{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "##### Universidade Federal do Rio Grande do Sul (UFRGS) \n", "Programa de Pós-Graduação em Engenharia Civil (PPGEC) \n", "\n", "# PEC00025: Introduction to Vibration Theory\n", "\n", "\n", "### Class 15 - Vibration of plates\n", "\n", "[1. The plate equation](#section_1) \n", "[2. Static solution by approximation](#section_2) \n", "[3. Potential and kinetic energies](#section_3) \n", "[3.1. Potential energy](#section_31) \n", "[3.2. Reference kinetic energy](#section_32) \n", "[4. Vibration modes and frequencies](#section_4) \n", "[5. Assignment](#section_5) \n", "\n", "---\n", "_Prof. Marcelo M. Rocha, Dr.techn._ [(ORCID)](https://orcid.org/0000-0001-5640-1020) \n", "_Porto Alegre, RS, Brazil_ \n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# Importing Python modules required for this notebook\n", "# (this cell must be executed with \"shift+enter\" before any other Python cell)\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Modules required for surface plots\n", "from mpl_toolkits.mplot3d import Axes3D\n", "import matplotlib.cm as cm\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. The plate equation <a name=\"section_1\"></a> \n", "\n", "Analogously to the bending of beams shown in the last class, for the bending\n", "of plates it can be shown (_Theory of Plates and Shells_, by Timoshenko\n", "and Woinowsky-Krieger, 1959) that a moment-curvature relation can be \n", "formulated in cartesian coordinates as:\n", "\n", "\\begin{align*}\n", " M_x &= D\\left( \\frac{\\partial^2 w}{\\partial x^2} + \n", " \\nu \\frac{\\partial^2 w}{\\partial y^2} \\right) \\\\\n", " M_y &= D\\left( \\frac{\\partial^2 w}{\\partial y^2} + \n", " \\nu \\frac{\\partial^2 w}{\\partial x^2} \\right) \\\\\n", " M_{xy} &= -D(1 - \\nu)\\left( \\frac{\\partial^2 w}{\\partial x \\, \\partial y}\\right) \n", "\\end{align*}\n", "\n", "what comes from the assumption of a thin plate undergoing small displacements \n", "with a linear elastic behavior. \n", "\n", "<img src=\"images/plate_bending.png\" alt=\"Plate bending\" width=\"400px\"/>\n", "\n", "The curvatures have been approximated by the\n", "second derivative of the plate displacements, $w(x,y)$, in $z$ direction, such that\n", "the curvature radius are:\n", "\n", "$$ \\frac{1}{R_x} \\approx \\frac{\\partial^2 w}{\\partial x^2}, \\hspace{8mm}\n", " \\frac{1}{R_y} \\approx \\frac{\\partial^2 w}{\\partial y^2}, \\hspace{8mm}\n", " \\frac{1}{R_{xy}} \\approx \\frac{\\partial^2 w}{\\partial x \\, \\partial y} $$\n", " \n", "The curvature $1/R_{xy}$ is also called _twist_, while the parameter $D$ \n", "is called the _plate flexular rigidity_ or simply _plate constant_:\n", "\n", "$$ D = \\frac{E \\; t^3}{12(1 - \\nu^2)} $$\n", "\n", "with $E$ being the elasticity (Young's) modulus, $\\nu$ the Poisson's ratio,\n", "and $t$ the plate thickness.\n", "\n", "For a given load $q(x,y)$ orthogonal to the plane surface, it can be shown \n", "that the plate transversal displacements, $w(x,y)$, are the solution of the \n", "_Germaine-Lagrange_ bi-harmonic equation:\n", "\n", "$$ \\nabla^2 \\nabla^2 \\, w = -\\frac{p}{D} $$\n", "\n", "which in cartesian coordinates reads:\n", "\n", "$$ \\frac{\\partial^4 w}{\\partial x^4} +\n", " 2\\frac{\\partial^4 w}{\\partial x^2 \\partial y^2} + \n", " \\frac{\\partial^4 w}{\\partial y^4} = -\\frac{p(x,y)}{D} $$\n", "\n", "Observe the similarity of the equation above with the beam equation:\n", "\n", "$$ \\frac{\\partial^4 w}{\\partial x^4} = -\\frac{p(x)}{EI} $$\n", "\n", "The equations above could also be formulated in cylindrical coordinates for\n", "analysing circular plates, but in this notebook we shall focuse on retangular\n", "plates with the conventions depicted in the following figure, taken \n", "from Timoshenko's book:\n", "\n", "<img src=\"images/Timoshenko_plate.png\" alt=\"Timoshenko plate\" width=\"280px\"/>\n", "\n", "This notebook is concerned with _approximate solutions aiming at the\n", "estimation of dynamic response of plates_, rather than daring to be a complete\n", "course on plate analysis. \n", "Specifically, we shall look at the potential elastic, $V$, and the\n", "reference kinetic energies estimates, $T_{\\rm ref}$, in order to obtain the \n", "plate natural vibration frequencies through Rayleigh's quotient. \n", "Once natural frequencies are known, it is then possible to estimate the plate \n", "response under dynamic loading by modal superposition.\n", "\n", "We will use as an example a $8\\times5$ meters simply supported thin reinforced \n", "concrete plate, with thickness $t = 0.1$m. \n", "The elasticity modulus for concrete is assumed to be $E = 30$GPa and the \n", "Poisson's ratio is $\\nu = 0.2$. \n", "The material average density (specific mass) is assumed to be $2500 {\\rm kg/m^3}$.\n", "In the script below we define the plate parameters and carry out a discretization\n", "of the plate surface.\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# Material data\n", "\n", "E = 30.e9 # elasticity modulus (N/m2)\n", "nu = 0.2 # Poisson's ratio (non-dim)\n", "ro = 2500. # density (specific mass, kg/m^3)\n", "t = 0.1 # plate thickness (m)\n", "a = 8.0 # dimension in x direction (m)\n", "b = 5.0 # dimension in y direction (m)\n", "\n", "D = E*t**3/12/(1 - nu**2) # plate constant (Nm)\n", "mu = ro*t # mass per unit area (kg/m^2)\n", "\n", "# Domain discretization\n", "\n", "N = 40 # number of nodes per meter\n", "nx = int(N*a) # number of discretization points in x\n", "ny = int(N*b) # number of discretization points in y\n", "\n", "dx = a/(nx - 1) # discretization length in x direction\n", "dy = b/(ny - 1) # discretization length in y direction\n", "\n", "sx = 1 + int(a) # plot stride in x direction\n", "sy = 1 + int(b) # plot stride in y direction\n", "\n", "x = np.linspace(0, a, nx) # x axis discretization\n", "y = np.linspace(0, b, ny) # y axis discretization\n", "\n", "X, Y = np.meshgrid(x, y, copy=False) # xy mesh definition (save memory)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we propose a tentative solution, $w_0(x,y)$, that respect the kinematic boundary \n", "conditions both in terms of displacements and rotations. \n", "For the simply suported plate, we assume that a product of two half sine functions \n", "may be used:\n", "\n", "$$ w_0(x,y) = w_{\\rm max} \\sin\\left( i\\frac{\\pi x}{a} \\right) \\sin\\left( j\\frac{\\pi y}{b} \\right) $$\n", "\n", "com $i = j = 1$, where $w_{\\rm max}$ maximum amplitude that must occur at the center of the plate.\n" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFkCAYAAAAEzAHUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADwt0lEQVR4nOy9d3Bk6XUdfjrngO5GdyMO0gCYweQZYHfFYImSRZlWUcHiiiypaIkuiaIoy5JlWcmWSZdoBZKSSdPmir+SxUyaYpnc5TItTe5yyd3ZASYh54xG55zj+/0Bft++1BgA0w9Az75TNbWL9Pr16/fOd79zz71XwTAMZMiQIUPG6YfypE9AhgwZMmQcDDJhy5AhQ0aTQCZsGTJkyGgSyIQtQ4YMGU0CmbBlyJAho0mgfsDPZQuJDBkyZDw8FI04iBxhy5AhQ0aTQCZsGTJkyGgSyIQtQ4YMGU0CmbBlyJAho0kgE7YMGTJkNAlkwpYhQ4aMJoFM2DJkyJDRJJAJW4YMGTKaBDJhy5AhQ0aTQCZsGTJkyGgSyIQtQ4YMGU0CmbBlyJAho0kgE7YMGTJkNAlkwpYhQ4aMJoFM2DJkyJDRJJAJW4YMGTKaBDJhy5AhQ0aTQCZsGTJkyGgSyIQtQ4YMGU0CmbBlyJAho0kgE7YMGTJkNAlkwpYhQ4aMJoFM2DJkyJDRJJAJW4YMGTKaBDJhy5AhQ0aTQH3SJyCj+cAwDEqlEkqlEjQaDdRqNVQqFRQKxUmfmgwZjzQUDMPs9/N9fyjjtYdarYZSqYRKpYJyuQwAUCgU8Pv96OrqglqtlglchgwhGvIwyBG2jAOBYRhUKhUsLi7C4/HAZDJBqVRCqdxT1XZ3d9He3o5yuUyJWq1W0whcqVTKBC5DxkNCJmwZDwSRQEh0XSgUsLS0hEKhAIvFgpaWFjAMwyFwhmFQrVZRqVTAMAwUCoVM4DJkPCRkSUTGvqhWqyiXy5R07927h0wmg6GhIVgsFmSzWcTjcWxubsJgMMBms8Fut6OlpQVarZYeh2EY+g8AJXDyTyZwGY84ZElEhnQgEkilUqFEurS0hFQqheHhYbS2tqJUKsFms8FmsyEcDuP69etIpVKIx+Pw+XyoVqscAtdoNILjs3VwmcBlyNgfMmHLEKBWq6FcLqNWq0GhUCCfz2N6ehqtra3weDwc4mVDqVTCbrfDbrejt7cX1WqVEvjOzg5qtRpsNhtaWlpgt9uhVr96+zEMg3K5zCFwlUpFZRSZwGXIkAlbBgtEd2aTZjAYxOrqKkZGRmC327G4uIgHyGgUKpUKLS0taGlpAbAnrySTSSqhMAxDo2+bzSYgcJ/Ph1KphK6uLigUCo6FUCZwGa9FyIQtA4BQAqnVapibm0OlUsHY2BiNqhUKhShhH4TEVSoVHA4HHA4HAKBSqSCRSCAej2N9fR0KhYJD4ISUVSoVTXwWi0UoFAoOgavVavo9GTIeZciELYO6P0hiMZPJYGZmBp2dnejs7OQQYT3CPgrUajVcLhdcLhcAoFwuI5FIIBqNYnV1FdVqFTqdDlarFVarFSqViv5tPQLXaDTUAy4TuIxHDTJhv4bBlkAIwW1vb8Pn8+HixYswm80HPhYh8ochSY1Gg9bWVrS2tgIAfD4fEokEQqEQVlZWoFaraQTOJnCygJDqS2BPTyf6N5FQZMhodsiE/RoF21utUChQqVQwMzMDrVaLsbExTjTLRr0IuxGEzYdarYbJZEJPTw+APUKOx+MIBAJYWlqCRqOhGrnFYpEJXMYjD5mwX4PgSyCJRAJzc3Po7++H1+vd928bKYk8CHzy12q18Hg88Hg8AIBisYh4PI7d3V2k02nodDrqQNmPwKPRKMxmMywWi0zgMpoKMmG/hsBPLCoUCqytrSESieDatWswGAwPPMaDIuzjhE6ng9frpYtMPp9HIpHAzs4OMpkM9Ho9JXCz2UwJPJFIQK1WQ6fTcSJwvgtFhozTBpmwXyPgSyDFYhHT09Ow2WwYHR09MEGxiVmqZORRYTAYYDAY0NbWBoZhKIFvbW0hk8nAaDSipaWFavbsCJxhGBSLRRSLRQB7jhYSfRMXigwZJw2ZsF8D4FcURiIRLC0tYXh4GE6n81DHOm5iPuprKRQKGI1GGI1GtLe3g2EY5HI5JBIJpFIpJJNJWK1WqoEbDAZOH5RarYZCoUCPRwhc7kQo4yQhE/YjDL4EwjAMFhcXkc1mMTo6yun1cVAcpyTSSFJUKBQwmUwwmUzIZrNobW2FRqNBPB7H6uoqcrkczGYzJXC9Xi8TuIxTB5mwH1HUajX4fD6YTCYYjUbkcjlMT0/D4/FgaGjoyARzmjTsh4FCoYDZbIbZbEZXVxcYhkEmk0E8Hsfy8jIKhYKAwAlkApdxUpAJ+xED21sdiUSgVquRTCaxsbGBkZER2Gy2hrwG+e+jQkwKhQIWiwUWiwXd3d1gGAbpdBrxeBwLCwsolUq0lWxLSwt0Oh39W0LgS0tLMJvNcDgcMoHLkAQyYT9CIA2UqtUqJYi1tTVoNBqMjY1xenUcFceddJTqmA8iUIVCQSssz5w5g1qtRgl8bm4O5XJZ0Eq2VqvRnuC1Wg35fJ6+jkzgMhoBmbAfEfC91el0GoFAAG1tbRgeHm4YQZA+I/zjnXYN+2GhVCppK9menh7UajVBK1kCq9VKOwwCr0bgbAJnF/HIBC7joJAJu8kh5q3e2trC7u4uPB4PnE5nw5N39Yi5mTTsh4VYK9n5+XkUCgVMTU2BYRhBK1mxaTwE8jQeGQeBTNhNDL63ulwuY2ZmBgaDAWNjY1hfX5ck6q2XdHwtQ6VSQa/X026E1WoViUQCiUTiQK1k2QQuD3OQUQ8yYTcpSFRNJJB4PI75+XmcPXsWbrcbAKiW2kgct0ukmaJ2tjauUqngdDqpz/1BrWT5nQjZ3vlqtUqn98gE/tqGTNhNBjEJZHV1FbFYDNevX+fYz6TSleu5RB5lDfsg2C+ZWa+VbCQSwerqKlQqlWgnQgDIZrPY2dnB0NAQADkCfy1DJuwmAn90V7FYxNTUFBwOB0ZHR48tEVjPJdIsOA12RH4r2VKpVLeVLLC3W2KX0vPHqcnTeF4bkAm7CcAf3aVUKhEKhbC8vIxz587RCS58PAqSSDPhYRYCrVYLt9tN5Sx2K9l4PI5arYaNjQ1BK1nyuvI0ntcGZMI+5eB7qxmGwfz8PPL5/APLy5ul78dxH1NKNIoY2a1kE4kE/H4/9Hr9A1vJAlwCB17tRChP42l+yIR9isH3VmezWUxPT6O9vf1A3mrimW4kjtMl0mykItXiwjAM1Gr1kVrJysMcHi3IhH0KIZZY3N3dxebmJi5cuACr1Xqg4yiVSiqjNAqPgiQiJbFKsciIFSodtJVsS0sLjEZjXQKPRCKwWq0wm80ygTcBZMI+ZeB7q6vVKmZnZ6FUKg9dXi510lHq15ISUhDrSS0E9VrJEgthNpuFyWTitJIlBB6LxWAwGOQIvEkgE/YpAkkskgc0lUphdnYWPT09aG9vP/TxjpOwpUIzLQKAdAvBYUiT3Uq2s7MTDMMgm82KtpKtN8yBT+DyNJ7TAZmwTwHEJJCNjQ0Eg0FcvnwZJpPpSMdtdpdIM2rYUhH2wxx3v1ayJChgD3Pgt5IVm8bD9oE32+fUzJAJ+4RRq9UQi8WQSCTQ2dmJcrmM6elpmEwmjI2NPVQ0c5wk2mySSDOh0QsBu5VsMplEf38/KpXKoVrJio1TkzsRSg+ZsE8IbG91sVhEJpNBLBbDwsICBgcHaUHFw0Aqwq4Xtb/WCfu0Rtj7oVarQaVSwWg0HqqVLPvc5GEOxweZsE8AfAlEpVIhHo8jk8kIyssfBlJIIvUg1UPZTN7uZnOf1Dv2QVrJsglco9FwjkcIfG1tDd3d3dDpdDKBNwgyYR8z+OXlhUIB8/PzAIAbN24cWyvURh+z2TRsqY7djBH2g2Q3sVayyWQSiUQC29vboq1kASCdTsvDHBoMmbCPCWwJRKFQQKlUIhAIYHV1FT09PYhGow2/cY/bJSJLIs0niRzl2CqViraRBcBpJbuxsQEAsNvtKBaL1OGy3zAHmcAPDpmwjwF8b3WtVqPJnbGxMZRKJYTD4Ya/7nG7RGRIg8Pa+g6Dg0TYD0K9VrJ+vx9TU1OirWQfNI2H/JMJnAuZsCVGvfLyjo4OdHV1QaFQoFKpSKI1PwqSSDNF7c0YYQONX2xJK1m9Xo8bN24cqJWsPI3nYJAJWyKIeat3dnawvb2NixcvwmKx0N9VKpWSEJMsiRwvmpWwpcZhWslarVZOxC82jYctobzWCFwmbAnAl0AqlQpmZ2ehVqvx2GOPcTqrAdK5OaR2iTRzP+xmQrMTNh/8VrLFYhGJRAKBQABLS0vQaDTUA26xWEQJfGVlBU6nE1ar9TU1zEEm7AaDPdpJoVAgmUxidnYWfX19aGtrE/0bqYhVigi73m6g2eSLZoqExZo/PUrQ6XS0lSywR+DxeLxuK1mlUolSqUT1bf4z9ygTuEzYDQJfAgGA9fV1hMNhXL16FUajse7fStEGlRz3uHzMsoYtrQ9bqqTjaby+Op1O0Eo2Ho9jZ2cH6XQaBoMBhUIB+XweZrNZEIHzp/HwG1k1M4HLhN0A8L3VpVIJ09PTsFgsGB0dPZDPVYoH5zhdIsDpfPiPG80UuUuJRt4LpJUs6USYz+cxMzMDv9+P9fX1uq1kyXk8SuPUZMJ+CIiN7opEIlhcXMTQ0BAduHpSkDrqZRNJM930UkFOOr4Kqc6ZtJLVarU4d+4cNBrNgVvJkvMSm8bTLOPUZMI+IsRGdy0uLiKdTuPGjRuchjknhWa39QFy1A5IS9gnWUH5MKhWqzQ6rtdKdmVlhcom7E6EB5mHeVrHqcmEfQTwvdX5fB7T09Nwu924fv36qfmApZREyuUy1tfXaTQDNJ5cm6k/CTluM0XYUi6GUhM2aVrFx36tZJeWllAsFusSOLkeyWQSW1tbGBoaglKpRDabxdbWFh577DHJ3s9BIRP2IcBPLCqVSvj9fqytrWFkZAR2u/2kT5EDqSLscrmMiYkJtLW1IZvNwufzoVAowGg0wmAw0Gq204xmIsBmWwgA6Qn7oOfObiXb3d2NWq1GCfxBrWTJ+S8sLODTn/60TNjNBIZhEAqFYDKZoFarUa1WsbCwgEqlgrGxMU7HstOCRj+MDMPA5/Mhn8/jda97HdRqNX1wtre3kc1mEY1Gsbq6CrVajZaWFjgcDlgsllOz65AazUSsUpKq1IR9VCiVSlit1n1byer1epqb0mq1dELPYfCud70Lzz77LNxuN2ZmZgQ/VygUPw7gaQDrP/rW/2UY5r8+6LgyYR8AJKpeXV3FuXPnUCgUMD09je7ubnR0dLwmyIjMliSaodFopCOkgL1+EiaTCV1dXQBe9dISK5bRaITD4aCJoINes2bTsJuJsJs5wm7UeYu1kt3Z2UE4HMbMzAz+9E//FDabDUajEbFYjDa8ehB+7dd+Db/zO7+Dd77znfv92g8YhvnZQ53vYX75tQa+JUipVMLn82FmZgaXLl1CZ2fna4Kss9ksxsfH4XA4cOHCBdHf4V8H4qU9f/48xsbG0NfXh1qthpWVFUxMTGB+fh7BYJBD+g865msVcoR9fFAqlTAYDHA4HLh27Rq+/OUv49KlS4hEIvj5n/95jI2N4ROf+MQDj/PGN77xwOR+GMgRdh3wvdXlchnJZBIKhQJjY2MN12iJ3nzaSCoQCGBtbQ0XLlyA1Wqt+3v76eXsTH5XVxfdhsZiMfh8PtRqNdpLwm63n3r9ux5kDftVNCthA3u7SXIPms1mdHZ24ud//ufxe7/3e8hms43srPmEQqGYBLAL4D8wDDP7oD+QCZsHMW810bdMJhN6enokIRTi6DgtZFWr1bC4uIhCoYDR0dEDafQHJSz2NrS3t5e244zFYlhbW6P6t16vl62CkCNssWNLGdiwCRsAMpkMrakggUcDcBfAGYZhMgqF4i0Avgrg7IP+SCZsFvjeagBYXV1FJBLBtWvXsLGxIVkzJVKefhoIu1AoYHJyEm63G8PDwwfOxh8VpB0neSiI/h0KhZBIJDA9PX0k/Vuq8z3OYwJyhH2cxwb2CJs9tzKbzaKnp6ehr8EwTIr1/99QKBT/S6FQuBiGiez3dzJh/wh8b3WxWMT09DTsdjstL1cqlahWq5K8/nHOX9wPpFLz/Pnz1F99EDTSQkj0b4vFgvX1dfT29tJCiEKhAIvFQgmc/WA9qpAjbC74EbDUx89ms4d2iTwICoXCCyDIMAyjUCjGsJdPjD7o717zhC3mrQ6FQlheXsbw8DCdogHsOSGkItWTJmyGYbC6uop4PH6kSk2pKh35lWyPqv69H6Rq/iRH2OLgE/ZRbH3veMc78MILLyASiaCzsxM+n+/fANAAAMMwTwH4JQDvUSgUFQB5AG9nDvAAvaYJm9+3mmEYLCwsIJfLYXR0VBC9SUmqUjWAOgjYzaoaPQi40Tio/n0S/m+pPj+pNNtmJVVSli4VxCLsw+rWX/jCF/jf+gf2FwzDfAzAxw57bq9ZwiaJRRJl5HI5TE9Pw+v11tVtH0VJJJFIYHZ2FmfPnqUN5Y+Ck+olUk//Zvu/CYET/VtOOu5ByuSd1ItBs0siR8VrjrDFJJDd3V1sbGxgZGQENput7t82qyQi9sAzDIOtrS34/f4H9us+CKQqgz8s2L2UGYahndzY+nexWES5XIbBYDjx8z0IpEw6SkmqarU09HISGjZ7pN9J4jVF2HxvdbVaxdzcHABgbGzsgTeYUqmkdr9GQ+ohBuwHnj2ybHR09Mg3/2mPVuvp3/Pz81haWgLDMLSHxGnWv2WXyPEdG5AJ+8TB91YrFAqk02nMzMzgzJkz6OjoONBxVCoV7aPbaEg515FNqplMBlNTU+jp6UF7e3vDXue0kzfwqv5tNBoxODgItVqNZDJJ9W+VSgWHw3Hq+p/ILpHjOzYgTtgPuwNtFB55whYb3bW5uQm/34/Lly8fKpnQjBo2299NpB/+1PZGvU6zFbmo1Wo4nU7qBCqVStR9kkqlRPXvkzpXKdCspCq1JMI/dynlncPidJyFRBArL5+ZmYHBYMBjjz126BuqGV0iRPpZXl5GqVQ6kPRzWnDcEa5Wq+Xo3/l8HrFYjKN/EwI/bv+3LIkcz7EB7nU5be0imuPJPSTYEghJLEajUSwsLDyUG6IZk44Mw+DevXtob2/HuXPnJJ1c0iwR5kEeQjKKymg0cvTveDyOmZkZVKtV2O12OBwOqn+fpgf7IGhWUq1Wq8cadJwm0n7kCFvMW72ysoJ4PI7r169Dr9cf+djNJomEw2GkUilcvHgRHo+nocfmo5kI+yjgt+GsVqsc/zfJbySTSVgslqZofCS1S0RKwn4tVLiK4ZEi7FqtBp/PB5fLBYVCQftWOxwOjI6OPvQqKaUk0kiXCFmkkskkWlpaTk2G+yg4rYuASqUS6N+3b9/G7u4u0uk09Ho9TWA2qv9JoyGlNtusPmz+/VYqlU7FfFaCR4Kw2YnFlZUVuN1uBINBrKys4Ny5cw3rS9sMkkixWMTU1BTsdjuuX7+OycnJYynIOS0+7JOCVquFRqPBuXPnOPr36uoq8vn8ierf9SBr2ELwdx2ZTKZR3fkagqYnbDEJZG5ujrYFbeTDIbUk8rDHJm1gBwcH0draSo97HO6NR10SOQzE9O9MJoNYLFZX/z4JHCfxNRJSukTEWqvKhN0gVCoVjrc6m80im82is7NTkgSb1C6RSqVypL9lGAabm5sIBoO4du0ap4JPqshX7JgyYYuDPUewnv7N7n9yXPq3lBG2lP0+jtMyeJrK0oEmJWwxb7XP58PW1haMRiO6urokuRGlJuyjHLtSqWB6ehp6vZ62gWXjuAhbqv7SUu0OTlJuEdO/4/G4QP9uaWmRtGCjWWWL44ywc7mcHGE/DMTKy2dnZ6FUKjE2Noa7d+9KdrOoVKpT5RJJp9OYnp5Gb28v2traGnbcB4EQKfvYr3VJ5GHeu1arhcfjgcfj4ejfa2tryOVyKBaLCAQCDde/pVy4mlUflyWRBkFsdFcymcTMzAx6e3tpmTUhVSmy31JGZYd1iZAdxaVLl/bdssmSyPGgUe+dr38zDINbt26hUChgdnYWlUqF0//7Ye7zZplszsdxa9iyJHJIiI3uWl9fRzAYFHSakzIxKCUOGglXq1XMz8+jWq1idHT0QA2rpCJs9gPZTI4OqSCVLKRSqdDT08PRv+PxODY2NqBUKo+sf5+0NHRUHGeEfZThBVLi1BM2f3RXqVTCzMwMTCYTxsbGBB+clLKFlDgIYedyOUxOTqKjo+PAOr1UXQDFXue4IvmHRTPp4vxzPaz+vd85NetkcznpeAoh1reazBtk29b4aGbC3o9IyNiyCxcu7Nuzmw+piZTfd6FZ0CyR5YMWAjH9Ox6PY21tDfl8HmazmRI4vwCkWSNsqd0tfEnE6/VK8lpHwakkbDFv9dLSElKp1APLy5uZsMUi4VqthuXlZWQymSP5yqVMOvK/91rGaehZzda/Ozo6wDAMnX85Nzcn0L+bNcKWEvz8lyyJPAD80V35fB7T09NwuVwHmjcoZTUigRQPp5h0USwWMTk5CafTiWvXrh3pNY/T1tcs8oUUkOo8H+ZeUygUov5von/ncjns7OzA7XY3Tf8TQNrgoFqtcnYisiRSB2ISSCAQwOrqKs6fP4+WlpYDHUfqCFss4dYI8CPhWCyG+fl5weT2w6KZCbvZovaTjrAfBL7+fffuXRiNRo7+TRKYD9K/94OUsyKlhqxhHwB8b3WtVsP8/DzK5TLGxsag0WgOfCypXSKEWBsdjZDjMgyD9fV1hMPhh+4uCEiTdJRtfUKcBknkKPB4PFQ+YevfuVwOFoulrv79oHOWsuRdSvArNI8yMV1KnChhi3mrSTFIV1cXOjs7D32zSh1hS+XzJgvNvXv3YDQaRasWj3rcZq10lArNtLAcV3HLYfXv/e5/KSNsqRcw2dZXB2Le6q2tLfh8vocaYSXl3EVAuvL0TCaDZDKJixcvNjQr3cySCCAduTb6oW/GCHu/naKY/k3mXz7I/y1l+9PjnpieyWROVXviEyFsvre6UqlgZmYGWq0WY2NjD/WBSB1hN5qwGYbBzs4Otre3YTQaG24hknrSOxuvZQ27GQn7MMdmDygGXvV/+/1+LC4ucvRvAE3Zo4QcX9awfwSxxCJpCdrf398QsjoOSaRRhF2tVjE3NwcAGBsbw/j4eEOOy0YzN3+ScXq90mz/NwBO/5NMJgOGYeD3++FwOBo6AEDqCLtSqXCOn8/nT83EdOAYCZt4q+/fv4/Lly8DAFZXVxGJRATl5Q8DqW19jUpqZrNZTE1NUa1eKjS7JNIsaMYIu5EwGAzo6OhAR0cHUqkUNjY2UCwWqf5ts9lo/+/T3P+EH2EzDHNi/crFcCyEzZZASPex6elp2Gy2hiXXCJpBEgkEAlhbW8OFCxdgtVobdGbiOK6kIyBdyXcz4DT6sB8EKaUWvV7P6X8ipn+3tLTAarUe6vmXOsJmO1xO4713rJIIadJ/584dDA0NweVySfIax+ESOQpqtRoWFxeRz+cxOjp6KLviUXFctj6pGh9JgWZJZALNE2GzwbfGienfiUQCgUAAS0tL0Ol09Oenrf/Jabv+x0LY5AFfXFxEqVTCG97wBskGW57WCLtQKGBychJutxvDw8PHdhPIkog4mskl0iwViAQH6X/idrvhdrsBvKp/r6+vI5vNcuZf8nlCykk25NzF/v+04FgIu1wuY3x8HB6PBwaDQdIhpKeRsKPRKBYWFho6EPigOK5eIuT7MhqLZqwaPGwUzNa/if+bmBH4+reUlkE+isUiZ9zeacCxELZGo8GFCxdgNpsRDoclGzAAHA9hH/T4DMNgbW0NsVgMN27ckGxXsR+afYDBaYxyxPBaTzqy8TA6M9v/febMGYH+XS6XodfrYbfbD61/Pwj8a33aps0AxyiJEC+jSqVCpVKRjLClnLsIHNyFUiqVMD09DbPZjOvXr5/YtlbKgpZcLodsNgu73S7J+2smomq2pKOUC2EjZRy+/r21tYVcLifQv1taWmAymR7qWp328WDAMSYdCXGo1WrJmzNJiYMUopDRZWfPnqU63UHR6AdUKkkkkUggFArBYrFgZWUFer0e5XIZuVzuVPlWjxPNFGFLXUEppbPFZrPRGaZE/97Y2KBFLoTgD7ujPe1l6cAJVDqSCLtZoVKpUCgURH/GMAy2t7exu7t7JG85seA18mZvdITNMAzi8Tiq1Spu3LhBo6lcLoe7d+9iZWUFhUIBNpsNTqfzoX23UqDZJs4003GBPcKW6jPntz/l69+ZTIbT/+Qw/m+xTn2v2QiboFkHDBDUi1grlQpmZ2ehUqkwOjp6JA2PWPAaKS80krArlQqmpqbAMAz6+vqg0WhQKpUAAEajEVqtFpcuXUKtVkMymUQ0GqW+W6fTCYfDAbPZfCiiaCYLXjMRq9RjtqTK1zyo/4nFYoHFYuHo36T/t0KhoO4TMf1blkRYYEsizRxhixF2JpPB1NQUzpw5g46OjoYe+2HRqGOS99jb24tcLvfA1ySFEcBetj0Wi2Fra4s20yHb1v0cQ7KG3Zx2weMc4bUf+Pp3uVxGPB6vq3+f9l7YwCMcYUt10/DP3+/3Y319/aE6DBIcpwXvMAiFQlhZWaGVmWtra4c6pk6nQ1tbG9ra2jhtO2dmZlCr1WjUY7PZms5zTNBs0oWUOrOU0fvDHFuj0Qj83yT6zmaz0Gq1UCqVKBQK0Ov1RyLsd73rXXj22WfhdrsxMzMj+Lli76J/BMBbAOQA/BrDMHcPevxjJ2ypk46AdD2rgVdJtVarYWFhAcViEWNjYw15rdNG2MSWGI/HcePGDRoNP8wx+W07K5UK4vE4gsEglpeXodfrqXzysMMbjhPNFmE3K2E3sjTdYDDAYDCgvb0dDMNga2sLsVgMs7Oz+N3f/V14vV709vYimUweePD1r/3ar+F3fud38M53vrPer/wLAGd/9O8xAB//0X8PhGMLZ8jNcRxJRykbQCmVSpRKJUxMTMBoNOLKlSsNWxikkkSOQiaVSgX3799HuVzGtWvXONJFI3VxtVqN1tZWDA8PY3R0FAMDA6jValhaWsLExAQKhQIikUhDF/lm0sWbURKRsrhFqsVAoVBAq9XC5XLh+vXreO6559Df3w+fz4d/8S/+BV7/+tfj2WeffeBx3vjGNz6oOO7nAHya2cMrAOwKhaLtoOd5IpJIPZdFI19DqiiemPivX79+4DmTB4VURS6HXQRIJ8EzZ86gvb1d9HekID321JOuri5Uq1WMj48jkUhgfX0darUaDocDTqfzoT23jUazSSLNauuTsvkTu+zdZDLB4XDgTW96E972trchFos1irc6AGyzvt750ff8B/njE5FEjiPCbjRhMwyDlZUVxGIx2Gy2hpM1cDokkXA4jKWlJVy8eLFuJ8HjIkqVSgW1Wo2BgQEAryYvieZosViofHLYRlqniez3QzO6RJr52OydJHvaTANbSoh9mAd+QI/VJQIcT9Kx0R37SqUSpqamYLPZcOXKFUxNTTXs2GycpEuEXUY/Ojr6QPfGSZSMiyUvo9EodnZ2AGBfy5bUaDbpQmpJREoNW6pjVyoVTu8QiVwiOwC6WF93Atg96B8/0knHRoA0oRkcHERrayuq1aqk+vhJRNiVSgXT09PQ6/UHKqNnH/OkIlV28rK3t5datsjIKqPRSOWT40heSrWASVWE0qxJx+PU3iUqnHkGwO8oFIovYi/ZmGQY5kByCPCIVjo2grAZhsHm5iYCgQCuXbtGV14p+22fBGHncjlMTk7uq1eLHVPKfi1HAduyRfqcxGIxLCwsoFwuw26304o3qdBMWnOzyhaAdEGCWGn6Ya2673jHO/DCCy8gEomgs7MT73//+1Eul/Ge97zntxiGeQrAN7Bn6VvBnq3v1w9zfDnCFgF/KDD75pMyopRqOkw9EL36woULB7YtkWOe5i56CoUCJpMJJpOJJi8TiQSdOZjL5bC9vQ2Hw9Gw5GWzJQelTjo2o5++EYUzX/jCF0S//1u/9VtPAQCz9+C896jneCIa9mm29aXTaUxPT6Onp+fAEWejcFyRK8MwWF9fRyQSOVLb19NO2HyoVCo4nU44nU4AwK1bt6BWq2ny0mq1wul0oqWl5VimAB0GcoR9fBArTX/NVzpK3f4UOHqE7fP5sLm5iUuXLp3IB3Uc14bsHnQ6HW7cuHGkB4tN2HxCaYb+zUqlEu3t7Whvb0etVqPJy+3tPbcVKWe2Wq0Hfi/NFglL/Tmd9ntADHzCLhQKr80BBmwcxwepUqloU6KDoFqtYmFhAZVKpWFVi0eB1IRN9Oru7u6H6nlSL+nYjA+pUqmEzWajklC5XEYsFsPu7i4WFhaoH9fpdO67E2nGSsdmi4Kl3tWJebxP2zU6dknkOHCYxGAul8PU1BTa29vR1dV1oqQjJWFHIhEsLi4eWq/eD/xrRYi8GYmbQKPRwOPxwOPxgGEYZLNZTrtOu90Op9MJm80meLibKRJuxs9J6kWGffzTKvmdrkbFDcJBJZFQKITl5WWMjIwc2j0gxQ1/kOEIhwXDMCgWi1hbW2vYmLL9NOzTeqMfBWRSktlsRnd3N01eRiIRrK6uQqPR0MIdqWxycoT9Ko7jnMWCkNOEEyNsKVf4BxF2rVbDysoK0un0A4tExCBVJNlol0i1WqUd8Y6qV4vhtTqEl5+8JNNO1tbWkEqloNPpoNfr4XA4GiaryRH2q5CyLB04/RPTgROSRKTspsc+vhiKxSKmpqbgcDhw7dq1I920RLpo9GrfSJcI0au7urqQzWaPZSjCcblHarUaGIapew78z5T8rlKpbOiiyJ52sru7i0wmg0wmg62tLSgUCqp9WyyWI5OjHGG/iuM853w+fypH3Z1IhE36iUhJ2GLEF4vFMD8/j6GhIbhcroc6vhQLTqM07Gg0ioWFBSr1bG1tNeDsXsVxSiI6nY4jEykUCiiVSnrtCRlrNBrO58EwDEqlEud8CJlfu3YNlUqFkiEh8oeF0WhEZ2cn+vr6UCqVEIvFsLOzg3Q6DZPJROWTw8hSzRZhS7lgSxlh88/7NE6bAY6ZsMmDLnU/Ef7xGYbBxsYGQqEQrl+//tClylIlBx/2uKQ6MxgMNkyvFoOUkki1WqXl/0qlEkNDQ1AqlVAoFNDr9ZRYq9UqSqUSjEYj53vlcpmSsVqtpk3pCYrFIi1BJgReq9VQLpcFi8HDQKvVwuv1wuv1is4aJH1PHjRxvtki7Gb1dx9TWfpD48Qi7OMi7HK5jJmZGej1eoyOjjbkA5eqPP1hCLtarXJmSvLfZyMffCkkkVKphEqlAoVCAY1GA71eT6NkQqzFYpGz6Ov1es57KhQK0Ol0nK1srVZDoVCgi4Ber6cumUqlglKpBJVKBZ1ORwm/WCxSwj8oee93fRW8WYOVSoUmL1dWVuioKqfTCYPBcCy+9mZbCIDja60KyITNgdTVjoRQU6kUZmZm0NfXB6/X27DjSzUg4aj6aj6fx+TkJDo6OtDV1SX4eaOTpI2SRAhhkshWoVDQyJdE2mazmfMgpdNp2Gw2+l4IIZfLZahUKvpf8mDXajUUi0VaBJPP55HP52EwGCghV6tVZDIZeo3Igl8oFOhiodPp9iWLw1xftVoNl8tFZbl8Po9oNMqZOE9mDTZbJNysETZf4jyN8xyBR1gSyefzmJ2dxeXLlxu+Up4mSYTo8ufPn6/bo1uqJCkfByWsYrGIfD4PpVIJlUpFyY48IAzDIJ/Pc6yWxBPNt18S+YPtLSfVi+VyGVqtlvM3JPquVCpIpVKoVqswGo30tfP5PCqVCvR6PXQ6HZVQCoUC7ZdcT2o66oJoMBjQ2dmJzs5OOnE+Fothc3MT+XwePp8PHo/noZKXfEjV9a6ZCZt9bFnDZr+ohJJItVrF3NwcqtUqxsbGJNlCSUXYh3GJsPXqB+nyjXZvHFUSKRQKdGqHXq+n94FKpYJWq0WxWKQJRpVKhVgsximBNxgMyGQyAPaSkWSXxn+wyOdjt9uhUCiQy+VQqVRgMplosJBOp6n+nU6nodVqodVqaSlyPp8HwzDQ6/Wo1WrUaVMul+mQVjZxN2oHw584f//+fej1emxvb9PeFkQ+OawdlQ2pfOPNKonwNexcLidH2ARSSSJktFVnZydSqZRkH65UO4SDLgREr1YqlQfS5Y+LsAFxSaRQKCCXy1Hpw2AwoFKpIJvN0ghbrVZDo9GAYRjOg0Kibf70m0KhgEqlQqULrVZLO++Fw2G0trbS3yWEXiqVEIlEoFKpOLsRm82GarWKZDIJk8kEtVpNX7dYLFK9nETaZBEgBCpVchfYu9ZutxtdXV00eRmNRh964rwsiXBRqVROfeMn4AQkEUCaMWHBYBCrq6sYGRmBzWajjXykwElKIkSvbm9vR3d3d8OOexgc1CVCJqKrVCpoNBqUy2XqyFAqldDr9ZzmOslkUmC3TCQSHPIF9iQVAIJexcViEeFwGBaLRfThLhQK1JURi8VgNBrpzkSlUsHhcCAWi6FWq8FsNtMItlKpIJPJ0HmTpE+NWq1GJpOh0ooUnf7YkTs7ecmeOE8qdknRjsPheKCHuFmTjg+zq9gPYi6R1zxhEzRyEC+ZsJ3L5TA6Onos7TFPKul4EL1aDMctiTAMg1gshlKpBL1eT3VmEiVXq1UqcRCIEXMkEhEki0lELdZKIJFIoLOzE8AeeWezWRiNRhgMBkSjUc7oMKfTiUqlgnA4TJN7qVSKHjeXywHYk17UajXsdjvS6TSVbzQaDdLpNHWXsP81cme3H7GSifPkupGhDcvLyygWi7DZbHA6nbDb7QK3ixxhcyHWC/thajWkwokRdiMkhUKhgKmpKbhcLgwNDYlWuEkRRRy3rY9hGGxtbcHv9x/JR36ckkixWEQikaAJRQBUTwZAt/U6nY7KEySizefz9PNKJpOwWCxUxya2vFKphLa2NsHrxmIxeDwe+rVOp4NOp0OtVsPGxgZMJpPgYVer1XC73QgGg1AoFJxF0Gg0olqtIhaLoaWlhUa3+XyeRtRqtRr5fJ7uGJRKJQKBAMxmc8MabB3mHiY7AHbyMhqNYn19nZbVOxwOmM3mpo2wpbT18TXs13zSsZGSCKnmGx4epr0d2CDk1+xJR5JEBYDR0dEjvR8pzpdP2LVaDRqNhib4iPWuUChwiFetVnMmUJOew+ydEYmg+dpwIBBAZ2cnGIZBIpGgHupKpSKIzgnC4TA6OjqgUChE9etgMIiWlhYolUqkUimo1Woa+atUKrS2tiKRSFBvNpEkYrEYNBoNjbCz2Sz0ej1KpRIymQzS6TRaWloe+qE/KrHyk5dk4vzW1hYymQzK5TIikQjcbndDZYZmjrDZuxD2xPTThKaLsBlmb7p3NBrdN9okryEVYTe6qx45LptYC4UCJicn4fV60d3dfeSIqNERNv+hyWQyiEQi0Gq1lKyJdEHIz2q1Cqx6tVqNEj0BwzDU0cFGPB6nETSJdslrKxQK+Hw+6HQ6uFwuen5E7iDXzel0gmEYhEIhWCwWZLNZzmJvtVqpLkyILpfLoVwuw2g0IpvN0mM5HA6k02kolUpotVpYrVZkMhloNBpqK43FYkgkEvB6vUe+DxsVCfMnzt++fRvFYvGhk5d8NHOEzQ4QZA2b/aJHtPWVSiVMT0/DbDY/sPuclF7vRmrwbLCJlUxrP3fuHCciPQqkmBVJtGqfz4disUjlB51Oh2w2C7VazUncFYtFAQnHYjHBGDa/3y8o/iG+aP7DSlwbTqeT6uOpVIqeD7HxsaFQKNDa2oqNjQ0olUpYLBbO75AdQCgUQi6Xg8vlosfWaDRIJpMwm8100SiVSrQQx2w2U52b/D8AbG1tcc7xsNe50dIFcev09PTQHUo8HkcwGKTJSyKfHHbiSjNH2LIkwgO58Y5i60smk5iZmcHAwABHq6wHKQlbSkkE2HvAd3d3OdPaH/a4jXaJVKtVLC4uUpsesb+RCJOd0a/VavSzSKfTyGazqNVqMBgMCAQCAPYWY1LosrW1RW16RqMR0WhUVLfe3d0VTM4hNrtEIoFoNAq32y1wTGxvb9PkZDKZRK1W4yyKlUqFJu2ItEHet91uRyQSgcViob1KFAoF4vE4KpUKXRyJz5lYD0OhEJLJJDo6Og5NOlKXprOTlwzz6sT5paUlFItFOnG+paXlgRFuM0fY/KSjLImQFz1EhM0wDLa3t+Hz+XD16tUDtzyUyskBSEfYtVoN+XweiUTiyHq1GBoticRiMVpKXq1WaStKsqXMZrNwu93IZrNIp9Oo1WpUjiAFM+VymRNxkupE/m5iZ2cHOp0OPp+PHmc/Egf2ZnN2dXXB4XCgVCphY2MD7e3t0Gq1VLclsNlsqNVq8Pl88Hq9qFQqlOiBPSkhGAxyggSXy4V0Oo18Po90Og2LxQKr1YpEIkGjskqlgnw+Twm9VCohm81ieXkZHR0dJ77drhe5KxTCifOk8nJ9fZ3uQJxOp+jE+VqtJlkXzuN2iZz0ZySGEyHsg7osKpUK5ubmoFQqD121KLUk0uhjE71apVLh4sWLDY2qGkXYDLM3bZ1ot+VyGQaDAQzDUEkknU5Do9FQJ4herxd0pEun0xzSBPaSfyTqJSiVSpQM2eewublJKw/59r7t7W2OpKLVatHZ2Yl8Po9gMAin0yk6t6+9vR3hcBilUomTwFSpVPB6vYhEIrDb7XR3mEqlYDAYoNPpqAZvt9sRj8dhNBqhVqthMpno77H7uWxubsJutz/UXM1G4CD3GPGnk4W0WCwiGo3SifMWi4XKJxqN5pGJsOXCGRYOcqNkMhlMT0+jq6tL8CAfBFJZ78ixGxlhE716eHgYi4uLDd8CN+J8y+UyFhYW6HGITY6QdjAYpMk3EmmzhwYQZDIZgasnl8uJujwikYjgsycyQ39/P7U7VqtVdHZ2olwuizqGANCGUOFwmCYn2SDdAs1mM3Z3dwXausvlQigUopWZ5HVIBEpsfC0tLYjH4zAYDFCpVFRWIV0EU6kU9Ho9EokEkskk+vv7Ja2UbDR0Oh2dOM8wDFKpFO37DYAObpCCuI9zMSiVSqfycznWkRMHJSK/34+pqSlcuHDhSGQNNI+Gvb29jcXFRVy7dq0u2TwsHjbCTqVSmJycpAMBCFmnUil6XIfDQbvaEYTDYUEETLrpsZFIJAQPRzKZFJU8wuEw/b5CoYDX60VHRwdSqRQWFxfrvoednR04HA54PB6YzWZsbGzQ+6NarcLn88HhcECv18Pr9WJra0vwGReLRVrlSKBSqWC32xGLxej3WlpaaOm8QqGghTu5XA5arZb+FwDm5+cRjUbrnvdphkKhgM1mQ29vL65fv45Lly5BrVYjkUhgYmIC09PT8Pl8DUvQSznWrBkmpgOnbAhvrVbD4uIiCoXCQ1ctnnZJpFarYX5+HtVqtaF6tRgehrD9fj+2tragVqvpEIFsNotisQiXy0U/o0wmw4mSc7kc1X2J1kvkAZ/PRz3UpP91LBaDxWLhHI9fzcluf8pHOBzGuXPnUCgU4Pf74fV6qeVzfX2dU8avVqvR2dmJaDQKjUaDaDTKkVEUCgW6urrg9/vhdDqh0+mwvr4Or9dLveWJRIIuRkqlEk6nE4FAgL5njUaDRCJBi4IIqZvNZphMJmSzWUroW1tbSKVS6O3tPdJndFqg0WhgMBjgcrlgt9uRy+VovUSpVOIMbTjq/S4lYROCPq3zHIETJmz2ipnP5zE1NQW3243h4eGH/mBOc4RdLBZx//59eDwenDlzRrKbkOCo57u2tkalDpLEJY3dCdECoH2ryc/T6TRKpRKNWMlAAoPBIBgukEwm6c6iXC4jHo8jEAhQkmxra6PEu7q6iv7+fsF5EvsdsNcFsKOjA7lcDru7u3C5XHWLahwOB3w+X13yaGtrQyqVQjAY5ET7xGIYjUbpuSuVSrS1tdHEXEtLC2w2G5LJJI3eSK8SQtrpdBpqtRqlUgmhUAipVArnz58/lvYKUoHIFuzkJXviPBlarNFoqDYulrw8CfAj6tNwTnyciK0P4M5FjEQiWFxcPHSPjP1AmtlLgYch7EQigdnZ2boVmo0eNsA+5mEwMzODRCJByZI9BICtOZdKJQQCAVgsFhgMBppgO3PmDOd46XRa0BckHA5ztGKlUgmTyQSv10uj12q1itXVVeTz+bqSkZifm5Rpz8zMwG63iw52CIfDVHNfWVlBT0+PwOEQCATgcDg4OjWwF02SJCORQEh5PLEqAnsulHg8TpOTDocD8XgcJpMJFosF0WgURqMRDMOgUCjg3r17GBoaalhp+3Gjns7MnzhPrtf6+jpyuRysViucTidaWlpOfMGSqvVsI3DsETZ7iEGlUsHGxgbi8XjDZxCqVCra1a3ROGr0vrOzg+3t7X3tiVKU1B+mcKZWq+HOnTvI5XK0cZNCoaBkTRJz0WiU2tY6Ozvp+ZLyczbE5I1SqSSahd/e3kZfXx/9WqVSoaOjA0tLS7Db7fD7/SgUCjTy3t3drTtNaHNzE0NDQ6jValhYWEB3dze97mQUGCHG3t5euvAQV8rKygqVUgqFAiKRCCdZqVarYbVasbS0hJaWFrrItLW1IRAI0EWtpaWFWiFJaXwymYTBYIDT6UQsFoPBYIBSqUSxWMTc3Bw6OjoO3I3xNOGgiUG9Xk+Tl8RdFI1GaZdNEn2T++44cVqLZoATlESUSiUmJyfhcDhw48aNhn8op0kSIYRRLpcfaE8kRS6NJOyDFs6USiWMj4/TLXypVKITVhQKBcrlMmKxGJxOJ8xmM8xmMzKZDOdcA4EAenp6OMclDZTYCAaDgt8rFAqiHdIymQz9XXZvjOXlZQAQJWx2A3qlUom+vj4kk0mEQiH09PRgZWVFIK94vV6k02kEAgGUy2WBDKJWq+Hz+Th2vFAoBLfbjVgsxnnIPR4PYrEYJXGHw0ELbpRKJWw2G10giHuE2AGr1Sq2t7eRTCYF76sRkFKjPYqTg1wPsniS+2x3dxcLCwswmUzUeSIV2NfktE6bAY7ZJUKQSCQQj8fh9Xpx9uzZpuqoBxxO2yoWi7h9+zYMBgMuXbr0QCKWoijnIJJILpfDSy+9xOnvYTAYaCe6YDCIRCKB9vZ2KpOkUikOwVarVYFsEY/HBcScz+dFq1W3trZEy7d3d3cF22QyY7G3txdzc3McGQLYS5byj2Wz2dDW1kbtomIgFYykcpMNtVoNj8eDra0tAMDy8jJtUtXa2opgMEh/l3T/Y5+Xy+VCOBxGOBxGIBCAwWBAJBJBpVKB0WhEJpOhBTakUyDRwBuJ00bYfGg0Gng8Hpw7dw5jY2Po6elBqVRCsVjExMQElpeXEYvFGnZd+BKIHGGzsLm5id3dXbjd7iP1VjgopJ4beRCQcvqhoaED99aVgrAfdMxkMomJiQmo1Wpks1k4HA6oVCrazIg0dGJr62K7AL/fj56eHsRiMeRyOTqHkVQ7VqtVGAwGJBIJOBwOWCwW6hjI5/MCYgf2InG2REJQrVZpl72+vj7UajVMTU2ho6MD1Wq1blFKuVyG2WyG3++HxWIRVFaWSiXaaGpxcRFDQ0OcnxOJZmVlhfMaarUaTqeTM+1GqVTC4/FQUiaJ2FgsRu990kRKr9fTRKTJZKK2wFqthhdffBGPP/54Q9oUANLNcwQa75Umsz61Wi0SiQQuXrzImTiv1Wpp4Y7RaDxS8Me/l09r0QxwAoSt1+sxNjaGlZUVSSennzRh+3w+bG1tHaqcHpCmUdN+kkg8HsetW7doVEkaG6VSKZhMJk40zZYIAoEAzpw5A7/fj3Q6jWq1CqvVStuM6vV6hMNh9Pb2ch5g0jqVHDebzSISicDn88FqtaK1tRVtbW30ASJl7nzMzc1hZGSEfq1UKjE4OIhCoYCFhQVcvnxZdDfDJuF8Pi9wnmxvb9MEZn9/P+bn53Hu3DnOMdbX1+F2u7GxscFZZPiJSHL+mUwGBoOBLg4OhwPRaJR2xjObzchms9DpdDCbzbS4hshQ5XIZP/jBD3DlyhXRa3FYSOlnlnowAj95Sboirq2tIZfL0YnzDofjwCXyYlWOcoT9I3i9XrqiST05/SQIm3jJi8UiRkdHD91X4TglkXA4jPHxcfqAkWKORCJB5xgCe1Ep0RdJibder0c6nYbdbofdbsfm5qZASyaT0dngR8xqtRoWiwXnz5+nC1ssFkMkEkGxWMTAwIDgvAuFQt0IemtrC5cuXUI0GkWxWOR4m8PhMOe1ybTymZkZXLhwAaurq4L3cPbsWayurtLOdouLi7SBU2dnJzY3NzmOGDLMN5VKIZvNwmAwwOPxIJfL0eG9wKukTXYYer0exWIRWq2Wtn4l5f7E+3379m309fVheHhY9L0fFM3YUa9eWbrBYEBHRwc6Ojro1KBoNIqtrS1adel0OvedON8snfqAE9KwAWnmOrIhZfOneiiVSrhz5w50Oh0uX758pCY4UkkifMIOhUJ45ZVXALw6gbxUKkGpVFL7GUEymUQqlUIgEKDNfTweD3X15PN5AdGJJRXz+bxohOjz+Ti7EKPRiO7ublQqFZTLZUxPT2NlZYUuwD6fT3REWKVS4UgNbW1tWFxcpOO+iMTDhkKhwODgIJaXl+kUdT7OnDlDd0xer5f+jkqlQnt7u2B+qE6nw+bmJjQaDb0H2O4U8rqkjB3YI3rSFEulUsFgMKBUKsFgMKBarUKv14NhGKysrODWrVuCczwMpJREAGn8ywdZCEhvmf7+fty4cQMXL16EwWDAzs4OxsfHMTMzA7/fL3CPNUunPuAECJvdYlXqCFvKBQHgJm+IDtzT04O+vr6HGjYgRYTNPmYwGMQrr7xCiYD0ryZRCOmXnM/nsbm5STP4NpsNlUpFQJY7OzuCG1xsav3S0pJAG6wXLQeDQQwODkKr1aK/v58S482bN+sOrVhcXBQkPc+cOYN4PI6XXnpp32ZL6XQasVgMqVRK9OdE7qk3Zszv99P3s7m5ib6+PjrZhYBUOJLPgvQayWazAPaixXw+j1AohHg8jmq1imAwiGKxSG2WpB/Kd7/73SM/P6fZZ1wPR3FOabVaeL1enD9/HmNjYzhz5gxKpRLm5uYwMTGBlZUVxGIxQbsEUhx2GnGiEbaUhC1VC1QCtsywu7uLubk5XL16tW5V3UEhtSSyu7uLl19+mZJ1Op0GwzA0AszlclAoFNjZ2aE9q9n++EAgwLmZi8WiwC8cjUYxODjI+V6pVBItvV5cXBRN8ORyOcED6na7oVKpoFarMT4+zrG9kYSeGKxWKzweD+7evSu6iC8vL2NgYABdXV1Ip9OIRCKcn1cqFWrnW1paEty3Wq2WesSj0SjdbbS2ttJ+2wROp5OSO/lbcvxwOAy9Xk8n3BCnjk6no2SezWZpMvdb3/rWkWoNpJREpHKgsEvHjwIycOLMmTO4evUqrl69SnubLywsUA/44uIi0un0oZOO3/rWtzA0NISBgQH81V/9ldjr/7hCoUgqFIr7P/r350d5HydG2FJHwFIk79gg5z8/P49gMIjR0dFDJRfrQcqk49bWFl5++WU6hotY9gjRpVIp5PN52s2uUChwJIxCoSCoKFxbWxNE16Tkmg2tVitaxXr16lXB95LJpKjtLp/Po6OjAyaTCRcuXECpVMKtW7eQz+exsLBQ14mztrYGt9uN8+fPY319ndOoiUynIXC73WAYBru7u/R7MzMz9HzOnj0r2mSqVqshFAoJSKW1tRXhcJjzve7ubmxvbyMcDmNjYwNarZbTHa61tZWeo9FopPMkSc9xUmCTTqfx9a9/ve6uoB6kTDpKhYclbD7UajVcLhcGBwcxMDAAl8uFarWKP/iDP8DHPvYx/NM//ROefvppOjXoQef23ve+F9/85jcxNzeHL3zhC3QOKw8/YBjmyo/+/dejnPeJSSJSR9jHgXv37kGr1eLKlSsNa9oulYYdjUbx8ssv04fdZDJBo9FAo9GgVCphd3cXuVwObreb8zCzHxKfz0cjj0qlAr/fD6VSiZWVFUQiEdRqNTAMg97eXpTLZVQqFTpxhUT5ZBoLGe8ltjjVy/Bvb29zSrZNJhMuXrxIm0mJ3U+pVIojk3R1daFQKGBtbQ3Aq2TOht1uh8FgoJN/+InPwcFBzM7O0q8rlQqVQUhjLDa8Xi9CoRD9ulgs0uo+cm5er5fj2fZ4PMhkMgD2ioUIKRsMBurbJi6Sr3/965zjPwhSRthSuk+k7IWt1+vR09ODZ599Fm9729vwpje9Cbdu3cJP//RP4ytf+cq+fz8+Po6BgQH09fVBq9Xi7W9/O55++mlJzvXEKh1P2nb3MEilUkilUhgeHj5y+9d6kIKww+EwVldXodfrkc/nqX85n8/TyIVU3BHE43FONE2se/fu3YPRaITH44HFYuFEtfl8nnqI2dDpdDTxR0BasZbLZZoEU6vVlPT5Dz7DMHVLtWOxGIaHh7G+vg69Xs/5TJaWlnDp0iXO75NJND/84Q8FPyMwm810tJdYgnNoaAizs7MYGRnBysoKjcBJYQ27XB/YK5rx+Xy066HL5eJMrAGAzs5O+P1+umgajUbqLPF4PAgGg7DZbHQgsNlspn735557Do8//rioq4YPOcIWHpv9WRUKBTz22GP4qZ/6KQAPlnnIhCOCzs7OeonhJxQKxSSAXQD/gWGYWbFf2g+PrCQiFXZ3d2lDIbEH+WHR6KSj3+/H+Pg4vd6klzWZAE4mhWQyGWrrA/Zu0lgshsnJSSwuLmJtbQ19fX04e/YsOjo66JBd/rmLNdwSIweNRoNisUh7TBcKBRSLRRqV80HmJ/LBLiHv6OiA1WrFK6+8gmKxiHg8Lih8ISCujJmZmbqBw9LSEhwOB23Oz8fQ0BDu3r0rWLS7u7s5OjWwd7+n02mOtY8UwpDXVygUcDqdNJrW6/WoVqv0mrpcLmSzWYGLhAyJePnllw/kIJEqwpa6gvI45zmy8zQPWtzE3rfI39wFcIZhmMsA/geArx7lXB95SaRRNxHpBxIMBjE2NkY9so1GIyPsUCiE5557jn5NLHmJRAKlUola4HK5HE2UEZdDuVyGXq/HwMAAvF6vgPhMJpOAnA0Gg+DcNRrNgUm8XC5T8i4UCqhWq1Q+4UfoBFqtVtBF7/Lly9je3sbdu3frNhTb3t7GuXPnMDIyguXlZYGMsba2hnPnzsFgMMBqtXI0bYKlpSV0d3fTniZsdHR0YHNzk35NGjqR3AGBzWbjLAik5J78DmkUValUUCgUUCqVkEqlkMlkaBKS/I1SqcT8/Dy+9a1vib5nAqki7Gb0dwMPP8+xs7OTY+3c2dkR5HoYhkkxDJP50f9/A4BGoVAcrPyZhUc6wm5UAo/4qzUaDdWrpXKhNOq4sVgM3/zmNwG8WhCjUqlQKBRowoWgWCwilUphZ2eHlkSzdd2WlhaBpiz28Iidt5gWTRpL8UE+K9IVMJ/PU3lFrOUmexo7Hw6HAxcvXsTk5KToz9mv39vbSzV8YG/hIJ8xsLcQmUwm2kME2Lu+NpsNGo0GHR0dnJ8RdHZ2IhgMYnl5mUbhbrcbPp+P83u9vb3Y2NigX9tsNmQyGRSLRfj9flSrVWxublLtmtgLjUYjJW0ydV6hUGB3dxdf/vKX614bqasRpcBpnpg+OjqK5eVlrK+vo1Qq4Ytf/CLe+ta3cn5HoVB4FT9aJRUKxRj2uPfQo4ZOlLCljrAb8RqpVAoTExM4c+YM+vv7aWQiVXOpRiwyqVQKzz77LCqVCiXrYrFIhwkAoDcocTDodDqa3BLr6cGGTqcTEC5pxcp/L2LRdb1+x2Lvu1aroVQqIZPJCK43icDFQBwVg4ODCIfDyOfz9GdiMkZ7ezuCwSBisRgmJiYEjhOj0QibzQafz4dqtYrd3V0ahZGScv6oL6VSiVgsJiCa3t5erK+vc77X1dVF7YTxeBzxeBwrKyswGo2wWq3wer1UKnE4HEgkEgD2EqQMw9AEMnGURCIRfPGLXxQdzyVH2Fw8bIStVqvxsY99DG9+85tx7tw5PPnkkxgZGcFTTz2Fp556ivzaLwGY+ZGG/VEAb2eO8KCfSD9s9n+lBCHVozZE9/v9WF9fx+XLlwUfoFSVlEql8qF2HoVCAV/5yldQKpVo46ZqtcqZeu10OhGPx2kHNHYyj2iiBGazWUDOOp1OICGIPUxixK5QKOpG1/Ua35PfJ6RLBtyS98dHtVrlkLvZbKYLIcMwdQto2tvbsbi4WNceaDQaUa1WMT8/L/CU22w2WkVHZJjJyUnaZ5utXQN7Ojd7zBi5RxcWFuDxeODxeFCpVGhfEjLcoVKpQK1Ww+v1IhgMUkcL6a9NJpcrFAqEw2F89rOfxdve9jaObCRH2Psfm92a96B4y1vegre85S2c7/3Wb/0W/X+GYT4G4GMPdaI4wQj7OHDUCJthGCwuLsLv92NsbEz0wzuNkkipVMLnP/95FItF+r7ZUTawR9i7u7uUVNiRJmmsw4ZYi1FSwk4mkRN5iyS/yIgosWuv0+lEI+l6WrMYAeTzeZqgFDtWPbmmUCggmUzumywmUTu7VSobpHCFRLhstLW1YXNzE9VqFTMzM5TUvV6voHydOGJIlSOxRbKnzKvVak4OgBAzgcPhQC6Xo2ReKBRoIlOj0UCn0yGfz+Mzn/kMxzIoR9hc8B0op3ViOiATtgBEr1apVLh69Wpdf7VUks5RXSK1Wg2f/exnUSgUUKvVaIFFoVCAyWRCqVTCzs4ObDYbLWDhR7VkKC6BTqejY9yIrqxQKJBMJmlPc1JCnUgkOP/IfEair5KoT4xklUqlaNRdLxon75fovHzyqbdDIZbBekSfy+XQ09NDe3XzC14qlQod2MuXWQj6+/uxtLQkiOIHBgawsLDA+Z7T6UQwGMTs7CyUSiUMBgPa2to4i4XdbudILW1tbdSBQki5VqtBq9XSHaXJZEK1WqXJyFqthi996UtYXV2l10GOsI/n2I3GiRO21NWIhyHVdDqN27dvo6urCwMDA/tGIactwv7Sl76ETCZDo1sSCZPJJ6lUim6tAfG2pRqNBlqtFhqNBtVqlVr74vE4UqkUtd6xoVAoRMujyetUq1UUCgVkMhkUCgXE43FkMhk6UZw9zJcPjUYjen+wx79VKhXqESc/q3dPkQWJaOL868zeidjtdmi1Wk5Ee//+farvk6k1/MUhEonAaDRykogE/f39nEibJFb5wxKIZEXQ2dnJKZfv6OigerbRaKSEbrVaaeLUZDLR/iPAHpl+5Stfwc2bN+UImwc2YZ/mienACdr6AOk76h2GsAOBAKanp3Hp0iXRaSh8nCbC/upXvwq/3w+tVkv7UAB7759MNiH9qglIBE50XdLcKBqN0oY4ZLtOYLFYBElEUmDChkajEY0+2Q+FUqlEJpNBMpmkFX3se4NhmLpDlOvJJLlcrm5Ezj8euTfItRb7W71eT+WwUqkkKEoZHh7muFDK5TKCwSCsViva29sFzhEyAzKXy6FcLmN9fR1dXV3o6enhSBZarRbVapWzGNjtdnpNiVSSTqepe2R5eRnRaJROcyfWzWAwyJGpfvCDH+D555+XI2wWxM77tBYWnUiEze7Yd9ItVhmGwdLSEnw+H0ZHRw+cbJBKEjmsS+Sb3/wmlpeXodVqkc/nqYaZTqdpnxCGYTiFAEqlkvZOKBQKyOfzAheG1WoVnIfYTSx2rmLd9EhlJR+kqVEqlUIymaT9TQhp8UF6Q4tBrVYjmUyKnpNYO99yuUxfo570Raa+EJLk49KlS1haWgKw18iKVLxptVqYTCbBXEar1YrNzU0sLCzQHY5araaFMARut5vj/dbr9cjlcshkMtQ3nslkYLfb0dLSQvvMq9VqGI1GOixZr9fTsv1yuUx7yjz99NMNDziaNcIGXr23payobARO9MxOeohBuVzG3bt3oVAocO3atUO5SU5DhP3CCy9genqalniTvw+HwyiXyzRxQqabkJ8bjUbEYjFamu5wODjRp5h2TMra2dDpdKLkKRblHvRzzufzSCQStGsgH/VkEoZhqExCprwQgmYYpm7kTXqe7HfNM5nMvg2Wenp6MDc3J2hYZbfbEQgEOO+dFM7wmwqRbn/84xIdPZfLIR6PIxQKobW1lRYMkeMQGYtUBJJkpclkokU1pDMgwzAIBAL4X//rf9Vd/I6C40wMNhLs++ywlr7jxokS9nG0WK13/Ewmg4mJCXR2dh5pEPBJE/bExAQtQyaaJOltzTAMlXUYhqFuAkCcfPivZ7VaBQQnNk9QLJIm1jM+xBZDtVotGnWT2ZLJZJKW0JP3Uo94iRzERrFYpAMZ6skrwB4Zig3dJa9JPhOSPBVDR0eH6HtkJxtrtRrW1tbQ3d2NwcFBgWTS09Mj+J7FYsHS0hKSySS8Xi9cLhen2yAppAH2SJ8sWuyeLmQXQ1rTAnv32e7uLv72b/+Wo5c/DKSOgo8j8s1msw3puikVHnlJRIywg8EgpqamDqxX1zu2FIR9EJfIwsICvve976FQKNAomkgJOp2O47mNRCLUm0tmC7JBHmY2+MRF3Cb88xSLzsQWvnoLcz3rFJv4qtUqJe79phSJHZ9hGKRSqX17RhMyJwlA/nsn3QzJ8bRarSDCJ5JDPS/50NAQtra2sLq6Su83Il3w8wQul4tq+ul0Guvr69RBAux9FmxvPJn9SO4ZkosA9tq0EjK22+1Ip9PUZ6/RaKjM8pGPfKRuv5TDQGrClgL8z1KOsPfBcUsiDMNgeXkZOzs7h9KrxSBlpeN+hL2zs4Onn34a+XweZrMZDMMgmUzCarVCoVBQ038sFkMwGKRTxAn4DZT4JbikMRQBwzB0MC9xkRB9lnyPlHGT6ed81CPmekQqthBUq1U6F5FPqqTkXgxk2na9KSvs861WqxzSVigUlDwJSO8OArZ8RPzvYtp/f3+/YLiF0+nkJBsBUN17a2sL8XgcHR0ddOAvgdFo5PRWsdls1CmiUCig1WrptfV4PHQxt1qtKBaLVOMmn125XMbHP/5xjI+Pi17Dg6IZCZt/zqd5YjpwCiSR44qwiV7NMMyh9WoxnIQkkkwm8ZnPfAbFYhEGg4FGkKQQhDg+SGFMd3e3IJHFJkm9Xs8hJL1eD5vNRj8XIp9EIhFEo1FEIhGEw2GEw2HqKCE/i8fjtDilUCjQrnL1ko1ipezk+2ILoUqlop5u4v0mD9p+nwM5lph9TkwqIaRNFiGxc0mn0/Q68hcKMa1Vq9UiHA7DaDQKyLyvr4/TJArYWxRSqRTH1dPZ2clJYLpcLo5F0OPx0GiaLUuRRTyfz4NhGPr5mEwmZDIZuvhUq1X80z/9E774xS8K3u9B0YyE3UwT04HXSIRN9OqOjg4MDg42xLIjJWGLJdVIFEQImHSz02q1lOSCwSAMBgOVRPjRNP+4VqsVOp2ORpKRSIQScDabRbVapZZANtRqtSDyBMDptFculxGNRlGpVJBKpWgyjDzQ9T6Deg4Z/nshGne5XBZdEMh5siPRcrmMTCYDtVoNhmHq/l21WkWxWHxgQo4tl7BRLpephKFQKBCLxagkJaaP9vT00Pe9uroKl8sFr9fLKZjRarWCa056agOgLVer1SrC4TBisRg2NjYQiUSg0+kQDodpO1biNmEYBn6/n7pLlEolJiYm8OEPf/hIgdSjQNineWI6cMIattRJR5VKhUwmg6mpKVy8eFEw2fthj32cksjHP/5xKlWQQQHEPx2NRpFMJmn3OGCvwx7bidDS0kJvRmL1CofDCIVCdO4g3y0CQHR7KJZsNBgMogRHOuqlUinq8SY9TMSkDTESJZGh2PdJAYxYwlBsUajVakgmkw9MRBJCr2f3I1FzvZ1aLpeDRqMR3CdiC12tVoPJZILRaITD4aDDHEj5OkFXVxdWVlbo1xaLhVZFplIpxGIxTE1NQa1Ww+FwwOFwUOJ1u930GppMJqRSKbq4k94rxAq6vb2N97///YdORkpZQSkVmmliOnAKImypJBGGYeDz+ZBOp3Hjxo2GfwjHKYl88pOfpNNKcrkc7feRy+U4hTFscmUfw2w202KWQCCAcDgMm80miA7FtNd6BMqH2O9ptVpBUg3YW6hjsRii0SiKxSIlRbEBBcDeYlCPXMn7SqVSHHLla/H8808mk3Vfj/i5SX9uscWAJCr5E7cJCBGwHR0E7J0GAakGZcNms3FkEWAvGmf/Xnt7O+7cuYNisQir1Yr+/n5aFcmv3iNeb4VCQR0lZJAD8GqlZLVaRSQSwfvf/37R+ZX1ICVhn9TwgtOGE9ewpYhSK5UK7t27B4ZhaIlxoyEVYfNdIl/60pcwNzdHC2OIXp1IJGAymSh5szvukf4SNpsNSqUSqVQKgUBg34jSaDQKvMFipG42m0WThYeZaclepPP5PCKRCC19r2etEwO7a2CtVqMRIUmG1vs7vV6PQqGARCLxwHuD7AbYn4nBYKDWSGId5L+WVqtFIBAQ3aGUSiWONGIymRCJRJBMJgXvP5fLcX6XJH0ZhsHW1hYymQza29vpNWX7rQFwhi+QfiMMw9A+MQzD0PdDmkgR5PN5fPCDH8QLL7yw7zUieBR6lMguERFIaevLZDIYHx9HW1sbBgYGJNtOSdn8ieDb3/42JiYmaFGERqOBUqlEKBSCXq+n0oTX66XESqoYC4UCfD4fUqkUrXYksFgsAi+22E0qRsJiBGc2m0Wvc72ufGLTY/R6PaLRKKLRKBiGoa9Nko1iEJM80uk0TTDWA3vhSiQSHHJXq9WCa0NampLX5FcvimnTxOoXj8dFd3fJZJLO0SSESvpas6+b2JAGEnmbzWao1WqaQCRwOp2cIpyuri7aXdBkMtGF2eFw0Gvr8XjotHuVSgWtVkuJ7POf/zw++tGPPrACVypiPe7hBTJh10GjSS8UCmFychIXLlxAW1ubpElNqSJsglu3buH//b//R6eMExIj2iObBBQKBfVg12o17O7uUgInswTZ4BMIcRKwQXpVsFFPZhB7mMh0bz7qESn7GMlkkrYbracRk14kYlCr1YhGo6KLi1arFbxXIo/sR0hEkxbrBQ7sET8hbaPRyCH1VColam0k477Y91E+n6e9ywnI8Aly/tFolEphBB6Ph/M1WzohEgx5FhwOBz0/h8OBfD5PZZJCoUD94cS+WavVcOfOHfze7/2ewIbIxqMQYcu2vn3QKFsfwzBYXV3