc3NhfR0WXGxQA3jY9h8Tz15YmInC+DwUByuD/J4f78YEaCqvMDSEV9G7//PIv3dx/FYrHuEHTXtHh+MisRf7Ufikg/UfYlPcQE+3DrxFhunRhLZ5eZfUfryMi2blW3t6SOvKpm8qqaeX1zIR6uLowfMsg23T49IkBTsC8hpi4z72wr5vnV2Rw/pS/v11elkx6pvjwRkd5wtur8uuxKthecXp2fGB/MrNQwZqUaSVB13iE0t3fy14x8XsnIp9XUBcA3RkXxq/mpRA/ysXN0IjLQKIGXs3JzdWFcXDDj4oL5+dwU6ltMbM6r7u6fr6a0rpXNeTVszqvhqZUQ6ufB9GQj05NDmZYcququndj68lYcIb/K2peXFObHQ+rLExHpU1+uzje3d7I5r8a2GF5pXSsbcqrZkFPN//vEuojsrJQwZqepOn8p6jJbeH/3UX7/WRaVje0AjIsbxMML0xkTO8jO0YnIQKUEXs5ZoI87C0ZEsmBEJBaLhfzqZjZ0985vya+huqmDD/eU8uGeUgDSIwOYkRzKjBQj4+IG4eWuDyZ97Ux9eYvmpnCL+vJERPqdr6cbc4eGM3doOBaLhbyqJtZmnqzOl9S28ubWIt7cqur8pWZTbjWPLT/CkfIGwHqx5cEF6SwYHqF/FxGxKyXwckEMBgOJRj8SjX58d2o87Z1d7C6qIyOnig05VRwsbeBIufXrrxn5eLlbF/WxblcXSlKYn94Ae9HZ+vL+Z1aitgUUEbkEGAwGksL8SQo7v+r8rFQjkxNDtOZMP8mtbGLpp0f4IrMSAH8vN352eTJ3TInD002FCBGxP70bSK/wdHNlcmIIkxNDWDI/jeqmdjblVrO+u0Jf1dhu7QnMqgKsW5dN767OT00MZZCvh51/AsfU0tHJX9fns+xLfXn3X5lKTLD68kRELlVnqs6feJ88W3V+ZoqR2Wlhqs73gdrmDp5fnc3b24rpMltwdTFw28RY7rsihWB9RhGRS4gSeOkToX6eXDt6MNeOHozFYiHrWKNtq7ptBbWU17fxr51H+dfOoxgMMDI6yDbdfnRMEO6a7v2VztSXNzY2iIevHspY9eWJiDiUU6vzd0+3Vue35NWwLttanT96/GR1/rHlR1Sd70XtnV28vqmQF9fm0tjWCcAV6WE8sCCdpDA/O0cnInI6veJLnzMYDKRFBJAWEcAPZyTS2tHF9sLa7oS+iuxjTewrqWNfSR0vrMnFz9ONyYkhzEixTrePC/G1949wSdnc3Zd3+JS+vAfmp3PVCPXliYg4A19PN64YGs4V51Kdd3VhYoK1Oj8rNYxEo6rz58JisfDpgQqeXHmEktpWAIZGBvDwwnSmJIXaOToRkbNTAi/9ztvDlZkp1r3kwdq/be2dr2ZjThXHW0ysOnyMVYePARAX4mOdbp9srTQM1L1WcyubeHLFEVYfOdmX99PLk7hzyhD15YmIOKnzrc5HD/K27jufEsaUJFXnz2R38XEeX36EXUXHAQjz9+T+K1P51thoXLUdrohc4vSqLnYXEejFTeNjuGl8DF1mC4fK6snIriIjp5rdRccpqmmhqKaYt7YW4+piYGxsEDOSjUxPMTJicKDTv9nWNnfwx9XZvKW+PBGRAe/06nwz67IqWZ9dxbb8Wo4eb+Wtrdb3TFXneyqpbeHpz7L4eF8ZAN7urvxoZgI/nJGgCx0i4jD0aiWXFFcXAyOjgxgZHcS9lyfT2GZia34tG3KqyMiuorCmhR2Fx9lReJxnV2UT5OPO1KRQZiYbmZ4SSmSgt71/hF7T3tnFG5sLeWGN+vJEROR01uq8H0lhftw9PYGWjk4256o6/2UNbSZeWpvH3zcV0NFpxmCAG8ZG84t5qUQEetk7PBGR8zIwXrnFYfl7udtW6QUormmxbVW3ObeGuhYTy/eXs3x/OQBJYX7d1flQJsWH4O3heFPL1ZcnIiIXwsfj/KrzE+KDrQl9qpFEo/Nt79rZZeafO0p4flU2Nc0dAExOCOHhq9MZFhVo5+hERC6MEnhxKLEhPtwWEsdtk+IwdZnZV1Jnm26//2gduZVN5FY28fdNBXi4unBZ/CBrQp9sJD3S/5L/cLKn+DiPfakv75dXpnK9+vJEROQ8nKk6vyWvxroYXnYlJbWtbMytZmPuyer8zBQjs1MdvzpvsVhYl1XF458eIbeyCYCEUF9+fVU6c9LDLvnPAiIiX8VxX51lwHN3dWH8kGDGDwlm8bxU6lo62JRbY5tuX1bfxqbcGjbl1rB0RSahfp7MSA5lekoo05KMGP097f0j2JypL++HMxL40Uz15YmIyMXz8XBjTno4c9Kt1fn86ubule0rbdX5t7cV8/Y2x67OHylv4IlPj7AhpxqAQT7uLLoihVsnxmqLWhFxCsoMxGkE+XiwcGQkC0dG2qYOntiqbmt+LdVN7Xywp5QP9pQC1mnpJ7aqGzdkkF1Wcj9TX971Y6P5pfryRESkjxgMBhKNfiQa/bhrWvzXVucHB3X3zqeGMSUxBF/PS+/jY2VjG899ns2/dpZgtoCHqwvfnTqEe2YnEeg9MHevERHndOm9Aov0glOnDn5/WjztnV3sKjxORk41GdlVHC5vsH39ZX0e3u6uTEoIZkaKdbp9X6/U29ll5t0dJfzhS315Dy1MZ/hg9eWJiEj/+crqfEEtpXU9q/OXxQ9iVkoYs9PsX51v7ejibxvyeXl9Hi0dXQAsHBHJkvlpxIb42C0uEZG+ogReBgRPN1emJIUyJSmUBxakUdXYzsbcKjZkV5ORU011Uztrs6pYm1UFwOAgb6YnhzI92ci0pFACfXrn6v2JvrwnPj1Czil9eQ9elc4V6ssTERE7O1N1fmt+d3U+q4ri2hZbe9rjn9qvOm82W/hobynPfJZFeX0bAKNigvjNwnTGDwnulxhEROxBCbwMSEZ/T745JppvjonGbLaQWdFoW91+R8FxSutaeXdHCe/uKMHFACOjg2zT7UfHBOF2AX10mRUNPL5cfXkiIuI4fDzcuDwtnMvTzq86PyvVSFJY31Tnt+bX8PjyIxworQesF91/NT+Va0ZG4aIFX0XEySmBlwHPxcXA0KgAhkYF8OOZibR2dLG1oKa7Ol9FbmUTe0vq2FtSx5++yMHf040pSSFMTzYyM8VITPBXT9H7cl+eu6uB702NV1+eiIg4lAupzs9MNTIrxcjUpNCLrs4XVDfz5IojfHboGAB+nm78ZHYi358aj5e7420bKyJyIRwmgX/88cdZvnw5e/fuxcPDg7q6OnuHJE7K28OV2alhzE4NA6CsrtW6sn1ONRtzqqlvNfHZoWO2DxBDQnxsvfOTE0Pw6/6A0tEFf16Xz7INBba+vKtGRLBkfhpxIb72+eFERER6yZer8wUnqvPZVWzNr6G0rpV3thXzzrZi3F0N1pXtL6A6X9fSwZ++yOUfWwrpNFtwMcAtE2L5+dwUQv0unR1lRET6g8Mk8B0dHdx4441MnjyZV1991d7hyAASFeTNty+L5duXxdJltnCgtJ4N2VVk5FSxu7iOwpoWCrcU8Y8tRbi5GBgbN4hRgwP4915X6jpyAfXliYiIczMYDCQY/UgwWhePbe3oYmt+DWuzKi+4Ot/RaeYf2wr40xc51LeaAJiVauTXV6WTEu7f3z+iiMglwWES+N/+9rcAvP766/YNRAY0VxcDo2OCGB0TxE/nJNPQZmJL3om956sprm1he0Et2wtqAQNRgV4sWZCmvjwRERlQvD1cmZ0Wxuy0sHOqzl82JNi2GN6QQZ7sqzHw3AubKaptASA13J+HFqYzI8Vo559MRMS+HCaBvxDt7e20t7fbvm9oaADAZDJhMpnsFZY4EW9XuDwlhMtTQmAhFNW2sDG3hl2Ftbg0lPHIrRPw9/Giq6uTri57RyvO6MRrmV7TpK9prMnFiAny5PaJ0dw+MZrWji62FdaSkV3N+pxqimtb2ZxXw+a8Gp74NJMALzca2lyBFkL9PFg0J4kbxg7G1cWg8Se9Sq9r0l96c4wZLBaLpdfO1g9ef/11Fi1adE498I8++qitcn+qd955Bx8f7Q0qIiIiYm+VrXCkzsCROgM59QY6LQbcDRZmR1mYM9iMl9anExEH19LSwq233kp9fT0BAQEXdS67VuDPlmCfaseOHYwfP/6Czv/ggw+yePFi2/cNDQ3ExMQwe/ZsQkJCLuicIufCZDKxatUq5s6di7u7VpqXvqOxJv1FY036Q2tHF3uLayk8uIMbFmqsSd/S65r0l5qaml47l10T+HvvvZebb775K+8zZMiQCz6/p6cnnp6nr07q7u6uP1LpFxpr0l801qS/aKxJX3J3d2dykpHj2Rpr0n801qSv9eb4smsCHxoaSmhoqD1DEBEREREREXEIDrOIXXFxMbW1tRQXF9PV1cXevXsBSEpKws/Pz77BiYiIiIiIiPQxh0ng//d//5c33njD9v2YMWMAWLt2LbNmzbJTVCIiIiIiIiL9w8XeAZyr119/HYvFctqXkncREREREREZCBwmgRcREREREREZyJTAi4iIiIiIiDgAJfAiIiIiIiIiDkAJvIiIiIiIiIgDUAIvIiIiIiIi4gCUwIuIiIiIiIg4ACXwIiIiIiIiIg5ACbyIiIiIiIiIA1ACLyIiIiIiIuIAlMCLiIiIiIiIOAAl8CIiIiIiIiIOQAm8iIiIiIiIiANQAi8iIiIiIiLiAJTAi4iIiIiIiDgAN3sH0J8sFgsAjY2NuLu72zkacWYmk4mWlhYaGho01qRPaaxJf9FYk/6isSb9RWNN+ktjYyNwMh+9GAMqga+pqQEgPj7ezpGIiIiIiIjIQFJTU0NgYOBFnWNAJfDBwcEAFBcXX/QvTuSrNDQ0EBMTQ0lJCQEBAfYOR5yYxpr0F4016S8aa9JfNNakv9TX1xMbG2vLRy/GgErgXVysLf+BgYH6I5V+ERAQoLEm/UJjTfqLxpr0F4016S8aa9JfTuSjF3WOXohDRERERERERPqYEngRERERERERBzCgEnhPT08eeeQRPD097R2KODmNNekvGmvSXzTWpL9orEl/0ViT/tKbY81g6Y217EVERERERESkTw2oCryIiIiIiIiIo1ICLyIiIiIiIuIAlMCLiIiIiIiIOAAl8CIiIiIiIiIOYMAk8C+99BLx8fF4eXkxbtw4NmzYYO+QxMksXbqUyy67DH9/f8LCwrjuuuvIysqyd1gyACxduhSDwcCiRYvsHYo4odLSUm677TZCQkLw8fFh9OjR7Nq1y95hiZPp7Ozk4YcfJj4+Hm9vbxISEvjd736H2Wy2d2ji4DIyMrjmmmuIiorCYDDw0Ucf9bjdYrHw6KOPEhUVhbe3N7NmzeLQoUP2CVYc2leNNZPJxJIlSxgxYgS+vr5ERUVxxx13UFZWdt7PMyAS+Pfee49Fixbx0EMPsWfPHqZPn86CBQsoLi62d2jiRNavX88999zD1q1bWbVqFZ2dncybN4/m5mZ7hyZObMeOHSxbtoyRI0faOxRxQsePH2fq1Km4u7uzYsUKDh8+zLPPPktQUJC9QxMn89RTT/GXv/yFF198kSNHjvD000/zzDPP8MILL9g7NHFwzc3NjBo1ihdffPGMtz/99NM899xzvPjii+zYsYOIiAjmzp1LY2NjP0cqju6rxlpLSwu7d+/mN7/5Dbt37+aDDz4gOzubb3zjG+f9PANiG7mJEycyduxYXn75Zdux9PR0rrvuOpYuXWrHyMSZVVVVERYWxvr165kxY4a9wxEn1NTUxNixY3nppZd47LHHGD16NM8//7y9wxIn8sADD7Bp0ybNWpM+d/XVVxMeHs6rr75qO3b99dfj4+PDm2++acfIxJkYDAY+/PBDrrvuOsBafY+KimLRokUsWbIEgPb2dsLDw3nqqaf40Y9+ZMdoxZF9eaydyY4dO5gwYQJFRUXExsae87mdvgLf0dHBrl27mDdvXo/j8+bNY/PmzXaKSgaC+vp6AIKDg+0ciTire+65h4ULF3LFFVfYOxRxUv/9738ZP348N954I2FhYYwZM4ZXXnnF3mGJE5o2bRpffPEF2dnZAOzbt4+NGzdy1VVX2TkycWYFBQVUVFT0yBM8PT2ZOXOm8gTpc/X19RgMhvOe1ebWN+FcOqqrq+nq6iI8PLzH8fDwcCoqKuwUlTg7i8XC4sWLmTZtGsOHD7d3OOKE3n33XXbv3s2OHTvsHYo4sfz8fF5++WUWL17Mr3/9a7Zv387PfvYzPD09ueOOO+wdnjiRJUuWUF9fT1paGq6urnR1dfH4449zyy232Ds0cWIncoEz5QlFRUX2CEkGiLa2Nh544AFuvfVWAgICzuuxTp/An2AwGHp8b7FYTjsm0lvuvfde9u/fz8aNG+0dijihkpIS7rvvPj7//HO8vLzsHY44MbPZzPjx43niiScAGDNmDIcOHeLll19WAi+96r333uOtt97inXfeYdiwYezdu5dFixYRFRXFnXfeae/wxMkpT5D+ZDKZuPnmmzGbzbz00kvn/XinT+BDQ0NxdXU9rdpeWVl52tU2kd7w05/+lP/+979kZGQQHR1t73DECe3atYvKykrGjRtnO9bV1UVGRgYvvvgi7e3tuLq62jFCcRaRkZEMHTq0x7H09HTef/99O0Ukzur+++/ngQce4OabbwZgxIgRFBUVsXTpUiXw0mciIiIAayU+MjLSdlx5gvQVk8nETTfdREFBAWvWrDnv6jsMgB54Dw8Pxo0bx6pVq3ocX7VqFVOmTLFTVOKMLBYL9957Lx988AFr1qwhPj7e3iGJk5ozZw4HDhxg7969tq/x48fzne98h7179yp5l14zderU07bDzM7OJi4uzk4RibNqaWnBxaXnx1JXV1dtIyd9Kj4+noiIiB55QkdHB+vXr1eeIL3uRPKek5PD6tWrCQkJuaDzOH0FHmDx4sXcfvvtjB8/nsmTJ7Ns2TKKi4v58Y9/bO/QxIncc889vPPOO/znP//B39/fNusjMDAQb29vO0cnzsTf3/+0tRV8fX0JCQnRmgvSq37+858zZcoUnnjiCW666Sa2b9/OsmXLWLZsmb1DEydzzTXX8PjjjxMbG8uwYcPYs2cPzz33HN///vftHZo4uKamJnJzc23fFxQUsHfvXoKDg4mNjWXRokU88cQTJCcnk5yczBNPPIGPjw+33nqrHaMWR/RVYy0qKoobbriB3bt388knn9DV1WXLFYKDg/Hw8Dj3J7IMEH/+858tcXFxFg8PD8vYsWMt69evt3dI4mSAM3699tpr9g5NBoCZM2da7rvvPnuHIU7o448/tgwfPtzi6elpSUtLsyxbtszeIYkTamhosNx3332W2NhYi5eXlyUhIcHy0EMPWdrb2+0dmji4tWvXnvHz2Z133mmxWCwWs9lseeSRRywREREWT09Py4wZMywHDhywb9DikL5qrBUUFJw1V1i7du15Pc+A2AdeRERERERExNE5fQ+8iIiIiIiIiDNQAi8iIiIiIiLiAJTAi4iIiIiIiDgAJfAiIiIiIiIiDmBAbCN3gtlspqysDH9/fwwGg73DERERERERESdnsVhobGwkKioKF5eLq6EPqAS+rKyMmJgYe4chIiIiIiIiA0xJSQnR0dEXdY4BlcD7+/sDUFBQQHBwsJ2jEWdmMpn4/PPPmTdvHu7u7vYOR5yYxpr0F4016S8aa9JfNNakv9TW1hIfH2/LRy/GgErgT0yb9/f3JyAgwM7RiDMzmUz4+PgQEBCgNwTpUxpr0l801qS/aKxJf9FYk/5iMpkAeqWNW4vYiYiIiIiIiDgAJfAiIiIiIiIiDkAJvIiIiIiIiIgDUAIvIiIiIiIi4gCUwIuIiIiIiIg4ACXwIiIiIiIiIg5ACbyIiIiIiIiIA1ACLyIiIiIiIuIAlMCLiIiIiMiAZbFY+OEPf0hwcDAGg4G9e/cya9YsFi1aZO/QRE6jBF5ERERERAaszz77jNdff51PPvmE8vJyhg8f3u8xFBYWctdddxEfH4+3tzeJiYk88sgjdHR0nHbf119/nZEjR+Ll5UVERAT33nvvV567vb2dn/70p4SGhuLr68s3vvENjh492uM+BoOBjz766LTHfve73+W66667mB9NepmbvQMQERERERGxl/z8fCIjI5kyZYrdYsjMzMRsNvPXv/6VpKQkDh48yA9+8AOam5v5/e9/b7vfc889x7PPPsszzzzDxIkTaWtrIz8//yvPvWjRIj7++GPeffddQkJC+MUvfsHVV1/Nrl27cHV17esfTXqZEngRERERERmQ/vjHP7J27VrAWoWOi4ujsLDwtPutXLmSb3/727zwwgvccccdvR7H/PnzmT9/vu37hIQEsrKyePnll20J/PHjx3n44Yf5+OOPmTNnju2+w4YNO+t56+vrefXVV3nzzTe54oorAHjrrbeIiYlh9erVXHnlleccY2FhIfHx8acdnzlzJuvWrTvn88jF0RR6EREREREZkO6++24eeeQRoqOjKS8vZ8eOHafd59133+Wmm27iH//4x1cm735+fl/5tWDBgvOKrb6+nuDgYNv3q1atwmw2U1paSnp6OtHR0dx0002UlJSc9Ry7du3CZDIxb94827GoqCiGDx/O5s2bzyuemJgYysvLbV979uwhJCSEGTNmnNd55OKoAi8iIiIiIgOSr68v/v7+uLq6EhERcdrtL730Er/+9a/5z3/+w+zZs7/yXHv37v3K2729vc85rry8PF544QWeffZZ27H8/HzMZjNPPPEEf/zjHwkMDOThhx9m7ty57N+/Hw8Pj9POU1FRgYeHB4MGDepxPDw8nIqKih7HbrnlltOm1Le3t7Nw4UKAHr+jtrY2rrvuOiZPnsyjjz56zj+XXDwl8CIiIiIiIl/y/vvvc+zYMTZu3MiECRO+9v5JSUm98rxlZWXMnz+fG2+8kbvvvtt23Gw2YzKZ+NOf/mSrqP/zn/8kIiKCtWvXntd0eIvFgsFg6HHsD3/4g22a/QlLliyhq6vrtMffddddNDY2smrVKlxcNKm7PznUbzsjI4NrrrmGqKios66UKCIiIiIicrFGjx6N0Wjktddew2KxfO39e2MKfVlZGbNnz2by5MksW7asx22RkZEADB061HbMaDQSGhpKcXHxGc8XERFBR0cHx48f73G8srKS8PDw0+6blJTU48vf3/+0cz722GOsXLmS//73v2e8XfqWQ1Xgm5ubGTVqFN/73ve4/vrr7R2OiIiIiIg4qcTERJ599llmzZqFq6srL7744lfe/2Kn0JeWljJ79mzGjRvHa6+9dlple+rUqQBkZWURHR0NQG1tLdXV1cTFxZ3xnOPGjcPd3Z1Vq1Zx0003AVBeXs7Bgwd5+umnvzKeM3n//ff53e9+x4oVK0hMTDzvx8vFc6gEfsGCBee9+IOIiIiIiMiFSElJYe3atcyaNQs3Nzeef/75s973YqbQl5WVMWvWLGJjY/n9739PVVWV7bYTfecpKSlce+213HfffSxbtoyAgAAefPBB0tLSbP35paWlzJkzh3/84x9MmDCBwMBA7rrrLn7xi18QEhJCcHAwv/zlLxkxYsRp0+W/zsGDB7njjjtYsmQJw4YNs/XQe3h49FhsT/qWQyXw56u9vZ329nbb9w0NDQCYTCZMJpO9wpIB4MT40jiTvqaxJn3N1GXm37tK+dvGQgJxIW7kcYZFD/r6B4pcIL2uSX85McZO9HifOuYsFout5zwhIYHPPvuMuXPnYjAYLqhy/XVWrFhBbm4uubm5tur6CR0dHbb/f/XVV/nlL3/JwoULcXFxYfr06Xz88ce2+FtaWsjKyqKhocH28zz99NO4uLhw00030drayuzZs/nggw8wm82YzWbbuTs7O0/7uztxH5PJxLZt22hpaeGxxx7jscces91nxowZrF69utd/J86kN1/PDJZzaei4BBkMBj788EOuu+66s97n0Ucf5be//e1px9955x18fHz6MDoRERHHZrHAvloDy4tdqGw7udCRAQuXGS1cFWNmkKcdAxQREXEQLS0t3HrrrdTX1xMQEHBR53LqBP5MFfgT+xeGhIT0Q5QyUJlMJlatWsXcuXNxd3e3dzjixDTWpC/sKDzO059ns7ekHoBgX3fumhLLqt057K2x9mR6uLlwx6RYfjwjnkBvjT3pPXpdk/6isSb9paamhsjIyF5J4J16Cr2npyeenqeXB9zd3fVHKv1CY036i8aa9IbsY408tSKTLzIrAfDxcOXu6Qn8YHo8Xq4Q3ZTF4JGTeebzHLYV1PK3jYX8a+dR7pmdxJ1ThuDl7vo1zyBy7vS6Jv1FY036Wm+OL6dO4EVEROTrlde38tzn2by/+yhmC7i6GLhlQgw/m5NMmL8XcLJ/b1R0IO/+cBLrsqp4ckUmWccaWboikzc2F7J4XirfHDMYVxfDVz2diIiIXCCHSuCbmprIzc21fV9QUMDevXsJDg4mNjbWjpGJiIg4nvpWEy+vy+O1TQW0d1oXMlowPIL7r0wlweh31scZDAZmp4UxI8XIh3tKee7zLMrq2/jlv/fxtw35LJmfxqxUIwaDEnkREZHe5FAJ/M6dO21bJAAsXrwYgDvvvJPXX3/dTlGJiIg4ljZTF29uKeLFtbnUt1or6xPig3lgQRpjY899hXlXFwM3jIvm6pGRvLG5kD+vzSWzopHvvb6DSQnBPLAgndExQX30U4iIiAw8DpXAz5o1Cwddc09ERMTuuswWPtpTynOrsimtawUgJdyPJfPTuDwt7IIr5l7urvxoZiI3XxbLS+tyeW1zIVvza7nuz5tYOCKSX16ZSnyob2/+KCIiIgOSQyXwIiIicv4sFgvrsqt4akUmmRWNAEQGevHzuSlcPza613rWA33cefCqdO6cMoTnVll76pcfKOezQxXcMiGWn81JxuivvedEREQulBJ4ERERJ7b/aB1LP81kS34NAAFebvxkdhLf7cNV46OCvPn9jaO4e3o8T6/MYk1mJW9uLeL93Uf5wfQEfjAjAT9PfQQRERE5X3r3FBERcUKF1c0883kWy/eXA9Z92787ZQg/mZVIkI9Hv8SQFhHA3797GVvza1i6IpN9JXX88Ysc3t5WxM/mJHPLhFjcXV36JRYRERFnoAReRETEiVQ3tfPCFzm8va2YTrMFgwG+OWYwi+emED3Ixy4xTUoI4aOfTGHFwQqe+SyLgupm/vc/h/j7xgLuvzKNq0ZEaMV6ERGRc6AEXkRExAk0t3fytw0FLMvIo7mjC4BZqUaWzE8jPTLAztFZt567akQkc4eG8+6OEv64OofCmhbueWc3o6IDeWBBOpMTQ+wdpoiIyCVNCbyIiIgDM3WZbQlxdVM7AKOiA1myII0piaF2ju507q4u3D4pjm+NGWy74LDvaD23vLL1krrgICIicilSAi8iIuKALBZLjynpAENCfBxmSrqvpxv3XZHMrRNjeWFNDu9sK2ZdVhXrs6v41phoFs9LYXCQt73DFBERuaQogRcREXEw27oXhdtbUgdAiK8H913hmIvCGf09+d21w/n+1Hjbonvv7z7Kx/vL+n3RPRERkUudEngREREHkVXRyFMrM1mTWQmAj4er02zLNiTUlz/fOpYfTq9j6YojbM2vZVlGPu9uL+7zbe9EREQchWO/24uIiAwAZXWtPLcqm/d3H8ViATcXA7dMiOWnc5II8/eyd3i9alRMEP/8wSTWZVfx1IpMMisaeXJFJm9sLuTnc1O4fmw0ri6XdnuAiIhIX1ECLyIicomqbzHx0rpcXttcSEenGYCFIyL55ZWpxIf62jm6vmMwGJidGsaMZCMf7SnluVXZlNa18qv/28+rGwpYsiCV2alhl3yfv4iISG9TAi8iInKJaTN18cbmQv68NpeGtk4AJsYH8+BV6YyOCbJvcP3I1cXA9eOiWTgykje3FPHi2lyyjjXy/dd3MiE+mAcXpDEmdpC9wxQREek3SuBFLoKpy0xRTQu5lU3kVZ34aqa4pplgV1e6osu5elQ0Hm6OtaiUiNhHl9nCh3tKee7zLMrq2wBIDffngQVpzEo1DtiKs5e7Kz+YkcBN42N4aX0ur20qZHtBLd98aTMLhkdw/5WpJBj97B2miDiIktoW3t5WzEd7jtLR7sr71btICgsgMcyXRKMfSWF+hPh6DNjXXLm0KYEXOQf1rSZrcl5pTdBPJOvFNS10mi1nfMxxDCz+9wGeWJHFty+L4ZYJsUQP8unnyEXEEVgsFtZlVfHUSmvPN0BkoBeL56bwLfV82wT6uPPggnTunDyEP3SvCbDiYAWfHz7GzZfFcN8VyU63JoCI9I4us4X12ZW8uaWIddlVWGwf3wxk5NSQkVPT4/6B3u4kGq0JfWKYn/W/Rl9ig31wc7DdPsS5KIEX6WY2WyirbyWvqvlkRb07Ya9uaj/r43w9XHu8sCca/Qj3d+eVTzazu96HY43t/HltHi+vy+PytDBumxTHjGQjLvpALiLA3pI6nuxedR0gwMuNe2YncadWXT+rqCBvnrlxFHdPT+DplZl8kVnJ29uK+XBPKXdPT+CHTrAqv4j0juqmdv61s4S3txZTWtdqOz49OZSbxw8ma/8uwpNGUlDTaptJWXK8hfpWE7uL69hdXNfjfO6uBuJCfE8m990V+wSjL/5e7v3808lApHc3GXDaTF3kn1JFz6tqJq+yifzqJtpM5rM+LiLAi6Sw7iTdlrD7ER7gedoUK5PJxPwYC8/ePZ2M3Fre2lrMxtxqVh+pZPWRSmKDffjOxFhuHB9DsK/2NxYZiAqqm/n9Z1ksP1AOgIebC9+bMoSfzEoi0EcfAs9FaoQ/r373Mrbl17B0RSZ7S+r40xc5vL21iJ/NSeaWCbFqYRIZgCwWC7uKjvPm1iJWHKigo8v6+S7Q252bxkdz68Q44kN9MZlMdBbCVeOjcXc/+brbZuqisKaZvMpTPy82kVfZTKupi9zKJnIrm4BjPZ43PMDT9vnw1M+LkYFemo4vvUYJvDgli8VCTXOHrYJ+ao96aV3rKdOmenJ3NRAfevKK6oleqASj3wVVc9xdXZg/PJL5wyPJq2ri7a3F/N+uEoprW1i6IpNnV2Vz9YhIbpscx5iYIL24iwwAVY3t/OmLHP65vZhOswWDAa4fG83iuSlEBXnbOzyHNDEhhA9/MoWVByt45rMs8qubeeS/h/j7pgJ+OS+VhSMiNetJZABoau/koz2lvLW1yNaOBNbtKW+fFMfVIyPPaWaTl7sraREBpEUE9DhuNluoaGjrufZRd5Jf2djOsQbr1+a8ntPxfTxcSeiu2CedMiU/LsRHM63kvCmBF4fW2WWmuLblZF965cmqen2r6ayPC/R2P1lN7576lGj0I3qQd5/1NSUa/fjfa4Zy/5WpfLyvjDe3FnGgtJ4P9pTywZ5ShkYGcPvkOK4dHYWPh/40RZxNU3snr2Tk88qGfFo6ugC4PC2MX81PPe1Dopw/g8HAghGRXDE0nPd2lPD86hyKalr46T/38MqGfB6Yn8aUpFB7hykifSCropG3thbx4Z5SmtqtO3d4ubtw7ajB3DYpjhHRgb3yPC4uBqKCvIkK8mZGirHHbQ1tJusMz1OS+9zKJopqWmjp6OJgaQMHSxt6ns8AMcE+PdowTyT3mqEpZ6MsQRxC44kXxVNeEPOqmimqacbUdeZyusEAMYN8zrgASbAdVxb19nDlpstiuOmyGPaV1PHm1iI+3lfG4fIGHvzgAE8sP8L146K5bVIsSWH+dolRRHqPqcvMu9uL+eMXOVQ3dQDWatCDC9KYlBBi5+icj7urC7dNiuObYwbz6sYC/ro+j/1H67n1b9uYmWLkgQVppEfqgomIo+voNLPyUAVvbS1ie0Gt7XhCqC+3TYrj+rHR/dqOFODlzuiYoNO2+jSdKDZ9aSHk3MomGts6KappoaimhTWZPc83yMfdVmA6dVZo9CAfLWw6wCmBl0uGxWKhvL7tjKu9H2s4+yJy3u4npyWdeIFLCvNjSIjvJT8taVRMEKNignh4YTr/t+sob20torCmhdc3F/L65kImJQRz+6QhzBsWjrtWPBVxKBaLhU8PVPDMZ5kU1rQAEB/qy/1XprJgeIRaZvqYr6cbP5uTzK0TY3lxTS5vbS1ifXYVGTlVfHP0YBbPS9HOICIOqLSulXe2FfHejhLbRVFXFwPzhoZz26Q4piSGXFKvr+6uLrbPqKeyWCxUN3WcUpg6uS5TaV0rx1tM7Cg8zo7C4z0e5+HqYm33DDvls6/RuoierxbvHBD0ryz9rs3URVFNy2lT3vOqmmzTSs8kzN+zxxXIE1X1yAAvh+9tDPLx4O7pCXx/ajyb8qp5c0sRq48cY2t+LVvzazH6e3LLZTHcMjGWyED1yIpc6rbk1fDkiiPsO1oPQKifJ/ddkczNl8XoYlw/C/Xz5NFvDON7U4fwzGdZfLK/nA/2lPLJ/nLunBLHT2YlMUhTVUUuaWazhYycKt7aWsSazEpO7OAbHuDJzZfFcsuEWCICHWsLSYPBgNHfE6O/52mzsVo7usivPpnQn/isnF/VRHunmaxjjWQdazztnFGBXqftjJQY5keY/+kLLovjUgIvfeZ4cwe5Z0jSS2pbOMvW6bi5GIgL8TltynuC0Y9Ab+dfldnFxcD0ZCPTk42U1bXy7vZi/rmjxLro1ZpcXlybyxXp4dw+OY6piaEOf+FCxNkcKW/gqZWZrMuqAqzbTP5wRiJ3T49XZcTO4kJ8efHWsfxwRh1Prshkc14Nr2wo4N0dJfxkVhLfm6pt+0QuNbXNHfx7ZwlvbyumuLbFdnxqUgi3TYzjiqHOOUPR28OVYVGBDIvq2btvNlsorWs95fO19bN1flUT1U0dlNW3UVbfxoac6h6P8/N0+1JLqW/3Inq+2qnDAenThFyULrOFo8dPVNN7bs1W29xx1sf5e7n17Ovp3mojNtjHKV+IL0RUkDeL56Xy0znJfH7oGG9uLWRrfi2fHz7G54ePMSTEh9smxXHDuGiCfFQ9ErGn0rpWnvs8mw/2HMVisV6MvHViLD+9PBmjv6e9w5NTjIwO4u27J5KRU82TKzJtF13e2FzI4rkpXD8uWv2lInZksVjYU1LHW1uK+ORAOR2d1i3g/L3cuGFcNN+ZGEdSmN/XnMU5ubgYiAn2ISbYh9mpYT1uq2vp6NF+mldprdgX1bbQ1N7JvqP1tllhJ7i6GIgL9iHhSzNck4x+2s70EqYEXs5Jc3snBdXNp22bUVDTbHthPZPBQd49rvSdmAJv9NNUnnPl7urCwpGRLBwZSc6xRt7eVsz7u45SWNPCY8uP8MxnWVwzKorbJ8Ux6ksLp4hI36pr6eCldXm8vrnQ9lq4cGQk989LZUior52jk7MxGAzMTDEyPSmUj/aW8uzn2ZTWtfKr9/fzyoZ8lsxPY056mN6nRPpRS0cn/9lbxltbizhUdnK19uGDA7h9UhzXjNIuPV8lyMeDcXEejIsb1ON4e2cXxSdaV780Jb+pvZP86mbyq5tZfaTn+UL9PKyJfXeh7UThbXCQt2aA2pn+CsTGYrFQ2dh+2pT3vMomyurbzvo4T7cTi2n4nbIlmy/xob56oe1lyeH+PPqNYdx/ZSr/3VfGm1uKOFzewP/tOsr/7TrKiMGBtjc5bw9NBRXpK22mLl7fXMhLa3NpaLNuWTQpIZgHF6TrQpoDcXEx8K2x0Vw1IpK3thbx4tpcciqbuPsfO5kwJJgHrkpjbOygrz+RiFyw3MpG3tpazPu7j9LY/Xrq6ebC1SOjuH1yHKOiA3Ux7SJ4urmSHO5PcnjPnY2+/Lk/95Qp+eX1bVQ3dVDdVNtjhX/r+Vy6E/ueU/ITQv302bOfKLsagDo6zRTXNpNbefre6Sf2zjyTL1+JSwyzTrGJCvLWdMN+5uvpxi0TYrn5spiT08z2l3OgtJ5fvb+fx5Yf5oZxMdw2KZYE48CcZibSF7rMFt7ffZQ/rMqmvPvCZlqEP0sWpDErxagPmQ7Ky92Vu6cncOP4GP6yPo+/byxge2Et33ppM/OHRXD//NTTVpAWkQtn6jKz6vAx3txSxJb8GtvxuBAfbptobQ/U4pJ9y2AwEB7gRXiAF1OSQnvc1tTeScGp0/FPzLytbqa908yR8gaOlDecds4TM2+TvjQlP9TPfts3OyMl8E6svsVkXeTiDL0wXWdZRc7FYF3op+eUd2vCrj7rS4/BYGBs7CDGxg7i4auH8u+dJby1rYiS2lb+vqmAv28qYFpSKLdNiuWK9HDctL6AyAWxWCyszarkqRVZtpV/Bwd5s3huCteNGayLmE4i0NudJfPTuGNyHM+vyuHfu0pYeaiCVUeO8e3LYlg0J5mwAMda6VrkUlJe38o/t5fw7vZiKhutWwS7GGBOeji3T4pjWpIW6L0U+Hm6MSI6kBHRPRfRO3Xtq9zKk+tf5VY1UddiorSuldK6VjKyq3o8LsDL7ZTFqbX21cVSAu/gTqxGeeqU99zKk6tRns3ZVqOMDfHB003TXxxRsK8HP5qZyA+mJ9i2Wvkis5KNudVszK0mIsCLmyfEcMuEWML1AVTknO0pPs7SFZm2aYSB3u7cOzuJ2yfHadVyJxUZ6M1TN4zkrunxPL0yi9VHjvHOtmI+3F3K3dPj+eGMBPy9tMCTyLkwmy1szqvhza2FrD5SaSsihfp5ckv355KoIG2R6whcXQzEhfgSF+LL5WnhPW6rbe444xbRJbUtNLR1sqe4jj3FdT0ec2L3qR4LW4dZ97QP0GvsWSmBdxBftx/k2UQGevW40nXijyM8QIvIOSsXFwOzUsOYlRrG0eMt/HN7Me/tKKGioY3nV+fwwppc5g21XumenBiicSByFvlVTfz+8yw+PVABgIebC9+bOoSfzEzS6rwDREq4P3+7czzbC2pZuuIIe4rreGFNLm9vK+anlyfxnYlx2oJJ5CzqW0z8e5d1C7iC6mbb8Ynxwdw+OY55QyP09+NEgn09CPYN5rIhwT2Ot5m6KKxp/tJuVdbqfaupqzvRbwaO9XhcmL+nbfHrU5P7yACvAT9LQwn8JcRisVDd1NFjYJ+oqJfWtZ71cR6uLgwJ/dLVK6Mf8UZf/LTv8IAWPciH+69M4745Kaw8VMFbW4rYXljLioMVrDhYQaLRl+9MjOP6cdEEeishEQGobGzjT1/k8M/tJXSZLbgY4Pqx0fx8boqqRAPUhPhgPvifKXx2qIKnV2aRX93Mbz8+zGubCvnllalcPSJywH+gFDlh/9E63txSxH/3ldmKTP6ebnxr7GC+MymOlC8tpibOzcvdlbSIANIiAnocN5stVDS0nVK1P5n3VDa2275OXSMBwNvdtWdS353kDwnxHTCz4pTd2YGpy0xxbUuPwXpi8J5YzfhMgnzcrYtCfOlqVPQgb/U2y1fycHPhG6Oi+MaoKDIrGnh7azEf7D5KXlUzv/vkME9/lsl1owdz26Q4hg8O/PoTijihpvZOlmXk87cN+bR0dAEwJy2MX81PIzVCHzgHOoPBwPzhkVyRHs57O0t4fnUOxbUt/Oyfe3glI58HFqQx9UsLQYkMFK0dXXy837oF3P5T9hpPj7RuAXft6Ch8VVSSU7i4GIgK8iYqyJvpycYetzW0mcjvMevYmjMVVlur9gdLGzhY2nMRPYMBYgb5fKlF2Lo7VrCTLYiov6Q+dLbBV1TTjKnrzIvIfXnwJYWdHIDONvjEPtIiAvh/1w1nyYI0PtxTyttbi8isaOTdHSW8u6OE0TFB3DYpjqtHRg6YK5kysHV0mvnn9mL+9EUONc3WtUNGxwTx4II0JiaE2Dk6udS4ubrwnYlxfHPMYF7dUMBfM/I5UFrPd/62jRkpRpbMT2VYlC6EysCQX9XE29uK+ffOElsRysPVhYUjI7ltUhxjY4PUqifnLcDLndExQYz+0raspi4zJbUt5FU1d297d3ILvMa2ToprWyiubWFtVs9F9Ab5uPeo1jt6EVQJ/EUymy2UN7T1TNK7p76fWF3zTDT9Q+zNz9ON2yfFcdvEWHYWHeetrUV8eqCcvSV17C2p47Hlh7lpfAzfmRhLXIivvcMV6XUWi4VP9pfz+8+zKKppASAh1Jf7r0xl/vAIfeiUr+Tj4cZP5yRz68TY7r74IjKyq9iQU8V1owezeG4KMcE+9g5TpNd1dplZfaSSt7YWsTG32nY8Jtib70yM48Zx0YT4edoxQnFW7q7WPegTjH7MHXpyEb2ztSHnVTVx9Hgrx1tM7Cw6zs6i4z3Od6IN+dRcLMnoT4LR95KeMXLpRnYWL730Es888wzl5eUMGzaM559/nunTp/f5855tAYb8qmbbVMszOdMCDElhfkRoAQa5RBgMBi4bYl105DdXD+W9HSW8s62Y0rpWlmXksywjnxkpRm6bGMvlaWEOeaVS5Ms251Xz5IpM21TPUD9PFl2RzLcvi9GWNnJeQvw8efQbw/j+1Hh+/3kW/91Xxod7Slm+v5zbJ8dx7+wk7WctTuFYQxvvbi/hn9uLqWhoA6wzRy9PDeO2SXHMSDFqS02xC4PBgNHfE6O/J5O+NHOutaOLgupm69baZ1gIPPtYE9nHmk4756W8ELhDJfDvvfceixYt4qWXXmLq1Kn89a9/ZcGCBRw+fJjY2NheeY7a5o6TUzJO+UcuOd6C5cyz3rUFgjiNUD9P7pmdxI9nJrIuy3p1fV12FRndX1GBXtw6MZabLoshzF9b0YnjOVLewJMrMlnfvUetr4crP5qZyF3T4i/pq+1y6YsN8eFPt4zhB9MTeHLlETbl1vDqxgL+taOEH89K5PtT4/H20Aw7cSwWi4Ut+TW8tbWIzw8do7N7C7gQXw++fZl1CzjNNJFLmbeHK0OjAhgadfoiel/eivtE7lfd1EF5fRvl9W09ZpmA9XPDyYTe15b/xYX49tuuCg71aeW5557jrrvu4u677wbg+eef57PPPuPll19m6dKl53yezi4zhdXNZ5xmcbzFdNbH+Xu5fWmld+sVmdhgH1VsxKm4uhiYkx7OnPRwimtaeHt7Ef/eeZSy+jZ+/3k2z6/OYf7wCG6bFMfE+GC7X4kU+TpHj7fw3OfZfLi3FIvFeuH1tklx3Ht5EqGa6im9aER0IG/dNZENOdZZHofLG3jmsyz+saWQn1+Rwg3jojWTSS559a0mPth9lLe2FnVv8WV12ZBB3DYpjvnDI/B00wUpcVwuLgZign2ICfZhVmrP2+paOr600Li1Yl9U20JzRxf7j9b3WKwRrJ+dY4NPWUTvlBnYQT69OwvrohL448eP88Ybb5CTk0NkZCR33nknMTExvRVbhn2HrQAAJt5JREFUDx0dHezatYsHHnigx/F58+axefPmMz6mvb2d9vaTfegNDdbVCqc8vZ4ut7NvBTQ4yIuEUF8Sjb4kGH1t/x/i63HmRMXchcl89mn0MvCYTKYe/3VkkQHu/PKKJH46M56Vh47xzo6j7C6u45P95Xyyv5wkoy+3TojhutGR+GvGSb9zprHWF463dPDXjAL+sbXYtnjowuER/HxuEnHdVSP97s6Nxtr5mRwfxIc/nsjHByp4fnUOR+vaeOCDA/xtQz6/nJvM5WlGXfw8C401+zlU1sA720v4eH85rSbrFnC+Hq5cOzqSWy+LObkjh8WMqft2R6axJmfi625gZJQfI6P8ehzv6LTuJJZf3dw9Db/Z+v/VzTS3W6fqF1Q3s/pIZY/HBfu6E+1zlqncF8BgsZxtYvjpoqKiOHDgACEhIRQUFDBlyhQARowYwZEjR2hsbGTr1q2kpaX1WoAnlJWVMXjwYDZt2mR7XoAnnniCN954g6ysrNMe8+ijj/Lb3/72tOMxi/6Fp5c3Yd4Q5m0h3BvCvS2EeVsI8wLNcBP5akebYVOFCzurDXSYrR9APVwsjDdamBZuZrDWvBM76+iCjAoDq0tdaO2yjtHkADPfiDMT6/c1DxbpZZ1m2HjMwOdHXWjutI7HBH8L34jrIl47FIqdmcywp8bApgoXCptOXlSK9LYwNcLMZaEWvBxqzq5I/7JYoMEEx1oNHGuFyu7/Hms1UNdh/Zsyt7dQ8vxN1NfXExAQ8DVn/GrnlcC7uLhQUVFBWFgYt9xyCxUVFSxfvhwfHx/a29u54YYb8PLy4t///vdFBXUmJxL4zZs3M3nyZNvxxx9/nDfffJPMzMzTHnOmCnxMTAy7MwsYOiRKi8hJnzGZTKxatYq5c+fi7u68VenGNhMf7S3n7e0lPabYjY0N4tYJMcwfFo5nP/UDDVQDZaydqy6zhQ/2lPHHNbkca7C+/qeF+3H/lSlMTwpRxfMiaKxdvMY2E8s2FPL6liLauquXc9PD+MXcZBKNuvJ5gsZa/yiqbeGf20v4YE+ZrYXU3dXAlUPDuXVCDOPjnH8LOI016WvN7Z0U1rSwJ+8o358zulcS+Au+nrZt2zb+9re/4eNjnYLo6enJww8/zA033HBRAZ1NaGgorq6uVFRU9DheWVlJeHj4GR/j6emJp+fpvY2xof54empFWOl77u7uTv2GEOzuzvenJ/K9aQlsK6jlza1FfHawgt3FdewuruOJFVm2rei0yE3fcvax9nUsFgtfHKnk6c8ybavJDg7y5hfzUrhu9GBdsO1FA32sXYxgd3ceuGoo352awPOrs/nXzhJWHalkTVYVN42PYdEVyYQHaIHQEzTWel+X2cKaTOsitScW8wTr6+WtE2O5aXwMRv+Bty6Ixpr0lSB3d0b7eRPTi7P/zjuBP3Elrr29/bTEOTw8nKqqqjM97KJ5eHgwbtw4Vq1axTe/+U3b8VWrVnHttdf2yXOKyLkxGAxMSghhUkIIlY1tvLe9hHe2F1Ne38Zf1ufx14w8ZqUYuX1yHDNTwrTNjPSq3cXHefLTTLYX1gIQ5OPOvbOTuG1SHF7u6omSS09EoBdPXj+Su6bF8/RnWaw6fIx/bi/mwz1HuXtaAj+amaA1RaRXVTW286+dJ7eJBesWcDNTjNw2MY7ZaXpvFnEU553Az5kzBzc3NxoaGsjOzmbYsGG224qLiwkNDe3VAE+1ePFibr/9dsaPH8/kyZNZtmwZxcXF/PjHP+6z5xSR8xPm78VP5yTzP7MSWZNZyZtbi9iQU83arCrWZlUxOMib70yyXuXX6t9yMfKqmnhmZRYrD1lnZnm6ufD9afH8eGYigd5KfuTSlxzuzyt3jGdHYS1PrshkV9FxXlybyzvbi7l3dhLfmRSrlb7lglksFrYX1PLWtmJWHiy3LeQ5yMedm8bHcOvEWOJC1Loh4mjOK4F/5JFHenx/Yvr8CR9//DHTp0+/+KjO4tvf/jY1NTX87ne/o7y8nOHDh/Ppp58SFxfXZ88pIhfGzdWFecMimDcsgoLqZt7ZVsS/dh6ltK6Vp1dm8fyqHBaMiOD2SXGMixvk9H120nsqG9p4/osc3ttRQpfZgosBbhwXw6K5yUQGnn2HEZFL1WVDgvm/H0/m88PHeHplJnlVzfzuk8O8trmAX85L5ZqRWrdHzl1jm4mP9pTy5tYiW0sRWNenuW1SHFeNiNTsJBEHdl6L2Dm6hoYGAgMDqa6uJiQkxN7hiBMzmUx8+umnXHXVVeqpOkWbqYtP9pfz5tYi9pXU2Y6nRfhz26Q4rhszGD9PLXV7PgbSWGtsM7EsI5+/bSig1WTduvOK9DB+NT+NlHAt5d3XBtJYs6fOLjP/3nWUP6zKprLRuhDj8MEBPDA/nWnJfTfL8VKisXZhjpQ38NbWIj7aU0pzh/U10tvdlevGRPGdiXEMHxxo5wgvPRpr0l9qamoIDQ217yJ2IiLny8vdlRvGRXPDuGgOHK3nra1F/GdfKZkVjTz80UGeXJHJN8cM5rZJcSf3mpUBr6PTzDvbinhhTS41zR0AjIkN4sEF6UyID7ZzdCK9y83VhVsmxHLt6Cj+vrGAv6zP52BpA7e9uo3pyaEsmZ+mRExs2ju7WHGggre2FrGz6LjteKLRl9snxfGtcdEEaD0FEaeiBF5E7GJEdCBP3TCSX1+Vzvu7j/LW1iLyq5t5c2sRb24tYsKQYG6bHMf8YRF4aCu6AclstvDJgXJ+/1kWxbUtACSE+vKr+alcOSxCbRfi1Hw83Lj38mRunRjHC2tyeKt7PZENORu5dnQUv5yXqt09BrCS2hbe2V7Mv3aU2C5surkYuHJYBLdNimNSQrBeI0WclBJ4EbGrQB93vj8tnu9NHcLmvBre2lrE54ePsb2wlu2FtYT6efDty2K4dWIcg4PU3zxQbMqt5skVmRworQfA6O/JoiuS+fb4GNxcdUFHBo5gXw8euWYY358az+8/z+I/e8v4z94yPj1Qzm2T4vjp5ckE+2pr3IGgy2xhfXYlb20tZm1WJSeaYCMCvLh1Yiw3XxZDmLYhFHF6SuBF5JJgMBiYmhTK1KRQKurb+Of2Yt7dUcyxhnb+vDaPl9fl/f/27j2s6jLd//hncT4IKiAgAisUFM8oqHg+pKiV5TRpllh718wvZ2sjHbWpXc3s0rTJ3DvLxpkmZ0A7W2nlAQ9ppCiCkKmIKC5AFEQRVBQQ1u8Pij3uDjMWrC9r8X5dF3/wVde69bpZrs96nu9za1x0oBLjzRoV1YkDnRzUwZJKLd54RDu/mU/czt1FD4zqqvtHRsjLjf+y0HaF+Xnpv2cM0K9HdtXijbn64mi53vzyhN7fV6zZY7rpvuER8nTjYDJHdPZijd7dV6zVeywqrrjcdH1kVIAS4826MTqQDzaBNoR3QwBaneD2HnpoQnfNHRepLYdKlbLHoi/zz2rL4TJtOVymcD8vzRwSrmlxYaw8OYiic9Vampqnj7JPymqVXJ1NmjnErAfHRcqfcYNAkz5d2iv5/iH64ugZvbAhVwdLqvTipiP6264TemhCd02LDSXMOQCr1aqswgol77boswOnVVvfIElq7+mqabGhmhlvVkQAI+CAtogAD6DVcnV20uS+nTW5b2cdO3NRq9ML9V5mkQrPVWvRhly9lJqnW/p2VuJQswaEdeB+PztUcalWr27P1993W5reoN7aP0SPJHRnPjHwI0ZGddLwbgFa/1WJXtx0RMUVl/XE2gP6yxfH9fikaCX0CuI10Q5dqrmqj7JPKnm3RbmnLzRd7x/aXonxZk3pH8IIOKCNI8ADsAvdOrXT01N66dGJ3bU+p0TJ6RZ9fbJKa/ef1Nr9J9U7xFeJ8WbdFhPCVms7cLm2Xm/uKtCKz4/pwpWrkqThkf5aMKmn+oZywjbwr3ByMum2mC6a1CdYq9ML9cq2ozp25pIeSM5UrLmjnpgcrbgbmNRgD/JKLygl3aK1WSd1sabxNdHdxUm3xYQoMd6sfqEdjC0QQKvBu1wAdsXLzUV3DgrX9Lgw5Xwzim59TokOllTpibUHtPCzw/rlwFAlxocrMpBRdK3N1foGfZBVrJdTj+p01RVJUq/OvlowOVojowJYMQR+AncXZ903IkJ3xIVq5Y7j+kvacWVaKnTH67s1oVeQ5k/qwethK1R7tUGbDp5WcrpFewvONV3vGuCtmfFm3TEwVO29GAEH4FoEeAB2yWQyKSasg2LCOujJm3rq/czGA35OnK3Wql0ntGrXCQ3t6q/EeLMSegfJlXtCDWW1WrXlcJmWbMzV0bKLkqTQjp56NKGHbu0fwqGEQDPw9XDVoxN7aNZQs5ZtOap39xUp9VCpth4u1Z2DwpQ0vruCOKXccCfPX9Zbewr1dkaRyi/WSJKcnUya0DNIs4aaNaybPx9mAvhBBHgAdq+jt5t+Paqr7h8RobT8ciWnW7T1cKl2Hz+r3cfPKtDHXTMGh+uuwWHq3J5RdLaWaanQCxsOK+NEhSSpg5er5o6N1KyhZrm7cC8n0NyCfD206Pa+un9EhJZszNXmQ6V6a2+RPtx/UvePiNADo7vJ14OVXVtqaLDqi/xyJe+2aFtuqRq+GQEX6OOuuwaH667B4Qpuz4crAP45AjwAh+HkZNKo7p00qnsnlZy/rLf2FuqtvUUqu1Cj/9l6VK9uz9f4no2j6IZ3C2DVt4UdO3NRSzbmatPBUkmSh6uT7hseodljCA+ALUQGttPKe+K078Q5LdqQq0xLhV7dfkxr9hRq7rgoJcaH8yFaC6u4VKv3Mou0ek+hLGerm64P6+avWfFmje/FDjEA14cAD8AhhXTw1CMJPfTguChtPnRaybst2lNwTpsOlmrTwVJFBHg3jqKLDeMew2ZWVnVFL3+zfbe+wSonkzQ9rnH7LitMgO3F3eCn92cPVeqhUi3emKtjZy7pvz45pDe/LOA2lhZgtVqVXXReKemFWv9ViWqvNk7Y8PFw0R2xoZo5xKzIwHYGVwnAXhHgATg0Nxcn3dIvRLf0C1Fe6QWt/uaU34LyS3ru08N6cdMR3dq/8ZTf/mEdjC7Xrl24Uqc/7TiuN9IKdLmuXpI0oVeQHp/YQ1FBHKAFGMlkMimhd7DGRQfq/cxivbwlT8UVl5X0TrZW7jyuBZOjNap7J6PLtGvVtVe1LrtEKXsap6R8q3eIr2bFm3UrU1IANANeRQC0Gd2DfPT72/ro8UnR+ji7cRTd4VNVei+zWO9lFqvft3N2+4XI041tpf+qmqv1Wp1eqOXb83XuUq0kKdbcUQsmR2sQI6yAVsXF2UkzBofrtpgu+uuXBXr982M6dKpK9/x1r0ZEBmjB5Gj16cIox+uRX3ZRKekWfZBV3DQWs/HD486aFW9WTFgHDqUD0GwI8ADaHG93F909pPFQu6zC80pJt+jTr07pq+JKPf7+V3ruk0OaFhemmUPC1bUT2xx/SEODVeu/KtEfNx9R0bnLkqSunbw1f1K0EnoF8YYVaMU83Zw1Z2yk7hocruXb8pWcfkJp+eW65ZU03do/RI8m9FC4v5fRZbZadfUNSj1UqpR0i3YdO9t03ezv1XR7VkdvNwMrBOCoCPAA2iyTyaRYc0fFmjvqqZt76r1vRtEVnbusN9IK9EZagUZEBigx3qzxPQPlwkFDTdKOluuFjYebtokG+rgraXx3TY8L5d8JsCN+3m56ekov/fvwG/TS5iP6KLtE63JKtOHrU5o5xKwHx0XKv5270WW2GqcqL+utvUV6e2+hyi40joBzMkk39gxSYrxZIyM5IBVAyyLAA4Ak/3bumj26m349sqt25p1RSrpF246UKS2/XGn55Qr29dBdg8M1Y3BYm56j/PXJSi3emKsvjpZLktq5u2j26K66b0QE93YCdizMz0vLZgzQr0Z2bfoZX7XrhN7PLNYDo7rq/pFt92fcarXqy/yzSkm3KPVwqeq/mQEX0M5dMwaF6a4h4erSgRGlAGyjbb4SA8APcHYyaWx0oMZGB6roXLXe2luodzKKdLrqil7ekqdXth1VQu/GlZahXf3bzDbxonPVTatzkuTqbFJivFkPjouSH9tEAYfRp0t7Jd8/5JpdNi+l5unv6RYljY/SnXFhbWaXTWV1nd7PKtbqdIuOl19quj4kwk+J8WZN7B0sN5e28W8BoPUgwAPADwjz89Ljk6I1b3yUNn59WinpFmWcqNBnB07rswOn1a2TtxLjzbp9YKjaezrmKLpzl2q1fFu+UtItqq1vHIV0W0zj/bFhftwfCziqEVEBWtdtxDXnXDz54dd6I61Aj0+M1sTejnvOxYHiSiWnn9C6nBJdqWt83Wvn7qLbB3ZRYrxZ3ZmqAcBABHgA+CfcXZx1W0wX3RbTRbmnq5SSbtGHWSd17Mwl/X79IS3ZeES3xTSOonOU05sv19Y3nVB9oabxVGVOqAbaFicnk26L6aLJfTpr9R6LXtmWr+NnLml2SqYGhnfQEzf1dJhJE1fq6rU+p0Qp6RblFFc2XY8O9tGsoWZNjekib3feNgMwHq9EAHAdooN99dzUvlowuac+3H9SKbstOlJ6QW9nFOntjCLFhHXQrHizbu7XWR6u9jeK7mp9Q9OM6NKqxgOaeof4asHkaI2MYkY00Ba5uTjp34dH6I7YUK3ceVx/+aJAWYXnNe313RrfM0jzJ/VQlJ2uSheUX9LqdIveyyxW5eU6SZKbs5Nu6husWUPNGhje0WF3GgCwTwR4APgJ2rm7aFa8WYlDwpVxokIp6RZt+PqUsovOK7vovJ779H9H0Zn9vY0u95+yWq1KPVSqJZuOKL/soiQptKOnHpvYQ1P6hXCqMgD5eLjqkYQemhVv1rKtR/VORpG2HC7VttxSTYsNU9KEKHVu3/oPc7ta36CtuWVKSbc0HcgpNb7mzRxi1vS4UE7eB9BqEeAB4GcwmUwaHOGnwRF+OnOhl97dV6Q1ewp18vxlrdx5XCt3Hteo7p00K96scdGBcm6FQXjfiXN6YUOu9lkqJEkdvVz14LgozYwPl7uL/e0iANCyAn09tPAXfXXf8Ai9uClXmw6W6p19Rfoo+6TuGxGh2aO7tcpzQcqqrujtjCK9tbdQpyqvSJJMJmlsj0DNijdrVPdOrfI1GgD+EQEeAJpJJx93zRkbqdmju2l7bplS9li0I++Mdn7z1aWDp+4aHKY7B4Wrk4/xqzv5ZRe0eOMRpR4qlSR5uDrpVyO66v+N7ipfj9b35htA6xIZ2E5/mhWnTEuFXthwWBknKrTi82N6a2+h5o6N1KyhZsM/BLRarUo/fk4p6RZtOnhaV78ZAefv7abpg8J09+BwDuQEYFcI8ADQzJydTBrfK0jjewXJcvaS1uwp1Lv7inTy/GX9cXOe/nvrUU3q01mJQ8I1OMLP5vdXllZd0bIteXono0gN1sZ6p8eFKWl8VJuecQ/gp4k1d9S7DwzV1sNlWrwxV0fLLuq5Tw/rzS9P6JGE7poa08Xmt+FUXanT2sxipewpbLotSJLizB01a6hZk/oEG/7hAgD8FAR4AGhBZn9vPXFTTz00obs+O3BKKekWZRWe1/qcEq3PKVH3oHZKjDfrFwO6yKeFV72rrtTpTzuO6Y20gqbRSAm9gvT4pGhFBrZr0ecG4NhMpsYPLsf06KQPsoq1NDVPJ89f1sPv5ujPXxRoweRojYoKaPEPLA+WVCol3aKP9pfocl29JMnLzVm/GNA4Aq5nZ98WfX4AaGkEeACwAQ9XZ90+MFS3DwzV1ycrtXpP4xvMvNKLevrjg3phQ66mDuiixCFm9Qpp3jeYNVfrlZJeqOXbjqqiuvGU5VhzRz0xOVpxDjICCkDr4OLspDsHhevW/l305q4Crfj8mA6fqtK9f92rYd389cTknuob2ryjKK/U1euzA6eUnG7R/sLzTde7B7XTrHizptrgA1IAsBUCPADYWJ8u7bXo9n564qaeWptZrOR0i46dadxqv2ZPoeLMHZUYb9bkvj9vi2dDg1Xrckr0x81HVFxxWZLUrZO35k+K1oReQYxGAtBiPN2c9R9jInXXoHC9uj1ff99t0a5jZzVleZqm9A/Rowndf/aEjsKz1Vq9x6J39xU1fTjp6mwy9BYlAGhpBHgAMIivh6v+bXiE7h12wzWHLO2zVGifpUL/9Ylb0yi66z1kaWfeGb2wIVeHTlVJkoJ83fXQ+O66IzZULs5OLfHXAYDv6Ojtpqdu6aV7h92gl1Pz9GH2Sa3PKdHGr09p5hCz5o6LVMB1jGyrb7Bqe26ZktMt2nn0jKyNZ9IppL2HZsabNT0urFUcEgoALYUADwAGM5lMGtrNX0O7+TeNOVqzp1Cnq67o9R3H9KedxzS2R6AS48M1uvuPj6L7+mSlXtiQq7T8xtnGPu4umj2mm+4bHiFPNw5sAmCMMD8vLb0zRr8a2VWLN+ZqR94Zrdp1Qu/tK9IDo7vp/hER8nb/4belZy7UXDOm81uju3dSYise0wkAzY0ADwCtSKCvh357Y5T+Y0w3bc0tU0q6RV8cLde23DJtyy1TaEdPzRxi1vS4UPn/w6pVUUW1lm09rnU5JZIat5HOir9Bc8dFys/bzai/DgBco1eIr/5232Dtyi/Xog25OnCyUktT8/T33RYljY/SnYPCmn6v1WrV3oLG3Ukbvj6luvrG5fYOXq66My5Mdw8J/9nb8AHA3hDgAaAVcnF20sTewZrYO1gF5Ze0Ot2i9zKLVVxxWYs35url1Dzd1DdYU2M6a22Bkx7d+2XTm9upMSF6JKEHs40BtFrDIgP08Zzh+vTAKb246YgKz1XrqY++1l/TCjRvXDelnTbp1eW7lfcPI+AGhHdQ4hCzbu7XWR6u7CgC0DYR4AGglYsI8NZTt/TSoxN7aH1OiVLSLcoprtRH2SX6KLtEkpMkq0ZGBWj+pGj16dK8JzwDQEtwcjJpSv8QTewdrDV7LPqfbfk6Xn5J8979SpKzpIvydHXW1AEhmjnEzGsbAMiOAvzzzz+vTz/9VNnZ2XJzc9P58+eNLgkAbMrD1VnT4sI0LS5MXxWf/2Zb6Wl1dK7TH6bFaUx0sNElAsB1c3Nx0r8Nj9AvY0P1553HlZxukZu1Vr8eG61pg8xq78kIOAD4lt0cRVxbW6tp06bpN7/5jdGlAIDh+oV20JI7+ivryXF6pF+9hnfzN7okAPhZfDxc9XBCD+19Yqx+F1Ove4cS3gHg/7KbFfjf//73kqRVq1YZWwgAAAAAAAawmxV4AAAAAADaMrtZgf8pampqVFNT0/R9VVWVJKmurk51dXVGlYU24Nv+os/Q0ug12Aq9Bluh12Ar9BpspTl7zNAA/+yzzzZtjf8hGRkZiouL+0mPv2jRou99/O3bt8vLi/FKaHmpqalGl4A2gl6DrdBrsBV6DbZCr6GlVVdXN9tjmaxWq7XZHu06lZeXq7y8/Ed/zw033CAPD4+m71etWqWkpKR/6RT671uBDwsL06lTp+Tvz4FPaDl1dXVKTU3VhAkT5OrKATxoOfQabIVeg63Qa7AVeg22cvbsWXXu3FmVlZXy9fX9WY9l6Ap8QECAAgICWuzx3d3d5e7u/p3rrq6u/JDCJug12Aq9Bluh12Ar9BpshV5DS2vO/rKbe+ALCwt17tw5FRYWqr6+XtnZ2ZKkyMhItWvXztjiAAAAAABoYXYT4J9++mn97W9/a/p+wIABkhrvZx8zZoxBVQEAAAAAYBt2M0Zu1apVslqt3/kivAMAAAAA2gK7CfAAAAAAALRlBHgAAAAAAOwAAR4AAAAAADtAgAcAAAAAwA4Q4AEAAAAAsAMEeAAAAAAA7AABHgAAAAAAO0CABwAAAADADhDgAQAAAACwAwR4AAAAAADsAAEeAAAAAAA7QIAHAAAAAMAOEOABAAAAALADBHgAAAAAAOwAAR4AAAAAADvgYnQBtmS1WiVJFy5ckKurq8HVwJHV1dWpurpaVVVV9BpaFL0GW6HXYCv0GmyFXoOtXLhwQdL/5tGfo00F+LNnz0qSIiIiDK4EAAAAANCWnD17Vu3bt/9Zj9GmAryfn58kqbCw8Gf/wwE/pqqqSmFhYSoqKpKvr6/R5cCB0WuwFXoNtkKvwVboNdhKZWWlwsPDm/Loz9GmAryTU+Mt/+3bt+eHFDbh6+tLr8Em6DXYCr0GW6HXYCv0Gmzl2zz6sx6jGeoAAAAAAAAtjAAPAAAAAIAdaFMB3t3dXc8884zc3d2NLgUOjl6DrdBrsBV6DbZCr8FW6DXYSnP2msnaHGfZAwAAAACAFtWmVuABAAAAALBXBHgAAAAAAOwAAR4AAAAAADtAgAcAAAAAwA60mQD/2muvKSIiQh4eHoqNjdUXX3xhdElwMIsWLdKgQYPk4+OjwMBATZ06VUeOHDG6LLQBixYtkslkUlJSktGlwAGdPHlSiYmJ8vf3l5eXl2JiYpSZmWl0WXAwV69e1VNPPaWIiAh5enqqa9eu+sMf/qCGhgajS4Od27lzp6ZMmaKQkBCZTCZ99NFH1/y61WrVs88+q5CQEHl6emrMmDE6ePCgMcXCrv1Yr9XV1Wn+/Pnq27evvL29FRISonvuuUclJSXX/TxtIsC/8847SkpK0pNPPqn9+/dr5MiRmjx5sgoLC40uDQ5kx44dmjNnjtLT05WamqqrV68qISFBly5dMro0OLCMjAytXLlS/fr1M7oUOKCKigoNHz5crq6u2rBhgw4dOqSXXnpJHTp0MLo0OJjFixfr9ddf1/Lly3X48GEtWbJEL774ol555RWjS4Odu3Tpkvr376/ly5d/768vWbJES5cu1fLly5WRkaHg4GBNmDBBFy5csHGlsHc/1mvV1dXKysrSf/7nfyorK0tr165VXl6ebr311ut+njYxRm7IkCEaOHCgVqxY0XStZ8+emjp1qhYtWmRgZXBkZ86cUWBgoHbs2KFRo0YZXQ4c0MWLFzVw4EC99tpreu655xQTE6Nly5YZXRYcyIIFC/Tll1+yaw0t7pZbblFQUJDeeOONpmu//OUv5eXlpeTkZAMrgyMxmUz68MMPNXXqVEmNq+8hISFKSkrS/PnzJUk1NTUKCgrS4sWL9cADDxhYLezZ/+2175ORkaHBgwfLYrEoPDz8X35sh1+Br62tVWZmphISEq65npCQoF27dhlUFdqCyspKSZKfn5/BlcBRzZkzRzfffLPGjx9vdClwUOvWrVNcXJymTZumwMBADRgwQH/+85+NLgsOaMSIEdq6davy8vIkSTk5OUpLS9NNN91kcGVwZAUFBTp9+vQ1OcHd3V2jR48mJ6DFVVZWymQyXfeuNpeWKaf1KC8vV319vYKCgq65HhQUpNOnTxtUFRyd1WrVww8/rBEjRqhPnz5GlwMH9PbbbysrK0sZGRlGlwIHdvz4ca1YsUIPP/ywfve732nv3r367W9/K3d3d91zzz1GlwcHMn/+fFVWVio6OlrOzs6qr6/X888/r7vuusvo0uDAvs0C35cTLBaLESWhjbhy5YoWLFigu+++W76+vtf1Zx0+wH/LZDJd873Vav3ONaC5zJ07V1999ZXS0tKMLgUOqKioSPPmzdPmzZvl4eFhdDlwYA0NDYqLi9PChQslSQMGDNDBgwe1YsUKAjya1TvvvKOUlBStWbNGvXv3VnZ2tpKSkhQSEqJ7773X6PLg4MgJsKW6ujrNmDFDDQ0Neu211677zzt8gA8ICJCzs/N3VtvLysq+82kb0BwefPBBrVu3Tjt37lRoaKjR5cABZWZmqqysTLGxsU3X6uvrtXPnTi1fvlw1NTVydnY2sEI4is6dO6tXr17XXOvZs6c++OADgyqCo3rssce0YMECzZgxQ5LUt29fWSwWLVq0iACPFhMcHCypcSW+c+fOTdfJCWgpdXV1mj59ugoKCrRt27brXn2X2sA98G5uboqNjVVqauo111NTUzVs2DCDqoIjslqtmjt3rtauXatt27YpIiLC6JLgoG688UYdOHBA2dnZTV9xcXGaOXOmsrOzCe9oNsOHD//OOMy8vDyZzWaDKoKjqq6ulpPTtW9LnZ2dGSOHFhUREaHg4OBrckJtba127NhBTkCz+za8Hz16VFu2bJG/v/9PehyHX4GXpIcfflizZs1SXFychg4dqpUrV6qwsFCzZ882ujQ4kDlz5mjNmjX6+OOP5ePj07Tro3379vL09DS4OjgSHx+f75yt4O3tLX9/f85cQLN66KGHNGzYMC1cuFDTp0/X3r17tXLlSq1cudLo0uBgpkyZoueff17h4eHq3bu39u/fr6VLl+q+++4zujTYuYsXLyo/P7/p+4KCAmVnZ8vPz0/h4eFKSkrSwoULFRUVpaioKC1cuFBeXl66++67Dawa9ujHei0kJER33HGHsrKy9Mknn6i+vr4pK/j5+cnNze1ffyJrG/Hqq69azWaz1c3NzTpw4EDrjh07jC4JDkbS9369+eabRpeGNmD06NHWefPmGV0GHND69eutffr0sbq7u1ujo6OtK1euNLokOKCqqirrvHnzrOHh4VYPDw9r165drU8++aS1pqbG6NJg57Zv3/6978/uvfdeq9VqtTY0NFifeeYZa3BwsNXd3d06atQo64EDB4wtGnbpx3qtoKDgB7PC9u3br+t52sQceAAAAAAA7J3D3wMPAAAAAIAjIMADAAAAAGAHCPAAAAAAANgBAjwAAAAAAHaAAA8AAAAAgB0gwAMAAAAAYAcI8AAAAAAA2AECPAAAAAAAdoAADwAAAACAHSDAAwAAAABgBwjwAADge505c0bBwcFauHBh07U9e/bIzc1NmzdvNrAyAADaJpPVarUaXQQAAGidPvvsM02dOlW7du1SdHS0BgwYoJtvvlnLli0zujQAANocAjwAAPhRc+bM0ZYtWzRo0CDl5OQoIyNDHh4eRpcFAECbQ4AHAAA/6vLly+rTp4+Kioq0b98+9evXz+iSAABok7gHHgAA/Kjjx4+rpKREDQ0NslgsRpcDAECbxQo8AAD4QbW1tRo8eLBiYmIUHR2tpUuX6sCBAwoKCjK6NAAA2hwCPAAA+EGPPfaY3n//feXk5Khdu3YaO3asfHx89MknnxhdGgAAbQ5b6AEAwPf6/PPPtWzZMiUnJ8vX11dOTk5KTk5WWlqaVqxYYXR5AAC0OazAAwAAAABgB1iBBwAAAADADhDgAQAAAACwAwR4AAAAAADsAAEeAAAAAAA7QIAHAAAAAMAOEOABAAAAALADBHgAAAAAAOwAAR4AAAAAADtAgAcAAAAAwA4Q4AEAAAAAsAMEeAAAAAAA7AABHgAAAAAAO/D/AZBoHaruNZwIAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1200x1000 with 5 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f1 = plt.figure(1, figsize=(12,10), clear=True)\n", "x = np.arange(0, 14, 2)\n", "\n", "for k in range(5):\n", " qk = np.zeros(7)\n", " qk[1:-1] = Phi1[:,k]\n", " qk /= np.max(np.abs(qk)) # adjust scale for unity amplitude\n", " \n", " plt.subplot(5,1,k+1)\n", " plt.plot(x, qk)\n", " \n", " plt.xlim( 0.0, 12.0);\n", " plt.ylim(-1.5, 1.5); plt.ylabel(str(k+1));\n", " plt.text(10, 1, 'fk = {0:3.1f}Hz'.format(fk1[k]));\n", " plt.grid(True)\n", "\n", "plt.xlabel('x');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2. Example 2: beam element <a name=\"section_22\"></a> \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The interpolation functions could not be dumped with ```pickle```, so we must re-create\n", "them for visualizing the modal shapes:\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Beam length discretization\n", "L = 1\n", "\n", "# Defining a list of lambda functions\n", "phi = []\n", "phi.append(lambda xi: 1 - 3*xi*xi + 2*xi*xi*xi)\n", "phi.append(lambda xi: L*(xi - 2*xi*xi + xi*xi*xi))\n", "phi.append(lambda xi: 3*xi*xi - 2*xi*xi*xi)\n", "phi.append(lambda xi: L*(-xi*xi + xi*xi*xi ))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Furthermore, the stiffness matrix is not positive definite, for no \n", "boundary conditions have been applied so far (it is a bar \"floating in space\").\n", "It is necessary to restrain at least two degrees of freedom to suppress a \n", "free body motion.\n", "For instance, to model a cantilever beam we can restrain $u_1 = 0$ and $u_2 = 0$,\n", "what implies that the first two rows and two columns of $\\mathbf{K}$ and \n", "$\\mathbf{M}$ can be removed:\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "K2 = K2[2:,2:]\n", "M2 = M2[2:,2:]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the eigenvalues problem can be solved:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[-0.58747258 0.13007598]\n", " [-0.80924407 0.99150403]]\n" ] } ], "source": [ "fk2, wk2, Phi2 = vibration_modes(K2, M2)\n", "\n", "print(Phi2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the visualization below, the vibration modes are a linear combination of the \n", "interpolation functions (for the remaining degrees of freedom), each one multiplied \n", "by the resulting eingenvector coordinate.\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAF3CAYAAAALl5VRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABHpElEQVR4nO3deZjcZZ3v/c+31t67k16yhwQSwhJliyCOSgPiEIZDlINeYFxwlhxHmTnqM2f0ebyOMjPnOnJGzjg6iIg+HEXRDI8OECEsijQgiAYwLAETYghJZ+t0p7fq7trv549fdXd1p3pJL7/q7rxfl3X9trvq921y2/nUnbvuMuecAAAAAPgnUOwCAAAAgJMNIRwAAADwGSEcAAAA8BkhHAAAAPAZIRwAAADwGSEcAAAA8FlRQ7iZ3WVmLWb26gjXG82s08y25x5f9rtGAAAAYKqFinz/70u6TdLdo7R52jl3tT/lAAAAANOvqCPhzrmnJB0rZg0AAACA32bDnPCLzewlM3vYzM4udjEAAADAZBV7OspYXpR0inMuZmZXSbpf0upCDc1sk6RNklRSUnLB8uXLfSsSM182m1UgMBvec8JP9AsUQr9AIfQLFLJr165W51z9RJ5rzrmprufECjBbIelB59zacbTdK2mdc651tHZr1qxxO3funJoCMSc0NTWpsbGx2GVghqFfoBD6BQqhX6AQM3vBObduIs+d0W/pzGyhmVlu/0J59bYVtyoAAABgcoo6HcXMfiKpUVKdmTVL+oqksCQ55+6QdJ2kvzaztKQ+Sde7Yg/dAwAAAJNU1BDunLthjOu3yVvCEAAAAJgzZvR0FAAAAGAuIoQDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAAA+I4QDAAAAPiOEAwAAAD4jhAMAAIzDN7/5TZ155pnauHGjbr75Zt16661Tfo9MJqPzzjtPV1999YhtmpqadO655+rss8/WJZdcIknauXOnzj333IFHVVWV/vVf/1WSdOONN+qnP/3pkNeoqKiY8tpxYkLFLgAAAGA2uP322/Xwww9r5cqVuvnmm6flHt/4xjd05plnqqurq+D1jo4OffrTn9Yjjzyi5cuXq6WlRZK0Zs0abd++XZIX5JcsWaIPfvCD01IjpgYj4QAAAGP4l3/5F+3Zs0fXXHONvv71rw+59t3vflfr169XX1/fpO7R3Nyshx56SH/5l385Ypsf//jHuvbaa7V8+XJJUkNDw3FtHn/8cZ122mk65ZRTxrznl7/85YHR8yVLluiTn/zkxH8AnBBCOAAAwBg+//nPa/HixXriiSf0uc99buD8bbfdpp///Oe6//77VVpaOuQ599xzz5ApIv2P6667ruA9PvvZz+qf//mfFQiMHM927dql9vZ2NTY26oILLtDdd999XJvNmzfrhhtuGHLuv/23/zakhn7/+I//qO3bt+vJJ59UbW2tbrrppvH858AUKOp0FDO7S9LVklqcc2sLXDdJ35B0laReSTc65170t0oAAIDj/fCHP9TSpUt1//33KxwOH3d948aN2rhx47he68EHH1RDQ4MuuOACNTU1jdgunU7rhRde0OOPP66+vj5dfPHFeuc736nTTz9dkpRMJrVlyxZ99atfHfK8r33ta0PCf/6ccOecNm7cqM997nO64IILxlUvJq/Yc8K/L+k2Sce/jfOsl7Q697hI0rdzWwAAgKJau3attm/frubmZq1cufK46/fcc4++9rWvHXd+1apVx31Q8plnntGWLVu0detWxeNxdXV16aMf/ah+9KMfDWm3dOlS1dXVqby8XOXl5Xrve9+rl156aSCEP/zwwzr//PO1YMGCcf8cN998s5YuXcpUFJ8VdTqKc+4pScdGabJB0t3O85ykGjNb5E91AAAAIzvvvPP0ne98R9dcc40OHjx43PWNGzdq+/btxz2GB3BJ+upXv6rm5mbt3btXmzdv1mWXXXZcAJekDRs26Omnn1Y6nVZvb69++9vf6swzzxy4/pOf/OS4qSijefDBB/WLX/xC3/zmN8f9HEyNYo+Ej2WJpP15x825c4eGNzSzTZI2SVJ9ff2o/5SDk08sFqNP4Dj0CxRCv0AhsVhM8XhczzzzjKqrq7V3716VlpZq3bp1+tjHPqZLLrlEt956q6qrqyd9r+3bt6utrW2gH27ZskWSdM0110iSVq9erVWrVsnM9Gd/9mdqbW1VU1OT4vG4Hn74YX30ox8d0ocPHz6sHTt2qK6ubuBcJpNRU1OT/vt//+86dOiQzjrrLEnSu971Lv35n//5pH8GjM2cc8UtwGyFpAdHmBP+kKSvOud+nTt+XNLfO+deGO0116xZ43bu3Dkd5WKWampqUmNjY7HLwAxDv0Ah9AsUQr9AIWb2gnNu3USeO9NXR2mWtCzveKmk4/+9BwAAAJhFZnoI3yLp4+Z5p6RO59xxU1EAAACA2aTYSxT+RFKjpDoza5b0FUlhSXLO3SFpq7zlCXfLW6KQj+0CAABg1itqCHfOjfrxXedNWP+MT+UAAAAAvpjp01EAAACAOYcQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+KyoIdzMrjSznWa228y+WOB6o5l1mtn23OPLxagTAAAAmEqhYt3YzIKSviXpCknNkraZ2Rbn3GvDmj7tnLva9wIBAACAaVLMkfALJe12zu1xziUlbZa0oYj1AAAAAL4o2ki4pCWS9ucdN0u6qEC7i83sJUkHJf2dc25HoRczs02SNklSfX29mpqaprZazGqxWIw+gePQL1AI/QKF0C8w1YoZwq3AOTfs+EVJpzjnYmZ2laT7Ja0u9GLOuTsl3SlJa9ascY2NjVNXKWa9pqYm0ScwHP0ChdAvUAj9AlOtmNNRmiUtyzteKm+0e4Bzrss5F8vtb5UUNrM6/0oEAAAApl4xQ/g2SavNbKWZRSRdL2lLfgMzW2hmltu/UF69bb5XCgAAAEyhok1Hcc6lzewmSY9KCkq6yzm3w8w+lbt+h6TrJP21maUl9Um63jk3fMoKAAAAMKsUc054/xSTrcPO3ZG3f5uk2/yuCwAAAJhOfGMmAAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgM0I4AAAA4DNCOAAAAOAzQjgAAADgs6KGcDO70sx2mtluM/tigetmZt/MXX/ZzM4vRp0AAADAVCpaCDezoKRvSVov6SxJN5jZWcOarZe0OvfYJOnbvhYJAAAATINijoRfKGm3c26Pcy4pabOkDcPabJB0t/M8J6nGzBb5XSgAAAAwlUJFvPcSSfvzjpslXTSONkskHRrthfd2ZbX6S1tlMuX+JzPJZLmtZGYyKe/68dcs18DyXiNgpmAg98jbH3J++LWAKTTQRgoFAgoETEHTwLX+1wjl2gfNFAoGFA6awsGAQkFTJBhQKGAKhwIKBwIKh3LXAgFFQqZQIKBwoefkncs/Hw4GFAzYxP8EAQAAMCETDuFm9knn3P+ZxL0LpT83gTb99WySN2VFlQ3L9P7loYGGTpJz3l5u453rv+4GruSuu8HrBdpmnZRxTtncfjab20pKZ6Wk8q7lPTJOcrnnZYZfl5R1Q5+XyeaeM/p/x0kxyXtjYFI4KIUDpnBAuYcpFPDOh4ad798PBSz3vAJtRjkfCUqRgCmSe+3pFovF1NTUNO33wexCv0Ah9AsUQr/AVJvMSPg/SJpMCG+WtCzveKmkgxNoI0lyzt0p6U5JWrNmjfvWf3n/JEqbWTJZp1Qmm3s4pTNZJTNZpTNu4Fwqk1U6m1Uy7ZTOZoeez7hh7QdfJ5XJKpk7n0hnlExnlUhnlUh590ikMwP7sVRWiWRGiXR2sF06rVRmcm8TQgFTaTioaDio0khApeGgSnIPb987VxoJKhrytqV510py10py10rynlMWCaksGtS2Z3+txsbGqfkDwZzR1NREv8Bx6BcohH6BqTZqCDezl0e6JGnBJO+9TdJqM1sp6YCk6yV9ZFibLZJuMrPN8qaqdDrnRp2KMhd501q8cDkTZbNeyE+kskpkvNA+GNQzubDuHcdT3nFfKqNEKqO+ZEZ9qYziqbxzqf5zGXX0pRTvzCieHmzb/6bgREV+9bDKI7lgHgmqLBrKHXvnyqNBlYa97UCbSFDl0ZBKI0GV586VRwevlUVCTOkBAAAnbKyR8AWS/lRS+7DzJunZydzYOZc2s5skPSopKOku59wOM/tU7vodkrZKukrSbkm9kj45mXtiegQCppKBNwlhX+6ZzmQVz4X6vqQX2PuDfH+A7w/tPYm0duzcrQVLlqs3mVZPIqPeZFq9SW97sCM10K43mVFPMp2bvjQ+0VDguGBeEfXCfEU0rMqSwf2KkpAqoyGVR702lSX9bb39aCggM0I9AABz3Vgh/EFJFc657cMvmFnTZG/unNsqL2jnn7sjb99J+sxk74O5JxQMqCIYUEV0fDOqmjL71Nh4xrjaOueUSGeHhPLeZEa9CW+/r/9cgeP+9rFEWi3dcfUkMuqOpxRLpJUdR7APBUwVJSGVR4YG9P7wnh/YK3Lny6O5ayX9wT6symhIAUboAQCYsUZNMM65vxjl2vCpI8CcYGYDc9Jrp+g1nXOKp7LqTqQUi3uj8f37sURaPYm0uhPp3LXB/VgirY7epPa39w5c60lmxvEzSBWRkKpKvZH4qpKwqkq9gF5VktsOHOfa5LWtLAnN2OlPAADMBcVcohA4aZiZ94HSSFANlZN7rUzWqSfpBfJYfFh4j6fVFU+pK55Wdzylrr7cNp7SwY64uhPdA+fGGpmPhAJeeC8JqbLU2w4J7FFvW1UaUmU0rOqysKpLw6opDauqNEyIBwBgFIRwYJYJBiwXjsNS9cRewzmnnmRGXX2pgeA+NLSn1dWX28ZzbfpSOtDRN7CfSI/+4diScEDVpf3BPKKq/v2yoduqXHD3zkVUVRJSKFjM7xEDAGD6EcKBk5CZeXPKxzmnvpBEOqPuuDf63tmXUldfSh19qcH93qQ6+1Lq6PXONbf3asdBb793jCk1FdHQQIDPD+z9o+39wX54mGcuPABgtiCEA5iQaCioaEVQdRXRE35uMp1VZy6wew8vsHf2Dgb5zt7B62+0xAbOjbY8ZcCkmrKIasrCmlcW0bwyb3R9XllY88ojw85F1BH3ls6MhBh5BwD4ixAOwHeRUED1lVHVV55YgO//gGt/OO8fbR88Tqm9NzmwPdAR146DXTrWkxxx+sxnm7z142vKIppfPnKAH9gvi2heeUTlkSDLSQIAJowQDmDWyP+A68LqkhN6bl8yo/be5JCQ/rvtO1S/ZIXae71Af6w3qfbelPYd61V7T1Jd8fSIrxcO2kAwzw/oXpgPa355VLXlXrDvf5QR3AEAOYRwACcFL7yXanFN6cC5imO71Ni4esTnpDPeqHt/SG/vTam9J5kL8/3nvP03W3v0Ym+HOnqTSmUKLz0TDQWGhPLacm9U3Qvr0YHw3n+tujTMHHcAmKMI4QAwglAwoNqKqGpPYN67c06xRFrHepJq60nqWMwbYT/W4z3aYl5wb+tJam9bj47FkiOu/R4waV5umsxgWB8M795+dEiwZ347AMwOhHAAmEJm5n1raUlYp9SWj+s58ZQ3VaY/oPeH9WM9uQCf23+jJaZjuZF4N8I675XRUF5Azxt1r/ACe21FRHUVUdVVRAntAFBEhHAAKLKScFCLqku1qLp07MbyvrCpfypMf1hv60mqvX/0PRfUD3UOfjB1pFVlqkvDXjDPC+i1FRHVVkRVVx5RXaU3t722IqqqkhBz2gFgihDCAWCWCQZsYJrMqoax2/dPkWmLJdUaS6g1llRbT2LguH/7RktMv9nTpo7eVMHXiQQDuYA+OKpe3x/ay6MDgZ1RdgAYGyEcAOa4/CkyK+rGniKTymTV3pPU0VxA7w/sA8exhNp6knrjSLdae5JKjrD8I6PsADAyQjgAYIhwMKCGqhI1VI29DORIo+yt3UNH23cd6R5zlL2uIjKwfnxdRfT4/QpvtJ012gHMBYRwAMCETdkoe3dCR3Mh/kBHXNv3d+pYT0LZAh9ALQ0Hc+G8QGjPBfX63HFJODgNPzUATB4hHADgmxMZZc9knY715AX03PZod0Ktue2eoz363ZvH1D7CCHtlSWgwmOeFc+9cRPUVJaqv9KbJhIPMYQfgn6KEcDObL+nfJa2QtFfSh51z7QXa7ZXULSkjKe2cW+dflQCAYgoGbGCkeyzJdHZgGszRWDwX1HMBPvd4/WCXnupOqDtR+JtQ55WFVV8ZVTDVp/sO//64UfX+0fb55REF+RIlAJNUrJHwL0p63Dl3i5l9MXf8hRHaXuqca/WvNADAbBMJBfKWeawetW08lRkYXc8fVe/f/+OBXr24r11HuxOKp47/0GnApNqKqBpybxAaKqNqqCxRQ1X/uZKBa0yHATCSYoXwDZIac/s/kNSkkUM4AABTpiQc1LL5ZVo2v6zg9aamJjU2Nso5p55kZkhAzx9Zb+mOq6U7oR0Hu9QWKzx/vbo07IX0qlxQrxz8wGl+cK+IsjoMcLIxN9LXrk3nTc06nHM1ecftzrl5Bdq9KaldkpP0HefcnaO85iZJmySpvr7+gnvvvXfK68bsFYvFVFFRUewyMMPQL1DIRPpF1jl1JZw6Ek6dydw2kbeND+6nC/y1GwlKNVFTTdRUPWzr7QdUHTVVhKUAYb0o+H2BQi699NIXJjpdetpCuJn9UtLCApe+JOkH4wzhi51zB82sQdIvJP2Nc+6pse69Zs0at3PnzokXjzmnf2QLyEe/QCHT2S+cc+rsS6klfzS9K6GW7tyjK547n1CswNz1cNBUV5E37aUqbzpM3og7HzSdevy+QCFmNuEQPm3TUZxz7xvpmpkdMbNFzrlDZrZIUssIr3Ewt20xs/skXShpzBAOAMBMZGaqKYuopiyi0xdUjtq2N5lWS5c3d90L6vFcUPf2m9u9uevHepIF7iPNL/OWcGyoygX03GNBVcng9JiqqKIh5q0DxVCsOeFbJH1C0i257QPDG5hZuaSAc647t/9+Sf/oa5UAABRJWSSkFXWhMddfT6azao0lCo6uH80F912Hu9UaSyhdYOL6vLJwLpiXaEEupC+o8sL7gqrBeeyMrANTq1gh/BZJ95rZX0jaJ+lDkjf9RNL3nHNXSVog6b7cB1VCkn7snHukSPUCADAjRUIBLa4p1eKa0lHbZbNOx3qTg6PqXQkd6YrrSHdcR7q8qTC7DnfraCyhzLCwbibVlkfUUOkF9IHQXhXVgsqSgdH12vKIQoR1YFyKEsKdc22SLi9w/qCkq3L7eySd43NpAADMSYGAN5+8riKqs1Q1YrtM1qmtZ3Day5H+sJ4L6ke643r1YJdaYwkN/1hZwKS6imGj6UOCe27OenlEAdZax0mOb8wEAAADggHLfdCzRKOtuZ7OZNUaS+YCenzgg6VHuhI60h3XgY64fr+vQ20F5qyHcl/ENNIUmP4R9pqyMEs3Ys4ihAMAgBMWCga0sLpEC6tLRm2XTGd1NOaNpveH9PwR9rfaevW7vcfU0Zs67rmRYED1ldGBkfT+0fT+KTD9wb2qhHXWMfsQwgEAwLSJhAJaUlOqJWPMWe//JtP+qS/989WP5kbW32iJ6de7W9UdP37pxmgoMOoUmP4AXxEl9mDmoDcCAICiG+ubTPv1L93ohfT+KTDedJgjXXG9frBLT3S1qDeZOe65FdGQGqqiWjgw7cUL6wtzHzRdWF2i+oqoIiE+XIrpRwgHAACzxniXbowl0l5Q7/QC+uFcWO8faf/dm8fU0h1XKnP8so11Fd5KMAurB0fUOw6llP3DkYHwPr+MD5dicgjhAABgzqmIhlRRX6HT6kf+qvls1qm9N5m3Akw8F9YHj19u7lBrzPtw6fd3PD/w3HDQhizZ2P9YWJ2bs17NFBiMjp4BAABOSoGAqbYiqtqKqM5aPPKyjalMVlsea9LKs89TS1dchzu9qTBHOr1567uOdOvXb7SqO3H8fPWRpsDk7zdUljAF5iRECAcAABhFOBhQbWlA5y+fN2q7ntwUmMNd3pchncgUmNryyOAc9eqS46bDMAVm7iGEAwAATIHyaEin1lfo1FGmwDjndKwnObCe+pFOL6Afzi3heLgrrlcOdKmt5/gvQxppCszwD5cyBWZ24E8JAADAJ2Z5U2BG+ebSVCaro9154fwEpsCUR4LenPTcaHqh6TBMgSk+QjgAAMAMEw4GtLimVIvHWF+9fwrM8A+X9k+H2bb3mFq6Ekpmssc9d7QpMP37TIGZPoRwAACAWWq8U2Dae1O50fSJTYEZa311psCcOP6LAQAAzGFmpvnlEc0vj4xrCkz+h0nzP1z6RktsglNgct9eyhSYIQjhAAAA8G0KTENViRYWWF/9ZJsCQwgHAADAuJ3IFJjBgB7X4c68FWG6JzYFJn+/siQ8zT/p9CKEAwAAYErlT4E5c9E0ToHJD+h502FmwxSYooRwM/uQpJslnSnpQufc8yO0u1LSNyQFJX3POXeLb0UCAABgWp3IFJiW7oQOd8bV0p1bsjFvOszzb7Wf8BSY/JH12nL/p8AUayT8VUnXSvrOSA3MLCjpW5KukNQsaZuZbXHOveZPiQAAAJgJyqMhrYyGtLKufMQ2k5kCEwqYGiqjY66vPpVTYIoSwp1zr0veP1WM4kJJu51ze3JtN0vaIIkQDgAAgCFOZApMayxx3Gh6/4dLdx+N6Zk/tqo7PvYUmMmYyXPCl0jan3fcLOmikRqb2SZJmySpvr5eTU1N01ocZpdYLEafwHHoFyiEfoFC6BdzU4mkUySdUpI7aOi/ElU8HVFHwqk97rxtIquOuFN7Iq7WY31645Ab6WXHZdpCuJn9UtLCApe+5Jx7YDwvUeDciD+tc+5OSXdK0po1a1xjY+N4ysRJoqmpSfQJDEe/QCH0CxRCv0AhdvPEnzttIdw5975JvkSzpGV5x0slHZzkawIAAABFNzPXbPFsk7TazFaaWUTS9ZK2FLkmAAAAYNKKEsLN7INm1izpYkkPmdmjufOLzWyrJDnn0pJukvSopNcl3euc21GMegEAAICpVKzVUe6TdF+B8wclXZV3vFXSVh9LAwAAAKbdTJ6OAgAAAMxJhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGdFCeFm9iEz22FmWTNbN0q7vWb2ipltN7Pn/awRAAAAmC6hIt33VUnXSvrOONpe6pxrneZ6AAAAAN8UJYQ7516XJDMrxu0BAACAoprpc8KdpMfM7AUz21TsYgAAAICpMG0j4Wb2S0kLC1z6knPugXG+zJ845w6aWYOkX5jZH5xzT41wv02S+oN6wsxePfGqMYfVSWJaE4ajX6AQ+gUKoV+gkDUTfeK0hXDn3Pum4DUO5rYtZnafpAslFQzhzrk7Jd0pSWb2vHNuxA984uRDn0Ah9AsUQr9AIfQLFDKZhUNm7HQUMys3s8r+fUnvl/eBTgAAAGBWK9YShR80s2ZJF0t6yMwezZ1fbGZbc80WSPq1mb0k6XeSHnLOPVKMegEAAICpVKzVUe6TdF+B8wclXZXb3yPpnAne4s6JV4c5ij6BQugXKIR+gULoFyhkwv3CnHNTWQgAAACAMczYOeEAAADAXDVrQ7iZXWlmO81st5l9scB1M7Nv5q6/bGbnF6NO+Gsc/WJjrj+8bGbPmtlEpzxhFhmrX+S1e4eZZczsOj/rQ3GMp1+YWaOZbTezHWb2pN81wn/j+Huk2sx+bmYv5frFJ4tRJ/xjZneZWctIy19PNHPOyhBuZkFJ35K0XtJZkm4ws7OGNVsvaXXusUnSt30tEr4bZ794U9Ilzrm3S/onMcdvzhtnv+hv978kPepvhSiG8fQLM6uRdLuka5xzZ0v6kN91wl/j/H3xGUmvOefOkdQo6X+bWcTXQuG370u6cpTrE8qcszKEy1svfLdzbo9zLilps6QNw9pskHS38zwnqcbMFvldKHw1Zr9wzj3rnGvPHT4naanPNcJ/4/l9IUl/I+lnklr8LA5FM55+8RFJ/+Gc2yd531nhc43w33j6hZNUaWYmqULSMUlpf8uEn3JfFHlslCYTypyzNYQvkbQ/77g5d+5E22BuOdE/87+Q9PC0VoSZYMx+YWZLJH1Q0h0+1oXiGs/vi9MlzTOzJjN7wcw+7lt1KJbx9IvbJJ0p6aCkVyT9V+dc1p/yMENNKHMWZYnCKWAFzg1f5mU8bTC3jPvP3MwulRfC3z2tFWEmGE+/+FdJX3DOZbzBLZwExtMvQpIukHS5pFJJvzGz55xzu6a7OBTNePrFn0raLukySadJ+oWZPe2c65rm2jBzTShzztYQ3ixpWd7xUnnvSE+0DeaWcf2Zm9nbJX1P0nrnXJtPtaF4xtMv1knanAvgdZKuMrO0c+5+XypEMYz375FW51yPpB4ze0re91cQwueu8fSLT0q6xXlrPO82szclnSHviwVxcppQ5pyt01G2SVptZitzH4a4XtKWYW22SPp47hOr75TU6Zw75Heh8NWY/cLMlkv6D0kfYzTrpDFmv3DOrXTOrXDOrZD0U0mfJoDPeeP5e+QBSe8xs5CZlUm6SNLrPtcJf42nX+yT968jMrMFktZI2uNrlZhpJpQ5Z+VIuHMubWY3yVvFICjpLufcDjP7VO76HZK2yvv2zd2SeuW9c8UcNs5+8WVJtZJuz416pp1z64pVM6bfOPsFTjLj6RfOudfN7BFJL0vKSvqec67gEmWYG8b5++KfJH3fzF6RNw3hC8651qIVjWlnZj+RtxJOnZk1S/qKpLA0uczJN2YCAAAAPput01EAAACAWYsQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+KyoIdzM7jKzFjN7dYTrjWbWaWbbc48v+10jAAAAMNVCRb7/9yXdJunuUdo87Zy72p9yAAAAgOlX1JFw59xTko4VswYAAADAb7NhTvjFZvaSmT1sZmcXuxgAAABgsoo9HWUsL0o6xTkXM7OrJN0vaXWhhma2SdImSSopKblg+fLlvhWJmS+bzSoQmA3vOeEn+gUKoV+gEPoFCtm1a1erc65+Is8159xU13NiBZitkPSgc27tONrulbTOOdc6Wrs1a9a4nTt3Tk2BmBOamprU2NhY7DIww9AvUAj9AoXQL1CImb3gnFs3kefO6Ld0ZrbQzCy3f6G8etuKWxUAAAAwOUWdjmJmP5HUKKnOzJolfUVSWJKcc3dIuk7SX5tZWlKfpOtdsYfuAQAAgEkqagh3zt0wxvXb5C1hCAAAAMwZM3o6CgAAADAXEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAMbhm9/8ps4880xt3LhRN998s2699dYpv0cmk9F5552nq6++esj5f/u3f9OaNWt09tln6+///u8LPveRRx7RmjVrtGrVKt1yyy0D548dO6YrrrhCq1ev1hVXXKH29nZJUlNT03H3ufHGG/XTn/50in8qFEIIBwAAGIfbb79dW7du1T333DNt9/jGN76hM888c8i5J554Qg888IBefvll7dixQ3/3d3933PMymYw+85nP6OGHH9Zrr72mn/zkJ3rttdckSbfccosuv/xyvfHGG7r88suHBHQUDyEcAABgDP/yL/+iPXv26JprrtHXv/71Ide++93vav369err65vUPZqbm/XQQw/pL//yL4ec//a3v60vfvGLikajkqSGhobjnvu73/1Oq1at0qmnnqpIJKLrr79eDzzwgCTpgQce0Cc+8QlJ0ic+8Qndf//9Y9by/PPP69xzz9W5556rt73tbTKzSf1sOB4hHAAAYAyf//zntXjxYj3xxBP63Oc+N3D+tttu089//nPdf//9Ki0tHfKce+65ZyDI5j+uu+66gvf47Gc/q3/+539WIDA0nu3atUtPP/20LrroIl1yySXatm3bcc89cOCAli1bNnC8dOlSHThwQJJ05MgRLVq0SJK0aNEitbS0DLR7+umnh9S2ZcsWSdK6deu0fft2bd++XVdeeWXB0XdMTqiYNzezuyRdLanFObe2wHWT9A1JV0nqlXSjc+5Ff6sEAAA43g9/+EMtXbpU999/v8Lh8HHXN27cqI0bN47rtR588EE1NDToggsuUFNT05Br6XRa7e3teu6557Rt2zZ9+MMf1p49e4aMTjvnjnvN8Yxev+c979GDDz44cHzjjTcOuX7vvffqxRdf1GOPPTaunwPjV+yR8O9LunKU6+slrc49Nkn6tg81AQAAjGnt2rXau3evmpubC14/kZHwZ555Rlu2bNGKFSt0/fXX61e/+pU++tGPSvJGta+99lqZmS688EIFAgG1trYOef7SpUu1f//+gePm5mYtXrxYkrRgwQIdOnRIknTo0KGC01kK2bFjh77yla9o8+bNCgaD43oOxq+oIdw595SkY6M02SDpbud5TlKNmS3ypzoAAICRnXfeefrOd76ja665RgcPHjzu+saNGwemdOQ/Cq0+8tWvflXNzc3au3evNm/erMsuu0w/+tGPJEkf+MAH9Ktf/UqSNzUlmUyqrq5uyPPf8Y536I033tCbb76pZDKpzZs365prrpEkXXPNNfrBD34gSfrBD36gDRs2jPmzdXZ26vrrr9fdd9+t+vr6E/sPc5J4fu9oEXZsRZ2OMg5LJO3PO27OnTs0vKGZbZI3Wq76+vrj/ikHJ7dYLEafwHHoFyiEfoFCYrGY4vG4nnnmGVVXV2vv3r0qLS3VunXr9LGPfUyXXHKJbr31VlVXV0/6Xtu3b1dbW9tAPzzttNP0s5/9TCtXrlQ4HNbnPvc5Pfnkk2ptbdWtt946sNrJpk2b9N73vlfZbFbr16/X0aNH1dTUpHe/+936h3/4B912221qaGjQzTffrKampuPuI0mHDx/Wjh079Pzzz2vPnj264YYbBq5973vfm/TPNhcc7snq/9uV1AtHMpN6HSs0h8hPZrZC0oMjzAl/SNJXnXO/zh0/LunvnXMvjPaaa9ascTt37pyOcjFLNTU1qbGxsdhlYIahX6AQ+gUKoV/gWE9S33z8Df3oubcUDQX0qUtO09++7/QXnHPrJvJ6M30kvFnSsrzjpZKO//ceAAAAYBrEUxn9n2f26vYndqs3ldH171imz77vdNVXRvW3k3jdmR7Ct0i6ycw2S7pIUqdz7ripKAAAAMBUymSd7vv9AX39F7t0oKNPl5/RoC+uP0OrF1ROyesXe4nCn0hqlFRnZs2SviIpLEnOuTskbZW3POFueUsUfrI4lQIAAOBk4JzTL147oq89ulNvtMS0dkmVvnbd2/WuVXVjP/kEFDWEO+duGOO6k/QZn8oBAADASey5PW36X4/8Qb/f16FT68p1+8bztX7twmn5xtCZPh0FAAAAmFavHujU1x7dqSd3HdXCqhLdcu3bdN0FSxUKTt9q3oRwAAAAnJT2tvbof/9il37+0kFVl4b1/1x1hj5+8QqVhKf/y4kI4QAAADipHO6M699+9Yb+fdt+hYMB3XTpKv3Ve09VdWnYtxoI4QAAADgptHTFdXvTH/Xj3+1TNuv0kYuW66bLVqmhssT3WgjhAAAAmNNauuO6o2mP7vntW0pnna47f6luumyVls0vK1pNhHAAAADMSa2xhL7z5B/1w+feUirjdO15S/Q3l63W8trihe9+hHAAAADMKW2xhO58ao/u/s1bSqQz+sB5S/S3l63WirryYpc2gBAOAACAOeFYT1LffXqPfvDsXsVTGW04d4n+5rJVOrW+otilHYcQDgAAgFntcGdc3316j378232KpzO65pzF+pvLVmtVw8wL3/0I4QAAAJiV9rX16ttP/lE/e6FZGee04dzF+nTjaVrVUFns0sZECAcAAMCssutIt25/Yre2vHRQoWBAH37HUv2X955W1NVOThQhHAAAALPCy80duu1Xu/XYa0dUFgnqL969Un/1nlPVUOX/Ot+TRQgHAADAjOWc02/2tOnbTX/U02+0qqokpL+9fLU++a4VmlceKXZ5E0YIBwAAwIyTzmS19dXD+u5Te/TKgU7VVUT0hSvP0EffuVyVJf59vfx0IYQDAABgxogl0vr3bft116/f1IGOPp1aX66vXvs2ffC8JSoJB4td3pQhhAMAAKDojnTF9f1n9+qe595SVzytC1fM183XnK3Lz2hQIGDFLm/KFTWEm9mVkr4hKSjpe865W4Zdb5T0gKQ3c6f+wzn3j37WCAAAgOmz60i37nxqjx7YfkCZrNOVaxfqr95zqs5bPq/YpU2rooVwMwtK+pakKyQ1S9pmZlucc68Na/q0c+5q3wsEAADAtMhmnZ7cdVT/59m9emrXUZWGg/rIhcv15+9eqVNqZ85Xy0+nYo6EXyhpt3NujySZ2WZJGyQND+EAAACYA7rjKf30hWbd/Zu39GZrjxoqo/q/rjhdH33nKbN6pZOJKGYIXyJpf95xs6SLCrS72MxeknRQ0t8553YUejEz2yRpkyTV19erqalpaqvFrBaLxegTOA79AoXQL1AI/WJyDvdk9cu3Uvr1gbTiGWlVTUCfOieqdQuCCgUO6KVtB4pdou+KGcILzbB3w45flHSKcy5mZldJul/S6kIv5py7U9KdkrRmzRrX2Ng4dZVi1mtqahJ9AsPRL1AI/QKF0C9OXDbr9NQbR/X9Z/eqaedRRYIBXf32JfrEu1bonGU1xS6v6IoZwpslLcs7XipvtHuAc64rb3+rmd1uZnXOuVafagQAAMAJ6OxL6T9ebNYPf/OW9rT2qL4yqs9fcbpuuHC56iujxS5vxihmCN8mabWZrZR0QNL1kj6S38DMFko64pxzZnahpICkNt8rBQAAwIicc9q+v0M//u0+/fzlg4qnsjp3WY2+cf25Wr92kSKhQLFLnHGKFsKdc2kzu0nSo/KWKLzLObfDzD6Vu36HpOsk/bWZpSX1SbreOTd8ygoAAACKIJZI64HtB3TPc/v02qEulUWCuvb8pfrIhcu1dkl1scub0Yq6TrhzbqukrcPO3ZG3f5uk2/yuCwAAACPbcbBTP/7tPt3/+wPqSWZ05qIq/Y8PrNWGcxfPia+U9wPfmAkAAIAx9STSeuiVQ/rxb/dp+/4ORUMB/adzFmvjRct17rIamc29b7WcToRwAAAAFOSc0wtvteve5/frwZcPqTeZ0Wn15fry1WfpP5+/VNVljHpPFCEcAAAAQxzpiutnLzbrp883a09rj8ojQf2nty/Wh9+xVOcvn8eo9xQghAMAAEDJdFaPv35E9z6/X0/uOqqsky5cOV+fvnSV1q9dqPIosXEq8V8TAADgJOWc0ysHOnXf7w/oge0HdawnqYVVJfrrxtN03QXLtLKuvNglzlmEcAAAgJPM/mO9uv/3B3Tf9gPac7RHkWBA7zurQR9et0zvWV2vYIDpJtONEA4AAHASaO9J6sFXDumB3x/Q82+1S5IuWjlfm95zqtavXcSHLH1GCAcAAJij4qmMHn+9Rff9/oCe3NWiVMZpdUOF/v7KNdpw7hItqSktdoknLUI4AADAHJJIZ/TrN1r10MuH9IvXjqg7kVZDZVQ3vmuFPnDeEp21qIrVTWYAQjgAAMAsl0xn9czuVj348iE99tphdcfTqi4N68q1C7Xh3CW6+LRa5nnPMIRwAACAWSiVyerZP7bpoZcP6tEdR9TZl1JlSUjvP2uhrj5nkf7ktDpFQoFil4kREMIBAABmiUQ6o2f/2KZHXz2sR3ccVntvShXRkN5/1gL92dsX6d2r6xQNBYtdJsaBEA4AADCDdcdTemLnUT2247Cadh5VLJFWeSSo9521QFe/fbHes7pOJWGC92xDCAcAAJhhWrrj+uVrLXp0x2E9+8dWpTJOdRUR/adzFun9Zy3Uu1bVMuI9yxHCAQAAisw5pz8e7dGv/nBEj+44ohf3tcs5afn8Mt34rhV6/9kLdf7yeXy4cg4pagg3syslfUNSUNL3nHO3DLtuuetXSeqVdKNz7kXfCwUAAJhi8VRGv33zmJ74Q4t+9YcW7TvWK0k6a1GVPnv56frTtQu0ZkElywnOUUUL4WYWlPQtSVdIapa0zcy2OOdey2u2XtLq3OMiSd/ObQEAAGadw51xPbHTC93P7G5VbzKjaCigP1lVp79676m6dE29ls4rK3aZ8MGYIdzMzpC0RNJvnXOxvPNXOucemcS9L5S02zm3J/d6myVtkJQfwjdIuts55yQ9Z2Y1ZrbIOXdotBfOOqmzNyULSCYpYKaAmcwkM++4/7x3jneYAABg6qUyWb20v0NP7jqqx19v0WuHuiRJS2pKde35S3T5GQt08Wm1fLDyJDRqCDezv5X0GUmvS/p/zey/OuceyF3+n5ImE8KXSNqfd9ys40e5C7VZImnUEL6vO6tz/vGxEyomFDCFgqZwIKBwKKBQwBQOBhQOmkJB7ziSOx8KBhQJBhQKmkKBgCIhbxsNBVQSDqok3L8N5p3LnQ8Fh7UJKJp3riwSYr4XAACzlHNOb7X16uk3juqpN1r1mz+2KZZIKxgwXbB8nr5w5Rm67IwGnb6ggkHAk9xYI+F/JekC51zMzFZI+qmZrXDOfUPeIPNkFHq+m0Abr6HZJkmbJKmqYak+ckZETt6ouOT9nyKbe3ZWksudzzoNtEtnpYxzyrist5/NKONcbl/KxKWEc+rJShnnnUs7KZN1yjgplZWSGadkVkplRih0HCIBqSQkRYOmkpCpJChF+7dBU0lIKgmaoiGpNLctyduWhU2lIaks5LUN8H9yxWIxNTU1FbsMzDD0CxRCv0Aho/WLnpTTa20Z7WjN6NW2jFr7vARQV2pa1xDU2tqozqwNqjyckLRfh/6wX4f+4F/tmJnGCuHB/ikozrm9ZtYoL4ifosmH8GZJy/KOl0o6OIE2ytV3p6Q7JWnNmjXuf954xSTLmxznnJKZrOKprBKpjOKprOLpjOL9+6ncfjqreDIzcK036T1iibR6E2n1JDPqTaYVS2TUmUirtzejnmRaPYm0UpmxY76ZVBEJqao0rMqSkKpKvG1lyfBz4ePOVeWOo6HArH+33tTUpMbGxmKXgRmGfoFC6BcoJL9f9CUzeuGtdv1mT6ue/WObXtrfoayTKqIhXXxag967uk7vWV2vU2rLZv3fn5g+Y4Xww2Z2rnNuuyTlRsSvlnSXpLdN8t7bJK02s5WSDki6XtJHhrXZIumm3HzxiyR1jjUffKYwM0VDQW8Nz9LwtNwjmc6qN+kF9Z5EOvfIqDueUnc8ra54Sl3xtLrjKXX15bbxlA53xfVGi3e9O55WJjt6mI+EAqopDWteWUTVZWHVlIZVUxZWTVnE25b2b/POlYVVGg7yywcAMOvFUxm93pbRi4/t1HN7jun3+9uVyjgFA6a3LanWTZeu0ntOr9e5y2oUDvI18RifsUL4xyWl808459KSPm5m35nMjZ1zaTO7SdKj8pYovMs5t8PMPpW7foekrfKWJ9wtb4nCT07mnnNNJBRQJBRRzSQ+RO2cU28yMxDau3PBvatvMMh39qXU2ZtSe29SHb0p7TvWq5ebveNEOjtyfcHAQCCvKR0M8PPLI5pXHtH88ohqc/u1ueOKaIjgDgAoqkQ6o+37OvSbPW16bk+bXtzXoWQ6q4Dt1tol1frzP1mpd55Wq3WnzFNlyfQMtGHuGzWEO+eaR7n2zGRv7pzbKi9o55+7I2/fyftgKKaJmak8GlJ5NKSF1SUn/Px4KqOO3pQ6+pJq70mpsy+ZO055297kwPX9x3r1Sm9Kx3qTSo4Q3iPBgOaVhzW/PKr5uW1teUTzyiKaXxEZ2K+t8EL7vLIIH2QFAExKR29SL7zVrm172/X83mN6+UCnkumszLw1uz/+zlNU0XtQf37NJaoidGOK8I2ZmJSScFALq4MnFOD7R9+P9STV1pNUe257rCcxcNx/7UB7h9p6kuqOpwu+lplUnRtd7x9Nr62Iqq4iqrqKSG4b1aFYVp19KVWVMNIOACcz55z2H+vTtr3H9PxbXuh+o8VbgTkcNK1dUq0b37VC606Zp4tW1qq6zAvdTU0tBHBMKUI4fJc/+r5s/vjm0iTTWXX09of1wcfQ0J7Qm609en5vu471JgdWwOn3f//6MUWCAdVV9Ad1L6T379dXRnPH3nlG2QFg9utJpPXKgU5t39+h7fs69OK+drV0JyRJlSUhXXDKPH3gvCVad8o8nbOshvW64RtCOGaFSCighqoSNVSNb8Q9ncnqWG9SbbGkWmMJPb3tJdUvPVWtPQm1dnvnjsYSev1Qt9p6EgVXmgmYNL98cDR9MLwPHWWvq4yotjyqSIgP4wBAMWWyTrtbYtq+v13b93fo9/s6tOtI98Byxcvnl+ni02q1bsV8vWPFPJ3eUKkAgy0oEkI45qRQMKCGyhI1VHqhPXMgpMb3nlqwrXNOXX1pHY0l1BpLDAR37zG4/9a+HrXFkupNZgq+TnVpeDCcV0ZVXxHNja575/JH2qMhRloAYDKyWad9x3r1yoFOvXqwUy/v79TLzR3qyf2OrioJ6ZxlNXr/WQt07vIanbO0RrUV0SJXDQwihOOkZ2aqLguruiysVQ0VY7bvTaa90fSehFq7B4N6W250vbU7qdcPdump7oS6E4XnsleVhAZCeaHA3n++jsAOAMpknfYcjenVg5169UCXXj3QqdcOdg38jo0EAzpjUaX+8wVLdc7SGp27vEYra8sZ5caMRggHTlBZJKTltSEtrx17Pns8lRkYUT/anRtdz22HBPZYYsQPn1aVhHKB3Avq9RXHj64T2AHMFd3xlHYd6dbrh7q183C3dhzs1OuHutWX8ka4S8IBnbmoSh84b4nWLqnS2YurdfqCSqYEYtYhhAPTqCQc1NJ5ZVo678QC+0BQ7x6cFnM0ljixwD7C6Ho9gR3ADJDOZLW3rVd/ONylnYe90P2Hw11qbu8baFMRDenMRZW6/sJlWru4Wm9bWq1T68oV4gtxMAcQwoEZ4kQDe1tPbnR9IKj3h/ZcYD/cpafeGDmwV5aEvFH1MUbX6yqirBYAYMJSmazeauvR7paY3jgS0+6jMW+/JTbwnRHBgGllXbnOXVajGy5crjULKnXGokotqSllWVnMWYRwYBYqCQe1pKZUS2pKx2zbH9hbu/NH1genyPQH9tbuhLrGCuzDR9f7AzyBHTjpdcdTequtV7tbYoOPozHtbe1ROju4AtWSmlKd1lChd51WqzULq3TGwkqtaqjgdwdOOoRwYI6baGAvNB3maPc4Ans0/0OnkYGpMf3TZPLXZOcvXWB26exL6a22Hr3Z2qO32nq1t83bvtXWo9ZYcqBdMGA6pbZMq+or9P6zFmhVQ4VWN1Tq1PpylUeJHoBECAeQZzKBffh0mNbuhP5wuFut3a2jBvbB0fTBuev1eYG9/5jADky/TNappTuuA+19am7vGwjZXujuUXtvakj7RdUlWlFbrivOWqBTasu1orZMp9VX6JTacj4oCYyBEA5gQk4ksCfSGbXlrxAzbDpMa3dCOw9369ejBPbScFDzyyOaVx7WvLKIt9+/LY9ofpl3bX5uv6YsQggAhomnMjrY0aeDHXEd6Oj1wnZHnw609+lgZ58OdcSHTB0xkxZXl2pFXZnWv22RVtSW6ZTacq2sK9fy+WW8OQYmgRAOYNpFQ0EtrinV4hMI7MOnw7T3JHWst3/rzT1t70mOuBa75I20zxsI6eG8sO6F94NH0ip785hqysKqKQ2rqjRMqMCs5JxTZ19KLd0JHemKq6UroSPd3ralO64DHd7odmssMeR5AZMWVJVoSU2pzl8+T4vf7r2xXjKvVEtrSrWMoA1MG0I4gBnlRAK7JCXTWXX0egH9WE9S7T2pgbDenhfaW2NJ7ToSU3vv0G89/bff/2bY/QOqKQururT/EVF1aXjIuZoyL7DXlOa3C7NsGqZcXzKjtp6EjvV4/bstlhwM2t2DYftIV2JgpZF8ldGQ6quiWlxdqsvPaNCSeYMhe0lNqRZWlyhMvwWKghAOYFaLhAJqqCpRQ1XJuJ8TT2XU3pvUY08+q1PPfLs6elPq7Mt79KbU0ZdUZ19Kze29eu1gSh19qSHhvZCKaEjVuRH1ymhIFSUhVZaEVJHbryoJqyJa+Fx/W9Zvn5ucc+pJZtTVl1JXPKWuvrTac28c8x9tPbk3jj1JtfUkFE8dH6wlL1w3VEXVUFmiC5bP04KqEtVXRrWgqkQN/duqqMoi/DUPzFT8vxPASackHNSi6lKdUhXUe1bXj/t5yXRWXfFUXmj3gvqQEN+bUlc8re54Ske64vrj0bRi8bS642klM4UDVb5IMOCF9FxQ7w/spZGQysJBlUaCKss9SiOhwf1wUGWR0LDrQZVHQioNB/n67glKZ7LqTWXUm8ioN5lWbzKj3mRGPcn0wLmehPfn2x+uu+KDQbszF7q742ll8uZaD1cW8T7zUFseUV1FRKsXVKi2PKL55VHNLw/ntt51wjUwNxTl/8VmNl/Sv0taIWmvpA8759oLtNsrqVtSRlLaObfOvyoBYKhIKDCwgstEJNKZgUAeywW37nhKsUT+cVqxRGqgXXcirUOdcfX1B79kRn3JzJAPz4239mgooGgomNsGhp4LBxQJBhQNe8eD+/3tggoFTaGAKRgIKGhSMBjIHdvAdnA/MORc//mJfO+Kc1I665QZ9hg455wy2azSGaesGzyfTGeVyD28/czAufzjZCarRMrb9iUzOtbVq+xTj6knmSk4xWMkZZGgqkrCqir1/oWjvjKq0+rLVVUaHnK+qjSsypLQwAeL55dHmHcNnISK9Vb6i5Ied87dYmZfzB1/YYS2lzrnWv0rDQCmRzQUVLQiqNoJhvh8ybQXGHtTg8G8f4S2f78vb+Q2ns4MBM3BbWYgkPYk0mrPXSsUWk809M80kVBA0eDgG4/+Nxb5xxUlIZVUB9UQiuvU5YtVFvX+JcH7l4WQyqPevziURwfPlUW848qSEHOrAZyQYoXwDZIac/s/kNSkkUM4AGCYSC44Vivsy/28kefs4Ah0ZnDEOZ3NKpvV0OsD26wyuWvpzMSDfChoCpopFDQFzBQKBI4bZc/fDwRsMGAHAyf01edNTU1qbFw74VoBYDzMOf9HN8yswzlXk3fc7pybV6Ddm5LaJTlJ33HO3TnKa26StEmS6uvrL7j33nunvG7MXrFYTBUVFcUuAzMM/QKF0C9QCP0ChVx66aUvTHS69LSNhJvZLyUtLHDpSyfwMn/inDtoZg2SfmFmf3DOPVWoYS6g3ylJa9ascY2NjSdaMuYwb2SrsdhlYIahX6AQ+gUKoV9gqk1bCHfOvW+ka2Z2xMwWOecOmdkiSS0jvMbB3LbFzO6TdKGkgiEcAAAAmC2K9SmSLZI+kdv/hKQHhjcws3Izq+zfl/R+Sa/6ViEAAAAwTYoVwm+RdIWZvSHpityxzGyxmW3NtVkg6ddm9pKk30l6yDn3SFGqBQAAAKZQUVZHcc61Sbq8wPmDkq7K7e+RdI7PpQEAAADTjkVNAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8RwgEAAACfEcIBAAAAnxHCAQAAAJ8VJYSb2YfMbIeZZc1s3SjtrjSznWa228y+6GeNAAAAwHQp1kj4q5KulfTUSA3MLCjpW5LWSzpL0g1mdpY/5QEAAADTJ1SMmzrnXpckMxut2YWSdjvn9uTabpa0QdJr014gAAAAMI2KEsLHaYmk/XnHzZIuGqmxmW2StEmS6uvr1dTUNK3FYXaJxWL0CRyHfoFC6BcohH6BqTZtIdzMfilpYYFLX3LOPTCelyhwzo3U2Dl3p6Q7JWnNmjWusbFxPGXiJNHU1CT6BIajX6AQ+gUKoV9gqk1bCHfOvW+SL9EsaVne8VJJByf5mgAAAEDRzeQlCrdJWm1mK80sIul6SVuKXBMAAAAwacVaovCDZtYs6WJJD5nZo7nzi81sqyQ559KSbpL0qKTXJd3rnNtRjHoBAACAqVSs1VHuk3RfgfMHJV2Vd7xV0lYfSwMAAACm3UyejgIAAADMSYRwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnhHAAAADAZ4RwAAAAwGeEcAAAAMBnRQnhZvYhM9thZlkzWzdKu71m9oqZbTez5/2sEQAAAJguoSLd91VJ10r6zjjaXuqca53megAAAADfFCWEO+delyQzK8btAQAAgKKa6XPCnaTHzOwFM9tU7GIAAACAqTBtI+Fm9ktJCwtc+pJz7oFxvsyfOOcOmlmDpF+Y2R+cc0+NcL9NkvqDesLMXj3xqjGH1UliWhOGo1+gEPoFCqFfoJA1E33itIVw59z7puA1Dua2LWZ2n6QLJRUM4c65OyXdKUlm9rxzbsQPfOLkQ59AIfQLFEK/QCH0CxQymYVDZux0FDMrN7PK/n1J75f3gU4AAABgVivWEoUfNLNmSRdLesjMHs2dX2xmW3PNFkj6tZm9JOl3kh5yzj1SjHoBAACAqVSs1VHuk3RfgfMHJV2V298j6ZwJ3uLOiVeHOYo+gULoFyiEfoFC6BcoZML9wpxzU1kIAAAAgDHM2DnhAAAAwFw1a0O4mV1pZjvNbLeZfbHAdTOzb+auv2xm5xejTvhrHP1iY64/vGxmz5rZRKc8YRYZq1/ktXuHmWXM7Do/60NxjKdfmFmjmW03sx1m9qTfNcJ/4/h7pNrMfm5mL+X6xSeLUSf8Y2Z3mVnLSMtfTzRzzsoQbmZBSd+StF7SWZJuMLOzhjVbL2l17rFJ0rd9LRK+G2e/eFPSJc65t0v6JzHHb84bZ7/ob/e/JD3qb4UohvH0CzOrkXS7pGucc2dL+pDfdcJf4/x98RlJrznnzpHUKOl/m1nE10Lht+9LunKU6xPKnLMyhMtbL3y3c26Pcy4pabOkDcPabJB0t/M8J6nGzBb5XSh8NWa/cM4965xrzx0+J2mpzzXCf+P5fSFJfyPpZ5Ja/CwORTOefvERSf/hnNsned9Z4XON8N94+oWTVGlmJqlC0jFJaX/LhJ9yXxR5bJQmE8qcszWEL5G0P++4OXfuRNtgbjnRP/O/kPTwtFaEmWDMfmFmSyR9UNIdPtaF4hrP74vTJc0zsyYze8HMPu5bdSiW8fSL2ySdKemgpFck/VfnXNaf8jBDTShzFmWJwilgBc4NX+ZlPG0wt4z7z9zMLpUXwt89rRVhJhhPv/hXSV9wzmW8wS2cBMbTL0KSLpB0uaRSSb8xs+ecc7umuzgUzXj6xZ9K2i7pMkmnSfqFmT3tnOua5towc00oc87WEN4saVne8VJ570hPtA3mlnH9mZvZ2yV9T9J651ybT7WheMbTL9ZJ2pwL4HWSrjKztHPufl8qRDGM9++RVudcj6QeM3tK3vdXEMLnrvH0i09KusV5azzvNrM3JZ0h74sFcXKaUOacrdNRtklabWYrcx+GuF7SlmFttkj6eO4Tq++U1OmcO+R3ofDVmP3CzJZL+g9JH2M066QxZr9wzq10zq1wzq2Q9FNJnyaAz3nj+XvkAUnvMbOQmZVJukjS6z7XCX+Np1/sk/evIzKzBZLWSNrja5WYaSaUOWflSLhzLm1mN8lbxSAo6S7n3A4z+1Tu+h2Stsr79s3dknrlvXPFHDbOfvFlSbWSbs+Neqadc+uKVTOm3zj7BU4y4+kXzrnXzewRSS9Lykr6nnOu4BJlmBvG+fvinyR938xekTcN4QvOudaiFY1pZ2Y/kbcSTp2ZNUv6iqSwNLnMyTdmAgAAAD6brdNRAAAAgFmLEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AAAD4jBAOAAAA+IwQDgAAAPiMEA4AJzEze4eZvWxmJWZWbmY7zGxtsesCgLmOL+sBgJOcmf0PSSWSSiU1O+e+WuSSAGDOI4QDwEnOzCKStkmKS3qXcy5T5JIAYM5jOgoAYL6kCkmV8kbEAQDTjJFwADjJmdkWSZslrZS0yDl3U5FLAoA5L1TsAgAAxWNmH5eUds792MyCkp41s8ucc78qdm0AMJcxEg4AAAD4jDnhAAAAgM8I4QAAAIDPCOEAAACAzwjhAAAAgM8I4QAAAIDPCOEAAACAzwjhAAAAgM8I4QAAAIDP/n/aE80e0s6N0gAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 864x432 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f2 = plt.figure(2, figsize=(12,6))\n", "x = np.linspace(0, 1, 200)\n", "\n", "for k in range(2):\n", " qk = Phi2[:,k]\n", " px = np.zeros(x.shape)\n", " \n", " for km in range(2):\n", " px += qk[km]*phi[km+2](x) # superpose interpolations\n", " \n", " px /= np.max(np.abs(px)) # adjust scale for unity amplitude\n", " plt.subplot(2,1,k+1)\n", " plt.plot(x, px)\n", " \n", " plt.xlim( 0.0, 1.0);\n", " plt.ylim(-1.5, 1.5); plt.ylabel(str(k+1));\n", " plt.grid(True)\n", " \n", " plt.text(0.8, 1.0, 'fk = {0:4.2f}Hz'.format(fk2[k]));\n", "\n", "plt.xlabel('x');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.3.Example 3: experimental 3-dof model <a name=\"section_23\"></a> \n", "\n", "For the experimental model we get:\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0.00051329 0.0003422 0.0001711 ]\n", " [0.0003422 0.0003422 0.0001711 ]\n", " [0.0001711 0.0001711 0.0001711 ]]\n", "[[ 0.73697623 0.59100905 -0.32798528]\n", " [ 0.59100905 -0.32798528 0.73697623]\n", " [ 0.32798528 -0.73697623 -0.59100905]]\n" ] } ], "source": [ "fk3, wk3, Phi3 = vibration_modes(K3, M3)\n", "\n", "D3 = np.matmul(np.linalg.inv(K3),M3)\n", "\n", "print(D3)\n", "\n", "print(Phi3)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAHiCAYAAAA9GNBtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABl90lEQVR4nO3dd3hb1f0/8PeRLFte8oi3Y1tZduLsxM5iJWFTKFBSViCBEvJj05Yy2pRS2tIBfKGlrJaVBMzemwJxICEheyd24iS249ixPOI9ZEnn94dsMMGJl67OlfR+PY+e2NK19I7kj/zRveeeI6SUICIiIiIizzGoDkBERERE5G/YZBMREREReRibbCIiIiIiD2OTTURERETkYWyyiYiIiIg8jE02EREREZGHscn2cUKILCHEFiFEoxDiNiHEUiHEX1TnIiI31iiR72C9kiexyfZ9dwFYKaWMlFI+5o0HFEKsFEK0CSGaOi+Fffy5FUIIKYQI6nZdsRDijGO2u0YIsdrTuYkUUVGjtwghNgoh2oUQS4+5zdpZh03dLvce535ChBDPCSFKOpuOLUKIc7vdPlsIUdbDz60UQizy+H+MSHterdc+1FiwEOLNzr+VUggxu5f7G9P5t7ZeCFEkhLi4222sVy9jk+37MgDsUvC4t0gpIzovWb1tLISYDyCot+2I/JCKGi0H8BcAz59gm+huNfzn42wTBOAQgNMARAG4F8DrQgirJ8MS6Yi367UvNbYawFUAjpzojjp3YL0H4EMAsQAWA3hJCJHp+djUF2yyfZgQYgWAOQAe79wblXnM7ZFCiHwhxGNCCKEmJSCEiAJwH9x7CPr7s5cds8etXQix0uMhiTSgqkallG9LKd8FUDPI+2mWUv5RSlkspXRJKT8EcBDA1L7ehxDig2Nq2CWEuGYwuYi0oKJee6sxKaVdSvlPKeVqAM5e7m40gBQAj0opnVLKFQC+AXB1X/OwXj2LTbYPk1LOBbAK3+9V3tt1mxBiCIAvAXwjpbxNSimP/XkhxJNCiLrjXLb38vB/E0JUCyG+6e3wFYC/AngKvXwK74mU8rWuvW1wv3kcAPBKf++HSAXFNdqbEiFEmRDiBSFEXF9+QAiRCCAT/djTJ6W8oFsNz4P7feDLASUm0pAe6nUgNdb9x49z3bi+3gHr1bPYZPunFABfAXhDSvn7420kpbxJShl9nMuEE9z/3QCGA0gF8F8AHwghRvS0oRAiB8BJAP59gvt7t/ubEYAne7gfA4CX4R4r958T3BeRL9C6Rk+kGkAu3IfFpwKIBJDX2w8JIUyd2y2TUhZ0/78c21AAOLmHn88EsBzAZVLKQwPMTqSCV+r1BDXWVwUAbADuFEKYhBBnwT0MJaz7/4X16j1ssv3TTwCEAnhaizuXUq6TUjZKKdullMvgPhx13rHbdTbGTwK4XUrpOMFdXtT9zQjATT1s8wDczcBtg/8fECmnaY2eiJSySUq5UUrpkFJWArgFwFlCCMvxfqazll8EYO/cvrvyYxsKuMeQdv/5KLjHit4rpVzlyf8PkRdoXq+91FifSCk7AFwEd94jAO4A8DqA7ic7sl69iE22f3oGwKcAPhZChB9vIyHE08eMvep+6c+hKomeD1NZAOQAeE0IcQTAhs7ry4QQp/T1zoUQlwO4AsC8zjcRIl/n7Ro9ka7D3j2OMe0ce/ocgEQAl/S3BrsdhcrnUSjyUZrW62BrrDsp5XYp5WlSyiFSyrPhPuq8vq8/z3r1LDbZ/usWAIUAPhRChPa0gZTyhm6zCxx7GdvTzwghooUQZwshzEKIIOGeNeRUAJ/1sHk93IfZJnVeuvZ2TwWwri//CSHEZLiHmlwkpazqy88Q+QhNahRwzzIghDADMAIwdtVr523ThXsuYEPnONPH4B6GVX+cu3sKwBgAF0gpWwfw/3wAQDiA2wfws0R6oVm9opcaE+5p/syd3wZ31vPxPhRP6Lw9TAjxGwDJAJb24//JevUgNtl+qvOkjMVwTw30XrcCHSwT3FODVcE9tvNWuBvgQgAQQqR3fmpPl25Hui6dPwMAlVJKex8f70IAMQBWd9sj8ImH/i9EymhYowDwewCtAO6Be+qv1s7rAPeerU8BNALYCaAd7iNFAAAhxO+6akwIkQHg/8H9IflItxqc348sVwCYAeDoAH+eSDmt6rWPNVYIdw2nwr1DqxXucyp+UK+drgZQAffY7NMBnCmlbO9HJNarB4keTpAlIiIiIqJB4J5sIiIiIiIP06zJ7hwTtF4IsU0IsUsIcX8P28wW7qU/t3Ze/qBVHiI6PtYrkW9hzRLpn5bLXLcDmCulbBLuuR9XCyE+kVJ+e8x2q6SU52uYg4h6x3ol8i2sWSKd06zJ7jxJoKnzW1PnhQPAiXSI9UrkW1izRPqn6ZhsIYRRCLEV7rNcP5dS9jRt28zOw12fCCFONMUNEWmI9UrkW1izRPrmldlFhBDRAN4BcKuUcme36y0AXJ2Hu84D8C8p5agefn4x3FPnwGw2T01PT9c884m4XC4YDGrPGWUG9Y+vlwx79+6tllLGe+r+Bluvndvqpmb18BoxAzN08XS9Avwb648ZVD8+M3xvUDUrpfTKBcB9AH7TyzbFAOJOtE1mZqZULT8/X3UEZtDB4+slA4CNUqf1KnVQs3p4jZiBGbpoUa+Sf2P9LoPqx2eG7w2mZrWcXSS+89M1OldHOgNAwTHbJHWtWiSEmAb38JUarTIRUc9Yr0S+hTVLpH9azi6SDGCZEMIId2G/LqX8UAhxAwBIKZ8GMA/AjUIIB9wrGF3e+amBiLyL9UrkW1izRDqn5ewi2wFM7uH6p7t9/TiAx7XKQER9w3ol8i2sWSL944qPREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GFssomIiIiIPIxNNhERERGRh7HJJiIiIiLyMDbZREREREQexiabiIiIiMjD2GQTEREREXkYm2wiIiIiIg9jk01ERERE5GGaNdlCCLMQYr0QYpsQYpcQ4v4ethFCiMeEEEVCiO1CiCla5SGi42O9EvkW1iyR/mm5J7sdwFwp5UQAkwCcI4SYccw25wIY1XlZDOApDfMMWl4eYLUCc+eeBqvV/T2Rn/C7eiX/1fVebDAgkN+LWbPkMawpbWjWZEu3ps5vTZ0XecxmFwJY3rnttwCihRDJWmUajLw8YPFioKQEkFKgpMT9PX8RyR/4W72S//rhezEC9r2YNUue8n1NyR/U1BdfJKiO5vM0HZMthDAKIbYCsAH4XEq57phNUgEc6vZ9Wed1urNkCdDSAkSfUojoObsBuL9fskRxMCIP8ad6Jf+1ZAnQanci8Yq1MGdUAwjc92LWLHnCkiVAG9qROH8tTAn1ANw19eyzwxUn831BWt65lNIJYJIQIhrAO0KIcVLKnd02ET392LFXCCEWw32oC/Hx8Vi5cqUGaU+stPQ0AAKmuEYExbSgLr/reomVK7/yep6mpiYlz4OeMqh+fL1k8BRP1Sugj5rtoofXiBk8l6G09DREzymEOb0WdatFt+v79l6sh+fBU/zpb2x3eniNVGfw5uOXHjoV8T/fguDEekB+/ytjs4UE/OswaFJKr1wA3AfgN8dc9x8AV3T7vhBA8onuJzMzU6qQkSElIGXsmTvk0Ns+k+4Dle7rVcjPz1fzwDrKoPrx9ZIBwEap03qVCmu2ix5eI2bwXIaMKTUy/a4PZeyZ2797H+7Pe7Hq50GLepV+8De2O9WvkR4yePPxM84vkBl3fyjDx5f+oKYSE1u9luF4VL8OUg6uZrWcXSS+89M1hBChAM4AUHDMZu8DWNB5BvQMAPVSygqtMg3GAw8AYWGAo9EMY2gHRJATYWHu64l8nb/VK/mntg4n4s7fDldjKI5+Nea76wPxvZg1S56QX2gDxhahdfdQNO9I++76sDBg0aIDCpP5By2HiyQDWCaEMMI99vt1KeWHQogbAEBK+TSAjwGcB6AIQAuAazXMMyjz57v/XfJsCAAgPasND/w2/LvriXycX9Ur+adHv9iL6vZmLJowDS8kB6G0FEhPdzfYAfhezJqlQTlc14pfvbYVo5MicdnYcbh/O35QU6mpNgDZqmP6NM2abCnldgCTe7j+6W5fSwA3a5XB0+bPB9KnmXH1c8Br77dh+vBw1ZGIPMIf65X8y7ZDdXjm6wO4LCcN982Lx303qE6kFmuWBsPucOHmvM1wOCWeumoqhsUZce3VP9zGl4dC64WmJz76oySLGQBwpKFNcRIiosDQ7nDizje3ISHSjCXnj+n9B4johP768R5sPVSHJ+dPwbA47jDUCpvsfkqMcjfZlWyyiYi84okVRdhb2YTnr8mBxWxSHYfIp320vQJL1xTj2pOsOG88p03XkqbzZPujyJAghBiBI/XtqqMQEfm9XeX1eHLlfvxscirmjk5UHYfIpx2oasLdb23H5PRo/PZcHhXSGpvsfhJCIDpEoLKRe7KJiLTU4XThzje2IyY8GH+4gCdgEQ1Gq92Jm/I2w2QUePzKKQgOYguoNQ4XGYAYs0BlPZtsIiItPb1yP3ZXNOA/V09FdFiw6jhEPu3e93aisLIRL1yTi9ToUNVxAgI/xgxATIjgiY9ERBoqPNKIx1bsw/kTknH22CTVcYh82usbDuHNTWW4dc5IzM5KUB0nYLDJHoAYswG2hvauFbSIiMiDHE4X7nxzGyxmE+7/6VjVcYh82u7yBtz73k6cNHIIbj8jU3WcgMImewBiQgTsThdqm+2qoxAR+Z1nVx/E9rJ63H/hWAyJCFEdh8hnNbR14Ka8TYgOM+Ffl0+G0SBURwoobLIHINrs/iWtbOAMI0REnlRka8Ijn+/F2WMT8RNOL0Y0YFJK3PXGdhw62orHr5yCOH5g9To22QMQE9LVZHNcNhGRpzhdEne9uQ1hwUb8+aJxEIJ73YgG6vlvivHpriO4+5ws5FpjVccJSGyyByCmc082T34kIvKcpWuKsbm0DvddkI2ESLPqOEQ+a1PJUfzt4z04MzsR158yXHWcgMUmewCiQgSEAI5wGj8iIo8orm7GQ58VYO7oBFw0KVV1HCKfVdtsxy0vb0ZytBkP/3wijwgpxHmyByDIIDAkPITDRYiIPMDlkrjrre0wGQ3468Xj2RQQDZDTJXH7q1tQ02zH2zfOQlSoSXWkgMY92QOUaGGTTUTkCXnrSrD+YC3u/Uk2kqI4TIRooB5fUYRV+6px3wXZGJcapTpOwGOTPUBJFjOOcHYRIqJBOVTbgr99UoBTRsXh5zlDVcch8lmr91Xjn1/uxcWTU3HltHTVcQhssgcsMcrMPdlERIMgpcRv394BAeDvl0zgMBGiATpS34bbX92CkfEReOBizsyjF2yyByjJYkZtsx3tDqfqKEREPum1DYewuqgavz1vDFKjQ1XHIfJJHU4Xbnl5M1o7nHjqqikIC+bpdnrBJnuAEi3uSd1tHDJCRNRvFfWteOCjPZgxPJaHtokG4cFPC7Cx5Cj+9rPxGJkQqToOdcMme4ASLe6TczhkhIiof7qGiThcEg9eMhEGLvVMNCCf7TqCZ1YdxNUzMnAhp77UHTbZA9R1BjwXpCEi6p+3Nx/GysIq3HVOFtKHhKmOQ+STSmqa8Zs3tmHC0Cj8/vwxquNQD9hkD1BS555sLkhDRNR3toY23P/BLuRkxGDhTKvqOEQ+qa3DiZvyNsMgBJ64cgpCgoyqI1EPODp+gKJCTQgJMnC4CBFRH0kpseTdnWh3uPDgvAkcJkI0QPd/sBu7yhvw3MIcpMXyaJBecU/2AAkhkGgxo5InPhIR9cm6I058vrsSd5yVieHxEarjEPmktzeX4ZX1pbhx9gicPiZRdRw6ATbZg+BekIZ7somIelPd1I6XdrdjYlo0rjt5uOo4RD6p8EgjlryzE9OHxeKOMzNVx6FesMkeBC5IQ0TUN/e9twttDuDheRNg5DARon5ranfgxrxNCA8Jwr+vmIwgI1s4veMrNAhJlhAcqW+DlFJ1FCIi3fpkRwU+2lGBC0eaMCqR8/gS9VfXtJfF1c147IpJSOicfIH0jU32ICRazGh3uFDf2qE6ChGRLh1ttuPe93ZibIoF5w4zqY5D5JNe/LYEH2wrxx1nZWHWiDjVcaiP2GQPwvcL0vDkRyKintz/wS7UtXTgoXkTEcRhIkT9tu1QHf784W7MyYrHjaeNUB2H+oFN9iBwQRoiouP7Yncl3t1ajpvnjER2ikV1HCKfU9dix015m5EQacYjl07itJc+hvNkD0LXgjSVXJCGiOgH6ls7sOTdHRidFImb54xUHYfI57hcEr9+fRtsjW1444ZZiAkPVh2J+ol7sgchwRICgHuyiYiO9ZcPd6O6yY6H5k1EcBD/1BD119Nf78eKAht+/5NsTEqLVh2HBoB7sgchJMiImDATm2wiom6+2luFNzaV4abZIzB+aJTqOEQ+Z0+NEw9vLMT5E5KxYGaG6jg0QNy9MEiJFjNsbLKJiAAAjW0d+O1b2zEyIQK3nT5KdRwin2NraMNT29phjQvH3y+ZACE4DttXcU/2ICVFcdVHIqIuf/ukABUNbXjrxlkwm4yq4xD5FIfThVtf2YI2h8RT86ciIoRtmi/jnuxBSrKYcaSeU/gREa0pqsbL60px3UnDMCU9RnUcIp/zyOd7se5gLRaODUZWEhdu8nVssgcp0WJGTXM7Opwu1VGIiJRpbnfg7re3wzokDHeclaU6DpHP+XJPJZ5cuR+X56bhpFQu3OQP2GQPUqLFDCkBWyP3ZhNR4Hros0Icqm3Fg/MmIjSYw0SI+uNQbQt+/fo2ZCdb8MefjlUdhzyETfYgJUW5p/Gr5LhsIgpQ6w/WYumaYiycmYFpw2JVxyHyKe0OJ255eTNcLomnrprCcxn8CEfUD1IiF6QhogDWanfi7re2Iy02FHedM1p1HCKf88BHe7CtrB5PXzUVGUPCVcchD2KTPUhdqz5yhhEiCkSPfF6Ig9XNyFs0HeGcCYGoX97fVo7la0uw6ORhOGdckuo45GEcLjJIseHBMBkFm2wiCjibS4/iudUHccW0dJw0Mk51HCKfUmRrwj1vbcfUjBjcfS6PAvkjNtmDJIRAQqSZw0WIKKC0dThx15vbkWQx43fnsUEg6o8WuwM35W2C2WTE41dOhsnIdswf8dieByRFmVHZwNlFiChwPPblPhTZmrD02lxEmjndGFFfSSnx+3d2Yp+tCct/MQ3JUaGqI5FG+NHJA5IsZs4uQkQBY0dZPf7z9QHMmzoUs7MSVMch8imvbjiEt7ccxu2nj8Ipo+JVxyENscn2gESLe2l1KaXqKEREmrI7XLjzzW0YEh6Me3+SrToOkU/Zebge972/C6eMisOtc0epjkMaY5PtAYmWELTYnWhsd6iOQkSkqSfyi1BwpBEPXDweUWEcJkLUV/WtHbgpbzNiw4Lxz8smwWgQqiORxthke0BSlHsaPxuHjBCRH9tT0YAn8otw4aQUnJmdqDoOkc+QUuLON7ahvK4VT8yfjCERIaojkRewyfaArgVpjtTz5Eci8k8dTvcwkegwE/54AZd9JuqPZ1cdxP92V+Kec0djagZXRQ0UnF3EA7ggDRH5u/9+fQA7DzfgqflTEBMerDoOkc/YUFyLv39agHPGJuG6k4epjkNexD3ZHvDd0upssonID+2rbMS/vtiH88Yn4dzxyarjEPmM6qZ23PLyZgyNCcWDP58AITgOO5BwT7YHhAYbYTEH4QgXpCEiP+N0Sdz55naEhxjxpwvHqY5D5DOcLolfvroVR1s68M5NubBwPvmAwybbQ9wL0rDJJiL/8tzqA9h6qA7/unwS4niyFlGf/evLfVhdVI1/XDIeY1OiVMchBThcxEMSuSANEfmZA1VN+L//7cUZYxLx04kpquMQ+Yyv9lbh3yv24ZIpQ3FpTprqOKSIZk22ECJNCJEvhNgjhNglhLi9h21mCyHqhRBbOy9/0CqP1pI6F6Qh8kWBVq/UO5dL4u63tiMkyIC/XjyOY0l1hjWrX+V1rfjlq1uQlRiJv1zE2glkWg4XcQC4Q0q5WQgRCWCTEOJzKeXuY7ZbJaU8X8McXpEUZUZVYzscTheCjDxAQD4noOqVerdsbTE2FB/Fwz+fiITOk7tJV1izOtThdOGWlzfD7nDhiflTEBpsVB2JFNKsG5RSVkgpN3d+3QhgD4BUrR5PtQSLGS4JVDfZVUch6rdAq1c6sdKaFjz4aSFmZ8Xjkin8NdAj1qw+/f2TAmwurcM/5k3AiPgI1XFIMa/schVCWAFMBrCuh5tnCiG2CSE+EUL47AoHSZzGj/xEINQrHV/XMBGjQeCvF4/noW4fwJrVh092VOC51QdxzSwrzp/AcxgIEFJKbR9AiAgAXwF4QEr59jG3WQC4pJRNQojzAPxLSjmqh/tYDGAxAMTHx099/fXXNc3cm6amJkRE/PATanG9E39c24ZbJ4dgaqL2k7b0lMHbVGdQ/fh6yTBnzpxNUsocT9yXJ+q1c1vd1KweXiNfyrCitAPLd9txzdhgzE7z7JRjvvQ8aMWT9QoEzt9YvWc40uzC/WtbkRxuwO+mmxFkGNyHU198Dvw1w6BqVkqp2QWACcBnAH7dx+2LAcSdaJvMzEypWn5+/o+uq2xolRl3fyiXrTmoLIO3qc6g+vH1kgHARqnTepU6qFk9vEa+kqHsaIvMvvcTeeUza6XL5VKSQWuqM3iqXmWA/Y3Vc4ZWu0Oe/ehXcuL9n8lDtc1ef3ytMIPbYGpWy9lFBIDnAOyRUj5ynG2SOreDEGIa3MNXarTKpKUh4SEwGgQXpCGfFGj1Sj8mpcQ9b22HBPD3n3FlOr1jzerHfe/tQsGRRjx62SQMjQlTHYd0RMtxDScBuBrADiHE1s7rfgcgHQCklE8DmAfgRiGEA0ArgMs7PzX4HKNBICEyhNP4ka8KqHqlH3tjYxlW7avGny4ci7RYNgo+gDWrA29sPITXNh7CLXNGYk5Wguo4pDOaNdlSytUATrgrREr5OIDHtcrgbYkWM2wN7apjEPVbINYrfe9IfRv+/NFuTBsWi6umZ6iOQ33AmlVvT0UD7n1vJ2YOH4JfnZmpOg7pECd09iAuSENEvkZKiSXv7ECH04UHL5kAwyBP2CIKBI1tHbgpbzMsZhP+dcUkGFk31AM22R6UFGVGJcdkE5EPeXfrYXxZYMNvzsqCNS5cdRwi3XOfv7ADpbUt+PcVk5EQycWaqGdssj0owRKCxnYHmtsdqqMQEfXK1tiGP76/G1PSo3HtScNUxyHyCcvWFOOjHRW48+wsTB8+RHUc0jE22R7UtSANh4wQkd5JKfGHd3ehtcOJB+dN5OFuoj7YUnoUD3y8B2eMScDiU4arjkM6xybbg7jqIxH5io92VODTXUfwqzMyMTKByz8T9eZosx03521GosWM//v5JJ6/QL3SfmnCAJIYxSabiPSvpqkd9723CxOGRuH6UzhMhKg3LpfEr17fiuomO966cRaiwjy7Gir5JzbZHpTYNVykntP4EZF+/fGD3Who68DL82YgyMgDmkS9eXJlEVYWVuHPF43D+KFRquOQj+C7qwdFhAQhIiSIe7KJSLc+23UEH2wrx61zRyErKVJ1HCLdW1NUjUc+34sLJ6XgqunpquOQD2GT7WGJlhA22USkS3Utdvz+3Z0Yk2zBjbNHqI5DpHuVDW247dUtGB4fgb9ePB6dq9QT9QmHi3hYUhQXpCEiffrTh7tR22zHC9fkwsRhIkQn5HC6cOvLW9Dc7sQr109BeAhbJuofvst6WKKFC9IQkf5stTnw9ubDuPG0ERiXyjGlRL156H+FWF9ci7/9bDxGJXJoFfUfP5Z5WKLFDFtjO1wuyel9iEgXGto6sGyXHZmJEbj19JGq4xDp3habA//ZfADzp6fjosmpquOQj+KebA9LspjhcElUN3OGESLSh79+tAd17RIPzpuIkCCj6jhEunaotgXPbG/HuFQL7j0/W3Uc8mFssj2saxo/WwObbCJSb9W+Kry64RDOGWbCpLRo1XGIdK2tw4kb8zYBAJ6aPxVmEz+U0sCxyfawpKiuubI5LpuI1Gpqd+Cet3ZgeFw4Lh7JxTOIevPnD3dj5+EGXD8hBGmxYarjkI9jk+1hXUurc4YRIlLtH58UoLy+FQ/Om4BgI88RITqRd7ccRt66Uvy/04ZjcgJPWaPBY5PtYXERwTAILq1ORGqt3V+DF78twTWzrMixxqqOQ6Rr+yob8du3d2CaNRZ3npWlOg75CTbZHhZkNCAuIoTDRYhImRa7A3e/tR3psWG482w2DEQn0tzuwI15mxEeYsS/r5yMIM4hTx7C4yEaSIoyo7KRJz4SkRoPf7YXpbUteOX6GQgL5ts80fFIKfG7d3bgQFUTXrxu+neTFxB5Aj+uaYAL0hCRKhuLa/HCmoO4akY6Zo4YojoOka7lrSvFe1vL8aszMnHSyDjVccjPsMnWQJKFS6sTkfe1dThx15vbkRIVinvOHaM6DpGubS+rw58+2I3ZWfG4eQ4XaSLPY5OtgURLCOpbO9DW4VQdhYgCyKNf7MWB6mb8/ZLxiAjhMBGi46lv6cBNeZsRFxGMRy+dxBWaSRNssjXQNaaLJz8SkbdsPVSHZ74+gMty0nDKqHjVcYh0y+WSuOONrahsaMPj86cgJjxYdSTyU2yyNdC1IA2n8SMib2h3OHHXm9uQEGnGkvM5TIToRP676gC+2GPD784bgynpMarjkB/j8UQNcEEaIvKmx1cUYW9lE56/JgcWM1d2JDqedQdq8NBnhfjJ+GRcM8uqOg75Oe7J1kCChXuyicg7dh6ux5Mr9+Nnk1Mxd3Si6jhEulXV2I5bX9mC9Ngw/P2S8RCC47BJW2yyNWAxByHUZMSRes6VTUTa6XC6cOeb2xEbHow/XJCtOg6RbjldEre9sgUNbR146qopiOQRH/ICDhfRgBDCvSAN92QTkYaeWrkfeyoa8J+rpyI6jCdvER3Po5/vxdoDNXho3gSMTrKojkMBgnuyNZJoCWGTTUSaKTjSgH+v2IfzJyTj7LFJquMQ6VZ+oQ2P5xfh0pyh+HlOmuo4FEDYZGuEC9IQkVYcThfuenM7LGYT7v/pWNVxiHTrcF0rfvXaVoxOisSfLhynOg4FGDbZGkm0mGFraIeUUnUUIvIzz6w6iO1l9bj/wrEYEhGiOg6RLtkdLtyctxkOp8RTV02F2WRUHYkCDJtsjSRazLA7XahttquOQkR+pMjWhEe/2IuzxybiJ+OTVcch0q2/frwHWw/V4aF5EzAsLlx1HApAbLI18v2CNJxhhIg8w+mSuOvNbQgLNuLPF43jFGREx/HR9gosXVOMX5w0DOfywygpwiZbI4mcK5uIPOyFbw5ic2kd7rsgGwmRZtVxiHRpf1UT7npzG6akR+Oec0erjkMBjE22Rrr2ZPPkRyLyhOLqZjz8v0LMHZ2Aiyalqo5DpEutdiduemkzgoMMePzKKQgOYptD6nCebI3Ed56MdKSeTTYRDY7LJXHXW9thMhrw14u5Uh1RT6SU+P27O7HX1oil105DSnSo6kgU4PgRTyPBQQbERQRzuAgRDdpL60qw/mAt7v1J9ndHyYjoh17feAhvbS7DrXNH4bTMeNVxiNhkaynRwlUfiWhwDtW24O+fFOCUUXH4ec5Q1XGIdGlXeT3+8N4unDwyDrefPkp1HCIAbLI15V6QhrOLENHASClxz9vbIQD8/ZIJHCZC1IOGtg7clLcZ0WEm/PPySTAaWCekD2yyNZTAPdlENAivbjiEb4pq8NvzxiCV40uJfkRKibve2I6yo614/MopiOPiTKQjbLI1lGQxo7bZjnaHU3UUIvIx5XWteOCjPZgxPBZXTktXHYdIl57/phif7jqCe84ZjVxrrOo4RD/AJltDSVHuT9Q2Dhkhon6QUuJ37+yA0yXx4CUTYeDhb6If2VRSi799vAdnZSdi0SnDVMch+hE22RrigjRENBBvbT6MlYVVuOucLKQPCVMdh0h3apraccvLW5ASHYqHfj6R5yuQLnGebA1xQRoi6q/Khjb86YNdyMmIwcKZVtVxiHTH6ZL45WtbUdNsx9s3zkJUqEl1JKIecU+2hhI7lz3mgjRE1BdSSix5ZyfaHS48OG8Ch4kQ9eDxFUVYta8a9/90LMalRqmOQ3RcbLI1FB1mQnCQgcNFiKhP3t9Wji/2VOKOszIxPD5CdRwi3Vm1rwr//HIvfjY5FZfnpqmOQ3RCbLI1JITgXNlE1CdVje344/u7MDEtGtedPFx1HCLdqahvxe2vbsWohAj85eJxHIdNuscmW2NJnCubiPrgj+/vQnO7Ew/Nm8DFNIiO0eF04ZaXt6C9w4kn509FWDBPKSP9Y5OtscQoNtlEdGKf7KjARzsqcNvpI5GZGKk6DpHuPPhpATaVHMXfLpmAkQkcSkW+gU22xhIjQ3Ckvg1SStVRiEiHapvtuPe9nRibYsH/O22E6jhEuvPpziN4ZtVBLJiZgZ9OTFEdh6jP2GRrLCnKjHaHC/WtHaqjEJEO/emDXahr6cBD8ybCZORbMlF3JTXNuPONbZg4NApLfjJGdRyifuE7usa6FqThXNlEdKwvdlfi3a3luGnOSGSnWFTHIdKVtg4nbnxpMwwGgcevnIKQIKPqSET9wiZbY10L0lRyhhEi6qa+pQO/e2cHRidF4pY5I1XHIdKd+z/Yhd0VDXj0solIi+XKp+R7eHquxroWpKnkgjRE1M1fPtqNmmY7nluYi+Ag7u8g6u6tTWV4Zf0h3DR7BOaOTlQdh2hANHtnF0KkCSHyhRB7hBC7hBC397CNEEI8JoQoEkJsF0JM0SqPKis+DgEALP5lG6xWIC9PbR6inrBevSMvD7BagbARNryxqQwnDRmO8UO5Yh31nz/WbFd9nH3pFNzxyg4MC4/Fr8/MVB2LaMC03H3iAHCHlHIMgBkAbhZCZB+zzbkARnVeFgN4SsM8XpeXB9x8gxHOFhOMEW0oKQEWL2ajTboU8PWqtbw8d/2XVnQg9uwdsFdH4K37R/H9gAbKr2r2+/pwIO7CzXC0mbDhscl47VUe5SHfpdlvr5SyQkq5ufPrRgB7AKQes9mFAJZLt28BRAshkrXK5G1LlgAtLYCzyQxjhHu4SEuL+3oiPWG9aq/r/SBmdgGMkW2o+WQCWhqNfD+gAfG3mu2qjyFn70BQTDOq35+M5moz64N8mlfGZAshrAAmA1h3zE2pAA51+76s87qKY35+MdyfwhEfH4+VK1dqFbVPmpqa+pShtPQ0AAKO+lAExbR0u15i5cqvvJJBS6ozqH58vWTwtMHWa+d96KZm9fAaNTU1obRUwmDuQMTEUjRuzoC9PAaAZ94P+ppBD88DM3ieP/yNLS09DRAS5uE2OJvM6KiO6LzeO/VxLNW/J6ofnxk8REqp6QVABIBNAH7Ww20fATi52/dfAph6ovvLzMyUquXn5/dpu4wMKQEpo08pkOl3fiRFkEMC7uu9lUFLqjOofny9ZACwUeq0XqUOalYPr1F+fr7MyJAybEyZzLj7QxmcXCsB6bH3g75mUI0ZPFuv0o/+xnb9vQxJq5Zpv/5YJi38WooQu9fq41iqf09UPz4zfG8wNavpYCchhAnAWwDypJRv97BJGYC0bt8PBVCuZSZveuABICwMsNssEAYJU1wjwsLc1xPpTaDXq9YeeACIzLLB2RwMe0U0APD9gAbFn2q26+9l+6EhqHpnKoLjG5F82Xr84U8O1dGIBkzL2UUEgOcA7JFSPnKczd4HsKDzDOgZAOqllD869Oyr5s8H/vtfID7IvchE8pgG/Pe/7uuJ9IT1qr3Lr5CIya6C0RYPIQQyMsD3Axowf6vZrr+XGRlAe3E8xNrJCEmuxxftG9HW4VQdj2hAtNyTfRKAqwHMFUJs7bycJ4S4QQhxQ+c2HwM4AKAIwDMAbtIwjxLz5wMHtochIiQIV9/WwD+opFesV41tKT2KVmcHHl+SAJcLKC5mg02D4nc1O3++uy5WrPgKxauT8X+XTcDaAzW4KW8z7A6X6nhE/abZiY9SytUARC/bSAA3a5VBLwwGgTHJkdhd0aA6ClGPWK/aW1FgQ5BB4JRR8aqjkB8IhJq9ePJQtNidWPLOTvzqta147IrJMBpO+F8m0hWu+OglY1Oi8PrGQ3C5JAx8kyAKOCsKbMixxiAq1KQ6CpHPmD89Ay3tTjzw8R6EBhvx4CUT+DeUfAZnefeS7GQLWuxOFNc0q45CRF5W0+pCwZFGzB2doDoKkc+5/tTh+OUZo/DmpjLc/8GurplSiHSPe7K9JDvFffLj7ooGDI+PUJyGiLxpW5X7xC022UQDc/vpo9Bid+K/Xx9AaHAQ7j4nC+5zP4n0i3uyvWRUYgSCDAK7yzkumyjQbKtyIi02FCP4AZtoQIQQ+O25ozF/ejqe/mo/nsgvUh2JqFfck+0lIUFGjEyI4MmPRAGmrcOJPTVOXDE9gXveiAZBCIE/XzgOrXYnHv7fXoQGB+G6k4epjkV0XGyyvSg7xYJV+6pVxyAiL1p7oAZ2FzCHQ0WIBs1gEHhw3gS02J3484e7ER5sxOXT0lXHIuoRh4t4UXayBVWN7bA1tqmOQkRekl9gQ7ARmDF8iOooRH4hyGjAY1dMxuysePz2nR14b+th1ZGIesQm24vGpkQBAPZUNCpOQkTeIKXEigIbsmONMJuMquMQ+Y3gIAOevmoqpllj8evXt+F/u46ojkT0I2yyvSg7uXOGEZ78SBQQimxNKDvaionxbLCJPM1sMuK5a3IxPjUKt7y8Bav2VamORPQDbLK9KCrMhNToUOwqr1cdhYi8YEWBDQAwgU02kSYiQoKw7NppGJEQgeuXb8T6g7WqIxF9h022l2WnWDjDCFGAWFFgw+ikSAwJ5VstkVaiwkx48bppSIkOxS+WbsD2sjrVkYgAsMn2urEpFhysbkaL3aE6ChFpqL61AxtLjnIBGiIviIsIQd6i6YgOM2HB8+tReITnPpF6bLK9LDvZAil58iORv1u1rwpOl2STTeQlyVGheHnRDIQEGTD/2XU4WN2sOhIFODbZXtZ9eXUi8l8rCmyIDjNhcnqM6ihEASN9SBjyFs2AlBLzn/kWZUdbVEeiAMYm28tSo0MRFWriDCNEfszlkviqsAqnZcbDaOAqj0TeNDIhAsuvm4amdgfmP7sOtgauTUFqsMn2MiEEspN58iORP9tWVoeaZjuHihApMjYlCkt/MQ1Vje246rl1qG22q45EAYhNtgLZKRYUVDTA4XSpjkJEGlhRYINBAKdlxquOQhSwpqTH4LmFuSipacGC59ehoa1DdSQKMGyyFchOtqDd4eJJGUR+akWBDVMzYhAdFqw6ClFAmzliCJ6+aioKjzTi2hc2cGYv8io22QqMTeXJj0T+qrKhDbvKGzCHQ0WIdGHO6AT86/LJ2FJ6FNcv34i2DqfqSBQg2GQrMCI+AsFGA09+JPJD+Z2rPHI8NpF+nDc+GQ/Nm4hvimpwy8ub0cHhmuQFbLIVMBkNyEyKwC422UR+Z0WBDSlRZmQlRqqOQkTdXDJ1KP580Th8sceGX722FU6XVB2J/FyQ6gCBKjvZgi/22CClhBCc4ovIH7Q7nFhdVI2LJ6eyrol06OoZGWhpd+BvnxQgLNiIv/9sAgycZpM0wj3ZioxNiUJtsx2VDe2qoxCRh6w/WIsWu5NDRYh07P+dNgK3nT4Kr28sw58+3A0puUebtME92Yp8v/JjPZKizIrTEJEnrCiwISTIgFkj4lRHIaIT+NUZo9DS7sCzqw8iPMSIO88erToS+SHuyVZkdJJ7vOauwxyXTZ4jhBgthDhdCBFxzPXnqMoUSPILbJg5YghCg42qo5CPEEJME0Lkdn6dLYT4tRDiPNW5/J0QAkt+MgZXTEvHE/n78UR+kepI5IcG3GQLIa71ZJBAE2k2wTokjNP4kccIIW4D8B6AWwHsFEJc2O3mv6pJFTgOVDWhuKaFQ0Woz4QQ9wF4DMBTQoi/AXgcQASAe4QQS5SGCwBCCPzlonG4aFIKHvqsEC98c1B1JPIzgxkucj+AFzwVJBBlp1g4wwh50vUApkopm4QQVgBvCiGsUsp/AeCZPRpb0Tl135wsNtnUZ/MATAIQAuAIgKFSygYhxEMA1gF4QGG2gGA0CDz884lo7XDi/g92Izw4CJfmpqmORX7ihE22EGL78W4CkOj5OIElO9mCj3ccQUNbByxmk+o45PuMUsomAJBSFgshZsPdaGeATbbm8gttGJUQgbTYMNVRyHc4pJROAC1CiP1SygYAkFK2CiE4kbOXBBkNeOyKybh++Sbc/fZ2mIONsKgORX6ht+EiiQAWALigh0uNttH8X9fJjwUVjYqTkJ84IoSY1PVNZ8N9PoA4AONVhQoETe0OrD9Yy6Ei1F92IUTXp7KpXVcKIaIAsMn2opAgI/5z1VTkWmPx69e2YouNy6/T4PXWZH8IIEJKWXLMpRjASs3T+bmxKVEAgN3l9YqTkJ9YAPch5+9IKR1SygUATlUTKTCs3leFDqfkUurUX6dKKVsAQErZvak2AVioJlLgCg024rmFORibYsETW9uxel+16kjk407YZEspr5NSrj7ObVdqEylwJESGYEh4ME9+JI+QUpZJKY8c57ZvvJ0nkKwosCHSHISpGTGqo5APkVL2uFCClLJaSrnD23nIPSnBsl9MQ1KYwPXLN2Jjca3qSOTDOIWfQkIInvxI5ONcLokVBVU4NTMeJiPfUol8XXRYMO7MDUVylBnXvrABO8p4tJkGhn8RFMtOsWBfZRPsDg6/I/JFO8vrUd3UjrmcVYTIb0SFCLy0aDosoSYseH4d9lby3CnqPzbZimUnW2B3urC/qkl1FCIagBUFNggBzM6KVx2FiDwoJToUL18/HSajAfOfXYfi6mbVkcjHsMlWbGzX8uocMkLkk/ILbJiUFo0hESGqoxCRh2UMCUfeoulwuiTmP7sOh+taVUciH8ImW7FhcREwmwwcl03kg6oa27GtrJ5DRYj82KjESCz/xTQ0tHVg/jPfwtbYpjoS+Qg22YoZDQKjkyzYXcETK4h8zcrCzlUeOXUfkV8blxqFpdfmwtbYjqufXY+jzXbVkcgHsMnWgewUC3aXN0BKqToKEfVDfqENiZaQ74Z9EZH/mpoRi2cX5OBgTTMWPL8eDW0dqiORzrHJ1oHsZAsa2hwc60XkQzqcLqzaW405WQkQgqvWEwWCWSPj8PRVU7CnogHXLd2AFjtXhqTjY5OtA13Lq3NcNpHv2FBci8Z2B4eKEAWYuaMT8c/LJ2FTyVH8vxc3oa3DqToS6RSbbB0Yk2SBQXCGESJfkl9gQ7DRgJNHxqmOQkRedv6EFPzjkglYta8at76yBR1OrnVBP8YmWwdCg40YFhfO5dWJfMiKAhumD49FeEiQ6ihEpMDPc9LwpwvH4vPdlbjj9W1wunheFf0Q/zroRHZKFDaXHFUdg4j6oLSmBfurmjF/eobqKESk0IKZVjS3O/GPTwsQFmzE3342nudo0HfYZOvE2BQLPthWjroWO6LDglXHIaITWFFQCQCYy/HYRAHvxtkj0GJ34N8rihAabMQfzs9mo00A2GTrRnZy58qPFQ2YNYJjPIn0bEVhFYbHhcMaF646ChHpwK/PzERzuxPPf3MQESFBuOOsLNWRSAc4JlsnxiRzeXUiX9Dc7sC3+2s4qwgRfUcIgXvPH4PLc9Pw7xVFeHJlkepIpAPck60T8ZEhSIgMYZNNpHPfFFXD7nRxqAgR/YAQAg9cPB4tdice/LQQ4cFBWDjLqjoWKcQmW0fGplg4wwiRzuUX2hAREoRca6zqKESkM0aDwP9dOhGtHU7c9/4uhAUb8fOcNNWxSBEOF9GR7BQLimxNnNieSKeklMgvqMLJI+MQHMS3TyL6MZPRgMevnIxTRsXh7re248Pt5aojkSL8K6Ej2clRcLgkimxNqqMQUQ92VzTgSEMbh4oQ0QmFBBnxn6unYmpGDH756lZ8uadSdSRSgE22joz9bnn1esVJiKgn+QU2AMDs0fGKkxCR3oUFB+G5a3KRnWLBjXmbsaaoWnUk8jI22TqSHhuG8GAjT34k0qkVBTZMGBqFhEiz6ihE5AMsZhOWXTsNw4aEY9HyjdhUUqs6EnkRm2wdMRgExiTz5EciPapttmPLoTrMyeJQESLqu5jwYLy4aBoSLWZc88IG7DzMo9WBQrMmWwjxvBDCJoTYeZzbZwsh6oUQWzsvf9Aqiy/JTrFgT0UjXC6pOgoFGNbsiX211wYpucoj6QPr1bckRJrx0qLpsJhNuPq5ddhX2ag6EnmBlnuylwI4p5dtVkkpJ3Ve/qRhFp8xNsWCpnYHSmtbVEehwLMUrNnjWlFQhbiIEIxPjVIdhQhgvfqc1OhQ5C2ajiCjAfOfXYeSmmbVkUhjmjXZUsqvAXDwUT9lJ7v/gHPICHkba/b4HE4Xviq0YXZWPAwGoToOEevVR1njwpG3aDo6nC5c+cw6lNe1qo5EGhJSajcsQQhhBfChlHJcD7fNBvAWgDIA5QB+I6XcdZz7WQxgMQDEx8dPff311zVK3DdNTU2IiIjQ5L7tTokbvmjBT4aZcElmsJIMfaU6g+rH10uGOXPmbJJS5njivvyxZj3xGhXWOvG39W24eVIIcpP6v4aXHn5PmEEfGVivvVP9GnkjQ3G9E//Y0IaoYIHfTg9FVMgPP7wHwnPgKxkGVbNSSs0uAKwAdh7nNguAiM6vzwOwry/3mZmZKVXLz8/X9P7PeuQree0L65Vm6AvVGVQ/vl4yANgoWbPH5YnX6G8f75EjfvuRrG+1K8swWMygjwys196pfo28lWHDwRo5+vefyLMf/UoebW73+uP3hhncBlOzymYXkVI2SCmbOr/+GIBJCBGnKo+ejE2xcK5s0p1Artn8AhtyrbGwmE2qoxD1SSDXq6/IscbimQU5OFDVjIXPr0djW4fqSORhyppsIUSSEEJ0fj2tM0uNqjx6kp1iQWVDO6qb2lVHIfpOoNbs4bpWFFY2clYR8imBWq++5uRRcXhy/hTsKm/AdUs3otXuVB2JPKj/gwv7SAjxCoDZAOKEEGUA7gNgAgAp5dMA5gG4UQjhANAK4PLO3fIBLzvZvfLjnooGnDKKK8uRd7Bme7aic5XHOWyySUdYr/7jjOxEPHrZJNz26hYsfnEjnl3okSH7pAOaNdlSyit6uf1xAI9r9fi+LPu75dXZZJP3sGZ7ll9gQ3psGEbEh6uOQvQd1qt/uWBiClrtTtz11nbc+vIWXDqUn4f8gWZNNg1cdFgwUqNDubw6kWKtdie+KarGFdPS0XnknYhIE5fmpqHF7sAfP9iNhqNGzJktYeSUoT6Ny6rrFJdXJ1Jv7YFqtDtcHCpCRF5xzUnDcOfZWfi2wonfv7sDHOHj29hk61R2igUHqpp4EgSRQisKbAg1GTF9WKzqKEQUIG6eMxLnDzfhlfWH8JeP9rDR9mFssnVqbIoFLgkUHOHebCIVpJTIL6jCSSPjYDYZVcchogByySgTrpllxXOrD+LRL/apjkMDxCZbp7pmGOGQESI19lY24XBdK6fuIyKvE0LgD+dn49KcoXjsy314+qv9qiPRAPDER50aGhMKizmIJz8SKfL91H2c4YeIvM9gEPjbzyagxe7E3z8pQHiwEVfPtKqORf3AJlunhBDITuHJj0Sq5BfYMCbZguSoUNVRiChAGQ0Cj142CW0dTtz73i6EBgdh3tShqmNRH3G4iI5lJ0ehoKIRThdPeiDypvqWDmwqPYrTOVSEiBQzGQ14/MopOGnkENz15jZ8vKNCdSTqIzbZOpadYkFrhxMHq5tVRyEKKF/tq4LTJTl1HxHpgtlkxDMLcjAlPQa3vbIF+Z3D2Ujf2GTrGE9+JFIjv8CG2PBgTEqLVh2FiAgAEBYchOevzcXo5Ejc8NImrNlfrToS9YJNto6NTIhAsNHAkx+JvMjpklhZaMNpmfFcbY2IdMViNmH5L6YjPTYMi5ZtxKaSo6oj0Qmwydax4CADRiVGYFd5veooRAFj66E6HG3p4FARItKl2PBg5C2ajvjIEFzzwnrsPMweQa/YZOtcdrIFu8sbuOITkZfkF9hgNAicNopT9xGRPiVYzMhbNB2RIUFY8Px6FNkaVUeiHrDJ1rmxKRbUNNtR1diuOgpRQFhRYMPU9BhEhZlURyEiOq6hMWHIu34GDEJg/rPrUFrTojoSHYNNts5lp0QBAHZxXDaR5o7Ut2F3RQOHihCRTxgWF468RdPR7nDhyme/RUV9q+pI1A2bbJ0bnRwJgDOMEHlD1yqPXEqdiHxFVlIklv9iGupaOjD/2XWobuKRb71gk61zFrMJ6bFhnGGEyAtWFNiQGh2KzMQI1VGIiPpswtBovHBtLsrrWnHVs+tQ12JXHYnAJtsnjOXy6kSaa+tw4puiaswZHQ8hOHUfEfmWXGssnlmQgwNVzVj4wgY0tTtURwp4bLJ9QHayBQerm1kwRBpad7AWrR1ODhUhIp91yqh4PH7lZOw8XI9fLN2AVrtTdaSAxibbB2SnuFd+LODebCLN5BfYEBJkwMzhcaqjEBEN2Fljk/DIpROxobgWN7y0Ce0ONtqqsMn2AV1NNoeMEGlDSokVBTbMGjEEocFG1XGIiAblwkmp+NvF4/HV3irc/spWOJwu1ZECEptsH5BkMSM2PJgnPxJpZH9VM0prWzhUhIj8xuXT0nHv+dn4dNcR3PnmdrhcXNTO24JUB6DeCSGQnWzhXNlEGsnvnLqP82MTkT+57uRhaLU78PD/9iIs2Ii/XDSOJ3Z7EZtsH5GdYsHSNcXocLpgMvIABJEnrSiwITMxAkNjwlRHISLyqJvnjESz3YmnVu5HWLARvztvDBttL2G35iPGplhgd7hwoKpZdRQiv9LQ1oENxbWYOzpRdRQiIo8TQuCus7OwcGYGnll1EP/6cp/qSAGDe7J9RHZy18mP9chKilSchsh/rN5XDYdLcjw2EfktIQTuu2Asmu1O/POLfQgPDsL1pw5XHcvvcU+2jxgWF46QIAN2Hea4bCJPWlFgQ1SoCVPSo1VHISLSjMEg8I9LJuAnE5LxwMd78NK3Jaoj+T3uyfYRQUYDRidFcho/Ig9yuSRWFtpwamY8gniuAxH5OaNB4NFLJ6HV7sS97+1EWLARP5syVHUsv8W/Kj4kOyUKuysaICWn4SHyhB2H61HdZMfc0fGqoxAReUVwkAFPzp+CmcOH4DdvbMMnOypUR/JbbLJ9SHaKBXUtHSivb1MdhcgvrCiwQQjgtEyOxyaiwGE2GfHMghxMSovGba9uQX6hTXUkv8Qm24d8d/Ij58sm8ogVBTZMTotGbHiw6ihERF4VHhKEF66dhszESNzw4iZ8e6BGdSS/wybbh4xJjoQQbLKJPMHW0IYdh+s5qwgRBayoUBOW/2Ia0mLDcN3SDdhSelR1JL/CJtuHhAUHYVhcOHZX1KuOQuTzVhZWAeAqj0QU2IZEhCBv0XQMiQjBwufXc0eeB7HJ9jFcXp3IM1YU2JBkMX83DIuIKFAlWszIWzQd4SFBuPq5dSiyNamO5BfYZPuY7BQLyo62ormDM4wQDZTd4cLqomrMGR3P5YWJiACkxYYhb9F0CAFc9ew6VLW4VEfyeWyyfczYlCgAwKFG/vITDdSG4lo0tTswJ4tDRYiIugyPj8CL101Ha4cTD25owxHOZjYobLJ9TNeh7dIGNtlEA7WiwIZgowEnjYxTHYWISFfGJFuw/BfT0GiXmP/st6hualcdyWexyfYx8ZEhiI8MQQmbbKIByy+wYfrwWISHcNFbIqJjTUyLxq+mmnG4rhULnluP+pYO1ZF8EptsHzQ2xYJSDhchGpDi6mYcqG7m1H1ERCeQFWvEf67OQZGtCdcsXY+mdofqSD6HTbYPyk62oLzJBbuDjTZRf60ocK9sxiabiOjETsuMx2NXTMb2snosWrYBbR1O1ZF8CptsH5SdYoFTAvtsjaqjEPmc/EIbhseHI2NIuOooRES6d864JPzfzydi3cFa3PjSJu7g6wc22T6o6+RHzpdN1D/N7Q6sO1CL07kXm4iozy6anIoHLhqP/MIq/PK1LXA42Wj3Bc/68UHWIeEIMXJ5daL+Wl1UDbvTxVUeiYj66crp6WixO/CXj/bAbNqOh+dNhMHAdQZOhE22DzIYBNIiDdhdwSabqD/yC2yIDAlCrjVWdRQiIp+z6JThaLE78cjnexEWbMSfLxzHBb1OgE22j0q3GLChvAEul+QnSaI+kFJiRYENp2TGwWTkSDkiooG4de5INLc78J+vDyA8OAj3nDuajfZx8C+Nj0qPNKCx3YGyo62qoxD5hF3lDbA1tnOVRyKiQRBC4J5zR+OqGen4z9cH8O8VRaoj6Rb3ZPuoDIv789HuinqkDwlTnIZI/7qm7pvNJpuIaFCEEPjTT8f9YOjIolOGq46lO9yT7aNSIwwwGgRPfiTqoxUFNkwcGoX4yBDVUYiIfJ7BIPDgJRNw3vgk/OWjPXh5XanqSLrDJttHBRsFRsSHcxo/oj6oaWrHtrI6zipCRORBQUYD/nnZZMzJiseSd3fg3S2HVUfSFTbZPmxsShRnGCHqg5WFVZCSqzwSEXlacJABT101FdOHxeKON7bh051HVEfSDTbZPiw72YKK+jbUNttVRyHStRWFNsRFhGBcSpTqKEREfsdsMuLZhbmYMDQKt76yGV/trVIdSRfYZPuw7BT3yo97uDeb6LgcLomv91ZhTlY8p7skItJIREgQll4zDaMSIvH/XtyIdQdqVEdSjk22D/t+efV6xUmI9KuozoXGNgeHihARaSwqzITl101DanQorlu2EVsP1amOpJRmTbYQ4nkhhE0IsfM4twshxGNCiCIhxHYhxBStsvirmPBgpESZOcMIeYS/1uy2KidMRoGTR8WpjkLkMf5ar+T74iJCkLdoBmLCTVj4/PqAPtqu5Z7spQDOOcHt5wIY1XlZDOApDbP4pbw8oHy3Ba9/3gCr1f090SAshR/VbF4eYLUC720IQUd5LN5/y6Q6EpEnLYUf1Sv5l6QoM15eNAOhJiPmPbEO1vFNMBgQcL2KZk22lPJrALUn2ORCAMul27cAooUQyVrl8TdffJGAxYuBumILTEOaUXrYicWLA+uXlzzLn2o2Lw9YvBgoO9qC4Lgm1O5KYH2QX/GneiX/lBYbhssTp6OxAXCcsg6GyBaUlCCg3otVjslOBXCo2/dlnddRHzz77HC0tAD2yigIg4QpvgEtLcCSJaqTkR/zmZpdsgRoaQFCkt3nK3RURbI+KND4TL2S//rnnyNw5NXpMEa0IebUQgAIqPdilcuq93Sav+xxQyEWw324C/Hx8Vi5cqWGsXrX1NSkPIPNdhoAoL08GgAQMvQo7BUxKC2VWLnyK69kUP08qH58vWTwIp+p2dLS0wAItBXHwdkWhMipxWgrjvdqfXSnh98TZtBPBi/xmXo9lh5eI9UZVD++pzKUlp6G4KEdEAagtSSu2/V9ey/Ww/MwKFJKzS4ArAB2Hue2/wC4otv3hQCSe7vPzMxMqVp+fr7qCDIxsVUCUgJSply/QsZftEECUmZkeC+D6udB9ePrJQOAjZI1+wMZGfK7+rBML5IZd38oQ1JrvFof3enh94QZ9JGB9do71a+RHjKofnxPZcjIkDLuoo1y6G2fSRHk+O59ua/vxXp4HgZTsyqHi7wPYEHnGdAzANRLKSsU5vEpixYdQFiY++v2w7EIGXoUYWESDzygNhf5NZ+p2QcewHf10bjJCkdjCIbMLcBf/tLjjjwif+Qz9Ur+6877WhE2qhJN29IgHUYA7vfmQOlVNBsuIoR4BcBsAHFCiDIA9wEwAYCU8mkAHwM4D0ARgBYA12qVxR+dcYYNY8ZkY8kSoKYsBhHjy/DAv5sxf36E6mjko/ypZufPd/+7ZAlQWmpAUOEoIGcnUnOqAHC+bPJ9/lSv5L9aUkpgKJSIqspAvQDS090Ndtd7tL/TrMmWUl7Ry+0SwM1aPX4gmD/ffdlfFYvT/w9IHl8LgE02DYy/1WxXfaxc+RVmnXwqznjkAB78rBCnZXLlR/J9/lav5H/aOpx4Zf0hnJGdiGf+HqY6jhJc8dEPDI8LR2x4MDYUH1UdhUiXgoMMuOOsTOypaMAH28tVxyEi8nsfba9AbbMdC2daVUdRhk22HxBCICcjBhuLTzRlKlFgu2BCCkYnReKRz/eiw+lSHYeIyK8tX1uMEfHhOGnkENVRlGGT7SemDYtFcU0LbI1tqqMQ6ZLBIHDn2VkoqWnB6xsP9f4DREQ0IFtKj2JbWT0WzrJCiMAdnscm20/kWGMBABs5ZITouOaOTkBORgwe+3IfWu1O1XGIiPzS8rUliAgJws+mDFUdRSk22X5ibIoFZpMBGzhkhOi4hBC465zRqGxox7K1xarjEBH5narGdny4vRzzpg5FRIjKNQ/VY5PtJ0xGAyanxXBPNlEvpg2LxeyseDy1cj/qWztUxyEi8iuvri9Fh1Pi6pkZqqMoxybbj+RaY7CrvB5N7Q7VUYh07TdnZaG+tQPPfH1AdRQiIr/R4XQhb10pThkVhxHxnFKYTbYfyR0WC5d0n3BARMc3LjUKF0xMwXOrD6KqsV11HCIiv/C/XZU40tAW0NP2dccm249MTo+BQYDzZRP1wa/PzITd6cLjK/apjkJE5BeWrS1GWmwo5ozmyroAm2y/EhEShOwUC+fLJuqDYXHhuDQnDS+vL8Wh2hbVcYiIfNqeigasP1iLq2dkwMhVdQGwyfY7ORmx2FJax8U2iPrg9tNHwSAEHv1ir+ooREQ+bfnaYphNBlyak6Y6im6wyfYzudZYtHY4sbu8QXUUIt1LijLjmllWvLPlMAqPNKqOQ0Tkk+pa7Hhny2FcNCkV0WHBquPoBptsP5NrjQEAzpdN1Ec3nDYCEcFBePh/haqjEBH5pDc2lqGtw4UFPOHxB9hk+5kEixkZQ8LYZBP1UUx4MBafOhyf767EZs7MQ0TUL06XxPJvizHNGovsFIvqOLrCJtsP5WTEYmPxUUgpVUch8gm/OHkY4iKC8dCnhawbIqJ+WFlow6HaViycZVUdRXfYZPuhXGsMaprtOFjdrDoKkU8IDwnCLXNGYu2BGqwuqlYdh4jIZyxdU4wkixlnjU1UHUV32GT7oRxrLABwiXWifrhiejpSo0PxIPdmExH1yf6qJqzaV43509NhMrKlPBafET80Ij4cseHBWM9x2UR9FhJkxK/OzMSOw/X4ZOcR1XGIiHTvxbUlCDYacPm0dNVRdIlNth8SQiAnI4aL0hD108WTUzEqIQIP/68QDs41T0R0XE3tDry5qQw/mZCM+MgQ1XF0iU22n8q1xqK4pgW2xjbVUYh8htEg8Juzs3Cgqhlvbz6sOg4RkW69s7kMTe0OLJiZoTqKbrHJ9lM5nfNlb+K4bKJ+OSs7EZPSovHoF3vR1uFUHYeISHeklFi2tgQThkZhUlq06ji6xSbbT41NiYLZZMAGNtlE/SKEwF1nZ6Givg0vfVuiOg4Rke6s2V+DIlsTFs60QgihOo5uscn2U8FBBkxKi8bGEo7LJuqvWSPjcPLIODy5cj+a2h2q4xAR6crSNcWIDQ/GTyYkq46ia2yy/dg0ayx2lTegmU0CUb/deXYWapvteHbVAdVRiIh041BtC77cU4krpqXBbDKqjqNrbLL9WI41Fk6XxJbSOtVRiHzOxLRonDsuCc98fQA1Te2q4xAR6cJL60oghMD86TzhsTdssv3Y5PRoGASwgVP5EQ3IHWdlorXDiSdX7lcdhYhIubYOJ17bcAhnZSciJTpUdRzdY5PtxyLNJoxJtnBcNtEAjUyIxCVThuLFb0tQXteqOg4RkVLvby1HXUsHFsy0qo7iE9hk+7lcayy2lNahgwtrEA3IL8/MBCTwry/2qY5CRKSMlBJL1xQjKzESM4bHqo7jE9hk+7lcayxa7E7sLm9QHYXIJ6VGh+KqGRl4Y9MhFNmaVMchIlJiU8lR7K5owIJZGZy2r4/YZPu5rkVpOC6baOBunjMCoSYjHvm8UHUUIiIllq0tQaQ5CBdPTlUdxWewyfZziRYz0mPDsJGL0hAN2JCIEFx3ynB8vOMIdpTVq45DRORVlQ1t+GRHBS7NSUNYcJDqOD6DTXYAyLHGYGNJLaSUqqMQ+azrTxmGmDATHvysQHUUIiKvenldKZxS4uoZnLavP9hkB4Bcayyqm+wormlRHYXIZ0WaTbh5zkis2leNNfurVcchIvIKu8OFl9eXYnZmPKxx4arj+BQ22QEgt2tc9kGOyyYajKtmZCA5yowHPy3kkSEiCgif7KxAVWM7Fs6yqo7ic9hkB4AR8RGICTPx5EeiQTKbjLj99FHYeqgOn++uVB2HiEhzy9eWwDokDKeOilcdxeewyQ4AQgjkWGOxsYQnPxIN1rypQzE8LhwP/68QThf3ZhOR/9p5uB6bSo7i6plWGAyctq+/2GQHiFxrDA5WN6OqsV11FCKfFmQ04I6zsrC3sgnvbjmsOg4RkWaWrSlGWLAR86YOVR3FJ7HJDhA5VvfqTJu4xDrRoJ07LgnjUi149Iu9sDu4mioR+Z9Gu8R728px8eRURIWaVMfxSWyyA8S4lCiYTQasP8ghI0SDZTAI3Hn2aJQdbcUr60tVxyEi8rivyzpgd7h4wuMgsMkOEMFBBkxKi8ZG7skm8ohTR8VhxvBY/HtFEZrbHarjEBF5jMPpwopSB2YOH4LMxEjVcXwWm+wAkmuNxa7yBjYERB4ghMBd54xGdVM7XvjmoOo4REQe82WBDTVtknuxB4lNdgDJscbC6ZLYeqhOdRQivzAlPQZnjEnEf74+gLoWu+o4REQesWxNMWLNAmeMSVAdxaexyQ4gU9KjYRDgfNlEHnTn2Vloanfgqa/2q45CRDRo+yobsWZ/DeamByHIyDZxMPjsBZBIswmjkyxssok8KCspEhdPSsXSb4pxpL5NdRwiokFZtrYYwUEGnDaUM4oMFpvsADNtWCy2lNahw8lpx4g85VdnZsIlJR5bsU91FCKiAWto68Dbmw/jpxNTEBnMxWcGi012gMmxxqDF7sSeigbVUYj8RlpsGK6Ylo7XNxxCcXWz6jhERAPy5sYytNidWDjTqjqKX2CTHWByMtyL0mwo5nzZRJ50y9yRMBkNeOTzvaqjEBH1m8sl8eK3JZiSHo3xQ6NUx/ELbLIDTFKUGWmxodjIcdlEHpUQacYvTrbi/W3l2FVerzoOEVG/rCqqxsHqZk7b50FssgNQbkYsNhTXQkqpOgqRX1l86ghEhZrw8GeFqqMQEfXLsjXFiIsIwbnjklVH8RtssgNQjjUW1U12FNe0qI5C5FeiQk244bQRyC+s4iw+ROQzSmqakV9ow5XT0xEcxNbQU/hMBqBpw2IAcL5sIi1cM8uKhMgQPPhpAY8WEZFPeHFtCYxCYP70dNVR/Aqb7AA0Ij4CMWEmjssm0kBosBG3nT4KG4qPYmVhleo4REQn1GJ34PWNh3DOuCQkWsyq4/gVNtkBSAiBqRmx2MgZRog0cVluGjKGhOHBzwrhcnFvNhHp17tbytHQ5uAJjxrQtMkWQpwjhCgUQhQJIe7p4fbZQoh6IcTWzssftMxD38u1xuBAdTOqGttVRyGdYL16jslowK/PzMSeigZ8sL1cdRzyQ6xX8gQpJZavLUZ2sgU5GTGq4/gdzZpsIYQRwBMAzgWQDeAKIUR2D5uuklJO6rz8Sas89EM5Vvd82ZtKOGSEWK9auGBCCkYnReKRz/fCwb3Z5EGsV/KUdQdrUXCkEQtnZUAIrvDoaVruyZ4GoEhKeUBKaQfwKoALNXw86ofxqVEICTJwURrqwnr1MINB4K5zslBS04JVZQ7Vcci/sF7JI5avLUZ0mAkXTkpVHcUvadlkpwI41O37ss7rjjVTCLFNCPGJEGKshnmom+AgAyalRfPkR+rCetXAnKwE5GTE4L39HWi1O1XHIf/BeqVBK69rxWe7KnFZThrMJqPqOH4pSMP77um4w7HHTDcDyJBSNgkhzgPwLoBRP7ojIRYDWAwA8fHxWLlypWeT9lNTU5NfZEgQdnx0uAOffZGPkKD+HyZS/Tyofny9ZPAQj9UroK+aVf0anZnoxMYSifte+hLnDQ9WlkP188AMHuW39Qro4zVSncEbj//WXjtcLomRqMDKlZVKMvRGDxkGRUqpyQXATACfdfv+twB+28vPFAOIO9E2mZmZUrX8/HzVETySIb+gUmbc/aFcva9KWYbBUP34eskAYKPUab1KHdSsHl6jCx76RE7442eyrsWuLIMengdmYL32herXSA8ZtH78VrtDTvnT/+R1Szcoy9AXesgwmJrVcrjIBgCjhBDDhBDBAC4H8H73DYQQSaJzpL0QYhrcw1dqNMxE3UzJiIEQXJSGALBeNXVJpgn1rR145usDqqOQf2C90qB8vKMCNc12XMNp+zSl2XARKaVDCHELgM8AGAE8L6XcJYS4ofP2pwHMA3CjEMIBoBXA5Z2fGsgLLGYTRidZOF82sV41lmEx4oKJKXhu9UEsmJWBhEgu+EADx3qlwVq2phgj4sNx0sghqqP4NS3HZENK+TGAj4+57uluXz8O4HEtM9CJTbPG4I1NZXA4XQgycm2iQMZ61davz8zExzsq8MSKItx/4TjVccjHsV5poLYeqsO2snr86cKxnLZPY+yqAlyONRYtdif2VDSqjkLk14bFhePSnDS8vL4Uh2pbVMchogC1fE0xIkKC8LMpQ1VH8XtssgNcjtW9wtN6jssm0tztp4+CQQg8+sVe1VGIKABVN7Xjw+0VuGRKKiJCNB3MQGCTHfCSo0IxNCaU82UTeUFSlBnXzLLinS2HUXiER4+IyLteXV8Ku9OFq2daVUcJCGyyCbnWWGwoPgqeE0OkvRtOG4GI4CA8/L9C1VGIKIB0OF146dtSnDIqDiMTIlTHCQhssgm51lhUN7WjpIbjRIm0FhMejMWnDsfnuyuxuZQz+xCRd3y+uxJHGtqwkHuxvYZNNiG3c1w258sm8o5fnDwMcRHBePDTAh5BIiKvWLqmGENjQjFndILqKAGDTTZhRHwEosNMbLKJvCQ8JAi3zBmJbw/UYtW+atVxiMjP7alowPqDtVgwMwNGA6ft8xY22QSDQSAnI4aL0hB50RXT05EaHYqHPivk3mwi0tTytcUwmwy4NCdNdZSAwiabALjnyz5Q3YzqpnbVUYgCQkiQEb86MxM7Dtfjk51HVMchIj9V39KBd7YcxkWTUhEdFqw6TkBhk00A3Cc/AuDebCIvunhyKkYlRODh/xXC4XSpjkNEfuj1jYfQ1uHCAp7w6HVssgkAMC7VgpAgA+fLJvIio0HgN2dn4UBVM97aXKY6DhH5GadL4sVvSzDNGovsFIvqOAGHTTYBcB+6npgWzZMfibzsrOxETEqLxj+/2Ie2DqfqOETkR1YW2lBa24IFszJURwlIbLLpO7nWGOwsb0CL3aE6ClHAEELgrrOzUFHfhpe+LVEdh4j8yLK1JUi0hODssUmqowQkNtn0nRxrLJwuia2ldaqjEAWUWSPjcMqoODy5cj8a2zpUxyEiP7C/qglf763C/OkZMBnZ7qnAZ52+MyU9BkIAG3jyI5HX3Xl2Fmqb7Xh21UHVUYjID7y4tgQmo8AV09JVRwlYbLLpO1GhJoxOsmBjCcdlE3nbhKHROHdcEp5ddQA1nEqTiAahqd2BtzaV4SfjkxEfGaI6TsBik00/kGuNweaSo5xOjEiBO87KRGuHE0+u3K86ChH5sHc2l6Gx3YEFs6yqowQ0Ntn0AznWWDTbndhT0ag6ClHAGZkQiXlTh+LFb0twuK5VdRwi8kFSSixbW4IJQ6MwOS1adZyAxiabfiDXGgMAnMqPSJHbz8gEJPCvL/aqjkJEPmjN/hoU2ZqwYKYVQgjVcQIam2z6geSoUKRGh3JcNpEiqdGhuGpGBt7cVIYiW5PqOETkY5atKUZseDDOn5CsOkrAY5NNPzJtWCw2FB+FlFJ1FKKAdPOcEQg1GfHI54WqoxCRDyk72oIv9lTi8tw0mE1G1XECHpts+pEcawyqGttRUtOiOgpRQBoSEYJFpwzHxzuOYHtZneo4ROQjXvq2FABw1Qyu8KgHbLLpR3KtsQA4LptIpUWnDENMmAkPfca92UTUu7YOJ17dUIqzspOQEh2qOg6BTTb1YGR8BKJCTdjIRWmIlIk0m3DznJFYta8aa/ZXq45DRDr3/rZy1LV0YCGn7dMNNtn0IwaDQE5GDDbw5Ecipa6akYHkKDMe/LSQ50gQ0XFJKbFsTTGyEiMxY3is6jjUiU029Sh3WCwOVDVz5TkihcwmI355xihsPVSHz3dXqo5DRDq1ufQodpU3YMGsDE7bpyNssqlH38+XzSEjRCpdMmUohseH46HPCuF0cW82Ef3Y0jUliDQH4aJJqaqjUDdssqlH41KjEBxkwEae/EikVJDRgDvOzMI+WxPe3XJYdRwi0hlbQxs+2VGBS3PSEB4SpDoOdcMmm3oUEmTEpKHR2FDCPdlEqp07LgnjUi149Iu9sDtcquMQkY68vL4UDpfE1Zy2T3fYZNNx5VhjsOtwPVrsDtVRiAKawSBw19mjUXa0Fa+sL1Udh4h0wu5wIW9dKWZnxcMaF646Dh2DTTYdV641Fg6XxNZDdaqjEAW8U0bFYcbwWPx7xT40t/ODLxEBn+46gqrGdk7bp1Nssum4pmTEQAhgw0EOGSFSTQiBu84ZjeomO1745qDqOESkA8vWFMM6JAynjYpXHYV6wCabjisq1ISsxEhs5HzZRLowJT0GZ4xJxH++PoC6FrvqOESk0M7D9dhUchRXz7TCYOC0fXrEJptOKNcai80lR+Fw8mQrIj248+wsNLU78NRX+1VHISKFlq0pRqjJiHlTh6qOQsfBJptOKMcag2a7EwVHGlVHISIAWUmRuHhSKpZ+U4wj9W2q4xCRAkeb7XhvWzl+NiUVUaEm1XHoONhk0wnlWt3Ls27gfNlEuvGrMzPhkhKPrdinOgoRKfDqhkOwO1xYMNOqOgqdAJtsOqGU6FCkRoeyySbSkbTYMFwxLR2vbziE4upm1XGIyIucLomXvi3BzOFDkJUUqToOnQCbbOpVrjUGG4qPQkou6UykF7fMHQmT0YBHPt+rOgoRedEXeypxuK4VC2dx8Rm9Y5NNvcqxxqKqsR2ltS2qoxBRp4RIM35xshXvbyvHrvJ61XGIyEuWry1GSpQZZ4xJVB2FesEmm3r1/bhszpdNpCeLTx2BqFATHv6sUHUUIvKCfZWN+KaoBvNnZCDIyBZO7/gKUa9GJUQgKtSEjRyXTaQrUaEm3HDaCOQXVvG8CaIAsHxtCYKDDLg8N011FOoDNtnUK4NBICcjBuv5R5xId66ZZUVCZAj+8UkBz5sg8mMNbR14a3MZLpiQgiERIarjUB+wyaY+ybHG4kBVM2qa2lVHIaJuQoONuO30UdhYchT5hTbVcYhII29tKkOL3YlrZllVR6E+YpNNfZJrjQEAbCzhuGwivbksNw0ZQ8Lw0Gd74XJxbzaRv3G5JF5cW4LJ6dEYPzRKdRzqIzbZ1Cfjh0YhOMjAcdlEOmQyGvDrMzOxp6IBH2wvVx2HiDxsVVE1DlQ3YyEXn/EpbLKpT0KCjJg4NIozjBDp1AUTUjA6KRKPfL4XHU6X6jhE5EHL1xQjLiIE541PVh2F+oFNNvVZjjUWOw/Xo8XuUB2FiI5hMAjcdU4WSmpa8NqGQ6rjEJGHlNa0YEWhDVdOS0NwENs2X8JXi/psmjUWDpfE1kN1qqMQUQ/mZCUgJyMGj325D612p+o4ROQBL35bDKMQmD+DKzz6GjbZ1GdT0mMgBLCRQ0aIdEkIgbvOGQ1bYzuWrS1WHYeIBqnF7sBrGw7h7HFJSLSYVcehfmKTTX0WFWZCVmIkF70g0rFpw2IxJyseT63cj/rWDtVxiGgQ3ttajoY2B6ft81Fssqlfcqwx2FxyFA6eWEWkW785Owv1rR3479f7VUchogGSUmLZmmKMSbYgJyNGdRwaADbZ1C+51lg0250oONKoOgoRHcfYlChcMDEFz68uhq2xTXUcIhqA9QdrUXCkEdfMyoAQQnUcGgA22dQvudZYAOCQESKd+/WZmbA7XXhiRZHqKEQ0AMvWFiMq1ISfTkxVHYUGSNMmWwhxjhCiUAhRJIS4p4fbhRDisc7btwshpmiZhwYvJToUqdGhPPnRD7Fe/cuwuHBclpuGl9eX4lBti+o45GGsV/9W2+bCZ7sqcXluGkKDjarj0ABp1mQLIYwAngBwLoBsAFcIIbKP2excAKM6L4sBPKVVHvKcOBmDj9bXYu7cU2G1Anl5qhPRYLFe/dNtc0dBugROuXEv5s49jfXqJ1iv/isvD7Bagev+mgKnUyKiktP2+TIt92RPA1AkpTwgpbQDeBXAhcdscyGA5dLtWwDRQgguZ6RjeXnA6ndjgdB2GC1tKCkBFi/mH24/wHr1Q19+aEbDRiuk9TCChjSxXv0H69UP5eW567OkzImIiYfQUpSIe24JY736MC2b7FQA3ZcdK+u8rr/bkI4sWQI0HnCf5RyS5h6X3dLivp58GuvVDy1ZAtSsHgHZHoToUwoBsF79BOvVDy1Z4q7P8KwKGMPtaNycwXr1cUEa3ndPp8LKAWwDIcRiuA93AUC7EGLnILMNVhyA6sDMMHUqAJT844fXlpQAQmza5OUwAfw6/ECWB+7DY/UK6K5m9fAaKa3XQ//64bWK6hUI6NfiO6zX3ql+jRRlcNdr8273pQvrVXmGAdeslk12GYC0bt8PBVA+gG0gpfwvgP8CgBBio5Qyx7NR+4cZ9JFB9ePrKYMH7sZj9Qroq2ZVPz4zMMOxj++Bu/HbemUGfTw+M/www0B/VsvhIhsAjBJCDBNCBAO4HMD7x2zzPoAFnWdBzwBQL6Ws0DATEfWM9UrkO1ivRD5Asz3ZUkqHEOIWAJ8BMAJ4Xkq5SwhxQ+ftTwP4GMB5AIoAtAC4Vqs8RHR8rFci38F6JfINWg4XgZTyY7gLvft1T3f7WgK4uZ93+18PRBssZnBTnUH14wN+lEGjegXUP0eqHx9ghi7MwHrtC2ZQ//gAM3QZcAbhrkMiIiIiIvIULqtORERERORhum+yhRA/F0LsEkK4hBDHPcNUCFEshNghhNjqobO3B5LhhMvcDjJDrBDicyHEvs5/Y46znUefBz0s3duHDLOFEPWd/+etQog/ePjxnxdC2I43rZWXnoPeMmj6HPQV6/W7+1ZSr533qbRmVddr52OwZvuINRvY9drHDPwbO9DnQEqp6wuAMXDPUbgSQM4JtisGEKcqA9wnn+wHMBxAMIBtALI9mOFBAPd0fn0PgH9o/Tz05f8E94k1n8A9J+sMAOs8/Nz3JcNsAB9q+Dt4KoApAHYe53ZNn4M+ZtD0OehHTtarVFOvff1/afn7qod67XwM1mzfcwZ8zQZqvfYjg6a/q/5cr7rfky2l3COlLPSBDH1Z5nYwLgSwrPPrZQAu8uB9H48elu7V+nntlZTyawC1J9hE8+WL+5BBF1iv31FRr4D6mlVerwBrtj9YswACt177mkFT/lyvum+y+0EC+J8QYpNwr17lbVovYZsoO+c47fw34TjbefJ50MPSvX29/5lCiG1CiE+EEGM9+Ph9oZfli1U+B/3FenXz9POgumZ9oV4B1uxA+HPNBmq99uf++Td2AM+BplP49ZUQ4gsAST3ctERK+V4f7+YkKWW5ECIBwOdCiILOTybeytDnJWwHkqEfdzOo5+HYSD1cN+ClezXMsBlAhpSySQhxHoB3AYzyYIbeaP0c9IXXngPWa+8Z+nE3nqxXQH3N+kK9AqzZLgFTs6zXQWVQXbM+W6+6aLKllGd44D7KO/+1CSHegfsQSJ9/+T2Qoc9L2A4kgxCiUgiRLKWs6DxMYjvOfQzqeTiGR5fu1SqDlLKh29cfCyGeFELESSmrPZhjUBm15s3ngPXaewZF9Qqor1lfqFeANTuQ+/DpmmW9DjyDDmrWZ+vVL4aLCCHChRCRXV8DOAtAj2eIaqgvy9wOxvsAFnZ+vRDAjz75a/A86GHp3l4zCCGShBCi8+tpcP9e13gwQ2+UL1+sg+egz1ivbho9D6pr1hfqFWDN9ksA1Gyg1mufMujgd9V361VqdLaopy4ALob7U0w7gEoAn3VenwLg486vh8N9Ruw2ALvgPvzk1Qzy+zNg98J9pq6nMwwB8CWAfZ3/xnrjeejp/wTgBgA3dH4tADzRefsOnODsdA0z3NL5/90G4FsAszz8+K8AqADQ0fl7cJ2C56C3DJo+B/3IyXqV6ur1eP8vb/6+qq7XzsdgzfY9Z8DXbCDXax8z8G/sAJ8DrvhIRERERORhfjFchIiIiIhIT9hkExERERF5GJtsIiIiIiIPY5NNRERERORhbLKJiIiIiDyMTTYRERERkYexySYiIiIi8jA22UREREREHvb/AV4IXbNoikkyAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 864x576 with 3 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f3 = plt.figure(3, figsize=(12,8))\n", "x = np.arange(4)\n", "\n", "for k in range(3):\n", " qk = np.zeros(4)\n", " qk[1:] = Phi3[::-1,k]\n", " qk /= np.max(np.abs(qk)) # adjust scale for unity amplitude\n", " \n", " plt.subplot(1,3,k+1)\n", " plt.plot(qk, x, 'bo')\n", " plt.plot(qk, x)\n", " \n", " plt.xlim(-1.5, 1.5); plt.ylabel(str(k+1));\n", " plt.ylim( 0.0, 3.5);\n", " plt.title('fk = {0:3.1f}Hz'.format(fk3[k]));\n", " plt.grid(True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<table align=\"left\">\n", " <tr>\n", " <td align=\"left\"><img src=\"images/model3dof_mode1.jpg\" alt=\"3dof mode 1\" width=\"240px\"/></td>\n", " <td align=\"left\"><img src=\"images/model3dof_mode2.jpg\" alt=\"3dof mode 2\" width=\"240px\"/></td>\n", " <td align=\"left\"><img src=\"images/model3dof_mode3.jpg\" alt=\"3dof mode 3\" width=\"240px\"/></td>\n", " </tr>\n", " <tr>\n", " <td align=\"left\">$f_1 = 5.4$Hz</td>\n", " <td align=\"left\">$f_2 = 15.2$Hz</td>\n", " <td align=\"left\">$f_3 = 22.9$Hz</td>\n", " </tr>\n", "</table> \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Structural response to initial conditions <a name=\"section_3\"></a> \n", "\n", "Let us recall the free vibration solution for mode $k$, previously stated:\n", "\n", "$$ u_k(t) = u_{k0} \\sin \\left( \\omega_k t + \\theta_k \\right)$$\n", "\n", "As stated before, the complete solution will be a superposition of solutions for all modes:\n", "\n", "$$ \\vec{u}(t) = \\sum_{k = 1}^{N} u_k(t) \\, \\vec{\\varphi}_k = \n", " \\sum_{k = 1}^{N} u_{k0} \\sin \\left( \\omega_k t + \\theta_k \\right) \\, \\vec{\\varphi}_k $$\n", "\n", "where $N$ is the number of degrees of freedom (length of \n", "vector $\\vec{\\varphi}_k$). Deriving the equation above with respect to \n", "time gives the corresponding instantaneous velocity:\n", "\n", "$$ \\dot{\\vec{u}}(t) = \\sum_{k = 1}^{N} u_{k0} \\omega_k \n", "\\cos \\left( \\omega_k t + \\theta_k \\right) \\, \\vec{\\varphi}_k $$\n", "\n", "Now we provide the initial conditions $\\vec{u}_0$ and $\\vec{v}_0$ \n", "for time $t = 0$:\n", "\n", "\\begin{align*}\n", "\\vec{u}_0 = \\vec{u}(0) &= \\sum_{k = 1}^{N} u_{k0} \\sin \\left( \\theta_k \\right) \\, \\vec{\\varphi}_k \\\\\n", "\\vec{v}_0 = \\dot{\\vec{u}}(0) &= \\sum_{k = 1}^{N} u_{k0} \\omega_k \\cos \\left( \\theta_k \\right) \\, \\vec{\\varphi}_k \n", "\\end{align*}\n", "\n", "To separate the conditions equation for each mode, we create the following\n", "scalar quantities:\n", "\n", "\\begin{align*}\n", "\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{u}_0 &= \\vec{\\varphi}_i^{\\intercal} \\mathbf{M}\n", "\\sum_{k = 1}^{N} u_{k0} \\sin \\left( \\theta_k \\right) \\, \\vec{\\varphi}_k = \n", "u_{i0} \\sin \\left( \\theta_i \\right) \\; \\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i \\\\\n", "\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{v}_0 &= \\vec{\\varphi}_i^{\\intercal} \\mathbf{M}\n", "\\sum_{k = 1}^{N} u_{k0} \\omega_k \\cos \\left( \\theta_k \\right) \\, \\vec{\\varphi}_k = u_{i0} \\omega_i \\cos \\left( \\theta_i \\right) \\, \\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i\n", "\\end{align*}\n", "\n", "Dividing the two expressions above yields the phase angle of each modal\n", "solution, $\\theta_i$,\n", "\n", "$$ \\tan(\\theta_i) = \\omega_i \\, \\left( \\frac{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{u}_0}{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{v}_0} \\right) $$ \n", "\n", "which can be used to calculate the corresponding amplitudes $u_{i0}$:\n", "\n", "$$ u_{i0} \\sin \\left( \\theta_i \\right) = \\left( \\frac{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{u}_0}{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i} \\right) $$ \n", "\n", "ou:\n", "\n", "$$ u_{i0} \\cos \\left( \\theta_i \\right) = \\frac{1}{\\omega_i} \\left( \\frac{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{v}_0}{\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i} \\right) $$ \n", "\n", "We recall that the scalar quantities $\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{\\varphi}_i$, in the equations\n", "above, are the so-called modal masses, $M_i$. \n", "Furthermore, observe that special care must be taken for zero initial velocity, \n", "what gives infinity for $\\tan(\\theta_i)$ implying that $\\theta_i = \\pi/2$.\n", "\n", "As an example, let us calculate the free vibration response of the 3-dof experimental model subjected to a \n", "small displacement of 5mm in the top mass only. We start by calculating the modal masses, $M_i$ and the \n", "scalar quantities $\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{u}_0$ and \n", "$\\vec{\\varphi}_i^{\\intercal} \\mathbf{M} \\vec{v}_0$:\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.07369762, 0.0591009 , 0.03279853])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "-Phi3[:,0]/10" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.33 0.33 0.33]\n" ] } ], "source": [ "u0 = np.array([[0.000, 0.000, 0.000]]).T # column vector with the initial displacements\n", "v0 = np.array([[1.000, 0.000, 0.000]]).T # column vector with the initial velocities\n", "\n", "Mi = np.dot(np.dot(Phi3.T, M3), Phi3) # modal mass\n", "Mi = np.diag(Mi)\n", "\n", "print(Mi)\n", "\n", "qMu0 = np.dot(np.dot(Phi3.T, M3), u0)\n", "qMv0 = np.dot(np.dot(Phi3.T, M3), v0)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we calculate the free vibration properties $u_{i0}$ and $\\theta_i$:\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mode 1 with phase 0.0000rad and amplitude 21.66mm\n", "Mode 2 with phase 0.0000rad and amplitude 6.20mm\n", "Mode 3 with phase -0.0000rad and amplitude -2.38mm\n" ] } ], "source": [ "thi = np.zeros_like(Mi)\n", "u0i = np.zeros_like(Mi)\n", "\n", "for k in range(3):\n", "\n", "# If there are initial displacements only\n", "# thi[k] = -np.pi/2\n", "# u0i[k] = qMu0[k]/Mi[k]/np.sin(thi[k])\n", "\n", "# If there are initial velocities only\n", " thi[k] = np.arctan(wk3[k]*qMu0[k]/qMv0[k])\n", " u0i[k] = qMv0[k]/Mi[k]/np.cos(thi[k])/wk3[k]\n", " \n", " print('Mode {0} with phase {1:7.4f}rad and amplitude {2:6.2f}mm'.format(k+1, thi[k], 1000*u0i[k]))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally we superpose the modal responses and get the nodal displacements in free