F5uYmRkdHqe4nJWFL2RyGjHgqFAo0cUXKp/V6PYdYvF4v7QUSjUbhcrk4BOB2uzmyhlKpFC2L5ksfNptNQGAWi0VwPUlil496UoPY9xmGEZwT8GoiTSzKrNdXGwAtvybNkPivJQaSiNyvBD2bzdZ1lpBjGI1GhEIhzvfr2RTT6TS1YrIRj8cFOmqpVEJLSwuCwSAdB8YnMXKvAKB9ZMi94HQ6qZ6uUqlopB2JRGir3EgkQhO5FosFyWSSTrfXaDQIhUL4sz/7M3znO98Rff+PQoR9lOEFx4kTl0QellArlQru37+PcrmM69evcwjhsI2UTgMikQhefPFF2hqTRL8WiwVqtRrpdBpOpxNKpRItLS2Ix+PU5aFSqR5Ydu5yuQR9Q0jVHXEqEBcJe0ABWVxJcYhOp6OjscQgRmxGo1HUBqfX60V3K6QKM51O0wiXoF6kTibAEyQSCVqBSK5fPZAkXL17RqPRIBqN1n3PxIcuhmw2y0kgknNJpVKC4xESZwcFpBiKfW7snAZ5DfYACoZhOP1NPB4PwuEwdnd3kc1mqYbf0tJC/cckUUq6PkYiEcTjcToIo1Kp4B//8R/xl3/5l4Lr1KwRNvvYsq1vHzxs0jGbzWJiYgIejwfDw8NN5wHlo1Ao4IMf/CDK5TLVEFOpFIxGI314BwYGaKc9dgEHsOcYYH9NZjQSEPI1m8304cvlctje3sbu7i58Ph92d3eRyWTg9/upL5tEYX6/n/qf/X4//H4/4vE4otEoJWitVguLxSK6c9pvGIQY2NJFrVZDJBKh8kA9whZ7DdKLe78ojUyTTyQSoscgzhZgbwCvmJ/abDYjGAzWjf5jsRjMZjPHjgfs6e58kshms1QaMZlM2NjYQDweF7RSIKPgCKLRKEd+iUQi8Hq9sNvtyGQyaGtro6PEHA4HvY6tra30enu9XsTjcdqfRq/X0/YE6XQa5XIZk5OT+PVf/3WORNKsETb785YlkX3wMEnHcDiM+/fvY2RkRDBSvhnBMAw+8IEP0InYZHwU0U2BvYdKrVZjc3MTuVyO0zMEgMAFYjKZKEGQa72+vo6dnR2EQiFkMhnOtplA7Iatp1OTBSGfzyMWiyEQCCCdTiMWi9HyZ7LrqWfxE/u+mFQAgFNFyZelFApF3Qi6VCrRIpJ6IK9Hem6wwd6tEQmHv5sjhJ5IJASfDUGtVhNIJuzXZiMWi8FisXAqGmOxGOfcCoWC6MBghUJBKx59Ph/W19dpEpQ4ihQKBc31AKCebGBvJ0Z2eaQtK9l9qVQq5HI5pNNp/M7v/A6+8IUv0PfW7BG27MMWwcMM4iV69cbGBkevbnb89//+32nUlcvlaItMi8WCWq1GeyeTiKa1tZVTCed2u5FOp6FQKGCz2WCz2WjUvLOzg1gsJkoiYhKFGIGKEV29WZdEm02lUggGgwgEAlAoFLTPBRukxJ6P/Wx58XgcsVgMmUyGE13WK2sHXu1eF4vFBIU/CoVCICVFo1HOfER+EQnfg80vHIpGo4KoWalUIh6Pi15Lsnjyz5k/O5K0TGUjGAxy/rZcLsPj8dB+JNlslhOZBwIB+txkMhk6RUepVNLiMo1GQ90/NpuNzo7UarXUlkgKmj772c/ive99L0KhUNNF2HyPt6xhNxBEry6VSgK9+qTQCI38c5/7HKampqgzw+l0Un2f9K+uVqucIgz+TWUymWC1WpHP57G1tSXopicWfbL7KRO0tLQIdFiDwSCaWBTTa202m+iuiUSWZII48QTX84bX+2zZ0U+lUkEkEkGhUOD0wxYD2e7XajWEw2EOaddr2com7XrRvlqthlarFQztZRgGuVyOs902GAx09yEmqbBJ3mazYWtri7ZVZSMSiQgaSZF7xeVyIRQKYWVlhRPMxONxes+QGZAE29vbdJeaSqUwODgIYO8zIETvdrtRqVSgUqlgtVpRLpeh0WigUCigUqmwsLCAj3zkI/jHf/xH0Wv5MJAywibviUC29TUIuVyO6tXnzp078Ad41KG2Bz32wxL2M888g+985zu0irGlpYXOSWxtbUW5XEYsFuOQkdVqRTgchlqthsvlgtVqxcrKCra3t+s2JWptbRUkAsWSK2LRn9gW0WQy1fVH86FUKjk2N1KhSbrv8cm5Xq8SQCj7AHvJwnK5LOrvBkD7Z7BBBgPUk14IMpnMvgVHqVSqbqtdksQE9hZYn89Hf8aet0hAzsVut3O684XDYcFnlU6nObsLIo0sLi6iVCrRiTME1WqVDl8G9mQbMtWdvE+yuGxubqKzs5O+Tn9/P4C9RcRoNEKlUsFisdCiG4ZhYDQa6bDfn/u5n8Pzzz9Pe7M/LKSeZMMmbCLjnVacqCRC8KAPNRwO4969ezh//vyh9WoprX0Pe+wf/vCH+L//9/9SzVqv11OXg9frRTabRa1WQ0tLC4ds3W43HUqwvr4uSHK5XC7BFp9/E4q1DiVVkXyIRa5iEaKYSwXYsw2KEZper0ckEqG6NyEMsa52wF7EV0+jJlq4WJ+TepE30aoflEchg3XFYDKZsLW1VVeaI3o2W74CXi3GEZsgz19cqtWq4H0VCgUqg1gsFhQKBUFUHQwGOS4Sv99PiZj8nCzGhUIBZ86cAfBqy1iHw0FtoV1dXdRJ5Ha7Ybfb4Xa7qXRHzrNQKCCXy+F973sf/t2/+3d48cUXsbi4iEgkcuRnRZ6Y/ipOPMLerwCFYRisra1hfX0dN27cqJvI2Q+ntXhmenoan/jEJ6i/mpRTZ7NZtLa2cqJXEilpNBqYTCasra1hY2ODNlDi66v8aEyn0wl6WjidTkEUbrfbRZs/iUW7YrY9m80mej3qXSN+J71QKIRKpVKXQPdLGJIClFAoBK1Wy7GO1ou8GYbZl4xJkQppGCX2+uQ68JOB/PcpJrskEgmODc9gMMDv94uWtEejUcGU+1AoBK/Xi93dXSQSCVSrVcFnTzo6ErAj81KpRAmdDLno6elBsVjExsYG1Go1lpaWsLy8jHA4DL/fT3cJoVAIoVAIAwMDqFQqMBgM9B+ZlbmwsIAPfOADePrppxGPx3H37l1MTk5iZ2dnXz87H8c5MZ3kWk4rToywH+TFrlQqmJycRLFYxI0bN/Z9WPeDlJPZj0rYGxsb+Ju/+RtaGENKz4lf2O120+OSAQROp5P2D2ETGilDJ9BoNAJy5hfTkN/jQ0yTFiMzi8UiSoL1ht/yS7mBvUVF7Bjlchmbm5sCnRVAXeLlT3MnVZJqtVo04mafWy6XQygUEn2fbJIol8sCa6DFYqFJwWq1KtooipSekwEPfJAFg3QqJH1LxAiK37CKDEBgLwbBYJDjGsnlcmhra6NfZ7NZdHR00K8LhQJ6e3uRSCQwPT2N7e1ten9tbGzg7NmzAPYWF6Jt7+zsUKfJ4uIiLl26hEKhAIvFQudNEv93oVDA5z73ObznPe/B7u4uPcbS0hLGx8exvLxMi6Pq4Tgj7NNet3HiEbZYtSPRq1tbWw+lV4tBqskwwNGi93A4jD//8z+nkz/UajVKpRKdHuP1emkUYzabYTAYEAwGsbm5KSpj8OFyuUSng5PzNRqN1CdttVphsVhoSbtCoYDBYKBbX7I4mEwmGAwGKlmIkWA9Yhabvg7Uj7pJlJpIJBAIBGjRjtForFuUIhaRp9NpZDKZfRORbIRCIc6DS8rb2SAl3OQf//3ydWnSC5v8TEw2IddBr9dzFtp4PC6IqIvFItWhiV4djUY5MgcAgXvG5/NxInmfz4euri60tLRgdXUVKysr9BlLJpPUNQLs3a/kvDc2Nqie7fP56P8vLy+js7OTRu8tLS2IRCK4ceMGarUazp8/j1QqhQ996EP4xV/8RXzzm9/EpUuXcP36dTgcDkQiEdy+fRtTU1Pw+XyCz0zKCJtdoMTuGXNaceJnxye9SCSCxcVFXLhw4UgSyIOO30gcNsKORqP49//+39NiB5VKhWQyie7ubkpGRBMkScLV1VX6993d3RwPr9PpFGjGJNoi/m3SbKlQKNBtaEdHB9bX1zl/5/V6BVO7SbEFG6RPs1arpda7QqEAq9Uq2j+53qzFekQqlhxUqVR1cxcajUZ0oQD2JJRAICCacNXpdALLXDKZhMFgoPeM2EKTSqXgdDqh0WhE5yDGYjG43W5a1s1+n2TiOf916404I1Nq2NckGAzC4/Fgbm6Oc1z275VKJXR2dtKBvuxmWkajkZbPE4toNptFb28vlpeXAQDr6+vo6urC9vY2crkczpw5g1QqBYZhkEgkYLVakUqlEAqF4HA4qMXS5XIhEonA4XDAZDJhdnYWY2NjGB8fx9DQEHZ3d6HVavGpT30KX/3qV3HlyhX8/u//PgYHB6mrJhqNYm5uDpVKBQ6HA06nU+DkaCT4E9NPc5UjcAokEVLtyDAM1tfXsba2dmS9WgynhbBDoRD+8A//EIVCgf5NMplEf38/fVhbWlpgNBpRLpexvLwsuHn4r0WuEekb4fV6US6X6cO0vb2NeDyOUCj0QM1QTLcTu3nNZjPVM7e2trC9vY1IJIJ8Pk+jcxIN1evNUW88mNlsFnWe1Go17OzsoFKpCKSxeroxsLdY1Go1BINBUSeKGMj72M8BE4/H972eZJERS5DyZQ2j0Yjt7W0Eg0GBbi32fl0uF3Z3dzmfV6lUEry/3d1dTsIxEomgt7cX4XAYi4uLCIVCNEIG9kiaROpkQSVR+ubmJoaGhgCAJsRJYlKn01EPul6vh8VioYuWXq/HwsICLl26BJ/PB6vVCpVKBYZh4HQ68YMf/AC/8Ru/gT/8wz/EzZs3odfr0d3djatXr+Lq1auwWq0IBAKIRCJYW1uD3++va8FsBE77eDDgFEgiKpUKxWIRU1NTyOfzD6VX1zv+SUoiZCH6q7/6K7rlLRaLUCgUsFqtlNzMZjOsVitWV1dpTwjSdhPY6wNBGtMDoN5ss9lMp2tXKhWEQiHB4GE21Go1tbQRkOQaH2LySz05xO/3Y2dnB9vb24jFYtT6JbaVrfdQ1PNe22w2lMtlpNNpWvpNjltP19ZqtZyIn13lKJaoZaNYLO7rxdXpdNjZ2anrDCFtUsUWwVKpRK8hIT2SpBO7VpFIhGrSTqcTS0tLSCQSHB0a2JOQ2BJKrVaj79doNMJsNmN+fp5zTn6/n/M+S6USXcji8TiH0P1+P5VjNjc30dXVRRPlIyMjGBwchNFoRHt7O/R6PTY3N9HW1oZsNov79+/TiD0SiaC/vx+xWAz9/f2wWCyIRCL46Ec/it/+7d/G3/zN3+C73/0uyuUynE4nhoeHYbPZ0NnZiWKxiJmZGdy5cwfr6+s06m8UTrsHGzgFhM0wDBYXF+F0OnH+/PmGa1UnGWHXajXMzMzg85//PJaXl6FWq1EoFGC326FUKnHu3DnaM8JgMHBKkN1ut6CHtV6vh8fjoRrz8vIyfD4fKpUKpzSagFgD2eAfFxB3d7S0tIhGmWIkzi9vr1arCIVCiMVidJEhP6/Xma/e98nP2P9Pim/MZnNdwiaRHBvEu04WOzEQ3dnv94sSslKppJJGKBQSTd5aLBZsbW3Vjf6j0SgcDgfsdjtn8RTrFQLsReUOhwNra2v0PYk5Scg0Gfb77e3tpfMd8/k8JwFZKBQ4JB+LxdDX10e/Xl9fp79PbIRWq5XeQy6XC0tLS/jhD3+ISqWCmZkZTE9Po6urC6VSCcvLy7hw4QKUSiWWl5dx48YN5HI5zM3NwWg0Ynx8HOvr6wiHw7hz5w4SiQQ+85nP4EMf+hB+/dd/He9+97vxmc98BsFgECaTCT09Pbh27RouXboEo9GInZ0djI+PY25uDsFgcF+/vBhI3oZAlkT2gUKhQDQahd/vR1tbmyBx0iicFGGXSiXcvn0bL7zwAl555RWaXCTRksViQSaTQaVSwc7ODmdXYTabaXStVCrR3t5Oh+QuLy8jEAgINOD29nYBeYlFw2KEKyZPiLkmbDZbXcmCD61WS7P/ZKp6Op2u26fBarWK6rhqtVo0Gs5ms3UfMFIWL4ZYLEZ7kYjBYrHQa8v2KROwp/AwDINSqSQIMsjnEA6HOck+NgqFgmCnA0DUsaJWq1EsFjmfU6VSEUTw/Mjb6/VieXmZIyNsbm5yFoXNzU3O32xtbVF/N0n26XQ69Pb20sG9i4uLWFxc5MgmS0tLtBBndnYW165dAwDMzc3R/5+amsKNGzegUCiwurqKxx57DMlkEhsbGxgZGcG9e/egVCphsVhw8+ZNLCws4HOf+xz+zb/5N3jHO96BD3/4w7h58yYYhkFrayvOnz+PsbExdHZ2IpvNYnJyEnfv3sXm5iY91/3QbL2wgRMk7K2tLaysrODMmTMNlUD4kNLWV28xSKfTmJiYwOLiIp577jnaeMnr9VIZw263c5I6bPmDFCm0tbXRB3NnZ4e+D7fbzZFHAKEmK+Zy0Gg0AlLU6XSiJC42i1CMxMVshMBewpL/wJCp6n6/nzpW6p0/gdVqFf38FAoF4vE4ddSwI939ukBaLBYEAgE6wYcNfpRPOgSS81QqlQKSJTkJ9txE9vUIBAKiAyMymYyoZMLXrUkh1cbGhoD80+m0oGydaOEulwszMzNIpVKcFqvEOsp+bXZv7UqlQs+XuJTcbjfu3LmD1dVVxGIxeh6BQADnz5+nf5fP5+nfzs/PU917enoao6OjAPZI+9q1a1CpVJicnMTFixfpbnFwcJA6TK5fv04tq2fPnoVGo8FTTz2Ft771rfiZn/kZ/Omf/im+/OUvIxQKwWw2o6+vDzdu3MCFCxeg1WqxsbGBiYkJLCwsIBwOiwYlzTbPEThBwnY4HBgdHaUDZKWClLY+sQg7HA5jenoaiUQCX/ziF2mTIHIjE/8qu/cE+wH1er3I5XLw+/1YWlqiXfDY4CdkifWPjba2NkGCRkwOcTqdgu+JFdAAEI1aW1paRAm13vBe4ugIh8N0ESJTvMVQb5vLHrpA2qIS0tkvEUlAWtOydXOr1SpYvCqVCi2asdlsou8rn8+jpaVFdAoOKbphEySxskWjUVEJJBKJUKmC7FTIufBJnr9bYBgGFosFCwsL9HvsqBnYu/fYZenRaJSjV8fjcQwPD8Pv9+Pu3btYWlqi8lCxWITD4aDnMT8/T73asViMatukZwtZUAhRA3sEfv36dQwMDECn02FkZATnz5/H+vo6kskkWlpacPv2bdy5cwdqtRqBQAAvvvgiqtUqXve61yEcDuMTn/gEfvM3fxO/9mu/hn/7b/8tPvrRj2JiYgIqlQoejwcXLlzAjRs34PF4kEwmce/ePdy/f58GSUDzjQcDTpCwzWYzLSaQanI6cHySCMMw2NjYoHa5j3/847T5j1qtxvnz52G1WrG0tMQpjOnu7sbu7i46OjpgtVqh0+mwsbFBSbSnp4cT9ZHJH2x4vV4BaYpFb2LkJ0a2YlFGvUIXMdQb38UvsQf2yDaTySCfzwseFq1WK7DA1Ttv0nPFaDTWTSiSAQQEZIIMWTDrLQ6lUgmlUqnuuQB7STkxGyQ5LrmmKpUKa2trnL8TIwlS2cjOa7AbOBGk02mqMxOr5fT0NEerFquADIVCnEDB5/PBZrPhzJkziEQimJubo2RGEoAERMIA9u579tzKlZUVXLlyBQBoqwDSlrVWq+Hxxx+H2+3GrVu3oNVqcfv2bbzyyisIBALo7u5GOp2mY/70ej2WlpZQrVbx+OOPo1Kp4JVXXkE+n8dP/MRP4A1veANu3ryJz33uc/jzP/9z/Pqv/zqefPJJvO9978NXvvIV2hZgYGAAo6OjtGf+ysoK1c9Jwpec72EJ+1vf+haGhoYwMDCAv/qrvxL8nGEY/O7v/i4UCsWKQqGYUigU1w71AjycuK1PSkKV+vjk2LVaDbOzs3QY61//9V8jk8nQqOvcuXNYXl7G1tYWuru7qT9WoVDQhOPS0hICgcC+pADsySV8/Zr/tU6n42zdSdSVyWSoN1un04m27wTE26uKJeAUCoVAmgFAi4D4qCd9ES/11tYWGIah5FLvOPVkGODVKeZiEguZT8hGLpejPZDFnDIEREeulxQnvux6W+poNIqWlhZaAk5QrVZFAxZ2FSX/fPmvQRwcCoWCEjx/8SHFMuzjsPNGdrsdVqsVd+7cQS6XQyqVortBYK+j37lz5+jXm5ublMRJLQHBwsICent7YbVa0dLSguHhYSSTSYyPj+PWrVtUspqamsLly5epfBcKhXDhwgUAe5p4Z2cn+vr6kM/ncffuXTz++OP4yZ/8SRQKBXz/+9/HSy+9hMHBQbp47Ozs4Lvf/S6ef/55/PVf/zV+5Vd+Be9973vxkY98BNPT09Bqtejo6MClS5dw48YNWCwWlEolTExM4F/9q3+FmzdvHso2WK1W8d73vhff/OY3MTc3hy984QscfzwAfPOb3yT+9rMAfhPAxw/8AiJQPECYl6xOk9yoyWQS29vb9INqNOLxOPx+P9XaGolAIIBUKoVkMonW1lYolUq85z3v4WyRz5w5g2QySaWAoaEh+Hw+2miHkDewN02GrWU7nU5BVHvmzBmO/EGsVgaDgTbZ1+l0CAaD9BoXi0X09vZyXoscy+fz0bl9Op2OOj7IhPZarYZiscgZVkDQ2toqSthkdBkfYl3zAHFtnQyVFSNmh8MhkIAISIRN2s2S1yPFI/X81aRhf71qStKetrW1VVR/djqdWF9fp+1lxYIEt9uNYDAoKqvY7XZ6bjqdDslkErlcDu3t7YL32t7ezpn0QqoL+WTR29vLKZCy2+1IJBJ0wSD+fZ1Oh/v374NhGHR2dmJzc5O+59bWVlpQRRY8suPr7e3F0tISPf7g4CAWFxfR19eHSqWCxcVFuuhcvXoV4+PjAPYWf4PBQAuPLl26hMnJSSr5XLlyBbdu3aLXbGhoCDMzM3QxunbtGnZ2djjPSmdnJ7XJ3rt3j3MdzGYzhoeH0dXVBbfbjTe+8Y34iZ/4Cbow9ff3Y2ZmBh/84AexuroKrVaLN73pTfiN3/gNDAwMCD4rgps3b+J973sfvv3tbwMA/vIv/xIA8Cd/8if0d9797nfjx3/8x/GOd7xD8aNrugjgxxmG8QuP+GCcuK2vmSPsUqmEnZ0dnDlzBhaLBb/5m79Jy5M7OzvpKCtC1mfPnqX+ZL4nFhB6pvk9j8lUa4/Hg9bWVuj1euh0Ovh8PqysrNBGPYFAAMlkko7GYhhGlKjIdSHVimQ25Pb2NtbW1rCysoK1tTWk02n4/X5oNBpYrVZYrVao1WpR2YXfSpWANMHnQ6z/NrCnl6+vr8NsNgscHfWiILYcks1mEQ6H6Va9nsMF2Iued3d3kc/nRZ017L7h4XBYkEMgvmxgL9oU241oNBrs7u4KhigTsB0K7FaxZFQXG7u7u1TjJpWxc3NzAm92IBDgvB9+S1WbzQaNRoN79+7Rc2InIPl+8mw2y4nS19fXaXRLyNJqtWJ8fBx3797l/O69e/dw+fJlAK/mQoiuPjU1hZGREWrFvHfvHt70pjfh4sWLCAQC+M53voO2tjb6Wd69exepVApveMMbaA6CVOr6/X7cuHGDk9AmMtU3vvEN/O///b/xjW98A9VqFblcDgqFApVKBefPn0dvby8+8IEP4IUXXsAb3vCGB/IGf9fS2dnJaaEr9jsAdgBwP6hD4MQlkYed6/ggSEXYkUgEGxsbcLlcMBgM+Nf/+l8jn8+DYRhcvXoVKysrKBQKNMLo6OhArVbDwsICgsEg2traOBFve3s7pzRcq9UiEAigpaUF7e3taGlpgdlsxubmJhYXF7G8vIxgMCiIcHU6nehUdP52X6/Xi46qEtNg7XY78vk8/H4/1tbWsLa2hlAohEgkQiN78nk6nU5RXbxenqJe72Gr1YpqtYqtrS06hJi8v3oaNT/ZSCyT9fqZsF+rUqkgm82K9ufmR8TkcyEwmUwcCcLv9wvGdlmtVmSzWYRCIY6+zD5XlUol2LWwnRf8cyLzOcl9lM/nOZIN33cN7JG9yWRCZ2cntre3MT09zUk4knuTwOfzYXh4mH69tLTE8Wqn02maoLx58ybdmQF70sj169fp766vr9OdZTAYhNPppJ/Z3Nwcrly5gsuXL6O9vR3PPfccp3Pe3bt3qbwC7Llzbt68ifPnz+OnfuqncOvWLUQiEYRCIdy9exdarRave93r4HQ6cfnyZdy5cweFQgFXrlzBhz70IVSrVUQiEXR0dEChUKBarWJiYgKpVAomkwk/+7M/S10u9SB2Tx2wdfSRlYtTEWFLnXRstK1vc3MTa2trGB4eRrlcxq/+6q8ikUjAaDTiiSeewJ07d1CtVtHf3w+TyYTu7m7odDrO9pTvziBRm0ajQUdHB3p7e5HL5bCxsYH5+XlsbW0JtsYdHR0CmaKjo0Nwk/BHTwF7koNYqbsYGYpFwG63G+FwGNvb2wiFQkgkEnRYq5jHWezGJb0pxMCOxrPZLDY3N6HT6fadMlTvWGK+dfY5sHcEZGABeR1Sas2H3++nxUzsxCD7NUnEbDabOQMJyN/yUS6XRRfMZDIpiOqJm4LdayYWi1FCJNjc3OR8/qVSCe3t7bh//z79XJPJJEfz509y9/l8HN08n8/D4XCgv78fCwsLSCaTdNezurpKk47AHhETgs/n86hWq/S9b2xsoLe3FwaDAZcuXcLy8jKdOwrskfTZs2dpif3u7i42Nzfx+te/HkqlEmNjY1hdXcV3vvMdjI2NcfrNpFIp3Lx5EyMjIzAajThz5gxGR0fxd3/3d5iamsL09DRaW1sRDoeh0Wjw6U9/Gmq1Gv/8n/9zwfWvB7LoEezs7Ah63vB/B0AngF0cEaeCsJvF1ler1TA3N4dkMonr16+jVqvhP/7H/0gfFLfbjdnZWQB7+p5SqUQwGMTy8jJnO+5yuahOCLzqNXa5XEgmk5ifn0c4HOY8vCSDzoaYfU2MmA5a7MLuPUFgMplEdWoxlwaRZiKRCPR6PZUGLBaL6DkYDAZRPbee04NsecXIrp7kQt7X9vY2HSDL/xn/uqbTadqetZ6mTex69WyplUqF026Vfb1IgMKOxpRKJbLZLPx+v+BzJVNR2Itea2srlpaWBInc3d1djhxQq9Xo8dRqNZxOJ27dusWJovlEn8vlONv4bDZLk4oajYYmKMfHx6lWzc5Bzc/P04QmuQ7knILBIHp6eqBUKmE2m1GtVnH27FncvHkTkUgE9+7dw/Xr1+l1W1hYoLtM4NX2u69//esxOztLA5bbt28jmUziDW94A5VxHn/8cXz/+9/Hyy+/DLfbjWeeeQbd3d1Qq9X0NX7rt34LFy9exEc+8hH80R/90aF6GI2OjmJ5eRnr6+solUr44he/iLe+9a2c33nrW9+KT3/601Ds4XEAyaPq18ApkETY06ilQKMWhHK5jDt37kCv1+PChQvI5/N497vfjXw+j+HhYdrDuVgs0i3m9PQ0KpUKRkZGOK6N9vZ2KBQKdHV1wev1wuVyYXZ2Fmtra6hUKmhra+MklQBhnw2NRiP4HX6pM/keXw7RarWicogYeYpF5wBEdWq3241isYhqtYqdnR2sra1RTV9MG67Xi6Oem0Sr1XKibXZUuF9LA0LIZIfClmHq7b4SicS+OwDgVZdMvarJVCoFh8Mh0DWBPZJke7BdLhfC4bBo5SSwp50TEvR4PFhYWEClUhFtwcpf0Hw+H3p6eqDT6TA/P8/p3kews7PD+bvl5WUOqS8vL2NkZAQKhQKvvPIKZmdnBdIJ+TzJDoW8RjAYpH2wyWuNjo4ikUhgcnIS4+PjeOKJJ+jP7969ixs3btDrsL29jWq1iqGhIYyOjiIUCuH555+HwWCgGjqwd/++9NJL6OnpwU/91E/hpZdeArCXpPzKV76CarWKpaUlXLlyBVarFd3d3fiVX/kV9Pb24sMf/jCeeeYZjI6O4tlnnxVcfzGo1Wp87GMfw5vf/GacO3cOTz75JEZGRvDUU0/hqaeeAgC85S1vITuMFQD/H4DfPtDB6+DEXCKkrBcAXn75ZfzYj/2YZK9z8+bNhzo+KXvt7++H2+1GPp/HL//yLyMYDOLSpUuYm5vD4OAg1SF1Oh3Vo9VqNdra2ui2uq2tjc7sy2azUKvVaGlp4UTTIyMjnK2u0WikyRGCnp4eTpYc2HOZ8J0gfX19gu8R7zcb9fpNt7W1CaQYq9Uq2vejs7NTtOWo3W5HLBajjYHIVHW9Xi8aFet0OtGI3OPxcI5PqvCy2SwtUOLDarUKFier1UoXEELMYtDpdHQKkNjvuFwurK+vo6OjQ1Q2IQNqzWazqKuFuDQUCgVd8Am6uroE7W71ej1sNhs2NjY4n1VHR4fgd202G11UjUYjdDodVlZWOK/R19fHuc/Onj2LxcVF+jVxjBiNRto6dWtrix6jv7+f8/vnz5/H9PQ0/Zpox+yvy+Uy7t+/j3Q6jQsXLuD+/fv059euXcPExAT9+vr165iYmECtVoPX66Wj5tguELVajbGxMbz00ktgGAZmsxldXV2Ynp7G2NgYjEYjPvOZz0ChUGBhYQFXr16lAcGXvvQlfPKTn8TXv/51KvkwDINqtSpFX+yGjLE5cUlEajzsuJ9oNIr79+/jwoULcLvdSKfTePvb345CoYDR0VHMzc3BYrHQkudwOMwhoZ6eHjr52maz0T7BhJAGBwc5ZE1cH2x0dXWJDnngQ4zkDjool58kA/YiWrF+F2LSCQBRGcNsNlMy293dxdraGqrVKlpbW0Xfg9ForHvOfFLM5/PY3NysO6kdEE9qplIp2kqzHlmT+ZZkLiL/99jatc/nE0S6wN6Og/TLEfNn12o1VKtV5PN5QaQfjUYFOw3yO/yFtVAoCO5zIoOYzWakUiksLS2JTl9nR/MrKyucqHlnZweXLl1CNpvF3bt3sbW1xbHHrq6u4uLFi/Trubk5ToJyenqaulJIJSNxHQHA2toaR4qZnp7mSCt37tzB2NgYrl+/jmAwiHv37mFmZoYTjVcqFbz88su4cuUK+vv74XK56KKRy+XwqU99CkqlEgsLC7hy5Qq9pl/96lfxD//wD3jmmWc4n41CoTjVQwxOXBI5zSD9TojJPpVK4R3veAcMBgM8Hg/u37+Pjo4O9PT0YGZmBtVqFRcuXKCRDXF21Go1rK6uIhqNcpJPgPDh6+3tFXyPT2xiw2gdDodA+hAb/irWXhUQr/JjV2SyIVZG7nQ6RYlWjNxjsRjS6TSdKci+F/ZrDlVPo47H41AqlQLtV6lUiurvwKuT2+u9nsPhoIvAzs6OYEEjU3sI+OXfarWaLryki57YPa/T6URtirlcTtA7hLRI5S8O0WhUkGwMBALo7+9HJpOhC2k8HudIU6lUimPzIzY+YE9K7O3txczMDOde297eFiQk2V+zZ1vWajVYrVZ0dXXh5ZdfpoVRRN4jnyfbzri9vU3PyeVyIR6P00UN2LOi3rp1C69//es57zcWi0Gj0dD3d+7cOXzta1+DRqPB/Pw8Ll++TH/29a9/HR/72MfwzDPP1JXlTitORYRNeg+cFtRqNczPzyORSOD69etQq9VIJBJ4xzveAZvNhkAgQGfjkXJzYO8GW1lZQWdnJ3p6eiipkwh6eHiY83C6XC7BVpafNHS73YItfUdHB/VEO51OuN1uuFwuuN1ueDwe+s/lcqG1tRWtra1wOp2c5A0b/MrI/cDearNRb5BtvUb/yWQSqVQKKysrKBaLlNjr/X69/iAqlYraGyORCCdp1NLSUtcd4nK5aPtX/kMrVsG5tbVFSVur1QqkH4ZhEI1G6Xk6HA7OAhaJRAR9Q8xmM5aWlujkFj62traoF7+9vR3Ly8tgGEb0Wdnd3eVcIyLDsDX4fD7PqUgEIOgUubOzg3PnzsFkMmF8fByRSIQTNafTaY6tL5VKcYpLotEohoaGYDAYcO7cObz88sucRSIYDHJcJD6fDwMDA3QxI20KRkdHEYvFMDk5iVdeeYUTVQN7MuoTTzwBlUqFs2fPIpFIYGZmBvPz8/iFX/gFPPvss9Dr9ZidncXly5fptXnuuefwoQ99CF/72tc41sxmwYkSNtuLLaW17zAol8vUx3nhwgXaBvZd73oXdDodZmZmMDAwgGg0inA4zNmmDw4O0ibzKysrnKSgSqUSkCL/AbbZbJTAjUYjLZBpa2uD2WymOnYikcDu7i42NjawvLyMhYUFbG5uYm5uDrOzs/Sfz+fD/Pw85ufnqXc7lUpxpmzr9Xq4XC46jolsD8U60wH1E4VimrZerxeNcO12O4f0CXGrVKq6/TzqjQFrbW2lckWpVMLGxsYDe4Owf1YsFhEMBjnSSb1e4CSKZjeeYoNIEwaDQZA3AIQWO5KgZRiG9jTnI5/Pw+VyCUaCsecuktcmkTeZALO+vs4hV2BP9mB/hqVSiROdOxwOLC0tcXaCS0tLnPOem5vjlLXPzs5yIvVisQi3242XXnoJ1WoVd+/e5SwUd+7coUU0ADAzM4PHHnsMwN7OxePx0EQjgVge6tatW/iJn/gJhEIhupPs6+vDBz/4QZhMJszMzHDI+nvf+x4+8IEP4Gtf+1rdtrenHaciwpa6eAY42DRkMvyX9DBgGAabm5v4/d//fZjNZiSTSVy+fJlOxxkZGUEymcTQ0BDOnz+PW7du0cY+IyMjnOhmeHiYo/GSJvfAHkF0d3ejo6MDJpMJhUIBPp8Pi4uLmJ+fx+zsLLa2thCNRmmrVTaIn5QNu90ucJEolUr6PdIsaXt7m1oJFxYWsLGxQT3ltVoNDoeDEz2LRaz1+l6IdQIEULfBjkKhwMbGBk3UEbArDfkQi8jJe6wnhxiNRk4SsFwucyoU61n5GIZBKBSq21kQ2IswrVar6HUi7Vu1Wi3MZjNn5xSNRkV3P7lcjibC2BCz/21sbMDj8UChUNCFf2NjgyP7kM+UjdXVVbS2tqKvrw8rKysIBoOcYhp2H3dyDHZUTj5ji8WCgYEBvPLKK4jFYlQLZhgG5XKZc77s3QOwR+JE5rh58ybW1tZoZTABn7SvXbuG7373u3A6nXA6nejr68PXv/51mM1mTE9P00EHAPDiiy/iv/yX/4Kvfe1rovmGZsGpIOzT0LEvFovh3r17GBkZgcfjQbVaxfLyMt7//vfTSiitVouVlRUAexn1Wq0Gm82GyclJFItFeuOSKkU2CLGQgQT9/f1UJ93Y2MDCwgIWFhaws7NDf7erq0tAVO3t7aItUvkQuynb29sFBMcmcQJSGh0IBLC4uIjNzU06KadWqwksevW8q/U+03pJRUKEoVAIW1tbsFqtHF2SD6PRWFfK0ev1qFarolKK0WgUXMNKpYJgMCi6+LFhs9kQDofrNnkyGo2Ym5sTrWYE9nYiKpVKdIHjR+Dk9ZaWlgS5gHw+L/iMycgutse/WCwKko0bGxuciJdMj3nllVc4uj2b6FdWVjivt76+zklAarVatLe3034hOzs7nARiMBjkWPBSqRTtv6NSqXD16lXcunWLo/NPTU3RPtoEN2/exOte9zqMjY3h1q1bKJVKWFxcxNmzZ/GNb3wDNpsN09PTtM82+Zs/+ZM/wTPPPCO4Fs2GUyGJnHQ/kZ2dHSwtLeH69eu0THl+fh7ve9/7kMlkkEgkMDs7S6smL168SO1FgUAAFy9e5FQxksibYHh4GEajEV6vF8ViEcvLy1hZWeEU1PT39wuITCw6FesoJ/bwi0WJYuTV0dEhGg3yv5dOp1Eul2nVJbC3M7BaraLyQL3kptlsFn0PpFE/AZmFmUwm60ob+yWMSFOuWCzG0SoZhqnbOIpUGtZzwSgUCuoCEhuAQN4fKYmvt5CRnht8ENcIeS7a2tqo31ps0SIRNYHX68WdO3dEZRC+Xks+M2I7ffHFFzlRdT6fFyQyDQYDh1B3dnZgMBgwMDCA8fFxzMzMcIIHdgENsOevZpP84uIinnjiCXR2duL5559HIpGAwWDgvNfx8XG87nWv45xHpVLhaPldXV34h3/4BzgcDkxNTeHChQt0hzYxMYE/+IM/wNNPPy3otdKMOBUR9kn1E2EYBgsLC4hEIhgdHYVGo0GlUsHc3Bz+03/6TwBAmyBduXIFra2tsNvtUKvVNIpRqVQcoiWtP3t7e9HX1wetVot8Po/79+9jeXkZhUIBg4ODAosaP5Gk0WgENjmXyyUgZ6vVKtj6WywWQTITEJcIxEq9W1tbRbf97HMMhUJYXFyEz+eDz+dDS0sLJyJzuVyiEXY9MmRr0WwYjUbMz89Dp9MJEptiZdzAXlTKHnjMntbicrnqNo/SaDS01F6MbF0uF93xxGIxQZRtNpvpwl0ulzlDbdnvZ3Nzs67Vj/S3MJlMnCBgZ2dHkDBkk1Z3dzcmJycB7C3q7Ncl7XXZCAQCGBwchM1mo15oMhyaYH5+nrNT2N7e5hCuXq9HR0cHXnnlFdpgjB3BVioVmnshiEajlEzPnz+PiYkJzuextraGS5cucc71lVdewdjYGBQKBW7cuIEXX3wRP/zhD/H6178e7e3t+PrXvw63202bSJH3eu/ePfzu7/4uvvKVrwiuXbPiVBD2SUgilUoFd+/ehVqtpjdIrVbDD37wA/z1X/81lEolNjc3kc/n8dhjjyESieDu3btgGIb0twUAXLlyBYFAAEajEUNDQ7h8+TJ2d3cxPT2NqakpGAwGTnECILQ0Op1OzjYW2LP38YlFbDqJ2BbP5XIJyM/j8QhIuF4/a7HoT6VSCaQTctx4PI7FxUWsrq6iVqvB6XTWrf6r59qo9/mTXYHf70cgEKCSQb0eH+y/IWAYBqurq/u6RoA9AiLtaEOhkIDk+PLU7u4u5zPhD/eNx+MCucpgMNBxWvWcL9vb2zAYDIIdVzgcFnizSRXh3bt3Oa/Lj7K3trY4iUHSLpd9b/p8Pg4h12o1UaLX6XQ4e/YsdnZ2cPfuXc49OD8/z4lkl5eXOQ2gwuEwhoaGcOXKFbz88suIRCJIpVKc17l9+zbHFcIwDObn5/HGN74RP/zhD+n3V1dX8Y1vfANtbW2YnJzEuXPn6L07PT2N97znPfjyl7/Med/NjteMJMKODklykWjJJFL55Cc/iX/8x3/E5OQkUqkUbDYbLl68iJWVFVok0d7eTuUG0vqzu7sbiUQC09PTWF1d5ZACX2d0u92cyIkck0+wYtGmmPQhlowTS8SJRYykEIgPMY1ZbOSY2HlGIhHMz89jeXkZJpMJLS0t9Hfq2Qe1Wm1dmYK9y6hUKlhZWYFara7rnybnIAafz8cZJcZ/H2wZqVQq0cZAAOisQT7W19fh8XhgsVg4k2QINjc3aSTd2toqIEix4dNer7fuZ83Xxh0OBxYWFgREvrq6KlgQ0uk0lEoljEYjVCoVpqenBR3pdnd3Obuu5eVljlSSSCRw8eJF3Lx5k8pkfI86vwHY/Pw83Vm1tLQgGo0iFovR+8Lv93Osg8CefEIGJhgMBnR3d+PWrVs0Una73Xj22WfR0dGB+/fv49y5c/Qen5ubw2/8xm/g//yf/0PHlz0qOBURttS2PnYDqHg8jnv37uH8+fN0KG6pVML73vc+PPPMM/je976HoaEhToKRkNqVK1dol76zZ89S7Y7ojBcvXuToszabjR6DgE/ORBdlw2azCTrAeb1ewe+R/hNs6PV60YpDsd4hYhGe2WwWJVUxvVYsYQnsRd3pdBobGxtYWlqija1aW1tFPcQul0v0+y0tLaJ2vlAohJ2dHVEZxeVy1U1qGgwGRKNR6PV6gRTU2toqeC0ia4i1rGVja2tLdJoNAem2J3aM7e1tzo7GZDJhZWWF9v/gY21tjboryKCDcDgs2PKXy2WBZhuJRChBk6BhdXWV8/qJREJA4kQqMRgMaG9vxwsvvMDZOczOznKI0efz4erVq/TrQqGAjo4OdHR0IB6P4/79+/D5fIKoemxsjHP+sVgMPT09VJsnbQQGBgbw9a9/HWfOnMH9+/cxPDxMyXppaQnvete78LnPfY4zIedRwakg7ONKOhKrHDu5GI/H8Ud/9EeYnJyEz+fD9evXMTU1haWlJTzxxBO0V0JfXx9Nhty/f58mKtmvwU+m9ff3cxJmWq1WQMS9vb2CrX1nZ6fg4RcrrBArJ+/s7BRcS7GOdID4ZHSxQb2AeLKzra1NVGLga7OxWAzz8/OIx+PQaDQC8q9HdPWcGA6HA+FwGEtLSzCZTJyFZ78mUOS6BAIBMAwj6GonhkwmQ8eD1YPRaMTa2lpdu2KlUoHBYBBdCPk6N7u/Cr+KkH+eVquVLpjLy8uC+2F5eZkj2ZAe6OzzECum4ZO4z+fD5cuXoVQqcf/+fRSLRcHOIJFICKJqtm2PzJsk91w0GhUcg+/vZhgGbrebM1A4m83is5/9LPr6+nD//n0MDg7S6H1tbQ3vfOc78alPfYpTMt9o9PT04OLFi7hy5Qpu3Lgh2euI4VRIIlInHZVKJU0msZOLGxsbePe7343t7W3OtGmGYdDb24vd3V1cuXIFbrcbLS0tmJiYoMR39uxZTqn0hQsXOFEsmfHHhljfEGAvujtz5gx6e3vR29sLhmHQ1dWFjo4OtLW1wev1IpvNwul00kiVdMZra2tDe3s7Ojs70dnZCbVaDbfbDbvdzjk+HwaDQTRpJ/Y5uFwu0SRkva56Ytt5lUqFra0t7O7uIhwOo6WlBQaDASqVSjT6B+oXy7CJ3OfzUa2YVD2KgWzFCaLRKHK5HMxmMwwGg6AZFh9KpbLusAUyNos/hZtArVZjY2ND1GcN7EkCXV1dtJqRgIyaE/v9/v5+TjFNvaQ6OWetVku79fE13YWFBQ6x80m8q6sLq6urnET29PQ0RyePRCKcCsZ8Po/29nao1WqMjIzg+eefp8MT2K/LTjCSZmhqtRrt7e2o1Wr4/ve/T/XslpYWfO1rX8PZs2dx7949DAwM0EBmc3MTv/Irv4J/+Id/4ET3UuH555/H/fv3cfv2bclfi40T69YHvDrXkVQN8nWsRoBMWjYajbhy5QrVq1966SW8973vxYULF3Dnzh2YTCYoFApks1mMjIzAYDBgamoK1WoV3d3diMfjVLbxer3IZDKcvsY9PT2cG/rSpUvY2NiAw+GAyWSCUqmEXq9HIpFAOp2mkYZGo+Fow21tbYJITKxzm9vtFkTIarUaWq2WEw3q9XoMDAygXC7TkWWVSgVer1eguRLtkf/w9/X1ieqzZEYg/3tikgzp2Mc/3/PnzyMajQp0d7E+KARms1n0Nc6fP8/pJsdGe3u7IHcA7EXH3d3dAumKQKfT0aEGZGAE+/ikXzi5F8TmcHZ1dWFmZgbA3rUUa7dqMplES96BvV0Ye2fm9Xqxs7NDx1yx0dfXJ+hX09/fj3Q6TQleq9UKkrZkHiOBSqWC0+mExWLBvXv3UCgUcPXqVU5ys6enh3NfmEwmqFQqutDabDZ0d3fje9/7Hv2dxx57DDdv3qRfE9cOe3G+ceMGJicnOZ/xP/tn/wz/9b/+V1y4cAH37t1DX18f3VH4fD687W1vw8c//nFBCbsU6Onpwe3bt0V3uPvg0enWJ1WEnc/nMTExAZvNRp0T1WoVn/70p/Hf/tt/Q39/P77//e+jVqvhzJkzGBoags1mg9FoxL179+g5sRsBAXuyA/trUsI+ODiIoaEhmoSMRqNYWlrCvXv3EAwGMT4+jqWlJfj9fhSLRQwODgoSeWIFL2JRlphjpKenR7B1V6lUWFhYwPLyMqanp7G0tIS1tTUEAgGUSiVYrVZ4vV643W50dXWJfg5imrDD4RCNpOv1zxZznpAhzH6/H06nk6Mr10sqOp3OuiPCSAMgvpSiUChEtXZgLwG9s7NTt1TZ6XRSWcvn84lOCmLfC9FolOOaUKvVnKjZ7/eLSid2u11gq2O/L3JtDAYDndkplrBMpVIcWYg0nWKTcalUEtxnS0tLHM28Wq2io6MD4+PjNBm7sLDAsWVubGxwpIdsNkuj7s7OThSLRaysrHB2JhMTExyNPBKJcHplDw4OYmpqivPejEYjnnzySdhsNty+fRu9vb2ULP1+P5588kl89KMfPRayBvau6U//9E/j+vXr+MQnPnEsr0lwKiQRKWx98XicZpodDgeNLP/u7/4OTz31FDQaDSYmJjA8PIzr169jenoar7zyClwuF/WzAnvlr+ybnUxBHxkZwfDwMNxuN+LxOJaWlnD37l06HmxlZYXzYIsRMb+4RaFQiG7pxb4npkmLbdnJLEk2yNDYRCKBlZUVTE1N0a5sxJZHppaTCex81PNT1yvrFouWyfstl8tYWFhALBaj1W/1knz1mkzp9Xr4fD4Eg0GBj9rj8dRtKkWSubu7u6IRE1+u2djYoE4NvV4vGrVvbm5SGcrj8XAW0Xw+L/Bmt7a2Ym5uDru7u6IWtGQySROIVquVXsvFxUXB5xCJRDjNmHp6enDz5k3B7nVhYWHfQpLh4WF8+9vf5pB4Pp8XnF8kEuHcd6Q6cW1tDTs7O9je3ubY+mq1Gu0bT3D79m1cuXIFIyMjWFpaQiwWo5+h2WzG008/jV/8xV/E7u4ubZX6nve8B1/4whfwS7/0S/jwhz+MN77xjXXfS6Px0ksv4e7du/jmN7+J//k//ydefPHFY3vtUxFhNzrpuLu7i4WFBVy7dg02mw1WqxV+vx8/93M/h7/4i7+A2+2m7SudTifGx8fpKKVSqUTPxWAwIJfLYXh4GBcvXkR3dzeMRiMWFxcxMTGBu3fvwmg0CragfG1Xp9MJvNhtbW0C73VPT4/AOtbd3S0gO6fTKdg6K5VKUR1WTB4Q668N7C0M4XAYc3NzmJqawsbGBmw2G9xuN5xOJyf6E9OXdTqdaCRbzz5ItHmCfD6Pubk5qNXqusnDet7r1tZW+rmVy2VsbW3RBOp+nSDJ35RKJWxvb3MWVq/XK6rdr66uoq2tDU6nU9TqWKvVEI1G4XK5ONE1QTAYpLsmhUJB+4WQY4vtUlZXVzEwMMDRrdmtStkgVsL+/n5aKr6xscFZ7MT+dnNzE0NDQxgcHKQkxJdMp6amOAtbMBjkNHIaGRnB1tYW57pNTU1xdoTr6+scRwgAOvOU5FWCwSAuXLiAL3/5y7h+/Trm5+dx9uxZPPbYYxgbG8Pjjz+O//E//geSyST+/u//Hp/5zGfq7rwaDZKLcLvd+IVf+AV6jY8Dp4KwGyWJMAyDpaUlBAIBjI6OQqvVolKpIBwO4w//8A8Rj8fx+te/Hnfv3sXMzAxaW1s5EzGuXbuGUqmEy5cv49KlS7hy5QoWFhZw7949+qGQmY0E/C2s1+vluEcAYGhoSKA1ivWaEJMBxCJZsb/t7u4WJBFVKpXogFixBu31vL/5fJ62rUwkErDb7fB6vaIETHqw8FHPPVGvRwhJjhkMBo6U4nQ6DzS0F3j1XiCOEjEYjUbOwlepVLC5uUlJu95uAdiz8u03HCKbzUKn09W9r8PhMG2Ny9a0+dEnQUtLi6j2HQgEOBE1sPeZ9fT0cIgkk8kIouO1tTXB36rVarz88suc32H3BKnVaoLd4uLiIq1Z+N73vofZ2Vlcu3aNcz78aH5ycpIS37Vr1/D973+fc35GoxF/+qd/isceewyTk5Po7OykpJ/NZvHJT34Sf/EXf4HV1VX85//8n+k8UamRzWbpvZ/NZvHcc89xro/UOBWE3QhJpFKp0BLbK1eu0B7bExMT+A//4T/QWXe3b99GpVLBmTNnEAwGYbVa0d/fj+vXr2NtbQ0+nw/j4+Pw+/2CDDBfcjh79qwgghKz5PEjZKVSKXj4xMi1nvYqtr0Xs8C5XC5BHw52Jzc2xHRyftReLBaxtLREG0NZrVa43W5KMPVKxet1t6uXVCREuL29jY2NDbhcLmg0mrqVgUajUfQ9AXsRdLlcFl0MHQ6H4LMi7qHOzs59nSNutxsrKyt1tXa73Y779+9zhtnyz4thGNHPl19BqVQqaYk9n2CBPR2Xvfh5PB6Mj48LqmAXFhYEsk82m6U6d39/P55//nlBaXg0GuXseEi0S1AsFjE8PMxJLvILcO7du8fRuwuFAlpbW3Hjxg384Ac/QKVSwa1bt3Djxg3o9Xp84QtfwI/92I/h/v371CkF7O3snnzySfzxH/8xfvZnfxYKhQIXLlzAH//xHwsaRUmBYDCI17/+9bh8+TLGxsbwL//lv8TP/MzPSP66BKdCw37YQbyFQgETExNwu904e/Ys3QZ/6Utfwi/90i/hueeeg91ux+TkJCwWC65du4be3l7ah2NnZwc7OzscrbalpYVDdhcuXBCQM19PNRgMglW+tbVVoIOePXtWsH0jmXw2uru7BRKA1WoV7bUsFkWKkXBHR4dodFxvRqPY4kD6cq+srGBmZgbxeFxwvQhMJpOoba9e8tBsNnPIt1arYWFhgc5tFIOYLECQyWQQjUYRiUQE9sZ6FZHVahXpdLpuZzdiE61Wq8hkMqJVpKQ97eLiYl3SVqvVdZO0wWCQ7kwcDgeVz8T83ul0mtrwSOFTNpsV7GAqlYogubq7u4tz586hr6+PRtabm5ucv/X7/YJSd9KkymAwoK2tDd/+9rc5VsBAIMCJsoE9uyc76CGec/ai6ff78fnPfx5vfOMbMTk5Ca/XSyPxdDqNJ598Er/3e7+HX/iFXxC9blKjr68Pk5OTmJycxOzsLP7sz/7sWF//VETYD4NEIoE7d+5geHgY7e3tqFarqFar+Iu/+Au8+93vRjabxY0bN6DVajE4OIhsNguVSoWXXnqJEt/Fixc5hHfx4kWOrKFQKARk1N3dzTH0A3u2Mv7WXMx7KyYFiJGOGBF0dXUJFre2tjbRaPWgAwjMZrNoNFkvwcePZguFAkKhEB3y6vV6aTRcLwKt18muXhMonU6H+/fvw263C86r3rg5u91OzzWfz1PtGQBNFotBp9NhY2MDa2troqRts9noLiCbzdJqSAKHw8FJVPPHh5H3OTs7i8XFRdHGROVyGWazmUbyBKVSSfTaLS8vw+v1QqvV0gVydXVVUJq9sLAg2kSKvZuMx+OcniLA3uLGvm/X19dx7do1GI1G3LlzB5VKRfAeJycnOYvkzs4OTUCOjo7iu9/9LlZXV+n70Wq1+Nu//Vu86U1vwtTUFNxuN5VSstksfvmXfxnvfve78eSTTwre/2sFp3fa5AHg9/uxsbGBq1evwmAwoFqtIpvN4s/+7M/oOHuGYTA7O0tX8Te84Q0cbe/KlSscb6nYvMTh4WGO31SpVKKtrY22vdRoNFCpVFCpVBgaGqIlzYSs2DYmUibPf5Cq1Sp6enroFr5QKIgm2MSSXA6HQxDFik07B8SThfyCDQIxQuvo6BDVUh0OBx25FYlEoFarMTAwUFfGqJc8rFdRSDoQkh4ZpMzZYrHULZax2Wycn5HRb/zSaz7cbjcl3PX1dfT09HCOw5d+otEourq6UC6XaXN/9qJTLBZRLpeh0Wjowk8kEWAvmjaZTAJN3O/3i1aubm5uCvz61WoVdrud0xwJ2Pu8+Ul99gJ39uxZvPDCC7h27RrnOZifn4fFYqHPQiKR4PxOa2srgsEgZzGZnJzEyMgIzfOQIR/s85yensYTTzyBb3/72/TaPfHEE5iYmMCnPvUpvPnNb6aJTWLty+fzePvb3453vvOd+NVf/VW8lnGihTPAqw/oyy+/LBgBVA8Mw2BlZQWpVIqWzFarVezu7uJXf/VX6U1FCinIVvrKlStYXFyk5G21WmGxWBCJRGA0GuFwODAwMIBMJkN12UqlQmc6ZjIZpFIp6PV6ZDIZzlaOWJLYuHr1Kp3gzP7e1NQU53uXLl3iZP+Bva3X5uYmVCoVPU+73U4XBxL1k2o9foR8/vx5wQ7AbreL6slnz54VSDktLS2iCb7h4WHBcYE93ZSvx2o0GtRqNXg8HjgcDgSDQTAMA5PJJHoeer0ehUJBNFFnt9sFEkZPTw8dySYGg8Eg+h7IWLREIiEq45CeI+z30dXVRSs0xRK5ADAwMEC1ZrHn6uzZs9je3kZ3d7fgvujv7xdtW0BcM3xpqrW1Fel0mt7bra2tmJ+fR39/v8BqePHiRVq4QzA0NASFQoEf/OAHAECLu9jBysDAAOe+IDZPg8GAUCgEv99PBwkQkCIr8v5JfQJZAK9du4ZMJoOJiQn6NxqNBp/5zGfw5je/GdPT07Db7bQXd6FQwDve8Q784i/+In7zN3+zKYZ318GjUzgDHHwQb7VaxeTkJKrVKq5evUqnwdy7dw8/+ZM/Scl6aGgIOzs7tI/D0NAQTCYTrl27htHRUVy9ehVXrlyh1X3xeBypVAo3b97E+Pg4bt68SSuybt++TWc05nI5Om2Gf158iOm/9SZ/80HcIdVqFfF4nE6cvnfvHm7fvo2JiQncv38fkUgE09PTYBgGTqcTXV1dOHPmjGiDfbHtvUKhEJVD6o1REovQyWBiPkjUubOzg6mpKZRKJbS1tdU9tslkEr2OTqdTVG/e2NiA3+8Xdc243e66jhKv10sLOvjyipi8RGyC/AnvfKysrMBkMtXNxywvLwsqYglWV1c5LgkywDmfz4u2FgiHw1RX9ng8dAcYi8UElsj19XWB7q3T6fDSSy/Rr7PZrCChubGxwbln8vk8hoaG4PP56HtYXFzkyF5ra2uc/hoMw4BhGCiVSly5cgXPP/88JiYmqBVQpVLh7//+7/HmN78ZMzMzsNlslKyLxSLe+c534md/9mebnawbhhMn7MP0EyHJRZfLhaGhIZpcfPbZZ/Hbv/3b8Hq9uHLlCh5//HE4HA50dXXBYrGgXC6DYRhKwi+//DIqlQpefPFFbG9vUxLt6+vjkKxGoxFst+12u8Da19bWJijdbm9vF0StHo9H4Mc2mUwCOUJsbiMg7qm22WyoVqsIh8OYn5/HnTt3sLy8jJdffhl+vx9qtRoejwdnzpyBUqkUWPo6OztFFxGxyJM9JJj/vsTAt6fF43FMTk4ikUigvb1d4Fev1+yp3mQZkoybnZ2F0+nkHK9enxPgVdcKqThla8L1goZKpYJyuVy3AAfY25XcvXtXtAKRfZx6xLO5uQmbzQalUolUKkWfBzH7HfCqbh2LxehOVUx/zmQynM9ocHAQ3/ve/9/el8dHVd7rPzOTfZJMtplJMpmsk8m+kwUEqQvqtVyCUlGvihW9VCut1PajtV61eK97rxVrvWpdqtVqhQCBBLAsQiAhhCyTfSP7PpN9mUwy2++P/M7bnDnv4dorEJbz/EeAOWdOZp73+z7v832+x1j+aQCciTEWi4W1WISHh6OkpIT1bJkmMsf3sVjvPnfuHFauXIkTJ06w/p+rqyvee+893HnnnWhoaICnpydp1DGbzXjooYdwww03YOvWrQJZ/38sOWEz+N+sfRMTE6ioqIBWqyXdezabDa+//jruv/9+NDQ0oLKyEhMTE6Sxpbm5GWNjY8jIyGCRp0wm41SVcXFxLA0PWNi+ORJUbGwsx5/r4+PDqapo/mnagWF0dDSHHMPDwzlVnouLCzXPg9bdyFzHZrORYQo6nQ6lpaUYGhoiGnBISAj1UNDJyYmqU/MRM98IL1rV7ezsjLa2NlRXV2N0dBRBQUFwdXWFRCLhtdGdL9CJQWtrK6lG+ZqIgIVqffHfjY6OkiYXqVTKaWZyvPeRkRGq+wb4xxzJnp4eaqu7VCpFU1MT0bMdYTKZyO/G8fkPDAxwdgNms5k0hS0GbQZkR0cHfHx8oFAocObMGTKCbfFrms1mzoFmXV0dwsPDERkZicbGRoyMjHA+BzqdjvUzg8FAgqCYvJgzZ86wrtXd3Y33338fd911FxoaGuDu7k52DBaLBQ8//DCys7Px5JNPCmS9CJcVYfNV2IODg6ivr0daWhp8fX1J6M0jjzyCl156iZBgWFgYpqenWTrcddddx9LLgAVyXkyItA8ELW3P3d2ddfoPLBCp4xfGycmJSjI0MqAdItIIgdFHHe+H9pq05xgREUHa8zs7O0kbPTMQQKVSkXQ1tVpNvS9ao4hEIqGSe1BQEFU+WfzaRqMRNTU1GB0dJTKOI/h0d4Dr4x4fH0dLSwvCwsJ4K2FaE8/MzAx6enqgVCrPG/Xa1taGqakpTE9PcxY6X19fslMymUwwmUwcN5BcLofRaMTQ0BBvFT41NUV19yxuT2cQHR2NkydPcg6wTSYTR/6yWq1Qq9Xo6OgghdH4+DjnPjo6OqgDemtra8n3iknKYzA3N8dxntTW1kKpVEKr1aK4uBh6vZ7Y/EQiEd566y2sX78ejY2NcHFxIWRttVrx6KOPEm+1QNZsLDlhn08SYUY79fX1ITMzk4xXGhoawj333IPCwkKy7VapVDCbzSxnQ2xsLCsXBFiomhd3NwJAVlYWR77IyMjgOC+SkpI4DpKkpCQOkTkO4QUWCJfmqaZ1Z9GqQ1p3YmRkJKe6ZaI8HUGzEvr5+aG3txd9fX2orKxEVVUV9Ho9nJycEBUVxaoSaYMWgH+E/DiCT8agvQ+j0YjR0VHMzMxApVKxNFi+SFMfHx/q/djtdgwPD0MqlXJIlU+vBxaqy/N5puVyOYvorFYrq2J0d3dn7Z6Gh4chk8nI59vPz48lpTU1NXG8zcDCAj4wMEDVrRsbGwkxBgUFkc/x8PAwxxa6+N8y16+pqeHYTLu6uli/K7vdzvqsaDQaHD9+nJUpYrfbOZJTZWUlS4M3m83QarWsZL7y8nIEBwfjv//7v7Fp0yY0NzcTNxFzFvWzn/0M4eHheOGFFwSypuCysfU5SiJWqxV1dXVwcXEh2yuLxYL6+nps3LiREzfJhKPLZDI4OzvD19eX2O+YjF0m/jElJYU4LZycnODs7Iz09HSS5scE1DCVmslkwuzsLNUdQLO+0SpFGoGFhIRwHA7h4eGc64jFYioJ0/I2IiMjqYsATZ5grHGLYTab0draSharkJAQ+Pj4QCqVfueFAODvbuQjzP7+fkxOTkKn00EulyMwMBCDg4O8uy5/f3/eyTidnZ0wm82QSqUICwsjOyCVSsXbvqxWq9HS0oKxsTGEhISwDiyZLO/FMBgMRId3c3Ojvm5nZyfi4uLQ2dlJbKeL0dHRQeyQwMKiwHwenJycIBKJOBLa9PQ0pFIpxsbGyGI9PDyMlJQUlhOEOewDFhaTubk5GAwGzg5jbm4OarWa9ftqaWkhlXdVVRVmZ2c5i3J9fT0SExPJNRfPf3RxcUF4eDgOHDiAqKgocm5jMpnw61//Gps2bUJLSwtEIhGio6OJ4eDJJ5+Ev78//uu//ksgax5cNoS9uMKem5uDTqcjwfyMXn3w4EE8/PDDLB8skze9mEzEYjGCg4M59rkVK1awLEjAgmSy+LSc+XeOP8vKykJzczPc3Nzg4eEBmUwGpVIJk8mExMRE2O12WCwWiMVi4kNmFiBnZ2eq/kwjI75KmpZdTet4pPmeg4KCqIRNOzNQKpWsnQXTBZqUlAS73U4OZpnXo7k3+BpxgoODqYepISEhLGnHYDDAYDBAo9HwShR8Pu6goCBCnjMzM2hsbERcXBwGBwfP60JinoXdbkdPTw8JMWLur7GxkfN/+vv7ERYWBjc3N+r7AhYq3dTUVI4sBywQmFgsJofBi2W07u5uJCUlcSyUer0eycnJxI7HoKGhAXK5nLWIdXV1ITExEWNjY+S70NHRgeTkZJatsKOjg6ObBwQE4NSpU0RaOnfuHIugAa4Lqra2FikpKZiZmSG9Dot3OS+//DI2bdpEGqxiY2MJWT/99NNwdXXFG2+8cd6pQdc6lvzJOEasTk5Oory8HBqNhkXWH3zwAe69914WWTNZFo6V33XXXcch6/T0dE6qVkhICOegkUnjc8TIyAimp6cxPDyM7u5u1NbWYmxsDKdPn0ZxcTFKSkrI67e2tmJ4eBh2ux2+vr5ISkpCUFAQ4uPjSV62Wq2mkjhNJ6YRTUREBLWdnC8tzxFOTk5U/ZvvYHF4eBhDQ0M4ffo0dDodJBIJtFot9cAxKCiIam3j63rkc4dIJBI0NzdDqVSy5Ad/f3/eKTU0Wa2hoeG8g369vb053uX6+noiKZwvBW50dPS8zhFgYQHia3Pv6+tDQEAAVfNvamri/O40Gg2Ki4s5VkbmANIRNpuNs4sbGBhgSU1Wq5V12MgXyWowGFhk2tbWxmo/Z2ZlLu6a1Ol0SE1NxYsvvoif/vSnaGtrg9lsZpH1c889B4vFgrfffvuikjVjBV67du1Fu8bFxpITNgPGC11XV4fU1FT4+fnBarVibm4OW7duxS9/+Ut4enoiMjISGRkZuO6665CVlcUhqIyMDJZuBiwQBY3IAgMDOYdrqampnC9oUlISZ1FQKBSc5gexWEy++Ha7HePj42hvb8fo6CjOnDmD4uJilJaWorq6muQoeHt7k+EJqampcHFx4VTJtLZzGvkFBwdTZQLaIsB3MEdLqPPz8+NUzMxortbWVnh5eUGtVpPdAZ+MwTfyiy8EanZ2lnSqGgwGhISEQCQS8WZxS6VS6q6D+bupqSkqqclkMuoCU19fj8jISN7hB8BCJdrY2EjVo4GF59zU1ITJyUne1EKr1UqVkMxmM6nAgQXdvrGxEWazmRpl0NLSwjqAjIuLw4kTJzjDaA0GA2fAb0NDA6KjoxEaGorm5mZMTU1Br9ezrJlDQ0OsbGtgYScgkUjg6uqKoKAgHD58mBOdumHDBjzxxBNob2/H3Nwc4uLiiNzzn//5nxgfH8e777570SvrHTt2XPGDeS8Lwrbb7cRelZmZCQ8PD1gsFgwPDyM3NxeffvopgIUvPGMJMxqNOHLkCMbHx6FQKJCamoobbrgB7u7uCA8PZ0kLycnJnIosOTkZVVVVrJ95enpyOg4BOuFFRUVxiCkxMZE6AZ32mmNjYzAajejo6EBlZSVKSkowNTWFqqoqMubK09MT8fHxUCqVCAoKYn15aFtwvtmNtEqaVtW6uLhQdWq+WYQmk4l0nZaXl2NsbAzBwcHUhcDb25sqkwQEBFArXw8PDxb5zs7OQqfTcUaqLUZgYCDvYjE1NYWpqSkMDAxwHA00lwuD0dFRatYHwA77qq+vp3qlmV3Q6OgovLy8ONqsSCSCyWTC4OAgdRHu6emBVquFSCSCm5sbeb329naO/xlYWPycnZ0RERFBZL3a2lrOZ6Ovr49j4XN3d0dnZydZWHt7ezkBTh0dHaxzC0Y/9/PzI7vVnp4eUsE/88wz+PnPf46Ojg4YjUbEx8cTsn7ttdfQ19eHDz/8kBopeyHR29uLwsJCPPLIIxf1OhcbS07YNpsNtbW1ZM6gWCyGxWLB+Pg4brvtNo5WJxaLkZaWxiLbgYEB1NfXo7u7G0VFRWhpaYHVakVYWBhuuukm2O12JCYmEteDRCKhNoskJydzKh21Ws0hPGdnZ+ohE01/jo2N5WjFwcHBnAYa5n0wGBkZQUdHB2ZnZ3H69GnU1NRgeHgYnp6eiIuLg7e3NwICAlgfdJpEEh4eTtWqadoz47RxBO1nLi4unOdiNBoxMTGBqqoqMiuReSZ8kgDfaC5ahgawoDUzbgPHnQhfvGtAQABZ4CwWC2pra0m17ufnx9t9KpPJcO7cOTQ0NECtVnPINigoiLUjqaurY1XaTLwAg46ODkRFRbFeQ6PRoKOjAxMTE7zPorGxEfHx8ZyFf3FwEgODwYCEhAQ0NzezhjM4Sl0zMzMsV4dCoeCM5gIWFgYaQTNgDjQXv8+BgQHExsbigQceIJr11NQUEhISCFn//ve/R1NTE/785z9fdLIGgG3btuH111+/4vXxJb/7/v5+yGQyEnxks9nIF+nIkSN4+eWXcd1118HNzQ0ikQjZ2dnUA5z09HRWx+D8/DwGBwdRW1uLoqIilJeXo6+vD1KpFNdffz38/f2RlpaGsLAwSCQSyGQyTgcjQNd/U1NTOYdevr6+1P/P50V2RGhoKLVqXrwzsFgspFIpKytDQ0MDIXGVSgWj0cipnGlfhoCAAGrHIu1kXiKRUCv08PBwaqXLXL+zsxPl5eWYnp6GWq3mPfDj04f5mqiYmYq1tbWYnJwkz9Lb25v34I/ma6+vr4eLiwuvfg4saLLMfTc2NkKlUpFn5OzszNG97XY7mpubyWJAk6fq6uoIeXp4eLD05dbWVuqW3c/PDz09PZzfz8zMDEfLZsaWOdruampqOD5uxubH5MYMDQ1heHiY9ZkZGRnhdEQ2NDTA29sbbm5uCAwMxKlTpziTytesWYNXX30VQ0ND6O3txdzcHP7yl7+gqqoK77zzDioqKvD5559Ti5wLjYKCAigUCo6ccyViyQlbrVYjNDSUBO7U1dVhaGgI8/Pz6O/vxy233IJDhw6hq6sLX375JYKCgjhfshUrVnB0awBISUnhbMMtFgvKyspQVFSE4uJiogkmJycjKioK6enpCA0NhaurK1QqFUenBuiVHJPStxgqlYqagkc7MKNVoMHBwVRNdvEuwGw2k7Cd2tpatLe3w2KxkMkwNG2Ulr0B/HNaN1/rtyNJTU5Oora2FlVVVQgMDGRtzd3c3Kj6MJ80A7DdIYwN0N/fn/egE+C3EppMJnR3d1OlJCcnJ857aWpqIrtAtVpN/RxYLBb09fUhNjaW97qDg4OQy+UICgri/H4aGxtZvx8m2IxxaTjCUYphJh7R5lM6kqPVaoW/vz/pzgQW5AxHGaShoYFVyTPVclBQEJFBqqqqSLzq1q1b8cILL2BsbAwikQjXX389UlJSYDabsW3bNrz22mvkYPNCz3Klobi4GPv27UN4eDjuueceHDt27IpN/Vtywp6dnYXFYoGLiwuys7MRERGBiYkJnDp1CpOTkyQrw9PTE//6r/+Kv/zlL+js7MRf//pX3H333ZxYSAZJSUlUEk9KSuJUx25ubigpKUFxcTFOnjxJxmGFhoYiNjYW6enp0Gq18PDwQFRUFDUdjlax8lXStIqVz+7mCJlMRpVTFldfIyMjpC2/vLwcc3NzkMvliIiIgI+PD1XiUCgU1IWErwKlES1f5R4eHo6ZmRnU1NSgvr4ePj4+8PPzI5PsHcGERtFen6Y3t7S0oK+vj3OQxrwWXxXPDODt6+vj6NRhYWHUBYw5ZOU73AQWFoK+vj7e5qG5uTm4ublR3UhmsxkWi4VowFqtlshvdXV11MV2bGwMzs7OiI+PJw6Nuro6jsuDsfQxYAYsOxI5E2HLYGpqivVarq6uGBsbYy1IMzMziIuLw09+8hO89NJL6O3txfDwMJKTkyEWi0nKpL+/P9rb27FmzRp8+eWX+M1vfkN/iBcQr7zyCnp7e9HZ2YmvvvoKN954Iz7//POLft2LgSX3Yb/66qs4dOgQfvjDHyI3Nxezs7P44IMP8J//+Z9wc3ODXq9HZWUlXFxcoFAooFAo4O7ujnXr1mHdunWYn5/HsWPHkJ+fjwMHDmB0dBTu7u6YmJjgkEFYWBh1YGZiYiLHdy2TyVBcXMzSKMViMRITE0nM5PT0NHp6ehAeHk6tpPlath3J2d/fn0p0tOo4MjKSjEJbfF80Elcqlejp6cH4+DhpBGH0e4YUh4eHYbFYoFQqqVt4moNDqVRSDwoZAnSEY7cis+BlZmZCrVZTG4VoCAgIoC4UcrmcvH+NRgOz2UyeHV+nJPCPjBKTyYSGhgYkJycTq+X5rHyMpjs5OUldcJjfkVqthqurK7UTdGZmBoGBgdTfW39/P5KSkjA+Ps6yyJnNZmpDjV6vR1ZWFo4cOcJ6HWa012I5qqenB66uruTM6OzZs5zW9pGREeTk5LB6FqqqqqBUKjE2Nga1Wo3S0lLk5OSwfh/x8fF4/fXX0d/fD71eT6KPAeCLL77Anj17sG/fPnh4eOD222/H7bffTn/AAnix5HnYwMI2Nz8/H++99x46Ojpw11134cEHH0R8fDz5hTMZDAaDARKJBEqlEnK5nLU1t1gsOHnyJEpKSvDJJ59wKsaMjAxONe7v7w+TycQ5eFq5ciWVxOfn51kk7uTkhB/84AcwmUyQSCQYHR1FX18foqOjqV9GtVrNIfK0tDQOCfv6+mJqaoqj/aakpHA85lqtlrpg0HKuY2NjWZWdq6srNBoNkV8Wa+6+vr7UBpWkpCSqVLQ499jxvTgSv5OTEyQSCWZnZxESEoLAwEB0dXVBLBbDxcWFWt0GBQVRu03j4+NZz8Td3Z1IEhaLhWpVDA0NpT6zxMREIkHwgZlaHx8fj66uLhZ5Lo7rZa5jMBhY/0aj0ZBD89TUVKqLSCKRIDo6mjNXlPk/ixtY/Pz8SPqd42crIyOD44bKyMiA0WhkHeg77lSlUimppBlkZmZiYmKCFD0SiQQhISHo7OzEpk2b8Pbbb2NwcBD9/f1ITU0lWvjXX3+NP//5zygsLDzvmcFVjqsnD9vPz4+E5ZSUlGD58uV45ZVXsHLlSrzwwguorKyEm5sbIiIikJWVhfj4eFitVtTU1KC8vBzd3d0wmUxwcnLCDTfcQCbOHDp0CI8++ihUKhVnsgyDqKgoDlm7ublRv0SJiYmcL7+rqytpnikqKkJdXR3MZjP8/PyQlJSEmJgYYteKiIigVt00d0dkZCSHrJ2cnKhEQhsZRWsGAbidkMxg3RMnTqClpQXu7u7QaDRQKpXntfM5gmkJd4RKpaJW6REREUQb7+3tRXl5OVxcXBAbG0sl6/MNDnB0vMzOzqKqqgqhoaG8DgS+w666ujq4ubnxttyHhYWRHVJDQwNHhgkLC2ORXHd3N8s54uTkxNpN1dbWkvznxWAWP5rVr7GxkRxcSiQSODk5Qa/XU0e6NTY2cg5drVYrZ2F1bKaZmZlhVd7Ozs6cYCqr1Qq5XI777rsPb7/9NoaGhtDX18ci6z179uDjjz/Gvn37rmWyvmC4LAibcXR888030Gg0uP/++7Fnzx6cPHkSy5Ytw44dO7BixQr85je/wZkzZ+Dq6oqwsDBkZmYiMTERIpEI9fX1OHv2LLq6ujA7OwuxWIwVK1bg9ddfR0NDA9566y38/Oc/Z33BmEAcR6Snp3O2xCKRiKpbJiUlcQjfZDLhzJkzOHHiBE6fPo3u7m54e3sjKCgICQkJrEMuhUJBrcRpGq5Wq6Va0Gjac2RkJNUWR1swNBoN5ufnSeTmqVOnUF1djeHhYURFRbEORPkOBMPDw6lbf74hszRC7OvrI5KWo6bM14GpVCp5D/cMBgPGxsY4uq+7uzv1mQMLDUkVFRVwdXWlLoSOh2RMcw0A3ojY+vp6cg8REREsGcFqtWJ4eJildyuVSlRUVFDvHVhYZJmFV6vVkrb55uZmzvgzRv5ikJSUhMOHD3POVwYGBjiHjZWVlSTBUaPR4PTp0xzyj4qKwjvvvAO9Xo+enh4WWRcUFOCPf/wj8vPzefV8Af8cLgtJ5LtgdnYWhw4dQl5eHnQ6Ha6//nqsX78ey5cvJx+Q+fl56PV66PV6Er6uUCg4K7tOp8Of//xndHZ24vjx46y/E4lECAkJ4ejMNNkCWNiOO+ZMpKenc7ahAHseop+fH6KioqBSqdDT04Pe3l5SUTNfRkcCXLZsGSdpUC6XUz3VtPuVyWRUXTwjI4PzuhKJBG5ubqTaDQ4ORlhYGKRSKVUOSUxMpP48NDSUSvB+fn7U+14snzCT7fv6+qBSqaiHtY5yCAMvLy+Mj4+TZ5qSkoKBgQHMz89Dq9VS7xVgJzz6+vqS0WbAApHyuVeSkpIgEomonxFgQSqJiYlBS0sLdYei0WjIDmLxTEmAK4EwyMnJIbMRGXh6ekIikbB2bSKRCBqNBi4uLiguLiYTz6Ojo1myENPxufgzkpGRgbm5OdasSOYzv2HDBnzwwQcYGRlBV1cX0tLSyM7lm2++wWuvvYbCwkJef/k1hqtHEvkucHd3xx133IHPP/8cFRUVuP322/HXv/4VOTk5eOKJJ3D8+HFCtunp6UhLS4OrqytaWlpw5swZtLW1YXp6GhaLBXa7HT//+c+xZ88enD59Gs888wyxTC1btozq2KB5lMPDw6mhQLRtuFarZVW3o6OjOHv2LFpbW1FZWUkqocTERCQnJ1PtTrTqmNaFJxKJqOTG1z5NO0CMiIhgSRP9/f04ffo0urq64OrqioiICNZ2nc9hQtuVqFQqKlmr1WqWfNLR0YHq6mqoVCre4bznG8C7WFKqrq6GRCI57+gwkUjEesZjY2OszsjzbekbGhrOGy5ls9lItgwN586dQ0xMDOeMAVionB37AQICAlBZWcmxJE5PT3Oac+x2Ozw9PVFRUUF2XXa7nfM5nZiYYPnAmbmhjs9YLBYjNzcX77//PkZHR9HZ2YnU1FRC1seOHcPLL7+M/fv3C2R9gXHFEPZiuLq6Yu3atfjzn/8MnU6Hu+66C3v37sWKFSvw+OOP4/Dhw7Db7QgODkZaWhoyMjJIk8KJEycgEonIBz0uLg5PP/00Tp06hcrKStx1112craFKpeLkajM/d4SXlxe1eqOl6AUEBJA0tunpaVRVVeH48eMwGAyYmppCSEgI4uPjiVed5pCgNa9ERER859hXhUJBXaD48jqmpqbQ1dWF06dPo729HT4+PtBoNFQC9vPzo5IYn0zCR2bMtHO1Ws3aWgcHB/MSNk1SGhgYgNFo5NWnIyIiOO/DaDSipaUFMTEx1ANVBlFRUSgrK2N1Dy6GQqFAVVUVZmZmeOWBjo4OqltodnYWbm5u5ABeIpFALBZjaGiI6reuqqpiLc4KhQI6nY4zOqyxsZHT8ML45YGFXUlRURFHGw8PD8dHH32EiYkJdHR0IC0tjejfRUVFeOGFF7B//36qv13A98MVSdiL4ezsjFtuuQUffPABqqursWnTJnzzzTdYuXIltmzZggMHDsBisaCrqwuHDx9GSkoKgoKC0NHRgTNnzqC1tZVYACMjI7FlyxYcPXoUNTU1eOmll4g3nHYASPsCJyQkUKtBmrZJG+YrFovR0tKC6elpVFZW4vjx46ioqCDZzvHx8aTacnFxoR5C0qoaiURCTQekLToA3c4XFBTEIhSr1YqmpiaMj4+T1urFpEs7BAP4s7JppA8skKbNZoNOp0N/fz8iIyPh4uJC1ZiBf7g4aPD29iat7Y73d755jkajkVO5MpBIJOSAl4lzdQQzPozJpKYdesrlcgwNDVEXy/b2drILXFyF19fXc2x5drudBEd5enrCZDLBYDAQD/liDAwMsIKk5ufnoVKpkJ6eTuTC6upq0u1422234ZNPPsHk5CTOnTuH1NRUQtYlJSV45plnsG/fPt4oAgHfD1c8YS8G4xJ59913UV1djZ/85Cc4efIkMjIy8OMf/xgymQweHh5QKpVITk5GZmYmZDIZenp6UFpaSppN7HY71Go1fvrTn+LQoUP405/+hDfeeAOrVq0i28jU1FQqqdEcDlqt9jun6MXHx1O37AaDAWfPnsXx48dRV1cHZ2dnJCcnIzQ0lEM8tP8fFRVFvR7fsF2aVsvXIWmz2TAzM4OGhgY0NTVBLBZDLpdTJRxvb2+qXCOXy6kk6+XlxTognJubw9mzZzE3N8dLsOcbCryYWOfn50lzkp+fH9XmB/xjYaysrOQc6jHXW2yHrKqqYjWahIWFsVxHHR0dHHlKq9VCp9NhamoKMpmMKqtVV1cjOTmZYzcdGBjgkDyjKfv6+rK85Y6LycDAAKfKFolEHEeO0WjEmjVr8Nlnn2FmZgatra0kXRIAzp49i1/96lfIz8/nLQIEfH9cVYS9GBKJBKtWrUJsbCzCw8Px4Ycfor+/HzfddBPuv/9+7Ny5E0ajEQqFAomJicjOziYDWktLS9HY2IjR0VHYbDYEBgbi4YcfRn5+PpqamvDWW28hLi6O05QRGBhIzROhVbwymYyqf9NsXH5+fpxqnnFUnDx5Ej