vibration:\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAJJCAYAAACHy9AqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADdvklEQVR4nOzdd1hT1xsH8G/YoICyEQFBQVRcQLVq3Yp71bZuW6tW66910KVdjtZZq9a6EVfddQ+q4kIUREFwMGWDsvdOSM7vDwoVWUm4SQi8n+fJ03Jz780bT96b956cey6PMcZACCGEEEIIkYiKogMghBBCCCFEGVEhTQghhBBCiBSokCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkQIU0IYQQQgghUqBCmhBCCCGEEClQIU0I4dSgQYPA4/EUHQb51yeffAIej4e4uDhFh9Io3L17FzweD6tWraqyXNGf20OHDoHH4+HQoUMKi4EQIjkqpAkhteLxeBI9lElFQfXmo2XLlrC0tMSoUaOwYcMGvH79WtFhKpXbt29X/lteuXJF0eE0GBW3hJD6qCk6AEJI47Vy5cpqy1avXg19fX0sXbq0xm2OHDmCoqIiGUfGHWdnZ4wdOxYAUFRUhJSUFPj6+uLatWtYvXo1Nm3ahC+//FLBUUpv/fr1WL58OSwsLGT+WgcOHABQfgLm4eFR+e+qDJTtc0sIaRyokCaE1Ortn7+B8kK6VatWNT4HAFZWVrINimMuLi41vpeLFy9i7ty5WLx4MXR0dDB37lz5B8cBc3NzmJuby/x1cnJycO7cOfTq1QtaWlq4cuUKUlNTYWpqKvPX5oKyfW4JIY0DDe0ghHCqprGmb/5EfvnyZfTu3Rs6OjqwsLDATz/9BJFIBAA4duwYevbsCW1tbVhZWWHz5s01vgZjDAcOHEC/fv2gp6cHHR0duLi4VPaIcmHChAk4d+4cAGD58uUoLCys8nxRURFWrVoFBwcHaGlpwcDAAGPGjIGvr2+1fa1atQo8Hg93797FwYMH0bVrV2hra8PGxgbbt2+vfE9//PFH5f7s7e3x119/VdtXZGQkvv32Wzg5OcHQ0LBy3eXLl6OgoKDa+jWNkX5znPCTJ08wYsQI6OrqQl9fH5MmTZJqPPXx48dRXFyMWbNmYfbs2SgrK8ORI0dqXLcippiYGGzevBn29vbQ1tZG586dcfLkSQCAQCDAzz//DBsbG2hpaaFbt264fv16tX1VfN5KSkrw7bffwtLSElpaWujatatEn4e3P7effPIJ5syZAwCYM2dOjUOY2rVrh3bt2om1vwpZWVlYuHAhTE1NoaOjg3feeQfnz5+vM7Znz55h6tSpMDc3h4aGBqytrfHll18iMzNT7PdHCJEN6pEmhMjN+fPncePGDUycOBH9+vXD1atX8euvv4IxhtatW2PNmjWYMGECBgwYgLNnz+Kbb76Bubk5ZsyYUbkPxhhmzpyJ48ePw97eHtOnT4eGhga8vLwwd+5chIaG1lqAS2rAgAEYMGAA7t27h9u3b2PcuHEAgNLSUgwdOhQPHz6Ek5MTli5dirS0NJw6dQo3btzAqVOn8P7771fb37Zt23D37l1MmDABQ4YMwdmzZ7FkyRLo6Ojg6dOn+PvvvzF27FgMGTIEJ0+exOzZs2FjY4P33nuvch/nzp2Dh4cHBg8ejEGDBkEkEuHhw4fYuHEjvL29ce/ePairq4v1/gICAvDbb79h0KBBWLBgAYKCgnDhwgU8f/4cL168gJaWltj/Vh4eHlBXV8fUqVOhoaGBL7/8Eh4eHvjmm29q3cbNzQ3+/v4YN24cVFVVcfLkSUyfPh2tW7fGzp078eLFC4wePRolJSU4fvw4xo8fj/DwcNjY2FTb14cffohnz57hww8/hEAgwOnTpzF37lykpqZixYoVYr+PChMnTkROTg4uXryICRMmoEePHhLv421FRUUYNGgQnj9/jj59+mDgwIFITEzElClT4OrqWuM2ly5dwkcffQRVVVWMHz8elpaWCA0NxY4dO3D9+nX4+/ujdevWDY6NECIlRgghEgDArK2ta31+4MCB7O1Dy8GDBxkApq6uzh49elS5PC8vj5mYmDAdHR1mZmbGoqOjK59LSEhgGhoarFu3blX2tW/fPgaAzZ07lwkEgsrlpaWlbNy4cQwACwgIqPd93LlzhwFgCxYsqHO9n376iQFgP/30U+WyNWvWMABsxowZTCQSVS5/+vQp09TUZK1bt2Z5eXmVy1euXMkAMAMDgxrfo76+PrO3t2dpaWmVz/n7+zMAbPz48VXiSUpKYqWlpdXiXL16NQPAjh49WmX5xx9/zACw2NjYau8dADt58mSV9WfNmsUAsBMnTtT57/KmoKCgarFOmzaNAWD379+vtn5FTHZ2dlXe88OHDxkA1qpVK/bee++xgoKCyudOnTrFALDFixdX2VfF561z585V/s2Tk5OZubk5U1NTq/JvXvHeV65cWeN+3lTxuT148GCN79va2rrWXKhpfxWfg/nz51dZfv369cr2ePO1MjIymJ6eHmvbti2Lj4+vss3x48cZAPbFF1/U+PqEEPmgoR2EELmZMWMG3nnnncq/dXV1MXbsWBQVFeHzzz+Hra1t5XOWlpZ47733EBISgrKyssrlO3bsQIsWLbBjxw6oqf33o5qGhgbWrl0LADhx4gRnMbdp0wYAkJGRUbns0KFDUFdXx4YNG6r8fN+tWzd88sknyM7OxsWLF6vta/HixTW+x9zcXPzwww8wNjaufK5Xr16wtbXF06dPq+zDwsICGhoa1fb9xRdfAABu3rwp9nsbMGAApkyZUmXZp59+CgB4/Pix2Pvx8PAAAMyaNaty2ezZs6s8V5O333Pv3r1ha2uLnJwcrF27Fi1atKh8bvLkyVBXV6/27/HmvnR1dSv/NjMzg5ubG8rKynD8+HGx34ssHTlyBBoaGlizZk2V5a6urhg6dGiN6+fl5WH9+vXVxnBPmzYNTk5OlUNhCCGKQUM7CCFy07Nnz2rLKi6Eq+mnc3NzcwiFQqSmpsLCwgJFRUV4/vw52rRpgw0bNlRbXyAQAADCw8M5i5kxVuXvvLw8xMTEoFOnTmjbtm219QcNGoS9e/ciODgYM2fOrPKcNO/f39+/WjwHDx7EoUOH8OLFC+Tm5laOMQcg0ZR9Tk5O1ZZVvKecnByx9lFaWopjx46hVatWlUNfAGD48OEwNzfH6dOnsX37drRs2bLatrX9e8TExFT791BVVYWJiQlevXpVYxz9+/evdVlwcLBY70WW8vPzERsbi86dO8PMzKza8/3798etW7eqLHv48GHlf6OioqptU1JSgoyMDGRkZMDIyEg2gRNC6kSFNCFEbvT09Kotq+hVruu5igI5OzsbjDG8evUKq1evrvV13r4wsCGSk5MBoLLnNC8vDwBqnY2iokjKzc2t9pw07//N3nigvFd7x44dsLS0xPjx42Fubg5NTU0A5TOqlJaWivW+AEBfX7/WeIRCoVj7OH/+PLKzszF//vzKOIDywnfGjBnYvHkzTp06VeOsJ9L8e1R8Ft5mYmJSbVlFG9XUFvJWEUNNcQI1f56ysrIAADt37qxz34WFhVRIE6IgVEgTQpRGRXHl7OyMgIAAubzm3bt3AaBySEpFDKmpqTWuX7G8pkKwodLS0rBz505069YNfn5+0NHRqXwuJSWlzpMLWakYuuHu7g53d/da15H19IFpaWmwtLSssqyiLWo6YeCCiooK+Hx+jc+9XbxXfB7S0tJqXL+mz1PFNs+fP4ejo2NDQiWEyAgV0oQQpaGrq4tOnTohLCwMOTk5aNWqlUxfz9vbGz4+PjAxMcGQIUMAlBc3tra2iIqKwqtXr6rd6MTb2xtAzUM1GiomJgaMMQwbNqxKEQ0APj4+nL9efeLi4nDr1i2YmprWevMVLy8v+Pn5ISwsDJ06dZJZLD4+Ppg+fXq1ZYD0baGqqgqg9t751q1b4/nz5ygrK6syXr+wsBAvX76ssq6enh5sbGwQFRWFlJSUasM7amq/3r1749y5c/Dz86NCmpBGii42JIQolcWLF6OoqAjz58+vcQhHbGysVPMgv+3SpUuYPHkyAGDjxo1VCtePP/4YAoEAK1asqDKG+sWLFzh48CD09fUxceLEBsfwNmtrawCAr69vlXHRSUlJWL58OeevV5+DBw+CMYaFCxdi//79NT6++uorAHVfdMiFtWvXIj8/v/Lv1NRUbNmyBWpqatUKbHEZGBgAKP/3rYmLiwsEAgGOHTtWuYwxhhUrVtT42Zw1axb4fD5+/vnnKstv3LhRbXw0UD5/ta6uLn744QeEhIRUe76oqKhyHDUhRDGoR5oQolQWLFiAhw8f4vDhw3jw4AGGDRuGNm3aIDU1FeHh4fD398fx48drvVHG2wICAirvbFhSUoLk5GQ8ePAA0dHR0NbWxs6dO/HJJ59U2ebbb7/F1atX8ddffyEsLAxDhw5Feno6Tp06BYFAgCNHjlSZQYIr5ubmmDx5Ms6ePQsXFxcMHToUqampuHLlCoYMGYKYmBjOX7M2IpGo8kY7b//7vGnGjBn45ptv8Ndff2H9+vViz3EtKVtbWzg6OmLy5MmV80inpaVh7dq1VWZKkUSfPn2gra2Nbdu2IS8vr3KcfMVJyxdffIGDBw9i3rx58PLygrGxMXx8fJCTk4Pu3btXm2Hk22+/xblz5+Du7o6QkBAMGDAAiYmJOH36NMaMGYOrV69WWd/Y2BgnTpzAhx9+iO7du2PkyJFwcHBASUkJ4uPj4e3tjb59++LatWtSvT9CSMNRIU0IUSoVd0gcPXo03N3dceXKFRQUFMDExAR2dnbYvHkzhg0bJvb+AgMDERgYCADQ0dGBgYEBunTpgvnz52P27Nk13l5bS0sLt2/fxsaNG3Hq1Cls3boVOjo6GDBgAL7//vsqN1Dh2qFDh9CuXTucPXsWf/75J6ysrODm5obvvvuuxmnxZMXLywsJCQkYOnRonScthoaGGDduHM6ePYvLly/XeKMaLpw+fRo///wzTpw4gfT0dNjZ2WHdunUNGpttYGCAM2fOYNWqVdi9ezeKi4sB/FdId+3aFdeuXcP333+PM2fOoGXLlhg9ejR+++23atMKAkCLFi3g7e2NFStW4Pz583jy5Am6dOmCU6dOITc3t1ohDQBjxoxBUFAQfvvtN9y8eRNeXl5o0aIF2rZtizlz5lSbGYYQIl889vbcToQQQoiSGDRoELy9vatNU0gIIfJAY6QJIYQQQgiRAhXShBBCCCGESIEKaUIIIYQQQqRAY6QJIYQQQgiRAvVIE0IIIYQQIgUqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApUCFNCCGEEEKIFKiQJoQQQgghRApUSBNCCCGEECIFKqQJIYQQQgiRAhXShBBCCCGESIEKaUIIIYQQQqRAhTQhhBBCCCFSoEKaEEIIIYQQKVAhTQghhBBCiBSokCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkQIU0IYQQQgghUqBCmhBCCCGEEClQIU0IIYQQQogUqJAmhBBCCCFEClRIE0IIIYQQIgUqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApUCFNCCGEEEKIFKiQJoQQQgghRApUSBNCCCGEECIFKqQJIYQQQgiRAhXShBBCCCGESIEKaUIIIYQQQqSgdIX0rl27YGNjAy0tLTg7O8PHx6fO9b29veHs7AwtLS3Y2tpiz549ta578uRJ8Hg8TJw4keOoCSGEEEJIU6NUhfSpU6ewdOlS/PDDDwgKCkL//v0xatQoJCQk1Lh+bGwsRo8ejf79+yMoKAjff/89Fi9ejLNnz1ZbNz4+Hl9//TX69+8v67dBCCGEEEKaAB5jjCk6CHH17t0bTk5O2L17d+WyTp06YeLEiVi/fn219b/77jtcunQJYWFhlcsWLlyIp0+fws/Pr3KZUCjEwIEDMWfOHPj4+CAnJwcXLlyQ6XshhBBCCCHKTU3RAYiLz+cjMDAQy5cvr7Lc1dUVvr6+NW7j5+cHV1fXKstGjBgBDw8PCAQCqKurAwDWrFkDY2NjzJ07t96hIgBQWlqK0tLSyr9FIhGysrJgaGgIHo8n6VsjhBBCCCEyxhhDfn4+2rRpAxUVbgZlKE0hnZGRAaFQCFNT0yrLTU1NkZKSUuM2KSkpNa5fVlaGjIwMmJub48GDB/Dw8EBwcLDYsaxfvx6rV6+W+D0QQgghhBDFSkxMRNu2bTnZl9IU0hXe7vFljNXZC1zT+hXL8/PzMXPmTLi7u8PIyEjsGFasWAE3N7fKv3Nzc2FlZYXIyEgYGBiIvR+inAQCAe7cuYPBgwdX/qpBmi5q7+aF2rt5ofZuXrKysmBvbw9dXV3O9qk0hbSRkRFUVVWr9T6npaVV63WuYGZmVuP6ampqMDQ0REhICOLi4jBu3LjK50UiEQBATU0NERERaN++fbX9ampqQlNTs9pyAwMDGBoaSvzeiHIRCATQ0dGBoaEhHXibAWrv5oXau3mh9m6euByGqzSzdmhoaMDZ2RleXl5Vlnt5eaFv3741btOnT59q69+4cQMuLi5QV1eHg4MDnj9/juDg4MrH+PHjMXjwYAQHB8PS0lJm74cQQgghhCg3pemRBgA3NzfMmjULLi4u6NOnD/bt24eEhAQsXLgQQPmQi1evXuHIkSMAymfo2LFjB9zc3DB//nz4+fnBw8MDJ06cAABoaWnB0dGxymu0atUKAKotJ4QQQggh5E1KVUhPmTIFmZmZWLNmDZKTk+Ho6AhPT09YW1sDAJKTk6vMKW1jYwNPT08sW7YMO3fuRJs2bbB9+3ZMnjxZUW+BEEIIIYQ0EUpVSAPAokWLsGjRohqfO3ToULVlAwcOxJMnT8Tef037IIQQQggh5G1KM0aaEEIIIYSQxoQKaUIIIYQQQqRAhTQhhBBCCCFSoEKaEEIIIYQQKVAhTQghhBBCiBSokCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkQIU0IYQQQgghUqBCmhBCCCGEEClQIU0IIYQQQogUqJAmhBBCCCFEClRIE0IIIYQQIgUqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApqEm6wcuXL+Hr64uUlBTweDyYmpqib9++sLOzk0V8hBBCCCGENEpiF9K5ubmYPXs2Ll++DH19fZiYmIAxhvT0dOTl5WHcuHE4cuQI9PT0ZBkvIYQQQgghjYLYQzu+/PJLxMbGws/PD9nZ2YiIiEBkZCSys7Ph6+uL2NhYfPnll7KMFQCwa9cu2NjYQEtLC87OzvDx8alzfW9vbzg7O0NLSwu2trbYs2dPlefd3d3Rv39/tG7dGq1bt8awYcPw6NEjWb4FQgghhBDSBIjdI33p0iVcv34dvXv3rvZc7969sXfvXowcOZLT4N526tQpLF26FLt27UK/fv2wd+9ejBo1CqGhobCysqq2fmxsLEaPHo358+fj6NGjePDgARYtWgRjY2NMnjwZAHD37l1MmzYNffv2hZaWFjZt2gRXV1eEhITAwsJCpu9HUqVlQgQn5OBlWgEKSsvQUlMNtsYt4GTVGlrqqooOj0ggKbsIQQk5SM0rAQCY6Gmhe1t9WBu2UHBkRBKlZUIEJeQginJS6SVmFSE4MQevswsR9poH0bNkOLczgpWhjqJDIxKoKSfbG7dET6tWlJNKpiInU3JLwOMBpnpa6N62VaPLSYnGSPN4PKme48qWLVswd+5czJs3DwCwbds2XL9+Hbt378b69eurrb9nzx5YWVlh27ZtAIBOnTohICAAmzdvriykjx07VmUbd3d3nDlzBrdu3cLs2bNl+4bEFJdRiH0+MUjOKYZLOwM4mOlCV0sdBaUCPEvKhYdPLAxbauCzAbboYKKr6HBJLQRCES4Gv8alp69h0UoLztYG6NxGDzzwkJxbjH33YpCQVYTRXc0x2aktNNToWuDGKi6jEHvvxSAlt3pOPk18Myfbo4NJS0WHS2ohEIpwIegVLj9L/i8nzfWQnwAIhAx770UjIasIY7qaY7JzW6irUk42VrEZhdhXQ07mlwgQnJgDd58YGLfUxGcDbdHemHKysaqak9pwsW6NLhZ6AAOSc0uw5140EhtZTopdSI8bNw7z58+Hh4cHXFxcqjwXEBCAhQsXYvz48ZwHWIHP5yMwMBDLly+vstzV1RW+vr41buPn5wdXV9cqy0aMGAEPDw8IBAKoq6tX26aoqAgCgQAGBgbcBS+lEoEQW29G4lV2MRYPtYO9afUieYiDKRYObI+Y9AL8eTsKrXTU8bVrR7TQlPg6UiJDgfHZ2OIVgVGO5nCf7QxNteo9I+87tQW/rPwg8snBR1g81A7v2hoqIFpSm4qcfJ1Tgi+HdKg1J4HynNx+6yUMWmjiK1d7yslGJjA+C1u8IqvlpEAgQFY4w+iebfBRL2uUlglxMeg1Pj7wCEuG2qE35WSjUiIQYotXJJJzS7B4SAfY1ZCTQzuZ4nO0R3R6Af689RKGLctzUkeDcrIxqcjJ0V1r/56c7NwWpWVCXAh6hY8PPMLSYfboZaPYek3sT9Gff/6JadOmoVevXmjVqhVMTEzA4/GQmpqK3NxcjBgxAtu3b5dZoBkZGRAKhTA1Na2y3NTUFCkpKTVuk5KSUuP6ZWVlyMjIgLm5ebVtli9fDgsLCwwbNqzWWEpLS1FaWlr5d15eHoDyA7BAIBD7PdUlObcEy8+/wOzeVvh6WIfK/dfGspUmNr3fBfejMjHv8GP8NMYBdtQTJhMV7SBOWzPGsM8nDi/TCvDHR92gr60OMBEEAlGN6/MATOphhuGdjLD+nwjcj0zDl4PbQ0VF9r/4kJpVtHNCRj5+uhKB2e+Kn5O/TXaET1QG5h1+jJ/HOFDvdCNQkZNRteTk2/mtgvKcHOZghPXXIuBDOdlovM4pxooLIfi4jzWGdKw/J63eyMm5h8pz0rq1Zr3bEdlijGHPvVjEZhZh+0fdoFfP96QKgPd7mGO4gzHW/fs9+b9BtmLlpCzamccYY5JsEB4eDj8/v8ri1czMDH369IGDgwPnwb3p9evXsLCwgK+vL/r06VO5fO3atfjrr78QHh5ebRt7e3vMmTMHK1asqFz24MEDvPfee0hOToaZmVmV9Tdt2oQNGzbg7t276NatW62xrFq1CqtXr662/Pjx49DRafjYnaRC4EKcCqa2F8FIS/Lt8/jAsSgVjLIUoR2N9FAYEQPOxarAQIthsDmDNKOffFN5iMrjYUZ7ERrBL1jNVmIBcDFe+pzM/Tcnx1iKYE05qTAiBpyNVYGRFsOgBuRkdB4P0yknFaoiJ6e1F8FQypw8GqWCsZSTCiViwJlYFZhoMww0ky4n76fwEJfPw7QOIqjWs31RURGmT5+O3NxczmaZk/h3DQcHB5kXzTUxMjKCqqpqtd7ntLS0ar3OFczMzGpcX01NDYaGVX+e27x5M9atW4ebN2/WWUQDwIoVK+Dm5lb5d15eHiwtLTF48OBq+5XUk4QcnLsbg+P/64pWOtWHnohrTEkZlv39DM6d2qG3gn/2aGoEAgG8vLwwfPjwGocHAeXjvFacD8HYfgZ4v6f0F62OBnAjNBX/vEjFpsmOjWI8WHPzMDodey8E4vCCATDWk/5EeWyJAMtOP4dTL8pJReCXlefk+H6GmNSzTa3r1ZffowFcD0nF9dBUbHyfclIRHsdl45xPLE580bX8FwUpjS0RYMmppxCwNHw+ufbjOZGNipyc9J4hJvSoPSfrMxrAPy9ScDMsHRvf7wK1OnIyMzNT6tepjdIMENLQ0ICzszO8vLwwadKkyuVeXl6YMGFCjdv06dMHly9frrLsxo0bcHFxqZIwv/32G3799Vdcv3692vjvmmhqakJTU7PacnV19QYlYkRKPnbcjcHumc5o2cDxlAbq6tgz0wVfnngCbU11OFvTFzfXamtvxhh+uPgMIxzNMbpr9eFDkhrTvS1UVFSx4kIofv+we50HCcKt8JQ87L2fgI/tRTDW02lQfhuoq2P3LGd8eTwIOloacLJqzWGkpC6MMXx/4RlGdzPHSEfxcrKu4/nYHm2hqqqK7y+EYjPlpFyFJedhj08cds9wbvB1Bwbq6tgxrQem77iJASmFeMfWmKMoSX0YY1hx4RlGd2uDkY5m9W9Qj/E9LaGqqobvL4Zh84fdoVrLMA9ZnCwpVfa7ublh//79OHDgAMLCwrBs2TIkJCRg4cKFAMp7it+caWPhwoWIj4+Hm5sbwsLCcODAAXh4eODrr7+uXGfTpk348ccfceDAAbRr1w4pKSlISUlBQUGBXN9bUnYRVl0KwbYpPRpcRFfQ1lDF1ik98PuNSCRmFXGyT1K/7bei4GCmx0kRXWFUV3MM7miCDf9UH8JEZCMpuwhrLodi8wddocXRrFk6GmrYOrUHNl+PoJyUoz9uvUSXNnpiF9HiGNXVHAM7GmPT9QjO9knqlphVhF+uhGLblB6cXbyro6GGWR1E2HozCknZlJPysvXmS3Rrq89JEV1hTDdzvNfBCJuuyfd7UqkK6SlTpmDbtm1Ys2YNevTogXv37sHT0xPW1tYAgOTkZCQkJFSub2NjA09PT9y9exc9evTAL7/8gu3bt1dOfQeU3+CFz+fjgw8+gLm5eeVj8+bNcntfJQIhlp99jk0fdINhy+o93Q2hq6WOTR90w3dnnyGvhC6mkLXzQUnILRbg0/dsON/3xJ4WUFNVwdnAJM73TaqqyMmNk7vBsIUGp/vW01LHxsndsPwc5aQ8nHuShLziMnzSj/ucnNSzLXi88tcgslXMF2L5uWfY9EE3GHCck9pqwNqJXfDd2WfIp5yUubOBSSgqLcPsPu043/dk57YQMYYLQa8433etGGmw3NxcBoBlZGRItf3ys8/YnfBUjqOqKjA+i/3vWCATiUQyfZ3mgM/nswsXLjA+n19leWRKHpt76BErE8ru37hMKGILjgSwoIRsmb0GYWz52afMOyKNMVZ7ezdUQBzlpKxFpOSxuYceS5STkrZ3mVDEPjvymAVTTsrUt38/Zfci0zjf75vtHRCXxb48/oRyUobCk/PYvMOS5aSkyoQiNv/wY/Y0MbvacxkZGQwAy83N5ez1pOqRzsnJwf79+7FixQpkZWUBAJ48eYJXr+R4BtBEnA1MgnFLDQzqaCLT13Gyao2uFvo4/iih/pWJxEoEQqy6HIJ1k7rWOjaLC6oqPGz8oBs2/hNOPScy8ndAIox1tTDAXrbjJZ2tW8PRQh8nHiXK9HWaqxKBEKsvh2Dd+44yz8lNk7tjwz/hKCgtk9nrNGenAxJhpq+F/nayz0kHc12cekw5KQvF/H9zUg7fk799UJ6ThXLISYkL6WfPnsHe3h4bN27E5s2bkZOTAwA4f/58lWnmSP3iMwvh+TwZS4bZy+X15ve3xd2IdESm5svl9ZqTX6+GYn5/W5joSTEPk4T0tdWxdJgd1l4Nk/lrNTexGYW49iIFS4bayeX1Putvi9vhaXhJOcm5X66E4rMB7WGiK4ec1FHH4qF2WHs1VOav1dzEZhTi+osULJZTTi4c0B43w1IRlSbf66SagzVXQvH5oPYw1uV2CGtN9HXU8cWQDljrKfvvSYkLaTc3N3zyySd4+fIltLT+O0CNGjUK9+7d4zS4pkwkYlh9ORSrxneR6ZnZm1RUeFg70RFrLoeCX1bzROdEcnci0qCppirzXxXe1NvWEPo66rj2ouabERHJiUQMay6HYPUE+ebkukmOWH05FAIh5SRX7oSnQVtdFQNl/KvCm/q0N4Suljquh1BOckUoYlh9OQRrJsr2V4U3qajwsHZSV6y+HEI5yaFbYanQ1VKT+a8Kb+rb3ggtNFThFZoq09eRuJB+/PgxFixYUG25hYVFrXcYJNUd8YvDYAcTWBo0/AYukjDR08JH71hi371oub5uU1VQWoZ93jH42rWj3F/bbbg9jj6MR1YhX+6v3RQd8o3DsM6maNta/jn5oUtb7LsXI9fXbarySwTYdy8GXykgJ79ytccRvzjKSY4c8o2Da2czWLTSluvrmupp4X0nC7j7UE5yIa9EgP0+sXAbLp9f39/09YiOOOQbi2wZ5qTEhbSWllblLbHfFBERAWNjmoNRHPGZhbgflYEZvawU8vrjupnjxas8RKfTT1cN9du1cHw5pAO0NTiaH00Cmmqq+HpER2z4h4Z4NFR8ZiF8ozMxXUE5Ob57GzxLykEM5WSD/XY9Al8OVWBOunbERpqmssFiMwrhF52Jab0sFfL6E3tYIDghB7EZhQp5/aZk07VwLBlmBy11xeTkV64dsem67HJS4kJ6woQJWLNmTeX9ynk8HhISErB8+fIq08qRmjHGsM4zDD+N7SzWfeFlgcfj4adxnfHrlVCIRBLdIZ68ITA+G3whQ98ORgqLoYdlK2irq8Ivmvu7NTUXFTn589jO4Elzf1oO8Hg8/DS2M9ZeDQNjlJPSehyXhTIRQ9/2isvJnlatoamuAv8YyklpVeTkynGKz8lfr4RSTjaAf0wmGAPetW3YXZ8bwsmqNVRVeHgUmyWT/UtcSG/evBnp6ekwMTFBcXExBg4ciA4dOkBXVxdr166VRYxNyo3QVDiY6cHasIVC47BopY3+dsY4Q3MSS0XIgO13orF8pIOiQ8FXIzriz9svUVomVHQoSul6SCo6mevBylC+Qzre1ra1Dvp2MKKclFKZUIRtNyPxXSPIya9HdMT22y/pWhQpXXuRgq4W+nIf+vg2SwMd9GlviHNPaEYyaZQJRdh++yW+bQQ5+c0IB2y7GSmTnJS4kNbT08P9+/dx9uxZbNiwAV988QU8PT3h7e2NFi0UWxw2dsV8IQ77xuHzQe0VHQoAYHYfa1x8+opuCiEF31QeRjuaQV+H+9uNSkpPSx3Te1thv0+sokNROhU5uXBg48nJC8GvaGpDKRx/lIDx3dtAX7tx5OTUd6yw/z6NsZVUEb8MR/zi8dkAW0WHAgD4uG87nAtKoqkNpXD0YTwm9LBoFDmpr62OKe9Y4qg/91MbSn1nwyFDhuDrr7/Gt99+i2HDhnEZU5O1624UPu1no5BxQjVRU1XBokEdsON2lKJDUSrZRXw8z+LhAycLRYdSaUxXcwTGZyMtr0TRoSiVnXeiMK9/48lJdVUVfD6wA3bcoZyURFYhH16hqfjQWTHjaWsytps5HsdmIS2fclISO25HYf6AxpWTCwa0p+9JCWUWlOJWeBo+cGqr6FAqje/eBk8Sczjfr1g3q9++fbvYO1y8eLHUwTRlr3OKEZGSr5AryevSr4MRTjxKQEx6AWyNWyo6HKXwx61ojLIUyW06JnHweDy4DbfHFq9IbJjcTdHhKIVXOcV4mZaPr0c0rpx8z84IJx4nIDajEDZG9CufOLZ4RWDpMHuFXXdSk/Kc7IitXi+x/v2uig5HKSRmFSEmvbBRDAV40wB7Y5x6nIi4jEK0o5wUyxavSLgNb3w5+b+BtjjJ8X7FKqS3bt1a5e/09HQUFRWhVatWAMrvdKijowMTExMqpGux7WYklilg6hdxfDfSAev/CcOuGc6KDqXRi0rLR2FpGXrpKjqS6hwt9AEAL17lVv4/qd02r8abk9+O6IhN1yKwc4aTokNp9F6m5qOoVAhn69aKDqWarm31IXwoQsjrXHRpQzlZn203XzbanPxmREf8diMCO6dTTtYnIiUfJQIRelo1vpzsZM79l7dYQztiY2MrH2vXrkWPHj0QFhaGrKwsZGVlISwsDE5OTvjll184D7ApCEvOA2NAJ3M9RYdSI0sDHbTR15bZFa1NydabL/HlkMYxnrYmbsPtsdUrkq4yr0fo6zyo8HhwMGucOWlt2AImepp4HEc5WZ/GXHwBwFeuHSknxfDiVS7UVXnoaNYIeykAtDNqAeOWmgignKzXH7cisXSYfO5E2RhIPEb6p59+wp9//omOHf/7ObRjx47YunUrfvzxR06Dayoac290hf8N7oBdd6PoYF+HwPgsGLfUhJWCrySvi4meFrpY6MM7Ml3RoTRq225GYunwxn2g/2JwB+y8QzlZl4C4LBjraip8doe6mOppoZO5Hu69zFB0KI3aH7deYkkjL76+GEI5WZ9HsVkw19du1DnJNYkL6eTk5Mo5pN8kFAqRmirb2zAqowdRGWhn1AJt5HxnJkm1bqEBF+vWMr+VprJijGHH7Sh8MaSDokOp1/z+NvC4H0tzhNfC52U62pu0hLl+485Jw5aa6GnZGrfC0hQdSqPEGMPOO1H4UhlycoAt9vvEUE7W4l5kOuxNG39OGrXURHfLVrgTQTlZk4qc/N/gxp+TXJK4kB46dCjmz5+PgICAyrOygIAALFiwgGbveItIxLDHOxqLBinHh+rT92xw2C8OQjrYV3M7PA09LFvDqKWmokOpl66WOgbYGePq82RFh9LoiEQM++7FNJopKOszr78NDvrGUk7W4FZYGnpatYahEuSknpY6+tsZ4Z8XKYoOpdERihj23ovGgkYyBWV95vW3xYH79D1ZE6/QVLzTrjUMWmgoOhS5kriQPnDgACwsLNCrVy9oaWlBU1MTvXv3hrm5Ofbv3y+LGJXW5WevMdDeuFHMoSgOHQ01jOxihrNP6IYQbxKKGA48iMW8/jaKDkVss/pY48SjBAiEdEOIN11+9hqDOppAT0s5crKFphpcO5vhfBDdEOJNQhHDQd9YzH1PeXJydp92OOYfjzLKySouBr/CUAdTpcnJlppqGNbJBBeDKSffVCYU4ZBvHD5VopzkisSFtLGxMTw9PREeHo6///4bp0+fRlhYGDw9PWFiYiKLGJVSmVCEk48SMfNda0WHIpGpvaxw/skrlAjoLnkVzj1JwoguZmihKdYkN42ClroqxndvQ3fJe0OZUIRTjxMxo7eVokORyLReVjgbmEQ5+YazT5IwUglzcmw3ysk3lQlF+DsgCTPeVa6cnN7bGmcCk+husm84+yQJY7qZQ0dDeXKSK1LfkMXe3h7jx4/HhAkTYG/fuC+kU4RLT19jpKNZo5lUXlzqqiqY2ssSRx/GKzqURkEgFOHck1eY+o5yHegB4APntrj89DUVYP+6EPwao7uaK11OaqipYMo7ljjxKEHRoTQKAqEI55+8whQlzMkPXdriYjDlZIVzQa8wtrs5NNWULyc/dGmLE/6UkwDALxPhQtBrfOTSeG6IJE8Snzp8+umndT5/4MABqYNpKsqEIpwJTMKBT95RdChSGdutDWYf8MfMd62Vrujg2rknSRjfow001KQ+51QYNVUVTO9thb/84jG/kdxuV1EEQhHOBibh8Ke9FB2KVMZ1b4NZHv6Y1suq2efk2cAkTFDSnFRXVcG03lY4+jAe8/pTTp5/8kppc3J8dwvM8vDHVMpJnAlMwqSeFlBXVb6c5ILE7zo7O7vKIy0tDbdv38a5c+eQk5MjgxCVz4Xg1xilhD1fFVRVeJj6jlWz75UWCMvPsic3olucSmq0ozm8I9NRzG/ePWDKfEIElOck9UqX93xdDH6Nyc7Km5Nju5rjTkRas8/JM4FJmNiTclLZ8ctEuPz0NSY5WSg6FIWR+BN8/vz5Ko8rV64gJiYGU6dOxbvvviuLGJVKmVCEc0+S8JGL8h7oAWAMHexx7ony9nxVUFHhYXpvKxzzb74nRRXF1wdKXHwB5b8U3QxLbdbDAs4+KS++lLnnS0WFh2m9KCcvBb/G+0rcSQGU56RXaPPOyb8DEzHJqfn2RgMNGCNdZScqKli2bFm1W4k3R+eCXmFMN+Ub8/W25n6wbwo9XxVGdjFr1idF5T1fyn+gL+8Bs8LxZjous6kUX0D5L0XNOSdPByTi/SZQfKmq8DC1V/POyStPk/F+z+bbGw1wVEgDQHR0NMrKyrjanVKqGPP1oXPTGHDfnA/2Fb3Ryn6gB/7tle5l3SxPikrLhLj89HWTOdCP6WrebHulm9I4TJV/h88115y8+iwZk5pQTt4Kb545WXFCpNYEcrIhJH73bm5uVR7Lli3D1KlTMWXKFEyZMkUWMVaxa9cu2NjYQEtLC87OzvDx8alzfW9vbzg7O0NLSwu2trbYs2dPtXXOnj2Lzp07Q1NTE507d8b58+eliu3ys2SlHwrwpubaK80vE+HS06bR81VhlGPz7JU+/TgRHzi3bTIH+ubaA8YvE+HKs6Y1DnN0V3PcDm9+OXnqcSI+eqeJ5WQzvKaotEwIz+dN54SoIST+JAcFBVV5PHv2DADw+++/Y9u2bVzHV8WpU6ewdOlS/PDDDwgKCkL//v0xatQoJCTU/KUSGxuL0aNHo3///ggKCsL333+PxYsX4+zZs5Xr+Pn5YcqUKZg1axaePn2KWbNm4aOPPoK/v7/E8V0PSWsSQwHe1Bx7pc8+ScLEHk2j56tCc+yVLhEI8c+LFEzo0UbRoXCqOfaA/R2Y2GR6oyuo/ttRcbwZXaxWIhDi2osUjO/etIqv5nhN0emAJLzv1HROiBqEKZFevXqxhQsXVlnm4ODAli9fXuP63377LXNwcKiybMGCBezdd9+t/Pujjz5iI0eOrLLOiBEj2NSpU8WOKzc3lwFg7jefib2NMrny9DVzvxet6DDkolQgZNP2+TF+mbDWdfh8Prtw4QLj8/lyjKzhhEIRm+H+kBWVlik6FLk49CCWnX+S1OD9NMb2vhT8iu33iVF0GHJRkZOCOnKSS/Js7zKhiE1392PF/OaRkwfux7ALQQ3PSS5x1d6Xn75qNt+TJYIyueYklzIyMhgAlpuby9k+JT6VGDJkSI3T3OXl5WHIkCENr+xrwefzERgYCFdX1yrLXV1d4evrW+M2fn5+1dYfMWIEAgICIBAI6lyntn3WZWxXM4m3UQbNaVhAU7kwrSbNaahOiUCIG6EpGNe9afVGVygfFtA8eqXLx2E2zZ4v1cqx0k2/V7pEIIRXaCrGdmuiOfnvr7dF/KZ/rdjpx4mY3ERzUhoS35Dl7t274PP51ZaXlJTUO165ITIyMiAUCmFqalpluampKVJSUmrcJiUlpcb1y8rKkJGRAXNz81rXqW2fAFBaWorS0tLKv/Py8sr/RySsLNCbminOFjjsG4O5/dopOhSZKZ8P8xU8ZjvV2Y4VzyljWw/raIg5hwPxkVMbaGso98wydTn+MAHv92gDkbAMogbWmo21vT9yssAR31jM6Wut6FBkprRMhKvPXuNAPTnJJXm393AHo39zUnnvPSCOo37x+MCJm5zkEpftPcW5PCeb8vdkaZkIns+T5ZqTXJJFzGIX0hVjoQEgNDS0SqEpFApx7do1WFjIftwTj8er8jdjrNqy+tZ/e7mk+1y/fj1Wr15dbfmdO3ego6NTe/BKTMSAc2EqMMgKhWYTPdY/SOXBhgd4Xb8m1vpeXl4yjkg27FV5+PnIDQxuwxQdikwIRMDJcBV83kkEz1dBnO23sbW3iAFnwlTQOjMETfWc6H4KD7aqwA0xc5JL8mzvipwcZN40c5IvBE6Fq2BRZxE8k7jLSS5x0d7N4XvSJ4WH9grKSS4UFRVxvk+xC+kePXqAx+OBx+PVOIRDW1sbf/75J6fBvcnIyAiqqqrVeorT0tKq9ShXMDMzq3F9NTU1GBoa1rlObfsEgBUrVsDNza3y77y8PFhaWmLw4MGV+22KVK1T8CqnBPPea6foUDhXWibCiSOBODDbud5hHQKBAF5eXhg+fDjU1dXlFCF3RooY5hwOxJDhPZtkD9hfDxOwYLg6xnY352R/jbm9VaxSkJpf2iR7pUvLRDj51xMcmOkk15+QFdHeI5p4Th72i8fnIzQwths3OcklrttbrV0qErOLMP89Gw6ia1xKBUKc+OsJDs50VtphHZmZmZzvU+xCOjY2Fowx2Nra4tGjRzA2Nq58TkNDAyYmJlBVld0BQENDA87OzvDy8sKkSZMql3t5eWHChAk1btOnTx9cvny5yrIbN27AxcWlMmH69OkDLy8vLFu2rMo6ffv2rTUWTU1NaGpqVluurq7e6L5ouTS2e1vMOuCPj/vZQEdD4lFBjdrJwHh84GIFHa3q7VobZW7v6e9a4/STZMxtYgf7EoEQtyLSceTT3lBVqf1XJWk0xvYe16MtZh94hJl92jW5nDwREIcPXSyhLUFOckme7a0OYFpva/z9JBmfNsGcvB2Rgb/mcp+TXOKqvcd0syj/nuxrixaaTSsnjz1KwpReVgrLSS7IIqfFPqWwtrZGu3btIBKJ4OLiAmtr68qHubm5TIvoCm5ubti/fz8OHDiAsLAwLFu2DAkJCVi4cCGA8p7i2bNnV66/cOFCxMfHw83NDWFhYThw4AA8PDzw9ddfV66zZMkS3LhxAxs3bkR4eDg2btyImzdvYunSpTJ/P8pGRYWHWe9a44hf07pYrbRMiH+eJ2NiE5smrS6jHZvmxWqnHifiIxfLRv2FzSUVFR5m9G56c9j+N01a88nJpnqznROPEjDlneaVk7PetcZfTTAnb4SmNrmpC7kgViF96dKlygHaly5dqvMhS1OmTMG2bduwZs0a9OjRA/fu3YOnpyesrct/1kxOTq4yp7SNjQ08PT1x9+5d9OjRA7/88gu2b9+OyZMnV67Tt29fnDx5EgcPHkS3bt1w6NAhnDp1Cr1795bpe1FWrp3NcP9lBgpKm86Vyaea2E07xPHfDB5NZ7aAipk6muqsALUZ0cUMPi8zmtRsARUnRM0pJ8tvAW/ZpG6209Rn6qhNxfdkYRP6njzu37xOiCTBYxVX39VBRUUFKSkpMDExgYpK7Qc2Ho8HobBpnU2LIy8vD/r6+sjIyGjSY6QrXA9JQVRaAf43uIOiQ2mwEoEQnx56jCOf9hL7S1sgEMDT0xOjR49udD/1S0IkYph1wB/7Z7/TJGbwOOwbh1Y66pjQg9seE2Vo72svUhCXWYiFA9srOpQGKxEIMffwY5kMzxGHIttbKGKY5eEPj4+bRk4efBALgxYanOckl2TV3tdDUhCdXoBFg5rO92RjH54jjszMTBgZGSE3Nxd6enqc7FOsykEkEsHExKTy/2t7NMciujly7WyKhzGZyC9Rvqlv3nbyUUKz6/mqoKLCw8ze1jjiF6foUBqsufZGVxjRxRQPoprGL0Un/s1JZf/CloaqCg/Te1vhr4dxig6lwZprb3QF186m8I3KbBI5efRhPKb2smqWOSmO5lc9kAbj8Xj4uE87HPaNU3QoDVIx5qup3rRDHCO6mOF+EyjAmtvY6LfxeDzMbiI5eTOs+RZfQPn1C96R6Uqfk81tbPTbynPSWulzspgvxO3wNIzp2vhmXGksxLqkdPv27WLvcPHixVIHQ5TH0E4mOOwXh9klAuhpNc6fu+tDY77Ke6U/7tMOhx7E4oshdooORyoVvdFHPm3e1zUM62SCI35xmN3HGrpKmpPH/BMw9Z3m3fOlovLfSZGyDp+r6I3+a27zzsnhnU3x18N4pc7Jow/jMb13887J+ohVSG/dulWsnfF4PCqkmwkej4c5/drh4P04LBmmfAVYRc9Xcz/QA+UnRUcexiO3WAB9beU72B/3b75DAd7E4/HwSd92OPQgDl8OVb6cLOYLcSc8DUc+7aXoUBTOtbMpjj6Mx6w+1krZUXH0YXyz76QAqv56q4wdFUX8MtyNTMNfzbyToj5iDe2IjY0V6xETEyPreEkjMrijCQITspFbrHxjpf/yozFfFXg8Hua+ZwOP+7GKDkViBaVluB2ehnHNeCjAm4Y4mOBxfDbylPD6hb8exmFaLyuoUE6Cx+Ph03428PBRvpzMLxHgbkQ65eS/hnYygX9sllLm5BG/eMzobU05WY8GjZFmjEGMST9IE8Xj8TC/vw32ekcrOhSJ5BYL4B2ZjrE05qvSADsjPE/KQXYhX9GhSGS/TwzmvmdDB/p/8Xg8zHvPBvu8latTI7dYAJ+XGRjlaKboUBqNQR2NEZyYg5wiZcvJWMztTzlZoaKjwv2ekuVkkQAPoignxSFVIe3h4QFHR0doaWlBS0sLjo6O2L9/P9exESXQ384YkakFSMktUXQoYtvrHY0FA23pQP8GHo+HBQPbY9fdKEWHIrbMglI8TczBoI7G9a/cjPS3M0J4Sj5S85QnJ/d4R2PhwPaUk28oz0lb7L6rPB0VGQWleP4qF4PsKSffNNDeGKGv85CmRDm5yzsKnw9qDx6PcrI+EhfSP/30E5YsWYJx48bh77//xt9//41x48Zh2bJl+PHHH2URI2nklg6zwx+3IhUdhlhS80oQmVqA/nZ0oH/bu7aGSMouRmJWkaJDEcvOO9H43+AOdKB/C4/Hw5Khdvjj1ktFhyKWlNwSRKUVoF8HI0WH0uj0bW+E+MwiJGUrS05GUU7WgMfjYckw5cnJ1znFiE0vRN/2lJPikLiQ3r17N9zd3bF+/XqMHz8e48ePx/r167Fv3z7s2bNHFjGSRs7RQh+lAhFepuYrOpR6/XHrJZYo4YVY8uI23B5bvRr/SVFSdhFS8orh0s5A0aE0Sl3b6qOEL0RUWoGiQ6nXH7ciKSfrsGy4PbYoQU4mZhUhLb8UztatFR1Ko9StbSsUlpYhOr3x5+T2Wy+xdJi9osNQGhIX0kKhEC4uLtWWOzs7o6xMuee9JNJbNtweW2827oN9VFoBivlCdG2rr+hQGi07U11oaajiWVKOokOp0/ZbL7GYiq86LR2mDDmZj1KBCI4WlJO16WimC001FTxPylV0KHXaTp0U9Vo6rPF3VESm5kMgZOjchpu7/jUHEhfSM2fOxO7du6st37dvH2bMmMFJUET5WBrowExPG49isxQdSq223YzEUiWcqk/elg6zwx83XzbaC4lDXpcXFA5mdKCvi5WhDkx0NREQ13hzcutN6vkSx9Jh9vjjVmSjzckXr3KhwuPB3lRX0aE0au2MWsCopSYC47MVHUqt/rj5kr4nJdSgiw3nzZuHefPmwdHREe7u7lBRUYGbm1vlgzQvXwzpgB13ohrlwf5RbBaMWmrC2rCFokNp9Ex0tdC1rT5uhaUpOpRqGGPYciMSX7l2VHQoSuGLwY03Jx/GZMJEVxNWhjqKDqXRM9XTQmdzPdyNSFd0KNUwxrDFKxJfudIJkTi+GNIBf95unB0VftGZMNPXgqUB5aQkJC6kX7x4AScnJxgbGyM6OhrR0dEwNjaGk5MTXrx4gaCgIAQFBSE4OFgG4ZLGzKCFBgbYGeF80CtFh1KFUMT+HfNFZ9nimt/fFgcexEIgFCk6lCquvUiBk3VrmOppKToUpWDYUhN92xviYvBrRYdSRZlQhB23o7B0KBVf4vpsYHvsvx+DskaWk57PU+Bs3RomlJNiMWqpiT62hrj0tBHm5B0aMicNse5s+KY7d+7IIg7SRHzctx0+PvAIwzubNppboh5/lIDRXc3RSkdD0aEojRaaapjs1BaHfeMwr7+tosMBUH43yiN+8Tg45x1Fh6JUPulrg08OPsLQTiaNJidPPErA2G7m0NdpHPEog5aaapjQwwKH/eIx9z0bRYcDoDwnj/nH48AnlJOSmNOvIidN0VJT4jJMJo75J2B89zZKeXdbRWvQDVkIeZu6qgr+N7gD/rjZOKb5yS7k4/qLFEx5x1LRoSid950s8CAqo9HMEb7XOwaz+1hDS11V0aEoFQ01FXw+qD3+vN045gjPKuTjRmgqPnShnJTUB05t4fMyvdHMEb7HOxqz+7SjnJSQhpoKFg5sjz9vN47vyaxCPm6GpeJDZ8pJaUhcSJeUlOC3337D6NGj4eLiAicnpyoPQvp1MEJafikiG8F0eL/diMDSYXZ0K3Ap8Hg8fDfKARv+CVN0KIhOL0B4Sh5G0l22pNLfzhjJuSWNYorK366HY+kwe8pJKaio8PDdSAds+Cdc0aEgKq0Akan5GNHFVNGhKKUB9sZ4lV3cKKao3HQtHMuG29MNkaQkcSH96aefYtOmTbC2tsbYsWMxYcKEKg9CAOD70Z3w69UwCEWKu6DCNzoDaio8mmu4ARzM9GDUUhP3IhV3kRNjDGuvhuGHMZ3oRg8N8P1oB4Xn5IOoDGioqtBcww3QyVwPBi00cP9lhsJiEIkY1nmG4YcxnSknG6D8ezJU4Tmppa4KJyvKSWlJPDjn6tWr8PT0RL9+/WQRD2kizPS1MNrRDAcfxCpkjG0xX4g/b0Vh32xnub92U7NsuD3mHQ5AT6tWChlj+3dAEvq2N0Tb1nQleUOY62tjpKMZDvnGKWSMbTFfiB23o+D+cfX7EBDJuP2bk90t9RWTk4GJ6NfBCBattOX+2k1Jm1baGN7ZFEf84jCnn/xzsohfhh23o7CfcrJBJO6RtrCwgK4uzRVJ6jflHUs8jMlCXEah3F97281IzB9g02gurlJmLTTVsGSYHdZ5yv/n5Fc5xbjyPBmf9G0n99duiqa+Ywm/6EzEZ8o/J7d4RWDBQNtGc3GVMmuhqYbFQ+2wXgFDPF7lFOPq8xTKSY5Me8cKD6IykJgl/9vAb7kRiYWD2qMF5WSDSFxI//777/juu+8QHx8vi3hIE8Lj8bByXGesuhwi1ymb/KIzkV3ExxAHGrvHlXdtDaGtroo7EfKbW1ooYvjpwgusHt8Faqp0XTQXKnPyknxz0jc6A/klZRjU0URur9nU9WlvCE01FdyVc07+eP451ozvQmPcOaKiwsNPYzvj54sv5DrE40FUBgr5ZRhobyy312yqJP52cnFxQUlJCWxtbaGrqwsDA4MqD0LeZGmgg4k9LOR2q+LMglL8efslVo7rIpfXa06+GdER7vdikJYvnxkD9t6LxsguZrAxopvocMnSQAfje7TB9lvymTEgs6AUO+9E4edxneXyes3JtyMcsNc7Bun5pXJ5vT3e0RjV1RztKCc5ZW3YAmO7tcEfcsrJ9PzynPxpLOUkFyTuz582bRpevXqFdevWwdTUlC40IPWa2NMCK849h3dkukzPfhlj+OH8C/wwphP9VCUD2hqqWD2+C5affY59s5xl2kv8JCEbYcn52D61vcxeozmb1LMtVpx7Bp+X6ehvJ7ucFInKc/LHMZ2ho0E5yTVtDVWsntAF3519JvOcDIzPRkRKPhYNopyUhcnObfHdmWe4/zID79kZyex1RCKG788/x8/jKCe5IvG/oq+vL/z8/NC9e3dZxEOaqJXjOmPu4cfoYNJSZheo7LgdhX4dDNGljb5M9k8AO1NdTOppgU3XI/D96E4yeY3XOcXYfD0Ce2Y504m6DP08tgvmHXmM9sYt0UZWOXknCu/ZGaGTuZ5M9k8Ae1NdTOjRBr9dj8AKGeXkq5xi/H4jAnspJ2Vq1fgumHv4MdqbtIC5vmxy8o9bLzGoozEczCgnuSLx6auDgwOKi4tlEUudsrOzMWvWLOjr60NfXx+zZs1CTk5OndswxrBq1Sq0adMG2traGDRoEEJCQiqfz8rKwpdffomOHTtCR0cHVlZWWLx4MXJzc2X8bpofLXVVrJ/UDd/8/RS5RQLO938h6BUyC/mY+a415/smVY3r3gaMMZwNTOJ830X8Mnx75hnWv98VenShqExpa/ybk2eeIreY+5w8H5SE7CLKSXmY0MMCAiHDuSeyycnlZ59hw/vd6OJtGdPWUMX697vi679lk5NnApOQX1KGGb0pJ7kkcSG9YcMGfPXVV7h79y4yMzORl5dX5SEr06dPR3BwMK5du4Zr164hODgYs2bNqnObTZs2YcuWLdixYwceP34MMzMzDB8+HPn55TcleP36NV6/fo3Nmzfj+fPnOHToEK5du4a5c+fK7H00Z1aGOlgxqhOWngpCiUDI2X79ojPhFZqKn8bSnKbysnxUJzyIysCNkBTO9skvE+Gr00/xv8EdYG1IYzDlwcpQB9+NdIDbqWCUlnGbkzfD0vDjGBqDKS8/jOmEe5HpnOZkaZkQX51+ii8Gd4CVIU0/KQ/Whi3w7Qjuc/JBVAbuRqThhzGy+dWiWWMS4vF4jMfjMRUVlSqPimWyEBoaygCwhw8fVi7z8/NjAFh4eHiN24hEImZmZsY2bNhQuaykpITp6+uzPXv21Ppap0+fZhoaGkwgEIgdX25uLgPAMjIyxN6mObsbkcYWHAlgRaVlDd7Xg5fp7JMD/qywVPz2aig+n88uXLjA+Hy+3F6zMeKXCdmCIwHMJzK9wfsq5pexhX8FMK+QFA4i41ZzaO874als4V/c5OT9f3OSi30pgjK3d6lAyD478pjdf8ldTt4Ka3w5yaXG2t63w1LZ50cDWDG/4XnkE5nOPj34SGlzkksZGRkMAMvNzeVsnxKPkb5z5w7XtXy9/Pz8oK+vj969e1cue/fdd6Gvrw9fX1907Nix2jaxsbFISUmBq6tr5TJNTU0MHDgQvr6+WLBgQY2vlZubCz09Paip0SB8WRlobwx1FR4WHg3E1ik9YNBCQ6r9XHuRjIvBr7FrhjO0NVQ5jpLUR11VBdum9oDb6WCk5pVgsnNbqfZTxC/D0pPBmN7biqZHU5BBHU2goaqChUcDsW1KD7SWMic9nyfjyrPX2D3TGVrqlJPypqGmgm1TesLtdDBScqXPycLSMiw7FYwZ71rT9GgKMtjBBBpq/+VkKx3pcvLqs2R4Pk/GzhlOlJMyInG1OHDgwFqfCw4ObkgstUpJSYGJSfUvWBMTE6Sk1PwzVsVyU9OqcwmbmprWOgd2ZmYmfvnll1qL7AqlpaUoLf1vuqGKIS0CgQACAffjmpqid6z1oTu8AxYdDcAPox3gYCb+TX5EIoZ9PrFIyC7G7x84Qo0ngkAgvzlxK9qY2hpQBbDlg67Y7PUSa6/kwm1YB4lmDohJL8TqK2H432Bb9GrXulH+mzaX9n7HWh8th3XA50cD8ONoB3SUICeF/+ZkUnYxNk92hCrkm5NcUvb2VuMBWz/sit9uRCIiJRfLhkqWk9HphVhzJQxfDG6Pd9q1Utp/B3E15vbuZa2PlhrtsfCvAPw0xgH2ppLl5J57sUjOLcbmyV2UOie5JIt2bnC3a25uLo4dO4b9+/fj6dOnEArFH9OzatUqrF69us51Hj9+DAA1jn1ljNU7Jvbt52vbJi8vD2PGjEHnzp2xcuXKOve5fv36GuO+c+cOdHRoHJkkxhgAP53IhJkOMLSNCPV1LCcVAlcSVNDdgKGfCYPXdcXdGMjLy0thr93YdAUQkM7DxK0xGG0pQrt6jvd8IeCdwkN8Pg8f2IiQEZoGz1C5hCq15tLeYwyAH05kwlyHYWgbJnZO9jBk6Gus2JzkkrK3dzcAAak8TPo3J60lzMl0JchJLjXm9h5jAKw4ngkLHYYhYuRkYgFwNbE8J/sYM9xoIjnJhaIi7u8gKXUhffv2bRw4cADnzp2DtbU1Jk+eDA8PD4n28cUXX2Dq1Kl1rtOuXTs8e/YMqamp1Z5LT0+v1uNcwczMDEB5z7S5uXnl8rS0tGrb5OfnY+TIkWjZsiXOnz8PdfW6r0xesWIF3NzcKv/Oy8uDpaUlBg8eDENDwzq3JdVNYQy3wtNx1D8Rjm304NrZBA5mutBQK+9FySgohX9sNq4+T4FhSw24z7eFqZ6WwuIVCATw8vLC8OHD6/2sNCejUd5Wu7xj8Sy7GKMczdDX1gBGLTXA4/EgEIoQkVIAr7A0BCfmYGqfthjZpfHPRd8c23sKY7gZlo6jjxLQtY1+jTn5MCYLni9SYdRSA/s/aw8TXU0FR82NptTelTl5NwZPs0sw2tEMfZpATnJJWdq7IiePPUpEVws9DO9UPSf9YrLwz7856fFZexg3kZzkUmZmJuf7lKiQTkpKwqFDh3DgwAEUFhbio48+gkAgwNmzZ9G5s+RXZxsZGcHIqP6Jx/v06YPc3Fw8evQIvXr1AgD4+/sjNzcXffv2rXEbGxsbmJmZwcvLCz179gQA8Pl8eHt7Y+PGjZXr5eXlYcSIEdDU1MSlS5egpVV/gaapqQlNzeofUHV19UadiI3ZqG4WGNm1DYITc3A7PA377sehTFh+u9RWOhp4p11rbPqgu9RjN2WB2rs689bq+GViV+QWC3AjJAVbbkUju5APHg9Q4fHQwaQlBncyxTcjHZTuy7q5tffo7hYY1a0NghJzcCc8DXt94ipvYdxYc5JLTaW9zVur45dJ3ZBbJMD10P9yEgBUVXiwM22JIUqak1xShvZ+Mydvh1XNydYtmn5OckEWbSx2IT169Gjcv38fY8eOxZ9//omRI0dCVVUVe/bs4Tyot3Xq1AkjR47E/PnzsXfvXgDAZ599hrFjx1a50NDBwQHr16/HpEmTwOPxsHTpUqxbtw52dnaws7PDunXroKOjg+nTpwMo74l2dXVFUVERjh49WmUKP2NjY6iq0sB8eeLxeOhp1Ro9rVorOhTSQPra6vjQxRIfulgqOhTSADweD05WreFEOan09HXU8ZGLJT6inFRqlJONj9iF9I0bN7B48WJ8/vnnsLOzk2VMNTp27BgWL15cOQvH+PHjsWPHjirrREREVLmZyrfffovi4mIsWrQI2dnZ6N27N27cuAFd3fLBYoGBgfD39wcAdOjQocq+YmNj0a5dOxm+I0IIIYQQoszELqR9fHxw4MABuLi4wMHBAbNmzcKUKVNkGVsVBgYGOHr0aJ3rMMaq/M3j8bBq1SqsWrWqxvUHDRpUbRtCCCGEEELEIfacOH369IG7uzuSk5OxYMECnDx5EhYWFhCJRPDy8qq8WyAhhBBCCCHNgcS3CNfR0cGnn36K+/fv4/nz5/jqq6+wYcMGmJiYYPz48bKIkRBCCCGEkEZH4kL6TR07dsSmTZuQlJSEEydOcBUTIYQQQgghjV6DCukKqqqqmDhxIi5dusTF7gghhBBCCGn0OCmkCSGEEEIIaW6okCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkQIU0IYQQQgghUqBCmhBCCCGEEClQIU0IIYQQQogUqJAmhBBCCCFEClRIE0IIIYQQIgUqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApUCFNCCGEEEKIFKiQJoQQQgghRApUSBNCCCGEECIFpSmks7OzMWvWLOjr60NfXx+zZs1CTk5OndswxrBq1Sq0adMG2traGDRoEEJCQmpdd9SoUeDxeLhw4QL3b4AQQgghhDQpSlNIT58+HcHBwbh27RquXbuG4OBgzJo1q85tNm3ahC1btmDHjh14/PgxzMzMMHz4cOTn51dbd9u2beDxeLIKnxBCCCGENDFqig5AHGFhYbh27RoePnyI3r17AwDc3d3Rp08fREREoGPHjtW2YYxh27Zt+OGHH/D+++8DAA4fPgxTU1McP34cCxYsqFz36dOn2LJlCx4/fgxzc3P5vClCCCGEEKLUlKJH2s/PD/r6+pVFNAC8++670NfXh6+vb43bxMbGIiUlBa6urpXLNDU1MXDgwCrbFBUVYdq0adixYwfMzMxk9yYIIYQQQkiTohQ90ikpKTAxMam23MTEBCkpKbVuAwCmpqZVlpuamiI+Pr7y72XLlqFv376YMGGC2PGUlpaitLS08u/c3FwAQFZWltj7IMpLIBCgqKgImZmZUFdXV3Q4RMaovZsXau/mhdq7eamo0xhjnO1ToYX0qlWrsHr16jrXefz4MQDUOH6ZMVbvuOa3n39zm0uXLuH27dsICgqSJGysX7++xrjt7e0l2g8hhBBCCJGvzMxM6Ovrc7IvhRbSX3zxBaZOnVrnOu3atcOzZ8+Qmppa7bn09PRqPc4VKoZppKSkVBn3nJaWVrnN7du3ER0djVatWlXZdvLkyejfvz/u3r1b475XrFgBNze3yr9zcnJgbW2NhIQEzhqGNF55eXmwtLREYmIi9PT0FB0OkTFq7+aF2rt5ofZuXnJzc2FlZQUDAwPO9qnQQtrIyAhGRkb1rtenTx/k5ubi0aNH6NWrFwDA398fubm56Nu3b43b2NjYwMzMDF5eXujZsycAgM/nw9vbGxs3bgQALF++HPPmzauyXdeuXbF161aMGzeu1ng0NTWhqalZbbm+vj4lYjOip6dH7d2MUHs3L9TezQu1d/OiosLdJYJKMUa6U6dOGDlyJObPn4+9e/cCAD777DOMHTu2yowdDg4OWL9+PSZNmgQej4elS5di3bp1sLOzg52dHdatWwcdHR1Mnz4dQHmvdU0XGFpZWcHGxkY+b44QQgghhCglpSikAeDYsWNYvHhx5Swc48ePx44dO6qsExERUXnhHwB8++23KC4uxqJFi5CdnY3evXvjxo0b0NXVlWvshBBCCCGk6VGaQtrAwABHjx6tc523r8Lk8XhYtWoVVq1aJfbrSHMlp6amJlauXFnjcA/S9FB7Ny/U3s0LtXfzQu3dvMiivXmMyzlACCGEEEIIaSaU4oYshBBCCCGENDZUSBNCCCGEECIFKqQJIYQQQgiRAhXShBBCCCGESIEKaTHt2rULNjY20NLSgrOzM3x8fOpc39vbG87OztDS0oKtrS327Nkjp0gJFyRp73PnzmH48OEwNjaGnp4e+vTpg+vXr8sxWtJQkuZ3hQcPHkBNTQ09evSQbYCEU5K2d2lpKX744QdYW1tDU1MT7du3x4EDB+QULWkoSdv72LFj6N69O3R0dGBubo45c+YgMzNTTtESad27dw/jxo1DmzZtwOPxcOHChXq34aRWY6ReJ0+eZOrq6szd3Z2FhoayJUuWsBYtWrD4+Pga14+JiWE6OjpsyZIlLDQ0lLm7uzN1dXV25swZOUdOpCFpey9ZsoRt3LiRPXr0iEVGRrIVK1YwdXV19uTJEzlHTqQhaXtXyMnJYba2tszV1ZV1795dPsGSBpOmvcePH8969+7NvLy8WGxsLPP392cPHjyQY9REWpK2t4+PD1NRUWF//PEHi4mJYT4+PqxLly5s4sSJco6cSMrT05P98MMP7OzZswwAO3/+fJ3rc1WrUSEthl69erGFCxdWWebg4MCWL19e4/rffvstc3BwqLJswYIF7N1335VZjIQ7krZ3TTp37sxWr17NdWhEBqRt7ylTprAff/yRrVy5kgppJSJpe//zzz9MX1+fZWZmyiM8wjFJ2/u3335jtra2VZZt376dtW3bVmYxEu6JU0hzVavR0I568Pl8BAYGVt5RsYKrqyt8fX1r3MbPz6/a+iNGjEBAQAAEAoHMYiUNJ017v00kEiE/Px8GBgayCJFwSNr2PnjwIKKjo7Fy5UpZh0g4JE17X7p0CS4uLti0aRMsLCxgb2+Pr7/+GsXFxfIImTSANO3dt29fJCUlwdPTE4wxpKam4syZMxgzZow8QiZyxFWtpjR3NlSUjIwMCIVCmJqaVlluamqKlJSUGrdJSUmpcf2ysjJkZGTA3NxcZvGShpGmvd/2+++/o7CwEB999JEsQiQckqa9X758ieXLl8PHxwdqanQIVSbStHdMTAzu378PLS0tnD9/HhkZGVi0aBGysrJonHQjJ0179+3bF8eOHcOUKVNQUlKCsrIyjB8/Hn/++ac8QiZyxFWtRj3SYuLxeFX+ZoxVW1bf+jUtJ42TpO1d4cSJE1i1ahVOnToFExMTWYVHOCZuewuFQkyfPh2rV6+Gvb29vMIjHJMkv0UiEXg8Ho4dO4ZevXph9OjR2LJlCw4dOkS90kpCkvYODQ3F4sWL8fPPPyMwMBDXrl1DbGwsFi5cKI9QiZxxUatRd0o9jIyMoKqqWu3sNS0trdqZTAUzM7Ma11dTU4OhoaHMYiUNJ017Vzh16hTmzp2Lv//+G8OGDZNlmIQjkrZ3fn4+AgICEBQUhC+++AJAeaHFGIOamhpu3LiBIUOGyCV2Ijlp8tvc3BwWFhbQ19evXNapUycwxpCUlAQ7OzuZxkykJ017r1+/Hv369cM333wDAOjWrRtatGiB/v3749dff6VflJsQrmo16pGuh4aGBpydneHl5VVluZeXF/r27VvjNn369Km2/o0bN+Di4gJ1dXWZxUoaTpr2Bsp7oj/55BMcP36cxtIpEUnbW09PD8+fP0dwcHDlY+HChejYsSOCg4PRu3dveYVOpCBNfvfr1w+vX79GQUFB5bLIyEioqKigbdu2Mo2XNIw07V1UVAQVlaqlkaqqKoD/eitJ08BZrSbRpYnNVMX0OR4eHiw0NJQtXbqUtWjRgsXFxTHGGFu+fDmbNWtW5foVU6osW7aMhYaGMg8PD5r+TolI2t7Hjx9nampqbOfOnSw5ObnykZOTo6i3QCQgaXu/jWbtUC6Stnd+fj5r27Yt++CDD1hISAjz9vZmdnZ2bN68eYp6C0QCkrb3wYMHmZqaGtu1axeLjo5m9+/fZy4uLqxXr16KegtETPn5+SwoKIgFBQUxAGzLli0sKCiocqpDWdVqVEiLaefOncza2pppaGgwJycn5u3tXfncxx9/zAYOHFhl/bt377KePXsyDQ0N1q5dO7Z79245R0waQpL2HjhwIANQ7fHxxx/LP3AiFUnz+01USCsfSds7LCyMDRs2jGlra7O2bdsyNzc3VlRUJOeoibQkbe/t27ezzp07M21tbWZubs5mzJjBkpKS5Bw1kdSdO3fq/C6WVa3GY4x+qyCEEEIIIURSNEaaEEIIIYQQKShdIb1r1y7Y2NhAS0sLzs7O8PHxqXN9Se6jfvLkSfB4PEycOJHjqAkhhBBCSFOjVIX0qVOnsHTpUvzwww8ICgpC//79MWrUKCQkJNS4fmxsLEaPHo3+/fsjKCgI33//PRYvXoyzZ89WWzc+Ph5ff/01+vfvL+u3QQghhBBCmgClGiPdu3dvODk5Yffu3ZXLOnXqhIkTJ2L9+vXV1v/uu+9w6dIlhIWFVS5buHAhnj59Cj8/v8plQqEQAwcOxJw5c+Dj44OcnBxcuHBBpu+FEEIIIYQoN6W5IQufz0dgYCCWL19eZbmrqyt8fX1r3Ka2+6h7eHhAIBBUzhO4Zs0aGBsbY+7cufUOFQGA0tJSlJaWVv4tEomQlZUFQ0NDunMhIYQQQkgjxBhDfn4+2rRpU22+cGkpTSGdkZEBoVBY433R374zTQVx7qP+4MEDeHh4IDg4WOxY1q9fj9WrV0v8HgghhBBCiGIlJiZydkMlpSmkK9R0X/S6eoHruo96fn4+Zs6cCXd3dxgZGYkdw4oVK+Dm5lb5d25uLqysrBAZGQkDAwOx90OUk0AgwJ07dzB48GC6U2UzQO3dvFB7Ny/U3s1LVlYW7O3toaury9k+laaQNjIygqqqao33RX+717lCffdRDwkJQVxcHMaNG1f5vEgkAgCoqakhIiIC7du3r7ZfTU1NaGpqVltuYGAg0f3ZiXISCATQ0dGBoaEhHXibAWrv5oXau3mh9m6euByGqzSzdmhoaMDZ2bnafdG9vLzQt2/fGrep7z7qDg4OeP78OYKDgysf48ePx+DBgxEcHAxLS0uZvR9CCCGEEKLclKZHGgDc3Nwwa9YsuLi4oE+fPti3bx8SEhKwcOFCAOVDLl69eoUjR44AKJ+hY8eOHXBzc8P8+fPh5+cHDw8PnDhxAgCgpaUFR0fHKq/RqlUrAKi2nBBCCCGEkDcpVSE9ZcoUZGZmYs2aNUhOToajoyM8PT1hbW0NAEhOTq4yp7SNjQ08PT2xbNky7Ny5E23atMH27dsxefJkRb0FQgghhBDSRChVIQ0AixYtwqJFi2p87tChQ9WWDRw4EE+ePBF7/zXtgxBCCCGEkLcpzRhpQgghhBBCGhMqpAkhhBBCCJECFdKEEEIIIYRIgQppQgghhBBCpECFNCGEEEIIIVKgQpoQQgghhBApUCFNCCGEEEKIFKiQJoQQQgghRApUSBNCCCGEECIFKqQJIYQQQgiRAhXShBBCCCGESIEKaUIIIYQQQqRAhTQhhBBCCCFSoEKaEEIIIYQQKVAhTQghhBBCiBSokCaEEEIIIUQKVEgTQgghhBAiBSqkCSGEEEIIkQIV0oQQQgghhEiBCmlCCCGEEEKkwFkhXVhYiHv37nG1O0IIIYQQQho1zgrpqKgoDB48mKvdEUIIIYQQ0qjR0A5CCCGEEEKkIHYhbWBgUOdjwIABsoyz0q5du2BjYwMtLS04OzvDx8enzvW9vb3h7OwMLS0t2NraYs+ePVWed3d3R//+/dG6dWu0bt0aw4YNw6NHj2T5FgghhBBCSBOgJu6KpaWl+Pzzz9G1a9can4+Pj8fq1as5C6wmp06dwtKlS7Fr1y7069cPe/fuxahRoxAaGgorK6tq68fGxmL06NGYP38+jh49igcPHmDRokUwNjbG5MmTAQB3797FtGnT0LdvX2hpaWHTpk1wdXVFSEgILCwsZPp+CCGEEEKI8hK7kO7RowcsLS3x8ccf1/j806dPZV5Ib9myBXPnzsW8efMAANu2bcP169exe/durF+/vtr6e/bsgZWVFbZt2wYA6NSpEwICArB58+bKQvrYsWNVtnF3d8eZM2dw69YtzJ49W6bvhxBCCCGEKC+xC+kxY8YgJyen1ucNDAxkWnjy+XwEBgZi+fLlVZa7urrC19e3xm38/Pzg6upaZdmIESPg4eEBgUAAdXX1atsUFRVBIBDAwMCg1lhKS0tRWlpa+XdeXh4AQCAQQCAQiP2eiHKqaGNq6+aB2rt5ofZuXqi9mxdZtLPYhfT3339f5/OWlpY4ePBggwOqTUZGBoRCIUxNTassNzU1RUpKSo3bpKSk1Lh+WVkZMjIyYG5uXm2b5cuXw8LCAsOGDas1lvXr19fY+37nzh3o6OiI83ZIE+Dl5aXoEIgcUXs3L9TezQu1d/NQVFTE+T7FLqQbCx6PV+Vvxli1ZfWtX9NyANi0aRNOnDiBu3fvQktLq9Z9rlixAm5ubpV/5+XlwdLSEoMHD4ahoaFY74MoL4FAAC8vLwwfPrzGXzVI00Lt3bxQezcv1N7NS2ZmJuf7VJpC2sjICKqqqtV6n9PS0qr1OlcwMzOrcX01NbVqBe/mzZuxbt063Lx5E926daszFk1NTWhqalZbrq6uTonYjFB7Ny/U3s0LtXfzQu3dPMiijZVmHmkNDQ04OztX+/nFy8sLffv2rXGbPn36VFv/xo0bcHFxqfKP+dtvv+GXX37BtWvX4OLiwn3whBBCCCGkyVGaQhoA3NzcsH//fhw4cABhYWFYtmwZEhISsHDhQgDlQy7evOBx4cKFiI+Ph5ubG8LCwnDgwAF4eHjg66+/rlxn06ZN+PHHH3HgwAG0a9cOKSkpSElJQUFBgdzfHyGEEEIIUR5KM7QDAKZMmYLMzEysWbMGycnJcHR0hKenJ6ytrQEAycnJSEhIqFzfxsYGnp6eWLZsGXbu3Ik2bdpg+/btlVPfAeU3eOHz+fjggw+qvNbKlSuxatUqubwvQgghhBCifKQqpHNycnDmzBlER0fjm2++gYGBAZ48eQJTU1OZ38Rk0aJFWLRoUY3PHTp0qNqygQMH4smTJ7XuLy4ujqPICCGEEEJIcyJxIf3s2TMMGzYM+vr6iIuLw/z582FgYIDz588jPj4eR44ckUWchBBCCCGENCoSj5F2c3PDJ598gpcvX1aZIm7UqFG4d+8ep8ERQgghhBDSWElcSD9+/BgLFiyottzCwqLWG6MQQgghhBDS1EhcSGtpaVXeEvtNERERMDY25iQoQgghhBBCGjuJC+kJEyZgzZo1lfcr5/F4SEhIwPLly6vMhkEIIYQQQkhTJnEhvXnzZqSnp8PExATFxcUYOHAgOnToAF1dXaxdu1YWMRJCCCGEENLoSDxrh56eHu7fv4/bt2/jyZMnEIlEcHJywrBhw2QRHyGEEEIIIY2S1DdkGTJkCIYMGcJlLIQQQgghhCgNsQrp7du3i73DxYsXSx0MIYQQQgghykKsQnrr1q1V/k5PT0dRURFatWoFoPxOhzo6OjAxMaFCmhBCCCGENAtiXWwYGxtb+Vi7di169OiBsLAwZGVlISsrC2FhYXBycsIvv/wi63gJIYQQQghpFCSeteOnn37Cn3/+iY4dO1Yu69ixI7Zu3Yoff/yR0+AIIYQQQghprCQupJOTkyvnkH6TUChEamoqJ0ERQgghhBDS2ElcSA8dOhTz589HQEAAGGMAgICAACxYsICmwCOEEEIIIc2GxIX0gQMHYGFhgV69ekFLSwuampro3bs3zM3NsX//flnESAghhBBCSKMj8TzSxsbG8PT0RGRkJMLDw8EYQ6dOnWBvby+L+JqUzIJSCIQMJrqaUFHhKTqcahhjSC8ohSqPB4MWGuDxGl+MIlF5jFpqqtDXUVd0ODUSCEXIKChFC0016Gk1zhj5ZSKkF5SilbY6WmhKPZ28TJUIhMgoKIWJrhY01CQ+55eLgtIy5BYLYKanBdVGmNMAkF3IR0mZEKa6Wo3yuAMA6fmlAACjlo3zuMMYQ1p+KTTVVNBKR0PR4dRIIBQhs4APbQ1V6Gs33uNORkEp9LTV0bKRHndKy4RIzy+FUUtNaKmrKjqcGhWWliG7iA9zfe1Ge9zJKeKjiC+EmV7jPe5wRepPsr29PRXPYmCM4erzZJx6nAjjlprQVFdBUnYx3rU1xLz+NtBUU3yiCkUMx/zjce1FCtq21oaIAcm5xRjd1RzT3rFqFElQIhBij3c0HsdlwcpAB8V8ITIL+ZjR2wojHc0VHR4AILdIgG23IhGTXoi2rbWRWyxAMV+IzwbYoretoaLDAwC8yinGNq/IyoNwen4pVFSApcPsYW+qq+jwAADhKXn481YUBEIRTPW0kJRdBMOWmnAbbo82rbQVHR4A4FFsFvZ6R0NLXRWtdNSRmF2M9sYt8OUQOxi0UHyhxRiDV2gqjvonwLCFBrTUVZGUXQRn69ZYMKA9tDUUf9wRiRhOByTi8rPXMNfXhgqv/PPp2tkMM9+1bhQFAr9MBHefGDyIyoCVgQ5Ky0RIzy/Fhy5tMb57m0ZR9BeUlmH7rZcIT8lH29bayC8pQ0GJAHPfs8V7dkaKDg8AkJZXgq03I5GaV4o2rbSQVciHSAR8ObQDurTRV3R4AIDo9ELs9I5FiaC8+EvOLUZLTTV85doRlgY6ig4PAPAkIRu770ZDTYUHw5YaSMwqhpWBDpYMs4NRS01FhwcAuBORhkMP4tBKp7yTJjGrCN3btsLCQe0bxcmTSMQ436fE7+rTTz+t8/kDBw5IHUxTU1omxA/nX8DaQAfus10qz24riut5hwPw+4fdYaKnpbAYc4r4+PrvZxjiYIK/5vau/PISihiOPozHomNPsPmj7gpNgFc5xfjuzDPM6mONJUPtKr+8ivlC7LobBe/IdKyZ4Ah1VcX1Woa8zsUvV0LhNrwjetkYVC7PKeJj47VwPIzJwuKhHRT6xesdmY79PjH4cUxndDT7r2hOzi3GqkshGOpgio/esVRYfABwOiARt8JSsWp8F5jr/1c0R6XlY/m555jTrx0GdzRRWHyMMWy/FYXk3GJsmdKjSs9fYHwW/nfsCb4f3Qld2yquOBAIRVh5KQQGOhrYN8u5ynHnRmgq5h15jI2Tu6Fta8UVB3klAnx35hl62xjg0JxelbkrEjGcCkjEgr8C8PtHPRTas5qaV4IVF0LxkYslFs3rXZm7JQIh3O/F4Ku/n2L9+10V2hnyMjUfP118gcVD7PD96E6Vy/NKBPj9egTuR2Xg2xEdFdoZ4h+TiT9vR2H5KAc4WvyXF2l5JVhzJRS9bQwwq087hcUHAE8yeLh4PRKrJzhWKZrjMgrx08UXmNbLCiO6mCkwQmCvdzQiUvKxcXK3Kifrz5JysPhEEL5ytYeztUEde5AtoYjhlyuhUFflYfdMJ+holNcMjDF4R6bjsyMBWDupK2yMWigsxiJ+GX64EML9jpmEJk6cWOUxZswYZm1tzfT19dmkSZMk3V2TkJubywCwjIyMymX8MiFbcCSA3Q5LrXW7qLR8NnWvH0vNLZZHmNXkFPLZzP0P2fOknFrXeRybyWZ5+LP8EoEcI/tPQmYhm7rXjyVkFta6zj/PX7Mvjj9h/DKhXGLi8/nswoULjM/nM8YYe5aYw2buf8iyCkpr3cbDJ4b9eiWEiUQiucT4tlthKWzRsUBWzC+r8XmhUMRWXXrBDj2IlW9gbzjiG8tWXnzBhMKa/41KBGVs0bFAdiMkRa5xVbR3aWkp+/VKCHO/F13rujmFfDbLw589TcyWX4BvKBOK2BfHn7Crz17Xuk5FTiVm1Z5TslRQImCzPfxZQFxmres8TcxmM9wfspwivhwjK8fn89mhUxfY1L2+LCa9oNb1boelsgVHAliJoOackrXw5Dw23d2PpeWV1LrOsYfx7MfzzxV23HnwMp3NP/yYFdTy/SESidjGf8LY7rtRco7sPyf9Y9nU3y+x4pKaj9/8MiFbdjKIXQx+JefI/vP7jQi2/WZkre2YXyJgcw4+Yo9ia88pWRIKReyr08HsbGBiresk5xSzafv8WGwdOSVLxfwy9unBR+yfgJcMAMvNzeVs3xIX0jURCoVswYIFbOPGjVzsTunUVEgvP/uUXXuRXO+20Wn5bIb7w1oPNLIiKBOyuYceifWF/zg2ky04EsAEcipUK+QW89m0feJ94V8KfsVWXnwhh6iqFtIJmYVs2j4/llNY/xf+jtsv2T7v2oswWXmamM3mHnpc7xe+SCRi3515yv55Xv/nlms3QlLYd2ee1vuFzy8TsrmHHsu1UK1o733eL9n2m5H1rp9TJP7nlmsrL75g558k1btexec2t1i+hapQKGILjgQw/5j6v/CDE7LZpwcfye0EuUJOQREbvu4Si0zOrnddcT+3XEvJLWZT9/qxjPzai+gKB+7HsD/E+NxyLSIlj318wJ8VldZ/3Fl16QU796T2IkxW7kWmscXHA9m58/91jNSkTChinx8V73PLtRP+8WzjP2H1rldQImAz9z+s8+RPVtZ7hrHj/vH1rpecU/65ravTSRZEIhFbfOIJ845IYxkZGZwX0pz8Fq6iooJly5ZVu5V4c3U+KAnGulpi/RRka9wS/xvcAT9fDKmcTlAefrsegQk9LNCtbat613VpZ4ChnUyw62607AP7F2MMK849x9cjOor1E/S47m2gp6WGM4FJcoiuXGmZCN+ff46Nk7uJdeHjokHtEZacB9/oDDlEVy6rkI/1nuH4/cPu9f4EzePx8MtERxx/lIDErCI5RQjEpBfgmH881kxwrHfoi7qqCn7/qDvWe4Yjt6j6fPayEpUHhLzKwxdDOtS7rr62Oja83w0rzj1HaZlQDtGVu/YiGRpqKpjY06LedS0NdPD1iI5Yce65XI87f9x6iSEOJlWGP9Wmu2UrTHKywLabkXKIrBxjDKsuh2G4BUM7w/p/gh7e2RRWhjo46p8gh+jKlQlFWH72GX6Z6AhDMcbFftK3HZJzS3AnPE0O0ZUrEQix+nIINn3Qrd7x+DweDz+O6Yyrz1IQlpwnpwjLhwzuuxeDXyd0Rn0jX1RVePjtg+7YdjMSmQWl8gkQQHBiDnxeZuBr1471rttCUw2bPuiGH84/R4lAvscdgVCEab2s6l3XTF8LP4zphG/PPoNQBmOVa7PvXgx6WrbCAHtjmeyfs0Gl0dHRKCsr42p3Sis2oxCXgl9jsRhfuBX6tDeEjZEOzj55JcPI/vMkIRvZRXyM695G7G0+cG6LmPQCPE3MkV1gbzj6MB49LVvByaq12NssGWaPy09fIylbPkXgtltRmPmutdgXovB4PPw6yRE7bkchr0T2RSBjDD9ffIEfxnQSe4YTdVUV/DKhC36++AJlQpGMIyy/mGvlpRCsf7+r2DNz6Gur45uRHbH6sgzGutUgp0iAa4kqWDmuk9hj3K0MdTCjtxW233op4+jKvcopxjH/BLG+cCs4WbVGT8tWOP5IPkXgi1e5SMgqkmgc/thubZCeXwr/mEwZRvafc09ewdJAB/b64n/JLxzQHnfD0xCbUSjDyP6z/XYUJvSwQAeTlmKtz+PxsHJcZ+y/H4PsQr6Moyv369VQfDagPUx0xbv+R1WFh42Tu+KXK6FyKQIZY1hzOQSrx3cRe2aOFppq+H50J/x8ST6dXvklAmz8JxzrJnUVe4y7ub425ve3xaZrETKOrlxKbgmO+Sfgu5EOYm/jaKGPQR2NcfBBrAwj+8/TxByEvM7Dx33byew1JC6k3dzcqjyWLVuGqVOnYsqUKZgyZYosYlQaAqEIP198gbWTukJNwgvfFg5sj4vBr5CaVyKj6MqVlgmx+XpElQtTxMHj8bBqfBdsvBaOIr5sT5gSs4pwJyIdn/azkWg7VRUeVo/vgpUXQ2RyZe6bEguAjPxSiS9A0dFQg9twe6y7GiajyP5z9skrdG6jV+UCH3FYG7bA2G5t5PILxM47UZjyjmWVCwvF4WTVGm1ba+PS09cyiuw/v92IxBgrkcQX3I50NEdybgmCErJlFFk5oYjhx/PPsWaCo8TTBH7azwY3Q1Nl/guEQCjChn/C8cMYyY47APDT2M7YdvMlcotle/KZmleCi09fY9FAW4m2U1HhYc1ER6y8FCLzk8/wlDzEpBeI9avDm7TUVbF8ZCesuRIqo8j+c+1FMlpoqGGghL1/hi018UnfdvhDDiefF4JfobtlK9gai3cyUsHRQh9dLfRxOiBRRpH9Z/P1CHw5tIPE07wOdjBBSZlQ5r98MlZ+ceHPYztLfNyZ3ssK/rFZiEkvkFF05UoEQmy8Fo7V47vI9EJ/iQvpoKCgKo9nz54BAH7//Xds27aN6/iq2bVrF2xsbKClpQVnZ2f4+PjUub63tzecnZ2hpaUFW1tb7Nmzp9o6Z8+eRefOnaGpqYnOnTvj/PnzUsV2xC8Bk53aSjVFl5qqCn4c0xlrLofK9Gx3551ozHzXWqq5UFvpaGDRoA7Y+E+4DCIrxxjDr1dD8eOYTlJdad7OqAUGdTTGId847oP7l0AowqUEFSwfJX7v35tc2hmgpaYa7kTI7qfWjIJSXAx+hc/6S1YUVHjfyQLR6QV48SqX48j+E5WWj5dp+RjTVbrpC78caoe/AxKRkiu7k0/f6AxoqqnARsqZAVeO7YJN1yJQzJddL9th3zi4djGT6mp4FRUeVo7rgtUyPu64+8RgsrOFVFN06Wqp4+sRHfGLjIvAX6+G4fvRDlJNu2fRShsTe7TBbhmefApFDOs8w/HT2M5Sbd+1rT4sW2vj6rNkjiP7T26RAH89jMdXEvwy8ibXLmZIzS3Bs6QcbgN7Q0ZBKc4GvsJ8KY+N8/vb4nqIbE8+A+OzwReK0Le9dNMXfj+6E/68JdtfPv95kYIOJi1hJ8W0qRUdc6svh8p0iMeO21GY088GrWU9JSlno63l4OTJk0xdXZ25u7uz0NBQtmTJEtaiRQsWH1/zIPeYmBimo6PDlixZwkJDQ5m7uztTV1dnZ86cqVzH19eXqaqqsnXr1rGwsDC2bt06pqamxh4+fCh2XBUXG87efbvBF51svxnJLgTVf7GQNMKSc9n/jgU2OMblZ5+xxzK6Ovhi8Cv2562GXRgjEonY3EOPWHyGbC722nErgn3vfrHOi1PqU1Raxqbuld3FXm6nguucjUUc6fklbIb7Q5lc7CUUitgnB/zZq+yiBu0nPDmPfXH8CUdRVVXML2+jzLyiKrO0SOp2WCpbezWU4+jKvcouYp8c8K91phNxefjEsGMP679YSBpRafnssyOPG3zc+fVKCLsTXvssSA1x/UUy++1aOGOs+qw84hKJRGzR0UAWmZInixDZwfsx7OjDuAbto1QgZNPdxbtIURorzj2rczYWcWQWlLLp7n4ymw1l6cmgKsdGado7Nr2AzT/c8M90TSraKLuwYRfk+UVnsB/OP+MoqqpyCssvqG5oG53wj5fZBfgRKTV/N8jiYkOJC+nBgwez7Ozsastzc3PZ4MGDuYipVr169WILFy6ssszBwYEtX768xvW//fZb5uDgUGXZggUL2Lvvvlv590cffcRGjhxZZZ0RI0awqVOnih1XRSEdHJUg9ja14ZcJ2Qz3hyyT46tay4QiNnP/Q06m2ssp5MvkQJddWH4ALRU0vHCLTS9gcw9xf6CLTS9gcw/6s/P1XOUtDt+oDPbzheccRfYf74g09svlEE72de5JItt55yUn+3rT0YdxnE21t/l6uFgz5Ehq4z9h7EZIitSF1ZuWnQpizxIbdmJTk0VHA9nL1IYXbkKhiM3y8Od8Ks6KEyYuZjCpOPnkeirOvGI+m7rXr3JqyIa09+ucIvYxByc2b+PqhImx8ll83E4FcxBVVf4xmZwVbpefvpLJTCNeISlsw1szYEjb3jtuv5RJp9f2m5HsEkdT7a0490wmU+ItP/uUk840kUjEPj34qM7pbaUhFIrYxwf8WXJO9eOZLAppie+ycffuXfD51S9YKCkpqXeYRUPw+XwEBgZi+fLlVZa7urrC19e3xm38/Pzg6upaZdmIESPg4eEBgUAAdXV1+Pn5YdmyZdXWqWuYSmlpKUpL/7tyNy+v/Epj0xbqEAga/lPK0qHtsd4zFOsmdmnwvioceBCHUV1M0FpbtcEx6qgDU5wtsOv2S3wxuD1HEQJrr4ZiyZD24DEhBA284MRCXwM92urh78cJmNRT/Isq68L+vUBluWt7hAUkN/jf0cVKD+eeJOJRTDp6WrbiJMZivhC77rzEnhk9Ofksjuligv+deIrI5BzOJtJPzSvBtefJcJ/lxEmMC96zxvyjQXjHSh+6WtzcOCg8JR8JmYVYNrR9ZYwNifVbVzu4/f0M+2c5cXbjoBuhqWhnqA3r1lqc/Dt+M7wDfrkSgi0fduMgunLHHyWifwdDmLZs+LFRjQd8PrAdNnqG4uexko+1rs2ma+FYNNAGqhBBIBA1qL2NdNQwoIMh/vKLxfRe3NzcqOK4890IewiFZRA2cJRQJ9MWaKWtiluhyRjA0Z0PS8tE2OoVgR1Tu3PyWXR1MMIXwa84Pe7klwjgcT8G+2ZWPTZK295z+lhi3pEn6GPTCq05um18THohnr/KwYL+1pz8O341tD2+OPkU7rOcoCnhOOba+MdmQZUHdLfQ5STGb13t8MuVEOyY2p2zcczHHyVioJ0hDHWq1ztcxPw2HmPiDYyrGAvdo0cP3L59GwYG/01fJBQKce3aNezduxdxcXGcBwkAr1+/hoWFBR48eIC+fftWLl+3bh0OHz6MiIjqV6na29vjk08+wffff1+5zNfXF/369cPr169hbm4ODQ0NHDp0CNOnT69c5/jx45gzZ06VYvlNq1atwurVq6stP378OHR0uLlb2NlYFXQ1YBJdPV6bjBLgfJwK5nUUgavx9owBByNVMMZKBFMO7tocmcvD8yweJttwd7GOUATsCVfBx3YitOTgBmkP03goKgOGtOFuTFehADj0UgULHUTgor66FK+C9noMXVpzF2NWKfB3jArmO4jqnSZKHIcjVTDMQgQLDm9wFZULBGeq4APbhn9+RAzYG6aC6R1E0OdwaN2jdB7y+cBQi4a3TUkZsD9CBQs6iaDO4Q09ufz85JQCJ2NU8BlHn5sKp6JV4GIsQnu9hu8rLh94mKaCqe25O+6IGLAvXAVTbUVoxcFdm4MyeEgrAUa05S6nS4WAe3h5TmtycGPG60k8mGgBPY24izGzBDgbp4L5HH1vnY5RgZORCB04+NxUiMsHfFPLjxUNJWLlbfKhrQgGHN7tOziTh+QiHkZZNjxGvrD8sz2vowgc9VkAAK4l8mCqA/Q0bPjnJ5cPHI8qPzbWdNwpKirC9OnTkZubCz09bj4MYv9T9OjRAzweDzweD0OGDKn2vLa2Nv78809OgqrL22csjLE6z2JqWv/t5ZLuc8WKFXBzc6v8Oy8vD5aWlhg8eDAMDQ3rfxNi6F9ShkXHg/D5B07QFHN6npowxrDwWDD++KQjrMScpk1cPfsVY+XlMOyd1LNBt6AtEQhx4q8n2D2vJ+e3IrfpmYcj/gnYNMGxQfvJKCjF6TMvsH9OTzCREF5eXhg+fDjU1RteoWsEv8brvFIsGCDZLCVvC03Og05hHL7hsEexAnuYgDwVXoN72W6FpaGXei7mD7fjKLL//HgxBGaOFnCyatWg/Rzyi8fMQaqY4tIWQHkPBhftPYoxLDoejC69O8LasGG5uOZqOH6abIw+ttwcbyoM5gvx2dEnWDS0J1o0IBcZY1h86hm2zGov9jRt4nqvWID/nQjGZ5Mbdmzkl4kw/68n2D63O1q9MTMCF+1t75KPXd6x2DapYbmYUyTAqVNP4f6pk8QzI9THqFMGfF5m4nspL5quEJNeiKu5L/E9hz2KFQQP4lCsrY4PnCSbpeRt/rFZsBamYPG46hdqNrS9M66Go7VDw3PxdEASJhkIMbOPdYP287ZRjGHJqWewc2kPuwbm4u9eL/HVWH0M7WTCUXTlhv6bi18O7g497YZ9py47/Qy/zbSBg1nNF0FmZnI/labYR8rY2FgwxmBra4tHjx7B2Pi/qW00NDRgYmICVVUOTm1rYWRkBFVVVaSkpFRZnpaWBlNT0xq3MTMzq3F9NTW1yoK3tnVq2ycAaGpqQlOz+imjuro6J4UVABioq2POe7bYe1/6K6AB4NTjBPTtYIT2ppJNgSYOa2N1DLA3wfmnKZgqxmTstfn9ZjTm9m+P1i056Np+S892hrj6IhW+sTkST8dUgTGGX/95jh/GdIa2lmblT0NctfdkFyt89lcgkvMEsJKywBIIRfjtRhS2Te3B2WfwTZ/0s8Wnhx/D1dFc4qnqKuSXCHD4YSIOznkH6g0ogGrz/eguWHQ8EAc/6SV10ZGQWQS/mGzsn+1S7eSQi/b+eZwj1lwJgftsF6mLDv+YTJSJGAZ0lGzqRXGoq6tj0WA77Lgbix+lnB0CAC49fY0ubfTRyUL8eeDFZfjvsXG3Txy+GSH+/LVv23PvJab0soKxfs0515D27tLWALbG6bgdmSnxFJlv2nQjFF+PdEALbQ67KP81pJM5/nmRhpCUQvSQcmiZUMSw7lpk+TzwGtzPjDC3f3vMOfQYrl3Mxbr5TE1KBELsvBuLfbOd62xPadv7u1GdMP9wAHrZGos9J/XbUnJLcC00DYfm9JJq1pj6/Dy+C1ace44DH78jdafX08QcpOSVYmS3hp3U1ERdHVg2vCO23Y7BLxOl7/S6+iwZtia66GpZ+w2fZPH9KPa3jbW1Ndq1aweRSAQXFxdYW1tXPszNzWVaRAPlxbqzszO8vLyqLPfy8qoy1ONNffr0qbb+jRs34OLiUvmPWds6te1TnkZ0MUNsRiEiUvKl2j4hswiez1MwR8L5mCXxcd92uPo8GWn50k1B9jguC1mFpRjeufYTl4Zyc7XHnrvRKCyVbv7r80Gv0MlMF53bcPib4BvK7+zVCasvh0g9FdCuO9GY8o6lVNOLiUNFhdfg6Rl/uRKKZcPtpf6yqY++jjqmvmOFvd7STUEmFDH8fOkFVo/v0qBfWOpiZaiD3jaGUt+Bs4hfhj9uvZR4HnhJDLA3RlYRX+qbL6XkluD040QsGMjd9RNvG9HFDIlZxQh5Ld30jM+TchGZVoDxEtyUSlL/G9wBh33jpJ6C7NqLFBjrakp0UypJfT+6E367Hg6BlPNfH7gfi9FdzaSa8lUcaqoq+HaEA9Y2YN79Df+E47OBttDV4r6AAoCWmmqY+54N/rwt3fzX7N8bZ60c11kmRTRQfqOWIQ4mOCblzZcq5mNeOY6767be1svGACLGpJ7/OrOgFMcfxeOLweLfDI8z4lyRePHif1N9Xbx4sc6HLFVMf+fh4cFCQ0PZ0qVLWYsWLVhcXPmUQMuXL2ezZs2qXL9i+rtly5ax0NBQ5uHhUW36uwcPHjBVVVW2YcMGFhYWxjZs2CD19HcZGRncvdl/peYWsxnuDyWeIUNQJmSzPfw5vxq2JqGvc9nnRwMkniEjv0Qg0yng3nQ3Io2tuvRC4u2Sc4rZzP0PmeCNKeC4mMWhJicfxbMdtyWfISP0NTfTGorjz1vSTc945elrtulaWP0rNpBIJGKfHw1goa8lvyJ7z90odvJR9SnguG5vQZmwfAadPMlnyFh58QXziUznJI66ZBWUsmn7/FhRqWTHHaFQxOYeesxepubLKLL/pOWVT88okHB6xqLSMjZtn1+tMyNx2d5+0Rls+VnJZ7KomHpSVlPAvelCUJJUU45yNa2hODZdC2OXn0o+k8XtsFS28mLdx32u2nvpySD2JD5L4u0O+8ayA/djGvTa4hAKRWy2hz9LkmLK0XVXQ9mNkBQZRFVVQYmgztysy5ITT8Sa8lVh09/xeDyWmppa+f+1PVRUVDgLrDY7d+5k1tbWTENDgzk5OTFvb+/K5z7++GM2cODAKuvfvXuX9ezZk2loaLB27dqx3bt3V9vn33//zTp27MjU1dWZg4MDO3v2rEQxybKQZoyxay+S2RoJpzPb6hXBzj1JlEk8NXG/Fy3xdGbLzz5jftGy+Teryc8XnrOboeIfDMoqi4Kq04vJqpAWiURsyYknLFCCg3HFgUeaokwaFdMzpkgwTdrrnCI2c/9DTqY1FEd6fgmbts+PFZaKP01a6OtctvCvmk8GZdHeESl5bO6hR6xMgunMboensp9kMF1ibbwj0iQuAvfcjZLZfNQ1OROQKPHJ58qLL+qcj5rr9l7vGcauPH0t9voVJ4Mhr7j7oq/v9b44/oQFxIl/3Cnml7GZ+x82eB54cZUKyk8+JekYSssrYdPd/5vWsDZctXdOIV/ijqGXqfls7qHHnE+XWJvY9AI228NfonsD+EVnsG/+5n66xNo8T8qRuGPu1OMEttUrQqx1G8U80qQ6WRfSjJWfEYrbE3gvMk0m84TWRSgUsf8dCxS7MD72MJ79fj1cxlFVVXHwj0oTr7ds4z9h7ExA9ZMRWRXSjDGW+++ctuKckQuF5YW3b5T8TkYYK++Jmu3hL1ZvWTG/jM328JdLD+WbfKMy2JfHn4j1BZVZUMqm7vVj6bXcpEJW7f13QCJb7yleL31segGbuf9hvUUB17bciGDH/cUrjB/FZsrtl5EKIpGIuZ0KZt4RaWKtf/5JUr1zrHPd3vwyIfvkgL/Yv5JsvxnJjvg17MYrkqo47ohzgiwSidh3Z56y2zK6OU5tEjIL2Qz3h2KdIJcKhOzTg49YWHL9/+ZctndgfBZbcCRArBPknKLym5rUNNexLF15+pr9fOG5WHmalF3Eprv7sQKO526vz36fGOZ+T7wbtTxLzGHzDj8Wu1NCFoU0t5cBE5n5ZkRHXA9JgXdkep3rPU/Khcf9WKyd1LBZKiSlosLDxsndsPNOVL3jFr1CU+Efm4mlw+zlFF05LXVV/P5hd/x4/kW9t5U+9CAWQsYw2bmtnKIrp6eljp/HdcaSk0EoqGNMN2MM6zzD8K6tIfq053bmhvq0N26JOf3a4avTT+scWykQivDNmWf49D0bzmduqE+f9obo294Qaz3D6hzTnV8iwNJTwfhpbGeZjS+vzQfObaHCK/+s1SUltwTLzz3Dpg+6yWx8eW2WDLWDf0wmboSk1LleREo+tt96iQ2Tu3E+c0NdeDwe1k5yxIEHsQhKyK5z3fsvM3A9JAUrZDi+vCbqqir4/aMeWHM5FAmZdd9W+tTjBGQUlGJmb+kv3paGnpY61k5yxFennyK3qO4x3Vu8ImFnqovBHbmduaE+lgY6+GJIByw9GYzSston0xaKGFace44p71jCwUw217XUxsmqNUY6muGniy8gquN6lyJ+GdxOBePbkQ4w09eSY4TAmG7mMNbVxO56riVJzy/F16efYv2kbg2awUcan/Zrh6i0Alx++rrO9WIzCrHhWhg2f9BdZuPLxSHWPNLbt28Xe4eLFy9uUEDKKC8vD/r6+sjIyOBs+rualAiEWHYqGMM7m+J9p+oF3p2INBz2jcMfU3pCX0c2F1bUJ6eIjy9PBGHBgPZ4763J/hljOB2QiPtRmfj9w+6cT+ckrvjMQiw/+xw/j+uMTuZVD7QiEcMft16ioLQMP47pVGNRIBAI4OnpidGjR8vkCmAACIzPxlavSGz6oFu1C3lKy4RYdSkEdia6+PQ92V1IWp/rISk49yQJGyd3Q6u3bkiQU8THd2ef4X2ntg2ataChDvvGISw5D6vGd6lWhCZlF2H52edwc7Wv84IuWbZ3xQmRjoYaFg+1q/ZlEJachzWXQ7Hu/a6c3ZhCUvwyEb76+yn6tjfE1Hcsq+WEb1QGdntHY+uUHnI/GamQVyLA4hNBmPWuNYZ2qn7h8sXgV7j2IgVbp/So92REVu39OqcYX51+iuWjHND9rVkyRCKGvfdikJhdhF8nOMrsYtf6vHiVi3WeYdjwfrdqMwgJhCKsvRoGY11N/E8RF3T9605EGo76xeO3D7vDoEXV405+iQArzj3H8M6mmNBDvNklZNHepx4n4GFMFn6d6FitCE3JLcF3Z59h0aD26M3x9JXiYoxh682XKC0T4mvXjtVuEhWVlo+fLoRgzYQusDOteRo5WSsTirD83HM4ttHDx33bVTvuBMZnYYtXJLZ81AOmeuKfjGRmZsLIyIjTeaTFKqRtbMT7subxeIiJiWlwUMpGXoU0UH62/cfNSLxMK8BHLpawMWqB1znF+DswCfra6vhupAO0NeTba/W2In4Zfr0aBn6ZCJOd2sJcXwvR6QU4+TgRPSxbYeHA9go9ewTKz7ZXXw6Bsa4mxnZrA4MWGnjxKhd/ByZhTFczTHmn9h4heRTSABCXUYjVl0PQrW0rDO9sCi11VQTEZeHS09eY+55NjQWDvD1LysHGa+EY3NGk8sTp/ssM3A5Pw7cjHaSeVotLdyPSsMc7GhN7WMClXWuUCETwCk3F06QcrB7fBdaGdReo8mjv048TcfnZa3zoYgnHNnrILhLg6rNkpOaX4JcJjtUKBnkTiRh23Y3C06RcfORiCTuTlkjOLcHZJ0nQUFPBD6M7yb3X6m0lAiE2/BOO3GIBJju1RdvW2ojNLMSpR4mwN9PFl0M6iHVXSVm2d3YhH6svh6Cllhom9rCAYUtNhCfn4VRAIoY6mGDmu9Zy7dGvSWJWEVZfDkFHM12M6GIGHQ01BCfm4HxQEmb2tsaoruYKjQ8oP8FcezUM79kZYYCdMdRUefCNysCN0FQsHWaPXja1T3/2Nlm1t290Bv68FYUx3czR28YAfKEIt8PS8CguCyvHdZH7r3Q1uRj8Cn8HJGGyswW6WrRCfokA116kIC6zEL9MdISJrnx7y9/GGMN+n1g8jMnEhy5t0dFMD+n5pTgf9AoCoQgrx3WWeDYWhRXSpG7yLKQrvM4pxvWQFCRkFcFUTwsju5ihnYJ6rGoTk16AG6GpSMktgbWhDsZ0M1d4Yr6JMYaQ13m4GZaKvOIy2Ju2xKiu5tCvZ0J4eRXSFTH6RWfiQXQG+GUidG3bCsM6mUBHQ7FFy5uEIoZbYakITMiGCo8HJ6vWGNzRGGoc3QqbCyUCIa6HpCDkdR601FTQ27Z86Ic4RYu82ju3SIB/XiQjOr0ALTTVMLijSbWeS0VLzSvB9ZAUxGUUwbClBkZ0MUUHE8X0WNUmPrMQ10NS8DqnBG1ba2NstzYS/Xwuj/YOS86DV2gqsov46GDSEmO6mlf7VUeRGGN4HJcNn5fpKOYL0cVCD66dzRR+svQmkYjhbmQaHsVmg4HByao1BnU0hqaaZB1JsmxvfpkI10NS8PxVLjRUVdDLxgDvdTBS2C8ONSkoLYPn82S8TM2HjoYaBtgbwdla/BMReUjLL8H1kFTEZRSitY46hnU2lXrYTqMrpFkNdwlsjhRRSBPFkWchTRSP2rt5ofZuXqi9mxdZFNJSdRl5eHjA0dERWlpa0NLSgqOjI/bv389JQIQQQgghhCgDiX+n+emnn7B161Z8+eWX6NOnDwDAz88Py5YtQ1xcHH799VfOgySEEEIIIaSxkbiQ3r17N9zd3TFt2rTKZePHj0e3bt3w5ZdfUiFNCCGEEEKaBYmHdgiFQri4uFRb7uzsjLKy2ue9JYQQQgghpCmRuJCeOXMmdu/eXW35vn37MGPGDE6CIoQQQgghpLGTai4bDw8P3LhxA++++y4A4OHDh0hMTMTs2bPh5uZWud6WLVu4iZIQQgghhJBGRuJC+sWLF3BycgIAREeX32LS2NgYxsbGePHiReV6zX1KPEIIIYQQ0rRJXEjfuXNHFnEQQgghhBCiVBrPrccIIYQQQghRIhL3SJeUlODPP//EnTt3kJaWBpFIVOX5J0+ecBYcIYQQQgghjZXEhfSnn34KLy8vfPDBB+jVqxeNhSaEEEIIIc2SxIX01atX4enpiX79+skiHkIIIYQQQpSCxGOkLSwsoKurK4tYCCGEEEIIURoSF9K///47vvvuO8THx8siHkIIIYQQQpSCxEM7XFxcUFJSAltbW+jo6EBdXb3K81lZWZwFRwghhBBCSGMlcSE9bdo0vHr1CuvWrYOpqSldbEgIIYQQQpoliQtpX19f+Pn5oXv37v9v787joqr3/4G/hh1URgFZVcQNUMv1K0LXzFJcMrTsl0txLdPk8i0XKq9mXbFF08q8aragaH1zu7llNyMpFVEWUcEFEBVZRBiQHVmGYebz+4PLXJEBZ8YZFHk9Hw8eD+czn3PO+8zbc857znzOOcaIh4iIiIioTdB5jLSXlxeqq6uNEUuLSkpKEBgYCKlUCqlUisDAQJSWlrY4jRACoaGhcHV1hbW1NZ566ikkJyer3y8uLsZbb70FT09P2NjYoEePHliwYAHKysqMvDZERERE1NbpXEh/+umnePvtt3H8+HEUFRWhvLy80Z+xzJo1C0lJSYiIiEBERASSkpIQGBjY4jRr167FunXrsGnTJiQkJMDZ2Rnjxo1DRUUFACA3Nxe5ubn4/PPPcfHiRWzfvh0RERF4/fXXjbYeRERERPRo0Hlox4QJEwAAzzzzTKN2IQQkEgmUSqVhIrtDamoqIiIiEBcXBx8fHwBAWFgYfH19kZaWBk9PzybTCCGwfv16LF++HC+88AIA4Pvvv4eTkxN27tyJ+fPnY+DAgdi3b596mt69e+OTTz7BK6+8grq6OpiZ6fzxEBEREVE7oXOleOzYMWPE0aLY2FhIpVJ1EQ0AI0eOhFQqRUxMjMZCOiMjAzKZDP7+/uo2S0tLjB49GjExMZg/f77GZZWVlcHW1pZFNBERERG1SOdqcfTo0c2+l5SUdD+xNEsmk8HR0bFJu6OjI2QyWbPTAICTk1Ojdicnp2bvgV1UVISPPvqo2SK7gVwuh1wuV79uGNKiUCigUChanJbavoYcM9ftA/PdvjDf7Qvz3b4YI8/3fdq1rKwMO3bswJYtW3D+/HmdhnaEhoZi5cqVLfZJSEgAAI232WsYTtKSu99vbpry8nI8++yz6N+/P1asWNHiPFevXq0x7mPHjsHGxqbFaenRERkZ+aBDoFbEfLcvzHf7wny3D1VVVQafp96F9NGjRxEeHo79+/fD3d0d06ZNw9atW3Wax5tvvokZM2a02Kdnz564cOEC8vPzm7x369atJmecGzg7OwOoPzPt4uKibi8oKGgyTUVFBSZMmICOHTviwIEDTR4yc7dly5YhJCRE/bq8vBzdu3fHmDFjYG9v3+K01PYpFApERkZi3Lhx9/y/Qm0f892+MN/tC/PdvhQVFRl8njoV0jk5Odi+fTvCw8NRWVmJl156CQqFAvv27UP//v11XriDgwMcHBzu2c/X1xdlZWU4ffo0RowYAQCIj49HWVkZ/Pz8NE7j4eEBZ2dnREZGYsiQIQCA2tpaREVFYc2aNep+5eXlGD9+PCwtLXHo0CFYWVndMx5LS0tYWlo2aTc3N+eG2I4w3+0L892+MN/tC/PdPhgjx1rf/m7SpEno378/UlJSsHHjRuTm5mLjxo0GD0gTb29vTJgwAfPmzUNcXBzi4uIwb948TJ48udGFhl5eXjhw4ACA+iEdixYtwqpVq3DgwAFcunQJr776KmxsbDBr1iwA9Wei/f39UVlZia1bt6K8vBwymQwymcwodx8hIiIiokeH1mekjxw5ggULFuBvf/sb+vbta8yYNNqxYwcWLFigvgtHQEAANm3a1KhPWlpao4epLFmyBNXV1QgODkZJSQl8fHxw5MgRdOrUCQBw9uxZxMfHAwD69OnTaF4ZGRno2bOnEdeIiIiIiNoyrQvp6OhohIeHY/jw4fDy8kJgYCCmT59uzNgasbOzw48//thiHyFEo9cSiQShoaEIDQ3V2P+pp55qMg0RERERkTa0Htrh6+uLsLAw5OXlYf78+di9ezfc3NygUqkQGRmpflogEREREVF7oPMjwm1sbDBnzhycPHkSFy9exNtvv41PP/0Ujo6OCAgIMEaMREREREQPHZ0L6Tt5enpi7dq1yMnJwa5duwwVExERERHRQ+++CukGpqammDp1Kg4dOmSI2RERERERPfQMUkgTEREREbU3LKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPbaaQLikpQWBgIKRSKaRSKQIDA1FaWtriNEIIhIaGwtXVFdbW1njqqaeQnJzcbN+JEydCIpHg4MGDhl8BIiIiInqktJlCetasWUhKSkJERAQiIiKQlJSEwMDAFqdZu3Yt1q1bh02bNiEhIQHOzs4YN24cKioqmvRdv349JBKJscInIiIiokeM2YMOQBupqamIiIhAXFwcfHx8AABhYWHw9fVFWloaPD09m0wjhMD69euxfPlyvPDCCwCA77//Hk5OTti5cyfmz5+v7nv+/HmsW7cOCQkJcHFxaZ2VIiIiIqI2rU2ckY6NjYVUKlUX0QAwcuRISKVSxMTEaJwmIyMDMpkM/v7+6jZLS0uMHj260TRVVVWYOXMmNm3aBGdnZ+OtBBERERE9UtrEGWmZTAZHR8cm7Y6OjpDJZM1OAwBOTk6N2p2cnJCVlaV+vXjxYvj5+WHKlClaxyOXyyGXy9Wvy8rKAADFxcVaz4PaLoVCgaqqKhQVFcHc3PxBh0NGxny3L8x3+8J8ty8NdZoQwmDzfKCFdGhoKFauXNlin4SEBADQOH5ZCHHPcc13v3/nNIcOHcLRo0eRmJioS9hYvXq1xrj79eun03yIiIiIqHUVFRVBKpUaZF4PtJB+8803MWPGjBb79OzZExcuXEB+fn6T927dutXkjHODhmEaMpms0bjngoIC9TRHjx5Feno6Onfu3GjaadOmYdSoUTh+/LjGeS9btgwhISHq16WlpXB3d0d2drbBEkMPr/LycnTv3h03btyAra3tgw6HjIz5bl+Y7/aF+W5fysrK0KNHD9jZ2Rlsng+0kHZwcICDg8M9+/n6+qKsrAynT5/GiBEjAADx8fEoKyuDn5+fxmk8PDzg7OyMyMhIDBkyBABQW1uLqKgorFmzBgCwdOlSzJ07t9F0jz32GL788ks899xzzcZjaWkJS0vLJu1SqZQbYjtia2vLfLcjzHf7wny3L8x3+2JiYrhLBNvEGGlvb29MmDAB8+bNw7fffgsAeOONNzB58uRGd+zw8vLC6tWr8fzzz0MikWDRokVYtWoV+vbti759+2LVqlWwsbHBrFmzANSftdZ0gWGPHj3g4eHROitHRERERG1SmyikAWDHjh1YsGCB+i4cAQEB2LRpU6M+aWlp6gv/AGDJkiWorq5GcHAwSkpK4OPjgyNHjqBTp06tGjsRERERPXraTCFtZ2eHH3/8scU+d1+FKZFIEBoaitDQUK2Xo8+VnJaWllixYoXG4R706GG+2xfmu31hvtsX5rt9MUa+JcKQ9wAhIiIiImon2sQDWYiIiIiIHjYspImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEJaS5s3b4aHhwesrKwwbNgwREdHt9g/KioKw4YNg5WVFXr16oVvvvmmlSIlQ9Al3/v378e4cePQtWtX2NrawtfXF7///nsrRkv3S9ftu8GpU6dgZmaGwYMHGzdAMihd8y2Xy7F8+XK4u7vD0tISvXv3Rnh4eCtFS/dL13zv2LEDgwYNgo2NDVxcXPDaa6+hqKiolaIlfZ04cQLPPfccXF1dIZFIcPDgwXtOY5BaTdA97d69W5ibm4uwsDCRkpIiFi5cKDp06CCysrI09r9+/bqwsbERCxcuFCkpKSIsLEyYm5uLvXv3tnLkpA9d871w4UKxZs0acfr0aXHlyhWxbNkyYW5uLs6dO9fKkZM+dM13g9LSUtGrVy/h7+8vBg0a1DrB0n3TJ98BAQHCx8dHREZGioyMDBEfHy9OnTrVilGTvnTNd3R0tDAxMRH//Oc/xfXr10V0dLQYMGCAmDp1aitHTro6fPiwWL58udi3b58AIA4cONBif0PVaiyktTBixAgRFBTUqM3Ly0ssXbpUY/8lS5YILy+vRm3z588XI0eONFqMZDi65luT/v37i5UrVxo6NDICffM9ffp08f7774sVK1awkG5DdM33b7/9JqRSqSgqKmqN8MjAdM33Z599Jnr16tWobcOGDaJbt25Gi5EMT5tC2lC1God23ENtbS3Onj2rfqJiA39/f8TExGicJjY2tkn/8ePH48yZM1AoFEaLle6fPvm+m0qlQkVFBezs7IwRIhmQvvnetm0b0tPTsWLFCmOHSAakT74PHTqE4cOHY+3atXBzc0O/fv3wzjvvoLq6ujVCpvugT779/PyQk5ODw4cPQwiB/Px87N27F88++2xrhEytyFC1Wpt5suGDUlhYCKVSCScnp0btTk5OkMlkGqeRyWQa+9fV1aGwsBAuLi5Gi5fujz75vtsXX3yByspKvPTSS8YIkQxIn3xfvXoVS5cuRXR0NMzMuAttS/TJ9/Xr13Hy5ElYWVnhwIEDKCwsRHBwMIqLizlO+iGnT779/PywY8cOTJ8+HTU1Nairq0NAQAA2btzYGiFTKzJUrcYz0lqSSCSNXgshmrTdq7+mdno46ZrvBrt27UJoaCj27NkDR0dHY4VHBqZtvpVKJWbNmoWVK1eiX79+rRUeGZgu27dKpYJEIsGOHTswYsQITJo0CevWrcP27dt5VrqN0CXfKSkpWLBgAf7xj3/g7NmziIiIQEZGBoKCglojVGplhqjVeDrlHhwcHGBqatrk22tBQUGTbzINnJ2dNfY3MzODvb290WKl+6dPvhvs2bMHr7/+On766SeMHTvWmGGSgeia74qKCpw5cwaJiYl48803AdQXWkIImJmZ4ciRI3j66adbJXbSnT7bt4uLC9zc3CCVStVt3t7eEEIgJycHffv2NWrMpD998r169Wo88cQTePfddwEAjz/+ODp06IBRo0bh448/5i/KjxBD1Wo8I30PFhYWGDZsGCIjIxu1R0ZGws/PT+M0vr6+TfofOXIEw4cPh7m5udFipfunT76B+jPRr776Knbu3MmxdG2Irvm2tbXFxYsXkZSUpP4LCgqCp6cnkpKS4OPj01qhkx702b6feOIJ5Obm4vbt2+q2K1euwMTEBN26dTNqvHR/9Ml3VVUVTEwal0ampqYA/nu2kh4NBqvVdLo0sZ1quH3O1q1bRUpKili0aJHo0KGDyMzMFEIIsXTpUhEYGKju33BLlcWLF4uUlBSxdetW3v6uDdE13zt37hRmZmbiq6++Enl5eeq/0tLSB7UKpANd83033rWjbdE13xUVFaJbt27ixRdfFMnJySIqKkr07dtXzJ0790GtAulA13xv27ZNmJmZic2bN4v09HRx8uRJMXz4cDFixIgHtQqkpYqKCpGYmCgSExMFALFu3TqRmJiovtWhsWo1FtJa+uqrr4S7u7uwsLAQQ4cOFVFRUer3Zs+eLUaPHt2o//Hjx8WQIUOEhYWF6Nmzp/j6669bOWK6H7rke/To0QJAk7/Zs2e3fuCkF1237zuxkG57dM13amqqGDt2rLC2thbdunUTISEhoqqqqpWjJn3pmu8NGzaI/v37C2tra+Hi4iJefvllkZOT08pRk66OHTvW4rHYWLWaRAj+VkFEREREpCuOkSYiIiIi0kObK6Q3b94MDw8PWFlZYdiwYYiOjm6xvy7PUd+9ezckEgmmTp1q4KiJiIiI6FHTpgrpPXv2YNGiRVi+fDkSExMxatQoTJw4EdnZ2Rr7Z2RkYNKkSRg1ahQSExPx3nvvYcGCBdi3b1+TvllZWXjnnXcwatQoY68GERERET0C2tQYaR8fHwwdOhRff/21us3b2xtTp07F6tWrm/T/+9//jkOHDiE1NVXdFhQUhPPnzyM2NlbdplQqMXr0aLz22muIjo5GaWkpDh48aNR1ISIiIqK2rc08kKW2thZnz57F0qVLG7X7+/sjJiZG4zTNPUd969atUCgU6vsEfvjhh+jatStef/31ew4VAQC5XA65XK5+rVKpUFxcDHt7ez65kIiIiOghJIRARUUFXF1dm9wvXF9tppAuLCyEUqnU+Fz0u59M00Cb56ifOnUKW7duRVJSktaxrF69GitXrtR5HYiIiIjowbpx44bBHqjUZgrpBpqei97SWeCWnqNeUVGBV155BWFhYXBwcNA6hmXLliEkJET9uqysDD169MCVK1dgZ2en9XyobVIoFDh27BjGjBnDJ1W2A8x3+8J8ty/Md/tSXFyMfv36oVOnTgabZ5sppB0cHGBqaqrxueh3n3VucK/nqCcnJyMzMxPPPfec+n2VSgUAMDMzQ1paGnr37t1kvpaWlrC0tGzSbmdnp9Pz2altUigUsLGxgb29PXe87QDz3b4w3+0L890+GXIYbpu5a4eFhQWGDRvW5LnokZGR8PPz0zjNvZ6j7uXlhYsXLyIpKUn9FxAQgDFjxiApKQndu3c32voQERERUdvWZs5IA0BISAgCAwMxfPhw+Pr64rvvvkN2djaCgoIA1A+5uHnzJn744QcA9Xfo2LRpE0JCQjBv3jzExsZi69at2LVrFwDAysoKAwcObLSMzp07A0CTdiIiIiKiO7WpQnr69OkoKirChx9+iLy8PAwcOBCHDx+Gu7s7ACAvL6/RPaU9PDxw+PBhLF68GF999RVcXV2xYcMGTJs27UGtAhERERE9ItpUIQ0AwcHBCA4O1vje9u3bm7SNHj0a586d03r+muZBRERERHS3NjNGmoiIiIjoYcJCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0wEKaiIiIiEgPLKSJiIiIiPTAQpqIiIiISA8spImIiIiI9MBCmoiIiIhIDyykiYiIiIj0oHUhrVAosGTJEvTp0wcjRozAtm3bGr2fn58PU1NTgwdIRERERPQw0rqQ/uSTT/DDDz8gKCgI/v7+WLx4MebPn9+ojxDC4AESERERET2MtC6kd+zYgS1btuCdd97Bxx9/jLNnz+LYsWN47bXX1AW0RCIxWqANNm/eDA8PD1hZWWHYsGGIjo5usX9UVBSGDRsGKysr9OrVC998802j98PCwjBq1Ch06dIFXbp0wdixY3H69GljrgIRERERPQK0LqRv3ryJgQMHql/37t0bx48fR2xsLAIDA6FUKo0S4J327NmDRYsWYfny5UhMTMSoUaMwceJEZGdna+yfkZGBSZMmYdSoUUhMTMR7772HBQsWYN++feo+x48fx8yZM3Hs2DHExsaiR48e8Pf3x82bN42+PkRERETUdmldSDs7OyM9Pb1Rm6urK44ePYqEhATMnj3b4MHdbd26dXj99dcxd+5ceHt7Y/369ejevTu+/vprjf2/+eYb9OjRA+vXr4e3tzfmzp2LOXPm4PPPP1f32bFjB4KDgzF48GB4eXkhLCwMKpUKf/75p9HXh4iIiIjaLjNtOz799NPYuXMnnnnmmUbtDcX0U089ZejYGqmtrcXZs2exdOnSRu3+/v6IiYnROE1sbCz8/f0btY0fPx5bt26FQqGAubl5k2mqqqqgUChgZ2fXbCxyuRxyuVz9ury8HED9BZkKhULrdaK2qSHHzHX7wHy3L8x3+8J8ty/GyLPWhfQHH3yAy5cva3zPzc0NJ06cwJEjRwwW2N0KCwuhVCrh5OTUqN3JyQkymUzjNDKZTGP/uro6FBYWwsXFpck0S5cuhZubG8aOHdtsLKtXr8bKlSubtB87dgw2NjbarA49AiIjIx90CNSKmO/2hfluX5jv9qGqqsrg89S6kHZ3d4e7u3uz77u4uLTK8I67L2gUQrR4kaOm/praAWDt2rXYtWsXjh8/Disrq2bnuWzZMoSEhKhfl5eXo3v37hgzZgzs7e21Wg9quxQKBSIjIzFu3DiNv2rQo4X5bl+Y7/aF+W5fioqKDD5PrQvpB83BwQGmpqZNzj4XFBQ0OevcwNnZWWN/MzOzJgXv559/jlWrVuGPP/7A448/3mIslpaWsLS0bNJubm7ODbEdYb7bF+a7fWG+2xfmu30wRo7bzJMNLSwsMGzYsCY/v0RGRsLPz0/jNL6+vk36HzlyBMOHD2/0YX722Wf46KOPEBERgeHDhxs+eCIiIiJ65LSZQhoAQkJCsGXLFoSHhyM1NRWLFy9GdnY2goKCANQPufjrX/+q7h8UFISsrCyEhIQgNTUV4eHh2Lp1K9555x11n7Vr1+L9999HeHg4evbsCZlMBplMhtu3b7f6+hERERFR29FmhnYAwPTp01FUVIQPP/wQeXl5GDhwIA4fPqweu52Xl9fontIeHh44fPgwFi9ejK+++gqurq7YsGEDpk2bpu6zefNm1NbW4sUXX2y0rBUrViA0NLRV1ouIiIiI2h69CunS0lLs3bsX6enpePfdd2FnZ4dz587ByckJbm5uho6xkeDgYAQHB2t8b/v27U3aRo8ejXPnzjU7v8zMTANFRkRERETtic6F9IULFzB27FhIpVJkZmZi3rx5sLOzw4EDB5CVlYUffvjBGHESERERET1UdB4jHRISgldffRVXr15tdIu4iRMn4sSJEwYNjoiIiIjoYaVzIZ2QkID58+c3aXdzc2v2wShERERERI8anQtpKysr9SOx75SWloauXbsaJCgiIiIiooedzoX0lClT8OGHH6qfVy6RSJCdnY2lS5c2uhsGEREREdGjTOdC+vPPP8etW7fg6OiI6upqjB49Gn369EGnTp3wySefGCNGIiIiIqKHjs537bC1tcXJkydx9OhRnDt3DiqVCkOHDsXYsWONER8RERER0UNJ7weyPP3003j66acNGQsRERERUZuhVSG9YcMGrWe4YMECvYMhIiIiImortCqkv/zyy0avb926haqqKnTu3BlA/ZMObWxs4OjoyEKaiIiIiNoFrS42zMjIUP998sknGDx4MFJTU1FcXIzi4mKkpqZi6NCh+Oijj4wdLxERERHRQ0Hnu3Z88MEH2LhxIzw9PdVtnp6e+PLLL/H+++8bNDgiIiIiooeVzoV0Xl6e+h7Sd1IqlcjPzzdIUEREREREDzudC+lnnnkG8+bNw5kzZyCEAACcOXMG8+fP5y3wiIiIiKjd0LmQDg8Ph5ubG0aMGAErKytYWlrCx8cHLi4u2LJlizFiJCIiIiJ66Oh8H+muXbvi8OHDuHLlCi5fvgwhBLy9vdGvXz9jxEdERERE9FDS+4Es/fr1Y/FMRERERO2WzoX0nDlzWnw/PDxc72CIiIiIiNoKnQvpkpKSRq8VCgUuXbqE0tJSPjKciIiIiNoNnQvpAwcONGlTqVQIDg5Gr169DBIUEREREdHDTue7dmiciYkJFi9e3ORR4kREREREjyqDFNIAkJ6ejrq6OkPNjoiIiIjooabz0I6QkJBGr4UQyMvLw6+//orZs2cbLLD2qrpWicjUfFy4UYo6lUA/p04Y198JXTtZGmV5KpVAXEYRYtOLUFqlgEtnKzzj5QRP505GWR4ApN+6jT9S8pFTUg1bazOM7GUPv94OMDWRGGV5JZW1OJIiQ2peBUwkEjzWzRbj+jujo6XeN61pkbxOiRNXCnEmqxjVtUr0tO+A8QOd4dbZ2ijLE0Ig6UYpTl4tREGFHA4dLTGqnwOGdO8MicQ4n+mN4ir8mZqPjMJKWFmYYmiPLhjj6QgLM4N9N2+kokaBP1MLkJxbBoVSwNO5EyYOdEZnGwujLE+lEjh5rRAJmcUoqZSjPE+CfgW34e3WxSjLA4DLsnIcu3wLsrJqSK3NMbKXPXx72xsth7cq5DiSIsO1gtswM5FgoJsU/v2dYW1hapTlyeuU+DO1AOdvlEJep0Kvrh0w1tsJrkbcLs5kleDk1UKUVNXCydYKT/btise6SY2yPADIKqpEZEo+sour0NHSDMN7dsGovl1hbmqc7aK8RoHfL9Xv2wCgv6stxno7Gm27qFOqEH21EKczi1Epr0MPOxuM9XZCT4cORlmeEAIpeeU4drkAsvIa2HewxF/6OmC4exejbRcF5TX4Pbl+u7A0N8Xg7p3xtJcjrMyNs11U1dbh6OUCJGXXH/P7OHbE+AHORj3mn84sRkx6EYor5XCRWuMZb0d4OdsaZXlA/TH/aGoBsour0MnKDD697PGXPsY75hdX1uKPlHxcltVvFwNcbTF+oPGO+RLR8HhCLY0ZM6bRaxMTE3Tt2hVPP/005syZAzMz4wTaYPPmzfjss8+Ql5eHAQMGYP369Rg1alSz/aOiohASEoLk5GS4urpiyZIlCAoKatRn3759+OCDD5Ceno7evXvjk08+wfPPP691TOXl5ZBKpSgsLIS9vb1e66VSCfwYn4XIlHw8+5gLhve0g7mpBKl55TiYmAu3LtYIGdcPHQz4HyEmvRBfHbuGET3t8bSXI+w6WiC7qAq/XcpDfnkNlk70hocBd5A5JVVYE5GGjpammPy4K9ztbVBapcCJq7dw8moh5j3ZC2M8HQ22vBqFEhv+vIor+bcxdYgrHnOTQqkSOJddikPnc/GXPvaY84QHzHQ8yCkUChw+fBiTJk2Cubm5ul0IgUPnc7En4QbG9XeCb297dLAww7WC2ziYdBNWZqZYMsET9h0Nt4O8dLMMnx9Jg6dzJ/j3d4KTrRXyy+WITMnHZVk53vH3xEA3wxUOJZW1WBNxGTUKJZ4b5Ip+Tp1QVatEbHohfk/Ox4wR3REwyNVgB7k6pQrhpzJw8loRnnvcBUN6dIGZiQSXcstwMDEXns4d8dbTfQ16kIu6cgvfRqXjL30d8GTfruhgLsFPEcdRZOOOylollk3yNuiXoqyiSqw+fBmOtpaYONAF3e2sUVxZi+Npt3A6oxj/O6YPfHvrt1/RpFJeh/V/XMGN4mpMGeyK/q62UCgFzmQW498X8jDW2xF/9e0JEwMd5IQQ+OlsDg4m3sTEx1zg42EHa3NTXJZV4ND5XEitzfDueC9Irc3vPTMtJd0oxbrIKxjUTYqnvRzRtZMlckvrC6SsokosmeCFfk6aTxY0t323pKC8Bp9GXIYEEgQMdkXvrh1QUVOHU9cK8WdqAWb7uWPCQBeDrZ+8TomwE9dxJqsEUwe7YVD3zgCA8zdK8XPSTQzq3hnBT/Ux6BfbI8kybI/JxBhPRzzRxwG21ma4fqsSv5zPRZ1KYNlELzjaWhlseVfzK7AmIg097GwwYaAz3LpY41aFHH+m5iMxuxSLx/XFMHe7+15OQ77/MmYcNhy7jsLbtZg6xA1ezp1Qo1AiPqMYv13Kw+THXTHjf7obbN/WcMw/kpyPZx93wf/07AILU1Ok5JXjYOJNuHa2Roh/P4MWf3HXi7Dx6FX8T087PO3lCPuOlrhRXIXfLuYhv1yOv0/0MugxP7e0Gqt/u4wOFvXH/J4ONiirViD6aiFOXLmFeaN6YYyX4Y75SpXAxqNXcelmGQIGu+FxNylUQiAxuxQ/n8+FX297TPW2hYuTI8rKymBra6AvD6IN2b17tzA3NxdhYWEiJSVFLFy4UHTo0EFkZWVp7H/9+nVhY2MjFi5cKFJSUkRYWJgwNzcXe/fuVfeJiYkRpqamYtWqVSI1NVWsWrVKmJmZibi4OK3jKisrEwBEYWGhXutVWFEjXt+eIH6IzRRKpUpjnxNXCsSMb2PF1fxyvZZxpzqlSnz6W6pYtv+CqKhRaOyTXVQpZofHi4hLefe9PCGE+O1ingjcGi+uFVRofL9KXidWHkoWK36+JBR1yvteXnZRpZgVFisik2Ua31epVOJfCdlidni8uFVRo9O8a2trxcGDB0Vtba26rVKuEIt2J4oNf1wRtc3Ef/5GiZjxbaxIyi7RaXmaqFQqEXYiXfzvjrMiv7xaY5/Cihrx5s5zIuxEulCpNP+/0sW5rOIW46+tU4oNf1wRi/ckiurauvteXn55tXg1PF78KyG72fgjk2Xi5bA4kV1Ued/LkyuUYsXPl0TooUvi9h3bxZ35vn7rtgjcarjt4tcLueLV8Phm4y+vrhXL9l8QX/x+udl9gy5S88rEjG9jRfSVWxrfVypV4ofYTPG3H8+I0qpajX10UVpVK4J/PCu+i0pvdrtOyCgSM76NFedvlNz38lQqlfj6+DWxeHeiKKmUa+yTV1ot5n2fIH46c0Pj+5q275ZEpRWIWWGxIiW3TOP71bV1YtXhFLHi50tCrjDMvu2VLXHiUNJNjduFSqUS/z6fK17ZEidySqrue3m1dUrx3v4LYvXh1Ga369S8MjErLFacuqr5/5WudsVniXnfJ4i8Us37tpJKuVi4yzD7ttraWvHPHw+K6d+cEnHpmo/hdUqV2BJ9XfztxzOivNow28W87xPEDzEZzW7XJ6/eMugxf21Eqli677woayb+G8X1x/zfLhpm3xZxKU+8siWu2fira+vER78Y7phfVl0r5v9wptntWqVSiX1nb4jpG/8QAERZmebtVR86F9JjxowRJSUlTdrLysrEmDFjDBFTs0aMGCGCgoIatXl5eYmlS5dq7L9kyRLh5eXVqG3+/Pli5MiR6tcvvfSSmDBhQqM+48ePFzNmzNA6rvsppK/mV4gZ3za/E75Tflm1CNwaL45dztd5OQ0q5QoRvONss//Z7iRXKMUHBy/e10FcpVKJzceuieUHLmh1EPn3+Vwx7/uEZjd2bZzLKhazwmK1Kq4u55Vr/fk3uPtAm19WLV7ZEidOXbv3QaS0sn5j35OQrfXymiy/TimW7rsgvo26ds+DiEqlEl8duyre23+h2QJfG79eyBVztcxLVFqBeGVLnJCVaT4IaqMhL1fzNX/xulN2UaV4OSxOnLyPg3hZda14fftp8dvF3Cbv3Z1vuUIplu47r9Xn35yG7ULbvOyMzxL/u+NsowJfV8fTCsTs8HhRqMUXx4YvTWky/Q/iN4orxczvYkWiFl8cSytrxevbEzR+/trSZbuoU6rE6sOp4uN/J4u6u/ZtuhTSP8ZlikW7tfvi+NvFXDE7PL7ZL77aSMwuETO/027f1nAyQZvPvzmlVdrnpVKuEAt2nRM/xGTovTylUiU++TVFfBZx72NOw8mERbsTRZVc/y/uhxJviMmfHhK3yu79mZ7V4djSnOyi+u1CmxMq+eXV4q9b48XRVP2P+VXyOvG/O86Kf2lxzGk4mbDmt9T7OuZ/fbx+36bNMf+X8zfF3O8T7uuL+/Vbt8XM72LF2azie/Y9dyXL4IW0zkM7TExMIJPJ4OjY+HR8QUEB3NzcoFAoDHOq/C61tbWwsbHBTz/91GjYxcKFC5GUlISoqKgm0zz55JMYMmQI/vnPf6rbDhw4gJdeeglVVVUwNzdHjx49sHjxYixevFjd58svv8T69euRlZWlMRa5XA65XK5+XV5eju7duyMvL0+noR1ns0qw8dh1fDZtoNbjoeQKJT44lIJB3aR42aeH1ssCgIIKOf6+/xKCnvSAj4f2P4ntTsjB2awSfDx1ACx1+KmwTqnCx4fT4NrZCvP+0lPrn8QSb5Tiyz+uYfXzA3T+Cf23SzL8ckGGNS8MQCcr7X6WLa6sxZL9lxDo0x2j+3W9Z3+FQoHIyEiMGzcO14tq8PHhywh9rj96d9XuJzGVSmDdH9cgIPD22L46/YR+W16HJfsu4bnHnTFxoLPW0/12SYZD5/OwdtpArT8XoP5n+e+iM3GztBofPOul9VjP67cqseKXFCyf5AUvHcfbR18rxPaYLKyd9hjsO2g31rO6VonlPyfDx8MO04d302l5eWU1WLr/EhaP7YPB//mJ/E535rvhp34hBMJOZuJGSTX+ocPnAgAKpQor/30ZHg42mOPnrvV2cTqzGF8dv461LwyEk44/oe9OyMGZrBJ8MqU/LLUcBlN4u35/8ZpfT/ylj25DS5Jzy7Hm9ytYNXUAunXRbhtWKFX48NfL6N7FWqf9BQCUVyuwZP8lPD/YFeMHOGk93c9JuYhMLcDaaQNhY1H/E7qmfN9NpRL4LPIqzE0kWPRMH6234WsFt7Hy36n4x7Pe6OvUUes4AeDPywX415mb+GzaQNhqOQymokaBJfsuIWCQi077CwDIKanGeweT8c64vnhcy3HlQghsOn4dZdUKLJvgqdMY2OpaJd47mIwn+tjjxaFuWk8Xe70I30VnYu0L2h9HG2yLycLV/HL4mt/AhPHN5/tOOSXVWH4wudn9RUvO55RhXeRVrNLh2CavU2HFLykY4GKLwJG6HfMLb8vx7r5LeGNUT/j20n4b3nvuJk5eLcLq5wfodM2EUiXwyeHLcLK1whujtN+Gz+eU4YvIq/hkan9072Kj9fIA4OS1Imw9lYnVzw+Asxb7xaKiIri4uBh0aIfWhfSFCxcAAIMHD8bRo0dhZ/ffQkypVCIiIgLffvstMjMzDRLY3XJzc+Hm5oZTp07Bz89P3b5q1Sp8//33SEtLazJNv3798Oqrr+K9995Tt8XExOCJJ55Abm4uXFxcYGFhge3bt2PWrFnqPjt37sRrr73WqFi+U2hoKFauXNmkfdmmXfDppt3GkXBLggvFErzcRwUrHYd3CgEcvmGCOgE810MFbfZVuZXA/kwT/L9eKjjpMbwzuUSCkzIJAvuqYKPFkK2qOmDnNRMMdRAY6qDTdzUAQFENsCvdBM/1UMFdizpMJYDImxKU1UowracKul7bU6eqX15vWwE/J+3iTS2RIEomwSt9VOiox/DOuAIJ0kolmNlbBW32VUU1wO7rJpjUXQUPPa4FzawAfr1hgpm9VbDT4nijUAF7M0zgZC0wxkVA16GBtxXAj9dM8JSLgFdn7T7TkzIJMiokmN5Lu8/kTipRv34qHbaLrArgl2wTTO+lQlc9toukIgnO3Krfjq212C5uK+r/n43oKjDIXvftoqAa+Nd1E0zzUMFFi+ONSgCHskxgbgJM7K7dZ3KnWmX9/7k+OmwX54skiL9Vv11os6+4kxDA0VwJiuTab8cNn4m2+4q7XSsDIm+a4OU+Kthq8b1NrqzPoVdngZGOuuewQgH8eNUEY1y12y6EAI7lSSCrkuClXiroOuxZqQL2ZprAwVLgaVfttuP0ciAiR/t9xd0SbkmQXCLBLC33bWW19ceLp90EPKW6f6ayqvp9lbbbhVJVfzy0tRDwd9N931ZdB+y4ZoL/0WE7PlcowblC7fcVdxIC+C3HBAol8Jy7bsf8Fz1UcNatNgUAXCmT4M+bEq23i+o6YGe6CQbZCQzvqnsOi+X129Xk7tptx0IAUTIJcioleMlD++NFVVUVZs2aZdBCWut0Dh48GBKJBBKJROMTDK2trbFx40aDBNWSu7/hCCFa/Najqf/d7brOc9myZY3uXtJwRvp2Bzdkd3DEG6M8mj1DUadUYe2Rq7B2luBfgX31vmr1WQA/nc1B5LUifBTQv8UzFH+mFiAuIQc/Bg+EnZZn+O42CcD4nDJ8duTKPc+mZBZV4h+HUhH6kvZnMjSZUq3Au/suoXs3Z0x+vPkLdSpq6vD+z8nwHWKPGf+j29nIO03+z5nixDol3vXv1+yFOrW1tfjg//5Ena0rflowUOszfHebhP+eTfn0+QEtnmVMyCzBnuPp+G6u7mfp7xTwn7NMC57ujeHuzd+BIre0Gst/TsHc8T20Okvf7PIU9WeZ7LtI8deRPZrdrmrrVPjsyBU4upvh4zG99b7QbTLqz6b8ca0Iq6b2V59l1OTn83m4mJyP3W8OaHH7aekM5STUX9j25R/XEPpcyxfnXrpZjjW/p2HVTC94u+h/V5znbsuxZP8lzBzQHWO9m79Qp7xagfd/TsFE3654foir3ssLUAms//MaLqoE3h7bp9mLc1Uqga+irkPeuRY/zfLU+04Vz6L+F5Sfz+fhk6kDWvxV4s/UAkSdvoGtbwyAi1T/C90m/edM8bv+/eDtZNNsvvPKavDewWS8PUW3X/XuNkWhxPKDKXDp2hkzhndrdruQK5QI/fdleHt3wGc6/Hpxt8n/+QUltrga70/ybPbiXCEE/i/+Bq7fLsWet/rrfaHbJAAx6fX7to+n9G/xV4nk3HJ8GpGG9bO1/1VPkyn/Ofv62iB3jOrr0Gy/4spaLD1wCTPGuGH8ACetfoHQJOA/vyxl2lgh6Mnmj/kKpQqfHbkKM0fgXy/31fni9gYNx/wjV4vw8ZR7HPMvFyDudA7+L3ig1r/q3W0SgMn/2S7u9ctiRmElVvySin/8v74YdD/H/Jr6Y76bmzMCBjV/zK+qrcOHv15Gn34dsEbHX6+Kior0jq9Z2o4ByczMFBkZGUIikYiEhASRmZmp/svNzRV1dfd/cVFL5HK5MDU1Ffv372/UvmDBAvHkk09qnGbUqFFiwYIFjdr2798vzMzM1OPfunfvLtatW9eoz7p160SPHj20jq1hjPStW7fEj3GZ4rVtp8XFnNIm/c5lFasvEjGUhrGMv17IbTKmKa+0Wiz56bz46Jdkg1z8JUT9mK35P5wRG/640uRCxSp5nfguKl3M2Xa62YtEdFVbpxSf/35ZLNqd2GRcmkqlEn+kyMSMb2PFmcx7j43S1m8Xc8WssFgRl17YZKxlmqxcvL4tXizc/LOQyzVfzKSrq/kV4pUtcWJXfFaT8bLFt+Xi438ni7f/lXRf42PvVF5dK97+V5L46JfkJhdkKeqUYvfpLPHKljiRWXjbIMtTqeov1Jn7fYK4omHMbVx6oXg5LE4cvqD/+Ni7xaYXihnf1l9sencObxRXikW7E8Wa31KbjI/VRJsxszdLqsScbafFN8evNdnWKuUKseGPKyLo/840ewGcruQKpfjwl2Tx7k9JTcaiK5Uq8euFXINvFwcTc0Tg1nhxTsM4xOSbZeK1bafFj3GZBlvepZulYuZ3sWLvmRtN8lRYUSM+OHhRLD9wQdQoDLNvK62sFW/tPCdW/5osdu1tnO8aRZ34PiZD/HVrvMi4ZZjtQqlUiU1Hr4rgH8+K9LsuwlapVCL6yi0x87tYcfQ+rom52/G0AjHzu1gRlVbQZLvILLwtgnecFV8f13/s/90aLlrfdvJ6k+2irLpWfP77ZfG/O86K4tuG2S6qa+vE8gMXxPsHLjYZi66oU4qDiTli5nexIvnmf8fH6npx6Z1UKpXYFZ8lXg2P13jMT8ouEa9siRP/Pm+4fVvDMf+X8zebbBd5pdVi6b7zIvTQJYNtF7cqakTQ/50R6yObHvOra+tE2In6Y/79XBNzJ8V/jvkLdp3TeMz/M7X+mK/vha2FhYUPfoz0g+Tj44Nhw4Zh8+bN6rb+/ftjypQpWL16dZP+f//73/HLL78gJSVF3fa3v/0NSUlJiI2NBQBMnz4dFRUVOHz4sLrPxIkT0blzZ+zatUuruO6+/V1uaTW+Pp6O7OIqdLezhhBAdnEV+jp2wt+e6m3w+0PWKJT4PiYT0VcL4Sy1QkdLM9wsrYalmQnmP9nb4PdNFULg9+R8/OvMDVhbmMKxkyUKb9eiokaBF4Z2w3OPuxj8Hp+XZeX45ng6bsvr0K2LDapq63CztBo+HvaYO8qjxTOP+iiprMU3J9KRkluObl1sYGYiwY2SKjjbWmHeX9xxKe64TrfHuheFUoWfzuTgt0t5cOhoic425sgrrYFKCMz264kn+jR/hkVfselFCD+VAVOJBK6drVFSVYtbFXJMGOiMGf/TXe8zJ825UVyFzcevIbe0Bu72NqhTCdworkJ/F1vMH91b719LmnNbXofvYzIRm14Et87WsLYwxY3iKnS0MsP8J3ujv6t2P+tpezs0lUrg8KU87D2bg46WZnDsZIX88hpU1dZh+v90x/gBzgbfLi7klGJLdAaqauvQ3c4Gt2vqkFdWg1F9HfBX354Gvyd0QXkNvj1xHVcLbqOHnTVMJBJkFlXB3c4GQU/1Nvi90mvrVNgZn4U/LxegaydLSK3NkVNSDTMTCeaO8jDI7c/u9kdyLtb/+yzcXJzh1qUDiivlKK5SIGCQK6YOdjX4dpF+6za+OZ6OospadO9ijVqlCjeKqzGkR2fMHdXLoLcFBOrHTYeduI5z2aXo1sUaVuamyCqqRJcOFvjfMX3Qu6tuY7fvRaUS2J94E4fO56KztTkcOloiv7wG8jolXvZxx1OeXQ2+XZzNKsbWkxmoUwq4dbFGeXUd8strMMbLEa+M7AFLs/9uF/rc7vBusrIafHXsWpNjfu+uHRE8pjccOxnutoBA/TH/h9hMRF25BRepdaNj/rxRvdS3QzQUIQQiU/KxO6H+mO/UyQq3bstRXq3AC0PdDHrL0wZX8iuw+dg1VNTU79uqa5XIKa3CiJ71x3x9bwVcVFQEBweH1h8jfejQIUycOBHm5uY4dOhQi30DAgIMEpgme/bsQWBgIL755hv4+vriu+++Q1hYGJKTk+Hu7o5ly5bh5s2b+OGHHwAAGRkZGDhwIObPn4958+YhNjYWQUFB2LVrF6ZNmwagfsz0k08+iU8++QRTpkzBzz//jPfffx8nT56Ej4+PVnE1dx/pOqUK+RX146xdbK0Mdl/WlhTelqNKroSjraXRbiB/p/IaBUorFZDamBt8h6+JvE6JgnI5LM1N0LWjpdFuyt9ACAFZeQ1UAnDsZAlzUxOD7HhbUlxZ/6XEsZOV0R6Ocaeq2joUlMvR2cbcaA9yuJNSJZBbWg0zUwmcOhl/uxBCoKBCjhqFEq6drXUecqBPvsuqFSiurIVjJ0uD3vu9ObV1KuSVVcPawrRVtguVSiCvvAYqlYBbZ+tW2bcV3ZajoqYOzlIro+7bGvI9Zux4FFcrIbU2RxcDf8nTuFylCrKyGpibmsDJtnVyWHhbDnmdCs5SK6M9NOZOZdUKlFbVwq6DhU4XPeurulaJwttyWFuYwqGZ+/cbcn/ecMyXAHCytTLaA0fudOs/+7aunVrvmF98uxZ2HS1g2wo5rK2r3y7qc2hx39uFMQpprfbwU6dOVd+pY+rUqc32k0gkUCqVBglMk+nTp6OoqAgffvgh8vLyMHDgQBw+fBju7u4AgLy8PGRnZ6v7e3h44PDhw1i8eDG++uoruLq6YsOGDeoiGgD8/Pywe/duvP/++/jggw/Qu3dv7NmzR+siuiVmpiZGe5pdcxw6WgKGPaHQIlsr81bZmBpYmpmiu50eV07oSSKRwEXaujm062Bh8LOzLbGxMENPB+MXew1MTSStnkNd73Jxv6TWrfPFsoGFmQnc7Y3zdDlNTEwkrb5vs+9oadCHGd2LtYUpenZovf835qYmrbpdmJhIDPoAFW209nZhbdG6x4sHccw31hMQm9Pax3wLMxP0sG+9HOpDq6OnSqXS+O8HITg4GMHBwRrf2759e5O20aNH49y5cy3O88UXX8SLL75oiPCIiIiIqJ0w/m85RERERESPIK3OSG/YsEHrGS5YsEDvYIiIiIiI2gqtCukvv/xSq5lJJBIW0kRERETULmhVSGdkZBg7DiIiIiKiNuW+xkgLIdCGbkNNRERERGQwehXSW7duxcCBA2FlZQUrKysMHDgQW7ZsMXRsREREREQPLZ1vHvvBBx/gyy+/xFtvvQVfX18AQGxsLBYvXozMzEx8/PHHBg+SiIiIiOhho3Mh/fXXXyMsLAwzZ85UtwUEBODxxx/HW2+9xUKaiIiIiNoFnYd2KJVKDB8+vEn7sGHDUFdXZ5CgiIiIiIgedjoX0q+88gq+/vrrJu3fffcdXn75ZYMERURERET0sNN5aAdQf7HhkSNHMHLkSABAXFwcbty4gb/+9a8ICQlR91u3bp1hoiQiIiIiesjoXEhfunQJQ4cOBQCkp6cDALp27YquXbvi0qVL6n4SicRAIRIRERERPXx0LqSPHTtmjDiIiIiIiNqU+3ogCxERERFRe6XzGemamhps3LgRx44dQ0FBAVQqVaP3z507Z7DgiIiIiIgeVjoX0nPmzEFkZCRefPFFjBgxgmOhiYiIiKhd0rmQ/vXXX3H48GE88cQTxoiHiIiIiKhN0HmMtJubGzp16mSMWIiIiIiI2gydC+kvvvgCf//735GVlWWMeIiIiIiI2gSdh3YMHz4cNTU16NWrF2xsbGBubt7o/eLiYoMFR0RERET0sNK5kJ45cyZu3ryJVatWwcnJiRcbEhEREVG7pHMhHRMTg9jYWAwaNMgY8RARERERtQk6j5H28vJCdXW1MWIhIiIiImozdC6kP/30U7z99ts4fvw4ioqKUF5e3ujPWEpKShAYGAipVAqpVIrAwECUlpa2OI0QAqGhoXB1dYW1tTWeeuopJCcnq98vLi7GW2+9BU9PT9jY2KBHjx5YsGABysrKjLYeRERERPRo0Hlox4QJEwAAzzzzTKN2IQQkEgmUSqVhIrvLrFmzkJOTg4iICADAG2+8gcDAQPzyyy/NTrN27VqsW7cO27dvR79+/fDxxx9j3LhxSEtLQ6dOnZCbm4vc3Fx8/vnn6N+/P7KyshAUFITc3Fzs3bvXKOtBRERERI8GnQvpY8eOGSOOFqWmpiIiIgJxcXHw8fEBAISFhcHX1xdpaWnw9PRsMo0QAuvXr8fy5cvxwgsvAAC+//57ODk5YefOnZg/fz4GDhyIffv2qafp3bs3PvnkE7zyyiuoq6uDmZnOHw8RERERtRM6V4qjR49u9r2kpKT7iaVZsbGxkEql6iIaAEaOHAmpVIqYmBiNhXRGRgZkMhn8/f3VbZaWlhg9ejRiYmIwf/58jcsqKyuDra1ti0W0XC6HXC5Xv24Y0qJQKKBQKHReP2pbGnLMXLcPzHf7wny3L8x3+2KMPN/3KdeysjLs2LEDW7Zswfnz540ytEMmk8HR0bFJu6OjI2QyWbPTAICTk1Ojdicnp2YfJlNUVISPPvqo2SK7werVq7Fy5com7ceOHYONjU2L09KjIzIy8kGHQK2I+W5fmO/2hfluH6qqqgw+T70L6aNHjyI8PBz79++Hu7s7pk2bhq1bt+o0j9DQUI0F6Z0SEhIAQOP9qhvGZbfk7vebm6a8vBzPPvss+vfvjxUrVrQ4z2XLliEkJKTRtN27d8eYMWNgb2/f4rTU9ikUCkRGRmLcuHFNHkhEjx7mu31hvtsX5rt9KSoqMvg8dSqkc3JysH37doSHh6OyshIvvfQSFAoF9u3bh/79++u88DfffBMzZsxosU/Pnj1x4cIF5OfnN3nv1q1bTc44N3B2dgZQf2baxcVF3V5QUNBkmoqKCkyYMAEdO3bEgQMH7rkxWVpawtLSskm7ubk5N8R2hPluX5jv9oX5bl+Y7/bBGDnWupCeNGkSTp48icmTJ2Pjxo2YMGECTE1N8c033+i9cAcHBzg4ONyzn6+vL8rKynD69GmMGDECABAfH4+ysjL4+flpnMbDwwPOzs6IjIzEkCFDAAC1tbWIiorCmjVr1P3Ky8sxfvx4WFpa4tChQ7CystJ7fYiIiIio/dD6PtJHjhzB3LlzsXLlSjz77LMwNTU1ZlyNeHt7Y8KECZg3bx7i4uIQFxeHefPmYfLkyY0uNPTy8sKBAwcA1A/pWLRoEVatWoUDBw7g0qVLePXVV2FjY4NZs2YBqD8T7e/vj8rKSmzduhXl5eWQyWSQyWRGu40fERERET0atD4jHR0djfDwcAwfPhxeXl4IDAzE9OnTjRlbIzt27MCCBQvUd+EICAjApk2bGvVJS0tr9DCVJUuWoLq6GsHBwSgpKYGPjw+OHDmCTp06AQDOnj2L+Ph4AECfPn0azSsjIwM9e/Y04hoRERERUVumdSHt6+sLX19f/POf/8Tu3bsRHh6OkJAQqFQqREZGonv37uoC1Rjs7Ozw448/tthHCNHotUQiQWhoKEJDQzX2f+qpp5pMQ0RERESkDZ0fEW5jY4M5c+bg5MmTuHjxIt5++218+umncHR0REBAgDFiJCIiIiJ66OhcSN/J09MTa9euRU5ODnbt2mWomIiIiIiIHnr3VUg3MDU1xdSpU3Ho0CFDzI6IiIiI6KFnkEKaiIiIiKi9YSFNRERERKQHFtJERERERHpgIU1EREREpAcW0kREREREemAhTURERESkBxbSRERERER6YCFNRERERKQHFtJERERERHpgIU1EREREpAcW0kREREREemAhTURERESkBxbSRERERER6YCFNRERERKQHFtJERERERHpgIU1EREREpAcW0kREREREemAhTURERESkBxbSRERERER6YCFNRERERKSHNlNIl5SUIDAwEFKpFFKpFIGBgSgtLW1xGiEEQkND4erqCmtrazz11FNITk5utu/EiRMhkUhw8OBBw68AERERET1S2kwhPWvWLCQlJSEiIgIRERFISkpCYGBgi9OsXbsW69atw6ZNm5CQkABnZ2eMGzcOFRUVTfquX78eEonEWOETERER0SPG7EEHoI3U1FREREQgLi4OPj4+AICwsDD4+voiLS0Nnp6eTaYRQmD9+vVYvnw5XnjhBQDA999/DycnJ+zcuRPz589X9z1//jzWrVuHhIQEuLi4tM5KEREREVGb1iYK6djYWEilUnURDQAjR46EVCpFTEyMxkI6IyMDMpkM/v7+6jZLS0uMHj0aMTEx6kK6qqoKM2fOxKZNm+Ds7KxVPHK5HHK5XP26rKwMAFBcXKzX+lHbolAoUFVVhaKiIpibmz/ocMjImO/2hfluX5jv9qWhThNCGGyebaKQlslkcHR0bNLu6OgImUzW7DQA4OTk1KjdyckJWVlZ6teLFy+Gn58fpkyZonU8q1evxsqVK5u09+vXT+t5EBEREVHrKyoqglQqNci8HmghHRoaqrEgvVNCQgIAaBy/LIS457jmu9+/c5pDhw7h6NGjSExM1CVsLFu2DCEhIerXpaWlcHd3R3Z2tsESQw+v8vJydO/eHTdu3ICtre2DDoeMjPluX5jv9oX5bl/KysrQo0cP2NnZGWyeD7SQfvPNNzFjxowW+/Ts2RMXLlxAfn5+k/du3brV5Ixzg4ZhGjKZrNG454KCAvU0R48eRXp6Ojp37txo2mnTpmHUqFE4fvy4xnlbWlrC0tKySbtUKuWG2I7Y2toy3+0I892+MN/tC/PdvpiYGO5eGw+0kHZwcICDg8M9+/n6+qKsrAynT5/GiBEjAADx8fEoKyuDn5+fxmk8PDzg7OyMyMhIDBkyBABQW1uLqKgorFmzBgCwdOlSzJ07t9F0jz32GL788ks899xz97NqRERERPSIaxNjpL29vTFhwgTMmzcP3377LQDgjTfewOTJkxtdaOjl5YXVq1fj+eefh0QiwaJFi7Bq1Sr07dsXffv2xapVq2BjY4NZs2YBqD9rrekCwx49esDDw6N1Vo6IiIiI2qQ2UUgDwI4dO7BgwQL1XTgCAgKwadOmRn3S0tLUd9AAgCVLlqC6uhrBwcEoKSmBj48Pjhw5gk6dOhk0NktLS6xYsULjcA969DDf7Qvz3b4w3+0L892+GCPfEmHIe4AQEREREbUTbebJhkREREREDxMW0kREREREemAhTURERESkBxbSRERERER6YCGtpc2bN8PDwwNWVlYYNmwYoqOjW+wfFRWFYcOGwcrKCr169cI333zTSpGSIeiS7/3792PcuHHo2rUrbG1t4evri99//70Vo6X7pev23eDUqVMwMzPD4MGDjRsgGZSu+ZbL5Vi+fDnc3d1haWmJ3r17Izw8vJWipfula7537NiBQYMGwcbGBi4uLnjttddQVFTUStGSvk6cOIHnnnsOrq6ukEgkOHjw4D2nMUitJuiedu/eLczNzUVYWJhISUkRCxcuFB06dBBZWVka+1+/fl3Y2NiIhQsXipSUFBEWFibMzc3F3r17Wzly0oeu+V64cKFYs2aNOH36tLhy5YpYtmyZMDc3F+fOnWvlyEkfuua7QWlpqejVq5fw9/cXgwYNap1g6b7pk++AgADh4+MjIiMjRUZGhoiPjxenTp1qxahJX7rmOzo6WpiYmIh//vOf4vr16yI6OloMGDBATJ06tZUjJ10dPnxYLF++XOzbt08AEAcOHGixv6FqNRbSWhgxYoQICgpq1Obl5SWWLl2qsf+SJUuEl5dXo7b58+eLkSNHGi1GMhxd861J//79xcqVKw0dGhmBvvmePn26eP/998WKFStYSLchuub7t99+E1KpVBQVFbVGeGRguub7s88+E7169WrUtmHDBtGtWzejxUiGp00hbahajUM77qG2thZnz55VPwimgb+/P2JiYjROExsb26T/+PHjcebMGSgUCqPFSvdPn3zfTaVSoaKiAnZ2dsYIkQxI33xv27YN6enpWLFihbFDJAPSJ9+HDh3C8OHDsXbtWri5uaFfv3545513UF1d3Roh033QJ99+fn7IycnB4cOHIYRAfn4+9u7di2effbY1QqZWZKharc082fBBKSwshFKphJOTU6N2JycnyGQyjdPIZDKN/evq6lBYWAgXFxejxUv3R5983+2LL75AZWUlXnrpJWOESAakT76vXr2KpUuXIjo6GmZm3IW2Jfrk+/r16zh58iSsrKxw4MABFBYWIjg4GMXFxRwn/ZDTJ99+fn7YsWMHpk+fjpqaGtTV1SEgIAAbN25sjZCpFRmqVuMZaS1JJJJGr4UQTdru1V9TOz2cdM13g127diE0NBR79uyBo6OjscIjA9M230qlErNmzcLKlSvRr1+/1gqPDEyX7VulUkEikWDHjh0YMWIEJk2ahHXr1mH79u08K91G6JLvlJQULFiwAP/4xz9w9uxZREREICMjA0FBQa0RKrUyQ9RqPJ1yDw4ODjA1NW3y7bWgoKDJN5kGzs7OGvubmZnB3t7eaLHS/dMn3w327NmD119/HT/99BPGjh1rzDDJQHTNd0VFBc6cOYPExES8+eabAOoLLSEEzMzMcOTIETz99NOtEjvpTp/t28XFBW5ubpBKpeo2b29vCCGQk5ODvn37GjVm0p8++V69ejWeeOIJvPvuuwCAxx9/HB06dMCoUaPw8ccf8xflR4ihajWekb4HCwsLDBs2DJGRkY3aIyMj4efnp3EaX1/fJv2PHDmC4cOHw9zc3Gix0v3TJ99A/ZnoV199FTt37uRYujZE13zb2tri4sWLSEpKUv8FBQXB09MTSUlJ8PHxaa3QSQ/6bN9PPPEEcnNzcfv2bXXblStXYGJigm7duhk1Xro/+uS7qqoKJiaNSyNTU1MA/z1bSY8Gg9VqOl2a2E413D5n69atIiUlRSxatEh06NBBZGZmCiGEWLp0qQgMDFT3b7ilyuLFi0VKSorYunUrb3/Xhuia7507dwozMzPx1Vdfiby8PPVfaWnpg1oF0oGu+b4b79rRtuia74qKCtGtWzfx4osviuTkZBEVFSX69u0r5s6d+6BWgXSga763bdsmzMzMxObNm0V6ero4efKkGD58uBgxYsSDWgXSUkVFhUhMTBSJiYkCgFi3bp1ITExU3+rQWLUaC2ktffXVV8Ld3V1YWFiIoUOHiqioKPV7s2fPFqNHj27U//jx42LIkCHCwsJC9OzZU3z99detHDHdD13yPXr0aAGgyd/s2bNbP3DSi67b951YSLc9uuY7NTVVjB07VlhbW4tu3bqJkJAQUVVV1cpRk750zfeGDRtE//79hbW1tXBxcREvv/yyyMnJaeWoSVfHjh1r8VhsrFpNIgR/qyAiIiIi0hXHSBMRERER6YGFNBERERGRHlhIExERERHpgYU0EREREZEeWEgTEREREemBhTQRERERkR5YSBMRERER6YGFNBERERGRHlhIExE9QkJDQzF48OAHtvwPPvgAb7zxhlZ933nnHSxYsMDIERERGQ+fbEhE1EZIJJIW3589ezY2bdoEuVwOe3v7Vorqv/Lz89G3b19cuHABPXv2vGf/goIC9O7dGxcuXICHh4fxAyQiMjAW0kREbYRMJlP/e8+ePfjHP/6BtLQ0dZu1tTWkUumDCA0AsGrVKkRFReH333/Xeppp06ahT58+WLNmjREjIyIyDg7tICJqI5ydndV/UqkUEomkSdvdQzteffVVTJ06FatWrYKTkxM6d+6MlStXoq6uDu+++y7s7OzQrVs3hIeHN1rWzZs3MX36dHTp0gX29vaYMmUKMjMzW4xv9+7dCAgIaNS2d+9ePPbYY7C2toa9vT3Gjh2LyspK9fsBAQHYtWvXfX82REQPAgtpIqJH3NGjR5Gbm4sTJ05g3bp1CA0NxeTJk9GlSxfEx8cjKCgIQUFBuHHjBgCgqqoKY8aMQceOHXHixAmcPHkSHTt2xIQJE1BbW6txGSUlJbh06RKGDx+ubsvLy8PMmTMxZ84cpKam4vjx43jhhRdw5w+hI0aMwI0bN5CVlWXcD4GIyAhYSBMRPeLs7OywYcMGeHp6Ys6cOfD09ERVVRXee+899O3bF8uWLYOFhQVOnToFoP7MsomJCbZs2YLHHnsM3t7e2LZtG7Kzs3H8+HGNy8jKyoIQAq6uruq2vLw81NXV4YUXXkDPnj3x2GOPITg4GB07dlT3cXNzA4B7nu0mInoYmT3oAIiIyLgGDBgAE5P/njdxcnLCwIED1a9NTU1hb2+PgoICAMDZs2dx7do1dOrUqdF8ampqkJ6ernEZ1dXVAAArKyt126BBg/DMM8/gsccew/jx4+Hv748XX3wRXbp0UfextrYGUH8WnIiorWEhTUT0iDM3N2/0WiKRaGxTqVQAAJVKhWHDhmHHjh1N5tW1a1eNy3BwcABQP8SjoY+pqSkiIyMRExODI0eOYOPGjVi+fDni4+PVd+koLi5ucb5ERA8zDu0gIqJGhg4diqtXr8LR0RF9+vRp9NfcXUF69+4NW1tbpKSkNGqXSCR44oknsHLlSiQmJsLCwgIHDhxQv3/p0iWYm5tjwIABRl0nIiJjYCFNRESNvPzyy3BwcMCUKVMQHR2NjIwMREVFYeHChcjJydE4jYmJCcaOHYuTJ0+q2+Lj47Fq1SqcOXMG2dnZ2L9/P27dugVvb291n+joaIwaNUo9xIOIqC1hIU1ERI3Y2NjgxIkT6NGjB1544QV4e3tjzpw5qK6uhq2tbbPTvfHGG9i9e7d6iIitrS1OnDiBSZMmoV+/fnj//ffxxRdfYOLEieppdu3ahXnz5hl9nYiIjIEPZCEiIoMQQmDkyJFYtGgRZs6cec/+v/76K959911cuHABZma8ZIeI2h6ekSYiIoOQSCT47rvvUFdXp1X/yspKbNu2jUU0EbVZPCNNRERERKQHnpEmIiIiItIDC2kiIiIiIj2wkCYiIiIi0gMLaSIiIiIiPbCQJiIiIiLSAwtpIiIiIiI9sJAmIiIiItIDC2kiIiIiIj2wkCYiIiIi0sP/B60O9hSp0/ruAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 