09PQgICEBcXByioqKodj7aNnwxgS1GeHg4tSGEr0Xd0XExMDCA2dlZ9Pf3Q6FQsCphvlwRvsUgNDSUKuVIpVKcPHkSMpmMU83xxaFGRkayiHVkZARNTU2Ijo6GXC7nXQCioqLIIV5lZSWioqKIPCESiajyU3V1NbRaLQD6wlxbW0vS9hwTFdva2qhJfMygDkcyX5ypshjz8/Mc4q2oqOCcezDdp8DCGc6RI0c4Ep5KpcIXX3yB2dlZNDc3IzU1lfRAVFVVkTMhvmRDARcGVy1hAwsyRGVlJQ4dOoRbbrkFv/vd71BVVYX/+I//QHNzM2677Tbcfffd+Otf/4rJyUkEBAQgISEB2dnZUCgUGBoawpkzZ0jIks1mg7+/PzZt2oQdO3agubkZf/zjH3HbbbfBzc0NkZGRHKITiURU2SIuLo56sEg7pKNJJ4v/LTM67fjx4xgbG8Pc3BxiYmKQmJhIDspocgNf1c03lJgmqURFRVElIB8fHxiNRtTV1aG1tRXe3t4IDg7mPfDjS9rjm8jO6OAdHR1E3/b09IRarebVtWnP0Gq1kjFYfBKOo67MBClJJBLqhHsAJMc7NTWV11lSVVUFrVaL8PBwzg6ssrKSVaWLRCJSLTtKIMDCArFYo05JScGxY8c4BGqxWDhFwdTUFLRaLSFr5j0ylfeqVavw1VdfwWQyoampiUXWtbW1eOyxx7Br1y5e/V7AhcMVY+u7GLDb7airq8OuXbtQWFiIgIAArF+/Hj/84Q9JVcwMItDr9STTWKlUws/Pj1XpTE9P49tvv8WXX36JoqIiYt1KSEigVt00293i+XeLQbPzhYWFUaUFx+hZZ2dnZGdnw9PTE0NDQ6zqc9myZdROOh8fHw6xxsXFUZuJ+LJcaJkpzs7OkMvlUKlUGBoaIp5yDw8PzM7OcippDw8PmEwmKmnTps5IpVJkZWWhoqKCs3B6e3tjbGyMWq3HxcWhpqYGCoUCfn5+LClHo9FQLXXAP3YifLkiTk5O8PLygpeXF3WxAxYOOo1GI/U1vLy84OHhgZGRESQlJZHORJFIhLi4OM6uSyaTwWw2Q6VSsRwhSUlJnPfg+PlbtmwZOjo6WPcZGRmJ4OBgfP3117BarWhoaEBKSgqpvhsaGrB582b87W9/u+IHA1wCXFu2vosBkUiEpKQkbN++HWfPnsVbb72F4eFh3HXXXcjNzcVHH30Eg8EAHx8fxMTEICcnh4QJlZWVoba2FkNDQ7BarZBKpUhISMBTTz2FpqYmfPrpp/jRj35EPSmXSqVUOYSmvTo7O1MPN/m6EB1J0mw2Y35+Ht988w10Oh08PT2RlJSEyMhI3g5EWhVMc7nQrgcskCnt5xqNBn19fSgrK8PAwADCwsKgUCgQFBREJdLw8HAqWYeFhVFthLOzsygvL4eXlxcnOIsvXxv4R+emXq9HW1sbkTIArhd+Mdzc3GAymXhHn0VHR6O3txddXV1UyUIkEsFoNBLd2hFTU1Pw9PREWFgYK9eDmQzvOMFmYmICiYmJqK+vZ73X0dFRzoSaoaEh8rP09HR8++23nHuQy+X429/+BpvNxiHr5uZmbN68GV988cVFI2uTyYSsrCykpKQgISEBL7zwwkW5zpWEa7rC5oPdbkd7ezt27dqF/Px8uLi4YN26dcjNzUVgYCAJ32HGKA0PD8NsNsPDwwPJycksbXt+fh7Hjx9HYWEhDh48iNHRUWRmZlIrW8dGBgCcgakMaHkeWq2WmiRIu56/vz9JeGOyM6xWK2/VrVKpqKFVNNJPS0ujVt3p6emcnQIArF69GtPT0xzpICIigionxcbGUnctWq2W7AJEIhHS09MxNDSEmZkZXvuiUqlEX18fpyJPTU2FyWTi7YgEFmyZPT095JBtsZbt5uYGi8VCNHOZTAYfHx9OWBKTy6HVatHd3c1ZVFxcXJCQkMAZ5AEsPM/FdtPFyZaOBQGtwSsnJwcmkwklJSVEnktJSUF1dTWWLVuGPXv2QCwWo66uDsnJyUQyamtrw3333YfPPvsMqampvM/n+8Jut2NmZgaenp4wm81YuXIlduzYgZycnIt2zYsIocK+WBCJRIiKisLTTz+N4uJifPrppxCJRHjooYdw66234u2330Zvby+8vLwQEBCA1tZWKBQK+Pj4oLKyElVVVejv7yez92655Rbs2LEDDQ0NyMvLw6pVqziVt1KppLoUaHMAPT09OdO0Afrhplgspr5uVFQUBgcHcezYMZw4cQIzMzOIiYmBRCLhVGN8Dg6+Kp8v45jmGnFyckJZWRnOnj0LqVSK6OhoSCQSODs781rz+EZ6Lb5vu92OiooKTE9PIykpife15HI59YBVp9PBy8uL1zMeHR1NDvT6+vpgNptZv1PHA86JiQnMzMyQ1/P29mZJTC0tLRyfNLBA5CdOnKDqw5WVlUhKSgKw8By9vb3R3d2Nqakpzu+wra2Nczg7NTWFtrY21u9ramoKGRkZ2L17N8RiMWpra5GUlETIuqurC/fffz8+/vjji0rWwML3kPn8m81mmM1m6vnKtQSBsP8XiEQihIWF4Re/+AVOnDiBr7/+Gp6ennjsscewatUqrF69Gnq9HlqtFlFRUcjOzoZWq8Xc3ByqqqpQWVmJ3t5ezM/Pw8nJCatXr8ZvfvMb1NXVIT8/H//+7/+O4OBg3gMbmrbJN62c5lbQarXUqTeOB3Dj4+OoqKhAYWEhRkdHER0djfj4eLi6ulJzuQF6Iw5fQFVISAjVvaHVasnBZ2dnJ0pKSmCz2ZCUlEQl0oCAAKpk4+zsTF2YGI+4SqXiLGhOTk68FbS3tzfKysowMTFBDWdyPCTV6/WYnJxEYGAgvL29qbr38PAw8UYHBgZyXqOyspI13UWr1aKkpIRIILQmmc7OTvj4+CAuLo5U27QhBHNzc6xuSSYx0FEGkUqlyMvLg5OTEyFr5uC6t7cX9957L95//30sW7aM+twuNKxWK1JTU6FQKLBmzRpkZ2dfkuterhAI+5+ASCRCcHAwtm7dij/+8Y8wm81Yt24dTp48iR/84Ad47bXX0NTUBA8PD5IsyLhBqqurUVFRgZ6eHszNzZFwqpdffhk6nQ7bt2/H448/ziKH8PBwajVJq2BlMhlVDuGrEGmHYFqtFhaLBdPT0zh58iSOHTuGkZERSCQSxMfHs6Qemp0PWCACWkAVnzea1nWo1+sxNDSE6elpxMTEsPRzPvufRqOhOl4kEgmZy9jf34/Y2FhSpUVHR/M28YSFhWF+fh4TExNobGxk6dqRkZHU5zc2Nobh4WGEh4dTLZAAyLAE2hkGsOAc0Wg08PLywrlz58iiNT4+Dh8fH05W+Pj4OJmOvhhnz57leL2rq6uRmpqKyMhInDt3juSAM26UiIgIbN++HSMjI9DpdEhMTCQV7sDAAO6++268/fbbl1SSkEgk0Ol06O3tRVlZGe8B8LUCQcP+P2BmZgY33ngjPv74Y+KXHRkZQX5+PvLy8jA4OIhbb70Vd9xxB+Li4siXzGQykXAqu93OGsiwGDU1NSgoKEB7ezv27dvHub6vry+nms7MzKTOuqRlU9C0cgDIzs5mHW4B/wiBmp6ehlQqRXp6OpkgQvvy8OnU0dHRvAuKo+VQLBZDKpWSnYG7uztiYmIwMTEBFxcX6oEjk8vsCFo4FNMp6erqSn0OEomEjKxbjNTUVHR1dSEoKIi3TT0gIADT09MIDAyketzFYjH8/f0hlUrR3t5O3aXIZDLW+K3FyM7OZp0xREdHEyJ2/P1HR0ejvb2dtZtKSkpCV1cXqxDQarVwcnLC/v374eTkhJqaGri5uWFychIHDhzAzTffjJdeegn//d//jRtvvJH6vi8Ftm/fDqlUil/96ldLdg/fA1eehn3o0CHExMRAo9Hg1VdfvZSXvqCQSqU4deoUq7nB398fmzdvRmFhIY4ePYq4uDi8/PLLJNO7qqoKLi4uCA0NxbJly8jopIaGBpSVlaGzs5NUpsnJyfjNb36DDz/8EEVFRXjqqaeIvumYt8yApu35+PhQCYkv44Emv8TExJCt+8zMDE6ePIkTJ07AYrEgISGBU8XRPNCO3YoMaNkdAFfGmZ2dhU6ng7OzM3x8fDhNQFKplDdilUaI7e3tmJ6ehrOzM7VFXKvVUg9TdTod1TO9GHK5HOPj4+jq6mLNWmQQHx+Pzs5O1NfX87orFAoF+vv7qbuPs2fPkoo4ICAAHR0dmJ+fR0NDA2cX09raiqysLPJnpVKJrq4u6ii1/Px8SKVS4rPOyspCdnY2IiMj8dxzz2FiYgJ79uzB0aNHeb3xFxoGg4HIX7Ozszhy5Ahn7Nm1hktG2FarFY8//jgOHjyIhoYGfPnll1Rf75WC842e8vHxwQMPPEAyvTMyMvDWW2+RTO+ysjI4OztDrVYjIyOD5DE0NTXhzJkzaG9vJ9v72NhY/PznP8cbb7yBffv24bHHHqMe9tAIka/hhqYBh4WFUYOH+Ox87e3tOHr0KEpKSuDq6ork5GTExcVRD/f4srn55Bq+VDxvb2+cPn0aAwMD0Gq1hLgjIyN5J7jTDmeBBWItLS2lWgBpmj8Do9GI2dlZKukFBwcTHXl2dhbnzp1jSSkymYzlbqmsrOT8Lhlpq6+vj/V/GdhsNjLE18XFhSx409PTVI1bp9MhKCgIvr6+sFqtxFbJ3H9UVBT2798Pb29vVFdXIy4ujjxXs9mMXbt24Y033kBTUxPWrVuHPXv24Ntvv+V9PhcSAwMDuOGGG0iMxJo1a7B27dpLcu3LFZdMEjl9+jR++9vfkvzeV155BQDwzDPPXKhLXPZgMr137dqFmpoakumdk5NDmnCYOYtDQ0MwmUzw8fHByMgItFotqzLu6elBYWEhCgoKMDExQd2iZ2dnc2ZYMmFAjjr48uXLqUOLaXa+4OBgakWbk5ODyclJKBQKdHd3k0UnJSWFmhMdFhZGlQ38/f2pVaxSqWQtKm5ubkhLSyPWM0ekpqZSLYqMzMMQs0QiwbJly9Da2so7ZxFYeBadnZ2w2+1wcXFBcnIyi4C1Wi1HfmGsk01NTYiLi6PeT1ZWFnk+wcHBrN+lowTCYOXKlTh48CDn546zGIEFmcpgMLB08+TkZExNTeHAgQPw9/cn+SdMi/r4+Dg2bNiAp556CnfccQf1eQj4p3BlSSJ9fX2s5oGQkBBee9bVCibT+4svvkB5eTn+5V/+BZ9//jmWL1+Obdu2kejXoKAgpKamIiQkBHq9Hm5ubmhra2MlC6rVajz66KMoKCjAzp078eqrr2LlypWE+EUi0XkPFh1BOyiUyWTfOYMb+Mcw2+PHj6Ovrw9hYWGIjo6mkrJcLqf+PCIigkrWERERnB2AyWRCc3MzqqqqEBcXx6nMabIGwLXcWa1WnDlzBh4eHrwjxYCFnRNT4MzPz6O8vJxMPAoLC6MOUjCbzaivr6d2qzI4e/YsNBoNoqOjOQvv2bNnObkiaWlpKCwspB7+VVdXs3YMrq6umJiY4MhI4+PjKCgogL+/P3Q6HWJiYghZT05OYuPGjfjFL34hkPVlhktG2LRK/lr2VDKZ3p9++ikqKyuxYcMG7N69G8uXL8fWrVvx5ptvIjc3F8nJycjIyCDJgt3d3SRZcHx8HHa7HYGBgdi8eTN2796N2tpavPnmm9iwYQN1a0+TclxdXakVularpf7eaBNT3NzcWPLD3NwcysrKMDo6itHRUcTGxrIcHrTOP777A+gec2CBfKenp1FSUoLx8XHEx8fDzc0NwcHB1AXhfBgbG0NjYyOSkpI4boyAgABqAxPjxnD0PS+GxWJBd3c38Uw7wm63kylJjrDZbGhvbyee9+joaJSUlJBrO8omTCaKWCyGk5MTmeDe3NxMJCi1Wo2CggKSkx0dHU1icaenp3HPPffg0UcfxcaNG3nfk4ClwSUj7JCQEFZyWG9vL2/jxbUGFxcX3HrrrfjTn/6E6upqqNVqvPvuu3B3d8fTTz+NgwcPwmw2Q6FQICkpCdnZ2STzorS0FE1NTRgdHYXdbkdAQADuv/9+vPvuu6ivr8cf/vAH3HrrreQAi8/XTSNhGlm7uLhQ3R4xMTHU15DJZBgZGUFRURGqq6vh5+eH+Ph43pZvPpsdX+PL4kVpenoaxcXFmJubg1qtph4oKpVKXl07PDwcJpMJpaWlkMlkrEO84OBg3oagubk56PV6zlQYBklJSWhpaYFOp2P5rBfD09MTzc3NVD/+9PQ0sZT29PQQvd5sNmNycpLTGt/c3Izs7GwkJCQQSWxsbAwajQbBwcHYt28fgoODodPpoNFoCJEbjUbcc889ePDBB3H//fdT71PA0uKSEXZmZiZaW1vJqfZXX32FdevWXarLXzH46KOPcPr0aTQ1NeHs2bP493//dxQVFWH16tXYvHkz8vPzYTKZIJfLSbKgXC7H4OAgSktL0dDQgJGREdhsNshkMmzcuBGfffYZGhoa8Kc//QnLli3jpNLRuin5UgZjYmKo8gnf4aSjjNHU1ITy8nJUVFQgOjqaRVBBQUFUbTw8PJz6c4VCQV08mKwXRj9evJMLDg6mLkQSiYS1KPT29qKnpwdhYWHw8PDgnQEJLBBnV1cXpqamOEMOpFIpcepYrVbqQWNKSgrq6+sxMzOD0dFRavh/f38/QkJCOC6c/v5+qhvFYrFwnn1XVxcKCgqgVqtRVVWFiIgIsnMxmUy47777cPfdd+PHP/4x73sVsLS4ZITt5OSEd955B7feeivi4uKwceNGaubv/wWbN28mudZXOrKyssipvUQiwfXXX48dO3aguroa27ZtQ0VFBW666SY88MADyMvLg9FohL+/P+Lj45GTk4PAwEAYDAacOXMG9fX1MBgMsNlskEqlWLduHT788EM0NDTgk08+wYYNG+Dl5UV1h0RHR1PtgzRyB8DJXQYWyJHmjWY81SUlJSgrK4NEIkFMTAyvTEJzPwALh5Y08o2Li8Pw8DAGBwfJpG+tVss7dQdYSFV01LzNZjMaGhoQHR3NuyAt9rmPjY2hpaWFJX1ERUWxnqPNZkNFRQWRMpjRYQxGRkYgEok4HYjJycn4+9//juXLl3PuoaKigmXfy8rKwrFjx4gswlynoKAAYWFhxJ7IHGLPzc3hgQcewNq1a7Fly5ZrWqq83HFVNM4UFRXB09MTmzZtuiY6oZhxWTt37sShQ4egVquRm5uL22+/nXzR7XY7JiYmMDQ0hNHRUXh6ekKpVMLf358TC/vZZ59Bp9OhqKiIkMvy5cuJVroYtFhXtVpNJWw+50lmZibHvQIskKanpyfsdjvLqREcHEyVRPhcJmlpabwhUwaDgZokGBERQfWsM7MUrVYr4uPjOZ+vwMBA6uvl5ORgaGgI3d3dVClFJBIhMzMTY2NjvEFWfX19mJubQ0pKCplaLhKJkJqaynHdMLq9XC5n2e5WrlyJpqYmFBYWIjo6GjqdDmq1msg98/Pz+PGPf4xVq1bhySefFMj64uGCPNirgrCBhUyFtWvXXhOEvRhMpvfOnTtx4MAByOVy5ObmYu3atUSbtNvtmJychF6vx8jICDw8PKBQKODl5YW6ujpERUUhICAAFosFxcXFKCgoIJ7wxQgMDKTmgfARM5P8thhisRheXl4cL7hcLofBYCAVc1hYGCIiIjA/P0/VnFUqFXWR8PDwgNVqpbaGJyYmoqamBklJSRgfHyf3EB4eTpV/gAVL3OLnkJ6ejt7eXkxPTyMuLo5qV2SwatUqlJaWUj3iwMLCYrVaqbY9YMGWODk5ic7OTlbbvaenJ/z9/TnnEStXrsSpU6dYkpVCoUB+fj5iY2Oh0+mgUqmI5GKxWLB582ZkZGTg17/+tUDWFxdXlq1PwMUBk+n94osv4uzZs3jzzTdhMBiwYcMG5Obm4uOPP4bBYIC3tzeio6PJUOGxsTGUlpZCLBaTJDQmnOqNN95Afn4+K5wKADUECaCPwHJ3d6cSbWxsLO/MycXFQ1dXF44fPw6xWIyYmBhOowrfgXVsbCyVrOVyOerq6mC321FTU4OBgQGSlcE3zFcikXCqZ6ZdXKPR8E7PYd7PkSNHoFKpqEN1lUoldDodysrKeIOUmpuboVAoOM+X6TxdLE8lJibixIkTLH3cx8cHu3fvJmQdHBxMyNpqteLRRx9FYmKiQNZXEATCvorATCJ57rnnUFpaiv/5n//BzMwM/u3f/g1r167Fe++9h8HBQVRVVeGjjz5CdnY24uLiMDs7i6qqKlRVVaGvrw/z8/MQi8VYvnw5XnrpJVRVVeHAgQO48cYbOaTt7u5OtQTGxcVRnSB8WjCN9IEF//7p06dRWVmJgIAAJCYmwtXVldfDzxe6FBERweq2NJvNKCkpgVgsht1upzpKEhMTqTsKvV4PsVgMX19f6v+TSCSEzJubm2G32zlxAJ6enjAajbDb7bykHRkZiaNHj1J1666uLjIqTKPRoKGhAXNzcygpKSEW0L179yIhIQHV1dUIDAwktkqr1Yqf/exnCA8PxwsvvCCQ9RUEQRK5BsCMscrLy8Mnn3yCkZERbN68GQ888ABCQkLIF9ZoNEKv18NgMEAsFkOpVEIul5P5fQxqa2uxf/9+FBQUwMvLi3VoxiAnJwelpaWcnzOzMhfDy8sLRqORo/XyjUFLSEiAr68vOVhkwMgqtHZ8Pz8/akNOdnY2Tp8+jZCQEAQHB7PiEkJCQqgauUgkQmBgILq7u6HRaGCz2VgulvT0dI5E5OHhgaCgIPT09CAhIYEjg4hEImRlZZGfp6ens4YWZGdnU8O9brjhBpSVlbEyWVQqFT777DNkZGSguroacrmcNNPYbDZs27YNMpkMb7zxBsdvLuCiQdCwF0Mg7P8de/bsweuvv4733nsPRUVF2L17N0wmE9auXYvc3FxEREQQ8p6dnSXJgiKRiCQLOgYSNTc3E/JeTHYKhYKTqqdUKqkVa1ZWFkcvB4AVK1ZQDz5XrFiB4uJiiEQipKWlwdXVFU1NTcjMzKS+TlRUFNX+JxKJiCWSQWJiInHV0DoXAXCS8ZhJQzqdDt7e3jCZTGTK+mI4OzsjPT0dOp2Oao1kSJtp4FkcsuTs7Iy4uDjW55sZvhAQEEAWTU9PT+zZsweZmZmoqamBv78/cd/YbDY89dRTkEgk2LFjh0DWlxYCYTO49957cfz4cQwPD0OpVGL79u14+OGHl/q2LivMz8/j0Ucfxe9//3uWk0Sv12PPnj3YvXs3xsfHcfvttyM3NxdarZaQN9MYotfrYbPZIJfLoVQqOfJGe3s7CgoKcPbsWZIZsxg5OTnUw8mMjAzqwRvfUOLAwECOFVGtViM+Ph61tbUceUWr1VLzp1NSUqi7A7FYjBtuuAF1dXUcnVosFvNO4ElPT4ebmxv1PTKIj4+Hu7s71SUDLDQaxcTEoKioiPN3zOCD9vZ2eHl5kaAob29v+Pr6YmRkBHl5ecjJyUFtbS18fX1JjIDNZsNzzz2H2dlZvPvuuxeNrHt6erBp0yYMDg5CLBZjy5YteOKJJy7Kta4wCIR9MXEtfvBGRkawd+9e7N69G4ODg7jttttIpjdD3vPz84S8LRYL5HI5FAoFJ8ejp6cHBQUFyMvLQ21tLex2O3XyuqurK8RiMafi5LMKxsbGUsmXyduWSqVIS0vD6Ogo+vv7iVZMiwRNSEigNsQwFbmnpydSUlJQW1tL5Jq0tDResg0NDYXJZIKvry+1ok9LSyMyUWZmJurq6jj3FRISgtbWVs5UcwZMfrqbmxvLgRMXF4ff/e53WLlyJerq6uDt7U0Oau12O1588UXo9Xp8+OGH581L+b4YGBjAwMAA0tPTybixvXv3UsefXWMQCPti4lr/4I2Pj2Pfvn3YvXs3urq6sGbNGqxfv57keAMLB3cGgwFDQ0OYn59HQEAAlEolIe+WlhZYrVb4+vri4MGDKCwsRHFxMevwLzU1lVrl8skhfP5wx5+LRCLExsZCo9Hg+PHjnH+vVqvR3d1NbbxJS0tjVfyMb7m5uRn+/v68B55xcXGoqamBWCxGSkoKGhsbiZ7u6+sLk8nEqtgTExPR19dH5JOMjAyiW4tEIjIBfTFEIhFWrFiBs2fPkjZ+Nzc3/O1vf8MNN9yA+vp6SKVS0kFqt9vx6quvoqOjA59++ulFJWsacnNzsXXrVqxZs+aSXvcyhEDYlxLX8gdvamoKhYWFyMvLQ0tLC2688UasX78eGRkZhLwtFgsMBgP0ej1mZ2dht9vh5eWF+Ph41vZ7eHgYBw8exP79+3Hq1CmkpaVRdWeNRsPxRjPODMehBxKJhGSWOCIiIgI2mw2hoaFoamoieSdZWVnUQ1HGa07L77755pvR1tZGlUMSExM5C098fDwmJiZgMBiQlJRElX3CwsJgtVrh4+OD6upq1nUZTXuxXp6QkICKigokJSWhqakJYrEYX375JW6++WY0NDTAzc2NtMfb7Xa8+eabqKurwxdffEF1tFxMdHZ24vrrrycV/zUOgbAvFYQP3j9gNBpx8OBBInWsXr0a69evR3Z2NiQSCUwmE06ePEk66WZmZuDv7w+lUglvb2+WhWxiYgJ///vfkZ+fj+PHjxMyValU1Co2MTGRKmGkpaVRx2nFxMSwvOA+Pj5ITk6GwWDA2NgYZwgusEDkNA3aycmJ5HRnZWWhsbGRyDgSiYRkgDtCJpMhMzMThw8f5vwdg8jISHh4eFDfg0gkIrnmmZmZLOdIWloannjiCdxxxx1oamqCi4sLoqKiIBKJYLfb8c4776C0tBRff/31eQduXAxMT09j9erVePbZZ3HnnXde0mtfphAI+1JA+ODxw2Qy4fDhw9i5cycqKyuRnZ2NmpoarFu3Dr/85S8BLHh+R0dHMTQ0hKmpKfj5+UGhUMDHx4dF3lNTUzh8+DAZyOA4VBZYsLbRquJly5ZRLW98h5wrVqyAzWbDzMwMy7Ynk8kwOztL9XI7EnlAQACio6NRVVWFZcuW8R40enp6wtnZGRqNBjqdjtP1KBKJEB0djXPnziEuLo4qD4lEItx6662s+Z7Ozs54++23kZqaiuHhYVJZe3t7w8XFBR988AGOHj2KvLw8ji3zYsNsNmPt2rW49dZb8eSTT17Sa1/GEAj7YkP44H13jIyM4Oabb4a/vz8GBweRnZ2N3NxcXH/99SQr2mazYXR0FHq9HhMTE/Dx8YFSqeRMA5+dncWxY8ewb98+/P3vf8fU1BScnJwglUo5rg0vLy/Mzc1xmnSYREJaQ87iqedMt2N9fT2ysrKo+jgzS5JmSUxNTYXRaOSdUrOYzDUaDaxWK+swdXHVLJFIqIsSo/NnZGSgtLQUTk5O+OSTT5Cbm4uWlhbSmFNVVYVt27ZBpVJhZmYGR48eJTnXlwp2ux0PPvgg/Pz88NZbb13Sa1/mEAj7YkL44H13zM7O4pZbbsHWrVtx9913w2Kx4MSJE9i1axdOnjyJ9PR05Obm4sYbbyTVns1mw/j4OIaGhjA+Pg5vb28olUr4+fmxyHtubg4nTpxAcXExvvjiC06CIF/VzffzxMREqlc/MjIS4eHhqKqq4uR688kkzOvV1tYiOzsb586dY+VzMxPbF3/HpFIp0bMTEhJQVVXFafS57rrryPViY2PR0tICk8kEsViM7OxsbNmyBRs2bEBraytsNhtiYmLIbuXTTz/FV199hYyMDHz77beIiorCc889x5vDfaFx6tQprFq1ijUE4uWXX8btt99+Sa5/GUMg7IuJi/nBM5lMuP766zE3NweLxYIf/ehH2L59+/d+3aWC3W5Hc3MzdaK11WpFcXExdu3ahW+//RaJiYnIzc3FzTffTKpgu92O8fFx6PV6jI6OwsvLCwqFgpMsaLFYcPLkSRQUFKCwsBAGgwERERHUyFQ++19mZuZ55RNfX18kJSWhvb0do6Oj562uFQoFhoeHiTXPx8eHdDG6uLjA19eXak0EFoKhmpubeae9Z2VlYXx8HH19fWQREIvFeP/993H33Xejra0N8/PzLMvl3/72N3z66acoLCyEVCqF3W5HfX09fHx8OIOGBVxyCIR9pcJut2NmZgaenp4wm81YuXIlduzYQZ3RdzXBZrOhrKwMO3fuxJEjR6DRaHDHHXfglltuIUFGTLLg0NAQRkZGIJVKoVQqERAQwCLv+fl5fP7559DpdDh27BiL+MLCwqg53EqlEiMjI5wWeJFIhJCQENahoaurKzIyMuDl5UW1BQLgdB4y0Gq1CA8P5z1oFIvF0Gq1mJychJOTE3XBUSgUCAsLQ0NDAyYmJiASifDuu+/i/vvvR1tbG0wmE2s4w+7du/H+++/jwIEDnAk0Ai4LCIR9NcBoNGLlypX4n//5H2RnZy/17Vwy2Gw2VFVVYefOnfjmm28QGhqK3Nxc/Mu//AurE3N6ehpDQ0MYHh6Gu7s7ObCsq6tDaGgolEol7HY7ysvLsX//fuzfvx/BwcFULfq6665DcXEx5+fp6enU/GymSlapVLDZbKyKXaPRUEOvgIXGm46ODixbtgznzp2jyjiMbu3m5ob09HSWfOPl5QUfHx+0t7cjIiICZrMZv/71r/HjH/8YHR0dmJmZQUJCAiHrgoICvPXWWygsLLzkmrWA7wyBsK9kWK1WZGRk4Ny5c3j88cfx2muvLfUtLRlsNhvq6uqwa9cuFBYWQqlUIjc3Fz/84Q9Jpjew4Njp7+9Hb28vpFIp1Go15HI5x7JWXV2Nffv2Yf/+/WQogZOTE3x9fakBULQOTOAfmSUMYmNj4eLigtbWVkRGRlK7GcViMSIiIsjfyWQyJCYmoqysDHa7HYmJidDpdBzdOjMzEy0tLZifn0d4eDircv/DH/6Ahx56CJ2dnZicnERiYiKR6b755hu89tprKCws5B1ULOCygEDYVwPGx8dxxx134A9/+MNVMeLs+8Jut6OpqQm7du1CQUEBZDIZGcgwNzeH119/Hc8//zzc3d1JsqCTkxMJp3KcXt7Q0ID9+/ejsbER+fn5nOvxkbWLiwt8fHw4yYIA8IMf/ABmsxk1NTWcA8rly5eT6TCLodVqIZPJ0NbWxmn8YaBWq6HRaHDkyBHyszfeeAOPPfYYurq6MD4+zjpTOXr0KF588UUyuELAZQ2BsK8WbN++HVKpFL/61a+W+lYuKzCjwnbt2oVdu3ahv78fd911F5544gkolUpqsqBYLIZCoYBcLuckC7a1tZHKm/E78wVP8bXAu7u7w8vLC0NDQ/Dz80NCQgKam5sxPj4OlUoFvV5PnR4vEokQHx8PqVSK5uZm6rzMnJwclJWVITs7G8XFxXj55Zfxs5/9DD09PRgZGWHFAhQVFeHZZ59FYWEhdWivgMsOAmFfqTAYDMR9wFjinn76aaxdu3apb+2yRE9PD9avX4+nn34aPT092Lt3L0QiEdauXYv169dDpVIR8jaZTIS87XY7qbwdkwW7u7tx4MAB5Ofno7S0lGW9O191fd1113EqaHd3d2RkZEAkElFJHlhYABjdmnGTLL7uihUrWF2Mb775JrZs2YLe3l4YDAakpKQQsi4uLsZTTz2FgoICqFSqf/ZxClgaCIR9paKmpgYPPvggrFYrbDYbNm7ciOeff36pb+uyxSOPPIJHHnmEuGjsdjv6+/uRl5eHPXv2YG5ujmR6h4eHs2JhmXwTi8VCyJuxEzIYGBhAQUEB8vPzcfr0ad4GGrlcjunpaWqWNVMdL1u2DOPj46xGGiYV0FG3jouLg91uh6+vL+t6zz//PJ566in09fVhaGgIKSkpxCFTVlaGbdu2Yd++fSQ6VcAVAYGwBdBhtVqxbNkyqFQqFBQULPXtfG/Y7XbeMVZMpvfu3buxe/duTExM4Ic//CFyc3MRHR3NioVlyHt+fp7Ewi6eiwgshFP9/e9/x65du3DixAmWBZCv1d3f3x8Wi4XVhcnMVmTsho7DHBgwGdp1dXWYmJjAM888g2effRYDAwPo7+9HamoqIevKyko8/vjj2Lt3L0njE3DFQCBsAXS8+eabKC8vx+Tk5FVB2P8MhoeHkZ+fj7y8POj1etx2221Yv349q8HEbDZjeHiYJAsysbCenp4QiUSw2Wyora2FWCxGXV0d8vPz0dnZiaamJur4Mb6JOQCwevVqGI1GlJeXc6JcY2Ji0NXVBaPRCH9/f2zbtg1PPvkkBgcH0dfXxyLrmpoabNmyBXl5eWSWo4ArCgJhC+Cit7cXDz74IJ599lm8+eab1xxhLwaT6Z2Xl4fu7m7ccsstWL9+PctpYbFYMDIygqGhIRiNRvj5+WFychIBAQGsSe3T09M4dOgQ9u3bh8OHD5OMEr48b2BB72Z06dDQUKjValRUVGB+fh5qtRrT09MkEnbbtm146aWXMDQ0hJ6eHqSmppI41IaGBmzevBlff/01tZtUwBUBgbAFcPGjH/0IzzzzDKampvC73/3umibsxZicnCSZ3q2trbjpppuwfv16pKenE/I2mUyoqamBzWaD3W6Hn58flEolZDIZS5IxGo04cuQI9u/fj8rKSqofOz4+Hk1NTZyuSmby++DgIIl+3bp1K1577TXo9Xp0dXUhLS2NkHVzczMefPBB/PWvfxVsn1c2BMIWwEZBQQEOHDiAd999F8ePHxcImwdGoxEHDhxAXl4e6uvrsXr1atx+++145ZVX8Pjjj+Nf//VfYbPZMDIyAr1ej8nJSfj6+kKhUMDX15dF3vPz8zh27Bj27t2LAwcOYGxsDDKZDG5ubpy5k8BCimBoaCh6e3uRmpqK9PR0vPLKKzAYDOjo6EBaWhppBGpra8N9992Hzz77jGjiAq5YCIQtgI1nnnkGf/nLX+Dk5ASTyYTJyUnceeed+Pzzz5f61i5bmEwmFBYW4sknn0RAQAAyMzOxfv16rFixglS5NpsNY2Nj0Ov1GB8fh0wmg1KphK+vLytZ0GKxoKioCKdOncInn3zCOWiUSCRITk4mEsrDDz+Mt99+GyMjI2hra2ORdVdXF+655x589NFHWLZs2UV7/5s3b0ZBQQEUCgU1F0XABYNA2AL4IVTY3w1zc3PYuHEj1qxZgy1btpDQ/9LSUuTk5JBMb4ZImWTBoaEhjI2NwdvbmyQLLiZvm82GkpIS7N27F/n5+ejv78fy5cuJy+TBBx/EH//4R4yNjZGhu0yXZm9vLzZu3Ij33nvvogeCFRUVwdPTE5s2bRII++JCIGwB/LgYhB0eHg4vLy9IJBI4OTlROwSvNPT09ODIkSN46KGHWD83m80oKirCzp07cerUKWRkZCA3Nxc33HADyfS22+2YmJiAXq/HyMgIPD09oVQqObGwdrsdFRUVyMvLw759+3Ddddfhvffew8TEBFpaWlhkPTAwgB/96EfYsWMHrr/++kvyDDo7O7F27VqBsC8uBMIWcGkRHh6O8vJyBAQELPWtXFJYrVacOnUKu3btwvHjx5GUlEQyvZkOSrvdjqmpKRIL6+HhAYVCgYCAAM7wW4bom5qakJaWRhaAoaEhbNiwAb/73e9w4403XrL3JxD2JcEFIexLO0ZZgIArEBKJBKtXr8bq1aths9lQWlqKXbt24eWXX0Z0dDTJ9Pb29oa3tzc0Gg2mp6eJ68PV1ZXkmzg7O2NychJNTU1ITU0lZG0wGHDXXXfhlVdeuaRkLeDKglBhC/jOiIiIIC6Jn/zkJ9iyZctS39KSwmazobKyErt27cI333yDsLAwkunt7e1N/t3MzAxJFgQWDjpTU1PJvxkdHcWdd96J559/fknyZIQK+5JAkEQEXFr09/cjODgYer0ea9aswR/+8IdLprNe7mAyvXfu3IkDBw4gMDCQZHozQwVaWlpgMBigUCgwOjqK7du3Y8WKFThy5AieeeYZ3HHHHUty7wJhXxIIhC1g6fDb3/4Wnp6eQiQsBXa7HY2NjSTT29fXF9nZ2fjiiy9QWFhIQpuqq6vx9NNPY2RkBHK5HHfeeSfuvPPOSzp/8d5778Xx48cxPDwMpVKJ7du34+GHH75k17+GIBC2gEuHmZkZ2Gw2eHl5YWZmBmvWrMHzzz+P2267balv7bKG3W7HoUOH8PDDDyMqKgrOzs5Yt24dbr75Zjz++OPYsmUL7rvvPgwMDGDv3r2wWq3YunXrUt+2gAsPgbAFXDq0t7eTLbvFYsG//du/4dlnn13iu7r80dLSgo0bN+LLL79EbGwsOjs7kZeXh3feeQcPPfQQXnjhhaW+RQGXBgJhC7i6MD4+jkceeQR1dXUQiUT4+OOPsXz58qW+re+F3t5eTExMICEhgfXz80XGCrgqIRC2gKsLDz74IFatWoVHHnkE8/PzMBqN8PHxWerbEiDgQkAgbAFXDyYnJ5GSkoL29nah8hRwNeKCfKjF//s/ESDg4qO9vR1yuRwPPfQQ0tLS8Mgjj5DMaQECBCxAIGwBlwUsFgsqKyvx2GOPoaqqClKpFK+++upS35YAAZcVBMIWcFkgJCQEISEhyM7OBrAwiKGysnKJ70qAgMsLAmELuCwQGBgItVqN5uZmAMDRo0cRHx+/xHclQMDlBeHQUcBlA51ORxwikZGR+OSTT0hbtwABVzgEl4gAAd8Fzc3NuPvuu8mf29vb8eKLL2Lbtm1Ld1MCrjUIhC1AwD8Lq9UKlUqFM2fOICwsbKlvR8C1A8HWJ0DAP4ujR48iKipKIGsBVyQEwhZwTeGrr77Cvffeu9S38X/GoUOHEBMTA41GI9ger0EIkoiAawbz8/MIDg5GfX09lErlUt/OPw2r1QqtVovDhw8jJCQEmZmZ+PLLLwU3zZUBQRIRIOCfwcGDB5Genn5FkjUAlJWVQaPRIDIyEi4uLrjnnnuQn5+/1Lcl4BJCIGwB1wy+/PLLK1oO6evrg1qtJn8OCQlBX1/fEt6RgEsNgbAFXBMwGo04fPgw7rzzzqW+lf8zaPKlEJR1bUEgbAHXBDw8PDAyMgKZTHZRXv/3v/89EhISkJiYiHvvvRcmk+mCXyMkJAQ9PT3kz729vQgODr7g1xFw+UIgbAECvif6+vrw9ttvo7y8HHV1dbBarfjqq68u+HUyMzPR2tqKjo4OzM/P46uvvsK6desu+HUEXL5wWuobECDgaoDFYsHs7CycnZ1hNBovSuXr5OSEd955B7feeiusVis2b97MmWQj4OqGYOsTIOACYMeOHXj22Wfh7u6OW265BV988cVS35KAywuCrU+AgMsBY2NjyM/PR0dHB/r7+zEzM4PPP/98qW9LwFWI/63CFiBAwP8CkUh0F4Db7Hb7w///z5sA5Njt9p8u7Z0JuNogVNgCBHx/dAPIEYlEHqIFn91NABqX+J4EXIUQCFuAgO8Ju91+BsAuAJUAarHwvfpgSW9KwFUJQRIRIECAgCsEQoUtQIAAAVcIBMIWIECAgCsEAmELECBAwBUCgbAFCBAg4AqBQNgCBAgQcIVAIGwBAgQIuEIgELYAAQIEXCH4f4nIohqCnVuIAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 360x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Hypothetical solution (by now with unity amplitude)\n", "\n", "W0 = 1.0 * np.sin(np.pi*X/a) * np.sin(np.pi*Y/b)\n", "\n", "# Visualization\n", "\n", "f1 = plt.figure(1, figsize=(5,5))\n", "ax = f1.add_subplot(projection='3d')\n", "\n", "ax.plot_surface(X, Y, W0, \n", " rstride=sy, cstride=sx, \n", " cmap=cm.gray, shade=True);\n", "\n", "ax.set_xticks(np.linspace(0, a, sx)); ax.set_xlim((0, a));\n", "ax.set_yticks(np.linspace(0, b, sy)); ax.set_ylim((0, b));\n", "ax.set_zticks(np.linspace(0, 1.5, 4)); ax.set_zlim((0, 1.5));\n", " \n", "f1.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The function defined above has a unity amplitude, what leaves the actual amplitude to be\n", "still evaluated according to the type of analysis (imposed load or free vibration).\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Static solution by approximation <a name=\"section_2\"></a> \n", "\n", "Most of the approximate solutions requires the calculation of second order derivatives\n", "of function $w(x,y)$. \n", "\n", "To provide a general differentiation scheme, in the following scripts\n", "we use ```numpy``` resources to fit, evaluate, and differentiate a 2D polynomial of \n", "fourth order:\n", "\n", "$$ w(x,y) = \\sum_i \\sum_j \\, C_{ij} \\, x^i \\, y^j $$\n", "\n", "The data that must be provided to the least squares fitting algorithim can be the\n", "discretized tentative function, but also any bunch of coordinates that resembles\n", "the expected deformed shape. You can even _draw_ this deformed shape and measure\n", "the coordinates from your drawing (!!!).\n", "The important issue is satisfying the kinematic boundary conditions \n", "(displacements and rotations).\n", "\n", "Below is a demonstration how to fit such polynomial to the proposed solution:\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 1.52e-06 7.74e-04 2.67e-05 -7.26e-05 7.26e-06]\n", " [ 4.70e-04 2.38e-01 8.22e-03 -2.24e-02 2.24e-03]\n", " [ 1.02e-05 5.16e-03 1.78e-04 -4.84e-04 4.84e-05]\n", " [-1.72e-05 -8.74e-03 -3.01e-04 8.20e-04 -8.20e-05]\n", " [ 1.08e-06 5.46e-04 1.88e-05 -5.12e-05 5.12e-06]]\n" ] } ], "source": [ "# Fitting a fourth order 2-D polynomial to w(x,y)\n", "\n", "X = X.flatten() # converting matrices into 1-D vectors\n", "Y = Y.flatten()\n", "B = W0.flatten()\n", "\n", "# Ci0 Ci1 Ci2 Ci3 Ci4\n", "A = np.array([X*0+1, Y, Y**2, Y**3, Y**4,\n", " X, X*Y, X*Y**2, X*Y**3, X*Y**4,\n", " X**2, X**2*Y, X**2*Y**2, X**2*Y**3, X**2*Y**4,\n", " X**3, X**3*Y, X**3*Y**2, X**3*Y**3, X**3*Y**4,\n", " X**4, X**4*Y, X**4*Y**2, X**4*Y**3, X**4*Y**4]).T\n", "\n", "Cij, resid, rank, singv = np.linalg.lstsq(A, B, rcond=None)\n", "Cij = Cij.reshape(5,5)\n", "\n", "np.set_printoptions(precision=2)\n", "print(Cij)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The fitted polynomial is evaluated and plotted below to demonstrate the \n", "quality of the fitting procedure:\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Root mean square error across the plate: 0.038%\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFkCAYAAAAEzAHUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADMA0lEQVR4nOz9eXBkeXUljp+X+75nat/XqlLtJTU0GDzEeBnGgbFnYMA48DoesLHDg8d7+Ofwd4wHHHYwePC4zeAxBntgbDCm3U2zeDDGAbirumuTSiWptFRpSy2p3Pft/f4Q91Nv+TyVpMqUlFV5Iiq6lcvLly/fO5/7zj33XkEURTTRRBNNNHHyoTvuHWiiiSaaaGJ/aBJ2E0000USDoEnYTTTRRBMNgiZhN9FEE000CJqE3UQTTTTRIDA84vmmhaSJJppo4vEh1GIjzQi7iSaaaKJB0CTsJppoookGQZOwm2iiiSYaBE3CbqKJJppoEDQJu4kmmmiiQdAk7CaaaKKJBkGTsJtoookmGgRNwm6iiSaaaBA0CbuJJppookHQJOwmmmiiiQZBk7CbaKKJJhoETcJuookmmmgQNAm7iSaaaKJB0CTsJppoookGQZOwm2iiiSYaBE3CbqKJJppoEDQJu4kmmmiiQdAk7CaaaKKJBkGTsJtoookmGgRNwm6iiSaaaBA0CbuJJppookHQJOwmmmiiiQZBk7CbaKKJJhoETcJuookmmmgQNAm7iSaaaKJBYDjuHWii8SCKIorFIorFIoxGIwwGA/R6PQRBOO5da6KJJxqCKIp7Pb/nk008fahWqygWiyiXyyiVSgAAQRAQDofR1dUFg8HQJPAmmlCjJhdDM8JuYl8QRRHlchmzs7NoaWmB3W6HTqeDTrerqq2vr6O9vR2lUokRtcFgYBG4TqdrEngTTTwmmoTdxCNBEghF1/l8HnNzc8jn83A6nfB6vRBFUUbgoiiiUqmgXC5DFEUIgtAk8CaaeEw0JZEm9kSlUkGpVGKke+PGDaTTaYyMjMDpdCKTySAWi+HBgwewWq1wu93weDzwer0wmUxsO6Iosn8AGIHTvyaBN/GEoymJNFE/kARSLpcZkc7NzSGZTGJ0dBTBYBDFYhFutxtutxvb29u4fPkykskkYrEY1tbWUKlUZARuNBpV25fq4E0Cb6KJvdEk7CZUqFarKJVKqFarEAQBuVwOk5OTCAaDaGlpkRGvFDqdDh6PBx6PB319fahUKozAV1dXUa1W4Xa74fV64fF4YDA8PP1EUUSpVJIRuF6vZzJKk8CbaKJJ2E1IQLqzlDQ3NzexsLCAM2fOwOPxYHZ2Fo+Q0Rj0ej28Xi+8Xi+AXXklkUgwCUUURRZ9u91uFYGvra2hWCyiq6sLgiDILIRNAm/iaUSTsJsAoJZAqtUqpqenUS6XMTExwaJqQRC4hL0fEtfr9fD5fPD5fACAcrmMeDyOWCyGpaUlCIIgI3AiZb1ezxKfhUIBgiDICNxgMLDHmmjiSUaTsJtg7g9KLKbTaUxNTaGzsxOdnZ0yItQi7MPAYDAgEAggEAgAAEqlEuLxOHZ2drCwsIBKpQKz2QyXywWXywW9Xs/eq0XgRqORecCbBN7Ek4YmYT/FkEogRHArKytYW1vD2bNn4XA49r0tIvLHIUmj0YhgMIhgMAgAWFtbQzwex9bWFubn52EwGFgELiVwWkCo+hLY1dNJ/yYJpYkmGh1Nwn5KIfVWC4KAcrmMqakpmEwmTExMyKJZKbQi7FoQthIGgwF2ux29vb0Adgk5FothY2MDc3NzMBqNTCN3Op1NAm/iiUeTsJ9CKCWQeDyO6elpDAwMoLW1dc/31lISeRSU5G8ymdDS0oKWlhYAQKFQQCwWw/r6OlKpFMxmM3Og7EXgOzs7cDgccDqdTQJvoqHQJOynCMrEoiAIWFxcRCQSwaVLl2C1Wh+5jUdF2EcJs9mM1tZWtsjkcjnE43Gsrq4inU7DYrEwAnc4HIzA4/E4DAYDzGazLAJXulCaaOKkoUnYTwmUEkihUMDk5CTcbjfGx8f3TVBSYq5XMvKwsFqtsFqtaGtrgyiKjMCXl5eRTqdhs9ng9XqZZi+NwEVRRKFQQKFQALDraKHom1woTTRx3GgS9lMAZUVhJBLB3NwcRkdH4ff7D7Stoybmw36WIAiw2Wyw2Wxob2+HKIrIZrOIx+NIJpNIJBJwuVxMA7darbI+KNVqFfl8nm2PCLzZibCJ40STsJ9gKCUQURQxOzuLTCaD8fFxWa+P/eIoJZFakqIgCLDb7bDb7chkMggGgzAajYjFYlhYWEA2m4XD4WAEbrFYmgTexIlDk7CfUFSrVaytrcFut8NmsyGbzWJychItLS0YGRk5NMGcJA37cSAIAhwOBxwOB7q6uiCKItLpNGKxGO7du4d8Pq8icEKTwJs4LjQJ+wmD1FsdiURgMBiQSCRw//59nDlzBm63uyafQf99UohJEAQ4nU44nU50d3dDFEWkUinEYjHMzMygWCyyVrJerxdms5m9lwh8bm4ODocDPp+vSeBN1AVNwn6CQA2UKpUKI4jFxUUYjUZMTEzIenUcFkeddKzXNh9FoIIgsArLnp4eVKtVRuDT09MolUqqVrLVapX1BK9Wq8jlcuxzmgTeRC3QJOwnBEpvdSqVwsbGBtra2jA6OlozgqA+I8rtnXQN+3Gh0+lYK9ne3l5Uq1VVK1mCy+ViHQaBhxG4lMClRTxNAm9iv2gSdoOD561eXl7G+vo6Wlpa4Pf7a5680yLmRtKwHxe8VrJ3795FPp/H7du3IYqiqpUsbxoPoTmNp4n9oEnYDQylt7pUKmFqagpWqxUTExNYWlqqS9SrlXR8mqHX62GxWFg3wkqlgng8jng8vq9WslICbw5zaEILTcJuUFBUTRJILBbD3bt3MTQ0hFAoBABMS60ljtol0khRu1Qb1+v18Pv9zOf+qFayyk6EUu98pVJh03uaBP50o0nYDQaeBLKwsIBoNIrLly/L7Gf10pW1XCJPsoa9H+yVzNRqJRuJRLCwsAC9Xs/tRAgAmUwGq6urGBkZAdCMwJ9mNAm7gaAc3VUoFHD79m34fD6Mj48fWSJQyyXSKDgJdkRlK9lisajZShbYvVuSltIrx6k1p/E8HWgSdgNAObpLp9Nha2sL9+7dw6lTp9gEFyWeBEmkkfA4C4HJZEIoFGJylrSVbCwWQ7Vaxf3791WtZOlzm9N4ng40CfuEQ+mtFkURd+/eRS6Xe2R5eaP0/TjqbdYTtSJGaSvZeDyOcDgMi8XyyFaygJzAgYedCJvTeBofTcI+wVB6qzOZDCYnJ9He3r4vbzV5pmuJo3SJNBqp1GtxEUURBoPhUK1km8Mcniw0CfsEgpdYXF9fx4MHDzA2NgaXy7Wv7eh0Oiaj1ApPgiRST2KtxyLDK1TabytZr9cLm82mSeCRSAQulwsOh6NJ4A2AJmGfMCi91ZVKBXfu3IFOpztweXm9k471/qx6oh7EelwLgVYrWbIQZjIZ2O12WStZIvBoNAqr1dqMwBsETcI+QaDEIl2gyWQSd+7cQW9vL9rb2w+8vaMk7HqhkRYBoH4LwUFIU9pKtrOzE6IoIpPJcFvJag1zUBJ4cxrPyUCTsE8AeBLI/fv3sbm5ifPnz8Nutx9qu43uEmlEDbtehP04292rlSwFBdJhDspWsrxpPFIfeKP9To2MJmEfM6rVKqLRKOLxODo7O1EqlTA5OQm73Y6JiYnHimaOkkQbTRJpJNR6IZC2kk0kEhgYGEC5XD5QK1neOLVmJ8L6o0nYxwSpt7pQKCCdTiMajWJmZgbDw8OsoOJxUC/C1oran3bCPqkR9l6oVqvQ6/Ww2WwHaiUr3bfmMIejQ5OwjwFKCUSv1yMWiyGdTqvKyx8H9ZBEtFCvi7KRvN2N5j7R2vZ+WslKCdxoNMq2RwS+uLiI7u5umM3mJoHXCE3CPmIoy8vz+Tzu3r0LALhy5cqRtUKt9TYbTcOu17YbMcJ+lOzGayWbSCQQj8exsrLCbSULAKlUqjnMocZoEvYRQSqBCIIAnU6HjY0NLCwsoLe3Fzs7OzU/cY/aJdKURBpPEjnMtvV6PWsjC0DWSvb+/fsAAI/Hg0KhwBwuew1zaBL4/tEk7COA0ltdrVZZcmdiYgLFYhHb29s1/9yjdok0UR8c1NZ3EOwnwn4UtFrJhsNh3L59m9tK9lHTeOhfk8DlaBJ2naFVXt7R0YGuri4IgoByuVwXrflJkEQaKWpvxAgbqP1iS61kLRYLrly5sq9Wss1pPPtDk7DrBJ63enV1FSsrKzh79iycTid7rU6nqwsxNSWRo0WjEna9cZBWsi6XSxbx86bxSCWUp43Am4RdByglkHK5jDt37sBgMOCZZ56RdVYD6ufmqLdLpJH7YTcSGp2wlVC2ki0UCojH49jY2MDc3ByMRiPzgDudTi6Bz8/Pw+/3w+VyPVXDHJqEXWNIRzsJgoBEIoE7d+6gv78fbW1t3PfUi1jrEWFr3Q00mnzRSJEwr/nTkwSz2cxayQK7BB6LxTRbyep0OhSLRaZvK6+5J5nAm4RdIyglEABYWlrC9vY2Ll68CJvNpvneerRBpe0elY+5qWHX14ddr6TjSTy+ZrNZ1Uo2FothdXUVqVQKVqsV+XweuVwODodDFYErp/EoG1k1MoE3CbsGUHqri8UiJicn4XQ6MT4+vi+faz0unKN0iQAn8+I/ajRS5F5P1PJcoFay1Ikwl8thamoK4XAYS0tLmq1kaT+epHFqTcJ+DPBGd0UiEczOzmJkZIQNXD0u1DvqlRJJI5309UIz6fgQ9dpnaiVrMplw6tQpGI3GfbeSpf3iTeNplHFqTcI+JHiju2ZnZ5FKpXDlyhVZw5zjQqPb+oBm1A7Ul7CPs4LycVCpVFh0rNVKdn5+nskm0k6E+5mHeVLHqTUJ+xBQeqtzuRwmJycRCoVw+fLlE/MD11MSKZVKWFpaYtEMUHtybaT+JLTdRoqw67kY1puwqWmVEnu1kp2bm0OhUNAkcDoeiUQCy8vLGBkZgU6nQyaTwfLyMp555pm6fZ/9oknYB4AysajT6RAOh7G4uIgzZ87A4/Ec9y7KUK8Iu1Qq4dq1a2hra0Mmk8Ha2hry+TxsNhusViurZjvJaCQCbLSFAKg/Ye9336WtZLu7u1GtVhmBP6qVLO3/zMwMPvnJTzYJu5EgiiK2trZgt9thMBhQqVQwMzODcrmMiYkJWceyk4JaX4yiKGJtbQ25XA6ve93rYDAY2IWzsrKCTCaDnZ0dLCwswGAwwOv1wufzwel0npi7jnqjkYi1nqRab8I+LHQ6HVwu156tZC0WC8tNmUwmNqHnIPjJn/xJvPDCCwiFQpiamlI9LwjCdwP4AoCl7zz0t6Io/n+P2m6TsPcBiqoXFhZw6tQp5PN5TE5Ooru7Gx0dHU8FGdFsSdIMbTYbGyEF7PaTsNvt6OrqAvDQS0tWLJvNBp/PxxJB+z1mjaZhNxJhN3KEXav95rWSXV1dxfb2NqampvAbv/EbcLvdsNlsiEajrOHVo/DjP/7jeN/73od3v/vde73sn0VR/IED7e9BXvy0QWkJ0ul0WFtbw9TUFM6dO4fOzs6ngqwzmQyuXr0Kn8+HsbEx7muUx4G8tKdPn8bExAT6+/tRrVYxPz+Pa9eu4e7du9jc3JSR/qO2+bSiGWEfHXQ6HaxWK3w+Hy5duoTPfvazOHfuHCKRCN761rdiYmICH/vYxx65nTe84Q37JveDoBlha0DprS6VSkgkEhAEARMTEzXXaElvPmkktbGxgcXFRYyNjcHlcmm+bi+9XJrJ7+rqYreh0WgUa2trqFarrJeEx+M58fq3Fpoa9kM0KmEDu3eTdA46HA50dnbirW99K37xF38RmUymlp01XysIwi0A6wD+iyiKdx71hiZhK8DzVpO+Zbfb0dvbWxdCIUfHSSGrarWK2dlZ5PN5jI+P70uj3y9hSW9D+/r6WDvOaDSKxcVFpn9bLJamVRDNCJu37XoGNlLCBoB0Os1qKijwqAGuA+gRRTEtCMKbAfwdgKFHvalJ2BIovdUAsLCwgEgkgkuXLuH+/ft1a6ZE5ekngbDz+Txu3bqFUCiE0dHRfWfjDwtqx0kXBenfW1tbiMfjmJycPJT+Xa/9PcptAs0I+yi3DewStnRuZSaTQW9vb00/QxTFpOT/vygIwv8UBCEgimJkr/c1Cfs7UHqrC4UCJicn4fF4WHm5TqdDpVKpy+cf5fzFvUCVmqdPn2b+6v2glhZC0r+dTieWlpbQ19fHCiHy+TycTicjcOmF9aSiGWHLoYyA6739TCZzYJfIoyAIQiuATVEURUEQJrCbT9x51PueesLmeau3trZw7949jI6OsikawK4Tol6ketyELYoiFhYWEIvFDlWpWa9KR2Ul25Oqf++FejV/akbYfCgJ+zC2vne+8534+te/jkgkgs7OTqytrf0UACMAiKL4HIB/D+C9giCUAeQAvEPcxwX0VBO2sm+1KIqYmZlBNpvF+Pi4KnqrJ6nWqwHUfiBtVlXrQcC1xn717+Pwf9fr96uXZtuopEpl6fUCL8I+qG796U9/WvnQn0n/EEXxowA+etB9e2oJmxKLFGVks1lMTk6itbVVU7d9EiWReDyOO3fuYGhoiDWUPwyOq5eIlv4t9X8TgZP+3Uw67qKeybt6LwaNLokcFk8dYfMkkPX1ddy/fx9nzpyB2+3WfG+jSiK8C14URSwvLyMcDj+yX/d+UK8y+INC2ktZFEXWyU2qfxcKBZRKJVit1mPf3/2gnknHepKqwVAfejkODVs60u848VQRttJbXalUMD09DQCYmJh45Amm0+mY3a/WqPcQA+kFLx1ZNj4+fuiT/6RHq1r69927dzE3NwdRFFkPiZOsfzddIke3baBJ2McOpbdaEASkUilMTU2hp6cHHR0d+9qOXq9nfXRrjXrOdZSSajqdxu3bt9Hb24v29vaafc5JJ2/gof5ts9kwPDwMg8GARCLB9G+9Xg+fz3fi+p80XSJHt22AT9iPewdaKzzxhM0b3fXgwQOEw2GcP3/+QMmERtSwpf5ukn6UU9tr9TmNVuRiMBjg9/uZE6hYLDL3STKZ5Orfx7Wv9UCjkmq9JRHlvtdT3jkoTsZe1Am88vKpqSlYrVY888wzBz6hGtElQtLPvXv3UCwW9yX9nBQcdYRrMplk+ncul0M0GpXp30TgR+3/bkoiR7NtQH5cTlq7iMa4cg8IqQRCicWdnR3MzMw8lhuiEZOOoijixo0baG9vx6lTp+o6uaRRIsz9XIQ0ispms8n071gshqmpKVQqFXg8Hvh8PqZ/n6QLez9oVFKtVCpHGnScJNJ+4gib562en59HLBbD5cuXYbFYDr3tRpNEtre3kUwmcfbsWbS0tNR020o0EmEfBso2nJVKReb/pvxGIpGA0+lsiMZH9XaJ1JOwn4YKVx6eKMKuVqtYW1tDIBCAIAisb7XP58P4+Phjr5L1lERq6RKhRSqRSMDr9Z6YDPdhcFIXAb1er9K/X3nlFayvryOVSsFisbAEZq36n9Qa9dRmG9WHrTzfisXiiZjPSngiCFuaWJyfn0coFMLm5ibm5+dx6tSpmvWlbQRJpFAo4Pbt2/B4PLh8+TJu3bp1JAU5J8WHfVwwmUwwGo04deqUTP9eWFhALpc7Vv1bC00NWw3lXUc6na5Vd76aoOEJmyeBTE9Ps7agtbw46i2JPO62qQ3s8PAwgsEg2+5RuDeedEnkIODp3+l0GtFoVFP/Pg4cJfHVEvV0ifBaqzYJu0Yol8syb3Umk0Emk0FnZ2ddEmz1domUy+VDvVcURTx48ACbm5u4dOmSrIKvXpEvb5tNwuZDOkdQS/+W9j85Kv27nhF2Pft9HKVl8CSVpQMNStg8b/Xa2hqWl5dhs9nQ1dVVlxOx3oR9mG2Xy2VMTk7CYrGwNrBSHBVh16u/dL3uDo5TbuHp37FYTKV/e73euhZsNKpscZQRdjabbUbYjwNeefmdO3eg0+kwMTGB69ev1+1k0ev1J8olkkqlMDk5ib6+PrS1tdVsu48CEal020+7JPI4391kMqGlpQUtLS0y/XtxcRHZbBaFQgEbGxs117/ruXA1qj7elERqBN7orkQigampKfT19bEyayLVemS/6xmVHdQlQncU586d2/OWrSmJHA1q9d2V+rcoinj55ZeRz+dx584dlMtlWf/vxznPG2WyuRJHrWE3JZEDgje6a2lpCZubm6pOc/VMDNYT+42EK5UK7t69i0qlgvHx8X01rKoXYUsvyEZydNQL9ZKF9Ho9ent7Zfp3LBbD/fv3odPpDq1/H7c0dFgcZYR9mOEF9cSJJ2zl6K5isYipqSnY7XZMTEyofrh6yhb1xH4IO5vN4tatW+jo6Ni3Tl+vLoC8zzmqSP5x0Ui6uHJfD6p/77VPjTrZvJl0PIHg9a2meYNS25oSjUzYexEJjS0bGxvbs2e3EvUmUmXfhUZBo0SWj1oIePp3LBbD4uIicrkcHA4HI3BlAUijRtj1drcoJZHW1ta6fNZhcCIJm+etnpubQzKZfGR5eSMTNi8SrlaruHfvHtLp9KF85fVMOiofe5pxEnpWS/Xvjo4OiKLI5l9OT0+r9O9GjbDrCWX+qymJPALK0V25XA6Tk5MIBAL7mjdYz2pEQj0uTp50USgUcOvWLfj9fly6dOlQn3mUtr5GkS/qgXrt5+Oca4IgcP3fpH9ns1msrq4iFAo1TP8ToL7BQaVSkd2JNCURDfAkkI2NDSwsLOD06dPwer372k69I2xewq0WUEbC0WgUd+/eVU1uPygambAbLWo/7gj7UVDq39evX4fNZpPp35TAfJT+vRfqOSuy3mhq2PuA0ltdrVZx9+5dlEolTExMwGg07ntb9XaJELHWOhqh7YqiiKWlJWxvbz92d0GgPknHpq1PjZMgiRwGLS0tTD6R6t/ZbBZOp1NT/37UPtez5L2eUFZoHmZiej1xrITN81ZTMUhXVxc6OzsPfLLWO8Kul8+bFpobN27AZrNxqxYPu91GrXSsFxppYTmq4paD6t97nf/1jLDrvYA1bX0a4Hmrl5eXsba29lgjrOo5dxGoX3l6Op1GIpHA2bNna5qVbmRJBKgfudb6om/ECHuvO0We/k3zLx/l/65n+9OjnpieTqdPVHviYyFspbe6XC5jamoKJpMJExMTj/WD1DvCrjVhi6KI1dVVrKyswGaz1dxCVO9J71I8zRp2IxL2QbYtHVAMPPR/h8NhzM7OyvRvAA3Zo4S239SwvwNeYpFagg4MDNSErI5CEqkVYVcqFUxPTwMAJiYmcPXq1ZpsV4pGbv7UxMn1Skv93wBk/U/S6TREUUQ4HIbP56vpAIB6R9jlclm2/Vwud2ImpgNHSNjkrb558ybOnz8PAFhYWEAkElGVlz8O6m3rq1VSM5PJ4Pbt20yrrxcaXRJpFDRihF1LWK1WdHR0oKOjA8lkEvfv30ehUGD6t9vtZv2/T3L/E2WELYrisfUr5+FICFsqgVD3scnJSbjd7pol1wiNIIlsbGxgcXERY2NjcLlcNdozPo4q6QjUr+S7EXASfdiPQj2lFovFIut/wtO/vV4vXC7Xga7/ekfYUofLSTz3jlQSoSb9r776KkZGRhAIBOryGUfhEjkMqtUqZmdnkcvlMD4+fiC74mFxVLa+ejU+qgcaJZEJNE6ELYXSGsfTv+PxODY2NjA3Nwez2cyeP2n9T07a8T8SwqYLfHZ2FsViEd/1Xd9Vt8GWJzXCzufzuHXrFkKhEEZHR4/sJGhKInw0kkukUSoQCfvpfxIKhRAKhQA81L+XlpaQyWRk8y+VPFHPSTa077z/Pyk4EsIulUq4evUqWlpaYLVa6zqE9CQS9s7ODmZmZmo6EHi/OKpeIvR4E7VFI1YNHjQKlurf5P8mM4JS/66nZVCJQqEgG7d3EnAkhG00GjE2NgaHw4Ht7e26DRgAjoaw97t9URSxuLiIaDSKK1eu1O2uYi80+gCDkxjl8PC0Jx2leBydWer/7unpUenfpVIJFosFHo/nwPr3o6A81idt2gxwhJIIeRn1ej3K5XLdCLuecxeB/btQisUiJicn4XA4cPny5WO7ra1nQUs2m0Umk4HH46nL92skomq0pGM9F8JayjhK/Xt5eRnZbFalf3u9Xtjt9sc6Vid9PBhwhElHIg6DwVD35kz1xH4KUWh02dDQENPp9otaX6D1kkTi8Ti2trbgdDoxPz8Pi8WCUqmEbDZ7onyrR4lGirDrXUFZT2eL2+1mM0xJ/75//z4rciGCP+gd7UkvSweOodKRIuxGhV6vRz6f5z4niiJWVlawvr5+KG85WfBqebLXOsIWRRGxWAyVSgVXrlxh0VQ2m8X169cxPz+PfD4Pt9sNv9//2L7beqDRJs400naBXcKu12+ubH+q1L/T6bSs/8lB/N+8Tn1PbYRNaNQBAwStiLVcLuPOnTvQ6/UYHx8/lIZHFrxaygu1JOxyuYzbt29DFEX09/fDaDSiWCwCAGw2G0wmE86dO4dqtYpEIoGdnR3mu/X7/fD5fHA4HAciikay4DUSsdZ7zFa98jWP6n/idDrhdDpl+jf1/xYEgblPePp3UxKRQCqJNHKEzSPsdDqN27dvo6enBx0dHTXd9uOiVtuk79jX14dsNvvIz6TCCGA32x6NRrG8vMya6dBt616OoaaG3Zh2waMc4bUXlPp3qVRCLBbT1L9Pei9s4AmOsOt10ij3PxwOY2lp6bE6DBKO0oJ3EGxtbWF+fp5VZi4uLh5om2azGW1tbWhra5O17ZyamkK1WmVRj9vtbjjPMaHRpIt66sz1jN4fZ9tGo1Hl/6boO5PJwGQyQafTIZ/Pw2KxHIqwf/InfxIvvPACQqEQpqamVM8Luwf9IwDeDCAL4MdFUby+3+0fOWHXO+kI1K9nNfCQVKvVKmZmZlAoFDAxMVGTzzpphE22xFgshitXrrBo+HG2qWzbWS6XEYvFsLm5iXv37sFisTD55HGHNxwlGi3CblTCrmVputVqhdVqRXt7O0RRxPLyMqLRKO7cuYNf+IVfQGtrK/r6+pBIJPY9+PrHf/zH8b73vQ/vfve7tV7ybwAMfeffMwD+5Dv/3ReOLJyhk+Moko71bACl0+lQLBZx7do12Gw2XLhwoWYLQ70kkcOQSblcxs2bN1EqlXDp0iWZdFFLXdxgMCAYDGJ0dBTj4+MYHBxEtVrF3Nwcrl27hnw+j0gkUtNFvpF08UaUROpZ3FKvxUAQBJhMJgQCAVy+fBlf+cpXMDAwgLW1Nfybf/Nv8PrXvx4vvPDCI7fzhje84VHFcT8I4JPiLv4FgEcQhLb97uexSCJaLotafka9ongy8V++fHnfcyb3i3oVuRx0EaBOgj09PWhvb+e+ph6kJ5160tXVhUqlgqtXryIej2NpaQkGgwE+nw9+v/+xPbe1RqNJIo1q66tn8ydp2bvdbofP58Ob3vQmvO1tb0M0Gq0Vb3UAWJH8vfqdx8L7efOxSCJHEWHXmrBFUcT8/Dyi0SjcbnfNyRo4GZLI9vY25ubmcPbsWc1OgkdFlHq9HgaDAYODgwAeJi9Jc3Q6nUw+OWgjrZNE9nuhEV0ijbxt6Z2kdNpMDVtK8H7MfV+gR+oSAY4m6Vjrjn3FYhG3b9+G2+3GhQsXcPv27ZptW4rjdIlIy+jHx8cf6d44jpJxXvJyZ2cHq6urALCnZaveaDTpot6SSD017Hptu1wuy3qH1MklsgqgS/J3J4D1/b75iU461gLUhGZ4eBjBYBCVSqWu+vhxRNjlchmTk5OwWCz7KqOXbvO4IlVp8rKvr49Ztmhklc1mY/LJUSQv67WA1asIpVGTjkepvdepcOZ5AO8TBOEz2E02JkRR3JccAjyhlY61IGxRFPHgwQNsbGzg0qVLbOWtZ7/t4yDsbDaLW7du7alX87ZZz34th4HUskV9TqLRKGZmZlAqleDxeFjFW73QSFpzo8oWQP2CBF5p+kGtuu985zvx9a9/HZFIBJ2dnfid3/kdlEolvPe9732PKIrPAfgidi1989i19f3EQbbfjLA5UA4Flp589Ywo6zUdRgukV4+Nje3btkTbPMld9ARBgN1uh91uZ8nLeDzOZg5ms1msrKzA5/PVLHnZaMnBeicdG9FPX4vCmU9/+tPcx9/znvc8BwDi7oXzc4fdx2PRsE+yrS+VSmFychK9vb37jjhrhaOKXEVRxNLSEiKRyKHavp50wlZCr9fD7/fD7/cDAF5++WUYDAaWvHS5XPD7/fB6vUcyBeggaEbYRwdeafpTX+lY7/anwOEj7LW1NTx48ADnzp07lh/qKI4N3T2YzWZcuXLlUBeWlLCVhNII/Zt1Oh3a29vR3t6OarXKkpcrK7tuKypndrlc+/4ujRYJ1/t3OunnAA9Kws7n80/nAAMpjuKH1Ov1rCnRflCpVDAzM4NyuVyzqsXDoN6ETXp1d3f3Y/U80Uo6NuJFqtPp4Ha7mSRUKpUQjUaxvr6OmZkZ5sf1+/173ok0YqVjo0XB9b6r43m8T9oxOnJJ5ChwkMRgNpvF7du30d7ejq6urmMlnXoSdiQSwezs7IH16r2gPFZE5I1I3ASj0YiWlha0tLRAFEVkMhlZu06PxwO/3w+32626uBspEm7E36nei4x0+ydV8jtZjYprhP1KIltbW7h37x7OnDlzYPdAPU74/QxHOChEUUShUMDi4mLNxpTtpWGf1BP9MKBJSQ6HA93d3Sx5GYlEsLCwAKPRyAp36mWTa0bYD3EU+8wLQk4Sjo2w67nCP4qwq9Uq5ufnkUqlHlkkwkO9Islau0QqlQrriHdYvZqHp3UIrzJ5SdNOFhcXkUwmYTabYbFY4PP5aiarNSPsh6hnWTpw8iemA8ckidSzm550+zwUCgXcvn0bPp8Ply5dOtRJS9JFrVf7WrpESK/u6upCJpM5kqEIR+UeyefzmJubwze/+U3cu3cPsVgM+Xwe5XIZoiiy/1qtVvj9fnR3d2N4eBivf/3rEQwGa7aP0mkn6+vrSKfTSKfTWF5ehiAITPt2Op2HJsdmhP0QR7nPuVzuRI66O5YIm/qJ1JOwecQXjUZx9+5djIyMIBAIPNb267Hg1ErD3tnZwczMDJN6lpeXa7B3D3GUksjq6iq+9rWv4ebNm1hZWUEmk0E6nUapVGKfZbVakUqlUCgU2PsomVgoFKDX62XTfEwmE7q7uzE2Nobv+q7vwvd///fXxA1gs9nQ2dmJ/v5+FItFRKNRrK6uIpVKwW63M/nkILJUo0XY9Vyw6xlhK/f7JE6bAY6YsOlCr3c/EeX2RVHE/fv3sbW1hcuXLz92qXK9koOPu12qztzc3KyZXs1DPSWRcrmMz33uc/jqV7+K+fl5RCIRRrSxWExGyhaLBdlsFolEAgaDAVarFQaDgQUE6XRa5RYym83Q6/UIh8NYXV3Fl7/8Zfzu7/4uWlpaMDIygne96124cuXKY38Pk8mE1tZWtLa2cmcNUt+TR02cb7QIu1H93UdUlv7YOLYI+6gIu1QqYWpqChaLBePj4zX5wetVnv44hF2pVGQzJZXfs5YXfj0kkZdeegl/8Rd/gaWlJeRyOezs7ADYJViDwYBMJsPar1qtVlQqFezs7LDPK5fLqFarKBQK7L3ALnG63W6Wp0gmk4hGowAAp9MJg8GARCKBcDiMe/fu4R/+4R9gs9nw+te/Hj//8z+P3t7efe3/XsdXOWuwXC6z5OX8/DwbVeX3+2G1Wo/E195oCwFwdK1VgSZhy1Dvakci1GQyiampKfT396O1tbVm26/XgITDJh1zuRxu3bqFjo4OdHV1qZ6vdZK0VpJIPB7Hn/3Zn+H5559HOByGy+VCpVJhjZ10Oh22trZkx9rr9WJzc5N9jsVigcFggNvtZj1EpCiVSqhWq+w9wWAQBoMB6XQaqVQKwO5xDwQCMBqNbAL8l770JfzDP/wDRkdH8eY3vxnvfOc790xOH+T4GgwGBAIBJsvRAiWdOE+zBhstEm7UCFspcZ7EeY7AEyyJ5HI53LlzB+fPn6/5SnmSJBHS5U+fPq3Zo7teSVIl9ktYN2/exEc/+lHmYMnlctDpdFhff9hl0uFwYGtri/0tiiI8Hg+2t7dl26pUKnC5XKzFKrDrpXY6nTCZTKwQhrC5uQlgN3J3OBzQ6XSyqJymuhcKBQiCgNnZWdy5cwcf+chHMDExgf/yX/4L68992O+vhNVqRWdnJzo7O9nE+Wg0igcPHiCXy2FtbQ0tLS2PlbxUol5d7xqZsKXbbmrY0g+toyRSqVQwPT2NSqWCiYmJutxC1YuwD+ISkerVj9Lla+3eOKwk8q1vfQt/9Ed/hKWlJeTzeaRSKeh0OlgsFiSTSRiNRka2lUoFgUCAbVOn00Gn06GlpQXpdBrZbBYmkwkmk4mRMKFUKsFkMmFnZwfVahUdHR0ol8uy17W0tCAajaJSqSAYDCIWi6FYLCKdTgMA/H4/qtUqIpEIBEGAx+PBP//zP+PVV1/F6dOn8bM/+7N45pmHo/hqdQejnDh/8+ZNWCwWrKyssN4WJJ8c1I4qRb18440qiSg17Gw224ywCfWSRGi0VWdnJ5LJZN1+3HrdIex3ISC9WqfT7UuXPyrCBviSyNTUFD784Q9jfn4elUoF0WgUgiAgEAiwQQRGoxHlchmBQEDlamlra1M9ZrPZYLFYoNPp4HQ6kUqlkEwm2evD4Ycthin6ttlscLvdqFarsmh+fX0dRqMRPp8PiUQClUqFtdbs7OxEKpVCOp2GwWCAy+XC9evX8Uu/9EsYGhrC+973Ply+fPlwB3IfEAQBoVAIXV1dLHm5s7Pz2BPnm5KIHOVy+cQ3fgKOQRIB6jMmbHNzEwsLCzhz5gzcbjdr5FMPHKckQnp1e3s7uru7a7bdg2C/LpGdnR38/u//Pr797W8jGo3C5/Mhk8nAZrOhWCwikUiwiBbYbbqkJOZgMKh6zGg0wmq1IhKJyB53uVzw+XyybUrhcDiQTCZZ9B6Px9l5WCqVsL29DZ/PxxaNWCyGWCwGm80Gh8OBdDqNjY0N9j2uXr2KX/mVX0F/fz/e9a53YXR0dP8HcZ+QRu7S5KV04jxV7FLRjs/ne6SHuFGTjo9zV7EXeC6Rp56wCbUcxEsTtrPZLMbHx4+kPeZxJR33o1fzcNSSSLVaxZ/8yZ/gy1/+MlZXV+F0OuH1erG2tgZg93tS4o/g8/mwsbEh214oFGLvkX6Gx+OR6dsEp9OJBw8eAAA8Hg9LUGazWXR1dWFra4sR9NbWFhs5trm5yTr4hcNhJJNJtLe3I5PJIJPJIJvNIpvNwuPxMH81VT1SwczMzAxe85rX4AMf+EBNSWUvYqWJ88FgEADY0IZ79+6hUCjA7XbD7/fD4/GoagaaEbYcvF7Yj1OrUS8cG2HXQlLI5/O4ffs2AoEARkZGVCd2vaKIo7b1iaKI5eVlhMPhQ/nIj1ISmZubw+/93u8hmUyy4pZCocCShaIoMgcI3cbrdDpEo1H4/X7mm3Y6nchkMmhra4PNZpP1WSFSlqK7u1t2V5VIJJBIJKDX6zEwMCCLpgmFQgFra2toa2uDy+XC0tISe259fR0mkwmBQIBF8vF4HB6PB6FQCKVSCQaDgVkDDQYDrl+/jh/+4R/Gz/zMz+Atb3nLYxzhhzjIOUwT56XJy52dHSwtLbEFxufzweFwNGyEXU9bn1LDfuqTjrWURKiab3R0lPV2kILIr9GTjpREBYDx8fFDfZ967K+SsCuVCj772c/iX/7lX5iNrlqtwm63I5VKIRAIQKfTwWg04v79++x9VqsVpVJJZsczm81IJpMqaaOjowMrKyswmUyMeEjiWF9f5y4ira2tWF1dhSiK6OjoQDKZZHY+ep480V1dXdje3mbFOcViERsbG2zfzWYzEokENjY2EAqFmPvEYDDA4XAgn8/D4XDgj//4j/HCCy/g/e9//2PLJIclVmXykibOLy8vs0rRSCSCUChU0zuCRo6wpXch0onpJwnH0kzgcSJsURSxsLCAhYUFXL58mUvWj/sZj8JRadj5fB6vvPIKXC4XxsbGDr341DrCVl40k5OT+Omf/mlcu3YNhUIBGxsbEAQBfr+ffSeKdqVkLQgCTCaTyjsdCARUZO3xeFgisVwuY2tri437MhgM6O7uZtKAdDvRaBTVahWiKCIcDiOXy6Gvrw82mw1DQ0OIRqMseFhZWYFOp5N52ckeWCgUZAOYt7a2YLVaWbKUom9KCi4tLeE//+f/jN/7vd97LPmvVpEwyT9nzpzBxMQEzGYzCoUCpqam8Morr2BhYQGxWOyxz+snJcJuatjSDz2kra9YLGJychIOh+OR3efqSdi11OClkBIrTWs/deoUfD7fY223HrMiRVGEKIr4n//zf+L//b//h1gsBoPBgGq1yvTfRCKBXC4HYPd2XemhbmlpUSUUu7q6ZKQO7J4vPGeRIAhwu90y7buzs5N9VqVSUbWrrVarePDgAQYGBrjfK5vNYnl5GR0dHTAYDIjFYsyjXSgU0Nvbi5WVFQiCgEQiAbPZzFwqGxsb8Hg8zA7odrvxla98BTMzM3jPe96DZ599dv8H+Duoh3QhCAJ0Oh16e3vZcY3FYtjc3GTJS5JPDtpjpZEj7KYkosDjzHVMJBKYmprC4OAgWlpaHvn6Royw6fgsLy9jfX1dNq39cbdba5dIJBLB+973Pty/f5+RUzabZRY4k8nEyJreUygUWPMj0uGHhoaYPq3T6VAul9Hd3Y1SqcSqEXt7ezE3N6faj/7+fiwuLsoeowRiX18fRFFEPp9XkXZ3dzeWl5chiiJaW1uRz+cRi8XY89QgKp1OM0cL8HAWZmtrKxKJBMrlMgqFApNbqEugKIoIhUKswVk2m8WHP/xh/NM//RN++Zd/+cBNw+pdmi5NXkonzs/NzaFQKLCJ816v95ER7pMUYZ9ESeTER9iiKGJlZQVra2u4ePHivlse1svJAdSPsKnqLx6PH1qv5qHWksjXv/51fOpTn0I6nUY+n0cwGMTGxgbTfl0uF8LhMNxuN+x2O3Q6HVKpFMxmMzKZDHK5HKxWq4wkgV2niDIKHxgYQKlUwtjYGBKJBDY3N1EsFtHW1sZNPgJyIrfZbOjq6sKDBw9QqVTQ1dUlK23f2Nhgksry8jIMBgM6OjqY/GIwGFS+boqkPR4PbDYb07W7u7tZtF8oFOD1ehGLxWC1WmGz2fDtb38b73//+/He974Xp06dqsEvcXhoRe6CoJ44T5WXS0tLMBgMrHCHN3G+Wq3WrQvnUbtEmpLId7Bfl0W5XMb09DR0Ot2BqxbrLYnUetv5fB63bt2CXq/H2bNnaxpV1YqwRVHEc889h6985SsQRRG5XA75fB75fJ6RNSXofD4fq2RUOjS6urpw79492bb7+vowPz8ve0yv17MudwSj0Yienh7WUjWTycje09XVJYu6s9ksHjx4wPzV4XBY9duVy2WsrKygv78fFotF9v5yuYxwOIyenh4Wlet0Ong8HuRyOZRKJRaBk5Syvb2NUqmEnZ0d5tkulUrw+/1YXFzEH/7hH+L7vu/78La3ve0wP0PNsJ9zTK/XM283AFbGTxPnnU4nk0+MRuMTE2E3C2ck2M+Jkk6nMTk5ia6uLnR2dh74M+plvaNt1zLCJr16dHQUs7OzdZlk87j7m8lk8MEPfhA3btyAzWbD2toa6+8Ri8XQ2dmJXC7HJBGC0hHk9XpVMobT6ZT1AiH09fWppJByuQybzYbZ2Vno9XoMDQ2hXC7j/v37zJHCQzKZhN1uR0tLC4xGoyq6J2ve1tYW2tvbZZWQwK6VsL29HcDuokF3AsVikUXSALC2toZgMMjcK5FIBJ2dndjZ2cH29jb8fj/W1tbw4osv4vr16/jlX/7lx85RHCXMZjObOC+KIut+SL8fDW6oB3Ef5WJQLBbr1p74cXCkLpH9ElE4HMbt27cxNjZ2KLIGGkfDXllZwezsLC5duqTpeHlcPG6EvbS0hN/4jd/A3bt34XK5GFm73W4IgsCqBEn3JbS3t6uKYYxGo+p38fv9qiRuIBCQ+aIJwWAQCwsLAHYvMtL7yQGhlQweGhrC5uYmlpeXUSwWMTo6KjsfBwYG2ICEjY0N9Pf3q7ZhMBhgNBplPbmLxSJisRja2trYY9vb27Db7dDr9RBFEVtbW6w7H7WI3drawvr6On7lV34Fr776KnefTzoo6dvX14fLly/j3LlzMBgMiMfjuHbtGiYnJ7G2tlazBH09x5o1wsR04IQN4a1Wq5idnUU+n3/sqsWTLolUq1XcvXsXlUqlpno1D49D2P/8z/+Mv/zLv0Q2m2V+Z0o+RaNRZslTlpVbrVZWpUil3R6PB9lslnmTRVGE0WhEJBKBx+NBMplkC6HT6dSsZlSWpAO7kfvt27fhcrnQ1taGmZkZlmwcHBxkJA/skuzCwgIGBgZYRC11plBysaenB2trayiXyxgcHEQ4HIYoiqxyk6LqSqWCtbU1dHZ2sshcp9Ohp6cHuVwOmUwG8XhcZlek4hur1Yo//dM/xRve8Aa8613varg5i1JQy4BAIMB+a6qXoDsRGtrwOBbVekDare+kznMEjpmwpStmLpfD7du3EQqFVNHPYXCSI+xCoYCbN2+ipaUFPT09db9ID7u/n/vc5/DSSy+xSS9msxkejweJRAI2m42RtV6vZ42XAoEAq2BMp9OIx+MoFArI5/PY2dlBIpGQfYa0AMVms8Hr9aK1tZX5pVdXVxnxjoyMcN0iFouFWe9SqRRSqRTTXVdXV1XyB+HBgwcYGxvTdCwtLy+jra0NgUBApq+nUilGTLR4UHJ8cHAQoihiZ2cHa2tr8Pv9TBaKRCKMtLe2ttDa2oqdnR24XC58+9vfxvr6On72Z3/2RGqn+wXJFtLkpXTiPA0tpmZbPp+Pm7w8Digj6pOwT0oci60PkM9FjEQimJ2dPXCPjL2g1+tVdq5a4XEIOx6P486dO5oVmvWYyH7QCFsURXz84x/HrVu3EI1GmfxBEabf72dyhdFoRHt7O/styb9K1YWE3t5eVrFJGBoawt27d9nfNEVGEATWCtVqtWJ4eBhGo5EtCkoMDw9jampK9lg8Hkc8HseVK1ewsbHB1bYDgQBWV1eRy+Vw+vRpzM7OqhZ5n8+HnZ0dhEIhWcSfy+VQqVSYg8RkMqG/vx9ra2tM6wbAEo+iKDJNOxQKIZlMsirKZDKJcrmM2dlZfOhDH8KP/uiPYmRkZM/f6KRCS2dWTpzP5/PMeZLNZuFyueD3++H1eo+kH9BeqFfr2VrgyEUapRd7fn4eS0tLuHLlSs3ImrZfL1vfYaP31dVV3L17FxcvXtTUq+thGTxI4Uy5XMaHP/xh3LhxA1tbW6yJEpV+G41GbG5uor29HX19ffD7/VheXsby8jKLuCuViuzzHA6HTJIAdvVgpb4NAKdPn5b1rS6VSiwi29zcxOnTp3Hu3DmWEGpvb5eRvhSnTp3C7du3EYlEcP78eVkSiVqlkld8bm4O3d3dMu/t6Ogo7t+/j3g8jnQ6rcqnFItFbG9vY3R0FMFgkC1SNHCAEI1GWT8UYLdKkqoyI5EIzGYzstksa/v653/+5/ja176m9ROdaOw3MWixWNDe3o6zZ89ifHwc7e3tSKfTuH37Nl599VUsLS0hkUgcizxxUotmgGOURHQ6HW7dugWfz4crV67UfEU7SZJItVplmuqj7IlU5FJLTXu/hTOZTAYf+chHsLi4yG5pM5kMi05NJhP8fj8SiQTi8TiA3ZJx6XHu7OxU2fNCoRBmZmZkjw0NDWFyclL2mMlk4rbF9Xg8WFhYYNoysKtlj42NoVKpcInfYrEwqYWOv9/vh9lsxtLSEouopVhZWYHX64XD4YDJZJL1J8nlctje3mZ+bQLp4IFAQCb3rK+vs6pIYJeYg8EgUqkUk0/a2tpQKpVQKpVgt9tRKBRgNBqxs7ODF198EcvLyzh9+rTquz0u6kmCh3FyUCMwt9sNAGxK0Pr6OmZmZmC325nzpF6QHpOTOm0GOKZeIvF4HLFYDK2trRgaGmqojnrAwbStQqGAV155BVarFefOnXskEdcjwt6PJLKzs4M/+IM/wNzcHKxWKxKJBJLJJHtvd3c3fD4fVlZWmDQRCoVkdjydTicbgAvsSgpKArdYLNyil6GhIbYQSNHd3a1yGmQyGZTLZSwtLeHixYsIhUKy50+fPq3Srnd2drCxsYHXvva1XAcKsGux1Ov1CAQCKm27WCwiHA6zwbynTp3C6uoq8vk8Njc3ZXNDaSKQVB7Z3t5GW1sbBgcH0dnZiXw+D5/PB0EQkM/nEQgE2GAGQRBw8+ZNfPnLX665tHfSCFsJo9GIlpYWnDp1ChMTE+jt7UWxWEShUMC1a9dw7949Ni2oVvssvaabEbYEDx48wPr6OkKhEFwuV90+p95zI/cDKqcfGRnZd2/dekkie20zHA7jf/2v/4W1tTW43W6sr6+jWq2y5kb5fJ7duhMEQVDpwr29vZiZmYHP54PT6YTFYoHD4VCRqc1mw+rqKiuqoceUPUSA3X4jSu2bvlM2m0W5XMbMzAz0ej0mJiZw79492O12VURPIHdLT08PYrGYynGi1+vhcrkwPz+P06dPqz67XC5jdXUVzzzzjEw3p+53LS0tTNIhiaOlpQVms5mNLXO5XOzYUfIxHo+z/0+lUqxZfzqdxoc+9CH83M/9XM0kw3rNcwRq75UWBIHd8cTjcZw9e1Y2cZ7u+mhow2GCP+Ud7UktmgGOIcK2WCysW1g9J6cfN2Gvra1henoaFy9ePFAj9Ho0atpLEllZWcHHPvYxFlnG43HWG6NUKmFrawulUgktLS2ysvH29nZEo1F0dXVhbGwMFy5cQLlchtvtZre0xWIRU1NTWFxcZP/C4TDu3buHSCTCRoKdOnUKzzzzDEZGRlRT34PBIPd3PHfunKy4pVKpYHJyEoIgcHujE86ePYtwOMyqFoeHh2XPX7x4ESsrK8xiOjY2xv3s2dlZ1TDeYrHI7HsEp9MJt9vNpA5g131Cejj5tCl42djYgMvlYt0B8/k8MpkM/vRP/1Ql4RwW9fQz13swAiUvh4eHMTExgZGREeh0OiwuLuLq1auYmZmRDarYD3hVjs0I+ztobW1lK1q9J6cfB2HThV4oFDA+Pn7gvgpHKYk8ePAAH//4x1EsFplVzWq1wmKxoFwuM8+w0Whk0ofD4UBbWxtrCkRujL6+Plm/DWCXrJSfOzAwgJs3b7K/KXrf2dlhn9fV1YX29nYIgqDSuZX7o0RPTw+uXbuGzs5OGI1GmQ2wtbVV9jcN87148SJu3LiBoaEhVUR99+5dnDt3Drdv3wawK7XMz88zyWNgYECWUM3lcjAajfB6vWhra8POzg7C4TBsNhvLCQC7xUjd3d2sVD6RSMButyObzWJzcxMtLS1IJpNwOBzIZDKoVqv4zGc+g+/+7u/GG9/4Ru533y8asaOeVlm61WpFR0cHOjo6UK1WkUwmsbOzg+XlZVZ16ff795w43yid+oBj0rCB+sx1lKKeLhEtFItFvPrqqzCbzTh//vyhmuAclUtEStaRSARWqxV6vZ4lxaSJNa/Xi/b2dpZvoOQg9dAwm82qZGEoFFJ5pi0Wi8otAuxq19IKyVgshjt37rCqwImJCZw6dYpdcOfPn5f1F5F+T6pCDIfDWFlZwfj4OOt4GAwGue1Wp6enMT4+jmKxyF3Y7ty5g7Nnz6Knp4dZG4HdC31lZQU9PT2y12cyGfT39yORSLBjlM1mYTQaZcMC1tbWWFl6Pp9HuVyGyWRCtVrF9vY2rFYrG/6bzWaRyWTwta99DX/7t3/7WHdh9ZREgPr4l/ezEFCPl4GBAVy5cgVnz56F1WrF6uoqrl69iqmpKYTDYVmlKtA4nfqAY4iwpba+ekfY9VwQAPmtJenVw8PDqkb6B0GtW6Hytrm6uoq/+Iu/gCiKiEQi8Hq9sh4gNNrL5/MhGAxiaWmJJf3MZrMqYdjT08MiUAJvEPLw8DCuX78ue4xcG0q0trZienqaESqwW7EYDAa5WjcAXLhwQRaRi6KIyclJhEIh9PT04OrVq5rHiAo5qB+KEuFwGCMjI6rvWS6Xsbm5ic7OTqyursJisWBgYADz8/NobW1FsVhk5yFNtdnY2GC+bOpxQv3De3t72cxLo9EIl8vFqiuTySQMBgNu3ryJdDqNd7zjHYeaFnOSfcZaOIxzymQyobW1Fa2trWzifDQaxfT0NMrlMqu8BKAi7GaErcBhhxjsF/VqgUqQygzr6+tMr34csgbqL4ncv38fn/rUp1jXNeqBQWRN3faGh4dZv2epQ6O1tVXWIc9kMqkINxAIqLzRytFghDNnzqiqH+lzlMchHA7DYDBAEAQ8++yzssSQ0Wjk2vsAsMni4+Pj3ChteHgY09PTWFpaYouUFDqdDp2dnbhz5w7OnDmjIjvSrjs7O9Hf38+09Y2NDXR0dMheu7KyItPpc7kcfD4f+vv7mQxiMpmQSqUQjUZZN8BEIoFAIACz2QybzYaFhQX8+Z//uWazq71QT0mkXg4Uaen4YUAT53t6enDx4kVcvHgRHo8HkUgEMzMz2NnZYX19UqnUgZOOX/rSlzAyMoLBwUF88IMf5H3+dwuCkBAE4eZ3/v3/DvM9jo2w6x0B1yN5JwXt/927d7G5uYnx8fF99+reC/VMOi4sLOCv//qvmSWK9FFyNfh8Puh0OmQyGYTDYdVgWl503d/fryKNlpYW1WI8ODiokjH0ej3X3hcMBnHnzh3V4xaLBffv30cqlcLt27fhcDjwute9DhaLBRcvXlT10iZcuHABGxsbmJycxKlTp2RuC5PJxGQLYJdk9Xq9jGivXLnCFpuZmRluIlIURbS3t6vGnS0tLamm2ywuLqKnpwctLS1sQLDBYGByzdbWFttHyi2Ioojt7W0YjUbWGiCdTuOTn/yk5vfWQj2TjvXC4xK2EgaDAYFAAMPDwxgcHEQgEEClUsEv/dIv4aMf/Sj+5m/+Bl/4whf2tSBWKhX83M/9HF566SVMT0/j05/+NNfZBOCfRVG88J1//99h9vvYKh3rHWEfBW7cuAGTyYQLFy7UrGl7vTTsjY0NfO5zn8PW1ha72FOpFLPv9fX1weFwyBKH1G2O0NHRwaJravRvMpkwMTGB17zmNXjmmWfw7LPPwmg0Ynx8nD3+7LPPIhgM4tlnn8WFCxfQ0dHBRlTxyKa7u5u7mI+Njcl82ul0Grdu3UJ3d7fmJHmn0ymL7BcWFmC1WjE0NARg1xUirawEwHqn9Pb2Ynh4WOXOoEQkwWAwYHh4GAsLC7Db7ap9uXfvnoy0LRYLjEYja00L7N49SDv+bW5uwuPxAABrjgXskrnD4UA8Hke1WkUqlcJnP/tZzSQsD/WMsOvpPqlnL2yLxYLe3l688MILeNvb3oY3velNePnll/G93/u9+PznP7/n+69evYrBwUH09/fDZDLhHe94B77whS/UZV+PrdLxuG13j4NkMolkMonR0dFDt3/VQj0IOxwO45VXXmF9LdbW1lCtVhEIBFCtVlEoFBCLxWTRBDXbJ7hcLkbEmUyGdblTarpnzpxRJRuHh4dVrwsGg2hra2N9NRYWFlh2nhed6PV61fxHQnt7O27duoVz584hFovJtPMzZ87gxo0bstdHo1Gk02m87nWv40bywG5kazQaZdNnpJienmbukYsXL7LioI2NDfT29uL+/fuy33FpaQmdnZ0QBAGCILAhvg6Hg8lRZPejiTixWEx2F9TS0sKmv3i9XkSjUQSDQSQSCbz00kt44xvfqLIp8tCMsNXbli4G+XwezzzzDP71v/7XAB4t86ytrclkrs7OTrz88su8l75WEIRbANYB/BdRFPkn3x54YiWRemF9fR1TU1NsRFStUeuk49raGr72ta8hmUzC6XQinU4zsibiLZfLcLlcMmkAANra2nDx4kWMjIywsVv37t3D+vo6m1wuhdFoVA0nAKDKygO71r3JyUlMT09jdXUVVqsVly9fxjPPPMOVls6fP89tqyq1+C0uLiKdTuP1r389SyJq9RkpFovQ6XS4cOGCJnmNjIxgeXmZReNKTE9P441vfKOqkvP+/fuq5k3lchkejwdGo5ERdC6Xg8lkkt2dbW5uMk92sViUjdyKRCJwOByoVCrIZDIwmUysD3k0GsXXvva1PROrhHpF2PWuoDzKeY7SpOOjFjfe9+a85zqAHlEUzwP4HwD+7jD7+sRLIrU6iagfxebmJiv8qUdSs5YR9tbWFv7u7/4OuVyORVWpVArd3d1sziIA2O12Fr3a7XacOnUKer0euVwOS0tLiEQiqlvu/v5+VZJvcHBQ1VGP11sEgEpCqlarWF5exuLiIkRRxKVLl3DlyhWYTCYIgsB6aytx9uxZWTl8qVTCzZs3MTw8jIsXL2o2zx8ZGcH09DQmJydx6dIllduCEpH5fB7b29vcKeunTp3C3NwcN6qdnZ2VzW2kQh8lQdOdinT/qfMhsNvGwe12s4o+h8OBjo4OuFwuOJ1OuFwuJBIJpm1fv34dX/3qV/c8h+oVYTeivxt4/HmOnZ2dsru61dVV2W8KAKIoJkVRTH/n/78IwCgIwv4r6r6DJzrCrlUCj/zVRqOR6dX1cqHUarvxeBx/+7d/i3w+z0i0UCjA7XYjnU7LbvNtNhtaWlowOjoKvV6PQqEg05a7u7tVTg7pRHQCLwLm+VlbWlq4peN9fX2sQ9vi4iLm5+fR0tKC7/3e7+V+R51Op9KfCel0GgsLC3jta1/LJSfpBXr37l2MjIywqIqcKHTu0FR16iEC7CZoqTR+bW0N3d3dqs+4d+8e+vv7cf78eeYc2draUlVzLi4uyrYdj8cRCoVgt9vR29sLvV7Peo9Eo1GUy2XkcjkkEglW8q7T6RAIBFAsFjE/P48XX3xRswdJvasR64GTPDF9fHwc9+7dw9LSEorFIj7zmc/gLW95i+w1giC0Ct85EQVBmMAu9+5wNrcnjpWw6x1h1+Izkskkrl27hp6eHgwMDLCLv17NpWqxyGQyGfzt3/4tSqUSS05RojGTybBhqcBudKDT6ZBIJLCysgKPx6Oy3ykTg+3t7SrpQ2pnI7hcLi4xky9WCV5GPpVKIR6PQxAEvO51r5NFLiMjI9ypNMBuRWUmk8GdO3dw+fJlWd+aS5cuqdwpCwsL6OjogM/nwzPPPKPSrbPZLGuxKggCent7ZQthOp1WtcytVqsIBoOqKH9paUk1guz+/fuspN3n88FsNqOnpwfxeBypVAobGxusm10sFmNyHP0/+cf1ej2TSl588UXuHUYzwpbjcSNsg8GAj370o/i+7/s+nDp1Cm9/+9tx5swZPPfcc3juuefoZf8ewNR3NOw/AvAO8RAX+rFJIkeR9HhcUg2Hw5iamsL58+dVDYzqVUlZi2k2f/d3f8d6UOj1erS1tbFEltfrxerqKtra2tDd3Q29Xi+TNiwWi4xMu7u7VVEsz5HB+z27u7tVurjFYuFOjaGCEt7j8/PzKJVKmJ6eRrFYxOtf/3oEAgHNCFK5UMzNzSEQCKC/v581f+JhdXUVPT09ms+n02lUKhV813d9l8p7nkwmWWk/4eLFi1hcXITBYFANdKVpNoRyuYxqtcrGp21vb2NtbY3Z+2hKPUk3Gxsb7Dkic7rrISdPOp3GSy+9pJKpmhH23tvOZrMH9mG/+c1vxtzcHBYWFvCbv/mbAID3vOc9eM973gMAEEXxo6IonhFF8bwoiq8RRfFbh9nXkzdlsoY4bIQtiiJmZ2cRDocxMTHB/fFOoiRSLpfx/PPPI5VKsaSaxWKRRaE0azCRSKBUKskiTbfbrdKblRGa0+nE5uYmenp6MDo6irNnz+LixYuwWq04f/48xsbGMDw8jPb2dq5lb3h4WOVVBqDZuVE5UbxSqeDOnTsYGhpCZ2cnd7L10NCQiswjkQiSySQuX768p2/Z7XZDr9fLBhAov386nWbRrhQbGxssP3D27FmWF+DJIOVyGfl8niVYu7q6YLFYZHdYlUqF9cgGHt6q0/ORSITJOJFIBBaLBclkEhaLhSWX4/E4/vEf/1G2CDUjbDmUDpSTOjEdaBK2CqRX6/V6XLx4UdNfXS9J57AuEVEU8cILL2BnZweZTAYGg4FFZJlMBmazmfmeibCU0bRSjuno6IDVasWVK1dw8eJFDA0NsURaJpNBJBJBOByGxWLB8vIyVldXEQ6HsbOzg46ODuTzeVZZ9uyzz+KZZ56B0WhUHVOPx8PtROdyubjROLB7/Kenp9HT04Pz58+zx51Op2av63K5jEQigUuXLnEv/qGhIczMzCASicBkMqlIW6/Xs/azwWCQe1EvLCzgNa95jepuYWFhgUXPBOoJf+bMGTasd21tTdabJJlMyqSWjY0NJguVy2UWHdIgBL1ej52dHTidTsTjcdaW9Fvf+pas7Wszwj6abdcax07Y9a5GPAipplIpvPLKK+jq6sLg4OCeUchJi7C/+tWvYmtrC+l0GhaLBZFIhJVrd3d3w2q1IhaLsePtdrtlWrXJZEIikcDIyAjOnz+P3t5eeDwehMNhLCws4P79+4hGo6r+IAaDgVutSMc9k8lgZWUFc3NzKJVKuH//PkKhEE6fPo1nnnkGHR0d6O3t5SagBwcHVZIKsKuh37t3D8CudLC8vIzXvOY18Hq9OH36NDchCuw6ShKJBO7du4ehoSHV7EApAe/s7KhI+8qVK+z708BdJUEFAgFsbGxwZzLOz8/LIm29Xg+bzQabzSa7DlZWVmQkrXQdrK6usjuPRCKhqooEdu2BdrsdOzs7rLXryy+/jKWlpWaErYCUsE/yxHTgGDVsoP4d9Q5C2FS6fO7cOc3bYSlOEmF/85vfxMbGBnK5HPx+P4ugnU4n62PtcDhkt8V2u515fDs6OjA6Ogqz2YxwOIylpSUUCgVVpNrT06PSQ3t6emSd9oDd7n68KJfIpFgsYmtrCwsLCygWizAajXj22Wdlmq5er9es3mtpaVFdWLOzsyxZx4PBYJBNoFlfX8fQ0BBzAwwODqoKc3Z2dmA2m1l/EWUydn5+XhbdGwwGtLS0IJvN4sGDB6qiqkqlwvpUmEwmDA8PY319nS1ihHK5DFEUZVGfNOlYrVaRy+XQ0tKC3t5eGI1GDA0NMV2/u7sbgUCASTs0DCEej+P27dtYWVlpRtgS8Pb7pBYWHUuErRzEWy/sZ0EQRRFzc3NYW1vD+Pj4vpMN9ZJEDuoSuXHjBu7fv49sNguLxcJuxTs6OrC9vc08ytKSbqfTiVwuh76+PqbJLi8vy3TfUCik+m14kStPj25paVEdd7vdzvVjDwwMYGlpCXNzcyiXy7h8+TIuXbqEU6dOqcaNAbv9uCm6VqKrqwtzc3OYmJhQdVs7d+6cyna4srKClpYW2UKhBJWFDwwMcAuAqOkXsNuzhGSHUqmEfD6vsoclEgm0t7djcHCQvbZSqaBYLMq84NTZj1AsFtng4KGhIdjtdjidTiQSCSQSCWxubsJsNrOBCCaTCdlsFtlsFqIoolQqscrWcDiMxcXFmp+/jRphAw85qZ4VlbXAse7ZcQ8xKJVKuH79OgRBwKVLl1S3yHvhJETYs7OzmJ6eRqVSQalUYid1R0cH0uk0I9zW1lYkEgkIgoCOjg4Eg0HE43Fsb2+jVCqx1xN4hSrBYFAVgQaDQZUcotPpuIN0/X7/IxdnGgqwvLwMv9+P17zmNSriHRoa4hKnIAgsgp6dnYXf72cNnPZyhmxubmJ0dHTPXjBEflIHiBR3797FpUuXVBF4IpFAa2urjAAMBgNMJpMqaRmLxVQR+eLiIpNCbDYbPB4Puru7sb29jVwuh3A4zO4GyWVC5w/10aY8RqVSYYu2wWBg8l8t50UeZWKwlpBG0we19B01jpWwj6LFqtb20+k0m0xymEHAx03YKysrbLGJxWKsIpBGr0mdELFYDENDQ2hra0Mmk1ERr3JYbVdXl0r64Lk4eKX5vb293HapvEjc5/NxS9kDgQBmZmZw7949+Hw+vPa1r4Xdbt+zUGZkZET2XCKRQD6fx/j4OMbGxjT92kajEZubm6hUKqpBBPS8yWRi8xp5t+XkylBaP4Fdf/WZM2cAgI0vC4fDmJ+fV7VeXVhYQF9fn+wx+u0cDgc2Nzfx4MED2Qgy0qrpO5P2ncvlWMQdjUbhdrtRLBZZu1Yi9VdeeUVT8z8o6h0FH0Xkm8lkatJ1s1544iURHmFvbm7i9u3b+9artbZdD8Lej0skEong5ZdfhsFgQCQSgSiKbNI5FXHQtgYGBmAymbC+vo5EIgGr1So7Jl6vV2VzU17ARqNRFUlrJRt5+07yjBJtbW3c10sLa7LZLObm5uD3+/Hd3/3d3MWAvqsS5XIZc3NzaG1t1Wz0f/bsWcRiMTYuTEmY0h4mW1tb3H7YHR0dbMI872Kn+Y/nzp1jBTnVapUbtVNbW2BX/uns7JS1gBVFkU2vAcByAIS1tTVG6JFIhCUnidiz2SxroUua+tTUlCoPcRjUm7DrAaX82Iyw98BRSyKiKOLevXtYXV09kF7NQz0rHfci7FQqhatXr7JeIDRVg4jA5/MhFouhq6sLHR0diEajLFoWBEF1YSqLYBwOh0zSMBqN6O/vh9/vx8DAAIaHh5n/urOzEwMDA+js7ITX64Xb7eZGzLwyX0EQuF3wtJKNmUyGtTyVJvqAXcLkfS6w6/uemprC0NCQqhLRaDTKIm+qZiTSdrlcqurN+fl5XLhwgf3d29vLtPadnR14vV4VoYuiCLvdrlps4vG4Sj/P5XJwOp1ob2+Hy+XC5uYmVlZWZKXvyWRSFs1vbW3JthOLxVjydWNjg3m3pT1HbDYbkskk9Ho9EokEszM+DhqRsJX7fJInpgMnQBI5qgib9GpqLHQQvZqH45BECoUCXn75ZTZ2Sq/Xw2q1MilAEASUy2UMDAwgFovBaDTKtNu2tjYZYUt7RVM/4MHBQZw9exYDAwNoaWmBzWZDJpNBKpXCzs4Otra2sLGxgUKhgK2tLcRiMWSzWQiCgNHRUfT39+PMmTMYHR3F+fPn0d3dzY3E+/r6uLrywMCASo4BdheipaUlRKNRrK2t4fLly4yklMU1UlBkvb6+DqfTKYuglf21gYekTYVBPClndnYWfX19Kh87sBvJSvuCALs2RJqGriS0paUl1fR1i8WCYDAo++xwOCxb+B48eCAj6dXVVSZR5XI5lfbv9XrhcDiYjTAWi7H/6nQ6xONxLC4uajbZ2g8akbAbaWI68JRE2KRXd3R0YHh4uCaWnXoSNs8lUqlU8PLLLyOTybDue4VCAYIgIJ/PQ6/Xo7u7G8lkkhG4sjeHNMIzGo3o7OzEmTNn0N/fD7PZjGQyiaWlJSwvLyMSiSCfz7O+y1LY7XZuYnFnZwfxeBybm5uIRCJYW1tDW1sbfD4fLl26JCNZrSSflkOms7NT9hwtApcvX+YuCMAuUUoTgYlEAtlsFmNjY0xO4oEcN3tpu9vb27hy5Qp3cSGPNrBLvpVKBZVKBevr6yoyB+RkOzo6ip2dHVlZOrC7WCuJJBaLsTsk+gyDwYDW1lbYbDaMjIzA6/Wy9rmiKCKfz8PtdjPyb2lpYYOVU6kU1tfXsbi4eKhz+0kg7JM8MR04Zg273klHvV6PdDqN27dv4+zZs2htba3pto9SErl+/ToSiQSTQWis1NbWFlpaWhAMBrG9vc32SalNh0IhpFIpJml4vV6Ew2FGzqIoorW1VVWKzivB9nq9KmJta2vjEiDNhFxeXsaDBw9QKpVw9uxZeL1eVbm21+vlShs6nY4rn5DDYXBwkDtIgvd7F4tFhMNhvOENb1AlW6Wgpk28RCJte3V1VfOc2tjYQDAYRH9/v+yYPnjwQHVHQGQ8OjrKFlu6g5IGF0rCT6fTTK92Op3w+XwYGRlBqVRCIpFgQxKAXdmEFoVoNAq73Y5SqYRMJgNRFNlQWkEQEIlEMD8/zy1a2gv1rKCsFxppYjpwAiLsekkioihibW0NqVQKV65cqfmPcJSSyPT0NEuM+Xw+RoxWqxXd3d1Ip9MsQiJQNC0IArq7u+HxeGCz2bC5uYlwOMzag0qh/FtLZ+Yl/nhWO4/Hw9WjHQ4HFhYWkMvlcPr0aVy+fJn1eeZF2IODg5rJxnK5jI2NDZRKJVy5coURnHIepRQ0Lf7SpUvc59va2tgwBL1eL4t0gd3jYrfbGRHzNM98Po/u7m6VO4WmpSuTjUajUVX0E4lEVAvR6uqq7Fze2trC2bNnYbFYWCUqETORvnR7FJFT2XqhUGD5mGQyyQYFFItFLC4uygYuPwr1JOzjGl5w0nDsGnY9otRyuYwbN25AFEV4PB5Nh8DjoF6ErXSJLC4uYmNjA+l0Gi6Xi0XNHo8H+XweW1tbLCoimM1mFItFjIyMoK2tDeVyGffv35cdayU5U8QtRWdnpypJ2dbWpopMeclMYJfIeAQsJYGtrS08ePAATqcTbrdbZXUDtO1c0pmQ5XIZS0tLuHDhAtxuNwYHBzU9xsPDwyyKvHTpkkoiC4VCbL/j8biqC5/UQhiLxRAKhVSEEgwGsb6+rnKdALtSlVR/pkG8q6urKrJYX1+XJUuLxSLsdjsEQcDg4CDcbjd2dnaYxCSKImv8BexG01KvNn1X8u0DYEnIcrnM8iM0SGF1dVVzsVTiSehR0nSJcFBPW186ncbVq1fR1taGwcHBut1O1bP5EyEcDmNlZYVFSsViEYVCgUkJRHw+n49F1zabDW1tbbBarQiHwyzrLSVOj8ejak7EO0l5x45X+t3V1cXtu8zrbx0IBFTOC2BXS7137x6KxSIuXbrE+kXz+nMTeIUsy8vLrCxbC9JzjlwfRAgdHR2qz4vFYmhvb4fJZFLdyQC7VjppYydBEODxeFAqlbhJRWDXnz04OIju7m7EYjG2UJOfnkDatPSxVCqFs2fPIh6Po1QqIZvNykg9Ho8jGAyyv9fX15lVUNpLm8bGAbvRt9VqRT6fZ3kRIvBIJMJks71QL2I96uEFTcLWQK1Jb2trC7du3cLY2Bja2trqmtSsV4RNiEajmJ+fZ0nTarWKTCaD1tZW1USYnZ0d2Gw2dHZ2wuVyMZIHdu9ilASpJDqeRmy1WrmNnvY7nbutrU3lwKBt8ED7JIoilpeXkUwm2TxJ3nF2Op2aycZQKIRwOKyy/wG7UbnyeCwsLODcuXNsaguPmNbX1zEwMICRkRHuQjQ/P89I+/Tp07LfJxwOqyyFwO5djnLUXCwWU02vkRKw3++H3W6X6dPArlSibBgl7T1SrVYZ6dPkdWDX1UKkTTJJMpmE2WyW9ddOJpPY2NjYM8B6EiLspq1vD9TK1ieKIhYWFvDgwQOMj4+zaKKehF3v5jCzs7Osn3GlUoHFYoHRaEQymZRFs36/H1arlT1ntVplBBAIBGT6ssFgUFm3WltbVVolNQ2SgsZUSWGz2biOES0dkBeJay0EKysrLJpU5iB6eno0zx0q015aWsL58+dlFk6tKrbFxUWMj49rTmYHdhfRvS7mlZUVVcUlsCtjWCwW2WJlsVhgNpthNBpVZLSysiKLkOmzT506xaybxWJRFXVms1lZ17liscjOU5JugF0CpF7cfr8fRqMRoVAIgUCAlcCXSiVm6TQYDMydtLm5qalrPwkR9mGGFxwltBso1BFSSeRxCbVcLmNycpJN3ZaeMLWa6XiUoMx8tVpFoVBApVKB3+9nUaHL5cLy8jJMJhOCwSAikQgjZL1er4qUlbazUCiEhYUF9rfZbIbNZsPg4CBMJpPsgj9z5gw7fmT9GhgYYGOoqNH77Oys7HfUSlZ2dnZyibm9vZ37eEdHB5NuLBYLhoaGMDU1hWKxqOnwaGlpkS1INI5rc3MTRqNRU14Bds+XkZER3L17l3ve9Pb2YmFhAadOneJOYy+Xy3A4HEilUqrFZGtrCwMDA6zvd09PD7a2tpBMJtHW1ibbZ4qI6S6OKlaV+5RMJhEIBJjtMp1Oo6WlheUzEomErMqUGkpJXSGpVIpZ/UgO8Xq9yOfzKJVKzBFktVpRKpUgCAKbK+lyuWSBS6NG2NIF/aTb+o6FsNmHP2bSMZPJ4Pbt2+jp6VFNKW5EVCoV3Lt3D9VqFZVKBZlMBsFgkJGTKIpIJpPo6upi8xml0bPX65XJED6fT0YEdrsdVqsVp0+fZlKLKIrY3NyUReUej0flbrBYLKzzmxTBYBBWqxWhUAhOp5MRPm/wAG+0GKCdVJSSHiUVae7i5OQk9z2BQEAlxYTDYbjdbrS2tmJqakrzfcvLy6hWqxgeHsbc3Jzsu9LzwK7+3N/fr7IgUovWjo4OPHjwQHWslpaW0NvbC4vFIovCt7a2EAgEZInjnZ0d9PX14f79+xgeHmbVlMpFL5vNykrXt7a2YLPZ2J1MOBxGV1cXjEYjGxpMkff29jYCgQDS6TQSiQT7/1gsBr/fj2w2KxuCQZEnVdmWSiV4PB5259CoEbZUWmpKInvgcZKO29vbuHnzJs6cOfNEkDXJOnRRFQoFVlIsTS7a7XbEYjGUSiXZxUFNfqQwGo3o7u7G6Ogouru7GYGHw2FsbW0hm83C6/VyW6Eqwavqc7lcLAKmoouVlRUIggCr1cqGIXR3d8NoNHKr6JxOJze6ppJpJeLxOPR6Pc6dO6eSScxms6bGXigUEI1GVcNvCcFgkB2H1dVVjI2NyZ5vbW1lwQXZAqV9aKgBFLCbhBwaGlJ9hiiKTF6QgohOSUorKys4c+aMrM2stNkTsEvY0mZQoigyV5Tb7UYwGJQtzplMRtbIK5VKyRwllFQmPZt6cwNg28jlcjAYDEyyo8WhUSNs6babPmwOHmcQLxHb/fv3ZXp1o4P0WulU81KphO3tbej1ejZyi0jM6XTKCNrn87FeEb29vRgeHpYli5LJJFe/5VXq8QpgeBcMryTcYDAgHA6zvszLy8tIpVIYGxvDyMgIent7Zb97e3u7ZgMoni3PaDRiZWUFy8vLcDgcGB4eZs/19fVxNXJ6LpVKMS1YCofDoSL6xcVFnD17lu2LUtumiJaisf7+fplV8v79+yoPtclkQrVa5SYgd3Z2VFWQAwMDquKVUqmkIpTV1VUZaRcKBZw6dYp16ysWi7KoMRqNMhmgUCiwCLNarbLPox7dgiDIhv8SWVP73nK5zCa2C4LQcBG20uN90jXshqojLZfLuHnzJorFIi5fvlwXf/VBUQuNfGtrC/F4nE0joUSj2WyG0+mE1+tFsViUuROUJEcar9vtRjweZ03rCXQLLIXH41FF5VQRKYXT6eR22+O5QNrb27kVclL3BzVw8ng8XMcFAM3ftre3l0W6uVyOacNms5nb9wPY/e600FUqFaytrTEyBnYTt7xFY3FxEWfOnIHf7+f+zolEAqFQCKFQSOU8oWhWevH39/cjnU5jfX2de1e4vLzMko0jIyPY2dlBNBpVEf/GxoaqwpK8111dXXC5XMymR6AKWdq3arXKvtPOzg57bS6XYwt7LpdjxE7DfSlhqdPpWIuEfD6PYrGIrq6uA1dH7gf1jLCVxUVNW1+NkM1mce3aNbS0tODUqVP7/gEPO9R2v9t+XMKOxWJsFqPb7Wa31UajkV0M2WxWFvVSxSI1bOrq6sLW1ha2t7eZxKSUEwKBgIrQeD5mXiTDi6S9Xi93IgzvWFN7V0IikcDKygoCgQCCwaDKxqYlkwD8isqdnR309/dr5kN6enpUU8NJGzYajXtW8xUKhT0Dg/X1dfT393O/N5WOC4KAnp4emW4dj8dV/cQpwTg4OCg7ttRxT4pkMqlKlo2OjiKfzzPvtnS/RVGU3WHlcjlZBWcymWTncjQaZfmGRCLBlUnoWFPjL+qxncvlEIvFsLKywsreHxf1nmQjPefL5fJjN4arJ45VEiE86kfd3t7GjRs3cPr06QPr1fW09j3utjOZDMLhMPL5PCwWC8rlMtMYDQYDkyuU0bLdbkdfXx+sViui0ajqeHo8HhVh8/ZTGTXrdDpVQQ3AL0XnSVEmk4nrDmlvb+fmKqh0PZVKobu7m1UFavXJ9vl83O3T/lSrVTYsYD8Ih8O4cuXKnk2e3G43Njc3VYsKoaurC4uLixgYGOA+v7a2xvp7SFEqlVjFohQWi0VFzuVyWbW4ZrNZpqF7PB42u1NKyjRIWPq3lKSlmnWlUpFFljSxxuFwQKfTwe/3swSjy+WCyWSC1WpliWYiOUEQIAgCfD4fcrkcrl27htnZWUQikUNfK82J6Q9x7BH2XgUooihicXERS0tLuHLlCrcR0aNwUotncrkcHjx4wG4hyapGU02kJEkLmsVigd/vRywWw87ODkuYKIlXSQJms1lFxMr2ncCuHKKMYLUiaV5rVCqDV0Lr+EsllVQqhXg8jqGhIc1RXEpvMoGmw1Mp9djYGCMiIlweyKJ2+vRpbj4lFAphbW2NNfpXDruQarabm5uajaD0ej2XFLa2tmRJULfbjWq1io2NDVX0vbW1pQpW1tbW0Nvby4pclFE1oI4gqT8KII8m9Xo9Gy8XCATgdrvh9XpZcjGZTKJSqTCPO+nd1WqVadkksxiNRtZv5cKFC+jq6kI8Hsf169dx69YtrK6uHmjKzVFOTKcF56Ti2Aj7UV7scrmMW7duoVAo4MqVK5rTsB+Fek5mPyxh53I51tuDRjYZDAZ4PB6k02mZDmi322E0GtHV1QWz2cwSVwTqG0JQNuUHdiMw5X7yLgCenszLmPOscwC4ZE0l8kpI7YpSkMY8MjIii2qJXHno6uqSEcDKygojHq2GUsBuMjEej2N5eZkVpUgh1a5pIZPeWfT397PvQISlXGxaW1vZUFzerfba2hr8fj/7/YvFIvMGK/dH2k4V2LX4Ka+fnZ0dmYskn8/LyF/5d7FYZFPWBUGQLdjSiTg6nY6dM9QigbZH9Q5E2FJZBti98+rv78eVK1dYknhubg5Xr17FvXv3EI1G97yOjjLCPul1G8fqwwYeVjtKI4NsNotbt26hu7ub2wzoIKjXZBjgcNF7NptllYGCILBbYyq2kBKu3W6HxWJhbg9p8oygdEXY7XaV84OI2Gq1wuVywWw2Q6/XY3R0lFXOkRNAGsXRyTswMIB8Po9UKoVUKqVp++MRc2trK7dYRatE3efzIZlMsmMwNjaGtbU12O12zUiZd7FTuf5eF7r0nFteXmbealEUVR52YPc4BgIBRkjKKDGZTKK9vR1LS0sQRZEFC4IgIJVKobOzU9VBkKJi5UCHnZ0ddHZ2yqpIc7kcOjo6sLa2hp6eHqTTaeRyObS0tMiOTS6Xk52bW1tbsvzI9vY2QqEQLBYLisUi66dOzhCXyyUrSzcajahUKsjn83A4HMxSSpEv6dhms5n15KYp8FSRqdfrYTAYYLVa0dXVhc7OTjYYmBpx0R1kIBCQBWj1jLApqgZ2F929hjGfBBz73ilJLxKJYHZ2FmNjY4eSQB61/VrioBE2Nfen265UKsUaN1F0GovFYDAYEAqFmK2P4HA4ZMk7GswqRTKZhE6ng8vlgtPpZIRvMplQKpVQLpfh8XhU5MpryuT1emXJTpPJhJaWFlitVpw9e5YNct3Y2EBLSwuXmLU65ml1gFNG7mtrazAYDOjo6MDOzo4qine73Zq6digUwubmJiuEkYI0Xyk2NzfR1dWF5eVlbvEQsHt+9vb2soIjJdbX1zE0NIS5uTkEg0FZxLq6uoquri5VKb/D4YDD4VDdQWxtbcFut8uSouTxpoZRwMMkIS3epVIJra2t7PvRwiuKIiwWC0KhEAwGA6tspDJ0ksioKRQtTDSEAdgNEMh2SlE03TnQb0MVsPTfSqUiq5glAqfWtXQnk81msbOzg+npaZTLZfh8Pvj9fpWTo5ZQTkw/yVWOwDESNjksqNqRMvc0yeOwEogSJ4WwybpnNBqRy+VQKpXYJGu6IIlMS6USUqmUarVXuhko6qAydavVimQyKSuSKBaLqtanvOPBe4xXmeh0OlVE5na74fP54HQ6kclksLKyglKppCmH0NxJJUKhEFcvBx5W7FWrVVnTJ62FgkCa8MjIiKx6kcqylYhGoxgbG+P2RyFsbm5iaGhIM+JfWVnh9mIBdhckh8PBfhOPx4NMJoN0Og2PxyNbsEqlEnw+n+x37+7uZm1S6buUSiXV9bK1tQWn08k+Jx6Po6+vj1U6FotFma0ykUjIImvyYEuLbXK5HLsbps+WRr4UiOj1epRKJbYoVKtV2Gw2lEolFq2LoiiTWaj8vbu7m33HWCyGjY0NRCIRlEolhEIh+P3+utl5T/p4MOAEJB31ej0KhQJu376NXC5XU7Km7R+nJCKKIpaWlpgliqQH8rHSBaXX6+FwOFhUYzKZZKRms9lkUSnN5+vr64PL5WLvS6VSMh1OuX+8JKXJZOL6rHlRMC8hSLa9zc1NZmUbGxvD6Ogol/SVCTWCVoVZe3s7CoUCm7hz9uxZmdWMB7fbLUu0hsNhjI6Owmg0wmazaUblwG5eQMv1AewuEisrK9xe1wDY9B4esdDYNWD3t/B4PKhUKtzWqsDu4kAyVXt7O7LZLFKplGoSTjqdljlApMlGs9ksI3rpe6RBgTQXIi2oodfS9rLZLHstzRUl+Y5609A/i8UCu93OpBFKUCq/p8FgkJW4C4IAv9+P0dFRuN1udHZ2olAoYGpqCq+++iqWlpZkVsRa4KR7sIETQNiiKGJ2dhZ+vx+nT5+uuVZ1nBF2tVrF1NQUizAoiUN9GIxGI4tEpVGX1rYcDgfT9X0+H+LxuOykVUatbrdbpbPyxnvZ7XbV99AqauGRuLLwpFKpYGtri1XljY6OorW1FQaDgVvAA+xGZ1rRtfKcWFtbQ2trK3eI7l7fk1wVfX19mlKNyWRi8yh55eUmk4lJB9KxW1K0tbVhc3OTW9EI7Pqqe3t70d/fL8s38IpkALAGUVI5SFkYA6iTvrS9QCCAYrHI8iXS10sXVNKopZ9LC6OyfJ4GTlAxjV6vZ02lpNunKJ22Q1E1fe9SqSSTS4xGI0wmE8xmM8xmM2s6Zrfb0dvbi0uXLuHcuXOw2WxYXV3F1atXMT09jc3NTc3fVAvSlrNAY0gix+oS2dnZQTgcRltbG/dErQWOi7CLxSJeeeUVeL1eRtYOh4NVh1EDHbrolC1QSc/U6/UsQWQ0GpFKpZDNZlWWPJfLpbLk8RY/HuHyyrl5kbSWjKAlp0QiEVSrVWZBbG1txYULF7jbbm1t5W7bbDZzpYdUKgWz2YwzZ86o9E1BEDS7+W1tbbEKUh56enpkjZOUUXR3dzcjBiIxKekJgsAixa2tLc0oXFp8IsX29rZq3wwGA3dRVEJpPezo6FAVjsViMdnxp2kz0r+lFZE0PMHpdLI7Q7fbzc59qYuGfgfpxBvq8KfcZ5JIyGESj8eZRVBqrxMEARcuXGAT58nKGgwGcfr0aUxMTKCzsxOZTAa3bt3C9evX8eDBAyYL7oVG64UNHCNhLy8vY35+Hj09PTWVQJSop61PazFIpVK4du0a+vr6WMbcbDajVCohn8/DYDCgUCjAYDCwZj3S6NpoNLIZh3RxSJ+32WyqaFwZXel0OlXEqtfrVRE3b4IKoC6qoc9VgiJSJXjl3tIF5fTp07LeGVre6/b2du4x1uv12N7eZoNppb00fD6fZk+Rjo4OrK+vw+12q5LaylFnoigytwZ9V+WCl8vlGJkAu3KJ9HjSMF4pdDodzGYzLBaLShool8uyKM9kMsHj8SASiahmS+ZyOVUUH41GYbVa0dPTw1r08pL3UjKTNniSRp3k6pBO8DGbzTIylkoq0nOQZkXS6wikX0sTocBuxE4W10wmw1o1ZLNZdh7RQmu322WLisPhYLbBsbExmEwm3L9/H9euXcPMzIysAliKRpvnCBwjYft8PoyPj8NqtdZ1cno9bX28CHt7exuTk5M4c+YMy6RTIycaMKAc+SQlMrfbDYPBwEiahqMqP1cKo9GoImdKXkqhvODpdcrv4PV6uSXgvKg1EAhwj69WXw/axvb2NjKZDIaGhlSl2FJo/XakawO7JKXT6RixamnkwMMRZ8lkEna7XUZ4PT09qmMtbXPb3d2tOQptYGCAST5SUO8NKbH19vYinU5rSiDS4budnZ3srgxQF0WR00P6ecqeHvF4XBYUURsEQi6XU/0dDAbhcrmYr5oIT2qDo88n0qPol/ZVOkCBF2mTPEL/TCYT07w9Hg+LdsvlMruOSWYxm81MN6fIv1qtwmAwoKWlBWNjY7hy5QpaWlqQSCRw48YN3Lx5EysrK+zcbLTxYMAxEjaVvNZzcjpwdJIIuVxoygkVQBQKBRbB0DgoaQEF9bIg/6myt4XNZpNdfDqdTmX/stlsqts/3jHlkQ2vWQ8v2pU6DqTg3Xbq9XqutszrZ0Jk0traisHBQRkZ7OW9VhJXqVRCJpPB2bNnuXY8QG2DTKfTMBqNLDrXqnCjwqa9ztPV1VWcPn2aW8FXLBZZFaTVapUdm+3tbW4EHIvFMDAwIIvWacGXIpPJsASkwWBAZ2cnayJGoISm8n3ShZ96k/h8Pvh8Ptk1Q9WLhEKhIPtbGhjQsaL3SS19tB80fUen07FjrjyPSCKh0vd8Ps+kxFKphHQ6jVKpxLZns9ngcDjY9CUCDWQeHx/H6OgodDod5ufncfXqVSwtLbFhw3RMDkrYX/rSlzAyMoLBwUF88IMfVD0viiJ+4Rd+AYIgzAuCcFsQhEsH+gAFTmylY61wFC6RarWKO3fuIJ1O49y5cyzyk/pUC4UCS84QaVFChbrx5fN5FSkqI1273a76Pkq7nzLiFgSBadzk+XU4HHA6nVxi3W/vEEEQuITqdru5RK41wMBsNiORSCCRSGBwcBA9PT0AdnVtre1oEbnBYEB3dzdXo+b1KKGxWoODg5pED+xWZlI0x4PFYkEymeTexQC7xNzd3a0qb6e7LV4/GN7CyesrEolE4HQ60dHRwRZg5XFLJBKyY6JsuWo2mxEMBlmETAUwBCJHglTyUPaUJj2b9HySf6R2QNpHqTwibe9K5xtJNNQMja4nu93O+u3Q9aTT6VjSklwqJOHQYtHR0YFz587hypUrcDqdKBaLuHbtGv7dv/t3+Pa3v32gboOVSgU/93M/h5deegnT09P49Kc/jenpadlrXnrpJdy7dw8AhgD8DIA/2fcHcHDsLpFazXXUQr0j7FKphFdffZX1ZqaxXhRdkyuEQLeGHo+HeXApQqHKMwINRJVCSeA2mw2CIKC9vR29vb0YGBhgxNDe3o62tjYEg0G0trYyKyD9a29vh9frRWtrKzo7O9HX18cabI2MjGBgYADt7e1czRzYJVRefkCryIG3ECgThPF4HNlsdk/HkNbnArtEFI1G4XK5ZFWbvCpRAkkCWq4OQRCQzWYRj8fR2trKjcTb29uZ9KFF6lREokQmk5ERvcViYTkI5T5VKhXV4km/v/TcyWQyKmlISUbxeBwWi4V5+KV9rwG53AHsnnv03ZUOC8rJAGBl+FarlT0m/S2lUbeStAVBUB0jSu4aDAaWk6Lf3+FwsGlI0WiU1S9QQyqKvu12O8xmsyz6p5mWr3nNa/A7v/M7yOVy+Ku/+iuMj4/jV3/1VzE/P4+9cPXqVQwODqK/vx8mkwnveMc78IUvfEH2mi984Qt497vfDXEX/wLAIwhC254b3gPHTtiNHGEXi0Wsrq6ip6cHHR0drCCmXC6zYoZ4PC5L4hiNRrhcLla8IMWjXB50IXd0dKCnp4dZtsxmM8rlMvPoUj9tqROBJ4fQQkHdAClSiUajiMVirAKzpaWF2fNoeg1ZrpTQ6/VcPdrv93NJPxgMcmUEcsKcOnVKRYBaUZDX62VyEf0Wg4ODAHa1YC3bpNVqxebmJvR6PbeVLJWBA7sl43QHQLDb7exOJZVKoa1NfT2aTCbk83k4nU7ucctmsywC9nq9LIihsm8pIpEII3LS7qk6UYpMJiMjXKVWbTKZWJWhlIil5CnVpJVRt7T1LOnQ1PvmURKdMvFYKpVkJei0IJBsKiVpsgpS/xb6LuTIouEKBLqDkUb61WqVHdtyuYzTp0+jr68PH/jAB/D1r38d3/Vd3/VI3lhbW0NXVxf7u7OzU9XOQPkaAKsADt1v49glkced6/go1IuwI5EI7t+/j0AgAJ/Ph2w2i1KpxCJoURRlEQmRLZG5Xq+XSRk0N49AEaHH40FHRwc6Ozvh9/uh0+mYdJLNZrkkpLw4LBaLygliNBq5cggvWWi321EoFBCLxRCLxVAoFODz+eBwODA4OAiPx8MutFAoxI1+tX4DLYeQz+dDtVrF1tYWQqEQ62qnNUwBUCdVK5UKmzCzV49jcqLk83nmythr37e3t2Vd9pRVjZubmypS7+joQKlUQjQa5fbHqVQqsNlsrMCFQGXjSlAirru7WybBSVEqlVTROEWgHo+H+fSlUhXlXKR/SyUY6VAD+gy73Q6bzSarWqT9kS420u0qI2vycVMkrazypWtKStrSplOU8NXr9bDb7dDpdCgWiyiXy6xdAzW3ourfSCTCrI+VSgXXrl1jyegf+IEfwMjIiOq4S8GT6/bZOvrQ1T4nIsKutyRSa1vfgwcPsLi4iNHRUVn5LTWPUXqqqb+19HHlD0n7SJ7blpYW+Hw+lnDhkbMyIQloz2NUwuFwqPZBKd8QeI4RmmyTTCZhMpnQ2trKqtJ45Mj7DQRB0Cx8kd4R5HI5JBIJjIyMcCPgR20rmUzC7XZzpRqllY+Km4joOjo6uNvd3t5GR0eHalQbIRKJsGSmcjhyJBLhJhqr1So3V8AbC5ZOp9HV1aXqrqdctEj2IJTLZQSDQWYppcekUHYKlAYe9HqdTgen08lkD6kDRHqclU4lpRxCd6SkP0tL7un/lX9LrYHUk4RySQTSvanNK1kc5+bm8C//8i+YnJxEMBjE9vY2jEYjPvnJT8JgMOB7vud7VMdfC8rmXKurq6oWuMrXAOgEIG/acwCcCMJuFFtftVrF9PQ0EokELl++DIvFgkAgIGuRKo2SjUYjK72XEpDSV02JkpaWFtjtdjaEV7rfVqtVdfLzbq151V48yYG3SPIiOZJ1lFAeU+r9QB3tSDqh8mveQmC327kRvcPh4FoII5EIdDodt2y8ra1N00oYCoWwtbXFJpZL0dHRoVoIaRArRWo80HSVtrY2bhQlbS2qJGFKgEm3rdPp4HA4ZIUrytcrv5MyggWg6kFDPn9g93yhiknpnY3U2UH7Ln1e+bfFYmF3VSQpKElaaTXkadZ0F2oymVSWSKX8wbM1UmKTjh/w0FNOkbe0F3mlUoHP54PBYMDly5eh1+vxnve8B2fPnsVHPvIR/Oqv/uqBGs6Nj4/j3r17WFpaQrFYxGc+8xm85S1vkb3mLW95Cz75yU9C2MVrACREUdTui/AIHLskItXI6oFaLQiUXLRYLBgbG2P2PGoeT/2a6baM3gPsRs1SIiW9j5omORwO5hIBwBpESaGMUAVBUCUkeUUw0mneBC3bHS+S5kV81BBICa/Xy2xS0WgU+XwenZ2d6Orq4nqjtRwVWsUL1JGOom2ly0ELdFyj0SjT4wla7TRTqRSCwaDmzEkA7E5CS25Jp9Po6+vjDjpOJBIyaaSrq4v5nXn7lEgkmMMkEAiw60Z5XHnvpzsMabJWebchdX0AD9uqErLZLOx2OxtqQFWK0s+VQun+UJIxReJer1eTA7RIm5KKUomEXifVu6VETZLe3Nwcq5zs7u7Gu971LvT19eEP//AP8fzzz2N8fBwvvPCCal94MBgM+OhHP4rv+77vw6lTp/D2t78dZ86cwXPPPYfnnnsOAPDmN7+Z5LN5AP8LwM/ua+MaEB5BlnVjUlEU2e38t771LTz77LN1+5xvf/vbj7V9KnsdGBhAKBRiyTyy6pXLZaRSKdbzV0q2lByhE5psRjStA1CXKZvNZtlFTnq39Ley2WyqKNTlcqn0Xa/Xyx1ooHyd2WzmkrDP51MlES0WCzdqp0hWCYqwaUADzWt0uVzcz3S73dzHu7q6ZHY+s9kMo9GItbU1WCwW7t1FMBjkSklUQSe9Red9H7PZzKbOKNHb24toNIpAIKCaqg7sLszUjpbXbEoQBHZXoyRQr9fLbdJFljUpUVE/dSmk7iu9Xo+2tjbV8SFniHQ70r+tVisrM3c6naytqjT/JN0P6sQn/Vv6PGnTFLCQDi09Hry7RiJ0iqil7yEip+1JNXH6bYvFIuLxOGZmZnDx4kW2uP/1X/81PvGJT+DFF19kQQLP0lgj1GSMzbFLIvWGVjHEfrGzs4ObN29ibGyMkbW0yQ0lEanXhzTCBsCa7uh0OthsNhiNRqZ5A7sXofQkV2qq9BolqfAiP54kwCNWnp7MKxgwGAxcaYIXdWvtk81mYw2qYrEYSqUSBgYGMDIyoimHaA3FVdryCoUC0uk0Tp8+rZmn4EXr2WwWFosF7e3tmmRNro5YLIbu7m7VeWS329mxiUQiqiQjsCu30OAHni+cSIh37LPZrCpyr1arXEujsvoQeFj8ZDAY2J0Pr1WA9Psro+pcLgeHw8HaI0h7XwPqieOUTJf+LSV3koGkUgbPl80DET0A1fVCPmtaTGgfBGF3OHAikcDMzAwuXLjAyPrv/u7v8Gd/9md4/vnnZeeItBfMScSxSyInGdTvhEz2RNbUYaxQKKhuJYGHJ5Rer4fT6YTD4WAeXCUZK5OGVA0phdKSR1GAFDSoQPmYkkS1knO86JRXtg7wFwZeZ0CA3zI1nU6zie8DAwOy46clk3i9Xs3+IJVKBR0dHar3ai04AJiDQNmmlNDR0cG+eyQSUTVxCgQCMnLZ3t6WzXSkYingYbELTw93u91c3zY5caRoa2vjTvzJZrMqaYSGYwSDQUZgvAVAKSVJ95H2Tdl3RArleai8YxEEAVarlbmkisXiniSt/JvInfiCCJp3xyONsKklQDKZxN27d3H+/HmWv3jxxRfx0Y9+FM8//7xm8HFScSKWEuooVq8xQAdFtVrF7OwsSqUSLl++zBIrFFmL4u50DLoQpdpvLpdjt+rk9STQyCQCr2ObksCNRqNKA6VkndFolBUJUBENgbqs0a0/RURK2cJgMGg6LJSw2WzcSNpisXALU7RaXko7DlJycmlpiaujA2DDEZSQ+r4NBgN6enrYgIO2tjZuYypg14pH031aW1tlvbP1er3qO25vb6Ovrw9LS0usqlGJfD4Pl8vFRoVJX0OPkRwE7P6OtAjR+6TY2dlhQw3a2trYucG7TshzTecTVQNKz6dKpaKaYEMESucNRdUUoVPCU9qh0GQyMeLm/U3SiLQEncBreKVMKNL+7OU+kXbuA8BeS9dosVhEKpXCnTt3ZB0iv/KVr+AP/uAP8MUvflEzODjJOFbCpgPMm+t4XCiVSrh16xa8Xi9GRkZkiQ0y6pOVzWg0qvp8kMuD7EoEaqIjhTIqJl0cgKxSjC48uiVVyi60fWU0LB3YS9lyis6I5En7o6QnTaxRViAStCQLXtTN624HqMmXIvPh4WHNadpayT/pqC/y3PIKGJQgIqAF2O12s31tb2/XdKmQPMJ7nuYhUsMo3vsDgQBbRKSuHJpazpM7aJo6gex70n2gaUXRaBR6vZ71wFYSNG+/pL+p1M2hbNxEzxWLRZleTS4Tpa4uLYIpFArs+/IkHCmkfbelj/FIW+rBpm2Tz3pqagrnz59nZP21r30NH/jAB/Diiy9qVrWedJyIkLbexTPA/qYhZ7NZXLt2DZ2dnejv72ckKI2wqQGPNEtNDdelyUWlO8VoNMoIXKfTMZIzm83MMeLxeJi/VSq7UGIFUOvSJpNJFZkaDAYViUrdHVQoQtVe5LV1u93o7u5Gb28v/H4/Ojo6ZMTCqzLUiro9Hg/3uGu5QKiwqL+/X9UuVUvX5kXwmUwG7e3tmqXoSu802ePIQ7uXb5+nLUuRTCbR29ureT6TpU4pFWWzWa48UygUZFKL9PVKrTWRSMBut8uKl2ggrxRK+yZ9J6fTiUAgoLI+7qUtS18DgMkfSj+1xWLZlxRCiUmlMwRQW3Tp9XQdkgySTqcxOTnJBh0AwDe+8Q389m//Nv7+7/9eUwZrBJwIwj4JHfui0Shu3LiBM2fOsMo1KVmTvEEnM51I9LeUOIhopSCiI03P4XDA5/MxnZAa30iz8LyiH15ChPcYz+Zms9m4x1lJhlL5hKxjfX19GB4eZoN9pdAaBqB1kWvJHrTApNNp6HQ6jIyMsHabPEhLwpXw+XwIBAJcOyHvMfp9BwYGNIke2I3oy+Wy5nemJCuvPB3YlU2sVivX8x6Px1Waaltbm6oaEdglfuVrRVFU9SGvVquq92azWdn5IYoinE6nrN2AMgKWNmYC1L2wyUcu7dWxnwkwdI5QhaNS0lOe/0TaStcIkXUmk8Hk5CTOnj3Lzptvf/vb+PVf/3U8//zz3MWvkXCshC0lpuMsT19dXcXc3BwuX74Ml8vFSI1OGDpB6ISSnpRSUtf6PJPJBKvVynr8UtMoqbVPaYEC+A6P/VYi8oiZV+nH6/7Hey11YKtUKvD7/ayPNXUaVEKn03HJlAYF8z5PeYHHYjEEAgFNwt6r7zUVK9HEdQL55XmoVquwWq2aERi1BaBycd6iSMlIZc9pKZxOJ7diU3qOAbuWRHJ38KpVKaImtLS0oFgsqhYD3t2JlBh9Pp/KHSGK8paqFGhIkcvlZC1T6X0Epb9aq5SbeuzQ6/eKqukxaSKSFpNsNovbt29jbGyMOW+uXbuGX/qlX8IXvvAFbkuARsOJiLCPq5+IKIqYmZlBJBLB+Pg4ky2kJwNFmuTNpMY20j7YUsKiv202G3OI0PcjWUXpVwXU2Xap8Z+g1SBfSdjKPiUEns7MS2BZLBbuIiC9kLLZLHK5HCOfoaEhGYEqeyoTtLLyWiXn5HTp7+9XEbSWa8Tr9TI3TqVSQTabZS4PrWnmwO7CGo/HUSqVVFNigIcd+YDd70/tSAnSuZyUfFPe/RCx8aJmYJdcW1paZJ3l6HHeAkXniNS1whtyqyTbfD7PBjhI9V/pbywd9UXble4TFY5JE4nSY6vsLULHRSqVEFETpFKKdDvS91Gine6CC4UCcrkcbt++jTNnzrC7nxs3buAXfuEX8PnPfx7d3d2qY9eIOBGEfRySSLlcxvXr12EwGHDu3DkAD9s40kmTz+dViQ0lQVPjGNLprFYrS55KjftS8CIGJfnwvNc86YMXffJep2zdSuBF8VpVg1oJK9LC7XY7azeppfNq/c5a8gkRDc1wHBgYgCAIXFcFgXdM4vE4BgYG9tSnHQ4Hu6MqlUqqRUT5uyUSCVknNt4IL2X/ayLWcrms2Sw/kUhwS95p8rgURPBSglYO26V9kZK2TqfjDvFVJv6Vn0fnNA3GVS46ymBBK8EoTXrT6wg8KYQgPbcp95LP53Hr1i2cOnWKBQSTk5N473vfi89+9rOaczUbEU+NJKLMsl+7dg3t7e0YGBiQ9R0AwG5pSe6Qru7K/aRqNbPZLCuo0YJOp+NGxPsBj3B5OiEv8uSROFWy7edznE7nvn6jXC7HOrwNDQ3J5AWeRZH2ba9e1QRy6PT29u7ZBEqrjWoqlWJWM977pL8DETeRWjAY5C5Y0WgUXV1dmrbDeDzOiFk5azKVSnHlF7/fz100S6WSSmahdqE8IlcSpXQ0F02VVxK00ket7DNSrVZZD2oiW+XnKCcgSae6APKKR977CVLHCmncdB2TDJLP53Hz5k2cOnWKHZvp6Wn8x//4H/F//+//xdDQEHfbjYoTEWHXe4iBVAeLxWK4ceMGTp8+jdbWVnZbRdlmsmzRpAxlVrpcLrNbQaU8wrNlKcmZ50Hl9cFWRr7Kbn8AWNWk8r286IRHlLwLRTmijKC1qPBeSzbETCYDg8GA/v5+RrK8ffN6vdzHnU4n9w6ARnv19fWpvkMgENBMalosFlQqFbS3t6siw1AopPosURRht9thtVr3jMwTicSeySxy3/AkkFQqJdOcqXUBrxgG2P3utIhQPxqtFqzKKJumzEjvBJSNmpSNnoCHUokgCHA4HLJKRQCsPYMUUpmDAiaa8UgS4V5RtdQlQi0fSKpUkjV1iQSAubk5/ORP/iT+6q/+CqdOnVIdk0bHiSDso0o6rq2tYXZ2VpZclFqDRFFEJBKBy+VikoTyQqVbfbptJvCy4kp9mEfOSruf9DOk4EWFvNcp7VP0Oh7h8MhWa3o5jzjJc/6o/crn8ygWi/B6vWxu5X7AIyFgV7rIZrPIZDLo6+vbdxMoeo5maEqdHlr7RPMY9ypXtlqtKJfLmvtbrVbh9/u55zglOglSLTqfz6v2SxoVB4NBmX1P+dpMJiOLoEm2U25P+T7p8FzgoRWRyJq2JYWSgKV3pcCuxEeRObB7TSqDCC39WnkdFYtFFAoF3Lx5E8PDw2xhW1xcxLvf/W78xV/8Bc6ePYt6obe3F2fPnsWFCxdw5cqVun0OD8deOAPwPcO1hE6nw8rKCgRBwPj4OICHiRlKANJJ4Ha7ZRVTFE3Q2K+9PkNJ4LyqRelrBEFgFxVFVpQp511YUkKgxYT82vS3tLiB/NvUUVC5PZ5uzCN2ZZMg6ffhgSepkFRhNBoRCoVgsViwvr6OYrGoqUVrJRWlFXzpdBoulwsejwcbGxua0orb7ZadY/l8niWEqTmQFqiAiQqilCD/OPnhlecJ2SP9fj+3OVY6nWbtUqXbr1Qq3Faz2WyWtUklaNno6PsJggCfz8cIX/obUXJRmkiXvsZgMKjOR8r30DlEfUJ4LhFqHyyN1AGwoIkWQ9KkaZGRJhfpGFJdwo0bNzA4OMiksQcPHuBd73oX/uzP/gwXL15UHYda4x//8R9ltQJHhRNRml7PpGO5XMbGxgZsNhvOnz8v06vpIiSikxr+KfIG+Ld8youFd5GSfEJ6HV0ItA/KvsS8bdO2lCRIfRmUIHcClSZTcocSaqlUCsVikdvnWhRFrm2QR/gAn1C1Xqu8hc5ms/D5fLDZbFhfX1d9Z4qieVB+Lr13aGhI2Sxetj0l8RWLRZhMJvh8Ps2hvmazmeUzAoEAtra2VH3K6TwplUqwWq0qDT0QCKBcLiOdTsPn83FthblcjtsvJZ1Ow+l0yn4XakGglL90Op3q+FOyURrFKysXgYfETiAbp5SslbkgpRdb2g6V/pbmDLQiaCmJU6dKl8vFonm6lqjk/ObNmxgYGGDVimtra3jnO9+J5557jgVkTypOhCRSL1tfLpfDtWvX4Ha72a0m2fPoJKCTiEqDeTY35b7xTjq63aSBn1RaTqXk0ihdqycxbWs/j/Fu0XnOkmp1t9E+NTuyWq1wu91wuVxs9FhbWxu8Xi9cLhc36uZFbmazmUvYWpIKr9CEFpdAIMAGmRK0vNdaujYANu9S+VnKgRFSUPSmFS0FAgH2e2UyGdUQXqXOLIqizBIoCILs+FFnRyWozzQP0j47er0eVquVjRRTgvf7KXvMaMkgys/nWfak21dq2cDDc5WuB16va6V2rfRq06Ql6b7dunULCwsLeOWVV9DX18d+r3A4jLe//e34oz/6I7z2ta9Vffd6QBAEfO/3fi8uX76Mj33sY0fymYQT4xKpdYQdi8Vw/fp1nDp1Cj6fj/WupukW9Hl0uyi18ym1OF5/ByoWoAhLOt6IF3HzwEv68Y4DjzD3e7y0NN1CocCKd6hHic/nQ1dXF7q6uhAIBFii5yBat9b31koEUvFFPp9HS0sLent7uU6aR32u0WhEOp1m/mZprwiaCsSD3+9nC4/SsUG36FKkUilWgKG1aOVyOXarrrTcUVMkKRwOB0qlEvL5PLfYplgsssdJ1gDAenorXytd7DweDwRBUJ0HPIKW7icFG8pggdfDRnm96PV6WCwWLqFLPd/Sx+gulz5TWkRTrVbR09OD9fV16HQ6zMzM4L3vfS8+/elP49//+3+PP/zDP8Qb3vAG1XGrF775zW/i+vXreOmll/DHf/zH+MY3vnFkn30iIuxaJx3X19cxMzODS5cusWgyk8mwJE4mk2G3mMrqLqUrhCJy0pmlVVn0GuVFwyN4JcEqIy+Afxx4dx88OYSnmQN8AiULohI0yZ38vn6/n02EVxa8aBXh8MidN3sSUCctKZfQ39+vWWCjpWu73W6Vftrb28ttlCUFPUc2PqnbIxQKcfebGkxJyVMKOic8Hg93oSgWizLStlqtjMiUZeOETCaDQCCg+j15r5UOHaDvxyumUf5dKpVY10cqU1e+hmQJ6XeVkrq077X0NUqCVoLcI9IInYpiSqUS7t69i6GhITzzzDOYmJjAa17zGvyP//E/kEgk8Kd/+qf41Kc+pdlKt9agnjOhUAg/9EM/hKtXrx7J5wInhLBrJYmIooi5uTlsbGxgfHyctX202Wy4fPky3G43YrEYzGYz0wuVfReAhz13dTodm8vIi74BPiHyNGjl+7RO2v08piWH8KQbXqSqZefTitrpNr6trQ1dXV3w+Xzc1/IG+wLaUb5Wd0Z6XEncTqdzz57YSpCLROs9ym6JlLgj0t6r3S8VCmmhVCrJqgiVoMEFlFuQ7gMvmUsBgxI8aaRSqcDlcsm2Q3eXyn1UfpbZbJa9Ttn2mBetS6NjngzC067puxKU5zT9FuVyGbdu3UJnZycrQspkMvjEJz6B3/3d38XCwgJ+67d+C2tra5ifn1d9Rq0hDfYymQy+8pWvYGxsrO6fS3hiko7lchmTk5Ow2+24cOECi3KIdAGwUmoALHKmrnWiKLIufADfRcGLnPfy5xKU9ipeRl8ry897jEdOWto77xaWR+LKpBPvtaTBO51O1l42m82yftRaOrGWHMGLXulzgIe9mf1+P1ZWVlS9xwkmk0lT16akYjqdViVUecOB6Xfo7u7e0zkSCARY73PePpGzhjdijT6Hhhoof0+6E5QeN3LG8Bw7NHWczkWS/ZTbpslHygVC+hn0PuVrpIlBpUMEUBM9vU/aTIr3N6CeJkOSWLlcxs2bN9HW1sYW0UQigbe//e34tV/7NfzAD/wAAGBsbOzISHNzcxM/9EM/BGD3uP/Ij/wIvv/7v/9IPhs4IbY+XmLiIMjn87hx4wa6u7vR3t7OdGeptkyNcujkk7pAKLqUkp5S4+MROO9v5cUntSkReAuUdEIJgVcsw9NVaX+VkDbIJ2jprrxFgIbeKiG9XaV5gYIgYGdnR7Ufer2eK59okS9vJmY+n2e3oTzsFQlTkYXFYoHFYpHNSdRaMKhgxmg0quYqArvfn44L5TCUUpDT6WTFQzSEQAnSibWsiEScUh+9tF0CgZLJmUyGdc0D1BIb5V6kx53siOQsotcpj0cul9P0mZMTRIuQpduh5+i/lOwn0PlNkXVrayv77VOpFN7+9rfjF3/xFxlpHjX6+/tx69atY/ls4IRIIo+DeDyOV199FaOjo2hvb2cuDBpYCuxO7pDah0h3k1ZO7dXkBuATGq9MXXmS8m7797s47VcO0aoU5T2m5ULhkaeW9qt8LWnPHo8HHR0daG1tfeREcZ5TAtB2h5ClrKenR/VerUSkNBqlRZwShl6vVzOxSXcO5XKZ6x6Rll5TElH6PW02m2zbFBkr9406zPF6itCioWzFquVkoqhc6lrhSR68ZKOUrOmzH9VDm64ZqROKBy3tWhAElXeb8jCVSgW3b99GKBRiv1cmk8F/+A//Af/pP/0nvP3tb+d+1tOAhibscDiMu3fv4uLFi/B4PLLGNFTMEIvF4Ha7YbPZWGSi9ARLIY0SCLwok15HXlW6raMCmFKpxGxRNpuN/aPmUHa7nf2z2WzMrkUl71oyEU+C4RGrFonzFh4tLVnLzqcVjdN7qtUqfD4fOjs7NftGa0kYWiDdlPzK5ALRmuAO8Mk/n8+jq6trz4pIGrxAd0zK6STK40VVnHTeOBwO1TmmTMRJrXa8AIH2lQq5pNC62+MlannBgXI/eG4Qqf2UID3PSMtWPvao5CI9TwuE1CEiJetAIIDOzk4Au7/5O97xDrz73e/Gj/7oj6q2+TThREgiB4Uoipifn0cymcT4+DgjZ0EQZMNOU6kUXC6Xykcq1eJ4BEiRN52A0tFGVPBCBSnSfaJtGQwGVoHIc3goFwWtZCO9V5qtr1arbBABbxQZQamB0mfvNwnJK9ah77afbZAWbDAY0NnZiVwuJ5u9qNWvW6tYRlkBqNfr0d3djVKptOegXa3HnU4nstnsI++c6HelghdlkpBAnfmSySSb3iNFoVCA1+vFzs4O6/8h/TwafCCF2+1mxKkkVKvVKgskpAlzKWlWKhVVZSNF3lSBKH2/FPl8XhZZS89HCoB40NKu6c5WuTiR66lSqWBychJer5d1Qczn8/iRH/kRvP3tb8dP/MRPcD/vacKJibCVzV+0UKlUcOvWLVQqFVy8eJERG0WodBKRZk0nCq3iyguJZh1ShKzT6ZiuprQ1UUStjJYA7Sj8sI8pbVF0ZyBN1FgsFjidTthsNtanw+fzyRYpKbTkGa1EHg9aRMsjR+prQjbB9vZ2tLS0aLYV5UWOtB3ePhKh8DreuVwuTcKm4hteVzyPx8NNvlKXOq19B3Zv24PBoGYgkslk4PV6uUQnTYgDD4+dNGCQolQqsX0xmUzsLkDZwwN4OAJNCqUMAqjlMt7n6vV6FVk/Kqqm10ivHSJ/WtgrlQqmpqbgdrvR09MDYHeRe/e7340f+IEfwM/8zM8cOsB7knDshE0/wn6sffl8HteuXUMgEJANyKUTgUqvo9Eou+WUkq6ymlFJyrzbzP08RokhKXi3lPRa5fb2o49rIZvNsu8hjfDNZjN8Ph+CwSAblcWTTrQkDh5x6vV6LnFqyQtKAqBmWx6PB6FQSPW8lnyipYObTCbk83lUKhV0dHTIXrfXQGc6TjQ0Vyqd7PU+rYWQYLPZkM/nNb8HbV+ropGG2wLy6eKUVFSCdGvp/ut0Om7fD+lvTI4O5X7w7jilvxFp1nsleQnK80fq1qK/pWQ9PT0Nh8OB3t5eALsL