800x600 with 3 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAJJCAYAAACHy9AqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrB0lEQVR4nOzdd1xT1/sH8E8CIWHvvUEQEFEBBzhwotKKWq0bt9VatUpb66h1tGq1Vq27Kmq1Dqyr2lKVugcOkCFDVKbIko3MkNzfH37lJ4JKQkISeN6vF6+Wm3NPnushyZNzz2AxDMOAEEIIIYQQIhK2rAMghBBCCCFEEVEiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDFQIk0IkajevXuDxWLJOgzyP5MnTwaLxUJqaqqsQ5ELV69eBYvFwooVK+ocl/Xf7YEDB8BisXDgwAGZxUAIER0l0oSQd2KxWCL9KJLXCdWbPxoaGrC0tMTgwYPx008/ITMzU9ZhKpTLly/X/lv+/fffsg6nySi5JYR8iLKsAyCEyK/ly5fXO7Zy5Upoa2tj/vz5DZ5z8OBBlJeXSzkyyfHw8MDHH38MACgvL0d2djZu376N8+fPY+XKlVi/fj3mzp0r4yjFt3btWixatAjm5uZSf659+/YBePUFLCgoqPbfVREo2t8tIUQ+UCJNCHmnt29/A68SaR0dnQYfAwArKyvpBiVhnp6eDV7LX3/9hWnTpmHevHlQU1PDtGnTmj84CTA1NYWpqanUn6eoqAinTp1Cly5dwOPx8PfffyMnJwfGxsZSf25JULS/W0KIfKChHYQQiWporOmbt8jPnTuHrl27Qk1NDebm5li2bBmEQiEA4PDhw+jUqRNUVVVhZWWFDRs2NPgcDMNg37596N69O7S0tKCmpgZPT8/aHlFJGDp0KE6dOgUAWLRoEcrKyuo8Xl5ejhUrVsDJyQk8Hg96enr46KOPcPv27Xp1rVixAiwWC1evXsX+/fvRvn17qKqqwtbWFlu2bKm9pl9//bW2PkdHRxw6dKheXY8fP8bChQvh7u4OfX392rKLFi3Cy5cv65VvaIz0m+OEHzx4gIEDB0JTUxPa2toYPny4WOOpjxw5goqKCgQEBGDixImoqanBwYMHGyz7Oqbk5GRs2LABjo6OUFVVhYuLC44dOwYA4PP5+P7772Frawsejwc3NzdcuHChXl2v/94qKyuxcOFCWFpagsfjoX379iL9Pbz9dzt58mRMmTIFADBlypQGhzDZ2NjAxsamUfW9VlBQgFmzZsHY2Bhqamro3LkzTp8+/d7YYmJiMGbMGJiamkJFRQXW1taYO3cu8vPzG319hBDpoB5pQkizOX36NC5evIhhw4ahe/fu+Oeff/Djjz+CYRjo6upi1apVGDp0KHr16oWTJ0/im2++gampKcaPH19bB8MwmDBhAo4cOQJHR0eMGzcOKioqCA0NxbRp0xAfH//OBFxUvXr1Qq9evXD9+nVcvnwZQ4YMAQBUVVWhX79+uHPnDtzd3TF//nzk5uYiODgYFy9eRHBwMD755JN69W3evBlXr17F0KFD0bdvX5w8eRJffvkl1NTUEB0djT///BMff/wx+vbti2PHjmHixImwtbVFjx49aus4deoUgoKC0KdPH/Tu3RtCoRB37tzBunXrcO3aNVy/fh0cDqdR1xceHo6ff/4ZvXv3xsyZMxEZGYkzZ87g4cOHiI2NBY/Ha/S/VVBQEDgcDsaMGQMVFRXMnTsXQUFB+Oabb955TmBgIO7evYshQ4ZASUkJx44dw7hx46Crq4vt27cjNjYWfn5+qKysxJEjR+Dv749Hjx7B1ta2Xl2ffvopYmJi8Omnn4LP5+P48eOYNm0acnJysHjx4kZfx2vDhg1DUVER/vrrLwwdOhQdO3YUuY63lZeXo3fv3nj48CG8vLzg4+ODZ8+eYfTo0fD19W3wnLNnz2LUqFFQUlKCv78/LC0tER8fj23btuHChQu4e/cudHV1mxwbIURMDCGEiAAAY21t/c7HfXx8mLffWvbv388AYDgcDnPv3r3a4yUlJYyRkRGjpqbGmJiYMElJSbWPpaenMyoqKoybm1udunbv3s0AYKZNm8bw+fza41VVVcyQIUMYAEx4ePgHr+PKlSsMAGbmzJnvLbds2TIGALNs2bLaY6tWrWIAMOPHj2eEQmHt8ejoaIbL5TK6urpMSUlJ7fHly5czABg9Pb0Gr1FbW5txdHRkcnNzax+7e/cuA4Dx9/evE09GRgZTVVVVL86VK1cyAJg//vijzvFJkyYxAJiUlJR61w6AOXbsWJ3yAQEBDADm6NGj7/13eVNkZGS9WMeOHcsAYG7evFmv/OuYHBwc6lzznTt3GACMjo4O06NHD+bly5e1jwUHBzMAmHnz5tWp6/Xfm4uLS51/86ysLMbU1JRRVlau82/++tqXL1/eYD1vev13u3///gav29ra+p2vhYbqe/13MGPGjDrHL1y4UNsebz5XXl4eo6WlxVhYWDBpaWl1zjly5AgDgJkzZ06Dz08IaR40tIMQ0mzGjx+Pzp071/6uqamJjz/+GOXl5fj8889hZ2dX+5ilpSV69OiBuLg41NTU1B7ftm0b1NXVsW3bNigr//9NNRUVFaxevRoAcPToUYnFbGZmBgDIy8urPXbgwAFwOBz89NNPdW7fu7m5YfLkySgsLMRff/1Vr6558+Y1eI3FxcVYunQpDA0Nax/r0qUL7OzsEB0dXacOc3NzqKio1Kt7zpw5AID//vuv0dfWq1cvjB49us6xqVOnAgDu37/f6HqCgoIAAAEBAbXHJk6cWOexhrx9zV27doWdnR2KioqwevVqqKur1z42YsQIcDicev8eb9alqalZ+7uJiQkCAwNRU1ODI0eONPpapOngwYNQUVHBqlWr6hz39fVFv379GixfUlKCtWvX1hvDPXbsWLi7u9cOhSGEyAYN7SCENJtOnTrVO/Z6IlxDt85NTU0hEAiQk5MDc3NzlJeX4+HDhzAzM8NPP/1UrzyfzwcAPHr0SGIxMwxT5/eSkhIkJyfD2dkZFhYW9cr37t0bv/32G6KiojBhwoQ6j4lz/Xfv3q0Xz/79+3HgwAHExsaiuLi4dow5AJGW7HN3d6937PU1FRUVNaqOqqoqHD58GDo6OrVDXwBgwIABMDU1xfHjx7FlyxZoaGjUO/dd/x7Jycn1/j2UlJRgZGSE58+fNxhHz54933ksKiqqUdciTaWlpUhJSYGLiwtMTEzqPd6zZ09cunSpzrE7d+7U/vfp06f1zqmsrEReXh7y8vJgYGAgncAJIe9FiTQhpNloaWnVO/a6V/l9j71OkAsLC8EwDJ4/f46VK1e+83nenhjYFFlZWQBQ23NaUlICAO9cjeJ1klRcXFzvMXGu/83eeOBVr/a2bdtgaWkJf39/mJqagsvlAni1okpVVVWjrgsAtLW13xmPQCBoVB2nT59GYWEhZsyYURsH8CrxHT9+PDZs2IDg4OAGVz0R59/j9d/C24yMjOode91GDbVFc3sdQ0NxAg3/PRUUFAAAtm/f/t66y8rKKJEmREYokSaEKIzXyZWHhwfCw8Ob5TmvXr0KALVDUl7HkJOT02D518cbSgSbKjc3F9u3b4ebmxvCwsKgpqZW+1h2dvZ7v1xIy+uhG3v27MGePXveWUbaywfm5ubC0tKyzrHXbdHQFwZJYLPZqK6ubvCxt5P3138Pubm5DZZv6O/p9TkPHz6Eq6trU0IlhEgJJdKEEIWhqakJZ2dnJCQkoKioCDo6OlJ9vmvXruHGjRswMjJC3759AbxKbuzs7PD06VM8f/683kYn165dA9DwUI2mSk5OBsMw6N+/f50kGgBu3Lgh8ef7kNTUVFy6dAnGxsbv3HwlNDQUYWFhSEhIgLOzs9RiuXHjBsaNG1fvGCB+WygpKQF4d++8rq4uHj58iJqamjrj9cvKyvDkyZM6ZbW0tGBra4unT58iOzu73vCOhtqva9euOHXqFMLCwiiRJkRO0WRDQohCmTdvHsrLyzFjxowGh3CkpKSItQ7y286ePYsRI0YAANatW1cncZ00aRL4fD4WL15cZwx1bGws9u/fD21tbQwbNqzJMbzN2toaAHD79u0646IzMjKwaNEiiT/fh+zfvx8Mw2DWrFnYu3dvgz9fffUVgPdPOpSE1atXo7S0tPb3nJwcbNy4EcrKyvUS7MbS09MD8OrftyGenp7g8/k4fPhw7TGGYbB48eIG/zYDAgJQXV2N77//vs7xixcv1hsfDbxav1pTUxNLly5FXFxcvcfLy8trx1ETQmSDeqQJIQpl5syZuHPnDn7//XfcunUL/fv3h5mZGXJycvDo0SPcvXsXR44ceedGGW8LDw+v3dmwsrISWVlZuHXrFpKSkqCqqort27dj8uTJdc5ZuHAh/vnnHxw6dAgJCQno168fXrx4geDgYPD5fBw8eLDOChKSYmpqihEjRuDkyZPw9PREv379kJOTg7///ht9+/ZFcnKyxJ/zXYRCYe1GO2//+7xp/Pjx+Oabb3Do0CGsXbu20Wtci8rOzg6urq4YMWJE7TrSubm5WL16dZ2VUkTh5eUFVVVVbN68GSUlJbXj5F9/aZkzZw7279+P6dOnIzQ0FIaGhrhx4waKiorQoUOHeiuMLFy4EKdOncKePXsQFxeHXr164dmzZzh+/Dg++ugj/PPPP3XKGxoa4ujRo/j000/RoUMHDBo0CE5OTqisrERaWhquXbsGb29vnD9/XqzrI4Q0HSXShBCF8nqHRD8/P+zZswd///03Xr58CSMjIzg4OGDDhg3o379/o+uLiIhAREQEAEBNTQ16enpo164dZsyYgYkTJza4vTaPx8Ply5exbt06BAcHY9OmTVBTU0OvXr2wZMmSOhuoSNqBAwdgY2ODkydPYuvWrbCyskJgYCC+/fbbBpfFk5bQ0FCkp6ejX79+7/3Soq+vjyFDhuDkyZM4d+5cgxvVSMLx48fx/fff4+jRo3jx4gUcHBywZs2aJo3N1tPTw4kTJ7BixQrs3LkTFRUVAP4/kW7fvj3Onz+PJUuW4MSJE9DQ0ICfnx9+/vnnessKAoC6ujquXbuGxYsX4/Tp03jw4AHatWuH4OBgFBcX10ukAeCjjz5CZGQkfv75Z/z3338IDQ2Furo6LCwsMGXKlHorwxBCmheLeXttJ0IIIURB9O7dG9euXau3TCEhhDQHGiNNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGGiNNCCGEEEKIGKhHmhBCCCGEEDFQIk0IIYQQQogYKJEmhBBCCCFEDJRIE0IIIYQQIgZKpAkhhBBCCBEDJdKEEEIIIYSIgRJpQgghhBBCxECJNCGEEEIIIWKgRJoQQgghhBAxUCJNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGSqQJIYQQQggRAyXShBBCCCGEiIESaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDFQIk0IIYQQQogYKJEmhBBCCCFEDJRIE0IIIYQQIgZKpAkhhBBCCBEDJdKEEEIIIYSIgRJpQgghhBBCxECJNCGEEEIIIWKgRJoQQgghhBAxUCJNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGhUukd+zYAVtbW/B4PHh4eODGjRvvLX/t2jV4eHiAx+PBzs4Ou3btemfZY8eOgcViYdiwYRKOmhBCCCGEtDQKlUgHBwdj/vz5WLp0KSIjI9GzZ08MHjwY6enpDZZPSUmBn58fevbsicjISCxZsgTz5s3DyZMn65VNS0vD119/jZ49e0r7MgghhBBCSAvAYhiGkXUQjdW1a1e4u7tj586dtcecnZ0xbNgwrF27tl75b7/9FmfPnkVCQkLtsVmzZiE6OhphYWG1xwQCAXx8fDBlyhTcuHEDRUVFOHPmjFSvhRBCCCGEKDZlWQfQWNXV1YiIiMCiRYvqHPf19cXt27cbPCcsLAy+vr51jg0cOBBBQUHg8/ngcDgAgFWrVsHQ0BDTpk374FARAKiqqkJVVVXt70KhEAUFBdDX1weLxRL10gghhBBCiJQxDIPS0lKYmZmBzZbMoAyFSaTz8vIgEAhgbGxc57ixsTGys7MbPCc7O7vB8jU1NcjLy4OpqSlu3bqFoKAgREVFNTqWtWvXYuXKlSJfAyGEEEIIka1nz57BwsJCInUpTCL92ts9vgzDvLcXuKHyr4+XlpZiwoQJ2LNnDwwMDBodw+LFixEYGFj7e3FxMaysrPD48WPo6ek1uh6imPh8Pq5cuYI+ffrU3tUgLRe1d+tC7d26UHu3LgUFBXB0dISmpqbE6lSYRNrAwABKSkr1ep9zc3Pr9Tq/ZmJi0mB5ZWVl6OvrIy4uDqmpqRgyZEjt40KhEACgrKyMxMRE2Nvb16uXy+WCy+XWO66npwd9fX2Rr40oFj6fDzU1Nejr69MbbytA7d26UHu3LtTerZMkh+EqzKodKioq8PDwQGhoaJ3joaGh8Pb2bvAcLy+veuUvXrwIT09PcDgcODk54eHDh4iKiqr98ff3R58+fRAVFQVLS0upXQ8hhBBCCFFsCtMjDQCBgYEICAiAp6cnvLy8sHv3bqSnp2PWrFkAXg25eP78OQ4ePAjg1Qod27ZtQ2BgIGbMmIGwsDAEBQXh6NGjAAAejwdXV9c6z6GjowMA9Y4TQgghhBDyJoVKpEePHo38/HysWrUKWVlZcHV1RUhICKytrQEAWVlZddaUtrW1RUhICBYsWIDt27fDzMwMW7ZswYgRI2R1CYQQQgghpIVQqEQaAGbPno3Zs2c3+NiBAwfqHfPx8cGDBw8aXX9DdRBCCCGEEPI2hRkjTQghhBBCiDyhRJoQQgghhBAxUCJNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGSqQJIYQQQggRAyXShBBCCCGEiIESaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDFQIk0IIYQQQogYKJEmhBBCCCFEDMqinvDkyRPcvn0b2dnZYLFYMDY2hre3NxwcHKQRHyGEEEIIIXKp0Yl0cXExJk6ciHPnzkFbWxtGRkZgGAYvXrxASUkJhgwZgoMHD0JLS0ua8RJCCCGEECIXGj20Y+7cuUhJSUFYWBgKCwuRmJiIx48fo7CwELdv30ZKSgrmzp0rzVgBADt27ICtrS14PB48PDxw48aN95a/du0aPDw8wOPxYGdnh127dtV5fM+ePejZsyd0dXWhq6uL/v374969e9K8BEIIIYQQ0gI0OpE+e/Ys9uzZg65du9Z7rGvXrvjtt9/w119/STS4twUHB2P+/PlYunQpIiMj0bNnTwwePBjp6ekNlk9JSYGfnx969uyJyMhILFmyBPPmzcPJkydry1y9ehVjx47FlStXEBYWBisrK/j6+uL58+dSvRZCCCGEEKLYRJpsyGKxxHpMUjZu3Ihp06Zh+vTpcHZ2xubNm2FpaYmdO3c2WH7Xrl2wsrLC5s2b4ezsjOnTp2Pq1KnYsGFDbZnDhw9j9uzZ6NixI5ycnLBnzx4IhUJcunRJ6tdDCCGEEEIUV6MT6SFDhmDGjBkIDw+v91h4eDhmzZoFf39/iQb3purqakRERMDX17fOcV9fX9y+fbvBc8LCwuqVHzhwIMLDw8Hn8xs8p7y8HHw+H3p6epIJnBBCCCGEtEiNnmy4detWjB07Fl26dIGOjg6MjIzAYrGQk5OD4uJiDBw4EFu2bJFaoHl5eRAIBDA2Nq5z3NjYGNnZ2Q2ek52d3WD5mpoa5OXlwdTUtN45ixYtgrm5Ofr37//OWKqqqlBVVVX7e0lJCQCAz+e/M0EnLcfrNqa2bh0+1N5Pcl7iZlI+qmuEaGemBS87PSixpX+HjkjH63aurKrGvdQCPCuogIWuKjytdaldWyB6P29dpNHOjU6kdXR08O+//+LRo0cICwurTV5NTEzg5eUFJycniQfXkLeHkDAMI9KQE4ZhGjwOAOvXr8fRo0dx9epV8Hi8d9a5du1arFy5st7xK1euQE1N7b3xk5YjNDRU1iGQZvR2e5fxgZOpbHCVADc9BipsBicTWVh7hoWh1kJYqMsoUNJkT4pZ2LblMhy0GRipAtcrgJXFLAy2FMKeFqZqkej9vHUoLy+XeJ0iryPt5OTUbEnzmwwMDKCkpFSv9zk3N7der/NrJiYmDZZXVlaGvr5+neMbNmzAmjVr8N9//8HNze29sSxevBiBgYG1v5eUlMDS0hJ9+vSpVy9pefh8PkJDQzFgwABwOBxZh0OkrKH2Tssvx3d/xWHZp23RzqxuZpX/sgqLTsehg6cNutrSEDFFc/RuGu48ScDR2b2hrf7/HSovq2qw5HQc7CyN8VF7ExlGSCSJ3s9bl/z8fInXKXIiLSsqKirw8PBAaGgohg8fXns8NDQUQ4cObfAcLy8vnDt3rs6xixcvwtPTs84L5ueff8aPP/6ICxcuwNPT84OxcLlccLncesc5HA69EFsRau/W5XV7ZxVXYNnZBGwe4w4T7fp3rkx0Odg5wROzD0dAT0MVLmbUhakozkZnIi67DBPaCKGtzqvz+tblcLBtvAfmHYuEkbYqvO0NZBgpkTR6P28dpNHGCrVFeGBgIPbu3Yt9+/YhISEBCxYsQHp6OmbNmgXgVU/xxIkTa8vPmjULaWlpCAwMREJCAvbt24egoCB8/fXXtWXWr1+P7777Dvv27YONjQ2ys7ORnZ2Nly9fNvv1kZaJYRjkllTiae5L5JZW1g4vIoqnki/AwhMxWPtJ+waT6NdUVZTwy6iO+OHveBSX09hLRRCXWYx/YjKxcogz3jVaUInNwoaRHbD9ylO8KK1quBAhpFVRmB5pABg9ejTy8/OxatUqZGVlwdXVFSEhIbC2tgYAZGVl1VlT2tbWFiEhIViwYAG2b98OMzMzbNmyBSNGjKgts2PHDlRXV2PkyJF1nmv58uVYsWJFs1wXaZkyiyqw90YKnuSWwkxbFTrqHBSV8ZFZXAEbfXVM7m4De0MNWYdJRPDjP/GY2sMWNgYfHgCtp66Crwe2xY//xOPnTzs0Q3REXBXVAvz4dwJ2jHf/4IRCVRUlLPvYBd//FYsd492bZelXIllF5dUoKudDR40DdQ61H2kahUqkAWD27NmYPXt2g48dOHCg3jEfHx88ePDgnfWlpqZKKDJCXhEKGey7lYI7yQWY168N3Cx06pV5nFOK7ZefQo2rhIWDnKDFo1uK8u7G0zxwlNjo09ao0ed4WOviQlw2riTminQeaV5bLj/BZ73soKuu0qhZ/U4mWnA21cK/sdnwa19/9Scif0or+TgYloawpHwYaKhAX4OLgrJq5JZUwrCGhX58AQ3tIGIRa2hHUVER9u7di8WLF6OgoAAA8ODBA9oNkLR6VTUCzA+OAleZjT0TPRpMogHA0VgTG0d3xBA3M8w8GIHHOaXNGygRSWUNsPt6Cr4Z2Fbkc7/s54Dd15LBFwilEBlpqsc5pcgorEAfJ9G+6HzWyw6HwtJQXl0jpciIpPwdk4mZhyLgZKKJg1O7YPOYTlj2sQs2je6IvQGdoK0CTD/0ANHPimQdKlFAIifSMTExcHR0xLp167BhwwYUFRUBAE6fPo3FixdLOj5CFEZ1jRDzjkZiuLs5ArxsGnXLt6udPraM7YSf/n2Efx9mNUOURBxn09mY08ceaiqi38RT5ypjuLs5jtxN/3Bh0qyEQgZrQxKwxE/0lah4HCVM8rbGgdupkg+MSERVjQBLTj/Eo6xSHJjSBf2cjcF+a+iOshIb7gYMto/tiJ1Xk/BPDL0PE9GInEgHBgZi8uTJePLkSZ21lgcPHozr169LNDhCFAXDMFh86iFGeliKfAvfUJOL3wI8cPlRLk5EZEgpQiKuiLRCAGjSUnYj3C0QGp9DEw/lzIkHGejhYAhTbVWxzh/YzgRhSfkorqB2lTcllXx8/scD9G1rhK8HtoWK8vvTHS1VDraN64RLCTmUTBORiNy9cv/+ffz222/1jpubm79zh0FS3/3UAhy9m47C8mqwWSwweNVz5W2vj16OhjDXEe+NncjGvlupcDbVxACXhtc0/xCOEhvrRrhh6ZlY1AiEGNPFSsIREnEIhAy2XknGR5ZNG5ahxGZhdh97bL38BN997CKh6EhTFJRV42xUJg5M6Sx2HSwWC9N62CLoRjICfUUf9kOk40VpFRYER+ErX0d0stJt9HnKSmysH+mGuUcjYazFhacNrQMvDXyBEGn55Xia+xIvSishZAAWCzDQ4MJYiwc7A3XoqqvIOsxGEzmR5vF4tVtivykxMRGGhoYSCaolK6uqwfd/xUFXjYNvBzvBWOv/e/WLyqtxOykfm0MfI7e0Cj0dDDC4vSkl1XLuYUYxItMLsXVspybVw2azsHqYK74/G4vj4c8wytNSQhEScZ2IeIb+zoZQz89pcl3e9gY4eDsNmUUVMKPXtMytP/8IXw9sC2Wlpq0C6+NoiN9vpyL/ZRX0NervL0Ca17OCciw8EYMfhrVDGyNNkc9XVmLj5087YOahcGwe3QmGmtSmksAwDMKS8hEc/gwlFXzYG2qgjZEGLPTUoMRiQcgwyHtZjbCkPPxxJw2F5dVQV1FGO3MteFjpooOlDngcJVlfRoNETqSHDh2KVatW4fjx4wBefSNPT0/HokWL6iwrR+orreTjiyOR+NzHHl729XdA1FFTgV97U/i1N0V1jRC3nuZhc+hjvHhZBQ8rXbQz14KTiRa0VTlQ5SihRsigqLwa+WXVyCquQGZRJbKLK5FZXIGS2luNLBhpceFkoglvewO0MaLl1iSpqkaAn84nYOtYySyDxWazsMrfFQtPxkCDq0wrAshQSSUfZ6MzsXdCJ1y8ECuROuf0bYOtl59i7SftJVIfEc+9lAKoKLPR0VKnyXWxWCzM8rHH7uvJWOzn3PTgiNie5r7EsjOx+PlTN1joqoldjwZXGcs+dsGyM7HYOYGWOGyqxzml+OnfR3Ax1cJSP2cYab17Df43vayqQezzYoSnFWLfrRRU1QjhYKQBD2s9eNrowkBOvriKnEhv2LABfn5+MDIyQkVFBXx8fJCdnQ0vLy+sXr1aGjG2CDUCIRYER2N+fwe4N+JWk4oyG32cjNDHyQjVNUI8fF6E+MwSXH6Ui5KKGlTwBVBisaCrzoGeugpMtFVhps2Du5UuzHR40FblgMViQShkkFNaifjMEhwKS0VyXhmGdjTHsI5mTe6JIcDeGykY18UaehK8DcVms/DTJ+3xZXAU1FSU0JuWTZOJrZee4IvebST6OnE110ZZVQ1S88oatRY1kbzqGiF+vfQYO8Z7SKzOrnb62H09GYVl1Qp1S7oliX1ejLX/JuDXsR1hpNm4RO19nEy00NlWD3/cSUOAl03TA2yljt1Lx+VHuVj7Sfs6d+AbQ4OrjG52+uhm96rjUShk8PTFS4SnFmJNSAIKyqqhylGCpZ7aqx9dVRhqcmGowYWeukqz5TgiJ9JaWlq4efMmLl++jAcPHkAoFMLd3R39+/eXRnwtxpZLT/Cxm2mjkui3qSiz4WGtBw9r0cdrsdksmGqrwlRbFf2cjVHJF+BERAYm778v8vgxUldOSSUepBVidm97idetrMTGL592wJwjkVBTUUaXJkx0I6JLevESWcWV8G5j0Kh1hUUxr18bbLn8BBtHdZRovaRxgm6mYJSnJbRVJbtm8OTuNth/OxWBAxwlWi/5sLvJ+dh+NQnbx7lDR01yX2SmeNvgs0MR8G5jQJtniYhhGGwMfQyBkMGuCR71VksRB5vNgqOxJhyNNTGu66t5RJV8ATIKK/CsoBxp+eWISCtE3ssq5L+shpBhIBAyMNFWRScrHfQTcYnLxhJ7Q5a+ffuib9++koylxYrJKEJGUYVcTEbhcZQwoZs1hriZYeW5OIQl5+NzH3u6dSWGzZeSEOjrKLV/Ox5HCb+O6YjZhx9AldMW7S20pfI8pL6fzydi6UfSuU3fxkgTSiwWHueUwtFY9DGcRHypeWV4kF6IWT6S641+rUcbA+y5kYLSSj40aYOlZsEwDIJupiAmoxg7x7tDnSvZPebYbBaWD3HBqr/jsTvAgz4nRbDt8lPwOEr4ok8bqT4Pj6OENkYa7xy2yjAMsoorEZ5WiO//igObXy7xGBr1V7dly5ZGVzhv3jyxg2mJBEIGP19IxObRHWUdSh3aahz8MqoDDtxOxcITMVj7SXsa6iGCtJeAEpeFdmbSTW7VucrYMrYTvjj8AMuHuMCBEi+pu/IoF22MNGCpJ/4Yyw+Z29cBP19MbPIEVdJ4QiGDlefisGqoq1QSIhaLhYBu1jh0Jw2ze0s3eSBA3ssqrDoXjw6WOvh1TEepJbmWempwMdXCxfgcDGxnIpXnaGnORmeisJyP74fIfoUiFosFMx1V+Ouowr+DGe7Ep2KbhJ+jUYn0pk2b6vz+4sULlJeXQ0dHB8CrnQ7V1NRgZGREifRbTkc+xwAXY7mczc1isTCluy3+icnCV39GY+OojlCSwO2X1uBCBht7P5P8kI6GaKtysHlMR8w9Eol1I9xgpS+9BK+1q64RYs+NZOyd5CnV57HSV4O2qjIeZhTTnYZm8ntYKvo5G0v1C1I/JyMcuJ2CKd62UFWRzxUGFF3+yyocvpuOiLRCfOXr+M7dYyXp8972mLL/PnwcDeV25Qh58SSnFH9FPsdvAZK/6yMJ0uiMalQXZEpKSu3P6tWr0bFjRyQkJKCgoAAFBQVISEiAu7s7fvjhB4kHqMiqagQ49SADYzrL95rAH7mZopeDIVb/kyDrUBTC/dRCGKuiWWcMG2hw8cuoDlh4MhqZRRXN9rytTdDNFIzpYiXWDoai+qJPG2y78kTqz0NeDem49TQf47tK972YzWZhdGcrHL1Hu1iKo6SSj8c5pbjx5AXOx2bjbHQmTkZk4FBYKtaEJGDqgftY8b9e6ANTOjdLEg38/y6Wu68nN8vzKarqGiFW/R2PNa3sDrfIV7ps2TJs3boVbdv+/3jftm3bYtOmTfjuu+8kGpyiOxGRgU/cLT64o5I8GOFhAV01DoJupsg6FLm371Yq+pg2bYMOcZjpqGLdCDd8dTwaDzOKm/35W7qs4gqEpxZgiFvzLDloqq0KC1013E8taJbna60q+QIs+ysWK/xdmmWM60ftTfFfQg6qagRSf66WoKJagH03UzBx3z0sPR2LUw+e42nuS5RW8sEwDNRUlGChq4aRHhbYHeCBrWM7wcfRsNnHKw9sZ4KoZ0XIf1nVrM+rSHZfT8KnnpYir86h6ETO8LKyshqcxS4QCJCT0/RNC1oKoZBByMMsDO1oJutQGm1O3zZ4nP2qN4A0LDK9EOa6qtCS0QpX1vrq2DXBA79eekLb2ErYun8fYeEgp2b9gP68tz12Xk0CwzDN9pytCcMw+P6vWEztYdukdYVFocRmYVgnc5yMeN4sz6fIItIKMO33+zDU5GL/5M7YOrYTFg12wpTutvjU0xJDO5pjcHtT9HEygqOxpkx7OV+vF77rWpLMYpBnzwrKEZ1R3GwdEfJE5L/Kfv36YcaMGQgPD6998w8PD8fMmTNpCbw3XHv8At72BuAo0O0NFouFFf7tsPNqEgrLqmUdjlzafT0Z03vYyDQGbTUOdk5wR2xmMeYfi0RuaaVM42kJbiflQV+Di7YmzTuZ00CDCxdTLdx8mtesz9tabAp9DGdTLfRp5rXYh3cyx7noTNQImv/OlaI4H5uNPddTsCvAA0M6mCnE/JwutnpIyy9HTgm9575t/YVELBrcvB0R8kLkLG/fvn0wNzdHly5dwOPxwOVy0bVrV5iammLv3r3SiFEhHbmXLvXxeNKgqqKExYOd8f3ZOOole8uj7JJXm9/IwW0rjhIb3w5ywme97PH1nzHYcukJ3XIUE18gxPYrTzG/v4NMnn9GLzvsvp4MoZBeb5LCMAw2XEiEEpuNKd1tm/35OUps+LU3wbmYzGZ/bkVwOykP52IysXVcJ2gp2FKBc/q2wbbLT2Udhlx5kF4IXTVOq11rW+RE2tDQECEhIXj06BH+/PNPHD9+HAkJCQgJCYGREe3ABrxKuIw0uRJdGL45tbfQhpOJJk5EZMg6FLmy/2YqpvZo/g/l93Ex08LvUzqjo6UOlpx+iG/+jMatp3kQUFLWaAdupWKEu4XM1v7VVuWgv7Mxjoc/k8nztzSllXwsCI6CgYYKvpTRlyMA+NTTEn+GZ9AXpLdkFJZj59UkbBjZQaHu2L7mZqGDwvJqZBRKfj1iRbXjylPM7Su715qsif1X7OjoCH9/fwwdOhSOjrST05sO3EqVSS+IJM3yscfZ6EwUldMQD+DVmqUllXy5/MbNYrHQy9EQvwV4Ym5fB0Q9K8Lk/few6lw8op8V0Z2F90jLL8PdlAIM72Qu0zjGd7XC3zFZdFehCQRCBmcin+OzgxEY380ak2X8HszjKKF3W0NciMuWaRzyRChksPyvOPww1FWhlwec5WOPvTdoYj4ARKQVwkZfHYaa8rfEb3MReY2nqVOnvvfxffv2iR1MS1BSyUfey6p37rKjKJTYLHzZzwEbQx9j1VBXWYcjc4fvpGN8V2tZh/FBVvpq+KJPG3zRpw0eZZfgr6hM/HwhEV72+pjS3aZZlnVTFEIhg1Xn4rHCv53Mx/UpK7GxaLATVp6Ll+rmEi0NwzCIyyzBPw+zEP2sCANcjLF/Sme5Wet3fFdrzPojAoNcTahNARy7/wy9HA1hY6Au61CaxNVcG1suPUHey6pmXQZVHgXdTMb3H7eTdRgyJXKPdGFhYZ2f3NxcXL58GadOnUJRUZEUQlQsITFZ+NhNcVbqeB9PGz2UVwsQ+7x1L7VWVSPA/dQCdG+jL+tQROJkooVvBznh4NQucDTWxLQD4bj+mFZkee3IvXT0cjSU6gYdonA114aDkQb+pCFVH/Q4pxQ/X3iEgKB7OBudiUHtTHB4eldM6W4rN0k08Gpn0s42eriaSK+74nI+Qh5mYUI3+e+QaIwp3W2x/1br7pVOzC6FtioHJtqynzckSyJ3T50+fbreMaFQiNmzZ8POzk4iQSmyC3HZ2DFePnf0EcfCgW2x8GQM9k/u3Gp7VP6OzsLHbqYKe/1sNgsDXIzRo40BVv0dh4SsEnzWy05hr0cS0vLLcPlRLvZOlO4OhqKa3acNPv8jAi6mWnA1px0P3yQUMgiJzcKpB89hpsPDCHcLfO3bVu7/jid522DOkQfo3bb51z6WJ9uuPMGcvm0UYnWOxuhmp4dd15JQWsmX2fwKWdt9PRlz+raRdRgyJ5GR/mw2GwsWLKi3lXhrk5ZfBhNtVYUe+/U2Iy0eOtvo4b+EXFmHIhMMw+BM1HMMk/EYWklQVVHCmuHtUV0jxJZLrXfWOV8gxHdnYrFqaDuw5exDXYnNwvqRblgTkoDUvDJZhyM34jKLMWn/PWQXV2LL2E74cVh7dLLSVYjEVFuVgx5tDHA2uvWu4JFbUom0/HJ0s1Osu3rvw2KxMKGbNf640zp3scwoLEeNUAhbBR+mIwkSmzKblJSEmpoaSVWnkM7GZGOkh4Wsw5C4yd42+P12aqucfX43pQAdLXXk6nZxU7BYLMzt54Byfg2C77fOD4CNoY8xprNVs23QISodNRVsHNURi089REJWiazDkbmj99Kx7fJTbB7dEdN72kGDq3jj/Cd3t8Gxe89QUd06dzvceS0Jn/e2l3UYEtfPyQi3nuahkt/62vXI3XRM9GoZw3SaSuREOjAwsM7PggULMGbMGIwePRqjR4+WRox17NixA7a2tuDxePDw8MCNGzfeW/7atWvw8PAAj8eDnZ0ddu3aVa/MyZMn4eLiAi6XCxcXlwaHrzRG3PMSuFvpiHWuPFPnKqN3W0OExLa+nfQO3UlrMWP63vTtQCdcfpTb6sa/33jyAkXlfHwk57tvmWjzsG1cJ6w//wjHw5+12pVXNoU+RnpBObaPc4e+Ak/q4iorYXJ3G+y+nizrUJpdUXk1nhWUo5OVrqxDkTg2m4URHub4s5UtXVldI8TD58Vwb4FtKg6RE+nIyMg6PzExMQCAX375BZs3b5Z0fHUEBwdj/vz5WLp0KSIjI9GzZ08MHjwY6ekN96ylpKTAz88PPXv2RGRkJJYsWYJ58+bh5MmTtWXCwsIwevRoBAQEIDo6GgEBARg1ahTu3r0rcnxdbPUU4lajOCZ0s8bRe+mtan3itPwy8JSVYCwHG7BIGpvNwtpPXg0haC29Ken55fjtWjK+/9hF1qE0ir4GF3sndUZhWTWmHLiP0PgcVNe0np3ytl95CmU2C98OcpK7ITji8HUxxsPnRXheVCHrUJrV0XvPMLaL4m1O1lhD3Mzwb2x2q9rF8nxcNga2o5VoajEKpEuXLsysWbPqHHNycmIWLVrUYPmFCxcyTk5OdY7NnDmT6datW+3vo0aNYgYNGlSnzMCBA5kxY8Y0Oq7i4mIGABOfktHocxTR77dTmFMPnsk6jGaz/K9Y5mFGUb3j1dXVzJkzZ5jq6moZRCVZ/z7MYn658EjWYUjdy0o+M25PGPOsoEzkc+WhvQteVjFBN5KZgKC7zNLTMcy1xFymkl8js3ik7UxkBrPibCwjFAqb/bml2d5Pc0uZ6b/fl8l1yUJ1jYAZuzuMEQjk93ol0d4HbqUwZ6OeSzAq+TZl/z2mtJIv6zDEkpeXxwBgiouLJVanyD3Sffv2bXCZu5KSEvTt27fpmf07VFdXIyIiAr6+vnWO+/r64vbt2w2eExYWVq/8wIEDER4eDj6f/94y76rzfYw0W17P5ZtGeVriRETr2KmrpJKP9ILyFr9ywiBXEyS9KGvRE9uEQgaLTj3E3L4Ocjsu+kN01VUwtYctDk7tgindbZGQVYJZhyIw58gDnI/NalG9YY9zSnEuOgtL/ZxbXI+XvaEGutnp48i91jE/IeRhFga5mrSIOwrv86mnRasZgvU4pxRmOjyFnKsgLSL/S1y9ehXV1fV3u6usrPzgeOWmyMvLg0AggLGxcZ3jxsbGyM5ueOeo7OzsBsvX1NQgLy8Ppqam7yzzrjoBoKqqClVV/78DWUnJqwlBfD6/NkFviZQAdLPRRWh8Fvq2NZR1OFJ15E4qRnYya7A9Xx9rKW09v58dfj7/CJtHu8k6FIljGAY/hCSih70uPCy1xGozeWtvKx0upnpbYaq3FQrKqnE2JgsBQXcxvoslBrYz/nAFcqy6RoiVZ+OwfoQrGKEAfGHzDzuSdntP6GyOmYcj0c1GB1Zysoa5NDAMgxPhz7B1TAe5ee00RBLtzWEBHS20cC0xB93tW87KJA05dDsFoz0t5LpN30cacTc6kX49FhoA4uPj6ySaAoEA58+fh7m59JcIe7uHgmGY9/ZaNFT+7eOi1rl27VqsXLmy3vErV65ATa3lvjECgEEN8Gs4G5VJLacH7G0CBjgZz8ZsFyFCUt9dLjQ0tNlikrbSPDZ2BGfARlPWkUjWhQwWlFkAj8UgJCu6SXXJa3sbAfjEADh3Mw+//wd8aicEV0EXmTmXzkZbdQbhNy7JOhSptncvdeCLfbmY7iQER2JrZ8mX1FKAU8bGtUsXZR1KozS1vU34wC9/sVHs1HI/G6sEQPhjNjzZKVDUabPl5eUSr7PRiXTHjq+2rWWxWA0O4VBVVcXWrVslGtybDAwMoKSkVK+nODc3t16P8msmJiYNlldWVoa+vv57y7yrTgBYvHgxAgMDa38vKSmBpaUl+vTpU1tvS/b0fCJMXIxb5AolAPBvbDZG6VXh43cs7cPn8xEaGooBAwaAw2kZC/G7l1Tix38eYbZfR1mHIjEHwtJgplSFbwc6NqkeRWnvYXi1XOPOayn4ZaSrwq1yEZFWCJ2qTCweLtvthpurva0ev0BIbA5+Gi77LeqlYemZOCwebQMbffleZ1iS7Z3wdwKsO5qjnZmWhKKTL8HhGZhmyYZfR8XdvTk/P1/idTY6kU5JSQHDMLCzs8O9e/dgaPj/t/ZVVFRgZGQEJSXpdYOoqKjAw8MDoaGhGD58eO3x0NBQDB06tMFzvLy8cO7cuTrHLl68CE9Pz9oXjJeXF0JDQ7FgwYI6Zby9vd8ZC5fLBZdb/0OKw+HI9QetpMzo1Qar/o5DV/uWObzjVFQWto1zB4fz/pdHS2pvS30O9DV5ePKiAi4t4ENg59UkFFXwsfQjF4klKYrQ3j0cjWGkrYavTsZixzgPaKvJd7yv8QVCbL2ajB3jPeTm31ja7d2/nRlSCyqxL+wZZvm0rDWWSyv5yC/jw8FER9ahNJok2numTxtsDH2MTaM7SiYoOcIwDC7E52LPRE9wFHhfBWm8pht9U8na2ho2NjYQCoXw9PSEtbV17Y+pqalUk+jXAgMDsXfvXuzbtw8JCQlYsGAB0tPTMWvWLACveoonTpxYW37WrFlIS0tDYGAgEhISsG/fPgQFBeHrr7+uLfPll1/i4sWLWLduHR49eoR169bhv//+w/z586V+PYrKRPvVRIOkFy9lHYrERaYXoo2hRqucSDGrlz1+u54k6zCahGEYbLyYiAq+AIsGObXInr4PcTTWxKJBzgg8HgW+gkxCPBSWhuGdLKCtKh9JdHOZ1sMWzwrKcSIiQ9ahSNTZ6Ez4K3Cvpbgs9dTAMAyeFUh++ICsPXxeDCcTzRazOZkkNSpbOHv2LAYPHgwOh4OzZ8++t6y/v79EAmvI6NGjkZ+fj1WrViErKwuurq4ICQmBtfWrW/BZWVl11pS2tbVFSEgIFixYgO3bt8PMzAxbtmzBiBEjast4e3vj2LFj+O6777Bs2TLY29sjODgYXbt2ldp1tARTe9gi6GYK1gxvL+tQJGr39WQsU5B1hiXNSl8Nymw2kl68hL2hhqzDEVlVjQBLTsWivbkWJne3lXU4MtXeQhufuFtg3b+P8J2c/z3nllbi2uMX2D+5s6xDaXYsFgurhrpiyamHYBgGn3payjokibgQl4PdAR6yDkMmpve0w94byVg51FXWoUjU0XvpmN7TTtZhyKVGJdLDhg1DdnY2jIyMMGzYsHeWY7FYEAikO8t69uzZmD17doOPHThwoN4xHx8fPHjw4L11jhw5EiNHjpREeK2Gk4kWXpRWIf9llcKNxXyXmIwiGGpyYaajKutQZGaWjx32XE/GTyMUawWP3JJKfHsyBhO9bNDHyUjW4ciFj9xMcTspD7eT8uBtbyDrcN5pw4VEfDOwbYtfIu1dlNgsrP2kPZacfohqgRDjuyr2Tqqxz4vRxlCj1fZcuppr49dLT1BQVg09dRVZhyMRpZV85JZUKWQHS3No1NAOoVAIIyOj2v9/14+0k2giXyZ6WePQnTRZhyExO68m4fPeLWusoqgcjDWR97IaReX1l7iUV3/HZCLweDSW+DlTEv2WxX7O2HrpKV5W1cg6lAbFPi+GEpvV4tdr/xA2m4U1w9sjs6gCP/4dr9A7yAbff4YxXVpGz7q4JnnZ4MDtVFmHITGtdahOY7XQhXdIc+jRxgDhqYUtYovp6GdFMNLkwlS79fZGvza6syWC7z+TdRgfVFzOR+DxKCRml2Lf5M5wMG5ha/dJgAZXGfP6OWBNSIKsQ2nQr5eeYH7/pq2q0lKw2Sx8M9AJ7cy1MPtwBArLFOfL7Gvl1TV4VlgOx1b+WuzeRh/Rz4pQXK6Yay2/iWEYnI/NxiBXE1mHIrcaNbRjy5Ytja5w3rx5YgdDFAuLxcKwTuY4HfkcY7tYyTqcJtlx9SlW+resMW3i6utkhH03UzC9px2U5PR2+40nL7DjShK+GdQW7la6sg5HrnnZ6+N8bBbuJuejq538LM95/fELOBprwFirZe8IK6rhnSzQxlATsw8/wNx+beR6WM7b/onJwkftTWUdhsyxWCxM72mLvTeT8ZVvW1mH0ySvJxlylVvnUJ3GaFQivWnTpkZVxmKxKJFuZfw7mGHKgXsY7WmpsGMcryTmoo2RBky06QMdeDVms3dbQ1x5lIv+LvK1U15FtQDrzj+CkGEQNNkTaiqtb3UVcQQOaIsvjjyAp42eXHw5EgoZ7L6ejB0T3GUdilxqb6GNvZM8sepcPG49zcP8/o7gKMn/DeSQh1nYPp7aFHh1x3bfzRQUllVDV4HHSh+9l44ZNMnwvRr1ykxJSWnUT3Kyou51Q8SlosyGt70Brj7OlXUoYqmqEWDP9WTM7t1G1qHIldGdLREcLl/DO6KfFWHa7/fRx8kIq4a6UhItAm01Dga5msjNkJ0zUc/R18kIWrzWtdydKNS5ylg30g1tTbQw9cB9PM0tlXVI7/U4pxTmuqr0uvwfFouFGb3ssPuG4uZFrycZ2tEkw/dq0ldchmFqt9wmrdf4rlY4cjf9wwXl0Ob/nmCStw3UW+G60e+jo6YCfXUVuVgrXCBk8Ot/T/D77VTsGO8OH8eWuRGQtI3tYoWQh1korpDtuM1KvgB/hmdgfDfFHg7WXPw7mOHnkR3w84VE7L6eJLcTEY/de4YxnalN3+Rtb4AnOaXILq6UdShiORNFkwwbQ6xEOigoCK6uruDxeODxeHB1dcXevXslHRtREDpqKjDXUUXs82JZhyKS+6kFyCmpxMB2NImiIRO6WePwHdl+QcoursSMg+Gw0FXFxtEdoaOmuLdIZU2JzcIXfdpg66UnMo3jUFgaxnSxpDGXIjDR5mHXBA9oq3Iw9cB9pOSVyTqkOir5Ajx98bLVr77SkK9822L9+UeyDkNkQiGDfx9mYbArjXn/EJET6WXLluHLL7/EkCFD8Oeff+LPP//EkCFDsGDBAnz33XfSiJEogKk9bLHvVoqsw2i07OJKbAp9jFUtbNF8SXI118bTFy9RXi2bpdPupxbgqz+jsPQjZ4zwsJBJDC2Nl70+MosrkJ4vm53XCsuqcf3JCwxxo14uUbFYLIzubIXVw12x+p947L+VAqGc9E5fiMvGwHbyNZ9CXjibakFLlYM7yfmyDkUklx7lopejIVSU5X9svqyJ/C+0c+dO7NmzB2vXroW/vz/8/f2xdu1a7N69G7t27ZJGjEQBWOuro7pGiKziClmH8kF5L6sQeDwKq4e3b5VbgYtiaAcznIvObPbn/TsmE0E3UrA7wJM2AZCwwAFtsTE0USbPvfXyU8zp00ZhJybLAwtdNewO8IQym4UZB8PlYjvqs1GZ8O9AX47eZcEAR2y9/AR8gVDWoTTa0XvpCr8aV3MROZEWCATw9PSsd9zDwwM1NfK56D9pHlO62+LArVRZh/FeCVklmHskEiv928HWQF3W4ci9j9xM8XdMVrPOhThwKwVhSfnYNq4TjV2XgjZGGtDgKSPqWVGzPm9qXhlySivlagk+RcVmsxDgZYPvh7jg+79icfhumszmK6XklUFfQwWaNHH0nbRVORjW0RxBNxXjrm30syLY6KtDW5XatDFETqQnTJiAnTt31ju+e/dujB8/XiJBEcXkYa2LxJzSZtlFTSBk8CC9EIfCUrH5v8fYfT0Jx8Of4drjF0jJK0N1zf9/82cYBo+yS7DibBx2Xk3CtnGdaPOORuJxlOBiqtVsSdfRe+lIzS/Hj8NcoawAy30pqi/7OeLX/x43a/K1MfQxvhpAm69IkrW+OoImdUZFtQCfHYpAZlHz3xHcdzMFk71tm/15Fc1IDwvEZBQpxFyi/bdSMKW7jazDUBhidfcEBQXh4sWL6NatGwDgzp07ePbsGSZOnIjAwMDachs3bpRMlERhjPZ8tSvetB7SeWOt5Atw4HYqbj7Jg7u1LjpZ6sDNQgcVfAGKyquRmleG649fIKOwHDWCV0kCA8DWQB2fuJvDzUJHKnG1ZOO6WmHr5afoJOWNT05HZiAmowirh7UHi0W3/qXJUJOLTla6uBif0yyTbSPSCqCrxqFltKSAzWZhek879HEywqJTDzHEzRQjPSya5TVUWFaNrOJKuJhpSf25FB2LxcIPQ13xxZEH2DHeA3pyurb045xSKLHZsNRTk3UoCkPkRDo2Nhbu7q8WXE9KSgIAGBoawtDQELGxsbXl6IOwdfJtZ4KAoLuY5GUt8R7FyPRCrD+fiAndrHFoWhf6G2sm1vrqKK3ko6CsWmpv/vdTC/BfQi62jOlE42ebyfSetpj+ezj6OhlJdbMPhmHw66Wn2DSqg9SegwD2hhrYN8kTu28k44sjD7BiSDsYSXnXyD/upGECLWPYaPoaXHz/cTssCI7CjvHuYg1dYxgGZdUC1AiE0OJxJP5+ueXSEywc6CTROls6kVvxypUr0oiDtBBKbBb8O5ghOPwZxne1lli9f4Y/w9XEF6+WgFKjcVvNbZSnJY6HP8MsH3uJ151T8moFld0TPeVi173WQk1FGcM6muPYvXQEeNlI7XlORz5Hd3t96GtwpfYc5BVlJTZm926DxOxSLDgehdm926B7G+lsMV7JF+BOSj7m9KXNrEThYqaFL/q0wezDD/DLqA4waMTr4kVpFUIeZuHW0zzUCBmoc5XBYbNQ9L814Xs6GGCEh0WTNzi6n1oAfXUVWOlTb7QoaCYPkbhPPS0xcd9dDO1oLpFVMfbfSkF6QTm2jqXeSlnp3dYIQTdTMLW7rUSXQ6quEWLhiRisGupKK6jIwAgPC0zcdxfDOplLZbJYUXk1Tj7IwIEpXSReN3m3tiaa2DuxM5aeeYiErBJM62Er8Tt4f0U9x9CO5nRnUAxdbPWgyXPCvKORGN3ZEh+7mdXrRCgsq0ZofA7+S8gBj6MEv/am+HVMJ6iq1F1/nS8Q4r/4HMz+4wEGtzfBmM5WYnVI1AiE2PzfY+wY59Gka2uNRP7kqqysxNatW3HlyhXk5uZCKKy7nMuDBw8kFhxRTEr/G7O3+1oSAn3bNqmuQ3fSkJZfjuVDXOgNW4Ze32k4E/UcozwtJVbvmpAEjO1ihTZGNHZWFpTYLMzysceWS0+w9CMXide/7nwiAgc4SnXoCGmYqooSfvm0A/beSMHXf8bgx2Gu9ZIwcVXXCHEmMhMHpnaWSH2tkbOpFvZN7ozDd9Mxef89GGhwYajJRWllDbKLK6DGVYavizF+GdXhvV9yOUpsDG5vCt92Jgi+/wyT9t3DosFOIm+Os+NqEka4W9AdXzGInEhPnToVoaGhGDlyJLp0oXGqpGG9HQ1x+E46sosrYaIt3ji9Y/fS8Ti7FKuGtqO/Mzkw3N0cU/bfx0h3C4ncGTj1IAOqKkoY5Eo7S8pSTwdDnH7wHLHPiyW6M114agFYLMDDWk9idRLRsFgszOhlhxtPXuCzQ+H4eWQHsd+P3xQc/gyfuJvT7pRNxOMoYVoPW0zrYYvCsmrkl1VDg6sMI02uyO+xSmwWxnW1gm87Y6w4GwdHY03M7m3fqLlK91IKkJpXhrk0TEcsIifS//zzD0JCQtC9e3dpxENaCBaLhQUDHLDu/CNsGt1R5PNPRGQgOqMYq4e5UhItJ7jKSujd1hAX43OanPzGZRYj5GE2fgug24jyYLGfMwKPR+HAlC4SGaf+sqoGv1x8jJ0T3CUQHWmqng6GMNdRxYLgKCzxc0Z7C/G/MBVX8HE+NgsHp3aVYIREV10FuhKYzG2gwcXWsZ3wV1Qmphy4j+VDXNDG6N3LvSZml2Lr5SfYMd6dPmvFJPL9NnNzc2hq0hq85MPamWnDTIeHkIdZIp33V9Rz3EvJx+phrjQmWs6M62qNI/fSm7T+cFF5NX78OwHrR7rR5EI5YajJhV97UxwKS5VIfSvOxmF+fwfoqMnnEl+tkZ2hBnZN8MCvlx6L/J78pp8vPML8/o702pVjLBYLwzqZ4+eRHbD+fCJ2XH2KimpBvXKXEnLw4z/x2Dy6I22o0wQiJ9K//PILvv32W6SlpUkjHtLCzOvngKP30pGSV9ao8ofvpuHW0zys/cSNkmg5pMFVhoeVLv5LyBXrfIGQwcITMVji5yy366i2VqM9LXHjSR6SXrxsUj2nHmTAQleVdjCUQ9pqHOyc4IGwpHxsvfRE5C/EN5/kgWGAzjY0XEcRmGjz8FuAB6z11DHzjwgsOhmDoJsp2Hb5Cabsv4f7qYXYM9GTVtRpIpETaU9PT1RWVsLOzg6amprQ09Or80PIm7jKSvh5ZAcsPf0QuaWV7yzHMAy2XHqCtPxyrBtBPZXybEYvW+y/lQK+QPjhwm/59b/H6O9i3KRby0Q62GwWVg9vj+V/xaGSX7/3qjHiM0sQ8jALc/s6SDg6IikcJTZWDW0HLVUOvjoe3ei2zi6uxI6rT/GdFCalEulhsVj4yM0UB6d2wdx+DnAy0UQ3O31sG+eORYOdwOPQOPemEnmM9NixY/H8+XOsWbMGxsbGNKaGfJCJNg8/DHPFl0ej8P0QFzib1t0Fq7CsGivPxaGdmTbm9aMPYHmnpqKMkR4WCLqZItK60n/HZKKwnI9AX8mt+kEky0Sbh1k+9lh86iE2juog0vv786IK/PhPPLaPc6cvwnKOxWJhkrcNrj1+gWm/38eiQe8fN533sgqBx6OwZnh7ia38QZqfuY4qzHVUZR1GiyNyIn379m2EhYWhQwfapYo0nr2hBn4d2xFr/kmAshIbPdoYgM1m4UFaIdLyyzC/vyM6WOrIOkzSSMM7mWPWHxF4mvuyUUvXhSXl45+YLGwd26kZoiNN0cPBAM8Ky7HyXHyjl518VlCOhSdisH6km0QmTJHm4eNoCFczLaz+JwEGmlx87mNfr/3uJudj839PsGpoO9gYqMsoUkLkl8hDO5ycnFBRUSGNWN6rsLAQAQEB0NbWhra2NgICAlBUVPTecxiGwYoVK2BmZgZVVVX07t0bcXFxtY8XFBRg7ty5aNu2LdTU1GBlZYV58+ahuLhYylfTOhlp8rB5TCfM7+8AFuvVAvDju1ph/5QulEQrGBaLhRX+7fD9X7F4WVXz3rIJWSXYeS0Jv4zqIPFt44l0jO1iBXtDdXx7MuaDt/7vJufj25Mx+PlTN1jq0Y5oikZfg4uNozuil4MhFp2Kwed/RGDjxUSsP/8Ik/bdw4W4HPw20QMOxrTIACENEblH+qeffsJXX32F1atXo3379uBw6s701NLSeseZTTNu3DhkZGTg/PnzAIDPPvsMAQEBOHfu3DvPWb9+PTZu3IgDBw7A0dERP/74IwYMGIDExERoamoiMzMTmZmZ2LBhA1xcXJCWloZZs2YhMzMTJ06ckMp1EMBCVw0WuvSBq+hMtVWxYIAj5h+LwpaxHaGmUv/t5H5qAbZceoLNoxt+nMivAC8bXEnMxbTf72N27zbwttev0zudXVyJnVefopIvxG8BHjTrX8H1cDBADwcDlFbykZZfDjaLhfn9HSW6kykhLZHIn2yDBg0CAPTr16/OcYZhwGKxIBCIN0nlfRISEnD+/HncuXMHXbu+Wrtyz5498PLyQmJiItq2rb97HsMw2Lx5M5YuXYpPPvkEAPD777/D2NgYR44cwcyZM+Hq6oqTJ0/WnmNvb4/Vq1djwoQJqKmpgbIyffAT8j6dbfQgFDKYcTAcX/u2RScrXQBAQVk19t5IRlZxJXZN8IA6bf+tkPq0NYK7pS723kzGrmtJ0FdXgYoyG3kvX20cMcnbmjZcaWE0eRyJbsxDSEsn8qfblStXpBHHe4WFhUFbW7s2iQaAbt26QVtbG7dv324wkU5JSUF2djZ8fX1rj3G5XPj4+OD27duYOXNmg89VXFwMLS0tSqIJaaSudvrYbKiBnVeT8OulJ1BiscDjKOFTTwv0bmsk6/BIE2mrcfCV76v32OIKPvgCIXRUOTRMhxBCIEYi7ePj887HoqKimhLLO2VnZ8PIqP4HspGREbKzs995DgAYGxvXOW5sbPzONbDz8/Pxww8/vDPJfq2qqgpVVVW1v5eUlAAA+Hw++Hz+e88liu91G1Nb/z8dHhuLB9VfcaUl/BtRe/8/NWUAymwwQgH4QsnffZQH1N6tC7V36yKNdm5yt2txcTEOHz6MvXv3Ijo6WqShHStWrMDKlSvfW+b+/fsA0ODM8dfDSd7n7cffdU5JSQk++ugjuLi4YPny5e+tc+3atQ3GfeXKFaip0djf1iI0NFTWIZBmRO3dulB7ty7U3q1DeXm5xOsUO5G+fPky9u3bh1OnTsHa2hojRoxAUFCQSHXMmTMHY8aMeW8ZGxsbxMTEICcnp95jL168qNfj/JqJiQmAVz3Tpqamtcdzc3PrnVNaWopBgwZBQ0MDp0+frjeB8m2LFy9GYGBg7e8lJSWwtLREnz59oK9Pu3m1dHw+H6GhoRgwYMAH/1aI4qP2bl2ovVsXau/WJT8/X+J1ipRIZ2Rk4MCBA9i3bx/KysowatQo8Pl8nDx5Ei4uou92ZGBgAAMDgw+W8/LyQnFxMe7du4cuXboAAO7evYvi4mJ4e3s3eI6trS1MTEwQGhqKTp1erV1bXV2Na9euYd26dbXlSkpKMHDgQHC5XJw9exY8Hu+D8XC5XHC59bfU5HA49EJsRai9Wxdq79aF2rt1ofZuHaTRxo2eLeLn5wcXFxfEx8dj69atyMzMxNatWyUeUEOcnZ0xaNAgzJgxA3fu3MGdO3cwY8YMfPzxx3UmGjo5OeH06dMAXg3pmD9/PtasWYPTp08jNjYWkydPhpqaGsaNGwfgVU+0r68vysrKEBQUhJKSEmRnZyM7O1sqq48QQgghhJCWo9E90hcvXsS8efPw+eefw8Gh+bdxPnz4MObNm1e7Coe/vz+2bdtWp0xiYmKdzVQWLlyIiooKzJ49G4WFhejatSsuXrwITc1XC8tHRETg7t27AIA2bdrUqSslJQU2NjZSvCJCCCGEEKLIGp1I37hxA/v27YOnpyecnJwQEBCA0aNHSzO2OvT09PDHH3+8twzDMHV+Z7FYWLFiBVasWNFg+d69e9c7hxBCCCGEkMZo9NAOLy8v7NmzB1lZWZg5cyaOHTsGc3NzCIVChIaGorS0VJpxEkIIIYQQIldEXlFfTU0NU6dOxc2bN/Hw4UN89dVX+Omnn2BkZAR/f39pxEgIIYQQQojcadLWVG3btsX69euRkZGBo0ePSiomQgghhBBC5J5E9nhVUlLCsGHDcPbsWUlURwghhBBCiNyTSCJNCCGEEEJIa0OJNCGEEEIIIWKgRJoQQgghhBAxUCJNCCGEEEKIGCiRJoQQQgghRAyUSBNCCCGEECIGSqQJIYQQQggRAyXShBBCCCGEiIESaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDEoTCJdWFiIgIAAaGtrQ1tbGwEBASgqKnrvOQzDYMWKFTAzM4Oqqip69+6NuLi4d5YdPHgwWCwWzpw5I/kLIIQQQgghLYrCJNLjxo1DVFQUzp8/j/PnzyMqKgoBAQHvPWf9+vXYuHEjtm3bhvv378PExAQDBgxAaWlpvbKbN28Gi8WSVviEEEIIIaSFUZZ1AI2RkJCA8+fP486dO+jatSsAYM+ePfDy8kJiYiLatm1b7xyGYbB582YsXboUn3zyCQDg999/h7GxMY4cOYKZM2fWlo2OjsbGjRtx//59mJqaNs9FEUIIIYQQhaYQPdJhYWHQ1tauTaIBoFu3btDW1sbt27cbPCclJQXZ2dnw9fWtPcblcuHj41PnnPLycowdOxbbtm2DiYmJ9C6CEEIIIYS0KArRI52dnQ0jI6N6x42MjJCdnf3OcwDA2Ni4znFjY2OkpaXV/r5gwQJ4e3tj6NChjY6nqqoKVVVVtb8XFxcDAAoKChpdB1FcfD4f5eXlyM/PB4fDkXU4RMqovVsXau/Whdq7dXmdpzEMI7E6ZZpIr1ixAitXrnxvmfv37wNAg+OXGYb54Ljmtx9/85yzZ8/i8uXLiIyMFCVsrF27tsG4HR0dRaqHEEIIIYQ0r/z8fGhra0ukLpkm0nPmzMGYMWPeW8bGxgYxMTHIycmp99iLFy/q9Ti/9nqYRnZ2dp1xz7m5ubXnXL58GUlJSdDR0alz7ogRI9CzZ09cvXq1wboXL16MwMDA2t+LiopgbW2N9PR0iTUMkV8lJSWwtLTEs2fPoKWlJetwiJRRe7cu1N6tC7V361JcXAwrKyvo6elJrE6ZJtIGBgYwMDD4YDkvLy8UFxfj3r176NKlCwDg7t27KC4uhre3d4Pn2NrawsTEBKGhoejUqRMAoLq6GteuXcO6desAAIsWLcL06dPrnNe+fXts2rQJQ4YMeWc8XC4XXC633nFtbW16IbYiWlpa1N6tCLV360Lt3bpQe7cubLbkpggqxBhpZ2dnDBo0CDNmzMBvv/0GAPjss8/w8ccf11mxw8nJCWvXrsXw4cPBYrEwf/58rFmzBg4ODnBwcMCaNWugpqaGcePGAXjVa93QBEMrKyvY2to2z8URQgghhBCFpBCJNAAcPnwY8+bNq12Fw9/fH9u2batTJjExsXbiHwAsXLgQFRUVmD17NgoLC9G1a1dcvHgRmpqazRo7IYQQQghpeRQmkdbT08Mff/zx3jJvz8JksVhYsWIFVqxY0ejnEWcmJ5fLxfLlyxsc7kFaHmrv1oXau3Wh9m5dqL1bF2m0N4uR5BoghBBCCCGEtBIKsSELIYQQQggh8oYSaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAi3Ug7duyAra0teDwePDw8cOPGjfeWv3btGjw8PMDj8WBnZ4ddu3Y1U6REEkRp71OnTmHAgAEwNDSElpYWvLy8cOHChWaMljSVqK/v127dugVlZWV07NhRugESiRK1vauqqrB06VJYW1uDy+XC3t4e+/bta6ZoSVOJ2t6HDx9Ghw4doKamBlNTU0yZMgX5+fnNFC0R1/Xr1zFkyBCYmZmBxWLhzJkzHzxHIrkaQz7o2LFjDIfDYfbs2cPEx8czX375JaOurs6kpaU1WD45OZlRU1NjvvzySyY+Pp7Zs2cPw+FwmBMnTjRz5EQcorb3l19+yaxbt465d+8e8/jxY2bx4sUMh8NhHjx40MyRE3GI2t6vFRUVMXZ2doyvry/ToUOH5gmWNJk47e3v78907dqVCQ0NZVJSUpi7d+8yt27dasaoibhEbe8bN24wbDab+fXXX5nk5GTmxo0bTLt27Zhhw4Y1c+REVCEhIczSpUuZkydPMgCY06dPv7e8pHI1SqQboUuXLsysWbPqHHNycmIWLVrUYPmFCxcyTk5OdY7NnDmT6datm9RiJJIjans3xMXFhVm5cqWkQyNSIG57jx49mvnuu++Y5cuXUyKtQERt73///ZfR1tZm8vPzmyM8ImGitvfPP//M2NnZ1Tm2ZcsWxsLCQmoxEslrTCItqVyNhnZ8QHV1NSIiImp3VHzN19cXt2/fbvCcsLCweuUHDhyI8PBw8Pl8qcVKmk6c9n6bUChEaWkp9PT0pBEikSBx23v//v1ISkrC8uXLpR0ikSBx2vvs2bPw9PTE+vXrYW5uDkdHR3z99deoqKhojpBJE4jT3t7e3sjIyEBISAgYhkFOTg5OnDiBjz76qDlCJs1IUrmawuxsKCt5eXkQCAQwNjauc9zY2BjZ2dkNnpOdnd1g+ZqaGuTl5cHU1FRq8ZKmEae93/bLL7+grKwMo0aNkkaIRILEae8nT55g0aJFuHHjBpSV6S1UkYjT3snJybh58yZ4PB5Onz6NvLw8zJ49GwUFBTROWs6J097e3t44fPgwRo8ejcrKStTU1MDf3x9bt25tjpBJM5JUrkY90o3EYrHq/M4wTL1jHyrf0HEin0Rt79eOHj2KFStWIDg4GEZGRtIKj0hYY9tbIBBg3LhxWLlyJRwdHZsrPCJhory+hUIhWCwWDh8+jC5dusDPzw8bN27EgQMHqFdaQYjS3vHx8Zg3bx6+//57RERE4Pz580hJScGsWbOaI1TSzCSRq1F3ygcYGBhASUmp3rfX3Nzcet9kXjMxMWmwvLKyMvT19aUWK2k6cdr7teDgYEybNg1//vkn+vfvL80wiYSI2t6lpaUIDw9HZGQk5syZA+BVosUwDJSVlXHx4kX07du3WWInohPn9W1qagpzc3Noa2vXHnN2dgbDMMjIyICDg4NUYybiE6e9165di+7du+Obb74BALi5uUFdXR09e/bEjz/+SHeUWxBJ5WrUI/0BKioq8PDwQGhoaJ3joaGh8Pb2bvAcLy+veuUvXrwIT09PcDgcqcVKmk6c9gZe9URPnjwZR44cobF0CkTU9tbS0sLDhw8RFRVV+zNr1iy0bdsWUVFR6Nq1a3OFTsQgzuu7e/fuyMzMxMuXL2uPPX78GGw2GxYWFlKNlzSNOO1dXl4ONrtuaqSkpATg/3srScsgsVxNpKmJrdTr5XOCgoKY+Ph4Zv78+Yy6ujqTmprKMAzDLFq0iAkICKgt/3pJlQULFjDx8fFMUFAQLX+nQERt7yNHjjDKysrM9u3bmaysrNqfoqIiWV0CEYGo7f02WrVDsYja3qWlpYyFhQUzcuRIJi4ujrl27Rrj4ODATJ8+XVaXQEQganvv37+fUVZWZnbs2MEkJSUxN2/eZDw9PZkuXbrI6hJII5WWljKRkZFMZGQkA4DZuHEjExkZWbvUobRyNUqkG2n79u2MtbU1o6Kiwri7uzPXrl2rfWzSpEmMj49PnfJXr15lOnXqxKioqDA2NjbMzp07mzli0hSitLePjw8DoN7PpEmTmj9wIhZRX99vokRa8Yja3gkJCUz//v0ZVVVVxsLCggkMDGTKy8ubOWoiLlHbe8uWLYyLiwujqqrKmJqaMuPHj2cyMjKaOWoiqitXrrz3s1hauRqLYeheBSGEEEIIIaKiMdKEEEIIIYSIQeES6R07dsDW1hY8Hg8eHh64cePGe8uLso/6sWPHwGKxMGzYMAlHTQghhBBCWhqFSqSDg4Mxf/58LF26FJGRkejZsycGDx6M9PT0BsunpKTAz88PPXv2RGRkJJYsWYJ58+bh5MmT9cqmpaXh66+/Rs+ePaV9GYQQQgghpAVQqDHSXbt2hbu7O3bu3Fl7zNnZGcOGDcPatWvrlf/2229x9uxZJCQk1B6bNWsWoqOjERYWVntMIBDAx8cHU6ZMwY0bN1BUVIQzZ85I9VoIIYQQQohiU5gNWaqrqxEREYFFixbVOe7r64vbt283eM679lEPCgoCn8+vXSdw1apVMDQ0xLRp0z44VAQAqqqqUFVVVfu7UChEQUEB9PX1aedCQgghhBA5xDAMSktLYWZmVm+9cHEpTCKdl5cHgUDQ4L7ob+9M81pj9lG/desWgoKCEBUV1ehY1q5di5UrV4p8DYQQQgghRLaePXsmsQ2VFCaRfq2hfdHf1wv8vn3US0tLMWHCBOzZswcGBgaNjmHx4sUIDAys/b24uBhWVlZ4/Pgx9PT0Gl0PUUx8Ph9XrlxBnz59aKfKVoDau3Wh9m5dqL1bl4KCAjg6OkJTU1NidSpMIm1gYAAlJaUG90V/u9f5tQ/tox4XF4fU1FQMGTKk9nGhUAgAUFZWRmJiIuzt7evVy+VyweVy6x3X09MTaX92opj4fD7U1NSgr69Pb7ytALV360Lt3bpQe7dOkhyGqzCrdqioqMDDw6PevuihoaHw9vZu8JwP7aPu5OSEhw8fIioqqvbH398fffr0QVRUFCwtLaV2PYQQQgghRLEpTI80AAQGBiIgIACenp7w8vLC7t27kZ6ejlmzZgF4NeTi+fPnOHjwIIBXK3Rs27YNgYGBmDFjBsLCwhAUFISjR48CAHg8HlxdXes8h46ODgDUO04IIYQQQsibFCqRHj16NPLz87Fq1SpkZWXB1dUVISEhsLa2BgBkZWXVWVPa1tYWISEhWLBgAbZv3w4zMzNs2bIFI0aMkNUlEEIIIYSQFkKhEmkAmD17NmbPnt3gYwcOHKh3zMfHBw8ePGh0/Q3VQQghhBBCyNsUZow0IYQQQggh8oQSaUIIIYQQQsRAiTQhhBBCCCFioESaEEIIIYQQMVAiTQghhBBCiBgokSaEEEIIIUQMlEgTQgghhBAiBkqkCSGEEEIIEQMl0oQQQgghhIiBEmlCCCGEEELEQIk0IYQQQgghYqBEmhBCCCGEEDFQIk0IIYQQQogYKJEmhBBCCCFEDJRIE0IIIYQQIgZKpAkhhBBCCBEDJdKEEEIIIYSIgRJpQgghhBBCxECJNCGEEEIIIWKgRJoQQgghhBAxSCyRLisrw/Xr1yVVHSGEEEIIIXJNYon006dP0adPH0lVRwghhBBCiFyjoR2EEEIIIYSIodGJtJ6e3nt/evXqJc04a+3YsQO2trbg8Xjw8PDAjRs33lv+2rVr8PDwAI/Hg52dHXbt2lXn8T179qBnz57Q1dWFrq4u+vfvj3v37knzEgghhBBCSAug3NiCVVVV+Pzzz9G+ffsGH09LS8PKlSslFlhDgoODMX/+fOzYsQPdu3fHb7/9hsGDByM+Ph5WVlb1yqekpMDPzw8zZszAH3/8gVu3bmH27NkwNDTEiBEjAABXr17F2LFj4e3tDR6Ph/Xr18PX1xdxcXEwNzeX6vUQQgghhBDF1ehEumPHjrC0tMSkSZMafDw6OlrqifTGjRsxbdo0TJ8+HQCwefNmXLhwATt37sTatWvrld+1axesrKywefNmAICzszPCw8OxYcOG2kT68OHDdc7Zs2cPTpw4gUuXLmHixIlSvR5CCCGEEKK4Gp1If/TRRygqKnrn43p6elJNPKurqxEREYFFixbVOe7r64vbt283eE5YWBh8fX3rHBs4cCCCgoLA5/PB4XDqnVNeXg4+nw89Pb13xlJVVYWqqqra30tKSgAAfD4ffD6/0ddEFNPrNqa2bh2ovVsXau/Whdq7dZFGOzc6kV6yZMl7H7e0tMT+/fubHNC75OXlQSAQwNjYuM5xY2NjZGdnN3hOdnZ2g+VramqQl5cHU1PTeucsWrQI5ubm6N+//ztjWbt2bYO971euXIGamlpjLoe0AKGhobIOgTQjau/Whdq7daH2bh3Ky8slXmejE2l5wWKx6vzOMEy9Yx8q39BxAFi/fj2OHj2Kq1evgsfjvbPOxYsXIzAwsPb3kpISWFpaok+fPtDX12/UdRDFxefzERoaigEDBjR4V4O0LNTerQu1d+tC7d265OfnS7xOhUmkDQwMoKSkVK/3OTc3t16v82smJiYNlldWVq6X8G7YsAFr1qzBf//9Bzc3t/fGwuVyweVy6x3ncDj0QmxFqL1bF2rv1oXau3Wh9m4dpNHGCrOOtIqKCjw8POrdfgkNDYW3t3eD53h5edUrf/HiRXh6etb5x/z555/xww8/4Pz58/D09JR88IQQQgghpMVRmEQaAAIDA7F3717s27cPCQkJWLBgAdLT0zFr1iwAr4ZcvDnhcdasWUhLS0NgYCASEhKwb98+BAUF4euvv64ts379enz33XfYt28fbGxskJ2djezsbLx8+bLZr48QQgghhCgOhRnaAQCjR49Gfn4+Vq1ahaysLLi6uiIkJATW1tYAgKysLKSnp9eWt7W1RUhICBYsWIDt27fDzMwMW7ZsqV36Dni1wUt1dTVGjhxZ57mWL1+OFStWNMt1EUIIIYQQxSNWIl1UVIQTJ04gKSkJ33zzDfT09PDgwQMYGxtLfROT2bNnY/bs2Q0+duDAgXrHfHx88ODBg3fWl5qaKqHICCGEEEJIayJyIh0TE4P+/ftDW1sbqampmDFjBvT09HD69GmkpaXh4MGD0oiz1Sup5ON5YQV01Dgw0eK9d6USQgghhBAifSIn0oGBgZg8eTLWr18PTU3N2uODBw/GuHHjJBocASLTC7HjahJUlNmw1lNDQVk1Mgor0NPBABO6WUOdq1CjcwghhBCJ+NDyt4Q0B5GzsPv37+O3336rd9zc3PydG6MQ8ey9kYzY58VYN8INeuoqtceFQgYX47Mx/fdwzOvnAC97WruaEELeJSKtAFcevUBxBR+Oxhr42M0Mum+8pxLFUVrJx/5bqQhPKwSHzQIDQInNwmBXE3zsZgYVZYVaQ4G0ACIn0jwer3ZL7DclJibC0NBQIkERYPuVp6jiC7BpdMd637jZbBYGuZqih4Mhfvo3ARfisrHYzwlcZSUZRUsIIfKntJKPpadjYaTJxbBO5tBR4yD2eTECj0ehi60+ZvS0hbISJV6KIiGrBD/8HY8ZPe0wt2+b2s/G8uoanInMxKR99zC9py36OhlRT3ULxDAMckqqkF5QjrLqGlTxBdDgcuBorAEjrXdvoidtIifSQ4cOxapVq3D8+HEAr3YITE9Px6JFi+qshkHEdzY6E/kvq7HsY+f3vhlocJXx47D2+C8+B9N/D8ea4e1hqUdblBNCSHEFH18cfoAFAxzhYa1be9xCVw0D25ngz4gMzDkSiQ2jOkCDhsjJvcc5pVgTkoBt49zr3KEFADUVZYzraoVhncyw62oS/gzPwGI/J1jrq8soWtIUlXwBnua+RNKLl0h+UYbkvDKUVdWABcBIiwcrPTVo8JTBU2Yjs6gSZ6KeI7e0CkM7mGF4J3Ow2c37JUrkd48NGzbAz88PRkZGqKiogI+PD7Kzs+Hl5YXVq1dLI8ZWJSWvDGcin2N3gEejv1H3dzFGWxNNLDn9EJO8bNDfpeGdHolslVTyEfu8GNnFlagRMBAwDNRUlKClyoEWTxlaPA60VDnQ5CmD/b+2FzIMGObVf4FXX56op4WQ9+MLhPjqeBQWDmoLNwudeo+zWCyM8rSEvaE6Zh4Kx/qRHWCuo9r8gZJGKSqvxvK/4rB1XKd6SfSb1FSUEejbFmn5ZVgTkgAXU23M6m1Hd2vlnEDI4H5qAf6JyUJ6QTm4ymw4GmvC3kgdfZ2MMM1QHVq89+9IWMkX4Ni9dEz9/T7WDG8Ps2Z8PYucSGtpaeHmzZu4fPkyHjx4AKFQCHd3d/Tv318a8bUqQiGDH/6Ox6qh7US+3Wipp4a9kzyx+p8EhKcV4mtfR7plKQcYhsHVxBc4ei8dykosdLTUgZmOKtS5bLBZLJRX1yCjsAIlFXyUVPJRUlGD0ko+hP+bRMMCwGax8Dp3Lq2sAZvFQh8nQ4xwtwCPQx8Q0iAUMvg3NhshsVkoq+QjN5eN0/kP0NFKF596WjY56cotrcRfkZm4l1oAofBVW3vb62NsFyuoqlCbNtW2y08xpINZg0n0mzys9bB2uBu+Ph6N5f4ucDLRap4ASaMxDIOlZ2Kx2M8JBhrcRp1jra+OXRM8cD42G1P238fU7rbo50zDPeRNVY0Ah8LScPlRLrra6mOStw3aGGmIVRePo4TJ3W3Rx8kIXx2Pxgr/dmhrovnhEyVA7PtZffv2Rd++fSUZS6t37P4z9HQwgIWueMMzuMpKWDXUFX9FPcdnhyLw0yftZTpuqLXLKCzHirPxaGemhfUj3aCjJpnJTZV8AUIeZmHK/vuY1dsePo40N0GSnuaWYuW5ePg4GmLNsPZQ4wAhISHwHdgRMZkv8dO/j8BRYuGzXnYiJ16FZdXYdT0JyS/KMK6LFSZ520BFmY2qGgH+i8/F1AP3sfQjZ7iaa0vp6lq+hxnFSC8ox4IBjo0qb6Wvhm3jOmF+cBTm9nVAJ4vm+fAljfN3TBacjDU/+KXobSwWC4Pbm6KnoyEO3ErBgdupGOlhgUGuJtQBIQceZhRj7b8JGN3ZEn9M6yqx4RjW+urYPt4dc448wE+fuMFKX/rDXRuVSG/ZsqXRFc6bN0/sYFqz7OJKXIjLxr7JnZtc19CO5mhnpoX5wVGY07cNvO0NJBAhEcXtp3nYcTUJPw5zhY2BZMfp8ThK+MTdAoNdTbHyXBye5r7EtB62En2O1ura4xfYfysFGz7tAOP/fQnl8/kAAGUlNrra6aOrnT5S88qw61oSyqoF+KKP/QcT6uIKPn6/nYqItELM8rHH4sF1V9rhKivhIzdT9GhjgLnHIhE4wBEdLXWkco0tmVDI4OeLidg4qoNI5+lrcLFrggcWBEdhWAdTKUVHRFVaycfRe+nYP0X8z0UNrjLm9HXAtB4CnIrMwBeHH0BLlYOB7YzRw8EQXLpx2+zORWfiXHQmdox3l1gH05v01FWw4dMO+OZENPZM9ISainTnQLAY5n+DL9/D1rbuh/SLFy9QXl4OHR0dAK92OlRTU4ORkRGSk5OlEqg8Kykpgba2NvLy8qCvL95SdAuCozDLx16ityLKq2uw8mw89DRUML+/A40TkxA+n4+QkBD4+fmBw6k/butiXDZOPsjA5tGdpH6bnmEYrL+QCCNNLqZ0p2S6Ka49foHg++nYOKpjnR6r97V3en45dlx9ivJqAUZ3tkRXW73aIVUMwyA5rwyH76QjNb8M47taNWo1gdJKPmYeisDm0R3pjpKI/gx/hpdVNWK/FqprhFh8KhpVec/wy7RB4HI//CGfnl+Om0/z8DinFOXVNTDS5KGHgwG62Og1+6SnlmbDhUR0ttWT+F237OJK/JeQgxtPXqBGIIROZTbmfNIbtkY0tEfaTkRk4H5KAdZ80h5KUn593H6ahzNRz7F+5P9/sc7Pz4eBgQGKi4uhpSWZ9m5UIv2mI0eOYMeOHQgKCkLbtm0BvFr6bsaMGZg5cybGjx8vkcAUSVMT6QfphTj94Dl+GOYqheiA87FZOHQnDd995AJnU3qjaKr3JVZ/RT3H1cQXWDfCrdnWM2UYBt+ejMFgV1P0cTJqludsaeIzS7D+wiPsmuBR77bvh744Aa+G8fwVlYnI9EK8fkcVMgws9dQwwt0CHUTsXX6aW4qf/n2EPRM9aVxnI/EFQkwMuoffp3Zp0muvuroa3x84j+dsI3zepw287PTrtAHDMEjMKcWlhFzcSc6Hha4qfByN4GyqCXWuMrKKXiVpD9ILsXCgE9pb0DAdceSUVGLp6Vjsmdj4iffiKC6rwLbjoSjWsEJeGR8Tvazh42hIrzsp+C8+B//GZuPnkW7N9iVz3flH6Gipg4HtTABIJ5EWub972bJlOHHiRG0SDQBt27bFpk2bMHLkyFaZSDcFwzDYcukJNnwq2q1IUQxyNYWHtR5WnI2Di5kWZvayo4mIUnAlMReXH+Vi46iOUv+m/SYWi4VVQ10x7ff7aGeuBSNN6sUURXZxJVb9HYcd4+sn0Y1loauGL/q0kVhMbYw00c1OH3+GZ2BUZ0uJ1duSnYl8jo87mDb5CyyLxYKXMYNuPu1x+F4Gdl5Ngo6aCjR5yigqr8bLKgEcjTTQ18mowfdSAw0u2ltoo6CsGotPxcCvvSmGdjRvUkyt0a5rSZjzxlrR0qKmogxXPQZ+fu1QXvNqI7Sj99Lx/ZB2tJKLBD3KLsGRe+nYNcGjWe/UzO/vgCn778PLXv+DK3+IS+REOisrq3bM4JsEAgFycnIkElRr8m9sNrrY6jV6NrK4DDW52DauE05EZGDa7+FY4d8OthIeu9uaRT8rwqGwNOwY796sSfRrPI4Svv+4HVacfZUQksbhC4RYeDIGa4a3f++yWrIw2dsGk/bfw8B2JtBWk84HQEtRIxDi1IPnODC16XNMXtNTV0Gg76sOo5JKPsqqaqCjqtLo4Vp66irYMd4Di0/FAAAl0yIoKKvGs4KKZp8noK3KwVe+bZH04iUWnYzB1P+tAkGaprSSj5Vn47F1XKdm33mSq6yEOX3aYMt/T/Ddxy5SeQ6Rr6hfv36YMWMGwsPD8XpUSHh4OGbOnElL4Ino9dIvU5tpbCuLxcKnnpZY80l7rDoXh/OxtKW7JKTnl2Pd+UfYNLqjTGeDtzXRhL2hBkLj6QttY20MfYxPPSxgZyjekkvSpKzExuzebbDj2lNZhyL3zsVkYnB7E6nNA9HicWCqrSrynAclNgtrP3HDxbgchKcWSCW2lujA7VRM9raR2fPbG2pgz0RPnIvJxMmIDJnF0VL89O8jfNnfQeodhu/i3cYAOaVVSHrxUir1i5xI79u3D+bm5ujSpQt4PB64XC66du0KU1NT7N27VxoxtliHwtIwurNlsydf5jqq+C3AE5cScnAoLLVZn7ulKSyrxrcnY7Dh0w7QVpV9r+EXfdpg380UVNcIZR2K3Lv5JA9F5dUY0sFM1qG8U/c2Bkh5UYackkpZhyK3BELm1RAYT/kcAqPEZuGnEe3xy8XHyH9ZJetw5N7LqhpEpheiexvxJu5LCo+jhA0jO+B+agFOUDIttttJeVBis9DNTrbtuXBgW/x8PlEqdYucSBsaGiIkJASPHj3Cn3/+iePHjyMhIQEhISEwMqJbII1VWFaNa49fwF9GH+IqymysH+mG7JJKbL30RCYxKLoqvgALjkdh6UfOzbqL0vu8WhrPHMH302UdilzLf1mF7VeeYpmUbvVJ0kwfewTdTJF1GHLrn4dZGOBiLNdrA2vyOFji54wf/o6XdShy79i9dIzrYiUXk/3YbBbWDG+PiLQCnIl8LutwFE5FtQBbLz3FNwPbfriwlFnqqcHBWAM3nuZJvG6xB6s4OjrC398fQ4cOhaNj4xa+J//vl9BEzO/vKNPlkVgsFr4Z6ISXVTU4cpcSL1EIGWDpX/GY7G0jd5tnDO9kjn9js1FRLZB1KHJJKGSw9HQsln3sIvX1RSXBw1oXT3Nfori8/tyU1k4oZBB8Px1ju1jJOpQPam+hDQtdNfz7MEvWocitqhoBLj/Khe//VliQB2w2Cz8Oa4+L8dm4T8NzRPLLxUTM9LGDppQm+Ylqpo89Dt95JvF6Rf4UmTp16nsf37dvn9jBtBYPM4pRXSOEh7WurEMBAHw7yAnfnIiBoSYXA1yMZR2O3GMYBufS2OjbRRe928rfXRhlJTbGdbXCoTup+KyXvazDkTv7b6eim50eXMwUZynIAC9rHLqTijl9HWQdilz5NzYbfdoayXVv9Jvm9muDKfvvo6udvtxNbpUHZyKfY1hHc5lM2H4fJTYL60d2wMxD4fjpEzdY6kl/tzxFF5leiOIKvlx9RmpwldHHyQAnJFyvyD3ShYWFdX5yc3Nx+fJlnDp1CkVFRRIOr+URChlsuJiIbwY6yTqUWmw2C2s/aY/g++lIzC6VdThyjWEYrLvwGJoqDEZ7Wsg6nHfyczXF9cd5KK2kXsw3xT4vRkRaASbJcCKTOHo7GuJOcgHdZXiDUMjgyL00jOsq/73Rr3GVlfDtICf89G+CrEOROwIhg7+iMjG0k3zOWdDgKmPdCDcsOhWDl1U1sg5HrlXVCLDhYiKW+DnLOpR6Pukk+dVzRE6kT58+Xefn77//RnJyMsaMGYNu3bpJPMCW5kREBnq3NYShpmxmr76LijIbaz9xw8pzcSijN4kGCYUMVp6Lh5mOKvqaibSPUbNjs1mY6GWNP+7QkJ3XSir5WP1PAlYPay8X4y9F8WrFHQv8GSH525KK6mJ8Dno6GCrE8Jw3dbDUgbISGxFphbIORa5cjMtGXycjud6B10JXDQv6O2LRyRgIhfL9GSBLO64kYXxXa+jK4V0XjhT20JBIjWw2GwsWLMCmTZskUV2L9byoAn8/zEJAN2tZh9IgQ00u5vRtgxVn42QditwpqeRj7tFIuJhqYWI3xegB6+9sjJtPX6CST72YDPNqXPTXA9vK5Zt7Y3zU3hTnY7MhoA9wMAyDw3fT5Pa99EO+8W2LTaGPqS3/h2EYHLmnGGPdPW304GWvj62XaVnKhjzKLkHSi5cY7Co/49ylTWKpeVJSEmpqqCfzXWoEQiw7E4uV/u3keldBb3sDWOiq0dqZ/8MwDC4l5GDmwQhM7WGrULvMsdksjHC3wJ/UljhwOxUdLLTlZl6COJSV2PBxNMTlR7myDkXmLiXkopudPtS5itUb/ZquugoGtzfBkbtpsg5FLtx4kodOVroK057ju1ojt7SS1ux/S41AiNX/JOD7j10U7q5fU4j8VxsYGFjnd4ZhkJWVhX/++QeTJk2SWGAtzdp/H2F4J3OF2E3wiz72mH4wHF1s9VrtpAqGYXA7KR+7ryejk5UO9k7yVJg3+TcN6WCGiUH3MLazpVx/gZOm20/zEJlehF/HdJR1KE02posVvjoe1aonBQuFDPbfTsGuCYq9g+eYzlaYvP8e/NqbQl9GG1XIA4ZhsO9WCjaP7ijrUESyfEg7fHYoHLYGamhjpCnrcOTC7hvJ8O9gBiMtnqxDaVYif7JGRkbW+YmJebX96S+//ILNmzdLOr56duzYAVtbW/B4PHh4eODGjRvvLX/t2jV4eHiAx+PBzs4Ou3btqlfm5MmTcHFxAZfLhYuLC06fPi3RmLdfeQpNnrJcb/zwJmUlNlb5u+L7v2Jb3a3HgrJq7LmejAlBd3E3OR+bR3fE/P6OCplEA6/Ggw1yNcE/rXTJreQXL7HzWhLWjXBrET0k2qocmOuoIi6zWNahyMzZ6Ez0dTKWmyW1xKXEZiFwgCM2XJTOJhGK4tbTfLiZa0NHTbGGXL3ei2HZmTgUV9Ck7ocZxYjPLMFID/mdhC8tIifSV65cqfNz6dIlHDt2DJ999hmUlaWbbAQHB2P+/PlYunQpIiMj0bNnTwwePBjp6Q1PqEpJSYGfnx969uyJyMhILFmyBPPmzcPJkydry4SFhWH06NEICAhAdHQ0AgICMGrUKNy9e7fJ8fIFQqw6F4/qGiG+7KdYy1ZZ6athkKsJdl9PlnUozSIusxgLT0RjyamHsDVQx+9TuiDQV3HH075plKcl/gzPAMO0ri9FhWXVWHo6Fhs+7SDy1s7ybEp3W+y/lSrrMGSiukaI4PvPMEFB5il8SCerV0ONItNb58RDhmEQdDMZU3vYyjoUsRhp8vDtYCd8dTwaVTWtdy5KeXUN1v6bgB+GuraIDgtRiZxI9+3bt8Fl7kpKStC3b19JxPROGzduxLRp0zB9+nQ4Oztj8+bNsLS0xM6dOxssv2vXLlhZWWHz5s1wdnbG9OnTMXXqVGzYsKG2zObNmzFgwAAsXrwYTk5OWLx4Mfr169ek3vWqGgH+fZiFyfvvobONLhYMcFTIP65RnpaIzSxu0b1fBWXVCDwehT/upOPz3m2wK8AD/V2MW9QwCFUVJXjZ67eqsbUvq2ow71gkvvvYGcYt7DajjYE6KqoFyG2F24YfvZeOkR4Wcr2yg6i+9m2Lja104uGtp/lor4C90W/qaKmDsV0s8dXxaNQIhLIORyZ+/CcBn/e2bxEdT+IQuQv56tWrqK6urne8srLyg8MsmqK6uhoRERFYtGhRneO+vr64fft2g+eEhYXB19e3zrGBAwciKCgIfD4fHA4HYWFhWLBgQb0y70ukq6qqUFVVVft7SUkJAGDesWhwVNXBZrHgba+HbWM6QIOrDD5fcW/7LPNri8DjMdg9oRO4CrLpQWNFPivCpv+eYqGvI1zNX23O0Zi2el1Gkdp1jIcZAv98iJ72ugr5pU4UVXwB5gZH4wsfWzgaqjW5neSxvcd2NseBWylY0L+NrENpNiUVfFyIzcK+SR5SbYvmbm8tLhv92hrg8J0UjFWgycxNJRQy+O3aU2z81E2mry1JtHevNnooq6zGN39GYe1wV7nbUEaaDt9Nh76aMrrZ6MjVe+S7SCPGRifSr8dCA0B8fDyys7NrfxcIBDh//jzMzSW/0PVreXl5EAgEMDauO8nG2Ni4Tixvys7ObrB8TU0N8vLyYGpq+s4y76oTANauXYuVK1fWO+6nmwMN9f9NzivMwvVLLWMZOVcVFubsCcVwm5bzbTuhkIVbOSxMcBAiPToX6dGi1xEaGir5wKRIuYyNrcH/oo3ibOgnMoEQOPiEDS9jBjlx2QiR4EtQntqbYYBLCWzYVjxGCxq18l4nktnwMBDiwvl/m+X5mrO9tRlgZwIbypkPoa7YQ78b7V4uC4YC4PZV+XhdSaK9tcpYGPXrc4y3F4KnmNNqRBKZz0J8IQvj7IUICXks63Aapby8XOJ1NrqpO3bsCBaLBRaL1eAQDlVVVWzdulWiwTXk7d40hmHe28PWUPm3j4ta5+LFi+usXlJSUgJLS0v069sH+vr6H74IBeMHYPm5eOi0NYa3veJf34P0Ipy9kYKj8zqAqyz6EA4+n4/Q0FAMGDAAHI7ifOp1Lq3C8nMJmOfXUdahSIVQyGDR6VhM9zXCwHaSW9VCXtu72iwTVQIhhsnxDpuSEpleBOOq55g3vJ3Un0tW7W3evginojLxg59Lsz2nrBSWVyM4OAZ7J7tLZYMMUUiyvf3w6m9106Wn+MHfBdb6LXfVqz8jnqOwvAC/j5PvJX3flp+fL/E6G51Ip6SkgGEY2NnZ4d69ezA0NKx9TEVFBUZGRlBSkl7XiIGBAZSUlOr1FOfm5tbrUX7NxMSkwfLKysq1Ce+7yryrTgDgcrngcusvV8ThcOTqg1aSvvu4HaYdCEdHK31oqynuNeaUVOLXy0nYPdETGk1ciUPR2ttMjwMTbVUk5pbD1Vxb1uFIFMMwWH42Dt0djPBxR+kklvLW3sPcLTHlwD2M72bToofrvKyqwaZLSdgV4NGs//7N3d5d7A1xIjITCTllcLPQabbnlYWfLsTh28HOUOPJz7J/kmrvLvaG+EVfA8vOxMLLXh9Tutu2qKEexeV8/HQ+AXrqKtg0uhPYCnZt0nhNN/prhLW1NWxsbCAUCuHp6Qlra+vaH1NTU6km0cCrZN3Dw6Pe7ZfQ0FB4e3s3eI6Xl1e98hcvXoSnp2ftP+a7yryrztZKTUUZCwe1xYpzijtcRSBksPjUQ6wa6trkJFpRfdbLDntvtLyVWH65+Bg2+uqtauklFWU2utnq49rjF7IORWoYhsGyM7H4sr8DtFXl50uMtCwc5IR15x+16BUgjt9/BgtdNXSw1JF1KFJjpqOKvZM8oclTxuT99xD9rEjWITVJTkkl/ovPwZqQBMw9FokR7hb4ZqCTwiXR0tKobOLs2bMYPHgwOBwOzp49+96y/v7+EgmsIYGBgQgICICnpye8vLywe/dupKenY9asWQBeDbl4/vw5Dh48CACYNWsWtm3bhsDAQMyYMQNhYWEICgrC0aNHa+v88ssv0atXL6xbtw5Dhw7FX3/9hf/++w83b96U2nUoqk5Wuria+AJnIp9jWCfpjYeXlt9vp6KfsxHaGGnIOhSZsdRTA5vNQkpemUJsDtQYe64ng81mKewSWk0R4GWNBcFR8HE0bJG90lsvP4WbhTa62Sn+kLLGMNDgYrK3LdaGPMIKf+kPY2lut5PycPVxLraNdZd1KFLHYrEwurMV+jkbY2PoYxy5m46vBjrCSFO+VxEqreTjbnIBYp4XIzG7BNU1Qhhp8uBqoQ3/DmZYPFirRb7XNEWjEulhw4YhOzsbRkZGGDZs2DvLsVgsCATS+yY9evRo5OfnY9WqVcjKyoKrqytCQkJgbW0NAMjKyqqzprStrS1CQkKwYMECbN++HWZmZtiyZQtGjBhRW8bb2xvHjh3Dd999h2XLlsHe3h7BwcHo2rWr1K5Dkc3p2waf//EA1vpqtWugKoKMwnLcepqHvZM8ZR2KzM3p0wab/3uMX8d0knUoTXYiIgPPiyqwfEjLH1faEB01FbQ318atp/no4WAg63Akat/NFJRV1WBu39azMgkADHAxxu2kPFyMy4ZvOxNZhyMxF+Oy8WdEBraMUbzhAE1hoMHFmuHtEfu8GN+eiEE3u1fDPVTEmJ8jTXGZxdh1LRnVNQJ0b2OAfk5GmN3bHrwWtlqXNDQqkRYKhQ3+vyzMnj0bs2fPbvCxAwcO1Dvm4+ODBw8evLfOkSNHYuTIkZIIr8XjKLGxcXQHfHH4ARYNdkI7M8UYa7vufCIW+znTN2kAdoYa0FHlICKtAB7WerIOR2z3Uwtw5VEuto7t1KrbdVoPO8w5+gDe9votIkERChlsuJgIBsCiwU6tsm0XDXbC9N/D0dZEE9b6in3nKC2/DDuuJEGdq4ytYzu12sTM1Vwb+yZ3xrmYV3tMLPFzlou5KjUCITZcfIwXpVVYPNgJZjqqsg5J4bTOgaKkSbR4HGwd2wlzj0bicx97eLeR756w20l5MNbktuohHW/7sr8j5h2NxP4pnWU+a14cz4sqsPm/x/gtwLNFJI9Noa3GQS8HQ5yLycTQjoo35OpNGYXlWHE2Hr4uxhjVitZUfhtXWQnrRrjhq+PR2DquEww05GdS3ms1AiHuphTgfmoBnhdWgC8QokbIQInNghKbhYpqAcqrBTDR4mGStw1czFrwupuNxGKx4N/BDD3bGGDRqRj4tTeV6Wu2ki/Al8ci8ZGbGfw7mMksDkXXqER6y5Ytja5w3rx5YgdDFIeOmgp+C/DAd2diEZacjy/6tJHLngaGYfDbtWT8OqajrEORK3rqKvjE3Rx7biRjdm/FunVeyRdg0ckY/PSJW6udNPq2id7WmLzvPvo6GUGTp3iT8oor+Nhx5SnSC8qxaLATfenFqwlrK4e2w4LgKOya4AF1OflbZxgGf4Zn4HTkc/RwMICPoyGs9NTAUWZDmc0CwwA1QgZcZbZcfibIA111FewY74EVZ+NQWFaNyd2bf35HdY0Q845GYpK3DbrLeWeYvGvUK3PTpk2NqozFYlEi3YqoqShj46iOuBCXjWm/34e3vQH82pvCRl9Nbm7HXk18gU5WOgq9Ba20DO9kjnnHohCRVggPa8UZ777u/CNM6W4DS72Wu0arqLjKSpjbrw1+vpCIVUNdZR1Oo1XXCHHoThquJuYqxN2t5uZorIm5fR0w92gktoztJPMvjkXl1fj2ZAw62+jh4LQuCnk3S14osVlYNbQdVp6Lx9F76RjbxapZn3/V33H4xN2CkmgJaNSrMiUlRdpxEAU2sJ0JBjgb41ZSHvbfSkFGYQVYACx0VWFroA4HY010sNRp9g8BhmGw71YKto9v+TPExcFisbB6uCtmHYrAuhFuCpGYXk3MhVDIoK+T5DZcaSm87Q1wPjYbVx7loo+TkazDeS+GYRDyMBt/3EnDqM4W+H1Kl1Y/ROddutjqQYkNfP5HBLaM6QRdddl0CmQVV+Cr49FyM7a3JWCxWFg+xAWBx6NhrqOKXo6GHz5JAk49yICeOheDXFvOZFZZalJm09AugaR1YrNZ6OlgiJ4Or94IBEIGmUUVSM4rQ3xmCQ6FpYEBg3FdrdHLwaBZ/mYuxOXA294AWgp4q7u5aPE4+PnTDvj6eDR+GNYObYw0P3hOYVk1Sir50FblNGtPf/7LKuy+nox9kzs323MqmiV+zphxMBw2Bupyu7xh0ouXWPNPAjxsdLF/Sme6/d8IHtZ6WOLnjDlHH+CnT5r/S++L0ip8dTwaaz9pr/CTH+UNi8XC2k/aY8bBcDgYa8BUW7qT/Z4VlOOvqEwE0QpWEiNWIh0UFIRNmzbhyZMnAAAHBwfMnz8f06dPl2hwRHEpsVmw1FODpZ4afBwNMQOvbgvuu5WKP+6kYYV/O5hLcXawQMjg0J1U7JlIbxYfYq6jil/HdMSS0w/R0VIH47paQ+9/vV4CIYMnuaWISCtERFohCsqqoaumAl01FRSVV+PFyyp0stTBtB52Ut3xkmEYLPsrFks/cqbE6z14HCX8PLIDFgRHYd0IN1jJ0RbFQiGDndeS8DCjGCuHtoOFrvzEpgicTbWwboQbFp18iAUDHJptxZ2qGgG+/jMaq4a2oyRaSngcJaz0b4elp2OxZ6Kn1HZCZBgGP/4Tj5X+irWtt7wTOZFetmwZNm3ahLlz58LLywsAEBYWhgULFiA1NRU//vijxIMkLYOOmgoCBzgiJa8M356IwZy+baS20cLfMZno62QMNRX5mKAj74y0eNgz0RNXE19g5bk4vKysAQCwWEAbI014WOtiiZ9zvdUDGIbBraf5mH0kAuO6WOMjN1OpxPfH3XS4W+kqzHKLsmSizcOGUR2w8EQ0pve0Q5+2sh/mUVRejUUnH6J3W0PsnOBOdzHFZKGrhl0BHvjmz2g8K6holo2xfvg7HhO9rBt1t4qIz85QA4NdTbDjylPM7ecglee4GJ8DJxMt2Mjp3SpFJXKWsXPnTuzZswdjx46tPebv7w83NzfMnTuXEmnyQbYG6tg90QMLgqNQwRdI/IO+RiDEsXvPsH8KDQEQBYvFQh8nI5HG17JYLPRwMEAXWz38fOER4jKL8c3AthJNlJ7mluJa4gvsDvCQWJ0tnbmOKvZO7IzN/z3GsXvp+NTDEt5t9GXyxTL2eTFW/5OAJX7OaG9BX4SaSoOrjG3j3LE2JAFPc18icICj1MaXB99Ph746F/2caU5CcxjpYYHA49GIelaEjhLeQr28ugYHbqXS56IUiPyuKhAI4OlZ/3a5h4cHampqJBIUafnUVJSxZWwnzDkSCS2eskRvU56KfI6P3ExpCEAzUlFmY+lHLjgUlorlZ+Ow0r+dRJLpqhoBVpyNxy+jOtBkNBGpqihhsZ8zcksrcS46CyePZ4AveLWhFkeJDR01Feipc2BnoAFnUy04GGtIfBWGExEZuBiXjR3j3WU2Sa4lUmKz8N3HLjh6Lx3z/zeMR1VFsu93Uc+KcDXxBbaPo8nazYXFYuH7j13wxZEH2D+lM7jKkmvT7VeeYkYvW/pclAKR3zUnTJiAnTt31ju+e/dujB8/XiJBkdaBq6yEjaM6YGPoY2QUlkukzuoaIc5EPscoz9a7mYMsBXjZwM5AHT/9+6h2MnJT/HLxMSZ0s4axFk8C0bVORpo8TOthi50TPLB3UmfsndQZm8d0xPz+DvBrbwoVZTb+jsnEjIPhWHgiGjef5DW57apqBPjuzEOk5Zdh5wQPSqKlZGwXK4zpYonPDoUju7hSYvXmvazCun8f4acRbvQFtpnpqqsgoJs1tl9+KrE6k1+8RGpeOa12JCViTza8ePEiunXrBgC4c+cOnj17hokTJyIwMLC23MaNGyUTJWmxNHkc/PSJG749GYPfAjybvETeH3fSMNLDAirKNJFCViZ3t8WOq0+x5dJTfNlf/LF+VxJzUVZVQ0s0SQFXWQnGWkow1uKhnZk2hvxvV7NnBeU4Hfkcv11PwpjOVhjkaiLyxKfkFy+x/GwcJnnZoL/L/7V352FRlm0bwM8Bhk0BRXZFwIXFXUEUzNxxSdHU3IpcyuT1LRcqw6zEFk0rM7csQm1xyzUrIin3wA1BRBAVEUQZEFBA2Qbm/v7wkzdkcWaYYZHzdxwcNc/czzPXcDnDNffcC/9wa5t3ewvYmhkh4OcYLB5Z++Ez8jIFFu2JRZBvZ5gZccWj+jCyqy3+iJPh0u3cWs8LEUJgxR+X8cHoThqKjh6ncrURFxeHXr16wdLSEklJSUhKSoKlpSV69eqFuLg4REdHIzo6GjExMVoIl55G9ubGWDjUGYF7Y2vVE5ZbKMeRxEyMa+TbJD8N5g7sgKLSMvx4KkWt89PuFmDzyWS8zzf/OmVvbox5QzriGz93yPKK4BdyGnui0lBSqnjiuUII/HgqBctDE7ByQjcW0XXIyaIZvn7RHV/9fRV/XExX+zpCCHz4azwm9GoDFxtOLqxP74/uhBWhl8uHY6nrjzgZurcxaxT7BDRWKnf/HTlyRBtxUBPn4WiOuFu5+O5EMmY/206ta2w8eg3+A9rzq8gGYtFwFyzedxG/x6artJpHcWkZFu+7iOXPd+V4vnpirK+HV55xwot92mLf+VuYseUMnnW2xPierWH12DCb0jIFjiTewY+nUjDIxRLf+nnwNVgPzIyl+PqlXlj26yUk3bmP/w7qoPI8hZCTybAxM9Ta6jukPEsTA7zg0QbfHEvC64PV+2bvQXEpfjqVwgmGWsa1wajBmO7tiDd/voDT17PRR8Vl8dLuFuBG1gMsHummpehIVRKJBB+P64L5O2NgbKCr1OosCoXA+wfiMMObW4A3BIZSXUzr0xZTetvj6JVMrPjjMu4WlMDUUApDqQ5yHsghL1Ogf0cLrJvSU6tridOTSXV18NHYLtgacQNv7Y7FJ893UfrD6J+XZA83y3m+q5ajJGX5drfDf7efx5WMfDhbq/4NweeHEjF3YAeNTlqkylQupIuKirBu3TocOXIEmZmZUCgqfu1w/vx5jQVHTYtEIsFH47rgtR/P4UuLZpV6vmqyKiwRAcNctBgdqUNPVwerJ3fHgp0xKJaXYUSX6nu6FAqBD3+LR3f7Flxuq4HR0ZFgsKs1BrtaQwiB+8WlKJIr0MJYqvGVPqh2JBIJZvZzwpHETMz5MQpfTOpeaf33x4XFyXDwwi2smdyTa3w3IA9X8eiMt/dcwNaZnirNVzh3IwdF8jI809FCixESoEYhPWvWLISHh2PixInw9PTki440qpmBHpb5dkHgvov4xs9dqT/Sf1xMh0MrY47pa6AM9HTx1ZSeWHrwEi7L8vHfQR0q5TW3UI4PfomDd/tWmNy7bT1FSsqQSCQwMZTChAupNGiDXKzQuoUR3tgejTd9nOHhWHmJ0dIyBdYfuQZZbhG+mtKTH4oaIBszQ4zpZofNJ5Uf9lgkL8Pq8Cv4+iWuvV8XVC6kf//9d4SGhqJfv37aiIcIHayaY3JveyzZfxErJ3Sr8cNa2t0CbDudipAZ3Aq8IdPX08Hy57vg4IXbmL75DEZ1tUWvti1RqlDgn2vZOHH1DgKGVf3HnojU42xtgo0v9sJXf1/FN8evY0RnG7jYmKBUIXA+5S7+SsjAJA97LBjqXN+hUg1e8GiD136MwgAXS6WGeKwOv4KZ/Zy46kodUbmQbt26NUxM2PNH2jW8sw0y84ux7Nd4fDC6U5WTl3IL5QjcexErxnflGLBGQCKRYGyP1hje2QZ/J2Tit9jbkOrqoEfbFnjt2XYqL7NGRE/Wspk+gnw7I7fg4apGYXEySHV10K2NGTbP6M0JvY2ARCLB8ue74o0d57HxRXeY17Au+++x6SgpVWAYV82pMyoX0l988QXeeecdbNq0CQ4ODtqIiQgA4NfXATvPpGL+rhh8NLYzWhj/780j7W4BAvdexNvDXTgprZExlOriuW62XBmAqA6ZGUsxrieXBm2sLE0MsHRMZ8zfGY2vpvSsspg+duUODl64hfXcjbJOqVxIe3h4oKioCO3atYOxsTGk0opfHeTk5GgsOKIpnm3hamuKeTtj0M6iGZwsmuFKRj4y8orx0bgucLJoVt8hEhERaZ2brSmWPOeGuduiMH+IM/q2M4dEIoG8TIHNJ5MRdzuPY93rgcqF9NSpU3Hr1i0sX74c1tbWnGxIWtfDvgW+n9kbVzPv4/a9QgxysULbVuyFJiKipsXVxhTfvuyBDYevYePRa9DX1YFcIeDb3Q5rp/RgTVYPVC6kIyIiEBkZie7du2sjHqIqSSQSOFubqLWWJhER0dPC1FCKxaO4Z0JDoXL/v6urKwoLC7URS43u3r0LPz8/mJmZwczMDH5+frh3716N5wghEBQUBDs7OxgZGWHgwIG4dOlS+f05OTl444034OLiAmNjY7Rt2xbz5s1Dbm6ulp8NERERETV2KhfSn376Kd58800cPXoU2dnZyMvLq/CjLdOmTUNMTAzCwsIQFhaGmJgY+Pn51XjOqlWrsHr1aqxfvx5nz56FjY0Nhg0bhvz8fADA7du3cfv2bXz++ee4ePEitm7dirCwMLzyyitaex5ERERE9HRQeWjHiBEjAABDhgypcFwIAYlEgrKyMs1E9i8JCQkICwvDqVOn0KdPHwBAcHAwvLy8kJiYCBeXyjvaCSGwZs0aLFmyBOPHjwcAfP/997C2tsb27dsxZ84cdOnSBXv37i0/p3379vjkk0/w0ksvobS0FHp63EGdiIiIiKqmcqV45MgRbcRRo8jISJiZmZUX0QDQt29fmJmZISIiospCOjk5GTKZDD4+PuXHDAwMMGDAAERERGDOnDlVPlZubi5MTU1ZRBMRERFRjVSuFgcMGFDtfTExMbWJpVoymQxWVlaVjltZWUEmk1V7DgBYW1dclNza2hopKSlVnpOdnY2PPvqo2iL7keLiYhQXF5fffjSkRS6XQy6X13guNX6PcsxcNw3Md9PCfDctzHfToo0817rbNTc3F9u2bcN3332HCxcuqDS0IygoCMuWLauxzdmzZwGgyiVdHg0nqcnj91d3Tl5eHp577jl06tQJS5curfGaK1asqDLuI0eOwNiYy7I1FeHh4fUdAtUh5rtpYb6bFua7aSgoKND4NdUupA8fPozNmzdj3759cHBwwIQJExASEqLSNV5//XVMmTKlxjaOjo6IjY1FRkZGpfvu3LlTqcf5ERsbGwAPe6Ztbf+3g1pmZmalc/Lz8zFixAg0b94c+/fvr7TJzOMWL16MgICA8tt5eXmwt7fHoEGD0KpVqxrPpcZPLpcjPDwcw4YNe+K/FWr8mO+mhfluWpjvpiU7O1vj11SpkE5LS8PWrVuxefNmPHjwAJMmTYJcLsfevXvRqVMnlR/cwsICFhYWT2zn5eWF3NxcnDlzBp6engCA06dPIzc3F97e3lWe4+TkBBsbG4SHh6Nnz54AgJKSEhw7dgwrV64sb5eXl4fhw4fDwMAABw8ehKGh4RPjMTAwgIGBQaXjUqmUL8QmhPluWpjvpoX5blqY76ZBGzlWevm7UaNGoVOnToiPj8e6detw+/ZtrFu3TuMBVcXNzQ0jRozA7NmzcerUKZw6dQqzZ8/G6NGjK0w0dHV1xf79+wE8HNKxYMECLF++HPv370dcXBxmzJgBY2NjTJs2DcDDnmgfHx88ePAAISEhyMvLg0wmg0wm08rqI0RERET09FC6R/rQoUOYN28e/vOf/6Bjx47ajKlK27Ztw7x588pX4fD19cX69esrtElMTKywmcqiRYtQWFiIuXPn4u7du+jTpw8OHToEE5OHu+NFRUXh9OnTAIAOHTpUuFZycjIcHR21+IyIiIiIqDFTupA+ceIENm/eDA8PD7i6usLPzw+TJ0/WZmwVmJub46effqqxjRCiwm2JRIKgoCAEBQVV2X7gwIGVziEiIiIiUobSQzu8vLwQHByM9PR0zJkzBzt37kTr1q2hUCgQHh5evlsgEREREVFToPIW4cbGxpg1axZOnjyJixcv4s0338Snn34KKysr+Pr6aiNGIiIiIqIGR+VC+t9cXFywatUqpKWlYceOHZqKiYiIiIiowatVIf2Irq4uxo0bh4MHD2rickREREREDZ5GCmkiIiIioqaGhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamh0RTSd+/ehZ+fH8zMzGBmZgY/Pz/cu3evxnOEEAgKCoKdnR2MjIwwcOBAXLp0qdq2I0eOhEQiwYEDBzT/BIiIiIjoqdJoCulp06YhJiYGYWFhCAsLQ0xMDPz8/Go8Z9WqVVi9ejXWr1+Ps2fPwsbGBsOGDUN+fn6ltmvWrIFEItFW+ERERET0lNGr7wCUkZCQgLCwMJw6dQp9+vQBAAQHB8PLywuJiYlwcXGpdI4QAmvWrMGSJUswfvx4AMD3338Pa2trbN++HXPmzClve+HCBaxevRpnz56Fra1t3TwpIiIiImrUGkWPdGRkJMzMzMqLaADo27cvzMzMEBERUeU5ycnJkMlk8PHxKT9mYGCAAQMGVDinoKAAU6dOxfr162FjY6O9J0FERERET5VG0SMtk8lgZWVV6biVlRVkMlm15wCAtbV1hePW1tZISUkpv71w4UJ4e3tj7NixSsdTXFyM4uLi8tu5ubkAgJycHKWvQY2XXC5HQUEBsrOzIZVK6zsc0jLmu2lhvpsW5rtpeVSnCSE0ds16LaSDgoKwbNmyGtucPXsWAKocvyyEeOK45sfv//c5Bw8exOHDhxEdHa1K2FixYkWVcTs7O6t0HSIiIiKqW9nZ2TAzM9PIteq1kH799dcxZcqUGts4OjoiNjYWGRkZle67c+dOpR7nRx4N05DJZBXGPWdmZpafc/jwYSQlJaFFixYVzp0wYQL69++Po0ePVnntxYsXIyAgoPz2vXv34ODggNTUVI0lhhquvLw82Nvb4+bNmzA1Na3vcEjLmO+mhfluWpjvpiU3Nxdt27aFubm5xq5Zr4W0hYUFLCwsntjOy8sLubm5OHPmDDw9PQEAp0+fRm5uLry9vas8x8nJCTY2NggPD0fPnj0BACUlJTh27BhWrlwJAAgMDMSrr75a4byuXbviyy+/xJgxY6qNx8DAAAYGBpWOm5mZ8YXYhJiamjLfTQjz3bQw300L89206Ohobopgoxgj7ebmhhEjRmD27Nn45ptvAACvvfYaRo8eXWHFDldXV6xYsQLPP/88JBIJFixYgOXLl6Njx47o2LEjli9fDmNjY0ybNg3Aw17rqiYYtm3bFk5OTnXz5IiIiIioUWoUhTQAbNu2DfPmzStfhcPX1xfr16+v0CYxMbF84h8ALFq0CIWFhZg7dy7u3r2LPn364NChQzAxManT2ImIiIjo6dNoCmlzc3P89NNPNbZ5fBamRCJBUFAQgoKClH4cdWZyGhgYYOnSpVUO96CnD/PdtDDfTQvz3bQw302LNvItEZpcA4SIiIiIqIloFBuyEBERERE1NCykiYiIiIjUwEKaiIiIiEgNLKSJiIiIiNTAQlpJGzduhJOTEwwNDeHu7o4TJ07U2P7YsWNwd3eHoaEh2rVrh02bNtVRpKQJquR73759GDZsGCwtLWFqagovLy/8+eefdRgt1Zaqr+9H/vnnH+jp6aFHjx7aDZA0StV8FxcXY8mSJXBwcICBgQHat2+PzZs311G0VFuq5nvbtm3o3r07jI2NYWtri5kzZyI7O7uOoiV1HT9+HGPGjIGdnR0kEgkOHDjwxHM0UqsJeqKdO3cKqVQqgoODRXx8vJg/f75o1qyZSElJqbL99evXhbGxsZg/f76Ij48XwcHBQiqVij179tRx5KQOVfM9f/58sXLlSnHmzBlx5coVsXjxYiGVSsX58+frOHJSh6r5fuTevXuiXbt2wsfHR3Tv3r1ugqVaUyffvr6+ok+fPiI8PFwkJyeL06dPi3/++acOoyZ1qZrvEydOCB0dHfHVV1+J69evixMnTojOnTuLcePG1XHkpKrQ0FCxZMkSsXfvXgFA7N+/v8b2mqrVWEgrwdPTU/j7+1c45urqKgIDA6tsv2jRIuHq6lrh2Jw5c0Tfvn21FiNpjqr5rkqnTp3EsmXLNB0aaYG6+Z48ebJ47733xNKlS1lINyKq5vuPP/4QZmZmIjs7uy7CIw1TNd+fffaZaNeuXYVja9euFW3atNFajKR5yhTSmqrVOLTjCUpKShAVFVW+o+IjPj4+iIiIqPKcyMjISu2HDx+Oc+fOQS6Xay1Wqj118v04hUKB/Px8mJubayNE0iB1871lyxYkJSVh6dKl2g6RNEidfB88eBAeHh5YtWoVWrduDWdnZ7z11lsoLCysi5CpFtTJt7e3N9LS0hAaGgohBDIyMrBnzx4899xzdREy1SFN1WqNZmfD+pKVlYWysjJYW1tXOG5tbQ2ZTFblOTKZrMr2paWlyMrKgq2trdbipdpRJ9+P++KLL/DgwQNMmjRJGyGSBqmT76tXryIwMBAnTpyAnh7fQhsTdfJ9/fp1nDx5EoaGhti/fz+ysrIwd+5c5OTkcJx0A6dOvr29vbFt2zZMnjwZRUVFKC0tha+vL9atW1cXIVMd0lStxh5pJUkkkgq3hRCVjj2pfVXHqWFSNd+P7NixA0FBQdi1axesrKy0FR5pmLL5Lisrw7Rp07Bs2TI4OzvXVXikYaq8vhUKBSQSCbZt2wZPT0+MGjUKq1evxtatW9kr3Uioku/4+HjMmzcPH3zwAaKiohAWFobk5GT4+/vXRahUxzRRq7E75QksLCygq6tb6dNrZmZmpU8yj9jY2FTZXk9PD61atdJarFR76uT7kV27duGVV17B7t27MXToUG2GSRqiar7z8/Nx7tw5REdH4/XXXwfwsNASQkBPTw+HDh3C4MGD6yR2Up06r29bW1u0bt0aZmZm5cfc3NwghEBaWho6duyo1ZhJferke8WKFejXrx/efvttAEC3bt3QrFkz9O/fHx9//DG/UX6KaKpWY4/0E+jr68Pd3R3h4eEVjoeHh8Pb27vKc7y8vCq1P3ToEDw8PCCVSrUWK9WeOvkGHvZEz5gxA9u3b+dYukZE1Xybmpri4sWLiImJKf/x9/eHi4sLYmJi0KdPn7oKndSgzuu7X79+uH37Nu7fv19+7MqVK9DR0UGbNm20Gi/Vjjr5LigogI5OxdJIV1cXwP96K+npoLFaTaWpiU3Uo+VzQkJCRHx8vFiwYIFo1qyZuHHjhhBCiMDAQOHn51fe/tGSKgsXLhTx8fEiJCSEy981Iqrme/v27UJPT09s2LBBpKenl//cu3evvp4CqUDVfD+Oq3Y0LqrmOz8/X7Rp00ZMnDhRXLp0SRw7dkx07NhRvPrqq/X1FEgFquZ7y5YtQk9PT2zcuFEkJSWJkydPCg8PD+Hp6VlfT4GUlJ+fL6Kjo0V0dLQAIFavXi2io6PLlzrUVq3GQlpJGzZsEA4ODkJfX1/06tVLHDt2rPy+6dOniwEDBlRof/ToUdGzZ0+hr68vHB0dxddff13HEVNtqJLvAQMGCACVfqZPn173gZNaVH19/xsL6cZH1XwnJCSIoUOHCiMjI9GmTRsREBAgCgoK6jhqUpeq+V67dq3o1KmTMDIyEra2tuLFF18UaWlpdRw1qerIkSM1/i3WVq0mEYLfVRARERERqYpjpImIiIiI1NDoCumNGzfCyckJhoaGcHd3x4kTJ2psr8o+6jt37oREIsG4ceM0HDURERERPW0aVSG9a9cuLFiwAEuWLEF0dDT69++PkSNHIjU1tcr2ycnJGDVqFPr374/o6Gi8++67mDdvHvbu3VupbUpKCt566y30799f20+DiIiIiJ4CjWqMdJ8+fdCrVy98/fXX5cfc3Nwwbtw4rFixolL7d955BwcPHkRCQkL5MX9/f1y4cAGRkZHlx8rKyjBgwADMnDkTJ06cwL1793DgwAGtPhciIiIiatwazYYsJSUliIqKQmBgYIXjPj4+iIiIqPKc6vZRDwkJgVwuL18n8MMPP4SlpSVeeeWVJw4VAYDi4mIUFxeX31YoFMjJyUGrVq24cyERERFRAySEQH5+Puzs7CqtF66uRlNIZ2VloaysrMp90R/fmeYRZfZR/+effxASEoKYmBilY1mxYgWWLVum8nMgIiIiovp18+ZNjW2o1GgK6Ueq2he9pl7gmvZRz8/Px0svvYTg4GBYWFgoHcPixYsREBBQfjs3Nxdt27bFlStXYG5urvR1qHGSy+U4cuQIBg0axJ0qmwDmu2lhvpsW5rtpycnJgbOzM0xMTDR2zUZTSFtYWEBXV7fKfdEf73V+5En7qF+6dAk3btzAmDFjyu9XKBQAAD09PSQmJqJ9+/aVrmtgYAADA4NKx83NzVXan50aJ7lcDmNjY7Rq1YpvvE0A8920MN9NC/PdNGlyGG6jWbVDX18f7u7ulfZFDw8Ph7e3d5XnPGkfdVdXV1y8eBExMTHlP76+vhg0aBBiYmJgb2+vtedDRERERI1bo+mRBoCAgAD4+fnBw8MDXl5e+Pbbb5Gamgp/f38AD4dc3Lp1Cz/88AOAhyt0rF+/HgEBAZg9ezYiIyMREhKCHTt2AAAMDQ3RpUuXCo/RokULAKh0nIiIiIjo3xpVIT158mRkZ2fjww8/RHp6Orp06YLQ0FA4ODgAANLT0yusKe3k5ITQ0FAsXLgQGzZsgJ2dHdauXYsJEybU11MgIiIioqdEoyqkAWDu3LmYO3dulfdt3bq10rEBAwbg/PnzSl+/qmsQERERET2u0YyRJiIiIiJqSFhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEalC6k5XI5Fi1ahA4dOsDT0xNbtmypcH9GRgZ0dXU1HiARERERUUOkdCH9ySef4IcffoC/vz98fHywcOFCzJkzp0IbIYTGAyQiIiIiaoiULqS3bduG7777Dm+99RY+/vhjREVF4ciRI5g5c2Z5AS2RSLQW6CMbN26Ek5MTDA0N4e7ujhMnTtTY/tixY3B3d4ehoSHatWuHTZs2Vbg/ODgY/fv3R8uWLdGyZUsMHToUZ86c0eZTICIiIqKngNKF9K1bt9ClS5fy2+3bt8fRo0cRGRkJPz8/lJWVaSXAf9u1axcWLFiAJUuWIDo6Gv3798fIkSORmppaZfvk5GSMGjUK/fv3R3R0NN59913MmzcPe/fuLW9z9OhRTJ06FUeOHEFkZCTatm0LHx8f3Lp1S+vPh4iIiIgaL6ULaRsbGyQlJVU4Zmdnh8OHD+Ps2bOYPn26xoN73OrVq/HKK6/g1VdfhZubG9asWQN7e3t8/fXXVbbftGkT2rZtizVr1sDNzQ2vvvoqZs2ahc8//7y8zbZt2zB37lz06NEDrq6uCA4OhkKhwN9//63150NEREREjZeesg0HDx6M7du3Y8iQIRWOPyqmBw4cqOnYKigpKUFUVBQCAwMrHPfx8UFERESV50RGRsLHx6fCseHDhyMkJARyuRxSqbTSOQUFBZDL5TA3N682luLiYhQXF5ffzsvLA/BwQqZcLlf6OVHj9CjHzHXTwHw3Lcx308J8Ny3ayLPShfT777+Py5cvV3lf69atcfz4cRw6dEhjgT0uKysLZWVlsLa2rnDc2toaMpmsynNkMlmV7UtLS5GVlQVbW9tK5wQGBqJ169YYOnRotbGsWLECy5Ytq3T8yJEjMDY2Vubp0FMgPDy8vkOgOsR8Ny3Md9PCfDcNBQUFGr+m0oW0g4MDHBwcqr3f1ta2ToZ3PD6hUQhR4yTHqtpXdRwAVq1ahR07duDo0aMwNDSs9pqLFy9GQEBA+e28vDzY29tj0KBBaNWqlVLPgxovuVyO8PBwDBs2rMpvNejpwnw3Lcx308J8Ny3Z2dkav6bShXR9s7CwgK6ubqXe58zMzEq9zo/Y2NhU2V5PT69Swfv5559j+fLl+Ouvv9CtW7caYzEwMICBgUGl41KplC/EJoT5blqY76aF+W5amO+mQRs5bjQ7G+rr68Pd3b3S1y/h4eHw9vau8hwvL69K7Q8dOgQPD48Kv8zPPvsMH330EcLCwuDh4aH54ImIiIjoqdNoCmkACAgIwHfffYfNmzcjISEBCxcuRGpqKvz9/QE8HHLx8ssvl7f39/dHSkoKAgICkJCQgM2bNyMkJARvvfVWeZtVq1bhvffew+bNm+Ho6AiZTAaZTIb79+/X+fMjIiIiosaj0QztAIDJkycjOzsbH374IdLT09GlSxeEhoaWj91OT0+vsKa0k5MTQkNDsXDhQmzYsAF2dnZYu3YtJkyYUN5m48aNKCkpwcSJEys81tKlSxEUFFQnz4uIiIiIGh+1Cul79+5hz549SEpKwttvvw1zc3OcP38e1tbWaN26taZjrGDu3LmYO3dulfdt3bq10rEBAwbg/Pnz1V7vxo0bGoqMiIiIiJoSlQvp2NhYDB06FGZmZrhx4wZmz54Nc3Nz7N+/HykpKfjhhx+0EScRERERUYOi8hjpgIAAzJgxA1evXq2wRNzIkSNx/PhxjQZHRERERNRQqVxInz17FnPmzKl0vHXr1tVujEJERERE9LRRuZA2NDQs3xL73xITE2FpaamRoIiIiIiIGjqVC+mxY8fiww8/LN+vXCKRIDU1FYGBgRVWwyAiIiIiUleZQuDghdv44Jc4fPrHZcSm3avvkCpRuZD+/PPPcefOHVhZWaGwsBADBgxAhw4dYGJigk8++UQbMVI17j4owfrDV/Hq92fh/2MU9kenobRMUd9hEREREdVKZn4RZm49i+z7xXjt2XYY090W20+n4pPf46FQiPoOr5zKq3aYmpri5MmTOHz4MM6fPw+FQoFevXph6NCh2oiPqnEkMRPfnbgO/wHt4T+gPUrKFNgblYY5P0Zh1cRuaNW88hbm1DgIIfBLzG38FnsbCgEY6+tiurcjejua13doREQNUtytXBy5nIm8IjncbE0xqqstDKW69R0WqSn7fjHm74jBR+M6o4OVCQCgTUvg0wndsCcqDe/uv4gV47tCIpHUc6S12JBl8ODBGDx4sCZjISX9euE2wuMzsHlGbxjoPXyj0NPVgZ+XIzwczbFgVww2veSOZgaNar8dAlBYUoY3d8egh30LrJ/WC4ZSXWTmF+HL8Ks4ceUOFgx1ho5O/b9xEBE1BFn3i7H04CVYNjfAmO62MDOS4nzqPczcchZvDO4A7w4W9R0iqai0TIFFe2LxwZhO5UX0v010b4P8IjmCT1zHa8+2r4cIK1Kq0lq7dq3SF5w3b57awdCTRSRlIeySDGun9IRuFQWVm60p5g3piMB9F7F2So8G8WmNlFNcWobXt5/Hq/3bwat9q/LjViaGWDG+K7b8k4xVfyYicKRrPUZJRNQwJN25j/f2x+GDMZ3gZmtafryDlQnGdLPD4n2xuHO/GGN7aHejONKsb09cx4guNhVy+rgZ3o5YsCsG0al30bNtyzqMrjKlCukvv/yywu07d+6goKAALVq0APBwp0NjY2NYWVmxkNaizLwibDhyDcEve1RZRD/S29EcZ5JzsO/8LUxwb1OHEVJtfPhrPKZ6tq1QRP/bzH5O+PzPRPx89iYm9bav4+iIiBqOlOwHeP9AHL6a2gNWJoaV7jfS18UXk3pgwa4YtGpmgGc6sme6Mbh+5z5iUu/hGz/3GttJJBIEjemM13ecx5YZntDXU3nKn8Yo9cjJycnlP5988gl69OiBhIQE5OTkICcnBwkJCejVqxc++ugjbcfbZAkh8P4vcfhgdGcY6z/588+cZ9vhQMwt5DwoqYPoqLZ+vXAb5s30MbSTdY3tFg5zxp+XZLiWeb+OIiMialjuFZQgcO9FfDGpe5VF9CO6OhJ8NrEbvj52DRl5RXUYIalrVVgi3h/dSalv01s208ckD3t8d/J6HURWPZVL+Pfffx/r1q2Di4tL+TEXFxd8+eWXeO+99zQaHP3P9jOp6O1oDhebyuOFqqKnq4MFQ52x5q8rWo6Maiszvwg/n7uJeUM6PrGtro4EHz/fBR/91rBmLRMR1YWHnUqXEDjSFbZmRk9sbyjVxTLfznj/QByE4HtmQ3b8yh04WjSDvbmx0uf4drfDmeQcZN8v1mJkNVN5Nlp6enr5GtL/VlZWhoyMDI0ERRXdyHqAwwmZCH7ZQ6Xz3B1a4qdTKbh+5z7aWTbXUnRUW6vCHo57luoq97nW1swI/TtaYF/0LUzk0B2VRFzLwi8xt5H9oASOrYwxxbMtOljV/WtDoRDILy4FAJga6nEug4aUlCrw5yUZDsVn4EFxKR79VhVCoKWxPnq0bYFhnayVKsCoYdpx5iY625miu30Lpc/pYGWC7vYt8FtsOsZ0t9NecKQ2IQS+PX4dX7/US6XzJBIJ3hjcEV/9fRUfju2ipehqpnIhPWTIEMyePRshISFwd3eHRCLBuXPnMGfOHC6BpwWlZQosPXgJnzzfRa3VGv47qAM2Hk3C5y9010J0VFtRKTkwkuqis52ZSudN93bEjC1nMKyTNcyMpFqK7ukhL1Pg/QNxMDWSYuEwZ1iaGOCyLA8bjlyDjZkhAoY5K/1BRl15RXLsjUrDP9eyIARgZiSFAJBb+LBjwt2hJSb0agMbs+q/qqbqHUnMxLfHrmNUVxt86NsZLZvpV7g/50EJzt3IwReHruBOfjGe62oL3x52XCKtEbmakY/DlzPx7RPGz1bl1f5OmLnlLAa6WMLEkO+ZDc2flzLQr4OFWrlxd2iJ7yNuIOnOfbSvh05DlQvpzZs3Y/r06fD09IRU+vAJl5aWYvjw4fjuu+80HmBTt+lYEny726FNS+W/6vi3DlbNoVAIJGc9gJNFMw1HR7VRphBY89dVrJ3SU+Vzpbo6eGNwR3wZfgVBvp21EN3TQ6EQeGv3BYzobIORXW3Lj3e2M8OXk3vgt9jb+O+281g9uQeaa2HJyDKFwPcRN3D0yh1M87THhhd7lS9b+Yi8TIFT17Px8e/xMDWS4s1hzlwLXklCCHxx6Aryi+TYPKM3jPSrLozNm+nDp7MNfDrboEhehl8v3MbsH87B09EcM59x0kruSXOK5GUI+vUSvpzUQ61OJQM9Xfx3UAes+esq3h/dSQsRkroUCoGfTqU8cYJhTd70ccaqPxOxYZpqPdqaoHIXjKWlJUJDQ3H58mXs3r0bP//8MxISEhAaGgorKyttxNhkxd3KRWLGfYzvVbule+YOao+NR65pKCrSlN3nbsKnk3WlnjNl9W3XCrmFclzJyNdwZE+Xb45fR29H8wpF9L+N7maH155th9e3n8eD/x9uoSlXM/Ixc+tZGOvr4vuZvTGii22lIhp4+MGof0dLrJ/WC5M87BHw8wV8H3GDYzqfQAiBZb/Gw8rUAMvGdqm2iH6coVQXL3jY44dZnuhkZ4o5P57Dln+S62xn2Kz7xYi/nYe7nAyutE//uIxZ/ZxgZar+Nzb9Olgg50EJEmV8z2xIQuPSMdDFslZ7Xzi0agZrE0Ocu5GjwciUo/Z3mc7OzvD19cXYsWPh7OysyZgIDz99Lw9NwDLfzrUeP9nBygTyMgVuZD3QUHRUW7mFcvwWm46pnm1rdZ2AYc5YfYgTSqtz6XYuEtLz8GKfmn/PHo7m+O+gDnhjRzQKSjRTTP8Vn4HloQn4bGI3TPFsq/TruId9C2yZ0RulCoEFu2JwX8PF/dNk/eFraGtujJe9HNU6XyKRYIibNX6c1QfN9PUwY8tZXLyVq9kg/59CIbDvfBr8Qk5jRehl/H7xNj44eAn+P0bh+h2uwlOTv+Ifzr8a4lbzqkbKeHu4C744lFjr65BmlCkEtp9OxYt9HGp9rdcHd8C6w9fqvANC5fJ/1qxZNd6/efNmtYOh//nsz0S82t8J5mr2Vj5u7qAO2HQsCZ9O6KaR6z2tSssU2Bd9C6EX06EjkUAIAQM9XbzYty36d7TU2OOs+esKXh/cAXq1HJdrb24Mh1bGiLiWxR28HqNQCKwKS8RnL3RTqojt7WiOsmcF5u2ILt9VUh1CCHx3IhnXMu9jk597lT3QT6KjI8Erzzjh9PVsvPbDOXz2Qne0bsEJcv/2V3wGMvKL8NHg2k8w0tGRYFJvewxxs8Inv8cjO10HzxaXoqVUM2NpU7ML8P4vcRjoYonvpntU+Ddx+14hluy/iBn9nDDAWXPvMU+LjLwibIlIRsj03hq5nl0LI7jYmOBoYiYGuvBb9Pr2W+xtDOtkrfS3STUxb6YPTydz/HkpAyO62GggOuWo/Ff87t27FX4yMzNx+PBh7Nu3D/fu3dNCiE3PoUsylCkEBrvW/tP3I87WJsgvLsXte4Uau+bTJjO/CLN/OIfiUgWCX/bA5hm9sWWmJ1ZO6IaIpGzM3xmNvKLKK9ao6tLtXOQWyNG3XdUbr6hq7qAO+PpYEpfDe8wvF27hWWfLGteZfVzfdq0ws58T5u2IRpG8TOXHLClV4N39cVAIgU8ndFWriP63Pu1aYeWEbnjr5wu4xdduucz8h8WVsuvNKqtVcwOsHN8Fnc0F/rMtGkcSM2t9zV8v3MZ7v8Th43FdMLOfU6V/E3YtjLDJzx0/RqYgKqXuv5ZuyBQKgSX7L2KZb2eNTgr1H9AewSeua2UojxAChSVlKOP78ROVlimw88zNWn8z+2+z+jnhh8gbdTZMC1CjR3r//v2VjikUCsydOxft2rXTSFBNWXLWA2w7naryUnfKmN2/Hb49fp2T06ogyy3Cwl0x+HBsZ3S0rrhWt5mxFO+McEVUSg78f4zCqvHq//7KFAIrwxLx+Qua+2bAzEiKwa5WOBBzC+N7cTk84OHkvZ/PpmHrLNV7sfp1sECpQmDhrhismdJD6d6Guw9K8ObuC5jS2x4+nTXXG2JvboxVE7vhzZ9jsHpSD9ixZxrLfo3HB6M71/qDSnVczAT8J/TC+mPJ+O1COpY856byt4MFJaX46LcEtDSWImS6R42rwhjo6WLNlB6Y/f05bHyxl9rzJp42G49ewxA3a3SwUm7/BGU1M9CDb3c77Dh7E1PcNbMc3r2CEmw8moSE9DyYGknxoLgUNqaGCPBxVunDfFOy93waRnWz1eiHJCN9Xfh2t8Ouczc1MlxEGRpZ70lHRwcLFy6stJU4qaagpBTvHbiITyd01cp2lz3sWyDtbiGy6nHh8oYor0iOgJ9j8OmErpWK6H9zdzDHJ893xVt7LiJbzU2ytp9OgU8na42/sb7YxwG7z6Wp1Yv6NNoTlYaxPezULrQGOFuWT/qTK9GzEZWSg7nbzuNNH2eNFtGP2JsbY9WE7nh7z4UmP2Y6LE6G9hbNlN6cSl1G+rp4d5Qbpns74I0d5/FLzC2lx16evp6NV7aew3NdbbFohHJrxDc30MO7o9yw7NdLtQ39qXDqejauZz3AlN72Wrn+RHd7/BknQ74GvmWMTMrG3G3nMcTVCj++0gcbpvXC1pmemO7tiIW7YnC2HibANXQFJaU4EH1bK/md6N4GoRfTNTbf5Uk0Vq0lJSWhtLRpv8HXRkmpAgG7LuCNwR21ulnAK884Ycs/yVq7fmOjUAgs2h2Lt4e7wKHVk5cHdLJohk/Hd8GOJB3cyFZt8mZGXhH+SsjENA1+jfWIvp4OXvZyQMhJ5lahEPj1wu1a984PcrXCuB6tMXd7DO5W89mzpFSBDUeu4cfIFHzzsrvK64Grom0rYywY6ozAvbFNdhhPcWkZtkYkY+6gDnX2mN3atMDWmZ5Iu1uI6VvOIjw+o9rfvyy3CO8duIhfLtzGNy+745mOqs1b6NrGDJYmBjhx9Y4mQm+0su4X46u/ruKjsV20tlmRro4E/xnYHhuP1e49MyxOhp9OpSD4ZQ/0eWy4nputKb7188A3x5LqZTWJhizkRDJm9HPUyvr9ero6mOHthE3H6mbrcJWHdgQEBFS4LYRAeno6fv/9d0yfPl1jgTUlRfIyvLn7Asb3aq2xcbPV6dvOHJuOJSGvSA5TLkqP4BPX0d/ZAj3btlT6nNYtjODXUYH3f4nHigndlVqfu0whsGR/HJY856bWGqjKGNHFBjO3nkX2/eImvQbx8at34N2+lUa+1RnWyRoOLQ0Q8EMmUv9IxHPd7dC6hTFyHpQgIikLfydkYlLvNpg7sH2d7E7Y29EcVzPu46u/r2LhsKa3WtL206mY5GFf55uoSHV18N9BHeDnJce2U6nYGpEMF2tTuNqYwECqg4y8IkSn3iufJNpLhfeTx80b0hFzfoyCd3sL6GrpvaIhKylV4J09sfhgTKdaLYemjH4dLLD9dAos1HyrOHRJht9ib2PNlB7VFoTNDPTw5eQemPNjFCcN/7+s+8WISr2L1wdr7wPxUDcr7I1Kq5M9NFT+5xMdHV3hJzY2FgDwxRdfYM2aNZqOr5KNGzfCyckJhoaGcHd3x4kTJ2psf+zYMbi7u8PQ0BDt2rXDpk2bKrXZu3cvOnXqBAMDA3Tq1KnKceDakpFXBP+fojDJQ7PjKqsjkUjwspcDfoxM0fpjNXRxt3Jx8VauWj3EZvrA5xO7Ysn+i0otXfVl+BX4dLKGcw1DR2pLIpFg3pCHW6U2ZdtPp2KaBsfGOVk0w2xXBUZ3s8HJq9lYe/gqfou9jXaWzfDjK554vmebOt3ie1qftsjML0JEUladPWZD8KC4FOHxGRjbo3br6teGqaEU/xnYHj+90gfT+tjD1OhhodfFzgyfTuiGDdN61aqIBgATQyl8Olnjt9jbmgi5URFCYOnBOEzqbQ83W9M6eczAEc74JUVH5cmBfydk4JeY21g9qfoi+hETQymWP98V7+2/2KgmIWbmF+H32HR8d+I6fjyVgqiUuxqJf81fV/DG4I5afd+USCRY8pwbPv4tXvvf4IlGZOfOnUIqlYrg4GARHx8v5s+fL5o1ayZSUlKqbH/9+nVhbGws5s+fL+Lj40VwcLCQSqViz5495W0iIiKErq6uWL58uUhISBDLly8Xenp64tSpU0rHlZubKwCIrKwspc8pLVOIXWdSxUvfnRLXMvOVPk8TFAqFeDH4lHhQLNfYNcvKFOJG1n1xLTNflJSWaey62lJSWiZeDD4l7uQXqX5uSYk4cOCAKCkpERm5heLF4FPiTHJ2te2DjyeJlX8k1CZclbz1c4yITr1bZ4/XkCTK8kTg3gsavea/891Q3C+SiynfRIrcwoYTk7at/euK+DMuXeuP0xDyXVhSKqYFR4qyMkW9xVAfvj56TXx7LKlOH7OkpES8880vYm34ZaXPOXI5Q/j/eE4UyUtVeqztp1Pq/Pmp42pGvnhj+3nx+vbz4uezqeKfa3fE3wkysfpQopgWHCm+PZYkCktUe+6PnL6eLQL3xmo44ur9GHlDBB//3+88KytLABC5ubkaewyVC+lBgwaJu3fvVjqem5srBg0apImYquXp6Sn8/f0rHHN1dRWBgYFVtl+0aJFwdXWtcGzOnDmib9++5bcnTZokRowYUaHN8OHDxZQpU5SOS9lCuqxMIa7I8sSGI1fF1G8jxQ8RyUJeT0VnWFy6WPf3lVpfJ/t+sVj+e7x46btT4oMDF8VHv14SMzafFoF7Y8WtuwUaiFQ71h++KvafT1Pr3Mf/0OYXycXCndFi5R8J4t6D//3xzb5fLAL3xoovDiUKhaLu/iDm3C8W04IjVX6TfxoE7o0VibI8jV6zIRRWVTmbnC3e+jmmvsOoE3cfFAu/kNN18jpqKPkOPp4kfrtwu15jqEs7TqeIDw5crNP3SiEe5nv//gPi9W3nxKmkJ3eGHb+SKWZ/f1atQlKhUIhZW86I9HuF6oSqdWVlCrHp6DXh/+M5kZL1oNo2v164JaZ8EykirinfeSiEEHmFJWLKN5HiXkHdvbYUCoWYuy1KnP3/zi5tFNIqD0A6evQoSkoqb2taVFT0xGEWtVFSUoKoqCgEBgZWOO7j44OIiIgqz4mMjISPj0+FY8OHD0dISAjkcjmkUikiIyOxcOHCSm1qGqZSXFyM4uL/zT7Ky8sDAHz0WzwMmpmgVCGgUIj//y9QVFoGxf/P9nZq1QwDnC0ws6899HR1IBRlkCvqfqWFQR3Nse3UDcju2aGVmkstxafnYcUfiXhjcHu8NaziWKfLsny8s+cCJnm0wYjOmlsPWxOS7jxA7M27mN2vLeRy1WdsPzrn0X8NdICV4zvj+NUsvLU7pnyVB6muDqZ7tUUfJ/M6nYjbXF+Cye6tse6vK5g/pO4mZdW3uwUluJNXCCdzQ7XyWp3H891QdG9tgr/ipQi9cAvDOj3dG0tsOHwVs/s51MnrqKHke1IvO/hvj8ZQl1Zam1fRUPx8Lg1xt/MQNNqtzhctkMvlkEiApaOcsWDPJTSTSqpdEeaPOBl+uyjDFxO7QhcKyOWqr1W8cEh7fBoaj88mdq1t6BpVUqrAe79cQtfWZvhqUldIJJJqXwPD3Szh7dQSX4RfxcGYNLzt4wwTw5rLSYVCIHDPRSwY0h7GenX7+vrY1w3/3R6DoDFuMJVo/nGVLqQfjYUGgPj4eMhksvLbZWVlCAsLQ+vW2hu7lpWVhbKyMlhbVyzKrK2tK8TybzKZrMr2paWlyMrKgq2tbbVtqrsmAKxYsQLLli2rdNxVpKGZMIaODqCj+3AAuo4E0NN5+F8AgADuJSahIexQ6m4ABGy+g8ntVX8zuJAtwek7ErzYXoGs+DsIja/c5nkLYMeROzh6SuBZ24YxLkwhgODLOpjUToE//qjdGMTw8PBKx0a3AB6tkCWRANkJtxGaUKuHUVvEFR0YZl+BffP6efy6dihNgvbNgNDQUK1cv6p817cOCuDL33WQn6SAYd3Ov6szuSXAqes66FJ2DaGX6+5xG0K+LeQSrNoehm7mDeP9UxuOp0sgK5RgopMCYWE36i2Of44dxsgWwNvb7sDLSqCbucCjIbzFZUDoTR2UCeB5RwUOh9fub0dOhg7W7ryJDnUzDPyJCkuBn67pwMtKoFXOTfzxR5xS53nqAldzJZi8LhXDWgu4tKj636lCALuv68DBREAWl4ZQ5S6vUSNaAv/dkgUfyyfPaVKV0oV0jx49IJFIIJFIMHjw4Er3GxkZYd26dRoNriqPD04XQtQ4YL2q9o8fV/WaixcvrrB6SV5eHuzt7TFuxCC0aqXdVTc0TXYwHladbeHhoNwEGSEENh1PRkFpEX6e6vrElRFGC4GPfr+MEjszjOuhmYXva2PbmZuYZCHwYh/1l6CTy+UIDw/HsGHDINXQFsLa4DWwBPN2XsC60T3QwrjhxqkJJaUK7PzxPFZPddd4711Dz7dVp2wcvnwHS0a51snjxafn4feLMqTdLUTrFkYY18NWq5Nol/4aj2WTW6Nra+0tLfhvDSnf/YtKsXB3LAJH9arXOLRBXqbAJ6GJaNNOHysGtqvTCbsV4ngs32PlZfjmRDJ+TrmHdpbNkFsoR26hHNOHOeBZFZczrE6/Qjnm7bqAuS/0gp4Wln9TRX6RHPN2xWLpC+3Rw76FWtd4tbgUq/+6hr8elGBOf6cKPfopOQVY8Ucixj1jjed71m8NMKKgBIt2nNb4dZUupJOTkyGEQLt27XDmzBlYWlqW36evrw8rKyvo6mqvS8TCwgK6urqVeoozMzMr9Sg/YmNjU2V7PT298oK3ujbVXRMADAwMYGBQeXkxqVRa72+8qgoc1Qn+P0Zhk587zIxqjr1IXoZ3D1xE19ZmWDHEWek3vqCxXTF/ZzRsWzRTeV1VTZLlFuHolSxsnt5bI8VWQ8+3lZkU743ujMD9l7DhxV51vmRYXQq9dAvPdbODgYH2doRrqPl+1sUGv1zIQGJmAbposdgskpfhw9/iIQTg19cBDq2MkZz1AN9H3oCRVBeLR7lp/N9YSvYD5BWVoZdj3b9vNIR8m0ul6GhlgkuyB2oXOaq6da8Qfydk4Pqdh+vkO7YyRr8OFuhg1VxjxW56biHe2x+HCe5tMKqrrUauWVuP8i2VSvHmcDeUKQRu3S2EmZEUZhruiLCQSvFcNzsciM3Q6PbYqrpfXIqFu+Pw1nDXWv37aiGV4sNxXZF05z5+jExBctY1SHUlkJcJWJoYYMlzndDOsv6/GrUyk+Lzid3w/X80fGGNjbauA56enuI///lPhWNubm41TjZ0c3OrcMzf37/SZMORI0dWaDNixAitTDZsqKJT74rXfjhb42obGXmFwi/ktDiamKnWYxSWlIqXQ06Ly+manQimLIVCIeb+FCWuaGAiWkOZjKSsY4mZwv/Hc2rPsm7oFAqF8As5rdFVaP6tMeQ7M69IvPTdKVGqpVUe8gpLxPTNp8WRyxlV3v93gkzM3HJG5BdpNgcLd0aLqxl1+57R0PJ9M+eBmL/jvNYf596DEhG494KYt+O8CL8kEylZD8SNrPvicEKGWPpLnHjpu1Pi57OptXofUSgUYm/UTeEXclpczajb1aqqU1/5lpeWiWnBkeK+hl8zyiooLhWztpwpn4Snadp6L6qteptsePDgQYwcORJSqRQHDx6ssa2vr68GyvuqBQQEwM/PDx4eHvDy8sK3336L1NRU+Pv7A3g45OLWrVv44YcfAAD+/v5Yv349AgICMHv2bERGRiIkJAQ7duwov+b8+fPx7LPPYuXKlRg7dix++eUX/PXXXzh58qTWnkdD08O+Bcb3aoMFu2KwckI3NH9sEfyjiZn49vh1fDi2MzpYqfcVrqFUF19M6o43tkdj00vuGv+E/yR/xMnQ0bp5jVuAP62edX747ZH/T1FYNaEbrEw1uz35I3lFcqRmFyC3UA59PR20aWmk1V06H4lKuYtOtqYw1tfu5g0NmaWJAUZ2scVPp1Iw3dtRo9cukpdh/s4YzBvSsdo1kge7WsPMSIoFO6Px9UvuGtmtLCE9D3q6ErXfc54WbVoaQ+BhT7G2NvO4mpGP93+Jw9vDXeH+2DA/h1bNMMjVCkXyMhyMuY1Xvz8Hd4eW8PNygIUKGz9FpdzFxiPX0MuhJTZP96j3IQ31TU9XB68+0w7fHEtCgI9LnT52SakCC3ZF45VnnODhaK6Vx2hKmwkp9Zdn3LhxkMlksLKywrhx46ptJ5FIUFamvRUoJk+ejOzsbHz44YdIT09Hly5dEBoaCgeHh5svpKenIzU1tby9k5MTQkNDsXDhQmzYsAF2dnZYu3YtJkyYUN7G29sbO3fuxHvvvYf3338f7du3x65du9CnTx+tPY+GaHhnG5gZSTH7+3MY7GoFV1sTZOQVIyxOhvZWzRAyvTeM9Gv3ta1FcwMEjnTFor0XsPFF9zp7oeUWyLHtdAo2z+hdJ4/XED3rbAlbM0Ms/DkGE3q1wbgerWs1vKVIXoa4W7k4l3IXMan3UFxaBlMjKRzMjdHCWB9FpWXYd74AaXcL0aW1GWZ6O2qtgN/yzw28P7qTVq7dmEzpbY+ZW89iRBcbWGvody2EwHsH4uDn5fDEjUbcHcwxvlcxPv4tHsvGdqn1Y6/9+yqWPOdW6+s8DWZ4O+L7iBt4d5Tmfx+Jsnx8+NslrJvaC5Ym1RfGhlJdTOptjxc82iAiKRvv7Y9DC2MpJri3QU/7FlUWxgUlDzfR+S02HW1aGuHTCd1qfIymZqCLJbadToUstwg2Ztp5f3xcaZkCb+2+gBfc7eHdof6GWj5NJEKIp3c6cB3Jy8uDmZkZsrKyGt1kw8eVlCoQkZSFG1kP0LKZPp7taImWai6PV53d524iJbsAbw3X/qdwIQQW7IrBDG9HlbYBr4lcLkdoaChGjRpV72MoVVVSqsCPp1Jw+HIGBjpbYZCrJZwsmlf7oUYIgXsFcqTmFOBa5n1cSLuH1JwC6OvqoGtrM3g4mqOHfYtqP2QJIRCVchebjiXB3cEcrz3bTqMfoK5m5CPkZDI+ndBNY9d8XGPKd6IsHxuOXMPaqT01cr0fI2/gQUkZ/Ae0V/qcL8OvwNLEAC/1VX93yZNXs3Di6h0s1kLh+CQNNd8ztpzBuqk9YWKouZhu3yvEmz9fwPppPdFKhd7lR65l3kfoxXREp96FVFcHrVsawVCqi/wiOdLvFUFHR4KhblYY0dm2zr+FVFZ95/vS7Vx8H3EDqyZ21/pjKRQCi/ddhHeHVvW6Q2h9ys7OhoWFBXJzc2FqqpllU5rud6FUJX09HQx0sQK0WOO+4GGPoIOXEBaXjhFdtDvR5OdzN+FsbaKxIrqx09fTwSvPOOFlLwecvJaFHWduIiX7AcoUolKB++gjdgtjfbQ1N4aTZTO8+kw72JsbKT3pSCKRwMPRHMEOLbE7Kg1zfozCl5O7a6wYCD5xHa89q3yR97RzsTFBm5ZG+DshA0Pcard++6XbuYhIysaGaaqtGDF/SEfM3xUDFxsT9Fbja+PSMgW+PnYNm15yV/ncp9lkD3v8fC4NrzzjpJHrFcnL8M7eWKwY31WtIhoAOlg1x7whHQEAxaVlSL9XhOJSBUwM9WBlYtDkh28oo7PdwwnCl27nlv+/Nggh8OFv8ejRtkWTLaK1RalCeu3atUpfcN68eWoHQ03Hkufc8NoP59DeUnvjlq9l3sehSxn49mUPrVy/MZPq6mCQixUGuVTeyEM8YflHdUgkEkzysEcHq+b4z0/nsXpS91oP9UjPLcSDkjJ0sKr/2eANybwhHTFzy1n0bdcKzQzU6yu5X1yKT35PwPppvVQeAqSjI8GK8V3x2g/nsGZyD5XzvONMKsZ0s9Noz+vTwKezDfxCTmO6l4NGCtSVYZcxw9sRjhbNNBAdYKCnq7FrNTUBw1zw7v6LCJnuoZVlAIUQ+OLQFbRpaVSvq4Q8rZR6l/3yyy+VuphEImEhTUqR6upg1cTumLcjWqml91SVWyjHB7/EYfWkHk1q0oMmaHM9115tW2LZ2M6YvzMGqyZ2g725sdrXCjmRjFn9NNM79zQxlOriv4M6YGXYZXyoxlhlIQTePxCH+UM6wlzNYV3NDfTw4djOWLQ3FsEveyg9+fBeQQn+vJSB72d5qvW4TzNdHQmGulnjUHxGrZeMO3k1C/IyRa2/tSDNsDEzhHf7Vth9Lg2Tettr9NpCCKwMS4SJoR5e7d9Oo9emh5R6d0tOTlbq5/r169qOl54iliYGeGekKwL3xkKh0NxQ/eLSMgTsisE7I1zrbAIHKa+9ZXN8Pqk7Fu2Jxc2cArWukZ5biJScgkorDNBDz3S0gFRXB4cuVb9Da3V+iEyBi40J+rSr3XyPDlYmmORhjxUqbEf44a/xeNPHmR9+qzGptz12nb1Zq2vkFsqx4cg1rUxcJPXN8HbEr7G3cSe/WGPXFELgo98SYGligP8O6qCx61JFtfp+SAgBzlWk2uhh3wI+na2x5ECcRopphULg3X1xmNanLbrX0QYGpLrWLYzw2QvdsGhPLG7dK1T5/K/+uor5/z82k6q2aIQLfohMQXqu8r/f86l3ceZGDuY8q5meq1FdbSHVlWB/dNoT2+47n4Y25sacz1CD5gZ6cLUxwZnkHLWvsezXS3hruEuTXi6yIdLT1UHgSFcsD03QyPVKShV4e08s2ls109i4eqqaWoV0SEgIunTpAkNDQxgaGqJLly747rvvNB0bNRHP92yDnm1b4N39F2tVTJeWKfDO3lj0bWfOrywbgTYtjbFqYje89fMFlYq96NS7EAJa3cXvaWCgp4sPx3bG4n0XUVz65GVJZblF+CwsEcuf76rR4T1vD3fB4ct3auwdP5Ocg0OXMjBvMHvNnmT2sw/XHlbH77HpsDUz5Dc5DVRnOzO0bmGEgxdu1+o6uQVy/OenKIzobIMX+6i/eg4pR+VC+v3338f8+fMxZswY7N69G7t378aYMWOwcOFCvPfee9qIkZqASR728HA0x5u7L6BIrvpa5DkPSuD/03kMdrXCCx6aHWNG2mNvboxPJ3RFwK4LkOUWPbF9cWkZPj+UiMWjXOsgusavnWVz+PV1wDt7YlFapqi2Xfb9Yry5OwYrxnfV+HwFPV0dfPFCd4RdkiH4+PVKH5bD4mTYdCwJX0zqzlUelGDR3AAdrU0QcS1LpfPScwux40wq5g9x1lJkpAkLhnbEgehbuJKRr9b5Cel58P8pCvOHdsTQTuxQqgsqf7fz9ddfIzg4GFOnTi0/5uvri27duuGNN97Axx9/rNEAqemY6N4GViYGeOX7s3h3lJtSSwEJIfDnpQz8EHkDS55T7hxqWBxaNcPy8V2xcFcMvppS/SoPQggs/eUSXnnGCS2MNbu2+dNsiJs1CuVleGNHNFZO7AbTx1bDuJKRj6W/XEKQb2etrbqgr/ewmN52OhV+m0/D07EVjPR1cCb5LtpbNcOml9yhr8ciWln/GdAe/91+Hp5O5kp9+CgtU+DdfRfx4djO/D03cHq6Olg5oRvm7YjG55O6K72bpRACu87exOHLmWqvC07qUbmQLisrg4dH5eXE3N3dUVpaqpGgqOl61tkSrrYm+PSPy5Dq6GC6tyPcbE0qfdVcJC/DkcuZ2HXuJnrat8TmGb1hKK3dzotUf5wsmuHj57tgwa4YfDyuC9pZVlzS7tHyTU4WzTDYlb0sqhrdzQ52LYzwn5+i8GxHS3g4mqNYXoZD8Rm4c78Ya6b00NhuiNWRSCR4qa8DJrq3wWVZPgpKSjHJw54fitRgZizFc91ssf1MKl72cnxi+7V/X4VvD7tKrytqmCxNDMqHvQX5doaLTc1LxF7LzMenfyTCw7ElNr3kXqtda0l1KhfSL730Er7++musXr26wvFvv/0WL774osYCo6bLysQQqyf1wJWMfOw6exPXMu+jmYEuWhrro6RUgZwHJZBIgP4dLfHVlJ4a/yqa6kd7y+b4/IXu+OCXOHSyM8ML7m1gbWqIy7I8bDhyDc90sICfEkUDVa1X25b4fqYn/knKRsS1LBhIdTDJwx6d7DSzu5eyDKW66MGJwLU2ycMec348h34dLNC+hgL5+JU7yMgrRoCP9neSJc2xNzfGumk9Ebj3Ino7toSfl0OlCaLJWQ+w9Z9kZD8oQZBvJ7Rpqf5yoqQ+tabthoSE4NChQ+jbty8A4NSpU7h58yZefvllBAQElLd7vNgmUoWztQneH90JwMMe6LsFJZDq6sDcWJ+fuJ9Sdi2MEPyyByKSsvHN8SRk5hXDybIZlozqhLat+EeitvR0dTDA2RIDnC3rOxSqJV0dCT4e1xUBP8fg65eqXov/ws172PJPMr7mLpGNkkVzAwS/7I5fY9Px+vZoSHUlsDIxxIOSUtzJL0ablkZ4sY8DJ17XM5UL6bi4OPTq9XDL2KSkhzOHLS0tYWlpibi4uPJ22tzUgZoeQ6kubM2UGytGjZtEIkG/Dhbo18GivkMhatBszAwRONIVr28/j1UTu1V4j/zjYjp2R6Xhq6k9OeytEZNIJPDtbgff7nYokpch+0EJjKS6am+WRJqnciF95MgRbcRBREREKurWpgWWjumMd/ddhI2ZISybGyD2Vi662JlxEudTxlCqq/TkQ6o7XJGdiIioEetg1RxbZnri1r1C5NwvwZwB7dHMgH/eieqCyq+0oqIirFu3DkeOHEFmZiYUioprk54/f15jwREREZFyWrcwYo8lUR1TuZCeNWsWwsPDMXHiRHh6enIsNBERERE1SSoX0r///jtCQ0PRr18/bcRDRERERNQoqDwLoXXr1jAxqXlxcCIiIiKip53KhfQXX3yBd955BykpKdqIh4iIiIioUVB5aIeHhweKiorQrl07GBsbQyqtuAh8Tk6OxoIjIiIiImqoVC6kp06dilu3bmH58uWwtrbmZEMiIiIiapJULqQjIiIQGRmJ7t27ayMeIiIiIqJGQeUx0q6urigsLNRGLEREREREjYbKhfSnn36KN998E0ePHkV2djby8vIq/GjL3bt34efnBzMzM5iZmcHPzw/37t2r8RwhBIKCgmBnZwcjIyMMHDgQly5dKr8/JycHb7zxBlxcXGBsbIy2bdti3rx5yM3N1drzICIiIqKng8pDO0aMGAEAGDJkSIXjQghIJBKUlZVpJrLHTJs2DWlpaQgLCwMAvPbaa/Dz88Ovv/5a7TmrVq3C6tWrsXXrVjg7O+Pjjz/GsGHDkJiYCBMTE9y+fRu3b9/G559/jk6dOiElJQX+/v64ffs29uzZo5XnQURERERPB5UL6SNHjmgjjholJCQgLCwMp06dQp8+fQAAwcHB8PLyQmJiIlxcXCqdI4TAmjVrsGTJEowfPx4A8P3338Pa2hrbt2/HnDlz0KVLF+zdu7f8nPbt2+OTTz7BSy+9hNLSUujpqfzrISIiIqImQuVKccCAAdXeFxMTU5tYqhUZGQkzM7PyIhoA+vbtCzMzM0RERFRZSCcnJ0Mmk8HHx6f8mIGBAQYMGICIiAjMmTOnysfKzc2FqalpjUV0cXExiouLy28/GtIil8shl8tVfn7UuDzKMXPdNDDfTQvz3bQw302LNvJc6y7X3NxcbNu2Dd999x0uXLiglaEdMpkMVlZWlY5bWVlBJpNVew4AWFtbVzhubW1d7WYy2dnZ+Oijj6otsh9ZsWIFli1bVun4kSNHYGxsXOO59PQIDw+v7xCoDjHfTQvz3bQw301DQUGBxq+pdiF9+PBhbN68Gfv27YODgwMmTJiAkJAQla4RFBRUZUH6b2fPngWAKterfjQuuyaP31/dOXl5eXjuuefQqVMnLF26tMZrLl68GAEBARXOtbe3x6BBg9CqVasaz6XGTy6XIzw8HMOGDau0IRE9fZjvpoX5blqY76YlOztb49dUqZBOS0vD1q1bsXnzZjx48ACTJk2CXC7H3r170alTJ5Uf/PXXX8eUKVNqbOPo6IjY2FhkZGRUuu/OnTuVepwfsbGxAfCwZ9rW1rb8eGZmZqVz8vPzMWLECDRv3hz79+9/4ovJwMAABgYGlY5LpVK+EJsQ5rtpYb6bFua7aWG+mwZt5FjpQnrUqFE4efIkRo8ejXXr1mHEiBHQ1dXFpk2b1H5wCwsLWFhYPLGdl5cXcnNzcebMGXh6egIATp8+jdzcXHh7e1d5jpOTE2xsbBAeHo6ePXsCAEpKSnDs2DGsXLmyvF1eXh6GDx8OAwMDHDx4EIaGhmo/HyIiIiJqOpReR/rQoUN49dVXsWzZMjz33HPQ1dXVZlwVuLm5YcSIEZg9ezZOnTqFU6dOYfbs2Rg9enSFiYaurq7Yv38/gIdDOhYsWIDly5dj//79iIuLw4wZM2BsbIxp06YBeNgT7ePjgwcPHiAkJAR5eXmQyWSQyWRaW8aPiIiIiJ4OSvdInzhxAps3b4aHhwdcXV3h5+eHyZMnazO2CrZt24Z58+aVr8Lh6+uL9evXV2iTmJhYYTOVRYsWobCwEHPnzsXdu3fRp08fHDp0CCYmJgCAqKgonD59GgDQoUOHCtdKTk6Go6OjFp8RERERETVmShfSXl5e8PLywldffYWdO3di8+bNCAgIgEKhQHh4OOzt7csLVG0wNzfHTz/9VGMbIUSF2xKJBEFBQQgKCqqy/cCBAyudQ0RERESkDJW3CDc2NsasWbNw8uRJXLx4EW+++SY+/fRTWFlZwdfXVxsxEhERERE1OCoX0v/m4uKCVatWIS0tDTt27NBUTEREREREDV6tCulHdHV1MW7cOBw8eFATlyMiIiIiavA0UkgTERERETU1LKSJiIiIiNTAQpqIiIiISA0spImIiIiI1MBCmoiIiIhIDSykiYiIiIjUwEKaiIiIiEgNLKSJiIiIiNTAQpqIiIiISA0spImIiIiI1MBCmoiIiIhIDSykiYiIiIjUwEKaiIiIiEgNLKSJiIiIiNTAQpqIiIiISA0spImIiIiI1MBCmoiIiIhIDSykiYiIiIjUwEKaiIiIiEgNLKSJiIiIiNTQaArpu3fvws/PD2ZmZjAzM4Ofnx/u3btX4zlCCAQFBcHOzg5GRkYYOHAgLl26VG3bkSNHQiKR4MCBA5p/AkRERET0VGk0hfS0adMQExODsLAwhIWFISYmBn5+fjWes2rVKqxevRrr16/H2bNnYWNjg2HDhiE/P79S2zVr1kAikWgrfCIiIiJ6yujVdwDKSEhIQFhYGE6dOoU+ffoAAIKDg+Hl5YXExES4uLhUOkcIgTVr1mDJkiUYP348AOD777+HtbU1tm/fjjlz5pS3vXDhAlavXo2zZ8/C1ta2bp4UERERETVqjaKQjoyMhJmZWXkRDQB9+/aFmZkZIiIiqiykk5OTIZPJ4OPjU37MwMAAAwYMQERERHkhXVBQgKlTp2L9+vWwsbFRKp7i4mIUFxeX387NzQUA5OTkqPX8qHGRy+UoKChAdnY2pFJpfYdDWsZ8Ny3Md9PCfDctj+o0IYTGrtkoCmmZTAYrK6tKx62srCCTyao9BwCsra0rHLe2tkZKSkr57YULF8Lb2xtjx45VOp4VK1Zg2bJllY47OzsrfQ0iIiIiqnvZ2dkwMzPTyLXqtZAOCgqqsiD9t7NnzwJAleOXhRBPHNf8+P3/PufgwYM4fPgwoqOjVQkbixcvRkBAQPnte/fuwcHBAampqRpLDDVceXl5sLe3x82bN2Fqalrf4ZCWMd9NC/PdtDDfTUtubi7atm0Lc3NzjV2zXgvp119/HVOmTKmxjaOjI2JjY5GRkVHpvjt37lTqcX7k0TANmUxWYdxzZmZm+TmHDx9GUlISWrRoUeHcCRMmoH///jh69GiV1zYwMICBgUGl42ZmZnwhNiGmpqbMdxPCfDctzHfTwnw3LTo6mltro14LaQsLC1hYWDyxnZeXF3Jzc3HmzBl4enoCAE6fPo3c3Fx4e3tXeY6TkxNsbGwQHh6Onj17AgBKSkpw7NgxrFy5EgAQGBiIV199tcJ5Xbt2xZdffokxY8bU5qkRERER0VOuUYyRdnNzw4gRIzB79mx88803AIDXXnsNo0ePrjDR0NXVFStWrMDzzz8PiUSCBQsWYPny5ejYsSM6duyI5cuXw9jYGNOmTQPwsNe6qgmGbdu2hZOTU908OSIiIiJqlBpFIQ0A27Ztw7x588pX4fD19cX69esrtElMTCxfQQMAFi1ahMLCQsydOxd3795Fnz59cOjQIZiYmGg0NgMDAyxdurTK4R709GG+mxbmu2lhvpsW5rtp0Ua+JUKTa4AQERERETURjWZnQyIiIiKihoSFNBERERGRGlhIExERERGpgYU0EREREZEaWEgraePGjXBycoKhoSHc3d1x4sSJGtsfO3YM7u7uMDQ0RLt27bBp06Y6ipQ0QZV879u3D8OGDYOlpSVMTU3h5eWFP//8sw6jpdpS9fX9yD///AM9PT306NFDuwGSRqma7+LiYixZsgQODg4wMDBA+/btsXnz5jqKlmpL1Xxv27YN3bt3h7GxMWxtbTFz5kxkZ2fXUbSkruPHj2PMmDGws7ODRCLBgQMHnniORmo1QU+0c+dOIZVKRXBwsIiPjxfz588XzZo1EykpKVW2v379ujA2Nhbz588X8fHxIjg4WEilUrFnz546jpzUoWq+58+fL1auXCnOnDkjrly5IhYvXiykUqk4f/58HUdO6lA134/cu3dPtGvXTvj4+Iju3bvXTbBUa+rk29fXV/Tp00eEh4eL5ORkcfr0afHPP//UYdSkLlXzfeLECaGjoyO++uorcf36dXHixAnRuXNnMW7cuDqOnFQVGhoqlixZIvbu3SsAiP3799fYXlO1GgtpJXh6egp/f/8Kx1xdXUVgYGCV7RctWiRcXV0rHJszZ47o27ev1mIkzVE131Xp1KmTWLZsmaZDIy1QN9+TJ08W7733nli6dCkL6UZE1Xz/8ccfwszMTGRnZ9dFeKRhqub7s88+E+3atatwbO3ataJNmzZai5E0T5lCWlO1God2PEFJSQmioqLKN4J5xMfHBxEREVWeExkZWan98OHDce7cOcjlcq3FSrWnTr4fp1AokJ+fD3Nzc22ESBqkbr63bNmCpKQkLF26VNshkgapk++DBw/Cw8MDq1atQuvWreHs7Iy33noLhYWFdREy1YI6+fb29kZaWhpCQ0MhhEBGRgb27NmD5557ri5CpjqkqVqt0exsWF+ysrJQVlYGa2vrCsetra0hk8mqPEcmk1XZvrS0FFlZWbC1tdVavFQ76uT7cV988QUePHiASZMmaSNE0iB18n316lUEBgbixIkT0NPjW2hjok6+r1+/jpMnT8LQ0BD79+9HVlYW5s6di5ycHI6TbuDUybe3tze2bduGyZMno6ioCKWlpfD19cW6devqImSqQ5qq1dgjrSSJRFLhthCi0rEnta/qODVMqub7kR07diAoKAi7du2ClZWVtsIjDVM232VlZZg2bRqWLVsGZ2fnugqPNEyV17dCoYBEIsG2bdvg6emJUaNGYfXq1di6dSt7pRsJVfIdHx+PefPm4YMPPkBUVBTCwsKQnJwMf3//ugiV6pgmajV2pzyBhYUFdHV1K316zczMrPRJ5hEbG5sq2+vp6aFVq1Zai5VqT518P7Jr1y688sor2L17N4YOHarNMElDVM13fn4+zp07h+joaLz++usAHhZaQgjo6enh0KFDGDx4cJ3ETqpT5/Vta2uL1q1bw8zMrPyYm5sbhBBIS0tDx44dtRozqU+dfK9YsQL9+vXD22+/DQDo1q0bmjVrhv79++Pjjz/mN8pPEU3VauyRfgJ9fX24u7sjPDy8wvHw8HB4e3tXeY6Xl1el9ocOHYKHhwekUqnWYqXaUyffwMOe6BkzZmD79u0cS9eIqJpvU1NTXLx4ETExMeU//v7+cHFxQUxMDPr06VNXoZMa1Hl99+vXD7dv38b9+/fLj125cgU6Ojpo06aNVuOl2lEn3wUFBdDRqVga6erqAvhfbyU9HTRWq6k0NbGJerR8TkhIiIiPjxcLFiwQzZo1Ezdu3BBCCBEYGCj8/PzK2z9aUmXhwoUiPj5ehISEcPm7RkTVfG/fvl3o6emJDRs2iPT09PKfe/fu1ddTIBWomu/HcdWOxkXVfOfn54s2bdqIiRMnikuXLoljx46Jjh07ildffbW+ngKpQNV8b9myRejp6YmNGzeKpKQkcfLkSeHh4SE8PT3r6ymQkvLz80V0dLSIjo4WAMTq1atFdHR0+VKH2qrVWEgracOGDcLBwUHo6+uLXr16iWPHjpXfN336dDFgwIAK7Y8ePSp69uwp9PX1haOjo/j666/rOGKqDVXyPWDAAAGg0s/06dPrPnBSi6qv739jId34qJrvhIQEMXToUGFkZCTatGkjAgICREFBQR1HTepSNd9r164VnTp1EkZGRsLW1la8+OKLIi0trY6jJlUdOXKkxr/F2qrVJELwuwoiIiIiIlVxjDQRERERkRpYSBMRERERqYGFNBERERGRGlhIExERERGpgYU0EREREZEaWEgTEREREamBhTQRERERkRpYSBMRERERqYGFNBHRUyQoKAg9evSot8d///338dprrynV9q233sK8efO0HBERkfZwZ0MiokZCIpHUeP/06dOxfv16FBcXo1WrVnUU1f9kZGSgY8eOiI2NhaOj4xPbZ2Zmon379oiNjYWTk5P2AyQi0jAW0kREjYRMJiv//127duGDDz5AYmJi+TEjIyOYmZnVR2gAgOXLl+PYsWP4888/lT5nwoQJ6NChA1auXKnFyIiItINDO4iIGgkbG5vyHzMzM0gkkkrHHh/aMWPGDIwbNw7Lly+HtbU1WrRogWXLlqG0tBRvv/02zM3N0aZNG2zevLnCY926dQuTJ09Gy5Yt0apVK4wdOxY3btyoMb6dO3fC19e3wrE9e/aga9euMDIyQqtWrTB06FA8ePCg/H5fX1/s2LGj1r8bIqL6wEKaiOgpd/jwYdy+fRvHjx/H6tWrERQUhNGjR6Nly5Y4ffo0/P394e/vj5s3bwIACgoKMGjQIDRv3hzHjx/HyZMn0bx5c4wYMQIlJSVVPsbdu3cRFxcHDw+P8mPp6emYOnUqZs2ahYSEBBw9ehTjx4/Hv78I9fT0xM2bN5GSkqLdXwIRkRawkCYiesqZm5tj7dq1cHFxwaxZs+Di4oKCggK8++676NixIxYvXgx9fX38888/AB72LOvo6OC7775D165d4ebmhi1btiA1NRVHjx6t8jFSUlIghICdnV35sfT0dJSWlmL8+PFwdHRE165dMXfuXDRv3ry8TevWrQHgib3dREQNkV59B0BERNrVuXNn6Oj8r9/E2toaXbp0Kb+tq6uLVq1aITMzEwAQFRWFa9euwcTEpMJ1ioqKkJSUVOVjFBYWAgAMDQ3Lj3Xv3h1DhgxB165dMXz4cPj4+GDixIlo2bJleRsjIyMAD3vBiYgaGxbSRERPOalUWuG2RCKp8phCoQAAKBQKuLu7Y9u2bZWuZWlpWeVjWFhYAHg4xONRG11dXYSHhyMiIgKHDh3CunXrsGTJEpw+fbp8lY6cnJwar0tE1JBxaAcREVXQq1cvXL16FVZWVujQoUOFn+pWBWnfvj1MTU0RHx9f4bhEIkG/fv2wbNkyREdHQ19fH/v37y+/Py4uDlKpFJ07d9bqcyIi0gYW0kREVMGLL74ICwsLjB07FidOnEBycjKOHTuG+fPnIy0trcpzdHR0MHToUJw8ebL82OnTp7F8+XKcO3cOqamp2LdvH+7cuQM3N7fyNidOnED//v3Lh3gQETUmLKSJiKgCY2NjHD9+HG3btsX48ePh5uaGWbNmobCwEKamptWe99prr2Hnzp3lQ0RMTU1x/PhxjBo1Cs7OznjvvffwxRdfYOTIkeXn7NixA7Nnz9b6cyIi0gZuyEJERBohhEDfvn2xYMECTJ069Yntf//9d7z99tuIjY2Fnh6n7BBR48MeaSIi0giJRIJvv/0WpaWlSrV/8OABtmzZwiKaiBot9kgTEREREamBPdJERERERGpgIU1EREREpAYW0kREREREamAhTURERESkBhbSRERERERqYCFNRERERKQGFtJERERERGpgIU1EREREpAYW0kREREREavg/7QD64UyeNDAAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 800x600 with 3 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Build the modal responses as harmonic functions with given properties\n", "uk = MRPy.harmonic(NX=3, N=2048, fs=512, X0=u0i, f0=fk3, phi=thi)\n", "\n", "f5 = uk.plot_time(5, figsize=(8,6), axis_t=(0, 1, -0.04, 0.04))\n", "\n", "#uk.plot_time(4, figsize=(8,6), axis_t=(0, 1, -0.005, 0.005))\n", "\n", "# Calculate the NODAL responses superposing all modal responses\n", "uN = MRPy(np.dot(Phi3, uk), fs=512)\n", "\n", "f4 = uN.plot_time(4, figsize=(8,6), axis_t=(0, 1, -0.04, 0.04))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that the system response contains all natural 3 system natural frequencies, as can be confirmed\n", "by taking a look at the periodograms:\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 5.41499969 15.17249196 21.92488612]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAGeCAYAAAAaHEKjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA9gklEQVR4nO3de5xdVX3//9c7k8uEkDABkhjCJVxiNIAiItCiMlW5hJaGeoV+/RKUFvgV+sWqVbx9BX/qDy0VvhSEBqVCv1iMN4gtLWJ0uBUMd0KAQAgBQmICIRcmt7l9fn/sNcnJycw+eyY5OZM57+fjcR5z9t5r7fPZa3Yyn7P22msrIjAzMzPrzZBaB2BmZmYDm5MFMzMzy+VkwczMzHI5WTAzM7NcThbMzMwsl5MFMzMzy+VkwWw3JqlF0jW1jqMoSZdKeqrWcRQl6UeS/r3WcZjVmpMFqwuSxkn6vqQlkjZLWiFprqSTdnEcu/SPu6RmSZFeXZLWSXpS0v+RdPCuiqPEFcCJJfHtlD/GZcdZ/npbH+rvW7bpYuCTOxpfgc/frZIoqz9Dax2A2S7yc2AP4FxgETCe7I/WPrUMqjeShkVE+07c5eHAG8CewDuBzwDzJf1pRNy9Ez8nV0S0Aq1V/Iju4yz1Wn93FhFrdyycXUvSUKAzPNue7WwR4Zdfg/oFNAEBfKhCuSXApcD/JfuD9gfg82Vl9gJmASuBN4G7gWPKyhwP/BZYD6wF5gL7AT9KcZS+JgPN6f1pwDygDfgz4FDg9hTHeuBR4M/KPqsFuCbnmLr3vW/Z+gbgXuAFoKFk/enAI8Am4EXgW8Dwsjb6KvDPwDpgKfD3Zfs+H3gu7eM14E5gaNp2KfBUyfvy9mhObXdN2T7HABuAD/flOMvKHJl+F+vS7+4J4E/S76A8jh+lOj8C/r2sva8D/pEsKXmNrPdhBHAtsAZ4GfifZZ99ObAQ2Jja8LtAY9p2Tg+ff07adiDwyxTvm8AvgP1L9nsp8FTaxwtAJ7Bnrf/N+TX4Xr4MYfWg+9vsn0tqrFD2s8AzwNHA14FvS/owgCQB/wFMIvtj/i7gHuC3kiamMu8EfkfWe3ECWeIwm6wX72LgAeBfgInp9UrJZ3+H7A/x24Dfk/UC/CdwEllvwM+BXxTpVq8kIjqBK4FD0nEg6RTgFuAasm/onwY+Cny7rPrfAfPJ2ug7wHcl/VHaxzFkfzQvA6YCHwL+q5cwriBrm9+wtT3+G7gB+EtJI0rKnkX2O/xVf48Z+DGwHDiW7JgvJUtoXgE+ksocnuK4OGc//4PsD/dxZEnAVcBtZAnSMcBNwA8k7VdSZz1Ze74d+BvgTOAradtPyJKPhWxth5+k8+02YALwAbLEZj/gtrSt28HAXwIfIztPNhVoC7O+qXW24pdfu+JF9sfgDbL/SB8g+0N1XFmZJcBdZet+ANyX3n+A7A/WyLIyjwNfSO9vAR7MiaOF7b81N5N9m/xIgeN4EPhq3v562fd237jJkpIAPp6W7wG+VlbmjHTMKmmjfysr83x3TMCHyXpTRvcSz6WknoW0/CNKvrmndSOA14EzS9b9HriiwHG2lr2WlpRZB8zsSzuVx5fa+4GSZZH1LswpWTeMrHfooznxXgAs6q1d0rqTyHoKJpesOwToIvWSpXrtwIRa/dvyqz5e7lmwuhARPyf7VnY62bf1PwYelPTlsqIP9LA8Lb1/N9m4h9cktXa/gCPILhlA9o11bj/DfLh0QdIoSd+V9LSk1emzjiHrmt4Zur+ddl/ffjfwlbJj+zEwCnhLSb0ny/azjGwMCMBdwEvAi5JukTRT0ui+BBURm4F/JfsmjqRpZL0BNxao/ifAUSWv95Vs+x7ZN/7fSvrKDvTQbDn+iAiyS1LzS9a1A6vZ2iZI+qik+yT9IbXrlVT+Pb4dWBYRS0r2vZisvaeVlFsaESv6eSxmhThZsLoREZsi4q6I+EZE/DHwQ+BSScML7mIIsIJt/xgdRfYN/WupjLavVtj6suUryLqWv0Y2GPMosjENReOtpPsPzuL0cwjZ5YOjSl7vAKaw7SDB8oGXkeoSEW+SXZ74ONm1+y8Bz5Z1yRfxA+CDkg4kG5T6QEQ8XaDeixGxqOT14pYgIy4lO+bbyJLFJyV9uo9xQc/H32ubSDoeuJVs7MbpZAnlV8l6IPKIrYlcudL15eeN2U7nuyGsnj1N9m+gkazbGLIxBqWOJxvDANkAwwlAV/qG15NHyS5X9KaNbHBhEe8Fbk69IqTxFoeSXRvfIZIayO6IeIHsMgpksb8tIhbtyL4jooNskOJvJX2d7Jv3n5ENDC3XY3tExAJJvwf+muzWxa+Ul+lnbM+TXTa5WtJ1wF+R9Vh0//6L/m764gTg1Yj4f7tXSDqorExP7fA0MEnS5O7eBUmHkPWQFUmczHYaJws26EnaB/gp2R+FJ8kGpx0DfAGYGxHrSoofL+lLwM/IrmOfTTagDbKBePcDt0v6AvAsWff8qcBvIuJe4B/ILm/MIhvot4msK/zXEfEy2TX/YyVNJrumXn6bX6nngL+QdDvZN9evkyU2/TE+3Va3J1lvwd+RfcM9LbLBjgDfAP5d0ktkAw87yC6xHBsRXyjyIZK67+K4h+zY/gQYzdaEq9wSYLqkqcAqYG1svWX0BuB6smP/SR+Ps9QbZH+IryA7D5aQJX3vJRsLAdmlkwD+VNKvgI2R3ea5MzxH9kf/f5Bd1jqFbMBmqSXAQZKOJuuReZPsfHsCuEXS/yLrafgnsqTutzspNrNCfBnC6kEr2cDAi8ludVxANsL/x8Anysp+j+yP6WPAN4H/HRE/gy3Xp08j+4/6BrLR67PJRv0vS2UeJ7sD4G3pM39PNvK9+w/gFWTfIp8m69rPu279WbJv5feSjbN4ML3vjwVkdwI8RpYUPAa8IyLu6S4QEXcCf0r2B35eel1C9serqDVkgyJ/Q5ZMfR74q5RI9eQGskTiYbL2OKFk20/I2mp2urxRRPdxlr7eTzZQcCzZnQoLyW5HfICsjYmIV8mSsW+RXWraaRNnRcSvyJLIq8iS1ZOA/11W7OfAHWTjXV4Dzkrn2xlpuYXsLps/AGekbWa7jHzOmWUkLSG7s+CKWsdikMY5vAycGBH31zoes3rmyxBmNqBIGkY218C3gMecKJjVni9DmNlAcwLZGILjyAY4mlmN+TKEmZmZ5XLPgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlmtorQOopaampjjssMNqHcZuYf369YwaNarWYQx4bqfi3FbFuJ2KcTsV98gjj7weEeP6Uqeuk4UJEybw8MMP1zqM3UJLSwvNzc21DmPAczsV57Yqxu1UjNupOEkv9bWOL0OYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZLicLZmZmlquqyYKkUyUtlLRI0iU9bJekq9P2JyUdXamupL0l3SXp+fRzbNk+D5TUKunz1Tw2MzOzelG1ZEFSA3AtMB2YBpwlaVpZsenAlPQ6D7iuQN1LgLkRMQWYm5ZLXQn8504/IDMzszpVzZ6FY4FFEbE4ItqAW4EZZWVmADdH5kGgSdLECnVnADel9zcBZ3TvTNIZwGJgQXUOyczMrP4MreK+JwGvlCwvBY4rUGZShboTImI5QEQslzQeQNIo4IvASUCvlyAknUfWi8G4ceNoaWnp00HVq9bWVrdVAW6n4txWxbidinE7VVc1kwX1sC4KlilSt9xlwJUR0Sr1VD3tJGIWMAtg6tSp0dzcXGG3BtDS0oLbqjK3U3Fuq2LcTsW4naqrmsnCUuCAkuX9gWUFywzPqbtC0sTUqzARWJnWHwd8VNJ3gSagS9KmiLhmZxyMmZlZvarmmIWHgCmSDpY0HDgTmFNWZg5wdror4nhgbbrEkFd3DjAzvZ8J3A4QEe+LiMkRMRm4Cvi2EwUzM7MdV7WehYjokHQRcCfQANwYEQskXZC2Xw/cAZwGLAI2AJ/Kq5t2fTkwW9K5wMvAx6p1DGZmZlbdyxBExB1kCUHpuutL3gdwYdG6af0q4IMVPvfSfoRrZmZmPfAMjmZmZpbLyYKZmZnlcrJgZmZmuZws2A7p7Apee3NzrcMwM7MqcrJgO+TV1Ru57bFXax2GmZlVUe7dEJJOIXv2wiSyGRSXAbdHxH9VPzTbHaze0Mabm9prHYaZmVVRr8mCpKuAtwI3k820CNlMiv9L0vSIuLj64dlAt3pDG+s2ddQ6DDMzq6K8noXTIuKt5Ssl/QR4DnCyYKzZ0E7rZicLZmaDWd6YhU2Sju1h/XuATVWKx3Yzqze0MWp4Q63DMDOzKsrrWTgHuE7SaLZehjgAWJe2mbF2YztjRg6rdRhmZlZFvSYLEfEocJykt5ANcBSwNCL+sKuCs4GvK2BIziPBzcxs91fx2RApOXCCYGZmVqc8z4LtsKh1AGZmVlVOFmynyB4gamZmg1FusiBpiKSndlUwtnvaY3gDG9s7ax2GmZlVSW6yEBFdwBOSDtxF8dhuaHTjUN70xExmZoNWxQGOwERggaR5wPrulRHx51WLynYLmzs6Gd4gRjcO481N7UwY01jrkMzMrAqKJAuXVT0K2y2t2dBO0x7DGd041FM+m5kNYkVunbxb0kHAlIj4jaQ9AE/ZZ6ze0MbYPYYzpnGYL0OYmQ1iFe+GkPTXwM+Af06rJgG3VTEm202sXt/O2FHDGNM4lHUb/eRJM7PBqsitkxcCJ5BN80xEPA+Mr2ZQtntYk3oWRrtnwcxsUCuSLGyOiLbuBUlD8Tw8Bqze0J6ShaG8uck9C2Zmg1WRZOFuSV8GRko6Cfgp8KvqhmW7g9Ub2mjaYxh7DG9gQ5vnWTAzG6yKJAuXAK8B84HzgTuAr1YzKNs9tHV00TisAUnuajIzG8SK3DrZDNwSETdUORYzMzMbgIokC+cA10taBdybXvdFxOpqBma7Fz+k2sxs8Coyz8LZAJL2Az4KXAvsV6SuDW6+9GBmVh8q/sGX9EngfcCRwOvANWS9C2ZmZlYHivQOXAW8AFwP/C4illQzINs9uZfBzGzwqng3RETsC3waaAS+JWmepH8tsnNJp0paKGmRpEt62C5JV6ftT0o6ulJdSXtLukvS8+nn2LT+JEmPSJqffn6gSIzWP11d4XEKZmZ1osh0z2OAA4GDgMnAXkBXgXoNZOMbpgPTgLMkTSsrNh2Ykl7nAdcVqHsJMDcipgBz0zJkl0hOj4gjgZlAoYTG+mfdpnbGjBy2ZVlAhPsXzMwGoyLzLNwHnA48CXwiIqZGxMwC9Y4FFkXE4jQD5K3AjLIyM4CbI/Mg0CRpYoW6M4Cb0vubgDMAIuKxiFiW1i8AGiWNKBCn9UM2e+PWZGHUiAbWe2ImM7NBqcjdEO8AkDSavl2angS8UrK8FDiuQJlJFepOiIjlKbblknp6TsVHgMciYnP5BknnkfViMG7cOFpaWooeT11rbW3dpq0WrelkQ3vQsm4RAMteaefXG15i78Yi+efgVd5O1ju3VTFup2LcTtVV5G6II8i69PfOFvUaMDMinqpUtYd15clGb2WK1O35Q6XDge8AJ/e0PSJmAbMApk6dGs3NzUV2W/daWloobauuZ1ew96gRHHVAEwCtTy7jrRNG89YJo2sT4ABR3k7WO7dVMW6nYtxO1VXka+As4LMRcVBEHAh8Lq2rZClwQMny/sCygmXy6q5IlypIP1d2F5K0P/BL4OyIeKFAjNZPq9dvexliTOMwP6bazGyQKpIsjIqI33UvREQLMKpAvYeAKZIOljQcOBOYU1ZmDnB2uivieGBtusSQV3cO2QBG0s/bASQ1Af8BfCki7i8Qn+2A7CFSw7csZ0+e9GOqzcwGoyLJwmJJX5M0Ob2+CrxYqVJEdAAXAXcCzwCzI2KBpAskXZCK3QEsBhYBNwB/k1c31bkcOEnS88BJaZlU/jDga5IeT6+exjPYTvDmpg7GNG69ijW6cRjr/JhqM7NBqcikTJ8GLgN+kZbvAT5VZOcRcQdZQlC67vqS9wFcWLRuWr8K+GAP678JfLNIXLZzSFuHloxxz4KZ2aDVa7IgqRG4gOzb+nzgcxHhr47Wo9GNw5wsmJkNUnmXIW4CjiFLFKYD/7BLIrLdUuOwIWxs9zwLZmaDUd5liGlpNkQk/RCYt2tCst2RJE//bGY2SOX1LGy55JAGHJqZmVkdyutZeKekdem9gJFpOT0GIMZUPTobsPwUCDOz+tFrshARDbsyENt9bGzrpHHY9p1STiDMzAan+p7I3/pl9YY2xpZMyGRmZoObkwXrsyxZGLbdeg9wNDMbnJwsWJ+t2dDungUzszriZMH6bPWGNsaO2j5ZkKCryyMXzMwGGycL1merN7TT1MNliD1HDKW1zXfZmpkNNk4WrM/WbmijaeT2PQt+TLWZ2eDkZMH6rL0zGD50+1PHj6k2MxucnCzYTuOHSZmZDU5OFmynyXoWfBnCzGywcbJgfdbb/Q6+DGFmNjg5WbA+2dTeydAhPU+/NGbkMNa5Z8HMbNBxsmB98uhLq3n3QWN73OaeBTOzwcnJgvXJwznJwoihDbR1dO3iiMzMrNqcLFiftHV00TjMDyQ1M6snThassDUb2thr5PYzN5byZM9mZoOPkwUr7IEXVvFHh+5T6zDMzGwXc7JghT29fB3TJo6pdRhmZraLOVmwwiJgSC+3TXbL32pmZrsjJwtWyGsbuth/7Mhah2FmZjXgZMEKWbCqk/dO2bdiOQ9wNDMbfJwsWCGrNgb7j92jYrkGiY5Oz7VgZjaYOFmwirq6ovBghNGNQ2nd7FkczcwGEycLVtHTy9dx0Ohip8qEMY08+vLqKkdkg8nvF6/iO//1LJ1dvohlNlBVNVmQdKqkhZIWSbqkh+2SdHXa/qSkoyvVlbS3pLskPZ9+ji3Z9qVUfqGkU6p5bPViY1snP334Fd6+T7FZG0878i283trGdS0v+HKEVXTf86/z+Ctr+PC7JnHFrxdmvVhmNuBULVmQ1ABcC0wHpgFnSZpWVmw6MCW9zgOuK1D3EmBuREwB5qZl0vYzgcOBU4Hvp/1YP6xct4lrf7eI61oWMfOPJzNqWLHrEJL4+DEHcNK08Xzj359m6eoNVY7UdldPvtbBwhVvcv6JhzJlwmj+9MiJ/J+5zxPhhMFsoBlaxX0fCyyKiMUAkm4FZgBPl5SZAdwc2f8OD0pqkjQRmJxTdwbQnOrfBLQAX0zrb42IzcCLkhalGB6o4jHuViKC9s5gc0cnm9q7aN3cwbqN7azb1M4b69tYunojm9s7QWL0iKH85bEHMnbUcABe7uNnHTZ+NF8+7e3c9N9LWL+5gwDGjx7BIeP2pGmPYew1MnvtOWIokmdnqBcRweutbdy/6HVWbgi++d6Dt2w7YtJebO7o5Lq7X+Bvmg+rYZRmVq6aycIk4JWS5aXAcQXKTKpQd0JELAeIiOWSxpfs68Ee9tWrtZuDK+96rvKR7KCg+GRF5WXz6lYqW7rc/X740CGMGDqEEcMaGD1iKGNGDmV04zAO328vTjn8LTv1IVGNwxo4/8RDs8+P4LU3N7P49fW88sZGntq4lrUb21m/uXNLbP05nt70pc13piVL2nisvfrn1EBU5PcHsM+o4Ux9y2g+dND2zxl590F7094ZfO+u57acE1TY72C3K86p0r6c8n+LPf0OBqJ6/re3K1QzWejp3CrvX+ytTJG6/fk8JJ1HdskDYPNnT576VIX9WmZf4PVaB7EbcDsV57Yqxu1UjNupuKl9rVDNZGEpcEDJ8v7AsoJlhufUXSFpYupVmAis7MPnERGzgFkAkh6OiGP6clD1ym1VjNupOLdVMW6nYtxOxUl6uK91qnk3xEPAFEkHSxpONvhwTlmZOcDZ6a6I44G16RJDXt05wMz0fiZwe8n6MyWNkHQw2aDJedU6ODMzs3pRtZ6FiOiQdBFwJ9AA3BgRCyRdkLZfD9wBnAYsAjYAn8qrm3Z9OTBb0rlk4+4+luoskDSbbBBkB3BhRHRW6/jMzMzqher5NiVJ56XLElaB26oYt1Nxbqti3E7FuJ2K609b1XWyYGZmZpV5umczMzPLVbfJQqWpqC0jaYmk+ZIe788I2sFM0o2SVkp6qmRdr9OR16te2ulSSa+m8+pxSafVMsaBQNIBkn4n6RlJCyRdnNb7nCqT01Y+r0pIapQ0T9ITqZ0uS+v7fE7V5WWINA30c8BJZLdcPgScFRFP51asQ5KWAMdEhO9fLiPp/UAr2SykR6R13wXeiIjLUxI6NiK+WMs4a62XdroUaI2IK2oZ20CSbgWfGBGPShoNPAKcAZyDz6lt5LTVx/F5tYWy6XFHRUSrpGHAfcDFwIfp4zlVrz0LW6aijog2oHs6abPCIuIe4I2y1TPIpiEn/TxjV8Y0EPXSTlYmIpZHxKPp/ZvAM2Sz0PqcKpPTVlYiMq1pcVh6Bf04p+o1WehtmmnbXgC/lvRImv3S8m0zHTkwvkL5enaRsqfN3uiu9W1Jmgy8C/g9PqdylbUV+LzahqQGSY+TTWB4V0T065yq12ShP9NJ16sTIuJosieAXpi6lM121HXAocBRwHLgH2sazQAiaU/g58BnImJdreMZyHpoK59XZSKiMyKOIpvV+FhJR/RnP/WaLBSaGtogIpalnyuBX5JdwrHerUjXU7uvq66sUL4uRcSK9J9YF3ADPq8ASNeVfw7cEhG/SKt9TvWgp7byedW7iFhD9pTmU+nHOVWvyUKRqajrnqRRafAQkkYBJwN+8Fa+3qYjtxLd/1Elf4HPq+7BaD8EnomI75Vs8jlVpre28nm1LUnjJDWl9yOBDwHP0o9zqi7vhgBIt9RcxdbppL9V24gGHkmHkPUmQDY1+I/dTltJ+jegmexpdyuArwO3AbOBA0nTkUdEXQ/u66Wdmsm6igNYApzffQ21Xkl6L3AvMB/oSqu/THYt3udUiZy2OgufV1tIegfZAMYGss6B2RHxDUn70Mdzqm6TBTMzMyumXi9DmJmZWUFOFszMzCyXkwUzMzPLNbTWAdRSU1NTHHbYYbUOY7ewfv16Ro0aVeswBjy3U3Fuq2LcTsW4nYp75JFHXo+IcX2pU9fJwoQJE3j4YT8bqYiWlhaam5trHcaA53Yqzm1VjNupGLdTcZJe6msdX4YwMzOzXE4WzMzMLJeTBTMzM8vlZMHMzMxyOVkwMzOzXE4WzMzMLJeTBTMzM8vlZMHMzMxyOVkwMzOzXE4WzMzMLJeTBTMzM8vlZMHMzMxyOVkwMzOzXE4WzMzMLFdVkwVJp0paKGmRpEt62C5JV6ftT0o6ulJdSXtLukvS8+nn2LJ9HiipVdLnq3lsZmZm9aJqyYKkBuBaYDowDThL0rSyYtOBKel1HnBdgbqXAHMjYgowNy2XuhL4z51+QGZmZnWqmj0LxwKLImJxRLQBtwIzysrMAG6OzINAk6SJFerOAG5K728CzujemaQzgMXAguockpmZWf0ZWsV9TwJeKVleChxXoMykCnUnRMRygIhYLmk8gKRRwBeBk4BeL0FIOo+sF4Nx48bR0tLSp4OqV62trW6rAtxOxbmtinE7FeN2qq5qJgvqYV0ULFOkbrnLgCsjolXqqXraScQsYBbA1KlTo7m5ucJuDaClpQW3VWVup+LcVsW4nYpxO1VXNZOFpcABJcv7A8sKlhmeU3eFpImpV2EisDKtPw74qKTvAk1Al6RNEXHNzjgYMzOzelXNMQsPAVMkHSxpOHAmMKeszBzg7HRXxPHA2nSJIa/uHGBmej8TuB0gIt4XEZMjYjJwFfBtJwpmZmY7rmo9CxHRIeki4E6gAbgxIhZIuiBtvx64AzgNWARsAD6VVzft+nJgtqRzgZeBj1XrGMzMzKy6lyGIiDvIEoLSddeXvA/gwqJ10/pVwAcrfO6l/QjXzMzMeuAZHM3MzCyXkwUzMzPL5WTBzMzMcjlZMDMzs1xOFszMzCxXv5IFSf97ZwdiZmZmA1N/exb+aqdGYWZmZgNWr/MsSFrX2yZgZHXCMTMzs4Emb1KmNcB7ImJF+QZJr2xf3MzMzAajvMsQNwMH9bLtx1WIxczMzAagXnsWIuKrOdu+WJ1wzMzMbKDxrZNmZmaWy8mCmZmZ5XKyYGZmZrlykwVJQyQ9tauCMTMzs4EnN1mIiC7gCUkH7qJ4zMzMbIDJm2eh20RggaR5wPrulRHx51WLyszMzAaMIsnCZVWPwszMzAasislCRNwt6SBgSkT8RtIeQEP1QzMzM7OBoOLdEJL+GvgZ8M9p1STgtirGZGZmZgNIkVsnLwROANYBRMTzwPhqBmVmZmYDR5FkYXNEtHUvSBoKRPVCMjMzs4GkSLJwt6QvAyMlnQT8FPhVdcMyMzOzgaJIsnAJ8BowHzgfuAPo9SFTZmZmNrgUuXWyGbglIm6ocixmZmY2ABVJFs4Brpe0Crg3ve6LiNXVDMzMzMwGhiLzLJwNIGk/4KPAtcB+ReqamZnZ7q/iH3xJnwTeBxwJvA5cQ9a7YMbq9W3MW/IGpxz+llqHYmZmVVKkd+Aq4AXgeuB3EbGkmgHZ7uWlNzbw1KtrnSyYmQ1iFe+GiIh9gU8DjcC3JM2T9K9Fdi7pVEkLJS2SdEkP2yXp6rT9SUlHV6oraW9Jd0l6Pv0cm9afJOkRSfPTzw8UidF2zPI1G3ntzc21DsPMzKqoyHTPY4ADgYOAycBeQFeBeg1k4xumA9OAsyRNKys2HZiSXucB1xWoewkwNyKmAHPTMmSXSE6PiCOBmUChhMZ2zLK1m2gc5keFmJkNZkXmWbgPOB14EvhEREyNiJkF6h0LLIqIxWkGyFuBGWVlZgA3R+ZBoEnSxAp1ZwA3pfc3AWcARMRjEbEsrV8ANEoaUSBO2wHrNrYzptFjXc3MBrMid0O8A0DSaPo2zfMk4JWS5aXAcQXKTKpQd0JELE+xLZfU03MqPgI8FhHb9Y9LOo+sF4Nx48bR0tJS9HjqWmtra49ttWRJNhN4S8vyXRzRwNRbO9n23FbFuJ2KcTtVV5G7IY4g69LfO1vUa8DMiHiqUtUe1pUnG72VKVK35w+VDge+A5zc0/aImAXMApg6dWo0NzcX2W3da2lpoae2erT9OQBOPHEKUk+/tvrSWzvZ9txWxbidinE7VVeRyxCzgM9GxEERcSDwubSukqXAASXL+wPLCpbJq7siXaog/VzZXUjS/sAvgbMj4oUCMdpOMKZxKOs2ddQ6DDMzq5IiycKoiPhd90JEtACjCtR7CJgi6WBJw4EzgTllZeYAZ6e7Io4H1qZLDHl155ANYCT9vB1AUhPwH8CXIuL+AvHZDmrv7GLoEDFu9Aheb/UdEWZmg1WRZGGxpK9JmpxeXwVerFQpIjqAi4A7gWeA2RGxQNIFki5Ixe4AFgOLgBuAv8mrm+pcDpwk6XngpLRMKn8Y8DVJj6dXT+MZbCdZsW4TbxnTyL57jvDtk2Zmg1iRYeyfBi4DfpGW7wE+VWTnEXEHWUJQuu76kvcBXFi0blq/CvhgD+u/CXyzSFy2cyxfu4mJTY2MGz2C51a8WetwzMysSnpNFiQ1AheQfVufD3wuItp3VWA28C1bs5HD99uLvUcN5/5Fr9c6HDMzq5K8yxA3AceQJQrTgX/YJRHZbmP52k3s19RI08hhrNngPNLMbLDKuwwxLc2GiKQfAvN2TUi2u9jQ1skew7NTqC8TcJiZ2e4lr2dhy1fFNODQzMzM6lBez8I7Ja1L7wWMTMsiG5s4purRmZmZWc31mixEhJ8OZGZmZoXmWTDbzqb2TkYM3Xr6pO6m2gVkZmZV42TB+qX7Tohue40cxtqNviPCzGwwcrJg/bJszUYm7jVyy/K+nvLZzGzQcrJg/bJszUb2K00W9hzOSk/5bGY2KDlZsH5ZsW4TE/YasWV5/OgRvN7aVsOIzMysWpwsWL+0dQYjhm69YcYPkzIzG7ycLNhOsdfIYazzAEczs0HJyYL1T9ltkpI85bOZ2SDlZMHMzMxyOVmwPlu3qZ09G/NmCjczs8HEyYL12fI1m9ivaWTlgmZmNig4WbA+W7Z22wmZugno6vLIBTOzwcbJgvVZ1rPQuN36sXsMY43viDAzG3ScLFifrXxzE+NHb58seMpnM7PBycmC9VlXV9AwRNutH+eJmczMBiUnC7bTuGfBzGxwcrJgfdK6uYMhPfQqgKd8NjMbrJwsWJ/c9tirzDhqUo/bxjQOZd2mjl0ckZmZVZuTBSssInhp1XoO3ndUj9ulnnsczMxs9+ZkwQp7cPEb/NGh+9Q6DDMz28WcLFhhLc+t5MS3jq91GGZmtos5WbBC3tjUxfjRjT3eMmlmZoObkwUr5P5XO/jI0T0PbCw1RNDpKZ/NzAaVqiYLkk6VtFDSIkmX9LBdkq5O25+UdHSlupL2lnSXpOfTz7El276Uyi+UdEo1j62ebO7oZHMnNO0xvGLZvUcNZ5XnWjAzG1SqlixIagCuBaYD04CzJE0rKzYdmJJe5wHXFah7CTA3IqYAc9MyafuZwOHAqcD3035sB7R3dvF/H3yZ97ylWFOecvhb+Jf/XsKN973I+s2+jdLMbDAYWsV9HwssiojFAJJuBWYAT5eUmQHcHBEBPCipSdJEYHJO3RlAc6p/E9ACfDGtvzUiNgMvSlqUYnigisc4qGxo62BVaxur1rexYNlalq3ZSMOQIbxn8lg6O4olCxPGNPLFU9/GK29s4Pq7X2B4wxCmTBjN/mNHsl/TSMbuMcy3WBoAGzuCe59/jSdeWcOm9i6OmDSGEw7bl9GNw2odWt3a2NbJ/FfXsmDZWg4YuwfHTB5bqEfRBr9qJguTgFdKlpcCxxUoM6lC3QkRsRwgIpZL6h6ePwl4sId99Wrt5uDKu56rfCS7UJA96rk/ZUtHCqhse0/7lSBKKo0c3sA+o4az754jOPGt49h/7B5btrW8WjCo5IC99+BzJ0/lzU3tvPzGBpat2cQjL63mjfVt2x3DNjGVbctbztOXsjvTkiVtPNY+sM6pXSXv97XdtgiWL23nI4cM4dz3HsKIoUOY/+pa/vXBl2jd1MGwhiE97qce7axzqtLvJyJoHNbAkZP24vR37sfLb2zgpw8vZd2mdiQN+N9BPf/b2xWqmSz0dG7l/W0oLVOkbn8+D0nnkV3yANj82ZOnPlVhv5bZF3i91kHsBtxOxe17hduqCJ9Txbidipva1wrVTBaWAgeULO8PLCtYZnhO3RWSJqZehYnAyj58HhExC5gFIOnhiDimLwdVr9xWxbidinNbFeN2KsbtVJykh/tap5p3QzwETJF0sKThZIMP55SVmQOcne6KOB5Ymy4x5NWdA8xM72cCt5esP1PSCEkHkw2anFetgzMzM6sXVetZiIgOSRcBdwINwI0RsUDSBWn79cAdwGnAImAD8Km8umnXlwOzJZ0LvAx8LNVZIGk22SDIDuDCiOis1vGZmZnVC0XU7wQ6ks5LlyWsArdVMW6n4txWxbidinE7FdeftqrrZMHMzMwq83TPZmZmlqtuk4VKU1FbRtISSfMlPd6fEbSDmaQbJa2U9FTJul6nI69XvbTTpZJeTefV45JOq2WMA4GkAyT9TtIzkhZIujit9zlVJqetfF6VkNQoaZ6kJ1I7XZbW9/mcqsvLEGka6OeAk8huuXwIOCsins6tWIckLQGOiQjfv1xG0vuBVrJZSI9I674LvBERl6ckdGxEfLGWcdZaL+10KdAaEVfUMraBJN0KPjEiHpU0GngEOAM4B59T28hpq4/j82oLZdPljoqIVknDgPuAi4EP08dzql57FrZMRR0RbUD3dNJmhUXEPcAbZatnkE1DTvp5xq6MaSDqpZ2sTEQsj4hH0/s3gWfIZqH1OVUmp62sRGRa0+Kw9Ar6cU7Va7LQ2zTTtr0Afi3pkTT7peXbZjpyYHyF8vXsImVPm73RXevbkjQZeBfwe3xO5SprK/B5tQ1JDZIeJ5vA8K6I6Nc5Va/JQn+mk65XJ0TE0WRPAL0wdSmb7ajrgEOBo4DlwD/WNJoBRNKewM+Bz0TEulrHM5D10FY+r8pERGdEHEU2q/Gxko7oz37qNVkoNDW0QUQsSz9XAr8ku4RjvVuRrqd2X1ddWaF8XYqIFek/sS7gBnxeAZCuK/8cuCUifpFW+5zqQU9t5fOqdxGxhuwpzafSj3OqXpOFIlNR1z1Jo9LgISSNAk4G/OCtfL1NR24luv+jSv4Cn1fdg9F+CDwTEd8r2eRzqkxvbeXzaluSxklqSu9HAh8CnqUf51Rd3g0BkG6puYqt00l/q7YRDTySDiHrTYBsavAfu522kvRvQDPZ0+5WAF8HbgNmAweSpiOPiLoe3NdLOzWTdRUHsAQ4v/saar2S9F7gXmA+0JVWf5nsWrzPqRI5bXUWPq+2kPQOsgGMDWSdA7Mj4huS9qGP51TdJgtmZmZWTL1ehjAzM7OCnCyYmZlZLicLZmZmlmtorQOopaampjjssMNqHcZuYf369YwaNarWYQx4bqfi3FbFuJ2KcTsV98gjj7weEeP6Uqeuk4UJEybw8MN+NlIRLS0tNDc31zqMAc/tVJzbqhi3UzFup+IkvdTXOr4MYWZmZrmcLJiZmVkuJwtmZmaWy8mCmZmZ5XKyYGZmZrmcLJiZmVkuJwtmZmaWy8mCmZmZ5XKyYGZmZrmcLJiZmVkuJwtmZmaWy8mCmZmZ5XKyYGZmZrmcLJiZmVmuqiYLkk6VtFDSIkmX9LBdkq5O25+UdHSlupL2lnSXpOfTz7Fl+zxQUqukz1fz2MzMzOpF1ZIFSQ3AtcB0YBpwlqRpZcWmA1PS6zzgugJ1LwHmRsQUYG5aLnUl8J87/YDMzMzqVDV7Fo4FFkXE4ohoA24FZpSVmQHcHJkHgSZJEyvUnQHclN7fBJzRvTNJZwCLgQXVOSQzM7P6M7SK+54EvFKyvBQ4rkCZSRXqToiI5QARsVzSeABJo4AvAicBvV6CkHQeWS8G48aNo6WlpU8HVa9aW1vdVgW4nYpzWxXjdirG7VRd1UwW1MO6KFimSN1ylwFXRkSr1FP1tJOIWcAsgKlTp0Zzc3OF3RpAS0sLbqvK3E7Fua2KcTsV43aqrmomC0uBA0qW9weWFSwzPKfuCkkTU6/CRGBlWn8c8FFJ3wWagC5JmyLimp1xMGZmZvWqmmMWHgKmSDpY0nDgTGBOWZk5wNnprojjgbXpEkNe3TnAzPR+JnA7QES8LyImR8Rk4Crg204UzMzMdlzVehYiokPSRcCdQANwY0QskHRB2n49cAdwGrAI2AB8Kq9u2vXlwGxJ5wIvAx+r1jGYmZlZdS9DEBF3kCUEpeuuL3kfwIVF66b1q4APVvjcS/sRrpmZmfXAMziamZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZrtxkQdIpks6VNLls/aerGpWZmZkNGL0mC5K+DXwFOBKYK+lvSzZfVO3AzMzMbGDI61k4HfhARHwGeDcwXdKVaVvvD18wMzOzQSUvWRgaER0AEbGGLHkYI+mnZM9uMDMzszqQlyy8IOnE7oWI6IyIc4GFwNurHpmZmZkNCHnJwseAeeUrI+KrbPtESDMzMxvEen02RERszNn2anXCMTMzs4HG8yyYmZlZLicLZmZmlqvSpExDJD21q4IxMzOzgSc3WYiILuAJSQfuonjMzMxsgOl1gGOJicACSfOA9d0rI+LPqxaVmZmZDRhFkoXLqh6FmZmZDVgVk4WIuFvSQcCUiPiNpD2AhuqHZmZmZgNBxbshJP018DPgn9OqScBtVYzJzMzMBpAit05eCJwArAOIiOeB8dUMyszMzAaOIsnC5oho616QNBSI6oVkZmZmA0mRZOFuSV8GRko6Cfgp8KvqhmVmZmYDRZFk4RLgNWA+cD5wB/DVagZlZmZmA0eRWyebgVsi4oYqx2JmZmYDUJFk4RzgekmrgHvT676IWF3NwMzMzGxgKDLPwtkAkvYDPgpcC+xXpK6ZmZnt/ir+wZf0SeB9wJHA68A1ZL0LZmZmVgeK9A5cBbwAXA/8LiKWVDMgMzMzG1gq3g0REfsCnwYagW9JmifpX4vsXNKpkhZKWiTpkh62S9LVafuTko6uVFfS3pLukvR8+jk2rT9J0iOS5qefHygSo5mZmeUrMt3zGOBA4CBgMrAX0FWgXgPZ+IbpwDTgLEnTyopNB6ak13nAdQXqXgLMjYgpwNy0DNklktMj4khgJlAooTEzM7N8ReZZuA84HXgS+ERETI2ImQXqHQssiojFaQbIW4EZZWVmADdH5kGgSdLECnVnADel9zcBZwBExGMRsSytXwA0ShpRIE4zMzPLUeRuiHcASBpN36Z5ngS8UrK8FDiuQJlJFepOiIjlKbblknp6TsVHgMciYnP5BknnkfViMG7cOFpaWooeT11rbW11WxXgdirObVWM26kYt1N1Fbkb4giyLv29s0W9BsyMiKcqVe1hXXmy0VuZInV7/lDpcOA7wMk9bY+IWcAsgKlTp0Zzc3OR3da9lpYW3FaVuZ2Kc1sV43Yqxu1UXUUuQ8wCPhsRB0XEgcDn0rpKlgIHlCzvDywrWCav7op0qYL0c2V3IUn7A78Ezo6IFwrEaGZmZhUUSRZGRcTvuhciogUYVaDeQ8AUSQdLGg6cCcwpKzMHODvdFXE8sDZdYsirO4dsACPp5+0AkpqA/wC+FBH3F4jPzMzMCigyz8JiSV9j690FnwRerFQpIjokXQTcCTQAN0bEAkkXpO3Xkz2U6jRgEbAB+FRe3bTry4HZks4FXgY+ltZfBBwGfC3FC3ByRGzpeTAzM7O+K5IsfBq4DPhFWr6H9Ee9koi4gywhKF13fcn7AC4sWjetXwV8sIf13wS+WSQuMzMzK67XZEFSI3AB2bf1+cDnIqJ9VwVmZmZmA0PemIWbgGPIEoXpwD/skojMzMxsQMm7DDEtzYaIpB8C83ZNSGZmZjaQ5PUsbLnkEBEduyAWMzMzG4DyehbeKWldei9gZFoW2djEMVWPzszMzGqu12QhIhp2ZSBmZmY2MBWZlMnMzMzqmJMFMzMzy+VkwczMzHI5WTAzM7NcThbMzMwsl5MFMzMzy+VkwczMzHI5WTAzM7NcThbMzMwsl5MFMzMzy+VkwczMzHI5WTAzM7NcThbMzMwsl5MF2yEvrVrP7IdfqXUYZmZWRU4WbIf8+5PLWfDq2lqHYWZmVeRkwfotInhzUwcTm0aydkN7rcMxM7MqcbJg/fbwS6s55qCxvH/KOO55/rVah2NmZlXiZMH67e6Fr3Hi1HG8feJonlm+rtbhmJlZlThZsH7Z1N7JkCFiWMMQJNEwRHR2Ra3DMjOzKnCyYP3y22dX8qG3j9+y/K4Dm3j8ldU1jMjMzKrFyYL1y5NL13LkpL22LP/RIfty/6JVNYzIdlcb2jp44AWfO2YD2dBaB2C7n1Wtm9l71DAkbVk3cngDm9o7axiV7a7+6beL2NjWyaHjRjF+TGOtwzGzHrhnwfrsP+Yv50/fsd926/drGsmrazbWICLbXd3++Kv80SH78PlTpjLrnsW1DsfMeuFkwfpk2ZqNvLRqA5OaRm637QNvG89vn11Zg6hsd7RifRcvr9rA+986jj1HDOWEKfvyX0/9odZhmVkPqposSDpV0kJJiyRd0sN2Sbo6bX9S0tGV6kraW9Jdkp5PP8eWbPtSKr9Q0inVPLZ69F9P/YFb573M358ytcft+zWNZLl7FqyAto4ufv1SO+efeOiWdX8ydTyPvbyatRs9wZfZQFO1ZEFSA3AtMB2YBpwlaVpZsenAlPQ6D7iuQN1LgLkRMQWYm5ZJ288EDgdOBb6f9mM7aGNbJz97ro2GIeKzJ0+lcVjvzdo4rIH5S9eyoa1jF0Zou4vNHZ08/soavn3HM5wyeRjDh277X9D5Jx7KrHteqFF01q2js6vWIdgAU80BjscCiyJiMYCkW4EZwNMlZWYAN0dEAA9KapI0EZicU3cG0Jzq3wS0AF9M62+NiM3Ai5IWpRge6C3AdW3BrHteIHby9AA7srvyWKJkb5XijFSgu1yk90Gkn9A9JLH0ffly98eoZP0HDxzKSdMmVIx/5h9P5oEXVnH/C6+zoW3bAY+l+6v0uRII0T2GsrvMlmWV7mXbbVs/b/syvZXti7yqL7zYxkLV9o9dX86/iucUsV250vMstqzbep6VxlH6u40IhjcM4e0Tx/C3HziM+Q9vP+vn3qOGc+SkJr7364VI2uZYus+fBimdH+k8Sb/MrefKtr+h7c+L3u3IeVEtL7zYznND+n5Obf9/ybbruyLo6Aw6t/yHsbVCw5AhdHZ1bWmQYUPEkCHa5t9laVNVare8f4s7y6IX23l+iMe9VEs1k4VJQOnjCJcCxxUoM6lC3QkRsRwgIpZL6r7ZfxLwYA/72oak88h6MQA2n3/iYU8VPaA6ty/weq2D2A24nYpzWxXjdirG7VRcz9eSc1QzWegplSz/HtNbmSJ1+/N5RMQsYBaApIcj4pgK+zXcVkW5nYpzWxXjdirG7VScpIf7WqeaAxyXAgeULO8PLCtYJq/uinSpgvSze/h9kc8zMzOzPqpmsvAQMEXSwZKGkw0+nFNWZg5wdror4nhgbbrEkFd3DjAzvZ8J3F6y/kxJIyQdTDZocl61Ds7MzKxeVO0yRER0SLoIuBNoAG6MiAWSLkjbrwfuAE4DFgEbgE/l1U27vhyYLelc4GXgY6nOAkmzyQZBdgAXRkSlKQVn7bQDHvzcVsW4nYpzWxXjdirG7VRcn9tKsbNvBTAzM7NBxTM4mpmZWS4nC2ZmZparbpOFSlNRW0bSEknzJT3en9ttBjNJN0paKempknW9Tkder3ppp0slvZrOq8clnVbLGAcCSQdI+p2kZyQtkHRxWu9zqkxOW/m8KiGpUdI8SU+kdrosre/zOVWXYxbSNNDPASeR3XL5EHBWRDydW7EOSVoCHBMRnuykjKT3A61ks5AekdZ9F3gjIi5PSejYiPhiLeOstV7a6VKgNSKuqGVsA0m6FXxiRDwqaTTwCHAGcA4+p7aR01Yfx+fVFsqmNx0VEa2ShgH3ARcDH6aP51S99ixsmYo6ItqA7umkzQqLiHuAN8pWzyCbhpz084xdGdNA1Es7WZmIWB4Rj6b3bwLPkM1C63OqTE5bWYnItKbFYekV9OOcqtdkobdppm17Afxa0iNpqmzLt8105MD4CuXr2UXKnjZ7o7vWtyVpMvAu4Pf4nMpV1lbg82obkhokPU42geFdEdGvc6pek4X+TCddr06IiKPJngB6YepSNttR1wGHAkcBy4F/rGk0A4ikPYGfA5+JiHW1jmcg66GtfF6ViYjOiDiKbFbjYyUd0Z/91Guy4KmhC4qIZennSuCXZJdwrHe9TUduJSJiRfpPrAu4AZ9XAKTryj8HbomIX6TVPqd60FNb+bzqXUSsIXtK86n045yq12ShyFTUdU/SqDR4CEmjgJMBP6UzX2/TkVuJ7v+okr/A51X3YLQfAs9ExPdKNvmcKtNbW/m82pakcZKa0vuRwIeAZ+nHOVWXd0MApFtqrmLrdNLfqm1EA4+kQ8h6EyCbGvzHbqetJP0b0Ez2aNwVwNeB24DZwIGk6cgjoq4H9/XSTs1kXcUBLAHO776GWq8kvRe4F5gPdKXVXya7Fu9zqkROW52Fz6stJL2DbABjA1nnwOyI+IakfejjOVW3yYKZmZkVU6+XIczMzKwgJwtmZmaWy8mCmZmZ5XKyYGZmZrmcLJiZmVkuJwtmdUBSZ8mT+B5PU+QOCpLeJekH6f05kq4p294i6Zic+rdKmlLtOM12Z0NrHYCZ7RIb05Sv20kT3CjNerc7+jLwzR2ofx3wBeCvd044ZoOPexbM6pCkyZKekfR94FHgAEl/L+mh9BCey0rKfkXSQkm/kfRvkj6f1m/5xi5p3/Q48+4H1/xDyb7OT+ubU52fSXpW0i0pUUHSeyT9t6QnJM2TNFrSvZKOKonj/jTJTOlxjAbeERFPFDjmPy/pWVko6cW06V7gQ5L85cmsF/7HYVYfRqYnzwG8CPwdMBX4VET8jaSTgSlkc+kLmJMeGraebDr0d5H9f/Eo8EiFzzoXWBsR75E0Arhf0q/TtncBh5M9i+V+4ARJ84CfAJ+IiIckjQE2Aj8AzgE+I+mtwIiIeLLss45h+yl9P5Fm+Ot2GEBEzCFN6y5pNnB3Wt8laRHwzgLHZlaXnCyY1YdtLkOkMQsvRcSDadXJ6fVYWt6TLHkYDfwyIjakekWeoXIy8A5JH03Le6V9tQHzImJp2tfjwGRgLbA8Ih4C6H7SoqSfAl+T9PfAp4Ef9fBZE4HXytb9JCIuKjnWltKNkr5A1h7XlqxeCeyHkwWzHjlZMKtf60veC/j/IuKfSwtI+gy9P769g62XMhvL9vW3EXFn2b6agc0lqzrJ/g9ST58RERsk3QXMAD5O1otQbmPZZ+eS9EHgY0D5o9Yb077MrAces2BmAHcCn5a0J4CkSZLGA/cAfyFpZBofcHpJnSXAu9P7j5bt6/9JjxBG0lvTU0t78yywn6T3pPKjS8YP/AC4GniolwfdPEO6zFCJpIOA7wMfj4jyxOCtwIIi+zGrR+5ZMDMi4teS3g48kMYctgKfjIhHJf0EeBx4iWwwYLcrgNmS/ifw25L1PyC7vPBoGsD4GnBGzme3SfoE8E/pMbobyR6l2xoRj0haB/xLL3WflbSXpNER8WaFwzwH2Af4ZTrGZRFxmqQJZJcl6vbphGaV+KmTZlaYpEvJ/ohfsYs+bz+gBXhbb7d2Svo74M2I+EE/P+PvgHUR8cN+B2o2yPkyhJkNSJLOBn4PfKXCHBDXse1YiL5aA9y0A/XNBj33LJiZmVku9yyYmZlZLicLZmZmlsvJgpmZmeVysmBmZma5nCyYmZlZrv8f+x8TEakbR7MAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 576x432 with 3 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f5 = uN.plot_freq(5, figsize=(8,6), axis_f=(0, 30, 0.0, 5e-4))\n", "\n", "print(fk3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Assignments <a name=\"section_4\"></a> \n", "\n", "1. Desenvolver no FTool um modelo que tenha uma dimensão predominante (p.e. torre, passarela, edifício alto, etc.). O modelo após simplificação deve contar com pelo menos 10 graus de liberdade em deslocamento (vertical ou horizontal). A massa concentrada por grau de liberdade deve ser tal que a frequência fundamental do sistema esteja abaixo de 2Hz e acima de 0.2Hz.\n", "2. Para o modelo anteriormente desenvolvido, calcular as frequências naturais de vibração livre e as formas modais, plotando estes resultados para visualização.\n", "3. Calcular a resposta e vibração livre para um impulso unitário no grau de liberdade de maior amplitude de vibração no primeiro modo.\n", "4. Relatório com deduções, gráficos e resultados (nome do arquivo P2_T2_xxxxxxxx.pdf).\n", "\n", "Prazo: 10 de maio de 2021.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Appendix: Save all matrices to be used next class." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "data = (wk1, Phi1, wk2, Phi2, wk3, Phi3)\n", "\n", "with open('resources/data/sample_VM.pk', 'wb') as target:\n", " pk.dump(data, target)\n", "\n", "#with open('resources/data/sample_VM.pk','rb') as target:\n", "# wk1, Phi1, wk2, Phi2, wk3, Phi3 = pk.load(target)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 2 }