0k/8xE/gX/2rf4X3ve99TbL+Do6dsAmPsvYlEgm8+uqrGB4eRkdHBzu5qOKQImODwQC32y2Lknm69aMsewdBKpVSnVCP6qdB4JEo726DV3wD8KMg6YVICwdpjoFAAKFQiHWr0yKPgxCzFngaODksSBtuaWlhv5OWFq01gFdKYvl8Hj6fj2nJWttSulPIY+52u2E2m/dsQkb5ib2SnMAuwfKSqtTPWWpjk4J6b/C0d54soqVbK1umAg8dI6VSCSaTSfOOVvm707mj0+lUJe7KfSFIX0ORNbUiloJkkOnpaVitVvT39wPYPX4/9VM/hWeeeQbvf//7m2QtwYkibK2ocmNjA3fu3MHFixfh9XoZCVGCjkDNfJSlwDx99VEEvt/oulKpqC4wUVR32wP4JMi7aPbbO0TLB86LjumCkUb01PIyFAohEAiwW2yz2ayp0yqhZTOkoiUlpFWWlA8IBAJoaWnR3G+tC1YpXZA1s7OzU3MB5pEteX95Y8Gk+0ELDd3BKLcrdaRQIloKKiySyhlKlEol7nGQDlMg0HnHa8HKuyuhkWDSIEH5m0qrLgkkgxyUOKVkLV0g6BhUq1XcvXsXJpOJkXWlUsF73vMejI2N4dd+7deaZK3AsRP2XpKIKIpYWFjA2toaxsfHWd9hIkRpBaG0FSpB2awGgCraruV30PqbHuPdgj6OHKJF4vt9vyDsDg+m40QRuMvlkpU103Z5RKJF7loyhlaBj8lkQiAQUDkytO669hp6odfrEQwGVYumIAh7eq9JruFBWsVJXRaVVj4paEwXnQsmk0l2x0HtXZWgSJb32xYKBbZQSCUN3u/Cm2qudHUAD3t5SyHdHvUF2c81sx8ZpFqtMhlkdnYWBoMBg4ODLBf18z//8+jt7cVv//ZvN8mag2MnbIJSEiF7T7FYxIULF5gThFZ7aZKQSFh5K0a3ctLnlK8jKPVuJbQIi/f6/corWj7p/ercPFABgxK892sRPsknHo8HPp+Pm9knaHm1tY6BFmHSRSyKIkKhEGt2pCXD7FUWTgMTKBlLcDqdmiRPzymJDuD3bqEpL0RoWu1n6XvwIlTeDEUifq0FjydP0N0m77X0X1o8eMEFT7rK5XJM2nmcyFp5HlCAMDc3B0EQMDQ0xKLv97///fD7/fjd3/3dJllrQHhEEcfhyw/3Cbo1mp+fh8vlQigUYtMk2tvb2e0t3WZSUxoCPcdzVfCSXjy/qfLk4EXh9DraX2krU2n1JN3mS4+rFtnTdqXIZDKqW19e+bL0s6UwGAxcO58WYfNeqxUxU4vWbDbL3qeMHGkbPPBeS4/z9k+v17MBv0pIhxhIwYsYqWLR5/NpatRut1vm9DGbzaxvtdvt3nPsGOnyWtDaV2D3u6fTaW50bzKZuPvrcrk0F0Tl42Tdky6sWr+xMrJWRuQkOT4KUjlIWsZOi/L8/DzK5TJGR0cZWf/qr/4qBEHAH/3RH+0rqdmAqMkKdOy9RKQOjnK5jGQyicnJSYyOjrIZgAcha3p8v48poUWsFJ0oe4Lw3k+vkWq1UkInDV4riajcrnLuH6CdpNUiPh7ha1n0tNwtgrA7oYc641UqFW5CUKuknbdAAGBTf5SgqNHpdCIajbL3ms1mTQLkSSWkGWuRLrlNpCgUCvD7/djZ2dE8J4CHU2H2Imy6G+S9htr78tqqUrQv/T7SeY7K34nXD4aKsKSgc1F6LUkXdUqs8qJx3nUkBdlkldulfwsLCyiVSjh16hTb3m/91m+hXC7jT/7kT+pK1pVKBVeuXEFHRwdeeOGFun1OPXHshE3Q6/WIxWK4f/8+Lly4AJvNJtNW6faK+iUQKWpFwlJoebD3+xhJMcrXKaF8jCfDSAtulIReqVS4Y6h4UQ3vllErkuYR8EEGH0uLeKSPUR8NioRTqRT3+BG0ZB2tx+n4SKeFRyIRWCwWbuRJ+8GDy+VCqVRCJpPhEh1vH/L5PEKhkOYIMwBsIdirXwhZT7US63a7ndtEipKH9DuRC4r+nyc3SAumqGReeV6Ioro3iFRW1Eow8mQaKnWnHA0tvtImahSgLC4uolAo4PTp06ym4L/+1/+KeDyOj3/843WPrD/ykY/g1KlTe/6eJx0n4t5DFEVEo1Hs7OxgfHycVfKJosh6FQBgjW1o9SeyoG1IzfhS8uRJHLzHtCKpg5ZR72eb0sfJkmgymWCz2eB2u+F0OlmiiOx30vfwiElLT95vTxGAb8XbawAtADYAwe/3a05u2atyUmtOovT1dDcVCoU0v6dWcyLg4QJnt9tl0gPdqmtBr9fLdHDlc7SPNA9UCVpseW1QCZQc5f0m0ono0iQmJWqVoHNEWcWoPNe1imJ4kfVeIJmLzgHpftBdXLVaxdLSErLZrIysP/ShD2FtbQ0f//jH9+xZXgusrq7ixRdfxE//9E/X9XPqjWOPsKvVKiYnJ1Eul9Ha2qpZZk6QFssQpA1k6PVSCUL6PN2G7Te65jXneYTu/0js5/06nY4VYEhlFmCXgGkYKQDZRayEFiHWov84z11AZfkUeVI0ozXrUdk9jrCX7EEjvaLRqCzK1DquytJs8oBTUzCtxYt0e2C3WZSyBJ468hGo5J1attrtdtn+lUoluFwuWYRHyVPyYPPuHLRsgHQ3qQxOqDBGS/KQPiYtaSef+UGhdLXQ3XIikUC1uju/M5vNYmxsjO3vhz/8YczMzOD//J//U3eyBoBf/MVfxO///u9zZ5Y2Eo49wl5fX4fb7UZvb6+syIOKH9bW1hCJRGQEzPuByUtLoG3QbSSV4pL1T5mk1LrY91sssp9IWrpv+wXv/QaDgTkgvF4vnE4ns6ztZzHgSRyA9hgvXoSu5UaR9jU2GAysXF4LWqSsdYwoiiuXy/B4PCyq5bWnJWhNZbHZbJqTbeg7SF8vjbQpsFCiXC4zEubdmUi/L91ZEWiIrxKUAFRCy2/Ns+9VKhVuUQwAzeBoP6BrSynP2O12OBwObG5uYnV1FYVCAZ/61Kdw48YNfPSjH8Wrr76Kv/zLv3zk3Vst8MILLyAUCuHy5ct1/6x649hdIlR9lc1mcePGDdjtdoRCIfh8Pty7dw86nQ4jIyPs5KZ/0guapzHTtveTcFHKKfl8XjbpfD/SidZj+30tDwdZBKSfR04OrTsJaeQoBS+RpaW7KqNWgpYeTL8ZNUeSfiYvucWb0gPskhHPBUL6NA8Wi0VznyjCV0pMgiCwfh7K9ySTSVUDJ+V7tZwv9Dy1ZdWCdNt0p6UlK0kXDxpCoJV34JWe8wh+P5C6QaR3sCSRrKysYGdnB+fOnUO5XMYnP/lJfOpTn8LCwgJ+7Md+DG9961vxute9ru6k/eu//uv41Kc+BYPBgHw+j2QyiR/+4R/GX/7lX9b1cxWoiUvk2AlbOaUkk8lgfX0da2trsFqt6OnpQTAYVEUSUuLm+Usp4j5IAlFJ4tKp6rxqSN42pDiIC0VaFLHX6w+yD0TWuVyO9RwBDmbn0yJmHpFrRcVUki39LJIzeFGdxWLhkuFepGKxWFAul1XDAHg2P4LD4WAuDVEUZeeiw+HQfF+hUNizAhPYTXIWCgVN0t7LHidNnpLXWwqetEGead74LimUpC2dsnQQ0PUn/f3oDrlSqWB1dRXb29s4f/48C3w+8YlP4O///u/xmc98Bt/61rfw/PPPw+Vy4fd///cP/PmHxde//nX8wR/8wXG4RJ4MW98HP/hBfOlLX8K//bf/Fj/4gz+IXC6Hj33sY/iv//W/wmKxYGtrC9evX4fJZEIoFEIoFGKZaKkNSUrgRFS8RKNWDwfeSauM5Im4pf+/l5yyX+yXrIG9J3koQReK1Wplt9pkxSMJhaIxLTsfj3D28nXvpxioWq2yZlT5fF4VGWvdmmuN45J+rt/vRzKZZIS/lxtGelcFQOb02IuMqV92Npvlvo7InuyCvN+H5Dmt6T80uFh5LHgLJenfykWAAg6t7yKdFHMQUGTN249KpYL19XVsbW0xsgaAv/qrv8LnP/95PP/887DZbHjzm9+MN7/5zQf63CZOQIQNANFoFF/4whfw3HPPYWlpCW9729vwYz/2Yzh9+jT7wbPZLDY3N7G9vQ29Xo+WlhYEg0EV0SlbpEqh1LkBfnR9kNdK5RQpgR9EDuFNBjloNL9fcleiWCwil8uxW2jp67Xez+u1DWgXxigjbAItKNSnmyJcniYKaEfeVqtV9jjtdzKZ5DYdom1pFQhpkSzBbrczV4TSIiaKomo4gdJqKpUgtDogArvRNW8fldIIVTJKk+tS8GQQmm4u3e/9QGlLpd+P+rOHw2Gsr6/jwoUL7Dv+9V//NT7xiU/gxRdf3LNC9QnHkxFhA4DP50M+n4fFYsG3vvUt/Mu//Av+23/7b1haWsL3fM/34Ad/8Adx4cIF9PX1oa+vD7lcDltbW7h9+zYEQWCRN12EVJRCkSPpobzIrVAoqLRELS+xViRO0gvPYihts6p1UfASRweJpLWgRezS70bz/GixyeVysuQujyC19uMghTjSx6vVKrMFamnRWvvC2x/6OxAIIJlMaiZueVIPOTlSqZTmokG/7V6uD+nnKB0y0qiWiF/53aTTx5X7T8EE7R/1p97PAg3ISfcgUBbF0OcRWW9sbGBtbQ0XL15kr/v85z+P//2//zdeeOGFp5msa4YTEWEXi0V84AMfwK//+q/LyDOVSuGLX/wiPvvZz2J2dhZvetOb8IM/+INsygyw60fe3t7G1tYW8+mGQiFVtp0IVWrjoinSPI2w1pE43S6S7/dRTpGDJBwPEl3TwviobVSru73FiRge1R9FK9mo1bVPWhCifLxa3R3wK7W40QxE3udqgfT3UqkkI0RqSqTlciF/P/XTkIKnbRsMBtZiV2nlI2SzWRbV8nqVkF8ZeOgKITeTlp5PsyKl5Msb+ixNQNLgi/0m06WfR7+N9Hwnst7c3MTy8jIuXrzIvt8LL7yA//7f/ztefPFFTS/7U4QnI+m4X+RyOXzpS1/C5z73Ody8eRNveMMb8Na3vhWvfe1rGeEWi0VsbW1ha2sL5XIZwWAQoVCI2/40FovBbDarusPxXCQA33FCj++nDJ62TdulKJYuVOnvcNDEIg88wt6rF8SjovFMJsO+60HkEC23x34ib51Oh1wuxxaZ/cghBGUyWq/XI5FIQBR3h9tqRetUtEWfXywW2ULBmzREIDLba2EjqyPvPCIHA6CO0rWOOVlV9+OYAuReay15jwdlRE7XApH11tYWHjx4ICPrL3/5y/jQhz6EF198UXWNPaV4ughbikKhgK9+9av47Gc/i2vXruHZZ5/FD/3QD+F1r3sdO7FKpRK2t7exubmJYrHIei5bLBZMTk7C7Xajr69PJpvs1StBqxeJlnSyXxKnbdBCQcnUgzhMHjfpeZBtUOGBMmGnFWHzkl5aWutej1MHPiW0JubwJpVT1KzVhwVQa9t0TtAIr72qIpVzFpUg7XuvtrDA/nqfU78PHrTse8oFZz9RNs8NIpUdt7e3sbS0hIsXL7Jr72tf+xp+53d+B1/84hf37DH+lOHpJWwpSqUS/vEf/xGf/exn8c1vfhMTExN461vfije+8Y0smqQTKxwOIxaLwe/3Y2BgQDXdGnjoOJESjbSYR4qDSCepVEo1OkormpeSuLRxjhb2S7YH0cW1JBXpvlYqFRa1auUHeKSylxyyl0wiCAJSqZTs9l4LWlEmuWKUdlJAOxEJaBfKSN9LcpeWZk7RsNZrKDrmSVbKKJvseDxyJkjPRdrmo6p7pfv1KBlkZ2cHCwsLMrL+xje+gd/8zd/Eiy++iNbWVu5+PaVoErYS5XIZ//zP/4y/+Zu/wTe+8Q1cuHABb33rW/GmN70JN2/exD/90z/hp37qp1CpVLC5uYlsNgu/349QKMSd1yfVu/dTgANoj3Ki22EpDqqV03+pz8pByVYL+9XAtXR38jIrSVDLHbJXcY2Wc0P5eDKZ1JRJlJWsUlDSUKfTIZ1Oy7YrlUOUsFqtzMrHg7Ixk7IMX6ptkyuG9xlE6Lz9J9JWDk/IZrPcnA19nnTYhxZBKx+TNlgD1DJINBrFvXv3cPHiRfa6/3975x4U1Xn//zcIKnJHYI2AQvCSeEXRQpwEp1ZRI3GBGKJNKg2xJq12pGm+MY4TEzOTW5tLTZxc2iYZU40mLEQMqKmhUXOzqSOIaECiotzc5bYs7LL38/uD3/Pk4XDOYVeBBXleM5kJu+ec59l1930++3k+n/fz3Xff4f/+7/9QVFSEqKgoyfdpBMMFWwmHw4HvvvsOGo0Ghw4dgsPhQG5uLtavX0+NbxwOB1paWqDT6dDR0YGwsDBERkYiJCREVrzJaryU2ALSgi2XO77R/Df5m+S/lX6mu4Kr4i6XsmDFXRC6G1AsFotkaaWc6Cs9LvV+EEGSElA5IQfQw8eciKPZbO5VASEei5w3atSoXlUsbDs6gaRxyJjia4trsNldzOVy1mTeUgZNcv8uvr6+PQIFVyqHvLy8eu07yaZB2tracPHiRSQkJNCy2v/973/YsmULDh06hEmTJvUag8MF2yXeeecdfPrpp9i2bRv+/e9/49ixY4iPj4darcaKFStomsLpdKK1tRVarRYGgwEhISFQqVQICQnpJRhEtMWdlErlgFKRtDsROtBb1FhjKxLFW61Wydx6f6RD5ARbDmKHa7PZeuRnpaLrvtIhUnMhczWZTD3OlWsLZ8WahdyAXc1rs6ItCEIvn3b2uhaLRbZyhETaJGXBXkNKtMnnRcqkSSo1QsRa/BlVirLJzUn8OSQWEnq9HpWVlZg3bx4V69LSUvzhD3/AwYMHERcXJ/kecrhg90lDQwOeffZZ7N69m364nE4nysrKoNFocOTIEURHR0OtVuPee++ltptOpxNtbW3Q6XTQ6/UIDg6m/iZSXxQSeUvlct0pByTHu9qhKXWswWCgHsxyi5dS8xO/pr7y130hvobdbofRaITZbJbMayuVBcp1VYrr20n7vdxnWs5TBOgWN5PJJHmuVG7b29sbRqNRcrNd8XX7+jeQ+iVCYOdLUhtdXV19dsaS0kBXy/fYmwGBfO6IWLe3t+PHH39EQkICzYmfO3cOv/vd75Cfn4+pU6cqvs4RDhfsm0UQBFRUVECj0aC4uBjh4eFIT0/HqlWraCmSIAjQ6/XQ6XRobW1FYGAgVCoVwsLCev3M9fLq9u1g24TlxFYuf+1OhC51rLgOly0dlBIrdxYs5R53J+omqQLSXUnmIJf2kBMyuXJBAJJpEql6ewK7qEm2QSMoeX44nU7ZGw2B3DyVNhNWusmQkk/W35pNP7GQ+n5BEBAQEEDfO6WFbRay2QGBVKbYbDYYDAZcuHABc+fOpTfcCxcuICcnB5988gnuvPNO2feAA4ALdv8iCAKqqqqg0WhQVFSEwMBArF69Gvfddx8iIiJ6tDtrtVq0tLQgICAAkZGRCA8Ph7e3N65cuQKDwYDZs2f3yAHe7IIlIJ8Ocfe65Kc/aeK52fy1q/v8kdcgrjIxmUzU00RMX+kQKch1xGWAcru7y41DFg39/PwUDZxI2kMuMifI3TDJlnBiWwACiXClNsOVK/0Uu+9JVTmJPyvk/ZFKg3R0dOD8+fM9xLqqqgrZ2dnYt28fZs+eLfn+3CxmsxkpKSmwWCyw2+1Ys2YNdu7cOSBjDQJcsAcKQRBw+fJlaDQaFBYWYvTo0Vi9ejXUajUmTJhAxbujowM6nQ7Nzc10Z5A5c+b0avtl0yZKC5Y3mw5xpy6cRE9EvMmX3510iJxplVIOXArS2SiusxYEQVLISWQrRiqCJhvcygm2eB2CfZxUv8jBphzI2gFBnF7w8vLq0c1Izmdz8XILpXI5cqC3aJNaa/Hx7e3tvXbEIf9GbGRNqkGIWHd2dqKiogJz5syhi/WXLl3CQw89hI8++ggJCQmy78/NIggCjEYjAgICYLPZcPfdd2PXrl1ITk4esDEHEC7Yg4EgCLh27RoKCgrw2Wefwel0Ii0tDRkZGYiOjkZ7ezs+//xz/OIXv4CPjw+am5sxevRoak4lJd6AtBOgO2LLXos9Vi5f2deNgBVvuQYYMVKmVeRYdwSbhfWmlhNT8XZUBLmInIiPFEq+1cQrW+qaUu3frGiTMkDxMaQGm62NFj8vfk0+Pj401SYFGZMcK1eqJy4tJc1F7I2OTYN0dnbi3LlzmDNnDq2CuXr1KtauXYv3338fCxYskJzPQGAymXD33XfjnXfeQVJS0qCN249wwR5sBEFAY2MjCgoKUFBQAL1ej46ODqxfvx5PPPEE/YIYjUbodDo0NTXBx8eH+ptIpQ6UFizJmK5G3XKC7e6NgJQMkojQlXK+vpBqPFLCZrNJ1iqbzWbZvRGVmmUEoXtjCrE4y9mLktI2MhfxeSS6Fp9js9ngdDpldyoixyhtXsC2xrPdiXIpHfKLQ7ynotJnwW63Y8yYMejs7OwReZObm9FoRHl5OWbPnk23J6urq0NWVhbefffdQYtyHQ4HEhMT8dNPP2HTpk145ZVXBmXcAYALtif58ccfkZWVhdTUVJw7dw5tbW249957oVarMX36dPrF6Orqoraw3t7eVLylvtAkoiT/yYmtyWTqJVoDlRcXR97uiK74tbkDKyxsE4qSN4kc4nwuuZ6SFzRbAkiiUyKkSpsXkPSXUmWI+NeVGDIeW5vNzl8MMbMSX4PMR+pxNg1Cfinp9XpcuHABQUFB0Gq1mDNnDi17bWxsxJo1a7Br1y6kpKTIzn2g0Ov1yMjIwFtvvYVZs2YN+vj9ABdsT2E0GrFkyRJ88MEHmDlzJgCgpaUFhYWFyM/Px/Xr17F8+XJkZGTgzjvvpF8Ms9lMzakEQZB1FgR+FjipWm+prkm5/HVfkZb4GkribrVae3iIuBN136hgAz8vThIxlLq+2WyWtO+UE3JS/ywnrFI122wVkNx5pFlFqaSSRNdKre5ms1l2v0lxrpyItSvpMFJxIk6HCYJA66zLy8sxduxYGAwGHD58GEuXLsULL7yA1157DUuWLJGd80Czc+dO+Pv748knn/TYHG6C4SfYR48exZYtW+BwOLBhwwY8/fTT/Xn5QUUufwt0RwOff/45CgoKqKd3enp6jx04LBYLFW+Hw0HFW+rnPht1k9ZkMe60ubuzkCkn7iTiJm3yfeGOYMtFn+QmIbXBgJwwK3UvkmuJUfKKJlUbSpE5QaoyRGzAJCXapPJGyVmRjE+uJ/cLi32MiLUgCL1+dZCNLM6ePYsZM2ZQT/A9e/bgww8/hMViwapVq5Ceno6UlJQb8tN2l6amJvj6+iIkJARdXV1ITU3F1q1bkZaWNuBjDwDDS7AdDgemTZuGY8eOITo6GgsXLsT+/fsxY8aM/hpiSNLR0YHi4mLk5+dTT+/09HQsWLCAfnGtVit1FrTZbIiIiIBKpaIRo9VqxdmzZxETE4MJEyb0MqdyJx1CjndVmOUqQYCfhZXkPeUixpuJruUedzgcVLjlUhtOp1O2KYV9TFx7Le4OZGF3bZfaW1Hqlw85Tlw5QmDHFqdClOqzyTZjBKnPAXs+sXYlx5HUjdVqhdlsRllZGe68806a025tbUVmZiZ27NiB1NRUnDhxAoWFhVi9ejVSU1Ml59WflJeXIzs7m/5aycrKwo4dOwZ83AFieAn2999/j+eeew5ffPEFAOCll14C0L2j8UiBeHprNBqUl5dTT+/k5GT6xbPZbGhuboZWq4XZbEZISAhaWlowbdq0XlaVbGNJf1SYSAlbV1dXr5SN3AIp+alut9t7lOgNhGATSJQvZzIl9fkm82ev53Q6abQtFz2yC5HkHLaqQy4iJqItV55H0lyAtC+JXIpJKhcut/As9uEm75fVaoXFYkFpaSnuuOMO2u2r1+tx//3346mnnkJGRobk6+K4Rb8ItnvfpJugvr4eMTEx9O/o6GjU19cP1vBDAj8/P2RkZGDfvn04ffo0Vq5cib179+Kuu+5Cbm4uTpw4AS8vL9x2221ISEhAdHQ0dDodxo4di0uXLqG6upramQI/f9FZD232OVdz2oC0GEp5SvcFqWzw9/e/4R253YHYkcr9CpCCbB/H4u3tjbFjx/Zy2WOR2imGjKt0UyKLgko3IovFQn1H+oLNW0s9xwq8XC078LNYl5WVYfr06VSsDQYDsrKy8Kc//YmL9RBj0PZ0dLUZY6QwZswYpKWlIS0tDVarlXp6P/nkk0hKSsLtt9+Offv2oaSkBCEhIdRZ8Nq1a+js7ERYWBhUKhWCg4Ppl1QcPbsa2cr9ylLyyJC6Bvvv6eXl1WOrK5I2YecoNW5HR4fkYltfUfeoUaMwbtw4OBwOuqAo97qId7UYh8OBiIgICILQq4mnrwYaQLnNn+SOlXLfchG6+LWQfxepSiI2TQb8vAEBmy4haRCr1YqysjJMnTqVbuHV2dmJtWvX4vHHH0dWVpbs6+F4hkGLsKOjo1FbW0v/rqurw8SJEwdr+CHN6NGjsXz5cvzjH/+gueq3334bfn5+2Lp1K44cOQKbzYbIyEjMnj0bSUlJCAsLQ319PU6dOoXKykq0trb2iK7Z6JtE3u5G3VLcyDVIKsHPzw9jx46V3U8R6L09lrsQ4XY1AhU/R9JMciIpd54rmyko1aL39WuEnMdWeLDln1LHsh7d5Dgi1jabDWVlZZgyZQrCwsIAdJeLrl27FtnZ2Xj44Ydl58LxHIOWw7bb7Zg2bRpKSkoQFRWFhQsX4uOPP6ZlcZxu3nvvPeTn50Oj0cDf3x/ffvst8vPz8Z///AczZ86EWq3GsmXLaDUJcRbUarW0/VilUiE0NFR2sU0sHO7muqWExd0FTnIOu3gnd22pebjyuLh+GlD+1SEe2+l0wmAwwNfXV7E9nBVrqaoZqRpp9hjWmEopCncnb01uPOLyPSLWpaWliIuLo+siZrMZ69atQ2ZmJjZu3Diif/0OEMNr0READh8+jNzcXDgcDuTk5GD79u39ct2cnBwUFRUhMjISFRUV/XJNT1FaWooZM2b0ysk6nU788MMP0Gg0OHbsGKZMmYL09HQsX76cdqIJgkBtYdva2hAUFITIyEiMHz9eUbwB6RpeuUj6ZitPxOKulDeWmltfj4ufI52bch4ugHwbPPBzRYhUFE1SPyxsZYhcxYnJZKL12HKe1eL5EUtZV7pciac1mSMRa7vdjtLSUkyePBmRkZEAuiuBHn74YaxYsQKbN2/mYj0wDD/BHihOnjyJgIAArF+/ftgLtisQT++8vDwcPXoUMTEx1NOblGQJgoD29nZotVq0trYiICAAKpUK48eP7yEwVqsV1dXViIuLQ2BgIP2yygkD4Lq4K4mL3ONsKkduvBt9nOyaIlVRopSOYI2RxOeS2ma5seRSJWyOWe7GyP7KYcv8pG6abMpLvLUXWdS02+0oKytDTEwMVCoVgO5//9/+9re45557etgrcPodLtgsNTU1SEtLGxGCzSII3Z7eeXl5dJdqtVqNtLQ0mpsUhG5bWJ1Oh5aWFowbNw6RkZEIDAxERUUF4uPjER4eTq/J5nLFY7krwK6mWsSPs1GxHDcq5BaLpUfjk9RrZc+RitYJfeW2lb5fSlE9GYtUeYh9qtnXwz4utbWXxWKBw+FAWVkZoqKi6Oa4drsdOTk5SExMxNNPP83FemDhgs0yUgWbRRAEVFZWUk/voKAgKt6sp3dnZyfq6urQ0NCAoKAgREdHIzw8XNZ5j12EczdP7Wq9t9LjAHrtNO5qOkT8OHtDIHXUrkTXYsgO53KQkkgyjhRE7PsSdbn3HOh5gyN152w+nI2sJ06ciNtuuw1Ad+T92GOPYdq0aXj22We5WA88XLBZuGD3RBAEXLp0Cfn5+SgsLMSYMWNw3333Qa1Wo7q6GocOHcJzzz0HANTT29fXF5GRkYiIiJAsMWPFW1w+5qowy3VOupKCIblhqTpq8bFSyAkf27givlZfNwa5TQQA9HD7s9vtPd5TNm8tt9BIujSVfGLY67GpG29vbyrWZ8+ehUqlojuZOxwO/PGPf8TEiRPxwgsvcLEeHLhgs3DBlkcQuj298/Pz8eGHH6KlpQU5OTn4zW9+g+joaPqFNZlM1BbW29ubenorOQuS/xfjjmAr/cSXugbx8pDy9FDKX0ulL8gY5HqsAPfVDMNWoojnID6X7M5OasXF9qpKlSNk/nLrBFJmTsSo6+zZs4iIiEB0dDR9Ljc3F8HBwfjrX//qdhcq54bpF8EetMYZjufw8vLC5MmTERcXh4CAAOzduxcnT57E448/DrPZjLS0NKjVasTFxSE2NhaxsbHo6uqCTqdDeXk5vLy8qDkVERpW2Ig4s3XBUuIi1eYOKFeeyL0etiFErjWdYLFYZMdlq2RIFYZSBE+OZc8j82CrMsSQzQXktlRjo20pwSfRvDiXLW6/J00/DocD5eXlCA8P7yHWTz31FPz8/LhYD1NuiQh73bp1OH78OJqbm6FSqbBz5048+uijnp7WkMJqteLxxx/HG2+80aOSRKfT4bPPPqMbMhBP72nTpvVYpCPOgk6nk5pTSYmguPmEhWw/JUaphtudRUu53XK6urokG3KUbhRKuWe5xUIlwWbPVWoyInNSmhe5KUp1MZIFxnPnziE0NBSTJk2ic3vmmWfQ1dWFt99+e8DEura2FuvXr8f169fh7e2NjRs3YsuWLQMy1jCDp0QGkpH4wWtpacHBgwdRUFCA69evY8WKFdTTmwiM1Wql4m232xEREYHIyEhJQfTy8oLJZIK/vz8VFlcXJ2+kIoWMQYSbRN99+XiIYdMk4jJApYoScp7cRg/suVLiLgjddq8BAQEwm82Su9KwZX1iIyoSWVdUVCAoKAixsbH0nOeffx46nQ7//Oc/B9TfpbGxEY2NjZg/fz46OjqQmJiIgwcP3vKunC7ABXsgGekfPL1ej0OHDqGgoABXr16lnt5z5szpsVMJsYW1Wq0IDw/vYQt78eJFOBwOuomDq12W5HF3onHx8YIgwGQy9WjNZiE3D1eag9h8uVIpHpsSMplMvbojpTajEKdl2AoPg8HQy1eFHM/Wb7NpkPPnz8Pf3x9xcXH0uZdffhlXrlzBnj17BtyMS4xarcbmzZuxbNmyQR13CMIFezAZyR881tP74sWL1NM7MTGRCpvdbkdTUxN0Oh26urogCAICAwMxY8YMyXysK6WC7qRD5MSXRLJkQZE9Rk6sla6l1AEqFkNxXruvNIfUxsziNBKJwNnXQsT6woULGDt2LOLj4+n5r7/+OioqKrBv3z63zLz6g5qaGqSkpNCIf4TDBXuw4B+8nzGZTDhy5Ajy8/Nx7tw5LF68GOnp6UhKSsKoUaNgNpvx9ddf0046o9GI8ePHQ6VSISgoqJfYyZUK3kg6pK/j2XSJq9E1+7i4hls8X7nrKXmksOfLjctuhMzWynd2dsJqtWLMmDGorKzE6NGjER8fT2+Eu3fvxqlTp/Dpp58Oyg4xLJ2dnVi8eDG2b9+OzMzMQR17iMIFezDgHzx5zGYzjh07hry8PJw5cwZJSUkoLy/H6tWr8ec//xlAd2Tb2toKrVaLjo4OhIWFITIyEiEhIZLiTf672cVJpeNZsynxddxJk7hSAsjmw+Vy+CSyVnp9TqezR3UJWTC+du0ampubaWQdFBSE0aNH4+9//ztKSkqQn5/vlld4f2Cz2ZCWlobly5fjiSeeGNSxhzBcsAca/sFznZaWFixduhTjx4/H9evXkZSUBLVajZSUFCo0TqcTra2t0Ol0aG9vR0hICFQqFUJCQmTTJmKrU1fTIXLHk3mwi39sPbdSdC13ra6uLsm9OAnsWGLRFuet5dr5R40a1WNhlaRBLl68CEEQEBERgdLSUuTm5iIqKgpGoxElJSXU53qwEAQB2dnZCAsLw9/+9rdBHXuIwwV7IOEfPNchG6Ru3rwZDz74IOx2O06cOAGNRoOvv/4a8+fPh1qtxpIlS2i053Q6odfrodVqodfrERQUBJVKhbCwMEnxlsrxkuu4uzgp97hcjlougge6f4EFBgZKniuVKhGnU6ReE5uyYSNwci7xWKmurobT6cT06dPpNfbs2YMDBw4gMTERX331FeLj4/HMM89g7ty5kvPvb7755hvcc889mD17Nn3PXnzxRdx7772DMv4Qhgv2QDKQHzyz2YyUlBTaOrxmzRrs3Lnzpq/rKQRBQFVVFe64445ezzkcDnz77bfQaDT46quvMGvWLKjVaixdupRGpYIgQK/XQ6fTobW1FYGBgdQWVizG4siblA2KuRHBZssCiagqRdekCYZcT9z1qFRRQsaTe17KnpWNrC9dugSr1dqj5PKTTz7Bnj17UFxcDH9/fwiCgPPnzyMkJIQ2z3A8Bhfs4YogCDAajQgICIDNZsPdd9+NXbt2ITk52dNTG1CIp3deXh6+/PJLTJkyBRkZGUhNTe3h6W0wGKDVatHS0gJ/f3+oVCqEh4f3EG+73Y6qqirExcUhODi4V2u2K4ZJ4selctRKHtqk1VzqdSotNLIRe1+LnGykbbPZqFibzWbMmDGDvpaCggK89957OHz4MAIDAyXH5XgU3po+XPHy8qICZbPZYLPZRoQBj7e3N5KTk5GcnAyn04nS0lLk5eXhtddew6RJk6BWq7Fy5UoEBwcjODgYgtDtLKjVanHlyhX4+fnRBcuKigpMmjQJ48aNo+8fibzlghAlcVSK5NnNjQlyYk0gbe7kWlLXJmNLVbOwY7NpkCtXrqCrqwszZ86k1y0qKsLbb7+N4uJiLta3ODzC9hAOhwOJiYn46aefsGnTJrzyyiuenpLHcDqdqKiogEajQXFxMVQqFdRqNVatWkU9vYHufHFDQwPq6urg7++PmJgYRERESJasEac7NkIFlDsbxYhroJ1OJzo6OjBu3DjFumoAvdIkUjlp8XtAEC9EkjRITU0NDAYDZs2aRa//xRdf4JVXXkFxcTHGjx8v8w5zhgA8JXIroNfrkZGRgbfeeguzZs3y9HQ8jiD09PQODg6mnt4WiwV/+ctfsGPHDvj5+VFnQR8fH2pOJWWsRARSKqcsl7pQEnil3XCUFkGJY6BSXputtWbF+urVq9Dr9T3WVEpKSvD888/TjSs4Qxou2LcKO3fuhL+/P5588klPT2VIIQjdnt4ajQYajQYNDQ144IEHsGXLFqhUKip8xFlQp9PB29ubenpLeXEQ21I24nUlumbnxJ5LxLuvBUr2e9ZXrTdJkRAf7draWrS0tPSwBTh58iS2b9+O4uJiuoMMZ0jDBXu40tTUBF9fX4SEhNCSuK1btyItLc3TUxuS1NbWIj09HVu3bkVtbS0OHjwILy8vpKWlIT09HVFRUVQAzWYzFW9BEGjkLeUsSMRbqvQOkK/hlmpBJ7XccguNrB83W9pHxhD7dRPXvbq6OjQ1NWHu3LlUrL/99ls89dRTKCoqopsScIY8XLCHK+Xl5cjOzqblY1lZWdixY4enpzVk2bBhAzZs2ECraARBQENDA/Lz8/HZZ5/BYrFQT+/Y2FgqghaLhfqb2O12Kt5Si4WseCulSeSiY1JNQtIaUouIUukT8v1jxZrsbl5fXw+tVou5c+fS+fzwww/Izc3FoUOHqHUqZ1jABZsjjcPhwIIFCxAVFYWioiJPT+emkTNcIs/pdDoUFBSgoKAA7e3tWLVqFdRqNaZOndrDIImIt9VqpbawpFqHha3zFi86uprvdqcemz2GiHVjYyMaGhqQkJBAxzxz5gw2bdqEgwcPUjc+zrCBCzZHmtdffx2nT5+GwWC4JQTbHZqbm1FYWIj8/HzodDqsWLEC6enpPRpMbDYbmpubqbMgsYUNCAignh5kA4DY2FjFRUtAOd8tFmQWdqceUmdtt9tx/fp11NfX9xDr8vJybNy4Efn5+Zg6dWp/v22cgYcLNqc3dXV1yM7Oxvbt2/H666+POMFmIZ7e+fn5uHbtGlJTU5Gent6j0sJut6OlpQVarRYmkwlhYWEwGAwIDw+nGwAQSNqELcuTE2vyHEl1sK3rrNETexOx2WzQarWora1FQkICPffChQvIycnBp59+KtlNyhkWcMHm9GbNmjXYtm0bOjo68Oqrr45owWYxGAzU07u6uhq/+tWvkJ6ejvnz51PxNpvNKC8vp+IaFhYGlUqF4ODgXtExm/NWqjKR6qok+W52IwibzQadToerV69i3rx5VKyrqqqQnZ2Njz/+mJd9Dm/6RbD5Lpy3EEVFRYiMjERiYqKnpzLkCAoKwrp166DRaPD9999j0aJFeOedd7Bo0SJs3boVJ06cQHp6OrRaLZKTk5GUlISwsDDU19fj1KlTqKysRGtrK81XO51O2Gw2WCwW6glDnlPyxwZ+To84HA4q1k1NTaipqekRWV+6dAnZ2dn46KOPuFhzAPAI+5Zi27Zt+Ne//gUfHx+YzWYYDAZkZmZi7969np7akMVsNqO4uBhPPPEEwsPDsXDhQqSnp2PRokU90hltbW3Q6XTQ6/UIDg6GSqVCaGhor+iaRM4+Pj6SNqnswiUR65aWFly6dAnz5s2jTTNXr17F2rVr8f7772PBggUD9vpzcnLojb6iomLAxuHwlAhHgePHj/OUiAtYLBZkZWVh2bJl2LhxIzX9P3XqFJKTk6mnN9t9SGxh29raEBQURJ0FpcSb5LzJ5rxErO12O6xWK1pbW1FdXY158+bRLs26ujpkZWXh3XffHXBDsJMnTyIgIADr16/ngj2wcPMnzuASGxuLwMBAjBo1Cj4+Pjh9+rSnp3TT6HQ6pKen45FHHgEArFy5EitXroTNZsPJkyeRl5eHbdu2ITExEWq1Gr/85S8RGhqK0NBQCIKA9vZ26HQ6/PTTTwgICIBKpaK2sKQdnZhTkbZ0ssN5W1tbL7FubGzEgw8+iDfffHNQ3BtTUlJQU1Mz4ONw+gceYXNcJjY2FqdPn0Z4eLinpzKoOBwOfPPNN9BoNDh+/Dhmz55NPb1JB6UgCOjo6KC2sOPGjUNkZCTCw8MlN7/V6/WorKzEvHnz6KYOWq0W999/P1599VUsWbJk0F5fTU0N0tLSeIQ9sPAIm8MZDEaNGoXFixdj8eLFcDqdOHXqFDQaDV588UVMnTqVenoHBQUhKCgIU6ZMQWdnJ636GDNmDPU38fX1RXt7OyorK5GQkEDFuqmpCQ888ABeeumlQRVrzvCCR9gcl4mLi0NoaCi8vLzw2GOPYePGjZ6ekkdxOp04c+YMNBoNvvjiC0yePJl6egcFBdHjjEYjdRYEuhc6ExIS6DGtra3IzMzEjh07POInwyPsQYEvOnIGl4aGBkycOBE6nQ7Lli3DW2+9hZSUFE9Pa0hAPL3z8vJw+PBhTJgwgXp6k41wL168iKamJkRGRqK1tRU7d+7EokWL8OWXX2Lbtm3IyMjwyNy5YA8KXLA5nuO5555DQEAAt4SVQBAE/Pjjj9TTOzQ0FElJSdi3bx+Ki4upadPZs2exdetWtLS0ICIiApmZmcjMzBzU/RfXrVuH48ePo7m5GSqVCjt37sSjjz46aOOPILhgcwYPo9EIp9OJwMBAGI1GLFu2DDt27MCKFSs8PbUhjSAIOHr0KB599FHEx8fD19cXq1evxtKlS7Fp0yZs3LgRDz30EBobG3Hw4EE4HA5s3rzZ09Pm9D9csDmDx+XLl+lPdrvdjl//+tfYvn27h2c19Ll48SKysrKwf/9+3HHHHaipqUF+fj52796NRx55BM8++6ynp8gZHLhgc24t9Ho9NmzYgIqKCnh5eeGDDz7AXXfd5elp3RR1dXVob2/HzJkzezyuZBnLuSXhgs25tcjOzsY999yDDRs2wGq1wmQyISQkxNPT4nD6Ay7YnFsHg8GAuXPn4vLlyzzy5NyKcLc+zq3D5cuXERERgUceeQTz5s3Dhg0bYDQaPT0tDmdIwQWbMySw2+04c+YMfv/736O0tBT+/v54+eWXPT0tDmdIwQWbMySIjo5GdHQ0kpKSAHRvxHDmzBkPz4rDGVpwweYMCSZMmICYmBhUVVUBAEpKSjBjxgwPz4rDGVrwRUfOkKGsrIxWiNx+++348MMPaVs3hzPM4VUiHI4rVFVV4cEHH6R/X758Gc8//zxyc3M9NynOSIMLNofjLg6HA1FRUfjvf/+LyZMne3o6nJEDL+vjcNylpKQE8fHxXKw5wxIu2JwRxYEDB7Bu3TpPT+OGOXr0KKZPn44pU6bwsscRCE+JcEYMVqsVEydOxPnz56FSqTw9HbdxOByYNm0ajh07hujoaCxcuBD79+/n1TTDA54S4XDc4ciRI5g/f/6wFGsA+OGHHzBlyhTcfvvtGD16NNauXYvCwkJPT4sziHDB5owY9u/fP6zTIfX19YiJiaF/R0dHo76+3oMz4gw2XLA5IwKTyYRjx44hMzPT01O5YaTSl9woa2TBBZszIhg3bhxaWloQHBw8INd/4403MHPmTMyaNQvr1q2D2Wzu9zGio6NRW1tL/66rq8PEiRP7fRzO0IULNodzk9TX1+PNN9/E6dOnUVFRAYfDgQMHDvT7OAsXLkR1dTWuXLkCq9WKAwcOYPXq1f0+Dmfo4uPpCXA4twJ2ux1dXV3w9fWFyWQakMjXx8cHu3fvxvLly+FwOJCTk9NrJxvOrQ0v6+Nw+oFdu3Zh+/bt8PPzQ2pqKvbt2+fpKXGGFrysj8MZCrS1taGwsBBXrlxBQ0MDjEYj9u7d6+lpcW5B+oqwORxOH3h5eT0AYIUgCI/+/7/XA0gWBOEPnp0Z51aDR9gczs1zDUCyl5fXOK/uOrtfAfjRw3Pi3IJwweZwbhJBEP4LQAPgDIBz6P5e/d2jk+LckvCUCIfD4QwTeITN4XA4wwQu2BwOhzNM4ILN4XA4wwQu2BwOhzNM4ILN4XA4wwQu2BwOhzNM4ILN4XA4w4T/BzsZ4YGggAIeAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 360x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Reconstituting the approximated function\n", "\n", "X = X.reshape(ny,nx) # back from 1-D vectors to matrices\n", "Y = Y.reshape(ny,nx)\n", "\n", "W1 = np.polynomial.polynomial.polyval2d(X, Y, Cij)\n", "err = np.sqrt(np.sum((W0 - W1)**2)/nx/ny)\n", "\n", "print('Root mean square error across the plate: {0:5.3f}%'.format(100*err))\n", "\n", "# Visualization\n", "\n", "f2 = plt.figure(2, figsize=(5,5))\n", "ax = f2.add_subplot(projection='3d')\n", "\n", "ax.plot_surface(X, Y, W1, \n", " rstride=sy, cstride=sx, \n", " cmap=cm.Greys, shade=True)\n", "\n", "ax.set_xticks(np.linspace(0, a, sx)); ax.set_xlim((0, a));\n", "ax.set_yticks(np.linspace(0, b, sy)); ax.set_ylim((0, b));\n", "ax.set_zticks(np.linspace(0, 1.5, 4)); ax.set_zlim((0, 1.5));\n", " \n", "f2.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The polynomial approximation allow us to calculate the partial derivatives without the\n", "need of a numerical differentiation scheme. \n", "The function below implements the derivative for a 2D polynomial:\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# Derivatives of the 2D polynomial: defining a function\n", "\n", "def polyder2D(C, kx=0, ky=0):\n", "\n", " derC = C.copy()\n", " nx, ny = C.shape\n", " \n", " for ix in range(kx):\n", " for ii in range(nx-1):\n", " derC[ii,:] = (ii+1)*derC[ii+1,:]\n", " derC[ii+1,:] = 0.\n", "\n", " for iy in range(ky):\n", " for jj in range(ny-1):\n", " derC[:,jj] = (jj+1)*derC[:,jj+1]\n", " derC[:,jj+1] = 0.\n", " \n", " return derC\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Observe that the proposed function keeps the polynomial order (size of the coefficients\n", "matrix minus 1) to allow some direct algebra with the coefficients, but the non-zero \n", "matrix elements will ensure the the correct order reduction.\n" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 1.62 1.5 2.77 -1.23 0.12]\n", " [ 46.43 59.01 -11.8 0. 0. ]\n", " [ 2.06 -7.38 1.48 0. 0. ]\n", " [ -1.97 0. 0. 0. 0. ]\n", " [ 0.12 0. 0. 0. 0. ]]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAFkCAYAAADv+7rXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADpGElEQVR4nOz9eZBk6Vkejj4n932trMqqytr36q7q7qqu6pnWSFghyyMR/GQMGEvwC4Ifi40the3r8LUJR/gSEIERGIeNLWCujK4xeKQxQQCSJUYgwEKWmJneu/Z9zazc930994+c75uzZXUtmbXMnCdiYroqs06ezDzn+d7ved/3eRmWZSFDhgwZMq4XFJd9AjJkyJAh4/SQyVuGDBkyriFk8pYhQ4aMawiZvGXIkCHjGkImbxkyZMi4hlC94HG5FEWGDBkyzg+m2QeUI28ZMmTIuIaQyVuGDBkyriFk8pYhQ4aMawiZvGXIkCHjGkImbxkyZMi4hpDJW4YMGTKuIWTyliFDhoxrCJm8ZciQIeMaQiZvGTJkyLiGkMlbhgwZMq4hZPKWIUOGjGsImbxlyJAh4xpCJm8ZMmTIuIaQyVuGDBkyriFk8pYhQ4aMawiZvGXIkCHjGkImbxkyZMi4hpDJW4YMGTKuIWTyliFDhoxrCJm8ZciQIeMaQiZvGTJkyLiGkMlbhgwZMq4hZPKWIUOGjGsImbxlyJAh4xpCJm8ZMmTIuIZQXfYJyLh+YFkWpVIJpVIJarUaKpUKSqUSDMNc9qnJkPGBAcOy7HGPH/ugjA8earUaSqUSKpUKyuUyAIBhGPj9fvT09EClUslkLkOGGE2/GeTIW8aJwLIsKpUK1tfX0dHRAaPRCIVCAYWirrwdHR2hq6sL5XKZkrZKpaKRuUKhkMlchowmQiZvGS8EkUlI1F0oFLCxsYFCoQCz2Qy73Q6WZXlkzrIsqtUqKpUKWJYFwzAymcuQ0UTIsomMY1GtVlEulykBP336FJlMBmNjYzCbzchms4jH49jf34der4fVaoXNZoPdbodGo6HHYVmW/geAkjn5TyZzGe9zyLKJjIsBkUkqlQol1Y2NDaRSKYyPj8PlcqFUKsFqtcJqtSIcDmN2dhapVArxeBw+nw/VapVH5mq1WnR8rm4uk7kMGSeHTN4yRKjVaiiXy6jVamAYBvl8HouLi3C5XOjo6OCRMBcKhQI2mw02mw0DAwOoVquUzL1eL2q1GqxWK+x2O2w2G1Sq9y4/lmVRLpd5ZK5UKqnUIpO5DBl8yOQtg4Lo1FwCDQaD2N7exo0bN2Cz2bC+vo4XSG0USqUSdrsddrsdQF2CSSaTVGZhWZZG5VarVUTmPp8PpVIJPT09YBiGV5Yok7mMDzpk8pYBQCyT1Go1rKysoFKpYH5+nkbbDMNIkvdJCF2pVMLhcMDhcAAAKpUKEokE4vE4dnd3wTAMj8wJQSuVSpo0LRaLYBiGR+YqlYr+ToaMDwpk8pZBq0hIUjKTyWBpaQkejwcej4dHio3I+yxQqVRoa2tDW1sbAKBcLiORSCAajWJ7exvVahVarRYWiwUWiwVKpZL+bSMyV6vVtMZcJnMZ72fI5P0BBlcmIWR3eHgIn8+HqakpmEymEx+LkPp5CFOtVsPlcsHlcgEAfD4fEokEQqEQtra2oFKpaGTOJXOymJCuT6CuvxO9nMgsMmS8nyCT9wcU3NpthmFQqVSwtLQEjUaD+fl5XpTLRaPIuxnkLYRKpYLRaER/fz+AOjnH43EEAgFsbGxArVZTTd1sNstkLuMDBZm8P4AQyiSJRAIrKysYGhqC2+0+9m+bKZu8CMKFQKPRoKOjAx0dHQCAYrGIeDyOo6MjpNNpaLVaWslyHJlHo1GYTCaYzWaZzGVcW8jk/QGCMCnJMAx2dnYQiUQwMzMDvV7/wmO8KPK+SGi1Wrjdbrrg5PN5JBIJeL1eZDIZ6HQ6SuYmk4mSeSKRgEqlglar5UXmwmoWGTKuMmTy/oBAKJMUi0UsLi7CarVibm7uxGTFJelWJTLPCr1eD71ej87OTrAsS8n84OAAmUwGBoMBdrudavzcyJxlWRSLRRSLRQD1yhgSlZNqFhkyrhJk8v4AQNjJGIlEsLGxgfHxcTidzlMd66JJ+qyvxTAMDAYDDAYDurq6wLIscrkcEokEUqkUkskkLBYL1cz1ej3Pl6VWq6FQKNDjETKXHRNlXBXI5P0+hlAmYVkW6+vryGazmJub43mPnBQXKZs0kyAZhoHRaITRaEQ2m4XL5YJarUY8Hsf29jZyuRxMJhMlc51OJ5O5jCsNmbzfp6jVavD5fDAajTAYDMjlclhcXERHRwfGxsbOTDZXSfM+DxiGgclkgslkQk9PD1iWRSaTQTwex+bmJgqFgojMCWQyl3EVIJP3+wzc2u1IJAKVSoVkMom9vT3cuHEDVqu1Ka9B/v9+ISmGYWA2m2E2m9Hb2wuWZZFOpxGPx7G2toZSqUTtb+12O7RaLf1bQuYbGxswmUxwOBwymctoOWTyfh+BmDtVq1VKFjs7O1Cr1Zifn+d5h5wVF52wbNUxX0SmDMPQzs6+vj7UajVK5isrKyiXyyL721qtRj3Na7Ua8vk8fR2ZzGU0GzJ5v08grN1Op9MIBALo7OzE+Ph408iC+J4Ij3fVNe/zQqFQUPvb/v5+1Go1kf0tgcVioU6IwHuROZfMuQ1DMpnLOAtk8r7mkKrdPjg4wNHRETo6OuB0Opue+GtE0tdJ8z4vpOxvV1dXUSgUsLCwAJZlRfa3UlOGCOQpQzJOC5m8rzGEtdvlchlLS0vQ6/WYn5/H7u5uS6LhRgnLDzKUSiV0Oh11TaxWq0gkEkgkEieyv+WSuTyYQsZJIJP3NQWJtolMEo/Hsbq6ipGREbS3twMA1V6biYuuNrlO0TxXS1cqlXA6nbSO/kX2t0LHRG5tfrVapVOJZDKXQSCT9zWDlEyyvb2NWCyG2dlZXklbq3ToRtUm72fN+yQ4LhHayP42Eolge3sbSqVS0jERALLZLLxeL8bGxgDIkbmMOmTyvkYQjicrFotYWFiAw+HA3NzchSURG1WbXBdchRJHof1tqVRqaH8L1HdR3HZ+4cg4ecrQBw8yeV8DCMeTKRQKhEIhbG5uYmJigk6mEeL9IJtcJ5xnUdBoNGhvb6eSF9f+Nh6Po1arYW9vT2R/S15XnjL0wYNM3lccwtptlmWxurqKfD7/whb36+JDctHHbCWaRZJc+9tEIgG/3w+dTvdC+1uAT+bAe46J8pSh9xdk8r7CENZuZ7NZLC4uoqur60S126Qmu5m4yGqT60YwrVpoWJaFSqU6k/2tPJji/QuZvK8gpJKSR0dH2N/fx82bN2GxWE50HIVCQaWWZuH9IJu0kmRbseBINUWd1P7WbrfDYDA0JPNIJAKLxQKTySST+TWDTN5XDMLa7Wq1iuXlZSgUilO3uLc6Ydnq12olWkGyl7UoNLK/JWWJ2WwWRqORZ39LyDwWi0Gv18uR+TWETN5XCCQpSW7WVCqF5eVl9Pf3o6ur69THu0jybhWu04IAtG5ROA2Bcu1vPR4PWJZFNpuVtL9tNJhCSObylKGrB5m8rwCkZJK9vT0Eg0HcunULRqPxTMe97tUm11HzbhV5n+e4x9nfkgCBO5hCaH8rNWWIW2d+3b6n9wtk8r5k1Go1xGIxJBIJeDwelMtlLC4uwmg0Yn5+/lxRzkUS6nWTTa4Tmr0ocO1vk8kkhoaGUKlUTmV/KzUyTnZMvFjI5H1J4NZuF4tFZDIZxGIxrK2tYXR0lDZvnAetIu9G0fwHnbyvauR9HGq1GpRKJQwGw6nsb7nnJg+muBzI5H0JEMokSqUS8XgcmUxG1OJ+HrRCNmmEVt2g16l2/LpVsTQ69knsb7lkrlareccjZL6zs4Pe3l5otVqZzFsAmbwvGMIW90KhgNXVVQDA3bt3L8y+9bzHLBQK2N/fh8Vigc1mu3aad6uOfR0j7xdJc1L2t8lkEolEAoeHh5L2twCQTqflwRQthEzeFwSuTMIwDBQKBQKBALa3t9Hf349oNNr0i7hVhJrP5/HkyRN0d3cjkUhgb28PxWIR+XweSqUSFovlA1mRcB1lk7McW6lUUutbADz72729PQCAzWZDsViklTLHDaaQyfxskMn7AiCs3a7VajQxND8/j1KphHA43PTXbbZswrIsbQK5f/8+r816c3MTDMMgGAxiY2ODtm/b7XaYTCb5hjwHTlsqeBqcJPJ+ERrZ3/r9fiwsLEja375oyhD5TybzxpDJu8Vo1OLe3d2Nnp4eMAyDSqXSEm26mZE3cTAkzR5arZbWAQP1G85kMtFEaz6fRzwep2RvNBrhcDhok8hFn/9F4DpG3kDzpR5if6vT6XD37t0T2d/KU4ZOD5m8WwSp2m2v14vDw0NMTU3BbDbT5yoUipaQVLPILxaLYXV1FWNjYzAYDFhfX5d8Hve1SPs26fgjTSIbGxsoFou8uuLjzLWuE64rebcap7G/FUpuUlOGuDLLB5nMZfJuAYQySaVSwfLyMlQqFe7du8dzgANaVxVy3uOyLIvd3V1EIhFaBZPL5ejjJ/XzFjaJkFK0WCwGn8+HWq0Gq9UKh8MhGhHWClynaB64/uQthND+tlgsIpFIIBAIYGNjA2q1mi7sZrNZksy3trbgdDphsVg+sIMpZPJuMrjjqxiGQTKZxPLyMgYHB9HZ2Sn5N60i7/NE3qVSCYuLizCZTLh79y69gRrtEk7zWtxSNFK9wB0RplAoaETeKqK9ThGylDHV+wlarZba3wJ1Mo/H4w3tbxUKBUqlEtXDhffcB4XMZfJuEoQyCQDs7u4iHA7jzp07MBgMDf+2Fdat5LhnIb9EIoHl5WXePEwumt0eL0x4kW11IBBAIpFAsViE3W6Hw+GA0Wi8sjdjK+u8W5WwvIq7EK1WK7K/jcfj8Hq9SKfT0Ov1KBQKyOfzMJlMoshcOGVIaLJ1Va+f00Im7yZAWLtNolaz2Yy5ubkT1dG24iY6bUTPsiz29/cRCAQaLjjHkXSz3gPZVpPhA319fYjH49jb20M2m6WmSqdJfl4UrlNE30o083oW5k/y+TyWlpbg9/uxu7vb0P6WnMf7dWScTN7ngNR4skgkgvX1dYyNjdFhs5eF00TD5XIZS0tL0Gq1x3qqcI/JJZVW3gBSyc9YLMZLfjocDthstktNfsoJy/fQqnMm9rcajQYTExNQq9Untr8l5yU1Zeg6joyTyfuMkBpPtr6+jnQ6jbt37/LMfC4LJyXvVCqFpaUlDA4O0q3qaY/ZqrI+4TG5yc/e3l5e67bX60WtVqOVCzabTZQcvo5oJXlfZufmeVCtVmnU3Mj+dmtri0orXMfEk8z/vA4j42TyPgOEtdv5fB6Li4tob2/H7OzslfmyXySbsCwLr9cLr9d7YuvZi5BNuK/1IghbtyuVCpLJJGKxGC/56XA4aLLrunmQtPK4rUKryZsYaglxnP0t2ak1InPyeSSTSRwcHGBsbAwKhQLZbBYHBwe4d+9ey97PWSCT9ykgTEoqFAr4/X7s7Ozgxo0bsNlsl32KPBxHtKR8UalUYn5+/sQRqvCYhFiuyoKlUqlEyc94PA6/34/19XVotVraym8wGJp63vKi8B5aTd4nPXeu/S3ZqREyf5H9LTn/tbU1/N7v/Z5M3tcVLMsiFArBaDRCpVKhWq1ibW0NlUoF8/PzPGe1q4JGF3cmk8HCwgL6+vrQ3d196mNyCZsQVqsqZs4L7hR2ADTZ5fP5sL29TaMwh8PRFDfH60SyrSTYVpP3WaFQKGCxWI61v9XpdDSXpdFo6OShF+Gnfuqn8PWvfx3t7e1YWloSPc7Uv8TfAPD9AHIAfpJl2SfvPvaJdx9TAvgdlmU//6LXk8n7BCDR9vb2NiYmJlAoFLC4uIje3l50d3dfmajzJPD5fNjf3xd1eTYD18G+lSQ/BwcHodfraRS2vr6OYrFI3fGEVqcnxXUi7+sceTfrvKXsb71eL8LhMJaWlvBv/s2/gdVqhcFgQCwWo2ZcUvjJn/xJfO5zn8NP/MRPNHrKJwGMvPvfPQC/DeAewzBKAL8J4OMAvAAeMgzzNZZlV447d5m8j4GUTOLz+RCJRDA9PX2i1fiqoFqtYnV1FdVq9dSDjLk4LmHZbLR6UZTaUqdSKcRisSuV/JQj74uDQqGAXq+Hw+HAwMAA/vAP/xC/8Ru/gbfffhs/+IM/iEKhgJ/5mZ/BP/yH/1D0tx/5yEeoq2ID/F0Av8fWb6C3GYaxMQzTCaAfwBbLsjsAwDDMG+8+Vybvs0BYu10ul5FMJsEwzKk04pOCK0c0G9lsFgsLC/B4PPB4POd6jUZ/e91MpKTATX4C77njxWIx7OzsQKlUipKfXMia93u4ruQN1AMdcn+bTCZ4PB784A/+IP75P//nyGaz53EA7QZwyPnZ++7vpH7/QoFdJm8BpGq3iR5mNBrR39/fkgiMVIY0+9jlchnPnz/HjRs3YLVam3psIa4LeZ/0PIk7HqnXJ8lP0rat0+komR/XQduM85Ujb/6xW7kr45I3UM8RkWuAlCWeEVInzR7z+2MhkzcHwtptANje3kYkEsHMzAz29vZalpQjCb9mkTfxDC+Xy7h//37LE6qtupmukrcJN/lJOv24zSHFYhF+v180gf28kCPvizs2UCdvbrNXNptFf39/Mw7tBdDD+dkD4AiApsHvj4VM3u9CWLtdLBaxuLgIm81GW9wVCgWq1WpLXr+Z5lT5fB7Pnz+H2+2GXq+/kEqYVsgmVzkRTDr9DAYDuru7wbIs3nnnHZTLZVqCdt7kJ4EcefMhjIxbfXxiydAEfA3A597VtO8BSLIs62cYJgxghGGYAQA+AJ8G8GMvOtgHnrylkpKhUAibm5sYHx+n9cJA3UCpVZF3s8ibnDupOz86euEC3hS8HzTv84D4TPf29tLkZzKZRDwep3MebTYbtb09Dfm0yphKjrylISTvk5YKfuYzn8G3v/1tRCIReDwe/OIv/iKVX3/u534OAP4U9TLBLdRLBf8fAGBZtsIwzOcA/BnqpYL/P5Zll1/0eh9o8hb6brMsi7W1NeRyOczNzYl8Mlo5jf28nX+1Wg2bm5vIZDKS5y6j9eB+f6Sz0263A3gv+RmNRrG9vQ2VStXQs1qIVmm815VgSWt8qyAVeZ9E5/7KV75y7OPvVpl8tsFjf4o6uZ8YH1jyJklJEn3kcjksLi7C7XZjfHxc8ma5qrJJoVDAwsICnE4nZmZmLkVuuChvk6t6zBdBmPwUelYLk5/c7/A6+oS3emG4prJJU/GBI28pmeTo6Ah7e3svrMi4irIJcTGcmJho2EBwEa50103zvuy6dK5nNTf5ubOzg1wux2vZbmXCspUE26qJSJeheTe7oa0Z+ECRt7B2u1qtYmWlXgd/ksYVhUJBNaxm47Tt5SzLYmtrC4lE4lgXw1bWj3/Qde5mQSr5mclkEIvFsLa2hnQ6jc3NTTidTthstqYloGXNWxoyeV8hCGu3GYZBOp3G0tLSqfw9lEol9QFuNk4TeZNJ7jabDXfv3j32Bmylix4XMpE3D9zOz76+Pjx48ADt7e1IJBI4ODgAy7I0Kj9t8pOL60qwl0HerazjPyve9+QtNZ5sf38ffr//xDaoBFdB8yaT3EdHR+k07uPQ7Prx417n/aJPnxWtrEknejjwXvIzEonwkp+k8/Ok0fR1JdhWyybCc2+lBHQeXL0zaiKkWtyXlpag1+tx7969U19cl1ltwr47yT0cDtNJ7ifBdY6Ir3Kd90WD+1k0Sn56vV5kMhno9XreWLBGn6Msm0iD+7lc5SlG70vy5sokJCkZjUaxtrbWcKjuSXBZCUsyE9NoNJ5oJqbwuLJswkcrcwCXAankJ/Fj4U6ScTgcvNzIdSXYarV6oZHwVSXw9x15S9Vub21tIR6PnypilcJlyCZkkvvw8DD1pD4NLspn+zqR9/sZ3OQnGQvG9auuVCq087NSqbSs+7bV5C33MbzPyLtWq8Hn86GtrQ0Mw1DfbYfDgbm5uXOvnq2UTYQky7IsDg4O4Pf7G05yP+lxrzOpXudzvwpgGIY3fKBarVLb22AwSMf4nTf5KcR1rfMWXm+lUulKzKOVwvuCvLlJya2tLbS3tyMYDGJra+vY+ufT4qJkk5NOcj8JrnPkfRW3qtcdxNbWbrdDpVLRYbvc5KfD4aCdn2f9Dq6rJCOsfc9kMudxEWwprj15S8kkKysrKBQKTW8Tb7VsQqKipaUlDAwMoLOzsynHvaip7nKUfL1Qq9WgVqvhcrlo5VKxWKTDKLjJT4fDAb1ef2Iyb2UDUCurTaTsYGXybgEqlQqvdjubzSKbzcLj8WBiYqLpkVurZRPSLn3aEsYXHbcVEXGhUMDKygoYhoHT6YRGo5HJ+5pBKhGn1WrR2dmJzs5OsCyLXC6HeDyO7e1tmvwkkflxckIr/UcusgzxqrbGA9eUvKVqt30+Hw4ODmAwGNDT09OSLXeryLtSqcDr9aJareLevXtNjSpaQd7VahWPHz/G8PAw1Go14vE4fD4fcrkcNjc34XA4mjI2rJW147Ik82ISZBiGDh/gJj9jsZgo+UlkmJMe+zy4yMg7l8vJkXezINXivry8DIVCgfn5eTx58qRlF45SqWy6bEImuRPP52ZflM1ccFiWxeHhIfL5PF566SUYDAZUKhWYzWY4nU7s7u7C6XTSMjXSPOJ0OmEymd7XhHkddx2nXcS4yc/+/n5Uq1Vqe3twcAAA1Pb2uppeybJJCyA1niyZTFJ9uKurC8B7BNuKOtBmX4zEEGtqagqFQgHxeLypxweaF71yfWAsFgt0Op3kcR0OB00Qk+aRw8NDpNNpGI1G+ngzJ81cBVxH8j4vCSqVSt73XS6XkUgkEAqFkMvl8Pz5c57tbbPun4vWvGXZ5ByQGk+2u7uLYDAoKqNrZVKxWSCT3CuVCjXEIknXZqMZCUtyI5IBxo8ePRJFbVI3prB5JJvNUrOlcrkMq9VK9dPLmszeTFy3nUWz5SNu8jOVSmFiYoImP9PpNAwGA/2+T5P8FOIiI++TDmK4DFx58haOJyuVSlhaWoLRaJQso2uFtNFMkEnu3d3dPG2+VXr6eUsFw+EwNjY26GSe417nuEWCYRiYTCaYTCb09vbSLXcsFsPu7q6kP8d18ktppW1rq9DqNvNGyc+trS0UCgWe7e1paqnlhGUdV5a8pXy3iXf1caZMV5m8A4EAdnZ2JH3DW1XSd1YCZFkWOzs7iMViIstZ7jGFPhAnhXDLXSqVeFGa0WiExWJp2Xd5XaLkViZXLzJxK0x+1mo1anvLTX6SZPdxsmcrz1tKNnG73S15rfPiSpK3VO32xsYGUqnUC1vcryJ512o1rK+v09pzqZbkVkXeZzluuVymXiqzs7OiKEdqQTjvzaTRaEQSC9FOHz58eOIb+7IgT3g/HRQKRcPk597eHnVSJJ2fF3WewnyZLJucAsLxZPl8HouLi2hra3uhdzXQ2i5IgtPcUPl8HgsLC+jo6Gg4Xg1oXSfkaSPvdDqNxcVFDA4ONow4GpF3s3YORGLRaDRIJpOYnp6mEsve3h4UCgWN2puZCDsPWiVvtDryvizyFkIq+RmPx+lAbY1Gw7PFbRWq1SpvlynLJieAlEwSCASwvb2NyclJOsj1RWh15H2ayTTkwjvJ+bdS8z4psfj9fuzu7mJ6evrYC7bV5M09JnAyieUqVLFcx8j7qs7GVKvVaG9vpw6gpBrr4OAAuVwOS0tLNDI/T/JTCFnzPiWEtdu1Wg2rq6sol8uYn58/lfNZq6tNCMm+aNr3aSe5X2bCkivrnGQcXCOivqhyOSmJRaqK5SIlFlk2eQ+tiOh1Oh06Ozvhdrvx8OFDDAwMIBaLiZKfDofjXJYYws7Qk06OvwxcKnlL1W6TbXtPTw88Hs+pL9xWR94vqiM/6yT3ViUsX3TcYrGI58+fo62t7VhZh4tWaN5nxXFVLI0klutUk30dE5atbNAhCwNJfvb09KBWq1Hb26WlJVSrVdhsNtjt9lMv4HKp4AkgVbt9cHAAn8+HqampMw/8bOWcSeD4CJlUw4yPj8PpdDbtuOfBcWRFPJ7HxsboVJazHvOqlPWdRGIpFosoFotN9bKWI2/+cS+qiQao3ztWqxVWq5UmPxOJxJmSn1LVJldx+DBwSeQtrN2uVCpYWlqCRqPB/Pz8ub74VkfeUiTLsiy2t7cRj8ePneR+2uM2A1IT70mb+9HREWZmZqDX6890bCGpXEVLWCmJZWFhAZubmyiXy7Sd+7wSy3Uk71Yd+7JNqZRKJZxOJw2gpJKfpFlIaNsgXHhkzftdSCUlSfQ3NDTUlHrKi5BNuCRbLBaxuLgIq9V6omqYRrioahOuF8zc3NyZFsqrJJucBkRi0el0mJqaAsMw16KK5Sqcx2lwkXXYJ4FU8jMWi+Hg4IB6lxC9vFKp8I6fz+ev5OR44ALJm9RuP3v2DLdu3QIAbG9vIxKJnGtSjBCtLhXkJkTJwnPSSe7HoVUXO5douW3uPT09TTnmcb+76jhpFQupaDgO1zHybhWu+iAGnU6Hrq4udHV10d1YPB7H5uYmUqkUtra2UKlU4HA4wLLsiRaLb37zm/hn/+yfoVqt4md+5mfw8z//87zHGYb5fwP48Xd/VAGYAOBiWTbGMMwegDSAKoAKy7J3T/I+LoS8uTJJLpfjRaunHaj7IlyEbFKtVrG7u4tQKHQu2eEiQBKWpM395s2bou7O0+Iiq00uckEQSiy5XA6xWAwbGxsoFovHSizXsc67lVr6RWre5wE34d3T04MHDx6gq6sL3/jGN/Daa6/h6OgI/+Jf/At8/OMfx0c+8hFJCaVareKzn/0svvWtb8Hj8WBubg6f+tSnMDk5SZ/Dsuy/B/Dv333N/wvA/4tl2RjnMB9lWTZymnO/0Ap9hUKBSqWCx48fY2BgAKOjo01foS/CmIrczHNzc1eauAkikQj29vYwNzd3buIGLk42aaXWe5LXJtUMt27dwt27d9HW1oZkMolnz57hyZMn2N3dRSqVoseTI+86LlvzPg8YhoHVasWP/diP4a//+q/R0dGBT3ziE/j2t7+NT3ziE5LFEA8ePMDw8DAGBweh0Wjw6U9/Gl/96lePe5nPAPjKec/1QiJvcrOvr6+jVCrhwx/+cMuGerYy8k4mk/D7/eju7sbY2FhLXqOZKJfL2NnZAYCm7nDeD7LJaQmRq4cDdYmFDKFIpVLQarUol8vI5/NNXdCvUhfkSdFqzbuVnwf3Giaf/auvvopXX3214d/4fD6eDOnxePDOO+9IPpdhGAOATwD4HPdlAfw5wzAsgP8vy7JfPMm5Xgh5l8tlPHjwAB0dHdDr9U2dKylEK8ibZd+b5N7V1QWLxdLU47cCpF7e5XI1/YJvRNTXLUI8DzQaDTo6OtDR0QGWZRGJRLC7u8uTWKQmzJwWrayZbhWu6+R4IYrF4okW4lPeC/8XgO8JJJMPsSx7xDBMO4BvMQyzxrLsd170uhdC3mq1Gjdv3oTJZEI4HG7ZsASg+eTNLWOcm5vD4eHhlTO+EoIMeZienkapVEIwGGzq8d+vmvdZwTAM9Ho9TCYTJicnUavVaBXL/v4+FAoFrWawWCynIuPrKpu0UvNu5eR47md90ik6Ho8Hh4eH9Gev10uHw0jg0xBIJizLHr37/xDDMH8MYB7A1SBvkhQA6uRaqVRaRt7NrJeWmuR+EcZXZ4VUm3s8Hr+2pHqdSIv7eRCyJn42RGI5OjrC+vo69Ho9lWAus4qlVWil1HORydCTkvfc3Bw2Nzexu7uL7u5uvPHGG/jyl78seh7DMFYA3wfg/+b8zghAwbJs+t1//x0Av3SS872wUkESralUqpYbR50XLMvC5/Ph8PBQZNIk1fTSTJz1ZiVt+S6Xi9fm3ormn+OcET/IaPT+hRKLsIqFO1FIqorluiVCWz2/slWB31lb41UqFb7whS/g1VdfRbVaxU/91E/hxo0beO211wAAP/dzP0ee+vcA/DnLslnOn3cA+ON3Py8VgC+zLPvNk5zvhXdYksj7qqJSqWBlZQUMw0h2eyqVShQKhZa8NinrO+2FT+rNpdryW+X2J3We10HiAC53kg6pYuH6chwnsVxX8m4lwbaq2EHKUfCkplTf//3fj+///u/n/Y5D2gAAlmV/F8DvCn63A+DWWc73Usj7qmrGmUyGZ4olhVa1sQPvdVmedMvJTaQ2qjdvJXlfBFr1OleltPFFEotCoYBarW56FUurR4m1imDlyfHv4VJkk6sYeXMnuR9nRNNK8j7NsUmbu1KplJzleZZjnhQXRd7XSYZp1uchlFi8Xu+JJZbTnu9FJf6aiYucHH+VfU2A93HkfdILqFqtUh/ok3hZt/L8T0q0pM39uB0CwXWPvK8LWkFYDMNAo9HAZrOhr69PJLEwDMPzYjkNGbdal76OTToyeb/oBVucsARe7LlNQEhQOMn9OFx25H3aNneZvC8GF9EeL5RYyuUyYrEYjo6OkE6nT1XFcl3J+yLLEDOZjEzeAH+kVSurNchrvIgEyYi103p9XBZ5syyLra0tJJPJE0/nIce8ruR9HnKpVqs4ODjA1tYW9vb2EI/Hkc1mUa1WEQqF4HA4oFKpoNVqodfr0dbWht7eXng8HgwNDZ3ZbbHZOC6iV6vV56piuY7lfK1eGLifUzabfeHO9jJxKbJJq6o1uK/RKLontdD5fP7UI9ZedOzzohEplstlLCwswGw2Y3Z29lQk0Sqr2asSeVerVXznO9/BW2+9hb29Pfj9fkQiEeTzeWo7TM6VOFtWKhWUy2Vq4q9QKMAwDPWWBwCz2QyXywWHw4HBwUF86EMfwssvv9yQlC67KuRFVSxCieW6lgpeZOSdz+flhCXvBS8gYdmIYMkk9/b29hOP/BLioiNv0ig0NDSEjo6OUx+zVbLJZaFcLuPNN9/Ed77zHWxsbCAUClGzIJZlKSlVq1XeTNRCoYB8Pg+1Wg2j0QidTod8Po9SqUSnL6VSKWpMBNQ/+729PSwvL+PrX/86NBoN2tra0NfXh7m5OfzAD/xAy43JzkqyUhILqWJJp9NQqVRgWbbpVSzA9dW8a7Uab0d7lafoAJckm7Ra85ZyFiRa8Wkm0Tc69kWRN7fN/aza23WuNiFIJBL4H//jf+Dtt9/G2toaUqkUJR0y4KNaraJarcJutyOVSiGXy/GO4XK5oNVqkcvlUKlU6OcSCoUAAEajkS6OLMvS3+v1ethsNhSLRWSzWSQSCezv7+Nb3/oWfvu3fxtdXV2Ynp7Gq6++2hJ9tFnyBncgAXl/Pp8Pm5ubKBQKTatiAVovbbTq2JVKhbeQyQlL4QteYMISqF9IW1tbSKVSp9KKjzt2q8m7VqthbW0NpVLpRBUwx6GVCcujoyOEw2Ge216zUK1W8Yd/+If43d/9XcRidQ+fcrmMYrEIg8FAI0mCzs5ORKNR+Hw+KBQKGAwGGI1GaLValEol5HI5ZDIZ3msolUq43W5Uq1WUSiX4fD76mEajgcViQalUgt/vp5EsIVO9Xo9sNovDw0MEAgH8+Z//OZxOJ1555RX8/b//95syFQpoTcMLqWIxm80YGRmhEks8HsfBwQEAwG63w+l0nrqKhZxzK8sQL0qrv8qT44H3aYclIW/uJPfTasWN0Eq/cIVCgUKhgIcPH6K9vR0TExPnPudWRcl+vx9arRY9PT1IJBJYWVlBLpfD1tYWnE7nCwe9NsLq6ip+53d+B48fP0Y2m0U2m0UymaTmT2azGclkEgqFgk4vqlQqCIVCKJVKAN4jvFqthr29PXpsjUYDq9UKlUoFvV6PSCSCo6Mj+rjVaoXdbqeaealUgtlshtlsRq1Wo4uFwWCAzWZDMplEIpFAe3s7yuUyEokEAoEAvva1r2FwcBAf/ehH8SM/8iNXcjYml2AbSSx+v5/nxWK320808eoiPLdbAan2eFk24b7gBUXeiUQCGxsbZ5rkfhxaqfcWi0X4/X7cvHmzaefc7PMtlUrY39+HXq/H1NQUKpUKLBYLent78c4778Bms9FBrzqdDk6n80Sla9/4xjfwxhtvYGFhAZVKBRqNhurVarUadrsdPp+PRuEA0NbWhlAoRHdCJGlns9lokKDVaqkmTvTtZDKJYDAIt9sNh8OBYDCISqWCZDKJdDqN9vZ2OBwO5PN5BAIB+no2mw06nQ7RaBS5XA46nQ42m426NtpsNuRyOeTzeezt7eG1117DH/3RH2F6eho//dM/Tc3NToPLSIQKJZZ8Po9YLIatrS0qsRCyl0r4t5q8WwW5zrsBuJp3KyNvlmURj8dRKBRw9+5d6HS6lr1Ws8CyLPb39xGNRjE4ONjUxaaZIB7hbW1t0Gq1opufYRi0tbWhra0NACTHiDmdTkquAPDlL38ZX/7yl5FMJlEqlVCtVsEwDPx+PwBAq9VCo9HQ7Tz5nVar5RErUNet9Xo9z56TYRgqATAMg62tLfoYeQ2NRoPe3l4wDINYLEb1boZh0NPTg1wuh0QigUQiAaAu0bAsC61WC4VCQT+PcDgMhmHQ3t6OeDwOhUKBVCqFhw8f4tmzZxgZGcFP/uRPnmqQx0VE3seBYRgYDAYYDAZ4PB7UajWkUinEYjH6OQsllvcLect13gK0MuFXKpWwsLAAAOjt7b0WxF2pVLC8vAyVSoWenp6WGfqcF4FAADs7O5ienkY6nUY+nwcgJhfuz9ybvlqtIplMIhqNYmdnB9/97nfxV3/1V4jH4wiHw1SiUKvVKBaLVDOOxWJIp9P0+CR5SCJArVYLnU4HvV5Pj8UFy7IwGo3Y3d1FpVKhQxJCoRB9D263G7FYDJlMBn19fVAqlXS82cHBASVxooHm83laAxyJRGgw4na7kclkEAgEoNPpYLFYEAqFYLVaoVar8fjxY+zs7KC3txd/7+/9Pdy/f/+Fn/tllyAKoVAoYLPZYLPZAIglFp1Oh1KpdKWnrjeCkLwLhcKVHnN44UzRKtmBO8m9XC5T/fMqI5vNYmFhAb29veju7sb+/v6V8wonzUEk4atWq5HJZCTnNh733ZJJ7Y8ePcIXv/hFHB4eUtLT6/WwWCy8iLmrqwuHh4e8z6OnpwcHBwci2c3j8WBtbQ1AXZbr7u6GWq1GNpuFWq3mHZdE0EqlEqOjo6hWqzxdfG9vj5J1KpVCOp1GR0cHVCoVSqUSnE4nwuEwJXaTyQS3241AIEBJ2+VyIRwOw+/3w+VyIZfLoVwuo6OjA8FgENlsFtvb2xgaGsIP//AP46WXXjr287/MyPtFkJJYnj59SiUWi8VC9fLT9lQI0eoKJ6ka8qu8g7hw2aTZYFkWe3t7vEnugUDgyjoXEhBdeGpqio5Va+Wu5CyoVCpYWFiAyWTCzMyMpEwi/LkR2ayvr+PXf/3X8fTpUxgMBlQqFUSjUVpXfXh4CIZhaMRaLBap/KJUKmE0GhEKhaDRaGjErFQq0dXVxZNUKpUKDg8PaWRYqVQwPj4Ov9+PZDJJn0cWh0KhgJ6eHlSrVSrDEGImk+S9Xi+i0SgAYHd3F3a7HUqlEvF4HJlMBplMhkbd5DPo7e1FtVpFuVyGwWCA1Wql9dUmkwmVSgU+nw//5b/8F/zxH/8xfuqnfkpSTrlqkfdxIBKLRqPB9PR0Q4mF2N1epSoW4fGvShPacbiae/QTolwuY3FxEXq9njdg9yJqyc968R/X5t7qQQ+nQTabxfPnz3lThAiOq2AR/j6bzeKXf/mX8fjxYxQKBSgUChwdHaFarcLlcqFSqdCkZzqdhsVigdfr5R2vq6uLRtZAPbp2OBwwGo1QKBTo7u7mLdidnZ1IJBKU5Mki0d/fj1KpBJ1Oh/39fXo8Qiwejwf5fB6ZTAa9vb04PDxEJBKB2WyG0+mkicl4PA6GYdDb24ujoyOYzWaYTCYwDAOVSoVIJAIAdDQaqUrp7u5GIpHA4eEhurq6EAqFYDAYcHR0hF/7tV/D6OgofvZnf5ZXdnnVI+/j0EhiCQQC2NjYgE6n43mxvOh9XsQ5vyhAuUq4NPI+70WZTCaxtLSE4eFhUedhq8n7uAjzOJRKJSwuLsJisUiWLrbCh+QsIA1N3F0BF43IW/h+/uRP/gT/7b/9N0SjUcRiMdhsNjBMfSReuVxGKpWi0TDDMOjq6uJJGADQ3d3Ni6wB0LzAzs4O/Z1Go4HH44Hdbsfu7i4lbgKWZRGNRuFwOJDNZtHX18cjcKA+e7CnpwednZ08CSudTiOdTqO/vx+RSASFQgEsy6JWq6Gvr4/WexP09/fj6OgI+XwehUIBvb298Pv98Pl8sFqtYBiG/rtWqyEcDsPpdOLp06f4hV/4Bdy5cwc//uM/Dq1We60i7xfhRVUsL5JYWtkaD4gnx191XIpsclLXPylwBxDcuXNHMinSavI+S0adtLkPDw+jvb1d8jmt8iE5KYgEFQ6Hj21oOo68SfPO5z//eWxubiIUClEdmJCwwWBAsVikTTMKhQK9vb2UxFQqFa1OERKswWCA2WwWVZqUSiVoNBosLCyAYRgMDg6CYRjs7u6iVqvB5XKhWq1Skg2Hw2hra4PZbMbe3h4UCgUmJiawubmJQCAAs9kMt9vNe/29vT2YTCYMDQ0hn8/TqhS1Wo2uri5aM763t4f29nYUCgUUCgXs7+/D5XIhn88jmUxSz+5MJgO1Wg2DwYBgMIj29nbavr64uIhXX30VAwMD1zbyPg4nrWLhSiwXec7XIeF6KZE38Tc5LXmTSe5qtRpzc3MNV+FWDwk+7eLj8/lwcHCAW7duHduxdZmad7VapZ/t3bt3j71JjpNN3njjDbzxxhvI5XJgWRblchlGoxEHBwdQKBSwWCzQ6XSo1WrQ6XQ04tre3uYdx+Px0MiaJDRJuV86naZ/SzAyMkLLAFmWxe7uLoB6401fXx98Ph8t9SOIRCKIRCIYHh6GXq/H+vo6fYwbbYfDYeRyOVrmuL+/j6GhIcTjcdRqNZTLZRweHtKImzgXkppzUvFiMBigVquRSCQQiUSovJNOp9HZ2Ulrx8l7+6M/+iN0dHTgM5/5zKmcL0+CqzbY+CQSi8Fg4PnXNBPC877qU3SACyZvctOfJTIm0Uh/fz+6urqOfe5FRd4vArfNfW5u7oVkf1nknc/neb7mL4IUeUejUfz2b/82tra2oNVqEQwGUavV0NHRgXw+j87OTqRSKRQKBRqxAkBHRwdPcgCAgYEBbG5u0p+LxSISiQTUajVtYVcoFOjp6YHJZIJOp8Pz588lz9Vut2NzcxMMw+DmzZvY29vjtcl3dnYinU7j8PAQw8PDODg44FUq7e3twWKxYGZmBhsbG1SP39raQldXF6/tfm9vD263G/l8HhqNBk6nE7lcDhaLhZ43MbeKRqO0GiWfz9N/Z7NZ5PN52O12FItFJJNJ/Nf/+l8xMzODz3zmM00rJW1VFNvKKhayK3n48GFTq1jIeV+n1ngAuJR902m7LL1eL5aWljA9Pf1C4gYuhrxfdHzS5m4wGHDr1q0T3XStJO9GEVE8HseTJ08wNjZ2IuIGxOT9F3/xF/jc5z5HJQa/30+bdUjSj9u0QkCSglyMjIzwiJu8XldXF897pFarwefzoVarYXFxEe3t7ZienuYl+4aGhhAIBGhd+PLyMqrVKiYnJ6HRaDAwMIBsNotYLIZarYbNzU0YjUb09/fTY9jtdrS3t2N5eRn9/f08Yjo6OkKlUuEldBUKBTo6OmAwGHB4eIhoNIrd3V10d3cDAPVKIXXs4XAYOp0OarUa4XCYHj8cDsNkMiEcDqNYLOKdd97Br/zKr4h2KGfFdUqEEonF4XCgvb0dd+/eRWdnJzKZDBYWFmj9fCKROPP9IzS8ug7kfSmyyUm7LKvVKlZWVsCy7IkiV4JW+o8AL5ZlYrEYVldXMTExcSrDplYlLBslWA8PD+Hz+TA7O3uqhiZyvFKphF/6pV/Cs2fPEAgE6LYWqL8XEqUqlUqYTCZks1l0d3dDp9NR7+yRkRF645hMJmQyGYyPjwOob10jkQj6+vp41SYEw8PDVNMOhUIIhUJQKBSYnJyETqfDysqKqN6/UChgdXUVt2/fRrVa5VW2APXvLh6PY2Jigm7dyQKzsbGB7u5uZDIZughlMhnk83lMTk7SMsVYLAaNRoPOzk7axbm7u4u+vj4EAgHaUUt+JhUtRqMRqVSKGmodHR3B5XIhHo9Te4AvfelLmJiYwD/4B//gXCZrVz3yPu7YxIedSEnkewoGg2eqYgGkBzFc5e5K4ArLJtxJ7t3d3aeKEi5LNiE3ZTAYPDUhHnfc80KY7KnValhdXUW1Wj02d3AcAoEA/uN//I/Y3NxErVaD0WikSUSn04mjoyO43W4olUooFAocHBygUqkgk8lQTxLuAk6idOJDQjA2NoZIJILJyUkoFApK0j09PfB6vaIgoFarIZfL4fDwEB6PB2q1mqdlA8DU1BRWV1dRq9UwPDxMNWgClmVppydZUAh8Ph/sdjsGBwexs7MDo9GImzdvYnl5GZOTk/R5pVIJR0dHGBsbw8bGBgBgf38f/f39CAaDqFar2N/fx8DAAJRKJdRqNW2tZ1kW1WoVXV1dtN6d2NiSndL+/j4+9alPYXp6+tTfHXmP15W8heBKLEDdliEej2N7exv5fP5EEovUCDQ58pZ60RfIJied5N4IrS6BkiJZkkzVaDS8mvPToFXVJlyZo1gs4vnz52hvb0dfX9+ZPqu//Mu/xBtvvIF4PA6NRkOrOIiBVLlcBsMwCIVC6O7u5pX0mUwmpNNpHukaDAaUSiURcQ8NDWFjYwO1Wo1HrqOjo7BYLGAYRlRG2NHRQbV1IuOQ6H5nZwdTU1P0mACwvb0NnU6H6elpLC4ugmEY3Lp1CysrKwDqydK7d+/i0aNH9DXISLWPfexj2NzcxOLiIgBgaWkJd+7cwfLyMiqVCl0k5+fn8fjxYwB1Xfzll18GUM8TkJ1FMBgEy7LU+TCdTiOVSsHhcCCZTMJqtdLo0GAwIJfL4Y033sDy8jJ+5Ed+5NS6b6um3VyF+ZWkiqW7uxu1Wg3pdPqFjUJCzTuXy8mRtxQaySanneR+WRBG9sI297OiVZE3IW9SGz82Nka7F08DlmXxG7/xG/jWt76FUqmEZDIJm82GTCZDG1y8Xi9dKHp7e3n6NbFi5ToDAvWom1SHELS3t8Pv94s+D41Gg3K5jGfPngEA+vr64HA4sLm5CaVSCZVKRbshCcji8eEPfxg7OzuiYxYKBSwuLuL27duwWq1466236GP5fB4PHz7EzMwMFhYWUK1WodFoMD8/j+9973uYn5/nLSxPnz7F5OQk9vf3aa35gwcP8NJLL9EGnsXFRQwNDdGBEfv7+xgfH8f+/j79XJ1OJ+LxOCKRCFwuF5LJJAwGA1QqFcLhMK0R39rawn/+z/8ZP/zDP8zT6l+E6yybnAZciWVgYIBa9wolFiLHEFx1UyrgghOWZKWXirxzuRwePnwIk8l04gTfZYFLsqFQCM+fP8eNGzfORdzC4zYTCoUCfr8fKysruHPnzpmIO5vN4l/9q3+Fb3/723Rb6nK5kEqlqAcI8fwA6oQcCATQ09ODwcFBjI6OYmJiAiaTCePj45iYmMD4+Djm5uZgtVoxNTWFsbExeDweSlLZbFZ0HqOjo7wkp8/nw+LiItRqNW7dutUwZzAxMYGnT58im81iampKRAJarRZqtZo2Jwnx5MkT9PT0oKurC319fXj06BFYlsU777yD27dv8463srKCzs5OmEwmGI1G3L9/H7u7uzy3xO3tbTgcDlpLvLa2hoGBASgUCpRKJcTjcbjdbtrEY7Vaqd2sSqWiu55IJIJMJoPXX38df/VXf3Xi7/M6JSwJmtGko1ar4XK5MDY2hvn5eQwPD4NhGBwdHSEYDGJ1dRVf+cpXEIlETkTe3/zmNzE2Nobh4WF8/vOfFz3+7W9/mzRmPXv3v/8PeYxhmE8wDLPOMMwWwzA/f9r3cmmRN7dGNxgMYmtr69ST3C8LJPLe2NhAOp3G3bt3zz2hB2hNwpJlWWSz2VMnfbnY39/Hr/zKryAYDCKRSECr1aKtrQ37+/vUGrVYLMJsNlNDfzLQgESfAwMD1PGRYGBgAE+ePBG95/HxcSSTSdy+fRuVSgUHBwdIpVKYmZnBkydPJM9xaGgIb7/9NpRKJe7cuQOfz0dLEoeGhnB0dIRyuYxyuYzl5WWMjIygVCphd3cXWq0WN2/epOeXSCTw8ssv4+233+adm16vh9VqFdWLP378GKOjozg4OKD2Bjs7O/i+7/s++P1+Wsb45MkTGsGT5wwNDdEZmysrK7hx4wa2t7dRKBQQCATQ1taGSCSCYDDIk1eI10tHRwei0SicTie++93vwufz4Yd+6IdeqNd+UCLvF4FILCqVCvl8HmazGc+ePcNf/uVfolar4ejoCH/n7/wdvPTSS6J7vFqt4rOf/Sy+9a1vwePxYG5uDp/61Kd4uQ+gvuP7+te/fpv7O4ZhlAB+E8DHAXgBPGQY5mssy66c9NwvjbzJgNiNjQ3kcrkzTXJ/EVoZXezs7KCjo0PSsOmsaHbkXS6X8fz5czAMg4mJiTMR9/e+9z38zu/8DgKBAJ2yXi6XqfWq0+mEyWSC3++njS0Oh4MnjbhcLpEsQoYYCIl7YmICS0tLAEArQRiGwfz8PGq1GiUzLmZnZ/H06VMA9Rvq+fPn0Gq1+NCHPgS/349cLieK4jc3N+lzuFbCQP37ffvtt3Hr1i1sbW0hk8lgbm4OGxsbKJVKsNvtGB4e5nmDb2xsoLe3F9FoFC6XCzabDe+88w56enpgtVqpDcCTJ08wOztLCX17exsjIyMIBAIolUpYXl7G1NQU8vk82traUCwWMTQ0hEwmg0qlgpmZGcRiMTAMA6fTCZZlYbFYEI/H4XA4sLGxgS9+8Yv4+Mc/jps3bzb8Xj+okfdxx1apVHA6nfjVX/1V/Lt/9+8wMTEBi8WCN954A6FQCD/yIz/C+5sHDx5geHgYg4ODAIBPf/rT+OpXvyoi7waYB7DFsuwOADAM8waAvwvgxOR9abIJqYPWarW4c+dO04m7VRJEMpnE4eEh7HY7RkZGmnoDNDNhmclk8PDhQ/T09MBisZwpon/jjTfwm7/5mwiFQmBZFuFwmI6X6+7uhsVigdFoxNbWFiXHnp4e3mgxjUaDSqXCM9xiGAY2m43n0w3UG2a4hEhgMplwcHCAZ8+eIZVK4ebNm7h9+zZUKhXGxsZowpCLYrGIZ8+ewel00ptLiHK5TD8XqZLO58+fo62tDR/96Ed5ZYfxeBw+nw83btzgPf/w8BB3795FqVSi9diHh4cwGo28xPvjx49x69Yt+vPm5ib6+/sxPT2Nu3fvIhqNor29Hdvb2/B6vXRIcCAQwOrqKvR6PcLhMNLpNPVJJwlNi8WCRCKBP/3TP8U3vvGNhteTHHnzITWIwe124wd/8AfxW7/1WyLiBuqSHbc3wuPx8HoRCN566y0wDPOcYZg3GYYhF003AG6Tg/fd350Yl9Kkk0qlEA6HMTo62jLvhlaUC3q9XqysrKC3t7clZUTNWnBCoRAWFhYwNTWFjo6OU8+xZFkWv/mbv4n/9b/+F71hYrEYrFYrdDodcrkcfD4fzGYzr2nE7XbTn0mH4djYGMxmM4aGhjA0NITBwUHcuXMHsViMd7OoVCo6w1OIgYEBGm2TrlXiE9Pd3Q2tViv5Pqanp7GwsIBHjx5henoaHo+H9/jLL7+MJ0+eYHFxESqVitaXc9HT04P19XUMDQ3xfp/P57GxsYHbt28DAM3VPHr0CG1tbTxfjMPDQzowgoAQeGdnJ15++WVEo1GoVCpsbGwgk8nQxDJQJ5J0Og2bzUZlJNKkUiwWYbVaaW15OBymr726uor//t//O29QM4EceR9/7JPUeZ/EnG1mZobIi7cA/BcAf0KeKnXI05zzhZI3kUkCgQBv4Gkr0EzyrtVqWF5eRjQaxdzcHAwGQ0vqyE9LskKwLIvt7W0cHBzg7t27NNo7jZZerVbxK7/yK3jw4AEKhQIqlQry+Ty6urpo4rNarVKphNQmDw8Pw2Qyobe3l45xczqdWFxcxMHBAf2PeKgQU6bu7m7cvHkT9+/fp+O0uJidnZWMrBUKBYxGI773ve9Bp9Phwx/+MI8wX3nlFZ4+vry8jHg8jvv374NhGLzyyit4+PAhfTwcDmNnZwf37t3jHePRo0e0UUdYU00siT/84Q/TihegLoW43W4eWQcCAbhcLqqbulwu1Go19Pb2YmVlBdlsFisrK7wFZGFhgXZvJhIJVKtVGI1GlEolBINBmjAmU4gCgQDVwKvVKtLpNHK5HP7gD/6A1poTyJE3H1LDh18UoHk8Hl7y3Ov1ijrALRYLXQRYlv1TAGqGYdpQj7S5Lc0eAEc4BS6UvCORCBQKBW7dutVyD49mkTeRd4xGI6anp2mE2KqSvrOiUqng2bNnKJfLmJmZ4SVXTirH5PN5/MIv/AI2Njaopk2SaeVymcohWq0WLpcLHo+H6q1kYSb+EyaTSeT8p1KpwLIsLRMlBk61Wg1vvfUWVldXkU6nMTg4iJdffhl3797F6uqq5Lm+/PLLVBtPpVJ4++23YTabcf/+fRoBC1EoFPDOO+9gfn5eZD0L1Mn4wYMHuHfvHiVu7t8uLy9jdnaW9zdTU1NYX1+nk+wJtra24PF4eLuC3d1djI6O4kMf+hDNm5DKFIKFhQVMTEzQn/f396nsEwqFoNfroVarkc/nkUqlYLVaaWSt1+uxt7eHnp4exONxmM1mhEIhlEol/MVf/AW++93v0uPKkffxx85msy/sMZmbm8Pm5iZ2d3dRKpXwxhtv4FOf+hTvOaSjFgAYhplHnXOjAB4CGGEYZoBhGA2ATwP42mnO+ULJu6OjA8PDw1Cr1RcyQf68BBuNRmklQX9/P73Yr9rEG1Jm2d7ejvHxcdHNc5KIPplM4hd+4RcQCAQQDAZhtVoRjUYRDAZhsVho2R8ZzrC5uYn9/X3kcjkMDAyItOr29naejwkA3LhxQ9SOrtPpkEwmeZ+n1+vFs2fPaPTzyiuvYGRkhD4+NjYmSc6xWAx7e3vQaDQNh/wODg7SKLRRd6JSqaTdlVxUq1U8efIEc3NzAICXXnoJOzs7yGaz2NjYEGng6+vrGBwcpKQwMzNDI2iygJHWfm7ERnoGgPd2U6QM9fDwEB0dHTCbzbBarejs7MTExATa2trQ39+PwcFBZLNZ9Pf3IxQK0bFttVoNCwsL+PrXv45SqXQtyfsiF4aTyCYqlQpf+MIX8Oqrr2JiYgI/+qM/ihs3buC1117Da6+9BgD4wz/8Q9y8eRMMwzwH8J8BfJqtowLgcwD+DMAqgD9gWXb5NOfMvOCmbmrdGrHPZFkWb7311okGsJ4Vq6urcLvdZ5JmuKPVbt26JWpzJwNXT5hVPhX+5m/+5lSfSzQaxdra2rFllqurq+jo6GjosxIKhfDrv/7riEajNImYTCaRyWSg0+lgt9sRDAaRy+XQ3t5OSwSBuuVqJpOhDScAJJOIZPiBcNG+c+cO7T7k4qWXXsI777zD+93IyAgsFguCwaDI5xuoL6o3b97EysoKGIbB7OwsVlZW6CJis9lgtVrpjkChUODu3bt466236PuZmZnB5uYmqtUq+vr6kEqlRNUtAPDJT34S3/nOdyRfX1gSSUpJubuI27dv8z4jkk8gDUYqlQput5uWO/b19aGjowOVSgWxWAw9PT20gqerqwvJZBKVSgU9PT101zQyMoJKpQK9Xk991avVKpxOJ7q6uvDRj35U9L7Oi/39feh0OtGAlGbgyZMndPfbbCwtLWFwcJBKbx/72Mfw7W9/u5me3k1fKS8lYXkREzzOak5VqVTw/PlzFAoFzM3NSfqTXIXIm/iobG1t4e7du8fWxx93vnt7e/j3//7f0wnu2WyWfm4DAwMwm83Y3d1FLpeDRqNBPB7nRfEmkwnVahVutxvDw8O4ceMGNBoNZmZmMDMzg9nZWdy+fRtutxuDg4NwuVz0+x8dHZWs2x4cHJT8/ebmJm3wun//vqju9uWXX6Zt7SzL4tGjRzAajbSJZnBwkCfl1Go1PHjwAHfu3IHRaMTY2Bj29vbo+9/f34darRa5Lb7yyiv4P//n/+Du3bu839dqNaysrPAW9dHRUcRiMRHhPHv2jFfKl0wmoVQqKVlUKhUwDIORkREMDAwglUohFAohEAggl8thfX0dAwMDAOp2EoQsyYg1ErFXq1Vsb2+jra0NarWa1qnv7OyIFplm4P0SeZdKpYaJ8KuCSykVvAicRfPOZDJ48OAB2tvbMTEx0fBCuWzyrtVqWFpaQjqdxtzc3AsvskayyerqKv7Tf/pPiEajyGQyiMVicLlclCDz+TwvIUOmwwwMDODGjRu4c+cO8vk8GIahST1ybsvLy1heXsbS0hK0Wi0ePXqE/f19JJNJmEwmTE5Oor29Hffu3UNfXx99DWJkJTXLc3p6Go8ePUIoFMKjR4/gcrnw8ssvQ6lUYmxsTDKCD4fDWFpawic/+UnJMkSgLlOMj4+LBjwA9V1JLpejuvMrr7xCW/MfP34s0sArlQq2t7cxPDyMe/fuUf+SZ8+eiTo3FxcXeXIQMfPyeDy4c+cOcrkc7aoE6gRPrGSBem052U3t7OzQ9vidnR06ANnv98PpdGJ3dxc6nQ7BYJAOtXjy5Am+/e1vN1XCbCXBtnJ023WbHA9cUuR9ETgteQeDQVped9nDHo4DSaBaLBbcuHHjRBeYFHk/f/4cX/rSl6jXdaFQgNvtxtHREUKhENRqNW3lttlsNImmUqlwdHSEQCCA9fV1xGIxeuyhoSGRdWtnZ6cowisWi7Db7XjnnXfw9OlTBAIBdHd34/79+/jYxz4m8vgGALPZTOUAgnA4jMePH2N8fJxKClKYmprCd77zHXR3d/MWCgK9Xo9isYh4PC4qCQTqlR6xWAwf//jHKXETkK5JLojHdyqV4i1CZJEgqNVqtOwPqC+ORqMR3d3d2NvbQ61WQyKR4EkQu7u7GB4eBgDqV0MSa9zE6ebmJjweD0qlEhKJBEwmE3Z2duB2u3FwcEATx8FgEN/85jclrQjOglaPKmsleV+nyfHAJZN3Kz+kkxIsy7J0Qsrc3NyJXAwvK/JOJBJ4/PgxhoeHT+UIKDzfZ8+e4ctf/jIymQzK5TI0Gg0cDgdtIQfqhEZ8SQDg4OAA+/v7lCDtdjtP59bpdLwJOQTEMZCLnp4e2hFJEIlE4Pf78eDBA1gsFty/f5+XdJycnJQ8PlAvSXz06BHm5+dFvi0OhwPRaJQSZSwWEyUzp6amsLe3h1gshkAgINmZODk5iaWlJUlyf/bsGSVlnU6HmZkZKr1x8wzESIokIwHQcXGkg3Rvbw8rKyu8iHxra4sSNlDfMZEoO5/PQ6FQ0N1XIBCgEtru7i7sdjuy2SxqtRq0Wi12dnbQ3t6OaDQKi8WCTCaDTCaDv/zLv2z4+Z4Glz0b8zyQSvRfZVyabNLq6PUkxy+VSnj8+DEUCgVmZmZO3OXZSvJuJHF4vV6srq5iZmZGVAt9mmM+f/4cr7/+OqLRKBiGoR7RJPq2Wq0YGRlBIpGA1+vF0dER2traeJUjQ0NDIgliaGhI5OZ369YtkZc2UCd0KVnE4XCgUCggnU7j8ePH2Nvbw8DAAD72sY811Gdv3rxJK0+ePXsGlmV5tdoDAwO888rn89je3qZyy/3793nHJs03d+7cob8jNq+ZTAbBYFDUscmyLLa2tjA9PY2xsTH6nqPRKIxGI6/em4w2I4n04eFh6HQ6FItF3vdOxqwRrK6u8nYNBwcHNMomw5QBwGg0wmq1Ynh4GAMDA9Dr9ejq6qJ2vV1dXTQRTQYqp9NpFItFPHjw4NyTeq4zeRO0yi632bjwT5l8KBdB3scRbDKZxMOHD9HX10edxU5z7Fadu3BhIJ7QkUgEc3NzPCI4zTFZlsXS0hJef/11RCIRaLVaJBIJhEIhavY/ODgIrVaL9fV16q3d1dXFI2CtVsur1rBYLBgZGUEymcTAwAAGBgao+56U/DEzMyM5FYcQpBChUAgHBwdob2/Hyy+/zEtSGo1GUfdgOp3G06dPMTMzg4985CO0FlyIhw8f4vu+7/skdfBKpYKFhQXcvXsXo6OjVMIA6iVk4XBYZL9qMBgkr6HDw0P09vbyCC0Wi8FisWBubg7RaBSxWIzWgBOUy2Wk02kaUbMsC6/XSyP5YrGIUqkEt9uNiYkJaDQaTE1NoVarUZ+UcDhMnR5LpRKi0ShYlkWxWEStVoPH46GDf1OpFPL5PNbW1vD48eMz74rfD+R9kgadq4BL+5RPO8fytDiOYEmb+507d0TNFSdBqyNvcmyyM9BoNOeyyWUYBtvb23jjjTeoV3QikaBTRliWpS3vlUqFSiNqtZrOnuzp6cH09DSmp6fR3t6Ozs5O6HQ6KokcHR3B7/fD7/cjHA6jt7cXqVQKHR0dmJycxL179/ChD32IV1FBYDQaJYkeqFdr+Hw+hMNhPHnyBC6XC/fu3YNSqcTU1BSCwaDk3yWTSXi93oa13A6HA9vb23C5XHQCCxcsy8Ln88Hj8YiGRGQyGSSTSVp7bbVa4Xa7sb+/j1gsxksqAnUtmpusJO3zwgTZ8vIyj8Dj8Tiv1pgkh202GyYnJ6mLo8/ng9/vx9bWFtXPA4EAjdwjkQgl/UgkArfbjWq1ikQigXg8TudlajQaFAoFhMNhvPXWW6L3fRK0irxbrUNzj38dpugAl0jeJ51jeVZIlQqSSohYLIb5+fkz13C2cktFFoZ0Oo1Hjx6hr68PQ0ND53rNvb09vPnmm8jlclCr1UgkEiiVStSc/ujoCCzLoquri0bVDoeDVoSQhp1UKoWnT59ib2+PdlVOTk6KttptbW1U004mk9jZ2aEuegsLC2AYBpOTk1TXvnHjhkhyAertx8Jjk8qN+/fvS/qgAO/NzAyFQlhbW6ODEAgYhkF/fz9isRgODg6gUChEkbRer6daurAkEKjnH8rlMvr6+tDT00P14nQ6DYZhRLmT58+fY3p6GiMjIzAYDPD7/VhbWxP1CpCkIkEwGKQavcvlgsvlQl9fH3w+H2KxGB2lBtQJiOtDvbOzQ/1cDg4OKJnv7+/DYDAgn89DrVbTwdBkcn2xWEQqlcLf/M3fSH4vx+G6tt1z7y858n4BLjryzufzePDgAcxmM6amplrWZnteKBQKBINBLC4u0ij3PFhZWcGf/dmfoVKpIJVKoVarQaPRwGw2o1AoUNmBVHPcvHkT/f39MBgMWFxcxN7eHo3AhN+ZTqeTjJjtdrvou3W73Tzb1p2dHTx58oS2yN+/f1+UDLTb7ZILvEqlQigUwubmJubm5kQ5gPn5eUr6LMvSihQSfd68eZPXMBONRpFMJnmVILdu3aIj1p49eyZJ4Ol0Gn19fSJ/72AwiPb2dlEORaVSwWKx8Co71tbWeAtHsVhEuVzm9Rf4/X7Mz8/TcXNbW1u8v9ne3qYVKblcjg54BkAdMIH6Iu5yuXhVKrFYDGazGeVyGaVSiXaX5vN5FAoFPHr0CI8ePUIwGJTMUwjRKpJtZWu8cATadZiiA1yy5t3KyJtL3tFoFE+ePMHY2NiZ5zZeBMjghEAggLm5uXNfQJubm3j99ddpC7ZKpYJaraZNI8Tfo6enBw6HA8ViEdvb21SK4BLwyMiIKAoeGxsTRWajo6OSfiSkmUcI0jH55MkT+Hw+TExM4N69e7h79y5tuBFidnaWttmTSH5+fp6+Fymde319HTqdDvfu3ZP0NclkMvB6vZiamsL9+/dFx3j27BmvJFClUmFqagoLCwtob28XSVq7u7s8j5K5uTkqq9hsNvr7arWKaDTK+10oFKLDk8mA4oODA971cHBwQBejWq1Gk5BAnexJRQshZY1Gg1qthmg0So3VyO/9fj9cLhdyuRxqtRpKpRJqtRqKxSKtFvL5fFhYWMDjx4+xu7uLZDIpKWVcx8hbyg5WjryPwUUkLCuVCnZ2drC9vY27d++21MXwvKhUKnj69CkdnHBef/O9vT185StfAVCvRnA6nTSqVygUSKfTGBgYgMfjgUqlwvb2NtXa+/v7eRG1RqMReZK0tbVRKYSAVK4IMTk5yZtlSTAwMCAi+t3dXZowffnll0UJWrfbLSLWdDqN58+fY2ZmBm63u6FWm0wmUSwWG856LBaLdOCEFJaWlqgF7Pz8PPVI2dnZQU9Pj+jvyEDiubk5OkczlUrBbDbzyCKVSvGG4ZJzmZ2dRSKRQKVSQTabhdFopK9Bcg3kOCSXQbC9vU1lkng8Th8rFAp0PBtpY3c6nUgmk2hvb0cymYRWq6XyD9fD3el04saNGzAYDDg6OsKDBw+wtLQEv99PP/PrGHmfxVHwKuDSBkWqVKqWRt4syyKRSNDp31c5A57NZvH8+XNa1nbe5Izf78cbb7yBQqGAbDYLl8uFcrlMp9t0d3cjEong6OiIjjAj0Gq1vGEKQL0MMBKJUJc8hUIBnU5H7UiJ9mw2m5FKpaDT6RAIBGgNstCgCqiTTqNt+OTkJF0Y9Ho97ty5g6dPnyKfz8Ptdkt6jQD1io/9/X3q4y3E3bt38ezZMxqpP3jwgPc4GaZMInChPwvxEv/bf/tv8+xkgfpiefPmTd7fKBQKqNVqEakfHh5icnKSt7PY39/HjRs3aHLz4OAAuVyON4XH6/VibGyM7oBCoRBGRkaox8n+/j6Gh4ext7cHlmWpB4pOpwPLstQYLJlMwuFwIJfLoVAowOPxIBKJIJ1Oo6enB9VqFR6PhwZXwWAQbrcbPp8P+Xweg4OD6OjooDvFaDSKlZUVVKtVFItFJBIJWK3Wpt5zF21KdZJ+j8vGhRpTAfUIs1qtwuv1UvOfZiOTyeD58+eo1Wr48Ic/3PTjA3UDqZdffvncEkw4HKZDby0WC5aXl9Hd3c3bRp8G0WgUX/rSlxCNRqHRaJBOp8GyLC0JNBgM2NraojcmcQgkGB0dpRdvsVhEsViE1+vlEXxfX5+oxI5sxTOZDP2dw+HA+Pg4stks4vE4tre3acQ4Ozsr6V/idDqRy+VEjT02mw03btzAd7/7XckdGxkJlslkwDAMbt++jUePHtEAYWxsDD6fj1cldPv2bTx8+JC2XXPLGJVKJUZHR0UEfuvWLTpbUkp+IQSuUChw584d7OzswGAwwGg0ijpEx8fHeWWTbW1tGBkZ4XlvWywWlEol+nkoFAp0d3fT7legvoMhOyWNRoOBgQGoVCrEYjHeSDqVSgWbzUYXA0LaDMPA7XYjHo9Ty9lisUgNr1wuFyW3Wq0Gq9WK/v5+EcFVKhU8fPgQDocDyWQSOp0OTqcTDofjTCWuXCSTSQSDQV41TrNASmbJsV9//XVkMhn8y3/5L5v5Mu8PYyqgdQnLQCCAhYUF3Lx5s6UT6JsxOGF3dxe7u7uYm5uDxWIBcL4yxFwuh9///d9HOByGVqtFKBRCPp8Hy7Lo7u5GMpmklqRAnVy3trbgcDgwPT2NW7duYXd3Fz6fD2tra9jd3YXBYBDJEFLve3h4mEfcQH0RXVhYwLNnz7C/vw+j0YjZ2Vm89NJLIiIj6O3tFRE3UJdGSKJO6gbu7++nr8+yLJ4+fYrx8XHY7XZotVo6M5ULomOrVCrMz8/ziLRarWJzc5Nn89rX10d3FMlkUtI5b21tDUNDQ5iZmaFSSS6Xg1KpFHnQ7O7u0sqS4eFhaDQa+Hw+ei0AdUmFa4xF9G3uscjCPD4+DqfTiXK5TH28ifUAAFoGSog4FArBaDTSKF2v19Pp9GTSPUlkk9c1Go0ol8vY3t4W5TtUKhX1mZmbm8Pw8DD1eX/w4AE2NzfpoIjTgtu+3mxIad5ywvIYNDthWavVsL6+jqOjI8zNzcFqtba8/f6sJFutVrGwsIB8Pi+aPH/WCfLFYhG/93u/R724SXOGy+VCNptFKBSCy+WiyUitVkv91cnMxVwux5Myurq6RPoyd9tOQCbmCHHz5k3enMpisYjV1VWUSiXE43HcuXMHd+/epUQ0NDQkeRygHiVHIhF4vV4cHBxgamqKlnpOTk5K/t3m5ib0ej1eeeUVkRREsLi4SH25hahUKtjd3aWj3MgQBKBOqkqlUjL6bG9vF2n/gUBApLWTRfHWrVu0yzWTyYgcIjc3N2k5IFDXsAnpk+lFLpeLDluORqOUsIG6nEKSm4lEgurfpVIJDMOAYRgUi0X671gsBrvdTksPiaUsmVhPEAwGcXR0JHkfMAwDg8GAnp4e3Lp1C7Ozs3QX8OTJEzx79gyHh4fIZrMnut4vkrxzuZxM3lLgDiFuVuRNmllUKlVLhhlL4ayWs/l8nm4tJycnRRfkWSLvarWK119/HcFgEFqtlurO3d3dODw8pKVnXq8XbW1tmJiYwODgIFZWVmiNd3d3tyipqFQqeTcWwzCSTTFut1sULVssFsmqk7a2Nuzu7tLFdmVlBVarFS+99BJsNpvkjWy323lSAvGjIbMxhaV6wvNYW1vjDfzlQq1W0+5QocUsUL+2/H4/ZmZmRN4fwWAQHR0dvB3e7Ows1tfXYTAYRNfh+vo6r65boVDA7XZTTZrg4OCA520C1PMY3Ij84OAAt2/fhk6nw9HREQ4ODnieKXt7e7TMlFSOEILiRveRSIQ2qhGZhbyew+GgY/CUSiVCoRAMBgMikQhNYqbTaRweHtJArJGMqFQq4XQ6MTIygrm5OYyNjUGhUGBnZwcPHz7E+vo6wuFww4BOWM7XTJxlEMNVwLWvNiFt7v39/eduZjkNzkKy8XicliwKPaLPelyWZfE//+f/pHW4DMNAq9XSrTB3Onpvby/y+Tz8fr+oPptrMgXUo2Dh3MO+vj6R3NHZ2SkZ9Q4NDYmOCdRL+YRET8yRiD+I0NVxcHBQ8liJRALd3d20rV8IhUIBvV5P/a/JBBwuSNnh5uYmRkZGJAl8enoaBwcHos5JoC59EEK+efMmjeB9Ph/PTIpgY2ODVvjcvHkTBwcH2NzcFPmlcGu3AdDkJVDXuIkDJPd8vV4vJWWWZZFOp+nj8Xic1zOQTqepDn1wcECjcZ/PRwmcdF5ms1mo1WpaBEB83Wu1GrLZLFKpFPx+f8OmKSno9Xp0d3djamoKd+/epZOXnj17hidPnmB/f5/ma4CLjbyvC3lfWrVJM2STw8NDeL1e3Llzp5kTL06E00beh4eH8Pl8mJ2dlRzwQHDSeZMEX/va17C3t4d0Ok0reGKxGI1w29raYLfbeVGw2+3m/Tw0NMSrziB6/sjICPR6PRQKBfL5PAwGA+7duweWZVGr1VCtVqHX61GtVukwB6AeXUvVWnd3d0sSPbkWiOsewzAYGxtDOByGXq9vaEpFhv7m83n09vaiWCzSxhoAdLgCUCezhYUFzM3N4dGjR2BZFsPDwzw/FULgm5ub9L2MjY1hY2MDtVoNbW1tsNlsokh/eXkZU1NTvCQiANpBya0qIQl7QtwEfr8fdrudyi3VahXlcpkX5ITDYdy9e5cnW3k8Htr0Q+q2CUgTkc/nA1CXT7q7u+l35XQ6kc/nodPpoFAoqNeJQqFAX18fqtUqTXIC7zVNEUJNpVIwmUxgGIbmUs4SHSsUCt5A8mKxSLtfM5kMzGYzGIZpGaFWq1XeLomUZV51XDh5N0M2qVarWF1dRa1Ww/z8/LEXTKsM3E+qeRNjqWq1irm5uRde3KeJvP/qr/4KGxsbyOfz0Gg0KJVK9IaKRCJ0cgxXx7ZYLDx5RKVSoVQq4c6dO7Ssz2w2iwhzdHRURMgejwdra2tgWRZ6vR4ejwcOhwNWqxV+vx87OztUIwZAbWeFEJb2sSyLw8ND2qSSTCZ5xyEYGhqi5+Tz+aDVajEzM4MnT57Q2Y1CLCwsYGhoCD6fT3Kh3NzcxNjYGFZXV6HX61Eul+lzSLkkaSEn6OjoQDweR39/vygfsLm5id7eXkrUWq0WDodDlEzP5/PUc4aQI9Guj46O0NvbSy1juQuI1+vFwMAAHQsXCAQwODhIX29/fx89PT10YUkmkzAYDDAYDNDr9RgbG0MoFEImk4Fer6eVKHa7nUbSpAIol8vB6XQim83CYrFAqVRS0qvVakilUlSGOm6y04ug1WrR2dmJzs5OuoPY2dmhVSEOhwMOhwMWi6Up97YceZ8SZ4288/k8nj9/jq6uLsnGCC5I8q8V5H0Ski0Wi3j+/DlcLhdvgPF5jwvUp7gsLi6iVCpBr9eDYRha9kV8mo+OjtDd3c1zBTSZTMhkMlQfVSgUPFJWKBSiqhGtVsuLEgm4Wm2tVkM4HAbDMHQGpE6nw+joKPR6PQqFgmQErdFoGiYTyY7A4XDA7XbzJuV4PB6RC2GxWMTa2hru3buHarXasEPz8PAQ09PTDSfrrK+v4+bNm9BoNCLpyOv1YmRkhAYPer0eFosF0WgUoVAI7e3tPG2c22BTLpcxPDxMiZRE+dxjcy1lgbrh18zMDK3lJp8ZF0dHRzCbzTQ5fHh4yCN4UknidDqh1WqhUqkQj8cRi8XoYk3cEjs7OxGNRhGPx9HZ2YlEIoFoNIr29nak02k62CGdTlNPd71eT7t3ScK0XC7TiT3nAbmerVYrLaGNxWI4OjrC2toajEYjLUc869iy61rnfa0070gkQjXj3t7eF14YrbZuPe7YyWQSjx49wuDgIAYGBk41OOFF2ffV1VW8/fbbKJVKVIv0+Xyw2+3o7e3F/v4+yuUy9Ho9lQ3UajXGx8dpxLe3twe/388jBaBesiaMWIeGhkSNNr29vZLWri6Xi34upMN1eXkZarUaY2NjeOmll3idgFNTU5JNNwzDUOkikUhgbW0Nt2/fpno4cUOUQqlUona1Uujo6MDBwQH6+/sbSlg6na7hY5ubm7h16xaVd0jJHDF6EpJILBaDx+PByMgIT1rZ29sTDY/Y3NykzoA6nY7mGbjnIqxcEU66L5fL9HsmUezAwAByuRx1ESTkRGZlEoTDYSpBBgIBelxSdULa6kk3rU6no+WouVyOSm65XA7BYLBp7pukSUetVqOjowMTExOYn59Hf38/SqUSVlZW8OjRI2xvb1M9/qS4rpH3pVWbnGZFZlkWOzs72NnZOVWb+1krQk6C42STo6MjajkrvDlfhBdF3l6vF3/913+NdDqNarWKeDyOXC4Hj8eDSqXCa2O3WCx0XqTRaEQmk8HBwQE9fk9PD88kSa1WixKZer1eMkKVqujp6OiQjHYHBgawvr4On8+H5eVlVCoVzM3NYWpqSrR4EJAuQy42NzdRLBbx8Y9/XLJBBqh/foVCATs7O3A4HKLkp0KhgMFgQKVSwcHBAfr6+kT5EpvNhsPDQ6yurja0lF1eXsb3fd/3ic5RalgDSZwKFxNCslziqNVqtNywo6MDyWQS6XRaVFN+cHDAuw98Ph+v4S0ej+PmzZuwWq2IxWLwer08+2PiMAmAzi4F+GROOijJtV4oFGj+gyxQsVgMWq0WmUyGHo+Qd7VaRSwWa8o9KKWnEx28r68Pd+7cwe3bt2GxWOiM04WFBdoVeppjy6WCTUKlUsGzZ89QKpV4NcEnwUUOTQDqF+36+jo1ljpLEvU48o7FYvjzP/9zJJNJOt+Q6KfBYJA6BQL1Gm1yo+3u7sLlcvGI3Ww2i6bc9PX1ieqTBwYGRDJKb2+v5ISctrY2yXMXbvNJm7nFYoHdbhe5PCqVStoVKESlUoHP58PU1BRvxBjBzMwM3TmEQiGRl8nIyAhvZ7G/vw+Px0MrLxiG4TUKra6u8mqsCYaHh7G5uSnpk7K5uckbpTY9PQ2v14udnR0aVRMEAgGRm6JGo6F+6AR7e3vU3pV8DsLPlTTVDA0N0fwC934hmjTw3hxR7nkQworH4zToyOVy9DomEgl5jslkAsuySKVSUKlUSKfTVCbSaDTIZDIoFovHlgCeFCdpj1epVHC5XKduEhJWslyHyfHAFSdvMs3d7XZjfHz81KVCrSRv4bHL5TIdqXbnzp1zDU6QIsB8Po9vfvObSCaT0Ov1SKVS6OzsRDAYRCqVgt1ux8HBATo6Omhyy+v1Us1fSIYul4uXdFOr1aJGFb1eLzkW67RRt1A35h47Go3ScWczMzNgGAbT09PUV1yIW7duIRgMYmtrCxqNhtcBaTKZRDuHfD6PWCyGoaEhmEwmSX9qEoHrdDrMzs7S5B/B0dERj2BNJhNyuRwqlQr1CRFic3MTfX19mJ6epudEKkiExECGBZPPizRNCe2AE4mEyCqWu3hYrVa6ABeLRVQqFd7zs9ks71yPjo6ohFWtVnkyFJfMQ6EQTUBGIhFa/UGSnyzL0qQ4eX/pdBpqtRqZTEZUjXQWnLaS5aRNQuR7vKoW0cfh0sm7kW5J2tynpqZE0cpJcVGRdyaTwcOHD9HT04ORkZFzJWmkIu9arYY333wT8XgcSqUS0WgUbrcbqVSK3nQqlYp6SysUCloeBtQjZS5pWa1WbG5uoru7Gzdv3sSNGzcwODiIvr4+DA4OorOzEw6HAzdu3ADDMLBarWhvb0dfXx/u3bsHg8GA+fl5zM3NYWJiAhaLBS6X60RRN0FXVxevLjgYDNKItdHfkEYjglQqhb29PVpxNDk5yevoJKhUKggEApifn29Yi7y3t4fp6Wne50ZQq9UQDAbR09NDpwqRrTixYhUu1tVqFQ6HQ7STicVivGYa4D15Ynx8HMlkEuVyGSzL0uYYgnQ6Lao193q9sNvtGB0dRalUwuHhoWiYA/dnYft9JpOh5x6Px6l8UqvVUKvVYDab0dnZCY1GA4/HQ+Ubl8sFk8kEtVoNq9UKtVoNs9lMx8FZrVYwDEMj8FqthkgkcqpacC7Oa0zVqEloe3sbqVQKOzs7WFlZabjjE+Kb3/wmxsbGMDw8jM9//vOix19//XU6eer+/ftgGIZ2iTEMs8cwzCLDMM8Yhnl01vd0aZo3IK0bky01aXM/T9b3Isg7FArRRUbK6+Ksx+XiW9/6FmKxGPL5PK1wAN7TGwcGBhAMBuH3+2nNLYFKpYLf74dKpcLAwACmpqaozptMJrG3twev14tIJAKfz4dIJEJ1Tm6NNBncQDy/19bWqI5N6oXn5uZ4A5L7+voko26tVtvQ28RqtWJjYwOzs7Oiz3NqaoqWshGQ2Zxzc3MNq1aAeqPP0tISz5ObC4ZhUCgUKEELUSwWUSgUMDMzI9oVhMNhEal2d3cjFApJBh7b29siqYSYhnG/+1QqJRrTt7u7y9PxLRYLrd0mII00BGRmKfe9kPswm83yEsiJRAI9PT3o7e2FRqNBe3s7yuUy9foul8u0Jh8AHeBAPj/yu3w+T3caZrMZCoUCSqWS2gCcFs22hOU2Cen1enR0dOCtt97CJz7xCQQCAfzar/0anj9/LhlcVqtVfPazn8Wbb76JlZUVfOUrXxHtOgcGBvDXf/3XWFhYwL/9t/8WAL4oOMxHWZa9zbKseMrHCXEpkXejgQzFYhGPHz+GWq1uSpv7efxHXgSFQoFQKIT9/X3cvXu3aaVFwmqTt99+G4eHh4jFYjAajTTa9vv96O7uhsVi4flLdHV10Shbo9FgeHgYHo8HJpMJwWAQ0WgUq6urvNrvgYEBUcTa19cn0rrdbrekL3dHRwdCoRDW19extbWFcrmMiYkJDAwMSJLXxMQEL1FKQIyZgHonYrVapfMqLRbLsZPNudtkqc+UVEGsrq5idnZW9Jzbt28jEAhgb2+vodOl2WxGpVKRvC6DwSAdvmA0GinR7e3tSXZaEg8aoK7DR6NR7O7u8nRtoC6NCD/DbDYLlUpFB2d7vV4eoWezWV6ivFAo8FwqhfJJIBBAb28v+vr6aNlpNpul0TIJFpLJJJVSstks1cJJjThQl000Gg2vmYccq1gsQqVSIZvNnprAW2kJyzAM7HY7fvqnfxp/8zd/A5fLhc7OTvzqr/4qPvnJT4qe/+DBAwwPD2NwcBAajQaf/vSn8dWvfpX3nPv379OcwksvvQQAHtGBzolLlU24kXEikcCjR48wMDDQtDb3VkXepFKhUqlgdna24Tb/LOBG3mtra9jY2EAymYTdbkcwGES1WoXJZEJHRwei0Sht/wbqWrTf74fH48HY2BisVit8Ph92d3ep3qjRaHifiUqlEkkFKpVKcryZ2WwWRSJEghGCZVk8e/YM2WwWk5OTGBsbg1arhV6vb1hhMjExwds1FItFrKysYHR0FLdu3ZJskQfea+WPRqPIZDKiuZC3b9/mleitrKzwCNxms/Gi6aOjI97AYKD+2apUKpH+zcXe3h6NWrn5hIODA1HTSi6Xg91ux9DQEM/DPZVKiTTxQqEgcr2bmpriVXKQXRgBd9I8UJdLuIQeDofhcDjQ19dHJS+yoCYSCUo8LMvyrhduVB+Px+lrJpNJSq7ER6VQKEClUtGdG0mgk4aeF1WBcNHK9ngu12SzWdjtdvzET/wEvvzlL+PNN98UPd/n8/GCBI/HIym3EXzpS18CAO6BWAB/zjDMY4Zh/uFZz/tSyZu0cx8cHGBtbe1MpXXHoRWlgrlcDg8fPoTNZqPTaZoJQt6BQABPnz5FJpOB3W6nY6c6OjoQi8Wo7wQpVVOpVBgcHITD4UA0GsXBwQHa2tp40bPVahVNxCGezVwMDg6Kfud0OiUrTDwej2QiiluH7fV64ff7YbPZcP/+fckqHK1WKzo3gkwmg729vYZDNbiRcKFQwN7eHiVwk8kkeWOtrKxQCWVoaEi0E9jY2OCVCY6OjtKFZXt7W9KWtlKpwO12iz470rAk1MUrlYqoXj2dTovKG2OxGN0NEBdBrlMgUE/MciUWlmVFNdxkOIZarUZXVxcdPlEul5FOp3nHi8VilKS5TofkfmJZFizLUglGmLQkvyOVJ0RCIfIKwzBIp9MNF2QpXMRAFe6OApAuaZaSUhoFm//7f/9vQt7/mvPrD7EsOwPgkwA+yzDMR85yrpcqm5BuvGQyeebSuuPQ7Mg7Go3i6dOndKp6KyQZhmGQy+Xwve99j3pVVCoVFItFeDweOr0GAJ1qMzIygvb2duzu7lLtU6fTiaomyHaegEg/XCgUCpFHByBdBmgwGCSlDJfLJRmNVyoVbG1toVQqYXZ2licRTExMiEiPoL+/H/l8Hmtra5iYmOAt8JOTk6L3SbzSZ2dnMT4+LpJ/CFZXV/GRj3xE8lyBehXI6OgohoeHRXr63t6eSOcmXipcO1YCYldAQJwYfT6f6LqXOsbu7i4GBwdp56RU5/Dh4SGPwOPxOG8hyGQyGB4ehtVqRT6fRzQa5endkUiEVqcISxGj0Sh9LJ1O06RnoVCg0TdXAuWWFRLfHWI1QGrGyWNSEtpFQUjEJ2nQ8Xg8vJ2pULYiWFhYwM/8zM/gq1/9KliWpRUDLMsevfv/EIA/BjB/lnO/tMg7l8vRbq6bN2+2pFSnWeTNsiz29/extbWF2dlZOuKpFZJMuVymhjz5fB7lchmFQoG2VxOCczgc0Gg0MJlM8Hq90Ov1Ir8N7rbUaDSKGluI1m00GmGz2eBwOODxeFAul2E0GmmkaLFYJBOPAwMDklvfRgvb2NgYnWC/ubmJdDpNSbxR1O10Onnkur+/D5VKhRs3btCGnEYg2/pGEZtKpUI0GhVJJAS1Wg3JZFKyU5N4bhB5wWq10k7Rvb09ych8e3sbfX19sNvtYBiGDkcglRlckNppgs7OTmi1Wl6kSrxWuCDRLYHf74fBYIDb7ab5EO5xE4kE3bkIDZpisRh97+T7JGTHjczJuEFyDLPZTH1HrFYrLBYL1Go1rU4h3asMw0CpVCKbzZ7Y17vZEGrpJxnEMDc3h83NTSpHvvHGG/jUpz7Fe87BwQF+6Id+CL//+7/PuxYYhjEyDGMm/wbwdwCIXdxOgEsh73A4jKdPn6K9vZ1eyK1AM8i7VqthaWkJ6XQac3NzNPo4z8SbRqhWq3jnnXeQyWSoEZDBYKC1qMRLu7+/HwqFAl6vF/l8HiaTiUfMWq2WF42ShMzo6Cimp6dpaWClUqGVANxtLVD/7AwGAxwOB3p6euh0mDt37mB4eBgWi0VSFyfVIkIolUqRFzjLstS4aXh4WPKm6enpETV4kE7Rv/W3/pakvziBy+XCxsYGbty4IVl3f+vWLUQiEWxvb4t0coLe3l5kMhlJAi+VSjCZTNDr9TxbAKBO4FLmTMViES6Xi7foBQIBUSMQkcuA96J0Uq7IRTAY5EXu8XicR+hKpRJ9fX3Ul5s4BXLPh/vehNPtM5kMJbdUKkXfU61Wg0ajgd1uh8vlglarpaWCRK4hk+gB0AoVoZxDygkrlQoKhcKFE/hZJserVCp84QtfwKuvvoqJiQn86I/+KG7cuIHXXnsNr732GgDgl37plxCNRvFP/sk/we3bt8EpCewA8F2GYZ4DeADgGyzLfvMs537hMyyB+oXtcDjg9/uhVqslt5nNQDQaRTgcxvj4+Jn+vlAo4Pnz53C73SIvlXQ6jd3d3Ybt02fBW2+9hd3dXRphOxwOqmkTEyASsXDJ2u128xpsSKWIxWJBKpVCpVJBKpXiVZj09vaKJI+enh5Row6JroQR9tDQEN0+5/N56iA4ODgomZCcnJyU1MxVKhW1QiWJ2GfPnoFlWTidThQKBcnuPJVKhc7OTuh0Ouzt7Yki8OHhYV4ScmBggGf1SkyTuFPYu7q6eAvPwMAAb2izz+eTHJo8Nzcn2aDkdDp5HX3EalW42AJ13Z7r6gfUia2vr4/XaalSqaBSqXjvlzgPco+l1WppRF8qldDW1sarYSYOhuR1bDYbrTgiAQo57/b2dvpcu91OE9fVapV+/+TcCHQ6HarVKvWXJ//W6XQ06CH/JmWEQD3wINc4Fw8fPpT0Yz8v8vk8tra26O7rz/7sz/DgwQP82q/9WrNf6v0xw5JMIW/VHEuC85QKJhIJPH78GMPDw+jr6xNdTM3W05eXl6lNKSnlItoz2XbmcjnEYjHeDW6xWLC3t0eJgWjH8Xgc+/v7iMfjdK4hF1KJIimS7Ovrk5RGwuEwbazxer0wGAwYGxuDXq8XlU2SbjwpjI6O0kaWTCaD7e1tTExMwOPxSEbdBJOTk4hGo/D5fHC73bxyOrId52J3dxdDQ0NUnxXOyqxWqwgGg7SBhhh+Efh8PslW+KGhIayvr4sm3wD14IFbJjg0NER9qoXdk0Sq4l5nXV1dIm27UqmIIkOfz8eria/Vaujr60O5XKbvkVvbDdS/fxJRE392gkKhwNs1kCSq2+2mXizk2s9kMvSz5nYqcrXwYrFIgwBu5QxJXBIdnCRAhRF4q8p9gevrKAhcgVLBZs6xlDr+WQjW6/VidXUVd+7c4SV0uGimbHJwcICdnR0UCgWqO5ZKJZTLZbjdbiiVSjqujEz5Jmhra8PY2BgcDgcdFMuN1KQSl11dXaKkJHHa44JhGFFCEwD12OaiUqnQzk61Wo3bt29jYmKCJlSl2t0VCoXkCDOv1wu1Wg2DwSCZC9FoNLzjRaNR1Go1qi3euHFDssJkf38fg4ODknM4gfeaS1wuFyYnJ0XdkXt7e7xdHLFSJecsJGQAdGjy+Pg477PMZDKiRKXf76fyCVk00+m0aGdKOmy5SCQStNbd4/EgGAzyqkfS6TQvmUn8wwmSySTv51AoBKfTCY/Hw3MgJOdONG7heLJyuUwXBVKPDtQXC/JvbucoCSq4VSxCAr/oEWjXYRADcAVKBVsZeZ82qUgGJ0QikRdWvzSLvBOJBJaXl6lvBWlXJuVhCoWCVpCQOmOFQoH+/n5a3bC/v09d4oQ6tNvtFk1/l4KU/SlXNuBCasFlGIZG6NVqFbu7uzg6OoLH44HL5ZK8IUZGRiQXB6C+wGxubmJ4eFjUpNLT0yOqIMnlcgiFQrh9+3bD6hIANOpt1ACWyWRoOaYUuE083d3ddAdDhvlKHVetVouaoAqFgqh7EgBtb+c+PxAIiKJBMpGeezwiyZAFRbi7ikajvFpwrv0rUNfL1Wo1bDYbPB4PDAYDjdyFTnv5fJ7XpUmun1qtxnMX5F4r5DPi/ptMZALeczQUEngrG3Suqx0scMU6LJuN00TeZIixRqPBrVu3Xmgs1QzZpFQq4cmTJ4jH4zCbzQiFQqjVatSAPhKJ8KI/p9OJrq4uavhfKBR4C4jFYuFpoWq1WhSBtrW1iSJxm80mOT1dSlrp7OyUHMwwPDwsGUWr1WqsrKxAr9djamqKlxxrVCliNpupJuz3+1Eul3H79m0AoO51UiD11FJlWwSTk5NYW1vDwMBAw2hOrVbD6XRKXgPVahWpVApTU1Oi8sFIJCJKPJrNZuTzecn+hcPDQ5EU43K5aFRLUKlURL9LpVK899nX18eTKgAx4ZJWde574S7aGo0GPT090Gg0KBaLosoLrkRC/OIJiKc3wCdz4jlPXo8r1SiVSmg0GqjVamg0Gmi1Wvo7onuTsXHy8GExLl02abXmfZLjp9NpPHz4EH19fSfu7jxv5M2yLB49ekSJm5A0SQ5ls1maRCKRdiaTgc/no9NPuFG2lHNgd3e3qIZWKgJ2OByi90ISdEI02lI26pYjFROlUgn7+/tQKpUYHR3F4OBgw640YrBPUCqVsLOzg+HhYUxMTDSMrDUaDSKRCB1kLPwetVot/Yz29/cxOjoqes7k5CR8Ph+Ojo4aLgIqlYqXZONie3ub1nMrFAp0dHQgl8vh8PBQ0lo2EonQz9TpdNJRdkKpJBQKiSpeyER50mRULpdFxCMk9FAoxNsdhMNhOJ1O9PT0UL8bLilns1lKuJVKRWQxS7Rsbjs8eV3ydyTRTkoFLRYLbcNXq9X0XiLPJ/o38J6cclHkfZJSwauCS5dNLjvyDgQCWFxcxK1btyQ1y0Y4b3nj8+fPEY/H6ezJarWKzs5O+P1+sCwLtVpNPSdIgww34tTr9TzCbW9v5xGoSqVCrVbDyMgIJicnMTk5iRs3boBlWfT29tIEVE9PDwqFAvr7++lzp6am4Ha7MTExga6uLnqzWywWyQi9p6dHkogdDoeo8qRarSIQCMBoNGJoaEh0U+r1eskSRKBexkaqTKRA6siButZ88+ZN3nZ7fHyclw/Y2dnhlQgaDAbeTicYDEqWELa3t8Pr9Up6lgDvWaiSIcrc4wkJOJfLob29nZZsctvkhRKMsMyvWq3C5XLx8g+hUIjn010qlRrWqQP1xVitVtNdkLD6rFQq8aSVZDJJo2rSZcklWq5kYjKZYLVaYTabqXkVOSb5Xrj/5paqChcDl8vVkjLC6zqIAbgCskmrNe9GXzipMfb5fJibm7vQL2x7exvBYJC2FBeLRdpkQxaz9vZ2uFwu6oPM3aKbzWaRdFGtVjEyMoLx8XH09vZiaGgIfr8fR0dH2N/fx/7+PliWRSAQQDQapRNayKSVaDSKQCBATbDW19fh9XqRTqdhMBgwODhIq0CEZNDIuL5Rs05HRwe8Xi9CoRC6u7t5XiGdnZ0No/jR0VEcHh4in8+Lyj/1er0oCUvqt5VKJaxWq6TcQ0geqGvwwqh+Z2eHd36jo6M0WbqzsyOamgPUdyHcob8ExWKRV0NNEAgERHXimUxGFPlns1kakavVavT39yOZTIp2Q8J7KhQK8eSSYrEIt9tNNXJhRJ1Op3n3g9ClkOv9ncvleK9Pps2Tem9CjEJvEm50zdXCuVVR5F4gE3OEhN4MCM9L+H6uMi498m4leTdCpVLB06dPUavVMDMzc273wtMgGAxie3sb5XKZdtERtzW/3w+tVou+vj54vV7qDmi1WnkyAjHAdzgcGBkZwcTEBOLxOI6OjnB4eEgNmrggyU4hpIYTCFvha7UaYrEYnQ8I1JOZt27doklTIXQ6nSRZAuARWDweRygUws2bN9He3t6wpFCpVNIOxlKphIODA540Mjw8LNlmvbOzg/HxcZEUw8Xm5iZmZmYk3wfLsgiHwzQ6Fur6xOCJC5PJhHg8LknsPp+P93uFQoG2tjZRdyNQ18SF1U6Hh4doa2tDT08P3YkR10QCrvsfeQ/ciF2v19MdH4EwAk2lUpQoiT5NIKWlk/pvhmGgUqkkyZgYVpHXI+dEasaFUgn5e5LIrFarTSdw4W5Glk1OiFYnLKWQzWbx4MEDdHZ2YmxsrGXdnVJIp9NYXV2lpjw2mw3hcBjVahW5XA7d3d20o5JcwDqdjicjkGjWbrejVCrB7/eLCFg4wRyoV28IE5A9PT2icjipJCdQl0C4VSvEwtRoNMLtduPWrVs8OaO/v18yIUnq0oXY399HX18f+vv7Jb8Tt9stIs6trS1MTk7CbDYf6+VN5isep5uWSqWGZaGEdHp7e0XvqVAowGAwUAJgGIbuHgjRChEIBOjuxePxIJ/PI5vNiiJtQprcz0OlUtFBHATpdFokJRGfbYJoNAqr1Qq73Q6TyYR8Ps/bQQn18lqtxns8lUpJtpG3tbVBo9HQPADALwUUkqMwlyEVmUvJMSTx2WztWxh5y3XeL8BZhhA3A+FwGM+ePcPNmzfPPJ3nrCiVSlheXqa1zS6XixKs3W6HxWJBLBaDUqnkbbeJXjg0NERv7mg0Sm8Cl8slIm+pz1WqEkRq4fR4PCd2eiNETyaRZDIZqpsLFwWC7u7uhqWGiUQCu7u76Onp4TWJHJcc3t3dxdTU1LGlZG1tbdjb28PIyIjk8wYGBuD3+5HL5RpeFxaLhRdRchEMBqm0Mjo6Sr9XQgxCwikWi9BqtfB4PLwdknBIMFC/ZklLvEajQXd3NwKBgCg/I5wwXywWec/RaDRQKpW89yCUQxKJRMOZlwQsy0KhUECn00GtVtPOSdJ6T57DBbGGBcReIo1KCUkyk9gIazQaMAzDG47cDAhryGXN+4qBuMzt7u7i7t27kgmc8xz7RSD146VSCZlMhjZ3VKtVtLW1IZvN0sQW93hms5m2TQcCAWQyGREpComwke2rkOCdTqekGRQ3oiPo7OyUnHzT29sr0qcDgQCUSiWUSiWmp6d5N4JarW5oQDU4OEjPkZgnkeEGw8PDkvIOUCel3d1dmEwmyVmS3d3dtDRyf39ftNsixkgAaEei0JOElM55vV7JTkqgvohMTExQaYcgGo1KdmYqFArR+ZJoU7jAhMNhmM1meDweKpWQaUcE5XJZpKeTxLDVaoXNZqOjwAiq1SpPomBZlkfe1WqV9zPDMOju7obdbqct79xFlSt9cLsqAX4CkiufEDInHicqlYqSNfm9QqGgCXju/dEMAhfOr5RLBa8YFhYWkM/nTz19/kUgDQUvwtbWFvUYITcosetUKpU00rVYLAgGg9Dr9XC73VQOILqhzWbj3Wx2u10kF0gNTJCKWqW2hp2dnZJNM1INPIA00QP1mzibzWJ3dxc6nQ7T09Mwm80YHBxsGNUL2/cLhQIODg4wNTUl6SdCMDIyQsvrAPAqLQBxaSPX6xsQ7zRIso5LPIODg5Q0ycAFIUhLvtRgjoODA15HJHFsjMViovrtWCwmOn65XMbg4CDv885ms6LoOxgM8gi8VqvBZrNBq9XSBSuZTIpkDO49IRxynEgkYDAY0N7eDovFImqz5/6tUAYl7e+A2GKWRNmkzluv10OtVtPGHW53JVdqEV7b5yVwYeTdaFLSVcSlyiYErXISy+fzyOVysFqtmJycbHqX1kmqZXw+H8LhMCqVCq3FLZVKsNvtyGazvDZvpVKJ/v5+OoWE+5hKpRIRq7CJhDugl9spB4Dqyf39/ejt7UW5XIbT6eSVgUldtNyBD1wI5yYSuFwunmZeLBaxu7sLjUYDi8UiuRCQEkkpkMhM2A4O1ImD+xkRsiDyksvlkoz0SZWITqeTTHKGw2FqROZyuXgLJMuytM6ei5GREQSDQclyUzISTalU0tpv0kHYSBMniw7DMFTWEUbWoVCI9/0JE4udnZ0ol8u8nSaxoOVC+L1zo2RiF8x9L1zCLhQKPFImBEyey92ZkWEQSqUSOp1ORNjc9yEEV5IRBiPn4Y9WNgC1GpceebfCWhWoVzE8efIEJpNJ8sZvBl507tFolJISyZqbTCYUCgVks1mo1WpaptXb24t4PI5wOAyWZWGxWHjH5rYqk599Ph8cDgf16xgeHkZXVxft0qvVajCZTEgkErQcMBqN0qYgkjCy2+0YGRmBWq1GX18fnT2pVCrhdrslF6hG0YmUDSpQLw/c3NyEzWbD5OTkifMdpPmoUChgbGyM99jQ0JAoki8UCsjlchgYGGh4LkC9weXWrVsNuzwPDg4wNjYm+h6Aui5qs9loMMBNEB8dHUlWmSQSCXg8HgwPD/OkL2KsxQWp3iDvkQxfEAYfxDubi2g0io6ODnR1dfE8uLkER8bnEQg9y0ny1u12w2QyoVgs8q4BYsXAPV/uOXEf42rspFpEp9NR0zjudSBMUhKQIIlb/SIcKnLWwIxL3sQE7KJzcWfFpZF3K2u9Dw8Psb6+jtnZWZ4FZbNxHHnncjlqIcqyLHK5HNra2hCJRGhbcjAYhMfjgV6vRyKRoMfiDuIlr0O27W1tbdQsyGKxoFwuIxwO4+joCMFgELFYjFaFkJmWQkjp5qRUMRaLIRKJIJPJwGazQaPR4MaNG+jt7aU3iFSdOcCP/IUgN0g2m6Xdhp2dnTAajQ19RDo7O+nnUC6X4fV6aeONRqNp6ItCGkuOmy1qNBqxs7MjKYFw0cjfJhAIYHh4GAqFgpZuEgSDQZF8AzTuEszn86Jd1NHRESYnJ3mJ5ng8LiJ6oQGVUqmkiUQC4YgzlmVFOyBuYOBwOETvSavV8n7mVh5VKhUegXOrTYD69Ww2m+FwOGA2m3n3TLFYpD9LJTPJa0p9diSpSSpyzkLgwsj7MgZCnBWXHnk3s8uyVqtheXkZ8XicDk5o1cQboPHCU6lUsLe3RyMWMnEll8vRC1Wv16O9vR2xWAw6nU5UDcJtC+7p6aERNYna0+k073MzGo0iz4/29naRKZVUyR0ASde/jo4OHB4e4uDgAPF4HA6HA5OTkxgeHpb0/ejp6ZGspXY4HCJSD4fDdJBuI01dKnG0u7uL0dFRjI2NHTs+i0w+l0oWAnWtmzxHKtGp0WjotCcpAymgrn9PTU2JPs9yuQyDwcCL4CwWC0qlkkjaACDpHEg6X4WEJJywA7xHOGq1Gu3t7VQS44JrJAXUtXVu1E4G75KO2mKxyMsXCH8G+DMlhRGrQqGgnuLCEj/hv7nXDAl2uO+NS+6EsElCkzyXvP5pCZxruUuCmOuCSyfvZkXexWIRjx49gsFgwNTUFL1AWtnFKRV5syxLhwNwp7qzLEurKNxuNyKRCG2E4G79GYahznaDg4N0oEIgEKD6ocPhEJGkVJQpVaEhdXHbbDZJ50Hh50YqLojL3eTkJK3LZhimYXmg0+mUjGg0Gg329vZgsVhEreYOh6NhmzxxVpSKboF6jXkwGESlUkEkEqEe3QSdnZ10MSGudkKyc7vdNEdBSuOEsNvttANVCC7pk0acUqmEZDIpGe37fD76flwuFzWGEkba+XxepKuT5LfT6aTXo5Dk8/m85CJFYDQaRTNOuZ7f5BhCgibPJ000BCqVCiaTiSeZEAg9yrk6ORlQTJ5fq9Xo/UHKHQlIwcB5CJx7HtfJDha4ArJJM7osk8kkHj16hMHBQQwMDIhKwS6SvI+OjpDJZJBOp6HVaikBpFIpOJ1OWCwWpNNpesGRgbLkXMlNmM1maVuzsKpDSJI2m00kITidTtHfGY1GyQYcqQocm80mKbmQ2uRSqUS7Obu7u3H79m1J/VitVjdsoOnt7aUkFQgEMDk5SbXY4wY8DwwMUM9vqbps7kJBCJwb2RqNRpGJklKppDeuzWbjdXqSunzudcWdPtOouSeVSsHlcmFoaIh3PL/fLyJSMlaMeI2Q9x6JRESLQzAY5O1KyMLNfU9SpYPCShMy1szlctGdAZe8qtUqTxsXuhsKK1VI/sRms0GtViOfz/N0dy7xkvpw7s/k/LlRNTknbkkhNxpvBoETnGQE2lXClYi8zyObHB0dYXl5Gbdv35bM3LeSvIXHjsfjiMfjyOVylKRrtRoMBgNNVKpUKnojsyxLLxiiB8ZiMV7jhjAidrlcIlIWlpsB4koUoE7SQkK0WCySJG232yWjZSlCTSaT9EaenJzkEROxKhVCarrOwcEB7HY7hoaGGmrnDMPQSIwMaSb+2uT1hHMtyYAKj8eD3t5eycWEDCNQq9VwuVyi9xkKhXjTavr7+6lWLzWDkryucCEgvydNJ1zE43EMDAzwdlWVSkXUl1Cr1SjJqNVq2O122jPABZHkCMrlMi+JyzD1AcHca0UYbXMHKpCfhR4lQP06slgsvI5QlUrFS14Wi0WeNs4lXWE0rlAooNfraamjRqOh9xrDMDytXEjg5HenlUCuU403cAXI+6yRN8uyWF9fRyAQwPz8fMMV86Ii71wuh2AwSCMFYjJFDKeIHs29kUlrMVC/sM1mM4/ouBPJCaTkEiH5kkoULrjDEoR/LyRphUIhOdjXZrNJEp/ZbKbJ2YODA1QqFUxMTKCtra2h97ZUaz5QjwaJjCKV9eeSJlD/PGKxGJVdGlUKlMtl2iDVCMFgEOPj4w2HGieTSXR1dUGn04kWUG7LO4FarUa5XJa0lo1GoyL5pK+vD8lkUiSBkak2wt+5XC7eQklcKglI4MBFLBajIwg9Ho+oLb5arfL+RlgaKKy7VigUcLlclCjL5TKPNIXDhrnRd61W4wVupFJFr9fznAvJ6wjry7k5D259OKm3J8nbRhBWu8iyyQlxnoEM5XIZT548gUKhwJ07d45dYS+CvCuVCiUvpVKJcrlME3wajYaSptFoRDabhdVqRWdnJ1KpFE/vFpKZkIhIEw8XbW1tdLvqdrvR3d2N7u5uWvLX399Pp7+r1WreZ6VQKCQbbbgTYrhoFI0LI9VarYbDw0PY7XbY7XbJnUGjba1CoaBzHoeGhkSRUKMaYL/fjzt37kgmXgmIJ0gj7ZforVwXQS5qtRoKhQIGBgZE1xS5hrnvq6+vD7lcDoFAQFKfj0Qi9P2R0XLFYlFShhESDek65EKqdDAWi0l6lnR2dtL3INzdCaNt4g1DQJKGxD1QKIFwm2yEconwZ4VCgUqlgmKxSL29yWdIhjEI3yOBwWDgyTLZbJY3YYgcqxE/XGcvbwC49NTqack1k8lgYWEBg4ODJ6rfPs8Q4pMcu1KpUJtScnNXKhWaoCJJQxL5dnd3I5FIIJ1O8yIYu93Oi5YNBoOogcdms9HuPPJa1WqVbim5I7mElRjkcyYmSkajEXa7nZ5vKpWSnIFJoFAoJEvzGIaRbNYhjxGnxIGBAWxvb6NYLMLhcDQcxNDX10cfCwQCMJlMsNls8Hq91NdDCmR0Vm9vr2QZI9la5/N5mM1mmM1m0a6gr68P0WgU8XgcPT09kglTi8XC0165yOfz6OjooA01ZNdEuviEORIyo9RgMPDOJRQK8XIhQD3qd7vd8Pv9YBiGJoHJhHqCWCxGzc0IuORlsVhoVEruOzJhh5wDkWWIfCesMddqtbxuXxKdE0mE9C6Qn0ulEr1myeNcaUWn00lq8UD9uhVKKlL6t0qlgsPhAMuyKBQKNHJXKBQ06Szkges8vxK4AuStUqkaNkoIEQqFsLm5SdutTwLy5bUCCoUChUKBdvaRiyaXy1FtkEQadrsdoVBIskwPgMjC1WQyUVOeUqmEQqFAa8QJHA6HiMxcLpdIRtHpdDyCrVQqSCaTog5Fu92Ojo4O2iR0dHREX8/pdEqStMfjkdSnua9ZqVRwcHAAm81GpYVGrfXC74qM3hofHz92h9bZ2Unfy9jYGNbX13mPDwwM0MWH1D2Xy2V67Qmvw0QiAYfDwZNoSHdgKBRCf3+/aNAE8J4cwj02UN9VEWLnIplMirpVpcoJyTmRSTTcIb9cYiL+JFzyTiQSsFqttLORzJnkBg+kkoQsSCTaJt8HmYZDFv9yucyrJye2xuQ8hN+jkHw1Gg1dRIQ7TLPZTImVYRjqKMiVTrgJSmG0rtFoeDXjWq0WyWQSyWQShUKBdhZf5xFowBXQvE8im7Asi+3tbezv72Nubu5Ulo2tlE1ItKdSqaiVZCqVosm7eDyOtrY2OvCAXNjCSMtqtSKZTMJsNqOvrw99fX3IZDLIZDIIh8P0sZO8DylZoVHbu5D4yQT4o6MjpFIp2O12jI2N0e7Lk74eUNfHhZFONptFJBKBRqORlAbcbrdkdE+8UkwmU0O5hXseh4eHvG5Mqe13LBaj3jJAXUvn7lYIYXD13oGBAbro+Hw+yeuQLHxS31UkEhEZPZFafCFZSzXkFItFUYKR7GSEfyvU3w0GAy95mclkeD+T7l/u++Dq52TnJ5TduBDq2cIuTPK3ZF4lt/tSmHDk5me4yUoCUiFEzKy415qwIgUAlSqdTie2trbw4MED7O7uolwu02OflLy/+c1v0o7mz3/+86LHWZbFP/2n/xTDw8OYnp7GkydPuOf2CYZh1hmG2WIY5udf+GLH4Epo3seRUqVSwfPnz1EqlTA7O3ts15wUWkXeyWSSbscymQwsFguVToi5PBlNRqIHAm5UotfrYTQa0d3dzauVFkYuwooFvV4v0r8NBoNksk2qhltqogtpReeeJ6kvLxQKGB0dxdDQEL0JdTqdpPxBqgGk4PF4aEQ/MTHBI4DjtqxOp5N2ZgprrqWGJHAJfHBwULKLMxAIYGhoCHq9XjJ5mkgk0NXVBYZhYDQaea9BtvLCMsuuri6EQiFJSY9UnxA4HA6k02lks1nJSilhrbbJZKKue8LzPO6+IHXhQmISkq+w0iSTydBI3uFwiFrfSeDC/Zn791yLV6D+mRmNRjpcmAuhNCLs8OS+DsuytHqL+1649znZjXANrnQ6HZxOJ2ZnZ3H37l2YzWaUSiU8fPgQP/zDP4y33nqr4cAOgmq1is9+9rN48803sbKygq985StYWVnhPefNN9/E5uYmNjc38cUvfhH/+B//YwAAwzBKAL8J4JMAJgF8hmEY8Zy9E+LSI+/jOixzuRwePnwIl8slutFPilaQdzabRSKRoJOtNRoNKpUKMpkMrf8lurNCoeBtiQkJuN1ueDweWK1WhEIhXiQuJGq73S6SVaTcA61Wq+h37e3tkp2IUmRGGlOEIPpmMBikHYkTExMNuxc7OjoayiIkoqpWq/B6vejt7UV7eztMJlPDenCdTkd3CYFAAG1tbSISlAIh8ONuSK/Xi8nJyYbPIV4lxORJ+F645YOkGYucJ/cxgkgkAo/HI5rJGI1GRbubQqFAiZcs8uTfXFSrVVGkTXZOHR0dVH4Qnn82m+VVllSrVdECSibkNIJUpRL3MUK6Wq1WpG1LadDcRV8YjQOgixepy5fKOxCQfBe3NJM7NMJgMMDpdOKll17CL/7iLyKfz+P111/H3Nwc/vW//tfY2toSvd8HDx5geHgYg4OD0Gg0+PSnP42vfvWrvOd89atfxU/8xE+AYRi89NJLSCQSYBimE8A8gC2WZXdYli0BeAPA35X+ZF+MSyfvRuQajUbx9OlTTExMiFqHm3H8s6JYLCIWi/FIqFQqIZfLQa/Xw2KxIJPJ0AuTW49KmjDa2tqQy+WQSqVEEYjVahURqPD8hREygdTvGs2QbDSBXQrCqLRYLMLv99PhC8KSt0afd0dHh6jrkwyWGB0dbZhYJiVt3PMh2q/FYmmYMAXq3/9xnYUmkwl+v59XKy4Ed0iuEH6/n3ZwCv3NC4WCpNwk1QzCsqzkbigYDEKn0/EWZilZhCQquTAYDDxNmZSjciElbZFcjd1uF5XblUolXpRPtG/u41yCJqWIxKpCypObq183kucUCgXVvQmE9w55DjeRKlyUSeMPSfATSW1ychIDAwP45V/+ZXz729/Ghz/8Ycnr2Ofz8a53j8cj2n1KPQdA97v/cbPg3nd/dyZcumwirPNmWRb7+/vY2trC7Oys5AV9GjSTvMvlMnW4U6lUKJVK9OLl3jgkeiCaOJFFSAUCeVyj0YjquIXRkcFgEJGT0+kUlfK5XC4R6UtJK4B0LbSwuoXA7XZLEj35fSgUQiqVokOPpSQMgkYlWyxbnxM5ODgoIhelUim5KJEtfn9/f0PSJzdmI6c/oJ7orFQq1I1PCjqdDvl8vqE0QVrwhQtTLpeTlE/a2tokJaJYLCY6B4Zh4HA4XlgxJTSbcrvdYFlW9HkK5ax8Ps87FxKpkhJUKQgJuNGQBK1WS6UeLoTR+XH3J7dumzsmjUBoJ0sWK1IhYzabodFokEgkUK1WEQqFaHMc6bwlrf0PHz5EKpWC0WjED/zAD4hcLIWvzT2HFz0HAAtAqgnhzE5YVyLyJrJJrVbD0tIS0uk0NZZqxvGbUSrIsiwSiQSNLCqVCu+8ySrOlTzIfEelUkm7LbkQOrUZDAYRAUjVSHNlJpJtl5KepJKGZCqPEI38RxpFnMILNplMIhKJYGhoSHIOpU6nazgNhwxECIVC0Ov1PC+S3t7ehgZUZChxo6iZ2OwCdRlD+DybzUYXt2q1KvK+BurNRKT+uq2tTXLhI7KF1GPCkWVkcHAkEpHUuYUTcjweD1iWFdnbptNp0bmSiLy9vZ0XbXNRKpVEhC4c6iskbpK8JSiXyzytX/gzSX4SbVuqDpyLRtE4Mbci5YJA425K4bUrjOJJw5vf78fbb7+NxcVFuFwuhMNhqNVq/N7v/R5UKhU+/vGP4zh4PB5eCanX6xU1YUk9B8AR6pE2d5vqeff3Z8KllwqSyLhQKOD58+dwu93UCL8ZaJarYCKRoBIIqX4wGAxEzwLwnn5PMvPxeJy+tkajEZWdCSNKbmSnUCho1NLf30+3sgzDIJVKob29HZVKhda45vN5WK1W2pRAKiWIbSnZLiqVSuzs7Ijen5RGzdWauWgUpZPPKZ1OY2BgAOVymV7EXV1dDY2muLsIkhwdGxvDxsbGsXp1d3c3fD4fSqUSBgcHRe9LaPBPIi2yzRWWVebzedjtduTzeVodwU2KxWIxyRLB3t5ehEIh0U1LQI5Fum0JyLXCvT7JOUQiEfT09PB2cUKSkuqYJZar5JokZM3NqQjLAguFAq3LJrXSxFmwEYgXCdeRj/wdKSfknocUuZLfER2a29hDnAMJuK9F/lb4s/B4pBSQ7IDNZjNtoCNukP/oH/0jHB4egmVZvPbaa8d6wAPA3NwcNjc3sbu7i+7ubrzxxhv48pe/zHvOpz71KXzhC1/Apz/9abzzzjtE8vIzDBMGMMIwzAAAH4BPA/ixY1/wGFy6bELqsB8/fozh4WH09fU1jbiB5sgm6XQamUyGRtuFQoF+yeRca7UabT0mHiLC7DcXJpOJJ5GQ5on+/n4qsdjtdqRSKTpMgUSRuVwOpVKJkhM3wiA6n1qtRjgcRjQaRTgcpi6GlUoFdrsd/f39GBsbw+DgII0uhZDy+ADExk4EbrebkkQsFkM6ncbY2BicTmfDNnkpAy2WZXF0dIQbN2401ObJGDHyfO4QYKAe4QoXx1qthnQ6jfb2djidTskFiDToAPVkr3Dx8Pv9PDMsk8lEzzEcDkvq65lMBl1dXSL5I5vNSko1ZHADlzyz2ayovJI0gxHodDpekpBA6AYoLAsE+AMggPdK8QiE0TdpxBEe02g0Um1bWDooNKLiLoxc3xJSRii8xo77mRC40N+7VqvRoCsej2NjYwO3b9+GxWJBb28vfvzHfxwDAwP4D//hP+BrX/sa5ubm8PWvfx2NoFKp8IUvfAGvvvoqJiYm8KM/+qO4ceMGXnvtNbz22msAgO///u/H4OAghoeH8bM/+7P4rd/6LXK+FQCfA/BnAFYB/AHLsssNX+wFYBrV6ZLP56wHfhFIJOjz+bC8vIxXXnmlofH9eV/nrbfewv3798/097lcjkbQpDSqVCpR8iQ3BtkakghA2OGWSqV4jRRkDBSJmnU6najGmQxp4EKpVIoiLq1WKyI5l8slIier1SpZEud2u5FMJmEymVAqleD3+1EsFmG32yWfbzKZJKWMnp4eSZOrjo4OqNVq7OzsiDT9wcHBhiZUbW1tqFQqyOfzIvIno8GE6OrqwubmJvr7+xsmMvV6vWhcmxAOh4Pnvy78+2KxiFwuh/7+ft7CZ7FYeDsuArKbFH6fJMnG/f5IjkRqZ0aSbQTEgZBYugKgTTRccBcZ4L3ORUKyVqtVtDPQ6XS8nzUaDe+4ZKfJMAzMZjNdNBpFyNzdI/d53OMJtW2hPi78mbgIchct7mScQqFAJc+1tTXcuXOHLjp/8Ad/gN/93d/FN77xDfrZEQ2+Bb7eTR/Pc2mRd61Wn6geDodhNBpbQtxAY6Oik6BQKCCZTNK6ZdK5RpKUJNnDvVgAsU5N6r91Oh06OzupjkkqTshUeS6IJMOFzWYTEbfVahX9LdGChZDKIZDnEs05kUjAaDRicnKSTgkXvp4UcUstPgRqtRqBQAAul4uXhddoNA1NoEh7Npl7KIxoGw0yPjo6ws2bN4+tQDEYDCiXy5L5BAKVStVwCEM+n4fT6URnZ6dox5JKpUQaqNVqpYu8cAcmNI8i1THJZFK0hS+VSqLPoVwuo62tjRdJVyoVka4tvEZIzTbxKCHJXW4wJxV9CyfCkworshgc52Mi3I1yiVyj0Yjqv4UykTA5yX1cSPrEPoJlWSSTSaytreH27dv0ev6TP/kTfOlLX8LXvvY1XsL2LG6El4VLI29SsH/r1q2myiTNAmkhJ6u30Wikk1CA90qghI0LwqSlWq2G0+mkDoLZbFYUzZpMJhEZSZVMSUWBUheaw+EQJTAblRc6nU5RlEZeJx6Pw2w2Y3h4GA6HAwzDiJJkBB0dHZLylFarpUSazWaRSqUwOjoKvV6Prq6uhtYF3DpoYv5FEo5SNqtcsCzbsLoEqJMpmW4k9fkZDAY6ILhRx10sFmvo4811AWTetV0lFQ5SMgn5nIF6sotINUKpARBPdyd2qcL3IWyQAcRNUEK7WTJfkotGU3vIa+v1et6CxPXlJu+B+7NwgWAYBnq9XqRvc//dSC4hkbjQ6Irsklm2Pix6dXUVt27dou/tG9/4Br7whS/ga1/7WsPr+Trg0shbpVLRraRwRb1sEEMpcuGQZA7R6HQ6HR2mqlQqeZGoVqtFtVqFw+FAe3s7jYzJDanVakXEKoymFQqFiOA1Go2oWqNRhC1FiG1tbZIJKKnPnUv01WqVfhY9PT0Nd0mNImEpUg8Gg3SbLgWlUimKnFmWRSwWw+jo6LFNI8SDJRgMSnpst7W10R1CPB6X7CEgC0exWITJZJIsmfN4PIjFYpKlrIRcyAg77mcTi/3/2/vy8KjKs/17JpnJLMlkss1ACGtI2EMQKGhbvOonqJWaQC1KF/hEi+2n/aR2sVz81NJ+trW1i8ultl83q9aFBAXBpdSqtC51IQECBAIkAZIwMySZzGT25fz+yPe8vHPmPZMAySSEc/+jJJNz3pk55z7P+zz3cz9dQpmgRqPBuHHjEvLAfr9fOLSBHigZGRkoKipKyj8Dfdew/MHDz5Ykcyn59z/Q6NtkMsFoNPYbbcv/zUfI5LWSSrst+jfdl7wGnX/Q0yg1r9eLAwcOYO7cuexa+9vf/oaHHnoIr7zyiuIkposFwyoVlKs0RgKoCQc4O9opEonA7/cjKysrwW1NjoyMDGRmZrIOS7/fL0xp8NDpdElpCNrWy18nj0Dy8vKSPjeR3BAQa0+NRqOQ/GkMlxxmsxlOpxMmkwnl5eWMWAoLCxVHoCnJ/MxmM1wuF8rKypL00xaLRfF6INVAqmYOAhlIyY/NQ/6agoKChB0KFQ/la6dGrIyMDCG5e71eTJgwIcl0TeSxDYDlneWQ27MCZyN13ta1t7c3icBDoZDQjc9gMCQ8AOTFTPlnLz8/FeWVlCTy6JtUUfw6yLdb6Rj9Rd+81SsVJqk4SbuchoaGBOL+xz/+gQceeACvvPKK4q7pYsKw67yBwRmF1h/6KcwC6It0Ojs7mUtZMBhk2z664fjtemZmJrxeLwwGA5uEQ2PPgL4InVcrZGRkJOWxRXloEeGJfiYiWFFUKncVJFit1gF9LgS6qWOxGFwuFyRJQllZmWIEU1hYqJjeoBvK4XCgsLAwQQstGstGsFgsOHPmDIqLi5Mi95ycnKRdjMvlYjnogoICYV7e4XAwBYnZbE6K9hwOR0KEXlhYmECaolFsAFiTiBxUVyCQtNTr9Sa9J9E4M3ov8ntGTrJk9cojIyMj4Wfy5h4guf+A8vWUAiJ7W4JcWSKPtjWaxCEMBoMhpReLUrRNx6ZOS3n6he6H3t5e7N+/HxUVFey+3b17N+6//3688sorSTNAL1aMiMz8hY5CG8jx+6sgd3V1Me225v/sXekijEajTGEiPy55YouUCfKoy2AwJJGwyHCKNNu8oZVWq4Ver08Y1hoOh1mUTmkdkSTParUK0xqiHURWVpYwGjeZTMKcOU1vKS0thdvtToj6RWoZILmzlDxhSLuuFMXzOwUaduHxeNh7ttlsQvkf+UNnZmYqapc9Hg+mTJkifO9A3/dEsxnl35nL5YLNZkt4MNBAC146x4OiT5q0Q+vKzs5OegC53W52XdD7jEQibLgHwefzJbwOSNR0G41GmEwm6PX6hGuTLI2JDGOxWILShHagfIqjPxkfRd/86zUaDUwmU9LP+GP092++RZ4eGmRRQZ/B/v37MWfOHPaAfP/997Fx40bs2LFjQDMALhaMiLTJUNq2DuT4p06dgsfjQU5ODjPwCYfDCblt4OyW3GAwwGKxMC9v+hmf6pB7KtNWjpCZmYmCggIUFBRg/PjxKCkpwZgxY5jXMHkXZ2VlMS0vmV319vayRiFSvwB96Y6srCyMGzcOkydPRmlpKSZPnpzU8AD0EbpSY44oGleK0ouKiliNIB6PY+rUqUw2pkSEdrs96WFNheHx48crRt7y/LnX62VDJQwGg+L5JKnPpjVVxy6RqZKzYTQaZR7UIpAaCeh70PFkIor0SKMtT1F5PJ6kSJuIFwBrxKI1yyGPWqkuQ8RNa5VL7uSfDZ/7pkEH8ok8/ANAFH3LTaJ44u4PouibN5Win1FgBfTtnPft24fZs2eztX700Uf4zne+g23btl2QR9JIxCWRNlEib0mS0NjYiGg0yiwvo9Eoa/el4gdw9mKivCQfhRPx8JCfj5puiouLmYueVqtFIBBAb28vfD5fwqxLglarTYr05DcGgRobgsEga+6JRqPwer3Izs5GSUkJSktLMXHiRMWin9L3oJTnF3Ux6vV6oS8EQbR2oC8idzqdyM/PT8pJKo1s8/v90Ol0mDhxYsrdG+XRlVI8NLlGqUAJgE31EYFM/oG+tAr/uchHkRGUZmrK28mBswOS5R468uP6/f6knLr8oURFePn65blvSm9QUCP/XOQpHso3E8jWVa/XJ6lS+LX0928KYuT3MX9/BgIB7Nu3D7NmzWKfaV1dHf77v/8bL730UoLlwmjBiCDvdKVNeESjUezZswfZ2dlMLsd3ecXjcUZYVByhvBo11hDkzQzUyFNYWAi73c4kaZReIX8UOVGbzWZhc4V87dTmK4corcFHVNRw5PV6EYlEMG7cOEydOpV5VptMJmFuPS8vT5iOMRqNwnOSVCs/Pz/ppikoKFDMg1PaxOfzIR6PJ/xtcXGxIulHIhFEo1HFIhTlyUmFII+eeR8MUeQLnG18SWVg1dnZiSlTpiR9htT4IYeS+RPpyHlQQVNObpFIJKUxEhXZ5ZF1MBhMir7lhK7VahNqAPJ7lJ9WAyApLUXj0UT+3QMFpQv5f9PnSfcAWWvMmDGDFaT379+Pb37zm6ipqRGqjkYDLpm0CR8JkU/4hAkTkJeXh1gsxnwQSMtNZGU2m5GVlZUQWcsvYorCTSYTK1xSNxzlHOU3tEgtIcpLi0haFMGIhgNTg4IcVqsVoVAIgUCAuSQWFBRg4sSJKCkpSaoNKKUbyAdDjpycHHR3d7Mmp0mTJrEdS6pmLHm7tNvtRmlpqdB4iAe15cdiMSGB8+sMh8PIzc1NcuDjScfv9ycdx263s+9CaeIKPeBFaZ9oNJpA+mPGjGGKJKWWev4asdvtQt25qChJjU1kQQwkK09EZM1rw41GI2tTl7/HVJDPuhTl++UQXbdUb5JP0eEVYEDfNVNfX48ZM2awa+zgwYP4+te/jhdeeAFlZWUpz30xY0RE3kMtFeTNqbq7u1FXV4dZs2bBbDazVAlvQkRGPVQM5ElFFHUbjUZ24YRCoSSiFl3w8jQEFUl5ZGVlJaUKtFqtsAgoukGo3V30eYj+3uv1MjIpLS1l7nTnKgOUk0l3dzcyMjJQWloqjNSBvihUFN27XC6Ul5creqMAZx+etHvi/T7MZnOSdNLn8yE/P5/J5ESfXSAQYB2W1FxFoM5CeTQ5ZswYVmwWwePxsDmQcjWH/GEejUbZcWw2W8KwYPl55VE00BccULoDEOe15X9HXcA0Mk302YimufPHoIah7OxsGI1GYZCidN3I109/yz+8eSljKBRCfX09pk+fzj6rI0eOYN26dXj22WcxY8aMfs9zMWNEkHe6CpZtbW04fPgwG6dGk3DIHEuSJJbvpmhdbrdKBaDc3FwmmwoGgywSoOGnBFHUbTQakyJqEaGKIjjRLEudTqeo6hBBRKB86z0pPqLRKMrKyjB27NikYymlUsj1UA7a2VgsFiG5pSomUjOKqJhos9kS1iFPoSiZa7ndbowbNw5jx44VpmPoWjCZTEKFgtfrTUiv8DLFnp4eYW6d2tblOxZ5pyOhp6cHRUVFCWRNnb3y4/I/y8zMRE5OTtJnKoq+5d8r6cB5wzV5akckSSRQcVQuFeTfr9FoTGqT53/PK6poTZIkJRB3OBxGfX09ysvL2fdw/PhxrFmzBk899RTmzJmDocKkSZMwZ84cVFZWYsGCBUN2nv4wItImQ12w1Gq1OHnyJJxOJxYsWMAUJXTR0I1KfhfyqIhAzQmkLCFjKoKocEmKFR4ipYX8NZIkCSMU0Q5FNBJN3qZPUEp1pBrsS3ng0tJSRjJK6Y+CggLF3DTl2rVaLSZPnsy+/6ysLMWInAY5e71elpbiIYrs6Lux2WyKHuJAX446VZddKBRCUVGRYrGWH2QgJ8FAICB8+NJOTQ4aAsCDSFgOUaRNKTeSrwLJxWdR9M0rT8xms7DVXn69yK9BUkZRYbQ/RYm8pV2j0aC3t5cN2JBruOm98MRdV1fHbBsAoLW1FV/5ylfwhz/8AfPmzUt5/sHAW2+9hfr6enz88cdDfi4ljJjIe6jSJtFolGl/KyoqmE8GcPbiptFPRqMxadCBJPUNOyV1CO9vIodcLggkN9LodDphoVL+OvmAVfpbESGLUiO5ubnCfLkor65E9JmZmSyip2hcp9NhypQpinlMpZwoaZqBs/a548ePR05OTkJaQI6ioiL2O9LeU+7YYrEokjO1caeK6IuLi9HZ2anYZEPvR6lASe9L9PeSlDzFhqx0I5GIsFApfxDRg1D+oIzFYknRN6U8+IezyKtEJBOk3DjNeZR/F/LUCJD8Pcs7JkVIVbfIzs6GxWJhn4FWq4XP52MBEZ82qq+vR2lpKdtdtbW1YfXq1XjyySexcOFCxXOMNoyIJp2hirwDgQDq6+uRm5uLvLy8BOKm3KHX602IkIiUyAHOZDKxi5cnU41Gk0SE8gdQVlZWElFnZmay90vaY5rOTREJnZu0tlRQBfqi13A4jGAwyLwqlIb9ykHSRDmUrF/1en3S66nxIhqNYvLkyejp6WFRs06nU4ygCwoKkoi2p6eH7WSUIPqM4/E4SkpKoNVqFZ0M+cYUrVYrrDHQZ+rxeITrI1tYv9+f1ITDr8dqtQp/R923dN3k5uYyKWpubm7SZ+Xz+dh3wT/QRA9KapvnrznaFfEkqRR9898rWbHyr+mvDkU7V0qzXMjUK17tw0On06G9vR3Hjh1jzpIOhwNTp05ldY2Ojg6sWrUKjzzyCC6//PLzXsO5rnfZsmXQaDS4/fbbsX79+rScV45hJW9ebTLYkXd3dzcOHjyIWbNmwe/3sxsHAJsow/tBUMGQr3DLZU88+NFMQLJHCd8YYTQa2QXucrkQDodRUVGRsg18oKBmHa/XC6/XyzoORTlws9ksJHqlaEkpiqYojKJ16kwk7xPR8ZVSD9nZ2UyRcvLkyQSysdlswvVSuiqVP0VRURH8fj8rLtKoOkJxcTF7sFI+Vd6xmJWVxUiOuiXlqSxao3xaDYEe1vJdXW9vb1I3JNAXGZNhFN9JKz8+PZjoc6UxdiJlFP8AoXPQw81sNkOn0yWRtSj65lVb1DSj1+vP6TqWd00CSGh3p9/TvUWNbD6fD3V1ddDpdGhsbMR9992HJUuW4LHHHsMvf/lLLFmyZMBruFC8++67KC4uhtPpxNKlSzF9+vS0np8wIiLvwS5Ytre3o7W1FZdddhmzrezt7YXJZILX62XkLCcnusHkxK3RaJJuMp4IyNaSDPFNJlPSBS1JEo4ePQq/34/LLrtMsRHkXEFFQHnBi9IcHR0daGlpYab5or8XpUwMBoNiQVIepbvdbjbNneY98igqKlJUrBgMBqY/J8kfEXYqWRodc+LEiWhtbVV8HdC3A6NCLxGX/HqjdnMaKl1UVJTwncdiMZjN5oQtPFnHAmcny8jfOx1LFAErNY5ZrdakhwTlueWTeOR58VAolHQ/iWosVJSkVInoNf1F31lZWYoGYQMB7TQpGODVLbyZVTQaxaFDh1BWVga73Y5QKITjx4/j0UcfhcfjwW9/+1u0tbVh+fLlaXEKJK8cm82GFStW4MMPPxwW8h4ROe/BSptIkoQjR47g9OnTWLhwYYLyw2QysbwgDQQGzm7Z+IJIf9DpdDAYDCgqKsLkyZMxY8YMTJgwASUlJcIBBrFYDPv374ckSaioqBg04k4Fiop8Ph8+97nPobq6GgsXLsTs2bMTin6kc5dDqQNTKdqlwqLVak1SSCgVsOQ5fNI2FxcXw2QyKRI+/zB1u91JzoFjxoxJSreQPDAzMxNjx44V5v59Ph9bu2jN8lZ3nihEOW4CdSnKwbe9E3JzcxEMBpNIkR4ePDQaTYIckCD6W3laQ64qAZIflvLdJu8hYjKZzpu4eQ23yGCKCs50zr1796KkpITVHnw+H/785z/jf/7nf3Ds2DHce++9aGtrw9GjR89rPecC2uXS///tb3/D7Nmzh/y8IgzbGDTgbHtrPB7Hv//97wvKWUWjUezfvx9msxlTp05NMNmhC4GiLjovOaX5fL4ETSkfPWm1Wvj9fmRkZLCoWi6FSoVwOIy9e/eyCTrpgtPpRHNzMyoqKoTqhmAwiLa2NnR2dqK1tTWpmJSTkyNMddCUFznkRVeKSmmgheg6Gzt2rGKOfOzYsWhpaRH+zmazCa126Vhjx45V1IXzgxGUMHbs2JQqFep6Fe1ksrOzEzxWCgoKWIBALpU8qHOT5H587ln+WjofPWxJky0aeyZPRfL/5kfwiQr08uPwD3dKB8qJ/lw6KIm4CfygYMql08/r6+sxduxYFu329PTgi1/8Ir73ve9hxYoVAz7nYOH48ePsvNFoFF/+8pexadOmgfzpoE+cGVbyliSJPcnfe++9854zGQwGUVdXhwkTJqC4uJjZuPIzI/mONfnveNLp7e1lFxZdqFRUPNcWX3I44wss6QDJIisqKgYUHQWDQZw8eRItLS3o7u6G2WwWRqYiNQ1BpI4B+h4ClOeXQ6kxhyJKml4vP+eYMWOEuXCr1Yre3t6UU89tNhv0ej3a29uFv6fCmE6nUyRwnU7HvG9Ef0/eMzqdjhXKgb7PSLSbII246CErin7JZ4TMwvR6fdJ7lue+6WeSJDHnTH6wAUFO6NTgRq83m83CdNZA743MzExWlJd7ecuJe+/evbDb7cxQyuv14sYbb8S3vvUtrFq1akDnG0EYPTMsBwtutxuffPIJpk+fjuLiYmEKwO12s0EJfF6Nf3gAiSOZQqEQWltb0dLSgq6urnMuqHZ1dTGjnHQRtyRJaGpqQnd3N+bNmzfgba3BYEBZWRmWLl2Ka665hjkRyqE0MionJ0dI3MDZxhR5Yw6NIhOhoKAA4XAYHo8naT6jxWJRVNe43W7Y7faUREIGV/I5kwQaehwOhxUdBiltJjoPP2xBblBFdRc5fD6f0E9F1GRFOmiLxZLQ8i9/bSgUEn6HRNzA2bw2D/n9QwMOUhE3Has/UPFW1LnJS3Dj8Tj27dsHm83GiNvn8+Gmm27C7bfffjES95BgRBQszxdUjJs3bx7r2uKnagBgUkC9Xs9UBQS+uk3RNd0ENpsNpaWl6O3thcvlQl1dHTIyMmCz2WCz2VJW2Nvb23Hq1ClWME0H4vE4Dhw4AIPBgDlz5py3ERB1jk6bNg0nTpxAU1MTS5MoRbQDicYzMjIwduxYZhCVKu3E55v9fj/7bjo7O2GxWBRTLWazmXVOtrW1JRFKYWEh21F4PB6MGTMmwf+bLwjyntby1AKNuisoKBDa0Pp8PowbN074eYneNxmXyV9Po8z4FA+R6EC+34yMDPbdkOJFp9OlVJWICpWULryQWg0RtxyUKiEQcRcWFrI0YyAQwM0334w1a9bgq1/96nmvYbRhWNMmwFlCOJe0CSk3PB4P5s6dy246uukpz02TSXhXNLpYibjPJSUSCATgcrngcrkQj8dRVFQEm83GoilJknD8+HF4vV7MmTMnLYVJoI88KVLhp7MPFhwOB1paWtDW1ib8vcFgEO5MRCoT2jb39PQId0lUWJaDNPcej0exuF1cXMweNBaLBadOnUr6vZwI+dmgpGTgkZOTkzDhniatE/R6vdDGlybdiNJFfPokOzubRaMGg0GYy+cNo2gEHDlX8iDrBh58TwGfKpGfQ/6AIqmiRqNJaZPLQ+ke4gco8K/h+y7o3/v374fVamXDpoPBIFavXo2VK1di/fr15x2UjACMrpw3cJa833//fSxatKjf1lpSbhgMBpSXl7PImS5K3iRe3klGNwG1AF8IuYbDYbhcLjidToTDYRQUFLCHxbRp09J2kZGP8eTJk4d8vJPb7UZjY2NCvjiVx4lSjpwm0Xd0dCT93mKxCAkP6NsNkROiHNThxxM7T+BKqhoqlFHqQvSa7OxsOJ1O6HS6pM5GamTiSYhSLyIyBhJtTfkhwBQpyx9eJKcke1d6v/IHDTVP8dcefS78vSAvQorSGMFgEEajccDEzR+LBz9wmA+wRBF3Q0MDLBYLUw+FQiF87WtfwzXXXIM777zzYiZuYDTmvM/F3yQYDOKjjz5CYWEhpk2bpkjcBoMhId9HUTZdjGQ8dSHQ6/UYN24c5s2bh4qKCjidToRCIbjdbjQ1NcHtdg8oD3gh8Hq9zFUtHXP5rFYrFi9enKBgUfocrVarYjqFmnaoAYP/earPLBAIIBaLCVU7/FxJgsfjYa9V8mKJxWLQ6XQpW/R7e3uZ77scZDFL4HchwWBQWCegvDhfzKS1iPLsNKWH/x0ZqMmPKy96ykmSfib/tzylYTKZzpm45ZAbTPEFUn5NkiTh4MGDyM7OZsQdiURwyy234HOf+9xoIO4hwYjJedPWTanI1tPTg4aGBsyYMYNd9GSIQ+qSSCTCxnjRjUjTvYfqy6fRS2VlZawZo6urC21tbTh06BCsVitsNhvy8vIGPAJqIOjs7ERTUxPmzp2b0iN7MCFJElpbW+H1erFs2TJ4PB4cOXJE+Fql95qVlcWiUdoJTZgwASdOnEBBQYGihI9/uHu9XowbNw4dHR1se59qNuXEiRMVNeMA2ISdUCik6NliNpsVf9fb28va2uWDMoLBIPN250E7QHnzVyAQSMo5S5KU0CFMEK1HvvOgJhj5BBp5pyP/M8qrnw9x0zEo4uY7Rak5Su4oePDgQRiNRkyZMgVA3/dx6623YtGiRbj77rtV4lbAsKdNqMq8d+9elJaWCk3uT58+jePHj6OyspJtjfmqNUkBicRI2kTkPlRwu904dOgQZs2apRhhud1uOJ1OdmPbbDYUFBRcUETT3t6OtrY2zJ07N+UU7sEENUBFo1HMmDEjgZxdLhcOHDiQ0BmpZMJfVFQkVIuYzeaUw4etVmsSARoMBuYMKJI2Eux2OyRJUvRBsdvtrP1daQ4mTb0R2Q4AZ2c0inL/RqMxIbVEXbFKRmfyY1gsFpbmk0fR8mHCANjOkr825KkRKu7z9wfJFVOpSgYCGsIAJLbDy3PckiTh0KFD0Ol0mDp1KiP322+/HeXl5bj//vtHE3GPvpw35fgOHDiAkpKShC0oFQDdbjcqKipYREJ6VbowOjs7EzrN0vGFnz59GidOnEBFRcWATHnIWtXpdKKzsxNGoxFFRUUoKioasKRvuAqilI80mUxsso1obSdPnsShQ4eYX4kI1EEoB7VaR6PRpJw2DVBWulapK08Eg8HAZnuaTCa4XK6E3xOREqmICJx/MJvNZmHOXavVKurWAbBiKwA2L5XWJ7L+1ev1TGlDRXelPDdNaieQ3JX/nkT+QfLcN6lbRHrzgYKK//KoHkAScR8+fBharRZlZWWMuL/1rW+huLgYDzzwwGgibmA0k3djYyOKiopYXjEWi6GhoQF6vR7l5eV9i5GkhEYbjUaDrq4u1vGVji9bkiQ0Nzejp6cHc+bMOe8IhSSILpdrQBLEeDyOQ4cOISMjI60F0Wg0yqRbAxniGolE0NzcjGPHjgm7NpWKkZQyoUInXxS12+2KpEj+0V6vVxj12u32hFSM0WhMIGeKuuXvgT9Wfn5+wr9FChN6jdFoFO4siCjJnoEHDQPhQRa68h2dSGXCG2iRp7bIl0QeffMNOMDZ1JCo+3Eg4MeeySf0yImb0m3l5eVsXd/+9rdhsVjwi1/8YlBTjCMEo5e8jx49CovFApvNxsYbFRcXo6SkhKVGeL/hUCiEjo4OjB079oK2eOcCIlCtVotp06YN2gVGEkSn0wlJkpIkiNT6n5eXh4kTJ6aNuEOhEPbu3YsJEyYIp8mkgtfrRUNDQ0IaRCllAiQTO0k9Kd+rRPo0LIEiVT6HTLlbuXeGTqdjo9n4qJtA3ytZtMoLmdSOTmuiIR10fKUcPD1oRA6VovendG75a4mEtVot24GKFCSi6JsvhvKBEQ/RRHoefI6b/3tag5y4jx49img0iunTp7PX3HPPPdBoNHjkkUdGI3EDo5G8SXvd3NyMrKwsZGdnY//+/Zg+fTry8/NZwYPakSORCI4dO8ZGdKWLyEhLTRHoUJ1XLkG0Wq3o6urCpEmTUg4NGGxQIba8vFw4IHcgoFRKY2MjU0KIomOLxSIkO4PBwEhcBJpzSNcw+YdQJF1YWCj0L6dcr9FoVMyVUzGR5pzKYTQaWf67oKAgIXLmi7I88vLykJGRIVwTrZ2Qk5PD0j1yEhalT+gB0l+qRBR9GwyGJD/vVOBrSnRuOhZBKVVy7NgxhMNhzJgxg63l3nvvhd/vxxNPPDGkxB2LxbBgwQKMGzcOO3bsGLLzKGD0SQUJGRkZ6O7uRkNDAyorK1leUKvVso623t5efPjhh8jKymLbrXQgEAjgk08+wfjx44c88uUliNOmTWP64tbWVhw5ciQtEsSenh7s3bsXs2bNOm/iBsCUJEuWLMHEiRMVLQaUcv40LV1poC95exBIPkcdiErno51cKmlqOBwWyg8JgUAA+fn5yM7OFk5Pkq+Zmo/kKQV+TTwZkhZc9NmITLH4IiF/TDnkr+G7ign9Xd+0UyBljFzNQpB//sePH0coFGLELUkSfvzjH8PtduPxxx8f8oj74YcfHlVDiUcEeUuShK6uLnR2dmLhwoWsak8Sv2AwiK6uLnzyyScoLS1lfgfpQE9PD+rr6zFjxoy0aKkJ3d3daGxsxLx587BgwQIsXLgQeXl5aGtrwwcffIBDhw6hs7NTUb52vujs7MShQ4dQWVmpaHF6rjAYDJgxYwZmz56dREaZmZkpo18q5sn9YZRSE9FoFHq9HjabTbGICZxNYSg9CKnhReQ5QiCFigiBQIAVsrVaLSPIWCwmLAjGYjHmO8J3BYusBOLxeEJthN6L/HUi/TZN8gHAuovPBwaDAVarlX2fOp2OfY/hcDjpu2lubobf78fMmTMZcT/44INoa2vD73//+yEvvp86dQo7d+7EbbfdNqTnSSeGXedNLbHRaBRjxoxJ6BIjYnI6nTh+/HhaNc3A2bZwkiimC6RkqaysZARAE9RpGjpJEI8cOTJoEsSOjg7myTIUEkS73Q6r1YrGxkZWNLRYLEK1BdDX2UhzDMPhMOx2O2tVt1qtKc2wLBZL0vQcAm35yd9dJNfLyclBNBqF3+9XnJJDDzfRMBHyrNZoNAkmUgCYnlweaQaDQeEuQ9TARoOc+YHBFJHz5xLZypKlcSqVVH8NUyLSz8rKQjgcRlNTU4KiikbJzZ49mx3317/+NRobG/HXv/41LaqpDRs24Oc//7liCu5ixLCTd3t7O3Jzc2E2m5lnCN812drais7OTsyfP/+CpnacC+i8XV1duOyyy4btvKnGkOXn57NhsyRBPH78OIxGI2w2GwoLC89p3WQHO5hTfkTIysrC3Llz0d7ejiNHjqS0b5UX5gKBAMaMGQOn05lyi00Wq2TGJM8x85pxrVaLvLy8BPmfRqNBOBxm5wiHw0mjxKitPhqNsglNovVTy708FWEymZIePiTxk7/vSCSSMMAZODsNR97FKM9zi4ymaNj2+YJP6/A6bvpvWVkZpk6dCp/Px4zNzGYznn76aVRUVOBf//oXPvnkE7zwwgtpERvs2LEDNpsN8+fPx9tvvz3k50sXhr1gGYvFEIlE4Pf7UVdXB7PZDJvNhvz8fDQ1NQ26sqM/kGwRAKZPn56285LuNRaLJTXBnAt6e3vhdDpx5swZZGZmMuWK0vaYZFuRSAQzZ85M6/ttbGyE2+0W5kuViphAX0SuJA0E+mR7RNikzuAJPDs7OymqNJlMzKAqLy8viUDj8XiCntpqtSacX6lISWkXkZokKyuL7Tpo2IdGoxEqSuQNOhrN2Sk6ontYHn1LUt+w4MzMzARb2P4gP7Y8t047CLmqBOjzle/s7ERFRQWi0Sj+8pe/4Omnn8axY8ewdu1aVFdX49Of/vSQE/jGjRvx9NNPIzMzE8FgEB6PBytXrsQzzzwzpOeVYfSpTeQXvM/nYx2ERqMREydOPKdGlgsBaZrz8vIwadKktBVESdOenZ2NKVOmDNp5+5Mg8jay1OGWDlBnnVarRXl5OU6cOJHkAJiqa5J8UwKBQBLBiyJKslsl3xulnQXN7SSLBdFx/H4/JElCdna20LeDJ1giVyINOehvotFoQrqEUody8CoT8h1Rar5Rkj8O1E6WwH8OA1WVAH05ZpfLxVw/JUnCn//8Z7zyyit4/vnn8d5772H79u2wWCz4+c9/PuD1XCjefvttPPTQQ6NCbTLs5P3//t//w+uvv47rr78eVVVVCAQC+N3vfocf//jHMBgMcDqdcLlcrAhls9mGhMjJnW/SpElsVl46QGPSiouLh7QQK5cg5ufno7u7G3a7ndlvpgPUrWk2mxMeVN3d3WwHIO8O5EF53ng8znLNfM68oKBASPo6nY4Rcyrk5OQo5uCBsw8H0W6BL7BShEugsXtykLxP/kBJ1U1Jvtw8+ou+aSrU+eysJElKSJUAZ1Mkooi7vb0dp0+fxty5c9n7euaZZ/Diiy9i+/btaa1byaGS9yCjq6sL27Ztw5NPPonm5mZ86Utfwtq1axO28X6/Hw6Hg3Uk2u12FBUVDcqwA4/HgwMHDmDGjBkp1QWDDdJSp3tMmt/vx549exgJ5ufnw2azITc3d0ijb9rZFBUVCX3Hw+EwGhsbkZGRoRh1WyyWhCiWrg+v18uGLitd07Q9V0q3ZGZmsn4CpZQN5aVFWm3grJc8zcrkIWrj1+l0Qk8U3imTB7X789+TSKoXiUTY+6VmpfNNifENOEDqVElHRwfa29tRWVnJiPvFF1/En//8Z+zcuVNRnXMJYNBvrGEvWAJ9OUra0r733nv44IMP8NOf/hTNzc1YunQpqqqqUFlZicmTJ2Py5MkIBAJwOp3Yt28fNBoNi8gH4jEix3ApWXp6enDw4EFFU6uhAj0wZs6cybT06XBBpB1GSUmJYrORXq/HnDlz0N7erkjecjKjAndubq5iAwyB2r/9fr+ib3coFGIj80Qkz883VfIHp2KmHKJBwSQLlOeuSePNP0QyMjISfH34z0DeuUkET54uF0Lccog6J4E+lVRbWxvmzZvHiPull17CH//4R+zYseNSJu4hwYiIvMPhMB544AFs3LgxgYC9Xi9effVV1NTU4PDhw7jqqqtQVVWFhQsXsosxGAyydEA8HmdE3l81nbr/XC7XgAf1Dhb6m+w+VKAdRrpdEIPBIHONHOgOo7u7G83NzQkEqeTaB/QRSipDLKPRyAhPr9ejt7c3gezk3Zr0Gv7+4PPcOp1OWKCkB0kwGBTuYshJkI5H17FoDBq9nqSzlEMX5cRF0XdGRgZ7X+cDirjlqRKRR7jD4cCJEycwb948FvHv2LEDv/nNb7Bz507k5eWd1xpGEUZn2mQgCAQCeP3111FbW4v6+nosWbIE1dXVuPzyyxmxhMNhOJ1OOJ1ORKNRVqCTP/Hj8TizN02nwgLoq8A7HA7MnTs3rQ8M8v+uqKgY0A5D5IJ4PhJEn8/H7A7ONSUVDAbR1NTE0iS5ubmKkTV1Our1eiGBy3XhWVlZ8Hg8CeoROXkaDAZ2LNJr84QvMqgigqX0iRykWachwnKCV/IyEQ1GkB+fT5XQ+s/3GtPpdAnno+heRNxOpxOtra0JxP3GG2/gwQcfxM6dO4VDLC5BXLrkzSMUCmHXrl2oqanBRx99hCuuuAIrVqzApz/9aXaxRiIRuFwuOBwO1upst9thMBiwf/9+5ObmYvLkyWlVWBw9ehSBQACzZ89O6wOjo6MDJ0+eRGVl5Xk335yrBBE4G+nPnj37vLs1Y7EYjh8/jt7eXsV0BJBobKXT6RIMsJRmlBoMBrjd7qSomweRvLzRhqDVahMc/XgpnVarFUbTNNNRTsZKBlXkmik/rzz6DofD7PrX6/VsF3uudgrU8i4fIwgkD5t2uVxobm7GvHnz2Ln/8Y9/YPPmzXj11VdRVFR0TucexVDJW45IJIK33noLNTU1ePfdd/GpT30K1dXVuPLKKxlRRaNRuFwudHR0oLu7GwUFBWzwQzrImyR5WVlZaTXTAsCanMgPfTDQnwQR6CtCHzlyZMCRfirQIAV+0jsPkbQvIyODpTVSdWMaDAZmwaAEUr8okXc4HGbj1Pg0GFm9yiNksmwVte8Hg8GEaJlUK0r3qfzYvOkWn+YYKGjK+0BSJZ2dnTh27FgCce/evRubNm3Czp07z9mJcpRDJe9UiEaj+Oc//4ktW7Zg9+7dqKysRHV1Na666irU19fjnXfewa233opYLAaHwwG/34+CggLYbDbhFnYwMNST3ZUgSRKampoQDoeHNDVEqSqXy8V2OJmZmTh9+jQqKysHRQ1EcLvdOHnyZBJhpRrw0NvbqxhVA2fJMVXbdE5ODnO0FIFkiKLWdt7zg/7N55JF7eskK4zH48yqVZTTpvQMD5IEyq/lgRA4ETchVaqkq6sLTU1NmDdvHguS3nvvPXzve9/Djh070uo/dJFAJe+BIhaL4b333kNNTQ22b9+OWCyGDRs2YM2aNQnj0jo7O+F0OuH1eplkzmq1DgqRp3OyO494PI6DBw9Cr9enNdKPRqNoamqCw+FAVlYWezAOpgTR7/ejpaWFkYk8UpQjJydH0UMcAPMKz8zMFBYgST5IBUWlPLZSagboI1QqYPL1F1EnJf08FArBZDIxMiVHQnmqJRAIJHiJKzXh9Efe55IqIU0+/3D+6KOPcNddd2H79u0DGtpxCUIl73PFE088gRdffBEbN27E3/72N+zatQulpaWoqqrCtddey3Kx8XgcXV1dcDgc8Hg8sFqtzEjpfKJWGkaQbu04aakLCgrS2nwDnPVHqaioANAXnTmdTvZ5DpYEkab1BAKBlG30vAmT0nQbkt4BfSkHuUQxJycnwS9c1MBD+nLRRBxaB03RkROrUjelXq9PKjaSRbLo2ADY0GCle1rp56RKGUiqxO12M7dLIu66ujr813/9F15++WVMnjxZeA4VKnmfE9rb23H//ffjscceYxdaPB5HfX09ampq8Nprr6GkpARVVVX4/Oc/z0g2Ho+ju7sbTqcTbrcbubm5zG9lIMRzrsqOwUI4HEZ9fT3Gjx+f1sENVIwNhULCFM1QSBBjsRhOnDghzCkTsrOzGTHKi5hAX8OP3C9EkiSWgqEUB0+4cgKnsW28hE+p8MmbOBFEMyhpmLHS+xJNujGbzQlRfX8dl/z5+SI2nyqRv5eenh5mF0zF0P379+PrX/86amtrUVZWJlyvCgAqeQ8uJElCQ0MDampqsHPnThQWFqK6uhrXX389kzdJksSIp6urCzk5ObDb7cjPzxcSz3BMdgfONt+UlZWlVZrF+5QMZLbmYEkQgT6lQ3t7u2JeXT4FhydwedRNoOg5EokkRN08eC9x+Zg1Jb027QBEkTmfPtFoNAlNNf3JAWnNBoMhqQuyv/QJGVWJUiVy4vZ4PDh48CDmzp3LirIHDx7EunXr8MILL4yqIQdDBJW8hwrk6ldTU4MdO3YgJycHN9xwA77whS+gqKiIRWUejwcOhwOdnZ3Izs5mxKPVatHc3AyPx5PWye5A/803QwXyYs/JyTkv2aUkSfD5fAkSRJvNNiDbA4fDgdbWVlRWVjIZIw+l8WWkA5dH3Tyoe1JJnUP5Z7kWmiAncLnyQxRRU/rDZDIl6atFr6WfZ2ZmKnYWezyeJIkmnxohKwA5ecs/F6/XiwMHDiQQ9+HDh7F27Vo8++yzmDNnjvD8F4pgMIglS5YgFAohGo3ixhtvxObNm4fkXGmASt7pgCRJOH78OGpqarBt2zbo9XrccMMNqKqqwpgxYxiRe71eRjyRSAQmkynt3ZqDKck7F/TnU3I+INsDl8ulKEEE+nY35J9BBOvxeNDR0cHIKScnR5Gc9Xo9IpFIyiIeeYIrISMjI+UkHgDsAcB7bitpuYmw5UQsUpQQeZMvt9JDU+63DZz1BicFC5A6VdLb24uGhoaE6+vYsWP4yle+gr/85S+orKxUfP8XCnq4UwPWZz7zGTz88MNYvHjxkJ1zCKGSd7ohSRJOnDiBrVu34qWXXkI8Hsfy5cuxYsUKlJSUoKenB6+88go+9alPITMzE2fOnIFer2fGWUNJ5DRxZ+7cuYMqyesP5FMyfvz4IdPy8t2ykUgEhYWFsNls6OrqQldXFyoqKpKiXr/fj1OnTvWbrqLcsJJ7IOWwMzMzFQmcDKKU9OGUIhHZH4gKm1qtVlHPTWoY+etFcyvlkB8vEAhAr9cnPBApxSLvCu3t7cX+/ftRUVHBPrPW1lbcfPPN+MMf/oAFCxakPPdgwu/34zOf+QyeeOIJLFq0KG3nHUSo5D2ckCQJHR0d2Lp1K7Zu3Qq32w2v14s1a9bg7rvvZhEOpQJcLhdLBdhstkHNgZ84cQJnzpwZ1OabgeB8fEouFJFIBGfOnEFLSwuCwSCKi4tht9uFEsRgMIju7u6UChTKdWdmZgoJPDs7m0W7IgLni3wZGRmK51LyBQeS0yfk+idKkwSDwaRrJ5Uvufw8PMh1UU76LpeLOSYCfdfwvn37MGfOHGRnZwPo8+hetWoVnnzyybRFv7FYDPPnz8fRo0dxxx134MEHH0zLeYcAKnmPFBw6dAirVq3CsmXLsH//fnR3d+Pzn/88qqqqEgp3gUCAWdlqtVpG5OcbKZOyIxgMYtasWWlts78Qn5ILAb3ncDiM8vJyVkBWkiBGIhE4HA6hBM9kMiWkIeT2s6JI2efzJZAnb3JFEBlFUQQvWgefPuE9SERpEgIRu16vT2l9KwdvtiUaX+b3+5lJm1arhdVqhcPhQEVFBcuZd3R04MYbb8TDDz+MJUuWDOi8gwm3240VK1bg0UcfxezZs9N+/kGASt4jAT6fD1dddRX++Mc/YtasWQD65IHbtm1DbW0tTp8+jWuuuQYrVqxIGGkWDAZZKkCSpAE7IBKo+Uan06G8vDytbfZUFOUjsXRAkvrGpWk0miQ1SyoJIgDma8PDaDQmRbc8gfNRNw+aa5mZmckGC/O/k6ccaNQYkbeSTE+SJKH+W9R5STn0c/UsIXtZeSGUjsm/X7fbjX379sFgMMDj8eDVV1/F1VdfjQceeAC//OUvcdVVVw3onEOBzZs3w2w247vf/e6wreECcHGT9+uvv4677roLsVgMt912G37wgx8M5uHTCir8iOB2u/HKK69g69atzJO8urqajYQC+sy1iMhjsRgjcqWiYywWSxjRlk5QUZRXG6QD9LAyGAwoLS1N+bASSRDJFIkIXB518yBPEKX7gYqESq32fPpE3mDD28DKzynqzKRIXb6ronSNSNqXCpRW48mbipP8QyIQCGDv3r2YOXMmLBYLvF4vnnrqKfzpT39CKBTC9ddfj+rqaixZsiQtRXmXywWdTger1YpAIIBly5bhnnvuwfLly4f83EOAi5e8Y7EYysvLsWvXLpSUlGDhwoV47rnnMHPmzME6xYiE1+vFzp07UVtbyzzJq6ursWDBgoTp5OSAGIlEUFRUBLvdzopEAxlkMFRwOp1oaWlJe1GUZIgWi+Wcu/bkEkSr1Qq9Xi+MunkYDAYhyRJo8lCqTsVwOCx8AIum6FDRU2lN/M+pGYj+n3+vqUCDJeTdk7FYLCGdEwwGUV9fjxkzZjCPlq6uLqxcuRL33Xcfli1bhnfeeQfbtm3DDTfcgGXLlqU872Bg3759WLt2LdvVrFq1Cvfdd9+Qn3eIcPGS9/vvv48f/vCHeOONNwAAP/3pTwH0TXa+VECe5DU1Ndi3bx/zJF+8eDGLiqg453A4EAwGYbVa0dnZifLy8rTba7a1taGjoyPt3uOxWAx79+4dNBmi3+9nc1CVQMQoj0Z5kCxPqUAJIOUDjvThwFn7WP53cvATc6hAOdDOSaAvUue/t1gsxjTsPHGHQiHU1dUl1DLcbje++MUv4vvf/z5WrFih+J5UDBiDTt5pq3a1tbUl3IglJSVoa2tL1+lHBIxGI1asWIFnn30WH3/8Ma677jo888wzuPzyy7Fhwwa888470Gg0GDt2LCorK1FSUgKn0wmDwYBjx46hqakJPT095+zPfD5oaWmB0+lMsPtMByKRCOrq6jBmzJhB04+bTCZMmDAhZcqHIlKRzzZwVjkSj8cVCZq6FZXSO5S+kLekA+KBxrQz0+v1SSkP0drlfyt/H9SKLyfu+vp6TJs2jRG3x+PBqlWr8O1vf1sl7hGMtGnMlNqML1VkZWVh+fLlWL58OcLhMPMk/+53v4tFixZhypQpePbZZ/Hmm2/CarUyB8QTJ06gt7cX+fn5inK5CwHvU8Ln6NMB8maZOHEi7Hb7oB5bo9EwkzG5PJD3FuHJlwhVPmMyHo9Dr9cnpVioGUfJbIpy5nzTDiEajSaRLckZ+YfnQL5rjUYDnU6XFM1TnptAn3dZWRkbU9bb24ubb74Z3/jGN7Bq1ap+z6Vi+JC2O7OkpAQnT55k/z516hSKi4vTdfoRDb1ej2uuuQb/+7//y5pfHn/8cRiNRtxzzz147bXXEIlEYLPZMGfOHCxatAj5+floa2vDBx98gMbGRnR1dV1wRE4+JfF4PO0yxGAwiLq6OkyZMmXQiZuHxWJJUsvIc9Tyz1Gk1yYFB4EvPBLpikBqFTlEnZJEwqJIO1X0TVE9rxuX+5FHIhHU19dj6tSpyM/PB9CXXrr55puxdu1afPWrXxWuX8XIQdpy3tFoFOXl5XjzzTcxbtw4LFy4EH/961+Z1E5FH37729+itrYWNTU1MJvNePfdd1FbW4t//OMfmDVrFqqqqrB06VJGOOSA6HA40NPTg9zcXNjt9nO2Xr1Qn5ILAakcpk2blrZBtV6vl41WU0oLRaNRBINBNpdSBIrOlfy8+XQIry4ZSJGSOihFboSi1ncASUZTJAnkdwmUmpo8eTKrowSDQaxevRorV67E+vXrL+ld8RDh4i1YAsCrr76KDRs2IBaLYd26ddi0adOgHHfdunXYsWMHbDYbGhoaBuWYw4W6ujrMnDkzKa8aj8fx4YcfoqamBrt27cLUqVNRXV2Na665hkWSkiQxK9vu7m5YLBame05F5EPhUzJQUCdfuk21gD57AVJjKCErK0vRIwUAS5Mofb68OoV3/vP7/YqGUpSWoQhdrhThXye3q5V3T0qSlEDc0WgUdXV1mDhxIhsQEgqF8NWvfhXXXnst7rzzTpW4hwYXN3kPFXbv3o3s7GysWbPmoifvgYA8ybds2YLXX38d48ePZ57kJPOSJAk9PT1wOBzo6upCdnY27HZ7kod2OnxKlDBcjT9AX8dgW1sbZs6cqageIWKXR648yAlQKZKmJh29Xp/wkKD7Tql5R74b6C/6JqMp/mfkEMjbvJLfO6WmwuEw/vM//xOf/exnEyweVAw6VPJWQktLC5YvX35JkDcP8iTfsmULm9ZdVVWF5cuXs1ymvIHFZDLBZrMhJycHDQ0NafUpIdBElnS7IQJ9yieasUnNNfIJOkBirluJwGkMm9frVXwf5JstIkbRAGGKoEVkLfqZPI8ei8WYrpzWH4vFUF9fj3HjxrGHdDQaxbp16zB//nz84Ac/UIl7aKGStxIuVfLmQa3k5ElusVgYkfOe5L29vTh16hTa29thsVhQUlJyXsMQzhednZ04evQo5s6dq5g6GCqcPHmSGXrxhCcncN4ylSAncHm3YygUEqZg+mtu4gmcjikapiBPnxBxU+qGf104HE4i7uLiYtbkFYvFcPvtt6O8vBz333+/StxDD5W8laCSdyIkScKxY8dQW1uLbdu2ISsrC1/4whdQVVWFpqYmbN++HT/84Q8BgHUi6nQ6NgxhqKYAUcdmZWVlWicNAX12pjRjU5Sj5gk8lSNgJBJhEbIoD83/XSAQQF5eHmv+ET0gKdXBPwyUCpJ8SoTSOvxABUqV0AOBGp7sdjub6B6LxfCtb30LxcXFeOCBB1TiTg9U8laCSt7KIE/y2tpa/OlPf0JnZyfWrVuHr33taygpKUlwlyMrW61WyzzJB6stnvLM6e7YBIDm5mZ4vV7Mnj07ZfGWprb0R2jyaJcHKUzkzTg+n09xeALlrXmk6qZU6p6MRCLs/PF4nHWqlpSUsJ9t2LABubm5+MUvfpFWOegljkEn7/QZQasYNmg0GkycOBGTJ09GdnY2nnnmGezevRvf+MY3EAwGsXz5clRVVWHy5MmYNGkSJk2axKba7Nu3DxqNhhlnnW+a49SpU6xjM50j4mgqkt/v75e4gbPyvFQKE3IVVAp8MjMzEY1Gk8jYbDYLZ1DS4Ac5SFIodzAEkHRsynHzxL1v3z4UFhYmEPf3v/99GI1GlbhHAUZF5L169Wq8/fbbOHPmDOx2OzZv3oxbb711uJc1ohAOh/GNb3wDv/71rxMUKU6nEy+99BIbLkGe5LzlLO+AGI/HmXHWQB0GW1pa4Ha70z7bk/cBnzlz5jmlB6LRqKLChKLpVCZVSm32tC5CKBRCdnY2tFotgsFg0i5HlD4hoyn++NFolHVPkmY/Ly8PEyZMYD+79957EQgE8Pjjjw8ZcZ88eRJr1qzB6dOnodVqsX79etx1111Dcq6LDGraJF24FC/Czs5OvPzyy9i6dStOnz6Na6+9lnmSE3nw48mi0SibM0kOiDwo7x4IBNLesSlJEo4cOYJ4PI7p06efV15XRODyPLeSJ4lOp0up5ab7ji+Mku+IvBZA0Td1dfKzM0mKyBN3Q0MDLBYLsw6WJAk/+tGP4HQ68fvf/35IH6AdHR3o6OjAZZddBq/Xi/nz5+Pll18e9e6hA4BK3unCpX4Rut1ubN++HVu3bkVrayvzJOeLfZFIhFnZhsNhFBYWJljZHjlyBLFYLIH80wFS3Wi12gseWsETuCgvDSQTOC/3S3V/ZWRkJBGpSGVC65DPrKTzUopHkiQcOHAAZrOZ2ehKkoSf/exnaG5uxlNPPZXWnQ8AVFVV4c4778TSpUvTet4RCJW8hwuX8kXIe5IfOXKEeZLPnz+fkUk0GoXL5YLT6UQgEIAkScjJycHMmTPTHnEfPHgQer0eU6dOHZSHRiQSQSQSSamO4YmUbzhSInBKqyhpv+XRfTQahdFoTNJz88TND66gn/3qV79CQ0MDnn322bTOOgX60mVLlixhO4FLHCp5DwfUi/As/H4/XnvtNdTW1mL//v248sorUV1djUWLFiEjIwPBYBD//Oc/WQefz+dDQUEB7HY7LBbLkEbg8XgcBw4cgMlkwpQpUwb1XCKXQDl8Ph+rJ/AQETgNQe6vc5JvwuGdB71eL06cOIHCwkLk5OSgsbERer2eTRySJAmPPfYYPvjgA7z44otpV/f09vbiyiuvxKZNm7By5cq0nnuEQiXvdEO9CJURDAaxa9cubNmyBXv27MGiRYuwb98+3HDDDfjOd74DoC867OrqgsPhgNfrRX5+Pmw2G6xW66CSK+V6yVhrKMAPU5CDdNxKXZY8gfN5biUCp/Pw3ivkJw706cc7OzuZRp8ibovFAr1ej9/97nd48803UVtbm9YJSEDf7mP58uW45pprcPfdd6f13CMYKnmnE+pFOHB0dnbi6quvRkFBAU6fPo1FixahqqoKS5YsSVBndHV1wel0oqenB1arFXa7nflsny9IFpeXl4eJEycO1ltSPJeIwGOxWL9j1uLxuNASVinPDSRLAmOxGMvBU1FWkiQUFRWhrq4OGzZswLhx4+Dz+fDmm2+mzaWRIEkS1q5di/z8fPzmN79J67lHOFTyThfUi3DgoOGwd955J2666SZEo1G88847qKmpwT//+U9cdtllqKqqwlVXXcWiQJr87nA44Ha7YbFYYLfbkZ+ff05EToOZCwsL0+aIKCfwcDic4OyodE9pNJoB57mBs5JAPkoPhULsHE1NTYjH45g2bRr726eeegrPP/885s+fj7feegulpaW49957MXfu3EF57/3hX//6Fz772c9izpw5bN0/+clP8PnPfz4t5x/BUMk7XRjKizAYDGLJkiWsm+/GG2/E5s2bL/i4wwVJknD48GFMnz496XexWAzvvvsuampq8NZbb2H27NmoqqrC1VdfzVIMkiTB7XbD6XSiq6sLOTk5zMo2lTqCPDvGjBnDWr/TBZq+E4vFYDAYkoYCi+4rvV5/Tnlu8jghaSBP3MeOHUM4HE5Q8rzwwgt46qmnsHPnTpjNZqY+sVqtrFFHxbBBJe/RAEnqm26enZ2NSCSCz3zmM3j44YexePHi4V7akII8ybds2YK///3vmDp1KlasWIFly5YlRK4ejwcOhwOdnZ0wm82w2+0oLCxMakohlzwyW0oXyMmxuLhY0StdTuD8kASK2pXy3PKBCqQ2od8fO3YMwWAwofFo69at+O1vf4tXX30VOTk5g/huVQwS1Pb40QCNRsPIimRol4I5kFarxeLFi7F48WLE43HU1dVhy5Yt+OUvf4kJEyagqqoK1113HXJzc5Gbm8scEB0OB5qbm2E0Glmxs6GhARMmTBjSkWkikKLFbDajoKBA8Xvjnf8yMjISyJgfTyb/G5FDIE/czc3NrOmJzrFjxw48/vjj2Llzp0rclxDUyHuYEIvFMH/+fBw9ehR33HEHHnzwweFe0rCBlCI1NTXYuXMn7HY7qqqqcP311zNPcqBP+dPe3o5Tp07BbDZj/PjxKCoqSpsMTknRQqSrBFGem5QjfD6bSJ5PlfB+JS0tLfB4PAkeLW+88QYefPBB7Ny5EwUFBYP9llUMHtS0yWiD2+3GihUr8Oijj2L27NnDvZxhh9yTPDc3l3mSh0Ih/PznP8d9990Ho9HIHBAzMzOZcdZQ2cz2J0VUInC5Zav8vfIugSQJpCibJ+7W1lbmD0PHevPNN/GjH/2IDeFQMaKhkvdoxObNm2E2m/Hd7353uJcyokCFuZqaGtTU1KC9vR1f+tKXcNddd8FutzOyJAdEp9MJrVbLPMkHa9DDQDXkPIHzgxLoGCICJ5WJfPcQDodZY9DJkyfR2dmZYE2we/dubNq0CTt37kz7+DoV5wWVvEcDXC4XdDodrFYrk9ndc889WL58+XAvbUTi5MmTqK6uxj333IOTJ0/i5ZdfhkajwfLly1FdXY1x48YxkgwGg4zIJUliEflAHRDlEBk9pQKtQ57npmPJf0ZSQL4YS3UQoM9K1+VyYe7cuexv3333XXz/+9/Hjh070q6yUXHeUMl7NGDfvn1Yu3YtYrEY4vE4Vq1ahfvuu2+4lzVicdttt+G2225jahxJktDe3o7a2lq89NJLCIVCzJN80qRJCVa25LcSjUYZkQ90Zua5EjeBT4HwoDQJn+emiJuGKfBGWG1tbXA4HJg7dy4j9w8//BAbNmzA9u3bmd2riosCKnmr6B+xWAwLFizAuHHjsGPHjuFezgVDpIvmf+d0OrF161Zs3boVPT09uP7661FVVYWysrIEK1si8nA4zKxslabWkyd2bm7uORE3QS7349dL74ePzklVQhF3R0cH2tvb2ZBkANizZw/uuOMOvPzyy0NmAaBiyKCSt4r+8atf/Qoff/wxPB7PqCDvc8GZM2ewbds21NbWwul04tprr0V1dXVCM0skEsGZM2eYAyJZ2WZnZ7PpNfv374fVar2gdvtUBC5PlcRiMYRCIQDA6dOn0dbWlkDc+/btw/r161FbW4uysrLzXpOKYYNK3ipS49SpU1i7di02bdqEX/3qV5ccefMgT/La2lqcOHECy5YtQ3V1dYJiIxqNorOzEw6HA36/H/n5+fB4PCgsLDyviFsOOYFTIZOib41Gk0DcDocDJ0+eRGVlJUu9HDx4EOvWrcOLL74o7GJVcVFAJW8VqXHjjTdi48aN8Hq9eOihhy5p8ubh8XiYJ3lTUxP+4z/+A9XV1bjssssYuQaDQezbt4+NN8vPz4fdbkdubu4FNVERgcsbdmKxGDQaDYLBIADA6XSitbUV8+bNY8R9+PBhrF27Fn/9619VKenFjUEnb3UC6SjCjh07YLPZMH/+/OFeyoiDxWLB6tWrUVNTg/fffx9XXHEFnnjiCVxxxRW455578M4776C6uhoOhwOLFy/GokWLkJ+fj7a2NnzwwQdobGxEV1dXysk4SqAOSa1WmxCF88TtcrnQ0tKSEHEfO3YMa9euxV/+8heVuFUkQY28RxE2btyIp59+GpmZmQgGg/B4PFi5ciWeeeaZ4V7aiEUwGMTOnTtx9913o7CwEAsXLkR1dTWuuOKKhKaZ7u5uOJ1OuN1u5Obmwm63Iy8v75wcELOyslgOOx6PM6Opzs5OHDt2DPPmzWPqk9bWVtx88834wx/+gAULFgz+G/8/rFu3jj30Gxoahuw8KtS0iYoB4u2331bTJgNAKBTCqlWrsHTpUqxfv54NMPjggw+wePFi5klOpEoOiA6HA93d3bBYLMwBcSBETo1DRNxdXV1oamrCvHnzWHfoqVOnsGrVKjz55JNDbla2e/duZGdnY82aNSp5Dy1UYyoVw4dJkyYhJyeHTXf5+OOPh3tJFwyn04nq6mrccsstAIDrrrsO1113HSKRCHbv3o0tW7Zg48aNmD9/PqqqqvC5z30OeXl5yMvLgyRJ6OnpgdPpxNGjR5GdnQ273Z7SyjYYDDLb1+7u7iTi7ujowE033YRHHnkkLS6TS5YsQUtLy5CfR8XgQ428VQwYkyZNwscff4zCwsLhXkpaEYvF8K9//Qs1NTV4++23MWfOHOZJTp2bkiTB6/UyK1uTyQSbzYbCwkJhw47b7UZjYyPmzZvHBlQ4HA588YtfxEMPPYSrrroqbe+vpaUFy5cvVyPvoYUaeatQkW5kZGTgyiuvxJVXXol4PI4PPvgANTU1+MlPfoKysjLmSW6xWGCxWDB16lT09vYy9UhWVhbzW9HpdOjp6UFjYyMqKysZcbtcLnzpS1/CT3/607QSt4qLF2rkrWLAmDx5MvLy8qDRaHD77bdj/fr1w72kYUU8HseePXtQU1ODN954AxMnTmSe5BaLhb3O5/MxB0SgL3VSWVnJXtPV1YWVK1fivvvuGxZ/GzXyTgvUgqWK4UN7ezuKi4vhdDqxdOlSPProo1iyZMlwL2tEgHxQtmzZgldffRVjxoxhnuQ0BPjIkSNwuVyw2Wzo6urC5s2bccUVV+Dvf/87Nm7ciBUrVgzL2lXyTgtU8lYxMvDDH/4Q2dnZqo2tAJIk4dChQ8yTPC8vD4sWLcKzzz6LnTt3MkOpvXv34p577kFnZyeKioqwcuVKrFy5Mq3zJlevXo23334bZ86cgd1ux+bNm3Hrrbem7fyXEFTyVjE88Pl8iMfjyMnJgc/nw9KlS3Hffffh2muvHe6ljWhIkoTXX38dt956K0pLS6HT6XDDDTfg6quvxh133IH169fjK1/5Cjo6OvDyyy8jFovhzjvvHO5lqxh8qOStYnhw/Phxtq2PRqP48pe/jE2bNg3zqkY+jhw5glWrVuG5557D9OnT0dLSgtraWjz22GO45ZZbcP/99w/3ElWkByp5qxi9cLvduO2229DQ0ACNRoM//vGPuPzyy4d7WReEU6dOoaenB7NmzUr4eSqbWxWjEip5qxi9WLt2LT772c/itttuQzgcht/vh9VqHe5lqVAxGFDJW8XohMfjwdy5c3H8+HE1IlUxGqG6CqoYnTh+/DiKiopwyy23YN68ebjtttvg8/mGe1kqVIxYqOStYkQgGo1iz549+OY3v4m6ujqYzWb87Gc/G+5lqVAxYqGSt4oRgZKSEpSUlGDRokUA+oZK7NmzZ5hXpULFyIVK3ipGBMaMGYPx48fj8OHDAIA333wTM2fOHOZVqVAxcqEWLFWMGNTX1zOlyZQpU/CnP/2JtZarUHGRQ1WbqFBxrjh8+DBuuukm9u/jx4/jRz/6ETZs2DB8i1JxqUElbxUqLgSxWAzjxo3Dv//9b0ycOHG4l6Pi0oEqFVSh4kLw5ptvorS0VCVuFRc9VPJWcUnh+eefx+rVq4d7GeeN119/HdOmTcPUqVNVKeUlDjVtouKSQTgcRnFxMQ4cOAC73T7cyzlnxGIxlJeXY9euXSgpKcHChQvx3HPPqaqciwNq2kSFivPFa6+9hssuu+yiJG4A+PDDDzF16lRMmTIFer0eN998M7Zt2zbcy1IxTFDJW8Ulg+eee+6iTpm0tbVh/Pjx7N8lJSVoa2sbxhWpGE6o5K3ikoDf78euXbuwcuXK4V7KeUOU4lRNvC5dqOSt4pKAyWRCZ2cncnNzh+T4v/71rzFr1izMnj0bq1evRjAYHPRzlJSU4OTJk+zfp06dQnFx8aCfR8XFAZW8Vai4QLS1teGRRx7Bxx9/jIaGBsRiMTz//PODfp6FCxeiqakJzc3NCIfDeP7553HDDTcM+nlUXBzIHO4FqFAxGhCNRhEIBKDT6eD3+4ckIs7MzMRjjz2Ga665BrFYDOvWrUua0KPi0oEqFVShYhDw8MMPY9OmTTAajVi2bBmeffbZ4V6SipEFVSqoQsVIQ3d3N7Zt24bm5ma0t7fD5/PhmWeeGe5lqRjl6C/yVqFCRT/QaDRfAnCtJEm3/t+/1wBYLEnSfw3vylSMZqiRtwoVF44TABZrNBqTpk+79x8ADg3zmlSMcqjkrULFBUKSpH8DqAGwB8B+9N1XvxvWRakY9VDTJipUqFBxEUKNvFWoUKHiIoRK3ipUqFBxEUIlbxUqVKi4CKGStwoVKlRchFDJW4UKFSouQqjkrUKFChUXIVTyVqFChYqLEP8fwlQ9hZuurJIAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 360x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Check the bi-harmonic equation\n", "\n", "Cxxxx = polyder2D(Cij, 4, 0)\n", "Cxxyy = polyder2D(Cij, 2, 2)\n", "Cyyyy = polyder2D(Cij, 0, 4)\n", "\n", "p_D = Cxxxx + 2*Cxxyy + Cyyyy\n", "p = D*np.polynomial.polynomial.polyval2d(X, Y, p_D)\n", "\n", "print(1000*p_D) # coefficients of bi-harmonic equation\n", "\n", "# Visualization\n", "\n", "f3 = plt.figure(3, figsize=(5,5))\n", "ax = f3.add_subplot(projection='3d')\n", "\n", "ax.plot_surface(X, Y, p/1e6, \n", " rstride=sy, cstride=sx, \n", " cmap=cm.Greys, shade=True)\n", "\n", "ax.set_xticks(np.linspace(0, a, sx)); ax.set_xlim(( 0, a));\n", "ax.set_yticks(np.linspace(0, b, sy)); ax.set_ylim(( 0, b));\n", "ax.set_zticks(np.linspace(0, 1, 5)); ax.set_zlim(( 0, 1));\n", " \n", "f3.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The plot above represents the load $p_0(x,y)$ causing the tentative \n", "solution, $w_0(x,y)$. \n", "The solution $w(x,y)$ for an arbitraty load $p(x,y)$ is not that simple to obtain,\n", "for it demands to solve the bi-harmonic equation with some given boundary conditions.\n", "\n", "Many approximate methods have been proposed.\n", "For instance, by energy conservation one could assume that the work of any external\n", "loading $p(x,y)$ upon the tentative function $w_0(x,y)$, denoted by $W_{\\rm ext}$, with:\n", "\n", "$$ W_{\\rm ext} = \\frac{1}{2} \\iint_A p(x,y) \\, w_0(x,y) \\, dA = V $$\n", "\n", "must be equal to the internal deformation energy, $V$, associated to $w_0(x,y)$. \n", "This condition may lead to the unknown amplitude $w_{\\rm max}$. \n", "\n", "For our rectangular simply-supported plate, let us assume that we have a\n", "constant distributed load, $p(x,y) = 2{\\rm kN/m^2}$. Hence:\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total work done by constant load: 0.01J\n" ] } ], "source": [ "p0 = 1. # constant loading (N/m^2)\n", "Wext = np.sum(p0*W1/2)*dx*dy # total work done (J)\n", "\n", "print('Total work done by constant load: {0:5.2f}J'.format(Wext/1000))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall that this external work corresponds to $w_{\\rm max} = 1$. The calculation of internal deformation energy, $V$, is presented in the next section." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Potential and kinetic energies <a name=\"section_3\"></a> \n", "\n", "### 3.1. Potential energy <a name=\"section_31\"></a> \n", "\n", "The potential elastic energy per unit area of a thin plate is given by:\n", "\n", "$$ dV = \\frac{1}{2}D \\left\\{ \n", " \\left( \\frac{\\partial^2 w}{\\partial x^2} + \\frac{\\partial^2 y}{\\partial y^2} \\right)^2\n", " - 2(1 - \\nu) \\left[\n", " \\frac{\\partial^2 w}{\\partial x^2} \\frac{\\partial^2 y}{\\partial y^2}\n", " - \\left( \\frac{\\partial^2 w}{\\partial x \\partial y} \\right)^2\n", " \\right] \\right\\} \\, dx \\, dy $$\n", "\n", "which must be integrated over the plate total area to give the total elastic energy $V$.\n", "Now we can calculate the specific energy directly from the derived polynomials, associated\n", "with a unitary displacement at the plate center:\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFkCAYAAADrDmrqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADU3UlEQVR4nOz9eZBkWXkejD83933P2qu7et/3rh42jW0RIxOfZCEWjxbCIIPFIlvIRqEQ/KzFCgkLS/AJbPmTLAsZBBISoUBiWIxBwARmBtTLdHd19VZdvdW+Zmblvt/fHzXv6XNPnpOVWZVZy0w+ERPTlXnz3P0573mX59V0XUcHHXTQQQc7A6atPoAOOuiggw4aR4e0O+iggw52EDqk3UEHHXSwg9Ah7Q466KCDHYQOaXfQQQcd7CBY1vi+k1rSQQcddLBxaK0aqGNpd9BBBx3sIHRIu4MOOuhgB6FD2h100EEHOwgd0u6ggw462EHokHYHHXTQwQ5Ch7Q76KCDDnYQOqTdQQcddLCD0CHtDjrooIMdhA5pd9BBBx3sIHRIu4MOOuhgB6FD2h100EEHOwgd0u6ggw462EHokHYHHXTQwQ5Ch7Q76KCDDnYQOqTdQQcddLCD0CHtDjrooIMdhA5pd9BBBx3sIHRIu4MOOuhgB6FD2h100EEHOwgd0u6ggw462EHokHYHHXTQwQ5Ch7Q76KCDDnYQOqTdQQcddLCD0CHtDjrooIMdhA5pd9BBBx3sIFi2+gA62HnQdR3FYhHFYhFWqxUWiwVmsxmapm31oXXQwSsemq7r9b6v+2UHrz5Uq1UUi0WUy2WUSiUAgKZpmJ2dxeDgICwWS4fEO+igFi17GTqWdgcNQdd1lMtl3L17F93d3XC73TCZTDCZVj1sMzMz6OvrQ6lUYmRtsViYJW4ymTok3kEHLUCHtDtYE+QOISu7Wq3WbKNpmoHEdV1HpVJBuVyGruvQNK1D4h100AJ0SLuDuqhUKiiVSox4NU3DGi41AGDbEngSp+/JldIh8Q46aBwd0u5ACnKHlMtlZkUDYKTdLMHKSFz0i3dIvIMO1kaHtDuoQbVaRalUQrVarSHbRi3ttSAj8VKpZCBxs9nMXCodEu+gg1V0SLsDBnJh8MQpEmWrSFsEkTR/LNPT0ygWixgcHISmaYb0wg6Jd/BqRYe0OwBQ6w5RESKRNv3H/76VIJcMkTkFQwuFAjs+InGLxVL3mDvo4JWEDml3wLJC+GCjCpqmoVAo4MqVKygUCnA4HAgGg6hUKuvyddeD6JYRLXEZiVutVpYj3iHxDl6J6JD2qxi8O4QPNtZDJpPBzMwMjh07Bo/Hg0KhgHg8jlKphIsXL8LlciEQCCAYDMLtdreNOHkSJyufqjQBwGQyMX84uVM66OCVgA5pv0rB5143YpVWq1WMjY0hmUxi3759CIVCKBaLcDqdcDqdmJmZwZkzZxiJP3r0CJlMBm63G8FgEMFgEE6ns2kSbzS9EECHxDt4VaBD2q9CNOMOAYBsNouRkRF0d3ejr68PFov8sdE0DS6XCy6XC/39/dB1HZlMBvF4HOPj48jlcvB6vQgGgwgEAnA6nXX3u14rfS0SX15ehsfjgdfr7ZB4BzsOHdJ+FUGVe10Ps7OzePDgAY4dO4ZAIIAHDx5IrV9ZVommafB4PPB4PBgcHISu60in04jH4xgbG0OhUGAkHgwGYbfbW3au4nEAT0g8kUjAYrHAbrcbLHExO6WDDrYjOqT9KkGz7pBKpYLbt2+jXC7jwoULsFqtAIzk3Gz+tqZp8Hq98Hq92LVrF6rVKlKpFOLxOG7duoVSqQS/388s8XbCZDIZLHFd11EoFFAoFACsEjxZ4ZSd0kEH2wEd0n4VQKw8XIuA0uk0bty4gYGBAQwMDLSluAZYJU6/3w+/34+hoSFUq1WsrKwgHo9jamoKhUIBVqsVbrcbgUCATRythqzQp1qtIp/Ps8+IxDsKhh1sNTqk/QpGo7nX/PbT09OYmJjAiRMn4PV6a7ZRkXYryNxkMjFXCQDMz89jeXkZyWQSExMT0HWdZab4/X6lb32j6JB4B9sZHdJ+haJarWJ6ehputxsul2tNUimXy7h58ybMZjMuXLhQN9jYLtIWYTKZ4HQ6sWfPHnaMiUQCsVgMDx8+hKZpBhLn87hbiQ6Jd7Cd0CHtVxj43OulpSVYLBa43e66v1lZWcHNmzcxNDSEvr6+hvZB/99McrJYLIhEIohEIgCAUqmERCKBpaUl3L9/H2azmVnqPp+vbcFEFYmPjY3B4/EgFAp1SLyDtqFD2q8gkOhSpVJh2SH1rF9d1/H48WPMzc3h1KlTa5I7sLFA5HpQb0yr1YpoNIpoNApgNaUvHo9jbm4OY2NjsFqtCAaDCIVC8Hg8Bq3vVlduapqGarXKNMWr1SpyuZwhc6VD4h20Ah3SfoVAlntNRCJDsVjEjRs34HK5cOHChYatUhpzM4SkmiU2m82G7u5udHd3AwDy+Tzi8Timp6eRSqVgt9sRDAbZdWoX6Nrzk4RI4nyhT4fEO2gGHdLe4aiXe62ytGOxGG7fvo0DBw6gq6urqf3VI+d2EuF64HA40Nvbi97eXgBALpdDPB5HOp3GrVu3DDnijfj914LKgpeRON8QAui0ZuugcXRIewdjrdxrkWB1Xcf9+/cRi8Vw7tw5OByOpvdZLxC53UEl96lUCt3d3bBarYjH43j48GFLSu4bRaerTwcbQYe0dyjIuq5Xik6+VWDVVXDjxg0EAgGcP39+3UG6zcweAdpnvWuaBrfbDbfbjYGBgQ2X3NOxrodc1+rqU6lUUKlUWJpjh8Rf3eiQ9g5DM6XoRKSLi4sYGxvD4cOHEQ6HN7R/npxFktpqn/ZG9yWW3KdSKSQSiYZL7lsV4BRJPJPJYGpqCocOHWLfdyzxVy86pL2DUK8NmAozMzPQNA3Dw8Ow2WwbPoZ62SM7BY2Qq6Zp8Pl88Pl8DZXct+La1oNYdi+2Zut09Xn1oEPaOwBiG7BGXBvZbBYTExPw+Xw4ffp0y17izXaPbBesVXJfqVRQrVZht9vhdrtbWnIvTjKNNoTodPV5ZaJD2tscYu51Iy8fKfP19PS0NaAmYif5tDcKseS+UqlgdHQUmUwGIyMjLS25X2tlUI/E6Vg7XX1eOeiQ9jZGs7rXojLf/Pw8KpVKS49pM7NHdhKxmM1m2O129PX1wefzSUvuyZXSbMl9s75ynsQ7DSFeeeiQ9jbEenSvU6kURkdHDcp8JpOJuVRahVeCe6Rdx8mTaytL7mXFTI2Cr8ikYwSekPjS0hJ8Ph88Hk+HxHcIOqS9zdCs7rWu65iamsLk5GSNMl+7qhR3OmkD7bHiN1Jyb7PZGInzJfc0bitjEsATEo/FYnA6nR1LfAehQ9rbCBRsbNQdUi6XMTo6CovFgqeeeqpmyb2ZpN0u7KSJAGh8MlCV3E9NTSGdTrOS+2AwyDRN2gFd16UNIUQS73T12T7okPY2wHrcIY0o8/HFNa3CZlraO8mnDWzMIuZL7nVdZyQ+MTGBRCLBBKdaVXJPECcEWaGPrKsPnye+0+7TTkeHtLcY1WoVsVgMiUSipkuMDM0o820mke4098h2hqZprOS+r68Pc3NzSKVSAIAHDx4gm822rOS+kcwUkcSr1aq0NVtHwXBz0CHtLQKfe10oFJBOp9d82JtV5msXadNLOzk5Cb/fD5/PB2DnuTJajXbqi9vtdhZkFkvu8/k8PB4PI/FmNGWadb2oSLzTEGLz0CHtLYDoDrFYLGsS3nqU+drhHgFW/a+XL19Gb28vC6SVy2VUKhVYrVZ4PJ6Wvag7Kfd7M7JSAHXJfTwex507d1AsFhvucr/RiaYeiT948AC7du2C3W7vkHgL0SHtTYasFL0euW5Ema/Vljb1kEwmk3jta19rKJe+e/cuNE3DxMQEMpkMXC4Xa0DQiNiS6vjbhXYq+LUajbgwqOR+9+7dNSX35XIZPp9PWnLf6iAnT+KpVKrTEKIN6JD2JoF3h4jBRnI5iOCV+YaHh5t+uFtJ2uSasdlsCIfDcDgcLLsAWM1L9vv9iEQihuX7vXv3kM/n4fV6EQqFEAwG267TsVVol3uk2XHFkvtKpYJkMmkouadqzY3kgK+FarXKsk3qNYTokHhz6JD2JmCt3GuZpd0KZb5WuUfIYjtw4ABcLhfu379fs0295TtZfrFYDNPT0wbSCAQCbeuq/koBpeWtF3whD7CaWppIJJBIJJBOp3H16lXD/WhVg2TZZMOvLmkbWVcf+q9D4rXovC1tRiOl6Dy5UoPYTCazYWW+jVrauq7j0aNHWFhYwNmzZ+F0OpHJZJpO+eMtvz179jDSiMfjePToESvxDoVChurAnZaRsl0s7bVgNpsRDocRDocRi8Vw+vRpack9VWtuhMQbUVMUSbzT1ac+OqTdJjSTe01twbLZLEZGRtDd3Y1Dhw5t+OHcCOmVSiXcuHEDTqcTw8PDDRFpo/viSYP2FY/HMT8/j7GxMVZYYrVaO6TdxnEJspL7eDyOxcVFjI+Pb1qXe6Cxrj68O+XVSOId0m4Dmi1FN5lMyOVyuHr1Ko4fPw6/39+S41ive4QKd/bu3Yuenh7ldqJLZL2wWq3o6upiWTH5fB6xWAzz8/NIJpMol8sbDmry2EkTAdB+0hYh3o9CoYBEItFQyX2roSLx8fFxhMNh+Hy+V11DiA5ptxh8m6hGlfnu3LmDQqGAp59+uqU6zM1a2rquY2JiArOzszh9+jRcLlfNNqpmwa10ZTgcDvT19cHtdmN2dhYDAwM1QU0i8fW6j3aSRdzOYGEjsNvtypL7VCoFp9PJfOKtTPeUgd6pYrHI/N3iO/dKJ/EOabcIojukkQeFlPn6+/uRSqVaSthAc0RKOiZWqxXDw8N1/ZibXcYuC2rG43GMjo5uq6BmO/O026k90izqldyn02mW7lmpVNo6kREhi5a42NVHFL/a6STeIe0WoNk2YDJlvqmpqZYfV6PukWQyidHR0bo6JoRW+LQ3Alk628rKCmKxmCGoSc0HNlvcaCdZ8K2AWHJPsZl4PI5isYiLFy/C4/GwibVVTTkqlYr03pLPm/BKbM3WIe0NYD1twNZS5msl1rJ+afKYmprCyZMn4fF4mhqTJ5OtevDNZjNCoRBCoRCAJ0G0hYUF3Lt3DzabjeWHt3vpvlMDka2Epq12uXc6nZibm8O5c+eUXe6bLbnnQTngjRxPI119dlJrtg5prxPraQNGAb49e/agt7e37cdYj7TL5TJu3boFTdNw4cKFhicP1ZjtSs9rdkxZUJNfurvdbuRyOeTz+Zaq5bUT7STtdhbWkBW7Vsm9z+djlni9knseKkt7LdQjcXqPt3trtg5prwPNtgGjfOf5+XllgK8dULlH0uk0RkZGsGvXLgwMDDQ15ma6R1rxsoj+12w2i5s3b2JiYgL3799vWKOjEew0S7ud7ixVebyq5D4Wi2F2dtZQck9pn6rxW7FK5UmcrsfKygomJiZw6NAhmEwmZDIZTExM4Kmnntrw/lqBDmk3gfXoXjerzNdKyAh2ZmYGjx49qulys94xG524tgNo6e5yubB37144HI4ajQ6/349QKLSuoOZmCUZt93GBxjVN+BgFAEPJ/eTkJKrVqjTQ3I5jl1UqA8CdO3fwF3/xFx3S3mnQdR0LCwtwu90NC7+vR5mvleCPkZr+VioVXLhwYd1ZFkTaRNREVJom10/ZzlAFNcVKzWaCmjuJXNvZEWe9Y6tK7umeAEAgEGCqku2ICdG4dM2z2WxD8Z7NQoe0GwBZ1/fv38eRI0fWTM3biDJfO5DJZDAyMoL+/n4MDg62zbraDj7tjUAW1EwkElhYWMD4+DjrHBMKhZRBzZ1E2tvB0l4LYvUsdbmfnZ3F1atXW1pyTxAnA4qFbBd0SLsORHeI2Wxek0Ty+TxGRkYQDAbXpczXapRKJVy/fh3Hjx9nzQo2gnqByFZjq6+d2IyXgpqTk5NIpVJwuVwsM6UVlZoqvJos7bVAJfcOhwPnz583ZAuNj4/DYrEwd8p6S+5F0s5kMh1LeyegWd1rYGPKfLzboRWoVqu4c+cOSqUSXve617WscEd1fO3KHtlOkAU1+e4x+Xwec3NzLQlq8ng1W9proZmSe6/X29D5iqTdcY9sc9TLvTabzahUKjW/aYUyH00IrVjekfBUT08PnE5nyystVdgppN2K46SgptvtZi3AfvjDHyKfzxuCmkQYG6nU7FjatWOrrke9kvt0Og2Hw8GCmioXl8w9QmJa2wEd0uawVu61zNJulTIfBfI2StpUVHLs2DEEAgHMzMxsaLxGsZP85EDrj5fKpYeGhmqCmhMTEwBWA2ihUKjpSs2Opb3+scXVUS6XQyKRqCm557vcVyoVg+GVyWQwNDTUlnNZDzqk/TIa1b3mLe3Z2Vk8fPgQx44d27Ay30YbFrRSh3s9aKf2yE6EKqhJcqcWi4X5w9datncsbSPWmzWiaRpcLhdcLldNyT11ufd4PKhUKgiFQuy6d3za2wzN5F6bzWZUq1WWPlculzE8PNwS98NGSDufz+P69euIRqMt0eFeD14NPu2NQAxqFgoFxGIxppQn9tQURZDaQYCvBku7HmQurnQ6jXv37mFubg7Xrl3D5z//edhsNmSz2YbGnJycxDvf+U7Mzc3BZDLhve99L375l38Zmqb9JwC/AGDx5U3/f7quf/3l4/gIgPcAqAD4oK7r/6fePl7VpL0e3etsNouLFy9iYGAAAwMDLXvoVZKna4GCn0ePHmW5rR1sDZq5f3a7XRrUvH//PnK5HDweD7PE2yXNuhOIVYb1lrCvBU3T4PV64Xa70dPTg1OnTsHn8+HjH/84/vAP/xC/93u/hwsXLuCDH/wgjh07Jh3DYrHgE5/4BM6ePYtUKoVz587hmWeeoa//UNf1jwv7PArgZwAcA9AH4B80TTuo63pt8Iz20ZKz3YGgYGMzpejJZBIrKys4e/bsuqoJ66FZS7tarWJ8fBzJZBLnz59vabbCerBdtEe2asyNQGbxUWn3rVu3kEwmcf/+fYTD4Q0HNXm0u6lvOyeEdgqtkfvFarXi6aefxqc//Wl89KMfxf79+3Hp0qW67z5NxADg9Xpx5MgRTE9P19vdmwH8ta7rBQAPNU0bB3ABwA9UP3jVkfZ6StFLpRJu3ryJQqGA3bt3t5ywgeZIm7q0B4NBnDt3rqEJpx0vZywWg81mg9vt3nE+7e2cV87rcwwNDeHy5cuIRCJMEwMAy0X2+/3rJrB26nRXq9W2aZu3qxJSNX4mk4HX64XVasXrXve6hsd59OgRrl69ype//ztN094J4DKAX9F1PQ6gH8APuZ9NvfyZEq8q0m5W9xowKvPR79uBRsvAl5eXcefOnYZzwVud/w2svuyjo6NM3jKbzcJms8FsNqNYLG56EPTVgFAoZOjhmEgksLS0hPv378NisTB/eKO5yEDHp62CirSbQTqdxtve9jZ88pOfpKK2PwbwOwD0l///CQDvBiC7AXWtn1cFaYu51+tV5pubm2NE1WqsZWmvtzR+vb5yFbLZLLLZLAYHB9HT08PGnpqawsLCAusmQySyEUuwg1WI5CoLavLtv2RpbDLsVGLdCtJuRpmzVCrhbW97G97xjnfgrW99KwBA1/V5+l7TtP8J4Ksv/zkFYJD7+QCAunm6r3jSXk8bMFLmc7vdBmU+MeWvlahH2sViESMjI/D5fDh//nxTD2yr8r+BJ0FPh8OBXbt2GWICHo8H+XweBw4cYPoQvCVI6W/NNiLYbv7netiqY7Xb7ejp6WGTaC6XQywWw4MHD1hQkyZRPvaxU4m13e4R8dibcfXouo73vOc9OHLkCD70oQ+xzzVN69V1ffblP98CYPTlfz8H4K80Tft/sRqIPADgYr19vKJJez3ukHrKfBvNpa4HlUVMsqEHDx5kllUzaIWvWdd1jI+PI5FIYHh4GJcvX667PelD0HKe0tv4RgRE4vVWDDs5T7vVaPRa8LnIfFCTl5/1+XwIhULMkGkHduqEABhXNs26kF544QV87nOfw4kTJ3D69GkAwH/+z/8ZAH5f07TTWHV9PALwvpfHv6lp2hcB3AJQBvBv62WOAK9Q0ubdIY0GG4mY4vG40v1AedrtgDghkHtmYWEBZ8+eXbcg0UbdI7Tq8Hq9OH/+/Lq0R8T0tkwmg1gsxjqXUFCtlZkR9dAuX+52nGT4oObu3buZXnUsFsPCwgJLe91oUFNEuy3tzWzg3Mzz8oY3vEH6Hui6/q/qjP9RAB9t9HhecaTdbO418ESZLxQK1VXm2yz3SLFYxOjoKFwuF4aHhzf08G9E53plZQWjo6MN6YE3atGTK8Xj8WDXrl2Gcu/Hjx/DZDKxpfxmaaa8msDrVdvtdui6DofDseGgpoh2k/arOdj9iiLtarWK6elpRCKRhgmbtDqOHDnCSo5VaKd7hMg1kUjg5s2b2L9/PxO92ei467G0JycnMTU1hTNnzrS1PZpY7l0sFhGPxzEzM4OVlRWUy2VMTU1JKwU72Biq1SpsNps0qDk9PY1UKgWHw8GKfJrpqblT87TFd6VYLG55DYSIVwRp88HG8fHxhrrErEero53uEU3TsLi4iMnJyZYSZbOWdqVSwa1bt6Dreksa/jYLm83GVNpyuRzu3LkDAEz+1Ov1MpIXLfGHDx/iO9/5Dsue2L17Nw4fPtwhegVky35ZUJPX5mi0k/pO9WmLuevbrQEC8AogbdEd0gjWq8zXLvdIqVTC9PQ0zGZzy/tINuPTpuvS19e3Zocbccx2FdeYzWYmGcA3gX348CH+4R/+AZcuXcLKygoWFhawsLCAcrkM4Mm9MplMGBgYwNNPP41f/MVfVJYfvxqxFvnxQc3+/n6mzcHHI3j5WX4SbWfhTjuzR7Z71xpgh5N2uVxuKvca2JgyXzvcI8lkEqOjowgEAnC5XC1/0BslU0rnI0nX9YzZ7pQ3k8mEmZkZfOhDH8KlS5dQLpdhsVhQqVRqJlNd1+H3+2GxWDA9PY2//Mu/xBe+8AXs27cPv/7rv47Dhw+39Vh3ApoNyJI2h9frZZ3UKR4xOTkJXdeZ/Gy5XN6RlvZ271oD7FDSrpd7Te4A8aa2QpmvlaSt6zqmpqYwNTWFU6dOIZVKNawk1gzWIm3KmllZWWnYTSQbs13ZGLSfeDyO9773vfj2t7/N7oHJZGK54jzopVtZWQGwmoJos9lQKBRw7949vPvd78Y73vEOfPzjH39VB7Q2Sn4UNCahMj4/P5VKseA+yc+2img309LOZrPbztJufz+gFoN0r1XFMjK/cyqVwsWLF+H3+3Hq1Kl1ZyWoOtc0i3K5jJGREaysrODChQtwu91tC3KuVbRz5coVAMC5c+caJjAiU/4lbKc06xe+8AWcOXMG3/3ud+H3+2Gz2dg9NJlM8Hq98Pl8sNlsLGjEn3O5XEahUGAdtiuVCr7whS/g9OnT+I//8T+25J7upCIgQqtTHyk//+DBg3C73Th69CgcDgdmZmZw+fJljIyMYHJyEplMZkPXazMt7Y57ZAOo1waMBxGrxWIxWLPHjx/fsNBTKx7wVCqFGzduYPfu3ejvf6ILs5HUvHpQkWkz6XyNjtlq4iqXy/jYxz6GK1euMF91KpVi+6Lrlclk2G+oJ2A8Hq+5npQqRn7+paUl/Pmf/zm+8pWv4Pd+7/fw4z/+4+s+1p1I2u0uUnE4HNKg5sOHD5nbgSzxRmUZgM33aXfcI+vAWm3AeFAAipT5LBZLU1kQ7cT09DQeP36MkydP1jwI7bS0RULZaDqfTISq1e6R0dFR/MIv/AImJiZgNpuRz+fZd2azWaoBY7fbWcqg2WyGxWIxlNpHo1EkEgnoug6v14tUKoVKpYK5uTm8//3vx7/4F/8Cn/jEJ9ZdyLTTslTaKRglQhXUjMfjawY1RWympb3dmvoCO4C0G2kDxsNsNiORSODRo0fYs2cP07bdSohpdLJqrnaRNm/Brzedr9H9tMrafOGFF/CBD3wAy8vLsNlszLomyPZjsVhQLBbZ3+TysNlsqFQqcDgcSCQS7PfJZBI2m42t3IrFIp577jncu3cPv/3bv820q9ciEP6Y2kGA7bTgN6tjugx8UHPXrl3KoCY14eWf1U4gcptiPbrXVCKdTCZx9uzZthaFNIp0Oo0bN26s2emm1Wp8BCLTbDaL69evo7+/f810vkbHBGp1GjaKl156Ce9+97uRTqdhNpuRTqcN3/v9fiwvL0uPSYZSqQS32y09NiqcIKOAcvd/7dd+DV/4wheQTqcxOTkJAIzAm23Ku1G00xreTEt7LaiCmiR8RZWcoVCorc0bZO6Rnp6etuxrvdiWpL2eUnTSyNB1HYcOHdoWhE3phcePHydNXSXa6R5JJBK4d+8ejh8/vuEGxED7ske+9rWv4Vd/9VcZUVNswmKxwGw2w263M21jWkHk83n4/X7EYjHpmIFAgGXl2O32GrdKoVBgFjelqc3MzOCnfuqn8Pzzz2Pv3r0olUqIx+OYn5/HvXv3YLfbWYEPVQm209LeiaJOG4UoOlYsFhGLxTAzM4NcLoeRkRFG8tSEoxUQdU067pEG0GwbMOBJY4ADBw6wNK92Yq0XqVKp4M6dOyiVSkp3iIh2BCJ1Xcfy8jJKpVJLO7SrSHsjlvbf/u3f4mMf+xhWVlZgsVjg8/mQyWRQKBRQrVbZtaGAJMFqtbIXfGlpqeaY+O1LpRIcDofBPw6s3i+Px2M4/kqlgre+9a34yle+Arvdjq6uLhaw5aVPqUrQ7/e3ZdJtt6W9XUlbhM1mY0HNVCqF/fv3Ix6P49GjR8yFQZZ4M0FNEZVKxVC23nGP1MF63SGiMl86nW6bqBOwdicYqirs7e3Frl27mqq2bOVLTxrcmqZhaGiopfnIdA10Xcf09DRWVlagaRqSySSWlpYQDAab8pc/99xz+OhHP4rFxUVmuWazWYNVrAo+ulwu5vMOBAIoFArI5XIAAI/HU/ObYrFoIG4ifXpZSco3nU4jk8ng7W9/O774xS8agpNOpxP9/f0soJZKpbC4uIhsNotLly4xC1D0xa4H7ba02zF2O90XQP2g5t27d1EoFJj8bKMxCULHp90g1qN7rVLma6cSH42vWlbOz89jfHx8XW6IVpI2n86XzWbbUl5Ok5PoXx4dHYXNZoPH40E4HEZvb2/dCfiFF17ARz7yERSLRTidTvYMiNaww+EwBBoJ/L0mgvb7/chms9LtgVWL2+fzwWq1IpfLsQkIeEKS5XIZXq8Xd+/exc/8zM/gi1/8olQ4iKRPHQ4HUqkUjh8/bvDFbqQBBH887UC73CPttOBlz7IsqEnys2sFNUWInd4zmUwnT5tHo7nXIuop87WqAEYFPg+cUK1WcffuXeRyOVy4cGHd1ZataFZAeemUzjcxMdFy0i4UCrh27RqzaAl2ux2pVArVahWLi4uYmZnB5OQkIpEIhoaGatxEDx8+xPvf//6agijxeCmQKsLpdEqtb9Lozufz0u/puSNpUkI+n0dXVxebiFKpFHw+H27fvo33v//9+F//63+teW1a1QCCP9adFohsp6XdyDGbTCYEAgEmx1AvqClWanZS/uqgmdxrApFjNptV+mhVy+hWQbSIKSjS1dW1IUW5jVralM4HwJDO1+pKxUQigenpaXasFosFbrcbdrsdS0tLhnMoFAqYn59njWi7urpY5ko2m8Wzzz4Lp9PJUvEIopXtdDoNBTQE1STvcDhQKBRgtVqlVrumabBarUy7hPd7LywswOVysWeIJqYXX3wRf/AHf4Bf/dVfle5TRSYbbQCxEy3tdkqnrqewRhbUJPnfVCrFAsvBYBDlcrkme2SjRXmtxpaQdrO518ATX3FPT09dcmy3pc2TK4ksHT16lKUqtWLcZkHpfLK0QtLnaAVyuRy+//3vG46zUqnAarVicXERAJh1k0gkoGkaIpEI4vE4kskkUqkUlpaWcODAAfz8z/88LBYLksmk4X7JSER2Xci1IUMwGMTi4iJKpRLMZjNcLpfBUvf7/eyayFII6bkkwyIUCiGVSuEzn/kM9u7di7e97W01+2yEXNdqAKFpGrPCyQLciZa26GJoJVox0fDyv8CTwPKjR48Qi8XYdaFspUYt7cnJSbzzne/E3NwcTCYT3vve9+KXf/mXEYvFEA6HvwVgCKutxp7VdT0OAJqmfQTAewBUAHxQ1/X/s9Z+NpW01xNsBJpT5tss98jdu3eRSqValpWx3uwRchWp/OitsrSr1Sp+8IMf1FitoVDIQHqUveP3++FwOAzfUSf3z3/+83j48CGLYxB0XUehUIDJZILdbmeWcqVSgc/nQzKZZEQdDoexsLBQc5wWiwXxeJz9TZaZ0+lELpdjedlEVisrK6zsnZDL5QzWdjweRyAQQDqdxic+8Qn09vbida973bqvJaFeAwhqQODxeFCpVLZVTvVaaOextqOEnQ8sX7lyBYODg3jxxRfxqU99Cvfv38ev/Mqv4Md+7Mfwz/7ZP2PWugwWiwWf+MQncPbsWaRSKZw7dw7PPPMMPvOZzwDAt3Vd/5imaR8G8GEAv6Zp2lEAPwPgGFab+v6DpmkH9TV6RG5avg/lXr/00ksNW9eVSgWjo6OYn5/HhQsXGgrutbNRAbB6HqOjo7BYLE2JLK2F9QSo7t27h4mJCQwPDyuvTatIe2xsDBaLBd3d3XC5XHA4HHA6ndL8aJPJBLPZjFgsVhO9v3//Pr773e+iVCrBarWyYCFZmf39/fB4PEw7hibJTCYDs9mMQCCAaDSqDDL6fL6atECy/Ox2O/x+f821TqfTNUFGUnfz+/3seMLhMLLZLH7zN3+TFd0QWkFUZAEeOXIEw8PD2L9/P3OpXLp0Cbdv32bupu2MndoAAXgi6fvjP/7j+OY3v4menh68853vxK1bt/C2t71NaigQent7cfbsWQCA1+vFkSNHMD09jS9/+csA8NmXN/ssgJ96+d9vBvDXuq4XdF1/CGAcwIW1jnFTLG3eHZLNZht6uElYaXBwsG4loYh2WtpLS0tYXFzEvn37MDQ01JZ9NAJK5/P7/Th37tyaWiwbJe3l5WXcvXu35nOr1coyNXgiCQQCSCaTAFbdJLTd0tIS/u7v/o6RKjVe9vv9LLjLW7xAbVCyXC6zYpienh5WdEFQxTOoC7mM7CnbgU/n7OnpQT6fZ0G1QqEAh8MBq9WKTCaDD3zgA/jSl77EJu12ZOi4XC50d3ejUCjg8OHDrAHE1NQUdF03pBauh8ja6SvfTj7tZsBnvtC/3/CGN+BHfuRH8Fu/9VsNj/Po0SNcvXoVTz31FObn56Hr+uzLY85qmkYKbf0Afsj9bOrlz+piU90jjeZeUwbEiRMnmg4CtCPlj/LBE4kEent7tzQFqFl1vo0W7VSrVVy7dq3mc8p1JrImv6/D4WCETSiVSiiVSvjf//t/M1I2mUys2rFYLMJisdQEJH0+n9KSB54o/nV1dSGRSMDhcNTVJKeqShKNEo+xu7sbCwsLrLAHWA0k0iSTz+fhcDhQLpeRz+fxq7/6q/jUpz7FxmhnRaTJZILf74ff78eePXtQLpcRj8dZQ16r1cpcLa2sEFwPtrtPuxmsZwWVTqfxtre9DZ/85CfXqoSWDbzm7L8pZ9+oO6RUKuH69etMZ3o9UdtWW9qFQgGXL18GAJw/fx42m62t7hcVdF3H5OQkbt26hTNnzjQsp7pR98i9e/dq9D+sVmuNbzuVSjFSlE1qN2/exI0bN9i98Xg8TBcdgFR2QPbMkNXLI5PJwOl01lXn6+rqQrFYRDabVYqILS8vo7u723B/i8ViTUoYsDp5joyM4C//8i8BtFcwSkZSFosF0WgUBw8exPDwMA4fPgyLxYJHjx7h4sWLuHnzJmZnZ9uaSVXvmNvp0263e0T270ZRKpXwtre9De94xzvw1re+FQDQ3d0NTdN6AdD/yccyBWCQ+/kAgJm19rElNawqfedLly6hu7sbx48fX/cSqJWkHYvFcPnyZezZswcHDhxgFs9mk3alUsGNGzeQSCRw4cKFpnRVNnK8uVwO9+7da3g/mqYhlUqhUCggHA6zl2thYQHf+MY3kM1mmcUoWsSylD7RYgeASCRS47MGnsRMqKt4PSwvL0tjALLf6rpuyB6gjBRg1er78z//84av0XrQaM6zw+FAX18fjh8/jgsXLmDXrl0oFou4desWLl26hHv37mFpaamtQXr+mHdiJ3YRhUKhKZleXdfxnve8B0eOHMGHPvQh9vlP/uRPAsC7Xv7zXQC+/PK/nwPwM5qm2TVN2wPgAICLa+1n0yxtApUME3Rdx8OHD3H79m2cPn16w1KqrSBtXdfx4MEDjI+P49y5c4aIcbsrLkVks1lcvHgRwWBwXZPZRizt+/fvw+fzwe12w+12s/5/skBYMBhkk4Ou60gkEnA6nXA4HPjyl7+MXC4Hi8UCj8cDs9lsIF6Z5e5yuaT7UQUgQ6EQE9rfvXu34Znzer01k0K1WjUEH91uNyvGEQk9Ho8bXl46BorPfPjDH25bQcl6rFaqENy9ezfOnDmDs2fPIhQKIZFI4OrVq3jppZfw6NEjlpXSarS7SUE7qy35a91s15oXXngBn/vc5/Cd73wHp0+fxunTp/H1r38dH/7whwHgGU3T7gF4BsDHXt7fTQBfBHALwDcA/Nu1MkeALcjTpheWfJk3btyA2+1uWRfyjVrCdEwejwfnz5+vOaZ2Z6fwWCudrxGsl7RTqVRNhkS1WjUQL1U/ut3uGn80sOoD/trXvsaEnKgCUSRoWVGJ7KWXSbUS+HNcXl5Gb28vZmdnWcMDUUisWCzC7XajUCiwnFyaSGiC4SeWcrnMXmrqgFOpVJBKpaDrOj71qU+x5XAr0QpXg9lsRjgcRjgcBvBEMa9YLOLixYtwuVzMH77eBhDiMe9ES3ujrcbe8IY3KN81XdffqPj8owA+2sxxbhppE3mQpU3KfAcPHmxoSdvMftaLRCKBmzdv1g3ytbJYRQa66ffu3UMymdxwHvh6J7HR0dGaz0QJVIfDAZfLhUqlIi10mZmZwcjICJvo6GUWiVf0u1Kam4hIJCJNuXI4HDWknEwm0dvbi6WlJSXRZzIZhEIhaJpmuKc0EfFj5vN5Q4CyWCzCarWyzKjvfve7OHfuHI4ePSrd13rRDv+wzWZDV1cXpqamcO7cOWSzWcRiMYyNjbGVRjMNIES0s4ydDId2YCeUsANbYGmbTCY8fPgQ2WyWKfNtNXRdx+PHjzE3N4ezZ8/WtTbE1lethMlkQqFQwOjoaEPpfI2gWUtb13XcuXOnxnK2Wq01xEhFUuRLXlpaMggv/d3f/R07L/rcbDYbjsfpdNb4rnnlPh6qyTISiWB+fr7m82Qyif7+/rq5tSTXKoKCm/xklMvlDAqH5JsvFAqwWCz49Kc/jTe96U0tJax2BjgpQYDcX4ODgzUdZIDmG0C0m1hlwl2tGltU+NtuYlHAJpN2Pp/H8vIywuGwQZlvK1EqlTA6OgqHw9GQi6adgchKpYLLly/j0KFDLVt9NEPalUoFN2/elKbZeTyemhxqslBJVY3U/ZaXl/Htb38byWQSgUDAQJoyXRG32w2bzYZCocDK4p1OJ0sJzOfziMVi0sAkIA9iEsrlMqLRKCuzl52XSq9GXIaXSiUmul8sFlGpVJgvv1wuIxaL4c/+7M/wC7/wC8rjaRbtFHWSPetiBxlqAEGuOlkDCBHtJNZXeyd2YBNJe2FhAWNjYwiFQpQCs1m7VmJlZQU3b97E3r17G24p1A7SpnS+XC5Xt7pxPWj0eHO5HK5fv45wOFzj6pBZ2cCqBSZ+TjrU169fZ/rWBPKDm0wmdHV1MQnUXC5nIHPS/OAt676+PgCrQUHe3eFyuZTuD4/Hw8bt6uqqsbjJb10qleD3+2vOJZ/PswbAdL4kNEXPL7l9zGYzHA4HvvGNb+BHfuRHcPjwYekxNYvNTiUUYbVa12wAQSTOFxrtpDJ21djbUUsb2ETSzufzGB4extTU1KZkX9R7cIgkp6encerUqaZm01bngZN1q2kaAoFAyy2URixtii8cPXoU8/PzCIfD7OEl4hStbJPJJC1k0XUdf/u3fwuXy4VyuWywjs1mM7q6ulhcwGw210wQNptNOq7JZEIymYTVasWBAwcwMzPDXirx2Ai8myWfz9e4O3p6ehhRU0WmmE5ILoSenh4WjOTL72lcPnPmk5/8JD71qU+15F5uN/lUWQOIWCyG0dFRtvLI5/NtI7tXe1NfYBPztHfv3g2bzVaT8tcO1CPWcrmM69evI5VK4cKFC00vf1ppafPpfCdOnGhLZko90tZ1HY8ePWKpjU6nEwsLC8jlckin00in00w+NxKJoKuri/l/VSl5P/zhD1EoFNh3tG+n0wm73W7QT5cFuVREx1viS0tLcLlc6Ovrk+Zs03nzBF0ulw3l3mImSrFYlCo1ZrNZDA4OGvZDolYEOsdSqQSn04mlpSX84R/+ofS4msV2I20e1ABiaGgIZ8+exZkzZ1hPzvv37+Pq1at4/Pgxy7BpBTYznTCdTr+6SZseEDFHtx1QkV8qlcLFixfR1dWFY8eOrevmt4q0FxYWcPXqVRw9ehSDg4MtHZuHSnukUqlgZGQEmUwGw8PDcDgcmJ6ertnW4/GgXC4jm80inU7DZDLB5/PBbDbXvPTkbiKCJV9zOBw2qOYRZOcqO1an01mTn01Wr9/vlwa9QqFQzXO2srLC3GCRSKRmYk8mkzWTeCAQqLHudF03TC75fJ49S9R6bWRkBM8//3zNcTWLrXaPNAPSrfb7/Th69CiOHj0Km82GiYkJXLx4EaOjo5iZmdlQIL/dljb/LG1XS3tL8rTblX3B70N8IaempjA5OYmTJ09u6EZs1D1C6nyydL5WNyygMUVyJP1tEuMCVklwdna25veye2U2m1EsFuH1eplmSLVaxXe+8x1G1JRV0tfXh1wuJ33RxAAiVVSKsNls0uPw+/2Ix+OIRqNIJpOG8Xw+n9TNkkgkEA6HpfdQ13U4HA42jtVqhc1mY63HxBRA3p1C15j+XywW8bnPfQ7nzp3bkIh+u7NH2gGy4jfaAEKGzbS0c7nctgxEbnoZu8xv2GrwxFoulzEyMoJYLIbh4eENz5wbsYaLxSKuXLkCTdOksq7tsLTFiWBpaQlXr17FkSNHGGEDwNzcXA2RyVTxqLiEzockTBcWFhCPx9n21WoVkUiEuSjEe+5yuWrOldT+RKgsK9q2UCjA7XazYBnJwqrgcDiUE28qlWKNHCKRCDtG3pqmffPPUj6fZ+4eOudMJoPf//3fVx5HI9js7JF2jU0NIHbt2oXTp0+zSuNkMolr167hypUrePjwIVZWVuq+A5tZIr8du9YAm1xcA7S/SQHwpNQ8nU4b5F1bNfZ6iJUKd+oVE7XLPUIZDo8ePcLi4iLOnz9vWN7ruo6ZmVqdGtl94rMpCPl8Ht/+9reZZUuuEyJqWdBSRkSyVQZ1t5GdF29ZU5VtNBplQUsVbDYbXC4X5ubmpN/r+mojWN5nXy6XEQwGWXUnsOoK4Z9n0doul8uYnJzEt7/9bbzxjdKCuDXRrurCdlctrjV2Iw0g+CpNel7aWcZeLpcNNRod9wjtcJMCkfPz81haWlqXvOtaYzdDrJSpMjMzw5rtqtAuS7tareL69euw2WzS0vx4PF6TxaHqyyhbJX3ve99DoVBg5d/U7otgs9lqCFnm7lC5QGRWs8z9Qf393G63krQpH7xQKCAUCknHzufz6O/vrxmD0hXpHlUqFYTDYUbk2WwWPp+PXQu3241sNosvfvGLeO1rX9uU0BehXYUq7a5abJZY+RZgpCETi8UwPj7OUi9DodCmWtqd4pqX0e5AZKVSQSwWg8ViwYULF1r+wDcjGEXpfCaTCcPDw2v64tpB2pQJsnv3bvT3y/XVSfXOYrGw86MXh4fH46kh8mQyyV4sKsyQlaXzsNvtNYRIzQVEqK6Z0+mU+qzppZblXQMwHJ+madKVH/m8xftRLpdrSunFylGLxYJCoQBd1w0W93//7/9d2RS4Hl4p7pFmQA0gXC4XBgYGUK1WWWphLpfDlStXNtwAQgZZGfur2j3CdthGSzuTyWBkZITJVLbDQmn0BaJjacY104ouMzyo8TDl1spQKBQY8ZA7gI7D6/UyKzmVSknP/fnnn2dNAbq6upDL5WrIXiRPWVqf2+2W6peomhqomvoGAgHk83m4XC4Ui8Wa7fjrS+X3vJvEZDLBZDKhXC6zQCePTCZjiBNQqmAmk0EgEIDVamUZJ6RPkkwmMTY2hhs3buDEiRPS41ZhpwYiWzkh8A0glpaWcPr06bY0gNgpedpb4tNuh6U9NzeHBw8e4NixY4jH422RnGwU61Xn22iXGQLJ3S4vL2N4eJg1cZCB99ESqCiFyrPpM/JDUrbI7Ows84UTWYqCWio3SygUgsPhYC835fAXi0Ukk0nmX5T9ltwOMtjtdhQKBRSLRUQiEczOzrJz8Hq9NYHVbDZraOw7MDBgCJ6KgXMSjuInIq/Xa/C7Uhdvi8XCCKVQKOCzn/0s/uAP/qApUnk1WtprgWIXFBsimYNHjx4xoiUSb6bASVbG/qombUKrXQDVahV3795lFZdk2Wym5jWB0vnW26W9FdemXC7jxo0bcDgcOHfuXN2XR9d1qSaHTLPaZrOxYhSbzQaz2Yzvf//7rISbXA7iZEnn43A4DHoWlUoF1WrVUElIaWLRaBRWqxVmsxkzMzM1x+P1epXZIbxrJpvNYmBgAI8ePQKwmg0i60HpdrsRj8dhNpsNE06xWERvb69UohZYnWS7urpQLpdZl3fgie8beJL7a7fbkU6n8ed//uf46Z/+6YYtwp1oaQPt6z8pA62s+/r6oOs60uk0YrEYbt26xYqqyJ1Sz0UpkjZVu243bDppt/JmZrNZjIyMoKenB4cPHzZY8yqx/HahWCzi+vXrCAaDOHv27LrOc6OkTS6Z3bt3M62OekgkEjVVjTJfsaZpNZ+Njo5iaWkJTqfTkE0iBhOpBLxSqTAhIXEbu91eM36pVILL5UIkEoHdbsfCwgKzulVuL7/fX+NPT6VSOHToEMbGxpTCUisrK+x6idcjHo/XWNvZbBZdXV1wOp3SqlBKB8xms6hUKky322w24/bt20y2gNftUEmg7kRLu11oZPVM15WaQFQqFSQSCcTjcTx69Agmk4ldc6/Xa7i2shzw7XiNNt090iqQC+LYsWMsr5aw2d1lGknnawQbIW3yX584cWKtZqKG38iOQYTb7TaUfJfLZfzwhz+Ew+EwHK/JZGKE7HQ6maAUn6kgs3RkpA2s+q2paYLf70c0GsX09LS04QKgtsBjsRiGhoaUGiV0Tna7vYaEqeHv9PS04XMiYkKhUGBiUsDq5EWES66SSqWCcrmMl156Ce9///uRTCYN3dWJTHw+n6Ej+E60tNuB9Uw0qgYQU1NTSKVShgYQ/Phb6V5dC9tvGlkD5A6ZnJzE8PBwDWEDm5MLTprKExMTuHPnDs6cObNhOdX1kLau67h//z4ePXqE4eHhhgm7WCzWBAjF3GeCSGQvvPACk2IVVfyA1V6LPp9P+uDL4hmyF1HUNtF1HYVCAXv37lX6GVUvWrVarWvNAqtLbFX8gZoWE6hJsJjCx/9dKBSYe6xSqbDvKpUK7t27hytXrrDO6ufOncOpU6fg8XgwNzeHy5cv48aNG5ienkapVOpY2i+jFcdss9nQ09ODo0eP4sKFC9i7dy+q1SpbiY2NjeHatWss1tPotX/3u9+Nrq4uHD9+nH32n/7Tf0J/fz9Onz4NTdOuaZr2/9B3mqZ9RNO0cU3T7mqa9s+bOYctu2vrmcny+TwuXboEq9WKs2fPKn3G7SZtKhy5ceMGK0dfTw6uiGazR8rlMq5du4ZSqSStsKyHlZUVeDwew29cLlfN/p1Op4GYE4kE7t+/j0AggHK5XBOk6+vrY9kVshdMlvUhK11XTT52ux02m43ptRBsNpvSAtc0Del0uq7LiNxCssAVNSoGVi1sInBx1UAqhAT+WtJkSBPRl770JcN5kwTq4cOHMTw8zMgkHo/jzp07GBsbw9LSUsuC+DvR0m51CTs1gBgcHMSpU6fgdDrR1dWFixcv4s1vfjOmp6fxG7/xG/je9763prv153/+5/GNb3yj5vP/8B/+A65duwZd10/ruv71l/d7FMDPADgG4E0A/j9N0xo+sU0XjALWR6pLS0u4cuUKDhw4gL1799Z94NpN2rqu49KlSwiFQhvqHC+imeyRdDqNixcvMn9+sxZIPB5nLwE17bXZbAgEAobgi3huL7zwAsrlMgqFgoFA3G43fD4f+0zWMszr9dacn0wMCpBXY/Kfl0ol7N+/n/m3I5GIcsLz+/0sK0XWOJokW0laVAYqYw8EAmw/6XS6prKU74JDxUbA6sqGviMFws9+9rPSffFkEg6HcfjwYUQiESQSCVy7do015t2Iet6r1dKuB03TEAwG8d73vhff+ta3sGfPHpw5cwZf+MIX8FM/9VN1f/v000+z6s4G8GYAf63rekHX9YcAxgFcaPTHW3LXmtEfoYyMhw8f4vz58w1dmHY236WA2MGDB1tWGk9o1D2ysLCA69ev4/jx4+vqXp/JZAxESWXu1DoLAPP1Wa1W1t3l0aNHWF5eZpY0jUFdTHh3hs1mq3GrNCPFKrO+xXL4dDqNwcFB2O32uq4PfhVUqVRq2osFAgFmBKRSKWlBRaFQwMDAQM1kIh6/6JvnJ0D6Lfm4Hz58iP/7f/+v8rgBsOycUCiE/fv34/z58zh27BjsdjtTz7t58ybm5uaaCr6301feLrRTLEo87nQ6Db/fj7e+9a344z/+Y3z9619f17h/9Ed/hJMnT0LTtD/XNI0sgn4AfErS1MufNYRNJe1m9UcKhQIuX74MTdNq9DLqoR2Wtq7rGBsbw+TkJGs51WqsRdq6rmN8fBwTExNN+a9FyAJyYkYGvdS5XI7lK1+6dAmlUol9RxWC1Wq15nrLXi5Zmboq8Clr/xUMBmv2k8vl0N3dXbfZMk9mFFgk8AJYdN6y6+pwOKQTQyaTMZxDuVw2+Nwp+wRYJQK+uUS1WsU3v/nNuu3SZORK6nnHjh3DhQsXsGvXLuTzeYyOjuLy5csYHx9HPB7fEuGlnZr/3Y4S9g984AO4f/8+rl27BgCzAD7x8ley2bLh2W7LLO21SHV5eRmXL1/Gnj17sH///qasglaTdrFYxOXLl2EymXD27Nm2VXXWI+1SqYSrV6+iUqk07b8GnlgS1M9RhIxQeSJ86aWXUC6X2XmTdjKtmEQLUzwPleyqrFWY6mVRTdp2ux0ej0eaUytTKqSGv8Bq0FRc9cXj8RriDofDKBaLNZ9Xq9WawKg4CfDHTcRP0q6FQgGf//znpedFv6/37FOKGzUiOH36NOvLefnyZVy/fh2Tk5PIZrMGa3InphJupixrK0i7u7sbZrOZxv2feOICmQLAB2UGANQqtimw6XnaQP2qSF3X8eDBAywvL6+7W3srU/5k6Xztcr+oApHpdBojIyPYs2fPutwh5M7QNE0qfSnLzebzqUulEm7fvs3+1nUdNpuNBRUtFkvNmOLE4PF4atLxnE6nlLRVS2zVPaVUv3A4jMXFRYOVrhKFonNwu91SjZJQKMTOQfTVixBXBdlsFk6nk12vQqEAv98Ps9kMm80Gk8nEmhjruo7p6WmMjIzg5MmTNWM3S4I0mUYiEQCoEV7y+XwIh8Mol8sdS5tDOxogzM7O8u/rWwCMvvzv5wD8laZp/y+APgAHAFxsdNxNJW0iD5UlXCwWMTIyAp/PJ1WjaxStsLTrqfO1qyO7bNz5+Xncv39/Q2qFNK7JZJJmWMiIiL/2VPlIlncgEKgrfepyuWqW/DILScz/JsgyTKjZQj1Q04XJyUlGsiq3SS6Xw549e7C8vCz9fmFhgRF+OBxmk5pMHbBYLMLj8RjOhaogKXBJAVeSeM1ms2xJns1m8dWvfhVHjx5VuqnWC76nI62ylpeXsbi4iJWVFUSjUYTD4ZpCk/ViJ5O22GqsGUv7Z3/2Z/H8889jaWkJAwMD+O3f/m08//zzuHbtGl3XfwbgfQCg6/pNTdO+COAWgDKAf6vresOEtSWWtsy9EI/HcevWrQ0XqAAbL+RZS52vXaTNZ4+Q/5pSCusF2hoZl0hXJFO+IIbfnkgqm81iZmaG3S/ZxCG6H2STgIw8VfnZMh9vIBCQWsSi2yWTyWD37t148OABnE4nksmk8nkwm81SUSiC2+1GpVJhIlEEWUWmeC5WqxVut9vgliLkcjmmMOh0Olk3py996Ut49tlnDeO00o1hMpkQCASYVji5hqjQxO12IxQKIRwOr7sp8U51j4g+7Ww225Sl/YUvfKHms/e85z38nz/J/6Hr+kcBfLTZ4wS2gXuExPkXFhZw9uzZLa/1b0Sdr10phTQZlEoljIyMwOv1rrskngeRdjqdhsPhYNKhAAzttQg8wXz/+99nKn6kl8G7UmQNDmRaIQ6Hg/3eZDKxc6JWYeRi8Pv9Ukvb5XJJSTscDtdY66lUCnv37pUWEInXxeVyKUl7eXlZqqudSCTgdrsN141IL5vNore3F+Vy2VB8VCgUYLfbUS6XUSqV4Ha7USwWkc/nYbfbUa1WcevWLUxPTxsUGdvpe7bb7QiHw0zDmtqB3b59G6VSCYFAAKFQCIFAoGGy3KmWNmmxE7arWBSwBe4R4EnKX6lUwo0bN+ByuTA8PLzleaPz8/MYHx9fU52vne6RYrGIS5cuYe/evawJbSvGrVarLNPB6XQy7Wz6vlwus+U7bZ9IJFipu9lsZkEVPh4hvszUG7K/vx9Wq5VVDiYSCTZRVCoVWK1WVvodDoeZ4p/quqpiIC6XS+piSaVS6OrqUpK2w+FAOp2Gpmno7++vKVMHVicblcUp0xZ3uVwIBoOGlms8eGOF71ZP8QOLxYLnnnsOH/jAB9hvNquMndqBUUsw0uyIxWJ48OBBw/Kn7ba0mw3ANwpZ9kiHtDmYzWYkEglcvHgR+/fvN6RgbQWq1Sru3buHdDrdkDpfuwKRS0tLSCaTeM1rXtPSB0bTNBQKhZr2WaKqnc1mg8PhYNbwt771LUYyNpttzdQ+n8/Hmg+QQBQgz8/2eDyGAB65aPx+P/bt24dKpYKJiQlGAiprWLXioQkwEolI5WfJwgdWVway2oFgMIhkMlnjrwaeVD/y10/ULqFsE3Lf5PN5RnY0mZVKJaTTabb/TCaDH/7wh3jNa14DYOuyPETNDl7+lJoDyMSudqqlLdPSpmDudsOmk7au61heXsbCwgKeeuqplpR/19vXWg98oVDAyMhIU+p8rRak4ju0e73els/wlG8twmKxSAtg8vk85ufnMT8/b7AEAaPrg5bUVFFJXddFn7bsWsmI3GKxGKr8du/ejWq1ilwuJyVtmvxlIH1vp9PJNLZVKBQK6O/vx+PHjw3HR9dMZs1XKhWEQiHMz88DWJ0ESqVSjdY2j2q1CpfLVSNjW6lU4PV6kcvlUCwWcfHiRRw7dgxer3fbCEaJ8qe82BWwOsGFQqG29nBsd8qf6NPejq3GgE3O0y6Xy7h+/ToKhQK6urraStiNuDASiQQuX76MoaGhpnLBW+keKZVKrEP7qVOnWjKmCJPJJO3gIgsg0mf/+I//yISOiLDJ9UGgwBWf/icjaJn7Qubu6O3tNRA+rQ52794tLS+PRqPKyZMmvlwuh127dhm+owAlD7KoCV1dXexYVlZWpM8qBRQ9Hg97dsTzSqVShsAl/4zRJEf/1nWdSQR86UtfYqJk2y2fWtM0g9jVyZMnmdjV2NgYFhcXMT09rewutBXHvBZkDRC2Y6sxYJNJe2FhAd3d3di/f3/byswJ9YKFuq7j8ePH61bnaxVpp1IpXLp0CYODgzhw4EDb3C4Wi6XG+rVarTXXh6RWHzx4gIWFhRqi4v27Pp8PgUAAhULBQCpiAY3D4aiZHDRNk6YMqoLQdrsdLpcLBw8eNHxeb9Ln97m8vIxDhw6xv2XuuEqlYlgOi/dB9gLn83mEw2FD/INytAnUZIGQyWQM3xOhU6CSUmIXFxfx3e9+d9tY2vXAi13t3bsX4XCYKeddvHixZWJXm2lpd3zaL6O/vx/lcpmJw7cTKtIul8u4detWw812VWPLKgibwezsLB4+fMisFOBJlkeroSq/Fj+nZrTXrl2D2Wxm6niEYrEIk8nEqgNF14rb7a5xV8j8wV1dXZidna05JpULY2lpCZVKBclkEqdOncLY2Bgrr5fB6XRiZWXFQEqUb728vKy8xvF4HJFIpMZXDaxa2zI3i6y3Jb/yAGqrTXnLu1gsMgKliSKdTsPlcmFkZATHjh3bdpZ2PZBo1uDgIAYHB1lAm/zhpKMSCoUMK5RWHjNdx2bObye5R7Yke6TdHdlpHyJpr6fZrgwbsbRJwySTydR0i2/XyylOTNVqlTXsJVCV3rVr1xhB8dA0DaVSCaFQiGk8N1JAIwvqyiwYTdMMXc75bfn9zM/PY2BggKWnyRAKhWp84KTgl8/nlX5wXdeZ1Sz6pXVdR3d3NyYmJthnLpeL9bLkSTqdThuekXw+bziPZDLJVlV0TVOpFDKZDFwuF6uULJVKGB8fxz/9p/90Q3n6qnPdjMmA7xQDrE7MsVgMExMTLK0uHA4zN1s9yIg1kUggk8kgm82iVCqxoiXaN+XBU8ppJBKRkrHM0t6u7pFtU1zTaoiuBkrna6aziwrrJW2q+AwEAjhz5sym6BlTWhsPmcVos9mwtLSEBw8esBxifmJ1Op2s8wqN0chqQ+bXlF07VZaHx+OpGSOVSmFgYAA+n4/1f+ShakcWj8exb98+Q8BRRDqdVsqzxmIx2Gw25nrp6upCOp2uIe1qtVoTkOSJrFqtwu/3G7JXCGRs5HI5Jpz11a9+FW95y1uUx7wetJO0VdcfeCJ2RfGLdDqN5eVljI6OolqtsoCm3++vsZSr1Sqy2Szm5+extLSEWCyGSqXC8u3FyTgYDGJ2dpYZJ6TT4vF4EIlE0NfXx4yTjntkDWxGOzB6+Pl0vgsXLrTEYllPcU0ymcTo6Cj279+Prq6uDR9DoyiVSkwmVdM0OBwO5gah6wOsuo0uXrzImu7yRTNUXKEiIWCVBGT+bBkRyyxkv98v3VZFLC6XC0tLSzh48CDGxsYM38kCn/x45CaRIRKJKEmHFAInJyfR09PD9kNSq/wkJ7pXSOGPnhteAtdms7FOP5qmsRRNsrYXFhZw69YtHD16VHle68FWu134fo5DQ0Mol8uIx+OslSAV//h8PqTTaaysrCCVSqFcLiOXy8FqtcLhcLCmysFgkD3bVqu15nmiScJkMmF0dBTT09MYGBjA0NDQjunEDmwRaW+GhUnl2ePj4xtqtqsauxlLe2ZmBo8ePcKpU6c21U9WqVRQLBZZYQyBrCEiJ4vFgsePHxv8vfRdNBpFsVissXZlgTrRJSGrVqxXgSiDrHck8KSjeyKRwOHDh3Hnzh0Aq9aVKmuBJh6Xy6W8h5VKBalUCt3d3SydjweRL0/SFMScm5tj2+VyOYM/n7e+afKMRCKM3Plu7pFIBIVCgfm7M5kMXnzxRezevXvb+lkJG/GVWywWRKNRlhiQTCYxMTGB8fFxpvlOErmVSgWlUglOp7PGreb3+7G8vMwEwaiNHjWLJovc5/OxzCKRtIvF4rpL+duNLdHT3gwUi0WMjY01nc7XCBol7Wq1ijt37mB+fh4XLlzY9BdOldssQtM0/OAHP2BWCrBqPXZ3dzPS55fwYoASgFSNUfbQqwoWVNkkMqvZZDKxSk1d1xGLxVh2SL1Cra6uLkbKu3fvrvk+FAqxSUL1vGSzWezdu7fGNaQqvedRKBTg9XrR3d0Ni8ViuBf87+nfNpuNSc4Wi0X8n//zf5Tntl3QigBnuVzG9PQ0Hj9+jHQ6DZ/PB6fTiXK5jFQqhVQqhVKpBLvdXrNqo0pXYHVipyBosVhEKBSCxWKBpmk4cuQITp48yY51p3RiB3ZgY9+1QOl8y8vL2L1794bFp2RoxD1SLBZx5coVWK1WnD59uq6frx2YmZmRCi+Jk42u63jppZcM1Y4mkwlut5sRk3jsJKTEQxZEkvm8ZdvZ7Xapa0TlRurq6jL45HVdRzwex4EDB+pm3/CTyMrKSk1TaD7wpGpNZjKZpPcyk8nUdFWKx+MGIuC7fgOo8YPz/lW6TtQl3mazYXFxEdevX1ee33bARkhb13XMz89jZGQES0tLyOVyLNhIljbB6XTWPN+ULilLcggGg1haWkIikcDBgwdr0kf5oqB2dt9pBbaUtFt9ccrlMkZGRpBKpTA0NNS2nM61LO2VlRVcunQJQ0ND2Ldv36auMHRdx507d9jykIeoG0Kf3b17lxV2AKsvhFjyzkNGWrIqQLKGecgsUr6QhYdKS10WSCY3Qr3JkX/Jy+WygWRlBUiye9zT04NEIiENVorxknK5zMrAd+3axQiYH58/R/6a89okZB06HA6Mjo425V7abKyXtNPpNMbGxrCwsACr1YpYLMYsZo/Hw7onUWm9w+FAOBxm2uHBYBB+v19qKAQCAWaRRyIRQ84+D/G4t2vj4y1zj7RaKS+TyeDSpUsIh8M4fvy4tHikVahH2tPT07h16xZOnz69Lit/I7napVIJL730EiwWS00VICB3jbz44ousdRiw6ofmr5vMFSJmnng8HkPk3ul0YteuXQiFQhgcHER/fz+i0SicTqeUyFVFNarsFNW1D4VCyOVyUgudd30QlpaWsGfPHgBAX19fTRFQKpUyWNv8fZcFtOPxeM1EUyqVMDQ0xK6ZmM3D/7tQKBgaAdM+SBq2XC6jWq3i+eefb3m1YavQLGlXKhVMT09jamqKpe0tLy/DarUiEAggHA6znqa6rjOrOxaLIZFIsP8KhQJ7XpxOJwKBAFwul6GQy2q1NpS1Va1Wty1hA1tgaTfbJ7IRzM/P49q1azh27BjLv25nc1/ZsVerVdy+fRuLi4sYHh5et/96vemE6XQaly5dwsDAAPbt21dDeJQTzCOXy2F2dpYJFQUCARSLRQMpO51Ow/GI1YxWqxUDAwM4evQo9uzZg76+Pni9XoTDYZRKJVaKrmkaBgcHEY1GceTIERw/fhy7d++W6p/QfmQED0CZ+UFd1x0OR02OregK4a+BzWZTBp34l7enp4cRezwer7nHlLLGw+v11vSQ5FcKJJdL4CdWXoubVk20IvjOd77T9lqH9aAZ0k4mk3jw4AHi8Tji8ThKpRLMZrNBxzyRSBjO0263S/PsKSUVABPhKhaL6OrqYqJWwWAQN27cwO3btzE/P69skLGdC2uALXSPtCJXu1qt4u7du5iamsKFCxcML0O7NK+BWmKlBsR2ux2nTp3akP+ar4xrFIuLixgZGcGJEyfQ3d2NQqEgHUP8jFL8KPWKcl7rwe12o1qtIhKJ4MiRI0wwf2lpCZlMpi6ReDweFItFxGIxLC4uIp/Po6enB36/H4ODg4Zto9GotEIyFAopU/po3+l0Gt3d3TXqczJks1ns2bNHKfKUSCTYsYlkJCu+4F0wvb29bBLhIR4LP2GQngn9m0iczjmfz8NkMiGVSuF73/ue9JjXQjt9to2QNlnX8/PzyGazKBaLbHJLJBJsRUQBWB6y1nbiSo//PBaLsQ49r3nNazA8PIy+vj5ks1mMjIzgypUrePDgAVvFAM11rXn3u9+Nrq4uHD9+nH0Wi8XwzDPP4MCBA3jmmWcM7ixN0z6iadq4pml3NU375w3tRMCWkfZGqyILhQKuXLkCi8WCs2fP1ixX25kLzhPbysoKLl++jL1792Lv3r0bXlY1Y2nruo6HDx/i0aNHOH/+PCORSqXC1O3MZjMTHuKxuLgoLekWj593KVitVkSjUfT390PTNFZeLkvLU2V9iHA4HJidnUWhUMD+/ftx8OBBmEwmpZ65GOzjx+aDmbFYDAcOHGD7UFnnwBMtaRWq1Sp70XmQPCuPbDaLaDSKQCDA7mMqlarRZ+GJmr9WlUrFcCxkAPDByWKxyNId//Ef/1F53CpsJWlns1lMTU0hmUwy7fZiscj03glOp7PGd089TkWozoeuOWWL0L9FsSuqbL18+TJ+8zd/E3/6p3/asG73z//8z+Mb3/iG4bOPfexjeOMb34h79+7hjW98Iz72sY/Rvo8C+BkAxwC8CcD/p2la04G3HWlpx+Nx1qldFehrp6VNmJqawq1bt3DmzJmWae82StqVSgU3btxALpczdGcnpT4q1LBarbDb7bDb7XA6nXC5XHA6naw7CXVNAWr91xaLhQX3BgYGEAwGWeEHwWw216RdWSwWaQGNLJuFJ+dkMolEIoGhoSEliaoIQcwoAYC5uTkcOXIEfX19da+p1WqtWyUbj8elkwgV24iwWCwGS61UKtX8nk8HpB6TBN61JVMCJDdCPp/H3Nwcbt26pTx2GXRd33TNa5JknpubQzqdRrVaxcrKChPQIoK2Wq3weDyw2WyIRCKsxN3v97OGGZFIBNFolP1fFXykZ3loaEhpOVutVlbaPjw8jLe//e3MCj979iw++MEP4vnnn1ee79NPP11jSHz5y1/Gu971LgDAu971Lvz93/89ffVmAH+t63pB1/WHAMbxpEN7w9j04hq+uW+zlrau65iYmMDs7OyarcnaSdqk8by0tITh4eGWpvOpOrLzyOfzuHbtGvr7+2vcCuJyko6XxqWUyMXFRdaJhvZnt9sNVY12u52REr0YoqUTDAYNRSXA6gsjfmYymaRELguOkp/30KFDmJmZMRyTWHVJ8Pl80qyKxcVFDAwMSAtlgNWXlpo29Pb2SoWsZCXVBNlERA0e+OdbNCzqBRKpyUA+n0elUmEVgaVSiRUP5fN5pn0+NjaGUqmEQ4cOKTNueLSrhB2Qk3apVMLi4iKy2SzbN8VF6Bmkjj/UkEJ0d5CfmzcqdF2Hy+WC2WyG1+uF1WpFNptl1wpYnUD37dtX95gpR1vTNJw8eZJpun/yk5/E97//faXGjQrz8/MsgN3b28sX//QD+CG36dTLnzWFLamIBJon1XK5jJs3b8JiseDChQtrWgrtIu1CoYDr16/DZDLh1KlTLX/417K0E4kEbt68iaNHj0rTzmSkzYNavFWrVXg8HgMJ8/ul1lP89zKClp2/jDhCoZA0sKjK5Y7H46yL+cDAAO7evQur1ap0c6gMAMrvFXs6Erq7u2vK88XrHwqFkEgkEI1Ga86B/Oc0KfT19SGdTqOrq8twrVZWVgy6Jfl8Hj6fj5FXMpk0dL7hDQGysPlVTqVSgd1uZ1IEjx8/Zv5u0u8IBALS92Qzu8tks1kmy5rNZmGz2ZDNZuH3+9n7yQe2TSZTjWtN13VpfIO/frzrinp0FgoF7N27d03pCpXCn91uxxvf+MYmzn5NyMiiaV/VlrpHGrW0KZ0vEong2LFjDT1w7cgeoaYJe/fuhd1ub4u1Uo+0p6amcPv2bZw9e1ZK2LygEw/+OK9du8aa0AJGf2AymYTJZEJXVxcsFksNocrIWBaBlx2DalUks47D4TA7Ll3XsbS0hP3792NoaEi6CiH/ugw0WQwODkrvF++7TCaTGBoaMnxvtVqZda96+el55MeSFX6Iy2gxU4R3mSSTSVgsFvh8Pni9XvT29qKrqwsejwfd3d0IBoOw2WzMTVKtVrG8vIx9+/YhEAhgaWkJly9fxsjICKampgyWfTvdI8CT1XQikWABapqU+IpbOk8eVPnIw+v1SklbZZTl83mkUil4vV5p5atsnFYq/HV3d7MV2+zsLJ+COgWAXxoPAJhpdvxtn/I3NzeH69ev49ixY4Yu1Wuh1fKvRJi8/7odAR1Z9gilEy4tLeHChQtKApRZ2Xzn84WFBczMzLA0Pn57Et6hVD3q2s5DRtCy8nMVgYqgFEMRsvS7eDyOQCAgfQll/mx+H8Dqy3P48GHDd7JluChL29/fz57TeDwunSyXl5fh8XjQ39/PrlEmk6nZVgxkplIpA3nSJOnxeBCNRtHb28t6dhIRktSAyWSC2WyG3+9HMBhkVvqVK1dQqVRw8OBBXLhwAfv37wcA1pDg3r17TS/3mwW5Q5LJJNLpNBN2IglVYPU5l+mMi8+TrMMSAOXKyefzsQmqt7e3IdeljLQ3kvL3kz/5k/jsZz8LAPjsZz+LN7/5zfTVcwB+RtM0u6ZpewAcAHCx2fG3bSCS0vmmp6cxPDzctJxqq7rLVKtV3Lx5E8vLy7hw4QKzhtrVsEA8biqYsdlsOHXqlLLKU/Vw01jVahXXr19nRRpms9lAIg6HAzabjU10MqtSfNn55T7B6XRKXR4yi1plzaiei2KxiEwmU0O+9Z4NUZ6XDxzyJEvI5/OGOIF4LLKXWdd1RCKRmmW9eA1TqZThWMvlsiGArWkaC5rxFap0XHTvqXM78KTQSdd1eL1eaJqGmzdvMslal8uFgYEBnDp1CufOnWNa44lEAtevX8fk5KRSlGs9sFgszLomeV8qmuHvhdjRSNM02O12NhmRoUG9M0XU6wZPx9GoZv5GFP5+9md/Fq997Wtx9+5dDAwM4NOf/jQ+/OEP41vf+hYOHDiAb33rW/jwhz8MANB1/SaALwK4BeAbAP6trutN+3C31KetsoSp2W4oFFq3Ol8jAb21kM/ncf36dXR3d2P37t01FZ3t8A3yx51OpzEyMtKQnCufZ0rQNI2RzsjISE1HduBJ123RahHJyuv11ljQsirDQCBQEyy0Wq0NpwACUDYpSCQS0DQNy8vLOHLkCMbGxljDABlMJpPBB05BPVrlqQpqFhcX4fF4pA19Y7GYwZdKsNlsLHDIbyt2wRH7U9J3/f390HXd0FC4UCjA5XIxcpMZOuTr1nUd+XyetYybnp5GPp83THB0r+m89+zZg1gshvHxceTzeQQCAYRCIQSDwaYlIEia12KxoFAosAwRYHXlRG3YqCSfiozIpUduHn6/mqbBZrMxvZZSqcTcqrKANG999/X1NZwgIPNp9/T0NPTbL3zhC9LPv/3tb0s/13X9owA+2tDgCmyZe0RlaTeSzrcZiMfjuHLlCvOlisfRrjxwsrQXFhZYwUwj+tukIcwTIR1zIpFgQTEiuFwuB5fLBb/fj3K5XGMxi2QlszBlL4Xss1AoJCVWWVBRtewNBoMGF8jS0hL27dsnVXojdHV11UxS8Xgc/f39rJBDhnK5jJ6eHqXGiZje2dvbi3Q6XfO5rEKSJh5CJpPBnj17WMBULHPn/eT5fJ59l81m2bXmPydDqFAoYHl5GTdv3pS626irS39/P06ePInz588jEokgkUjgpZdewrVr1zAxMYFMJrOm8VOpVLC4uIhYLIZqtcpiI263Gx6Px6AhTgVY2WwW+XwepVKJTVbifkixL5fLsYKxYrHIGkpHo1HDao2uB1XfNoqd1AAB2EbZI5SKNjc3t2Y6X7sxMTGBmZmZusfRyo7sPDRNw8zMDIrFIs6fP99Qkr+u60ylTLReLRYLrl27BovFwoiYlwWldlk8XC5XDRHKJigZucp8y7IApkygCUBNFxiC1+utmUhI2W96erpme0DesxJY9VsfPXq0bgeb5eVlZQebxcVFdpy8trbM5y9ej2KxiHA4jKWlJbhcLoRCIYNLiVYDZEmS35vuMd+2jA/mkxxAuVxmjS5KpRJisRiuXLmC3bt3s8lflvIntgXL5/OIxWJ48OABcrkcfD4fwuEwgsGgYWJOpVJYWlpCPp9ngUaHw4FSqcRkDES3iLg6459N8ZhEmM1mZDIZw5iBQMCwmuvu7m5KC7tD2g2Cd480m87XLlSrVdy6dQvVanXNpr/tsLQrlQrm5+dht9tx7ty5hq+DKmOE/PG8TjZQ23hW/L1sohJdI6q8a5nvWnadQqGQNGCpmiRV98JmsyEajTI/Ko966Y/kw1dt09vby1IPRZTLZfT29uLBgwfYtWsXI4tUKoVQKGS4LuTH5l0iuq7D4/GwVY5IYrzFKRI1PwmkUik4HA6m00GVfYVCgX1O7or79+9jcXERQ0NDDbn1HA4H+vr6WGFSMpnE8vIyHj9+zAKg5OYwmUyw2+2sQQRNXtVq1fDc0cQjglxLPFQuNbfbXeOaIqkAk8mEaDTalJUNrF5jPv6w0UBku7Hl7pH1pPM1g0b92vl8HpcuXYLX68WJEyfW9Om1OqUwl8vh0qVLcLvd6O3tbVopTYZsNovJyUkmoAOsWiW8RUg6FjxEEpd1nw8GgzX75SP3PGQZJqqXQpUFosrPpq4kYsNW6nmpQiqVYgp/MlCjYZVSYywWk2pjyCYdsRlCqVQyqCnm83nDsadSKcMKSwxI0spF13XDdnyaJP27UCiwVW0qlcKdO3cwOzvb1LNrMpkQCASwb98+HDt2jHXWId2QXC5XQ7BOp1PauV78zGw2S/3TqiIhWZBb0zQ28ZlMpqbT9TqWdoOg7IXr16/j+PHjG262KwMtK9fyi8fjcdy6dQtHjhxRalvIxm4VadP+jx49ilQq1dS4ojXDf/7SSy+xkmdd1xEOh1Eulw0kQKlYBE3TaixoWcCRtE3sdjuzUqhgIpfLMTJzOBxKMSYZZO4MmSVG4Ps0RqNR6LrO9D9URE8BxnQ6jb6+PszMGFNlfT4fYrEY07CWoVAoYM+ePTXFNqRjzpN5IpFgxOl0OuH3++FyuQwEJmaa8BMCWdH0t6hjYrPZWJWu2+1GqVRiEwFZ8vRvel5MJhPGx8cNx6MyFHK5HOLxOPL5PMrlMpssKBWRskQoQ4SKfvh3mt5Dr9fLjoH6l4pErmma1PUma0gNwNDWrV7nIhV2Uid2YItIu1qtYnx8HIVCAf/kn/yTljTblYFeFNXDqOs6JicnMTMzg3PnzjVUAkxolXtkamoKU1NTbP+iv24tqFwjDx48QDKZhK7ryOVyLCd6rYi63++vqXq02+0YHBxkBUWlUsnQ2YZA5dZutxtmsxl2u50t7dPpNBYWFtjxyl5Kt9sttdTJByxCLLun6sTZ2dm699LlcrFjp040/HXs6upiZLy0tCQtbye1OTH1s1KpoLu7G1NTU+wzkghdWlpCd3c3C8DxIFEpGku8tvxEkE6nYbfbGQnzfmLex00VpRTr8Hg87Nmixs25XI5NqnwvUT5VlGQnxMYYdrsd+XyeHTMvi0Al6QRZpxkyfCijh9+vKkgsA72HVqu1YaNL/H3H0q4DasNFAZh2ETbwhFhl+6hUKkxoZy3/tQwbdY9Q/8hSqWTYv6y7jApiLi99ls/n8ejRI3buNCZ1d+EhLk3JggoEAswFQsEflf4wgbeCSP3P7/czEf/e3l5m8cm0QMLhsIHsCCo/dzQarWnqmkqlpDnTPMQq0H379uHu3bvsM3HikD0bg4ODWFlZQVdXV825yCakSqWCXbt2MXIla46uP3XSIR96Pp83BF/5MYmM6bdE4i6XixWy0L1yOBzsGeFbdpExU6lUmO9bLLgymUywWq2GVnQEkbB5yFra0TPAQ5ZSCYA15KVnMZ/PswwSEQ6Hg92vrq6udblXZSl/25m0N92nbTKZsHfv3k1J51NVXZL/2O/34/jx4+tqS7YR9whNXA6HAydPnjTsv5lxZedmMplw+/ZtpNNplhNL2/HaFkBtgUMoFEK5XGZa1Ol0GoVCoca9QUEnETLfNX8u1WqVyZL6fD4cPHgQ4XDYUCUrg2oSU2XW6LqudLdRYI7H/Pw88113dXXVnNvy8rKhUIP38cue4XQ6XeML93g8NQQnZjiI3/PnVyqVapon0OQajUZZs2CayHmLnZd3JVcZjUkkR24zqqAlwiTXB5G8w+Goq5gng9vtrrlOlN4ogp7JarXKyJomKb/fD5/Pp0yJbCQ1VgZxNb6dO7EDW0DaJK+4GZCRdiwWw0svvYRDhw5h165d65441itIlUqlcPnyZezevVuqv91sEwSr1QqLxcJetgcPHmBhYQE2m01aii7+1mq1YnBwEH19fWzf/P59Pl/N8cheWq/XK7XEZVYnuS4ymQwcDgf27t2LAwcOKI9V5RNXKeVFo1Fks9ma5q0ApBKr1WqVEYvKl8lfg4GBAXassVhM+jzzZEKBO9F6SyaThvufSCQMv1tZWTF8T88baUIPDAywNLtCoWAgY550xN6TPLlSwQoPmjzFSaRSqTB/eaFQYLneHo/HoCsijiWruBSDswRV4gC5XMg1Fw6H4Xa72dh+v3/dRCvrxL6dseXd2NspyM4TK+WB37t3D+fOnVPm4DaK9Vja8/PzuHHjBk6ePKm0Chodl66bpmnMLxuPxzExMcFKgflrq+u6wRJ2uVxwuVxM6rNYLEoJutECGpkLw2azSa0pWek4Ffvs37/f8AL5fD7pS2+1WpUNbomUSECJh8pKjMVi2L9/v1L6NR6Ps1QycbJWpUg6nU7YbDb2vXgtSqWSoQ0alaITyuWy4fuVlRVEIhH09PQwq5rflidC0VXFE3WxWDRMDoVCgemuV6tVVmxFFi5NHOQb598pyiKh8SwWC7xeL/ud3W6XvuMyg0fUaieI15dcbzRhBAKBdQUg+fFUE9V2xJal/AHt7eNI45PP7saNG0ilUhgeHm4q4KhCsx1m7t+/j8nJSQwPD9f1lzU6rrhNPp83VL+JEXjybbrdbgwODrLKQ34c2fJW5ppQ9XQUoXJRqIR+8vk8stksdu3axYShVL0dw+Gw8jrx4/MiT3xqmAxkPapQLpelHWwWFxel/SK7urowODjIrlehUKg5H/G6iQFIIjeHw4HBwUH4/X6D60O0mnmftdjGjJ9s+SbCpHUic2Fks1lomsbiT7J7z5fe077I2jeZTPD5fIZjUa0AVda37HkBwHzwlUplQ0aYLG+909hXAO/DbGdzUrPZzPzXwWAQx48fb1keeKPukXK5jOvXr6NUKknbooloRDNFbB9G6X18Op9sQuzv74fdbmduCXE/skITmZ9a9pnsJVSdq2w/vDVFGikHDx5UBiFVn4sphtS9JxwOK7ucENxut7LNGbDqvpB9T+mUImSuAXGVkkgkDNdJ7E+4srKC7u5uNkmJwT9+VVIsFg3Ex3e9AYyBSJJnJbcWVVCSu40H3ztUdt3FVR2B0vnomJ1OJ3w+H2w2m/Q9VKlUylwXJpOJ3UvqqLQR0O/rZZttF2zp0bW7JRhVgh06dKjpKqm10IhFTBNGNBrF4cOHG3oYGhlXfEFu3LiBUqlkuJb0QJvNZkQiETaBEUQykfXfkxVDyD4D5H5n2XnwvRN5yK4NdbDZv39/zUupmuxl5FmpVOByuZRWO+0/m80ilUopxYKCwaByQiVxKAIJN4kpaKLfWtf1GiuRiNFsNmNgYMBw3OVy2bBSy2azBlITA7/8vvgmwxQYFe8FWdL87/hOPFRtScco5psTZAVZJA5VKBRgt9tZYNFisRgyXsRrIbvm/POSTqeZ7sl6IGrBbOfMEWCLSbsVHdll0HUdjx49wvLyMnbv3r1h/7UMa5ErBTyPHDnSlA74WuOKL9rjx4+ZH5aupdlsRrFYRDAYZA+gSHKiVcML+xBkbiTZEpbU2kTUC0KKkFnAJpMJKysrSKfT2Lt3b41/VwaVdU/phyqLrLu7m5GGTMMFWM32SCaTUvIvFousxRSwqjJHhU08ZCJS4r1IpVJMUlUmucufg67rhmuay+UMf2cyGcMxUFl8uVxmOffiPaEVG/mMxXtTLBaZAqHqeqp82Xwv00KhwGoHSLxMvH+qyZnuj9PpZJIIqqYPzYAKmbYztqS4ZiN9ItdCpVLB6OgoLBaLstNJK1DPH099LJst2AHWzh7hzycej2NycpJVIRKsVisCgQC7tuKLJassq5dlshacTmdNMYQqCCkD3zOQh5inTNZyIpFQ+qZVin92ux1zc3M4cOAAxsbGpN/T5LeysoLdu3fj4cOHhnPkJVJloEmqu7ubHTeVu/P3R7zWKysrhpxtp9NpGIMyT2h8qoKkSYbcD3z3cQIp6FGFosx/S9WT/CRbrVYNxTYykDVNufd0XjIrm45L9pyRq0PXdUbgAFiJvAheYCsUCiESiTCFxWw2i+XlZYyNjaFYLDK52UAgID0XkR86lvYaaLV7JJvN4uLFiwiHwzh27Bh7WNsBWUUkCTQlEgmcP39+XQHPtSxtvnT47t277BgqlQpsNht8Ph9TewOeBJN4yPySMgtVlklRzyfMQ2WtyH7P9wusNwb5dHfv3i0lTqvVqpx8IpEIdF3HwsICdu3aZfjObDbXWO7xeNzgW+7p6THonMtcKKlUirUBI+i6XmOZJ5PJmiAtnWs0GoXH46khVpFw+HtIcqUEilkQCoUC06Sm7cVngLqi8+OXy+UaXRQCFdfQ+JShQpWwMmOJOibJxuK3p2pKp9OJYDAIr9dr+J6uDeWp83C5XBgcHMSpU6dw9uxZJuD10ksvSZs+iJNYMw0Qtgpbpj0CNNcnci0sLS3h7t27OHbsGLuR7fSZi+RaLBZx/fp1RCIRqf72esflwT+4N2/eZLm51CSWT8UiOJ3OGkKSLbdFS5eqINfaDpATsaq8XvZ72THS9jKYTCYMDAxgeXnZMLFEIhGlpS02yiWLHVgtyhAnqFKphO7ubjx48ACaptVYfCpLPxQK1YwllqgDq+TCX4tUKsWKmqjwhH8WxL/5Zr9AbfyAztfr9bI8fh6UecL7kUlelQ9W0ue00uBzxUVQcJOIW5xAVe+66h3l4zROp5NZ2PS8kT9cBWr6QHGOXC6H5eVlQ9MHn89XQ9rbWeEP2GLSboZUK5UKlpaWEIvFkMvlWJCFEuwzmQzOnz9vSC3aLNJOpVK4ceMGDhw4oFSFa2bcei4dsubphae0KjrPtUrNyU/MQ9aVhlLweFgslhryUhGxrETZ7/c3pSmh8ktSaqDX64XVamVEXa+4gifSUqkEv9+PVCrFUuNkq4r5+Xl0dXXBarXWkDT5sHlNEiI2UYo1l8vV6KesrKwYniGfz4dAIMCuWbVahd/vZ/eqUqnA7/ezcYvFotR9RESZSqVYEwi+qw3dU5meCGUl2e32momdfM+kH65a0VgsFvZb8p3TZCDLDuHdPDzE7U0mEwqFAst9B9B0rMrpdGJgYAADAwOoVqtIJBKYn59HKpXCtWvXcOXKFWiatm6f9tDQELxeL7tGly9fRiwWw0//9E/jH/7hH+4BeATgWV3X5QUGDWLLfNpAY4HIQqGAO3fu4OHDhyx44na7WdumqakpmM1mOBwO/OM//iPMZjNcLhei0ahyOdYK0IQwNzeHBw8e4NSpUy2ZoVWWNqVk3b59G7FYDGazmeliE8lbLBYD+ZBYFA+Px1Pzmcxakfn/qBCHh6gSSJARbjNBSPFcCDabzaDXYbFYsGvXLkxMTChJXnbcKysr2LdvH8bHx+uqEFLHcxnEybWnp4dZauJEJlq6hUIB0WjUMDHIUu14iM+FOCal2FFMQ7SkZbn9LpfL0GyXJj7Zc1gul2u6I4kQV5/A6jNHLj0R1LxBRD2RNwrwbkQZlJo+2Gw26LqOvXv34sUXX8SXvvQlTExMIJ1O401vehN+9Ed/tCnFv+9+97uGDkYf+9jH8MY3vhHf+ta3Dmia9mEAHwbwa+s+cGwDS7ueUP3k5CTGxsaQTCYNS3/KJ6XWTaFQiFVmAas3hJTqbDYbXC4Xdu3a1dL8S03TmIzq8PBwy4SvVKRdLBZx69YtpNNpOJ1OqStEhMvlqrFsZcta/qUhKwEA8+3JUsP4fYikrSJc2b5VlrrKKvf7/TWVkPl8Hvv375eKTQHyVQOw2p3+4MGDyt8BYL0MZceYSCTQ3d2N+fl5BINBZvXG4/EaedZYLGYgSGCV4MLhMCOOZDJpWB1SyiMdOzU9ICs3mUwaiJkyW8gYooIacktQHjd/DLlcjo1BljHwZAKQ6aGQD13mPpOBzsfr9bJqRtpeZrHXC1jS59TEeKOgakiHw4Ff/MVfhNfrRSaTwVNPPYVvfOMbSCQSeNe73rXu8b/85S/j+eefpz8/C+B57GTSVlna1WoVV69exYMHD9hnbrebaf4uLS2xF1fXdbbspDzaUqnElorFYhH379/Ho0ePEAwGsXv37rr5uo2gXC6zDjfrbTysgix7JJVKYWxsjOlEULEDbz3KNIhFC5HGjkQiLGgErD64lFfMF+6IFgYtL0mCk0roSXgok8kwS0/mv5QRJ+9b5qGyylWTo91ux9DQEB49eiTVzFDBarUaMjdEBINBZDIZ5WRKhgCpGdL+IpGIwXVCIlY8YZZKJUQiEXYfKR2Qn5R4GVn6m+/AzrdUC4VChiwT0r3m74VoJJEfmids2o5X0AOMAmM0AVAQsp5BRP5tmlzIGKhUKtJngp+oxHHoeFqldy2TZfX7/Xj66afx9NNPNzWWpmn4sR/7MWiahve9731473vfi/n5eZYKquv6rKZp61O14rCl7hFZyl+1WsUPfvCDGmF60hpYWFhgAYaVlZWa35tMJrhcLoMQP4mtz87OYm5ujrlP9uzZ07TIDDVuoPLkVpe7iuMlEgncu3fPoNZH2/HkZLPZDIRA6VrUxLZSqaBarRp0l0mvQvTXulyuGhKj4hMATBqAPqcXyO12w2KxMNnQeDxu8GvL3BAqclZZ9jKLFwBbeQ0NDWFiYsKQs67yo2uahnQ6jUAgINUxN5lMSKfTqFQq6Ovrk1rk8Xgce/furblepMLH3yP+M7vdjkAgUEOMoqtAvDfUaJeeE16WlHKfeVAfS7oepAAoyknIMq0oF5u3jHnQipdcJio/t/iO0t8OhwNWq7Xm2qtWj7xudqt6yMpIu5m6Ch4vvPAC+vr6sLCwgGeeeQaHDx9uyTGK2FYpf7qu4+LFizWETak91ImkUqmwf1ObqVAohGQyiZWVFcRisRqxHYp8U1bEo0eP8MILL+DKlStSbWcZlpeXcfXqVRw9ehT9/f1t1U0BVpfv4+Pj0HVjbz2yanlUKhWEQiF0d3ejq6sL4XAYpVIJ2WyWdbSWSZnK/Nmy7WT+epnbpFwus7LmQCCAoaEh7N27F729vU3lzKv0JlQZCDRBp1IpDA4OMos8Go0qLW3q8E552SJoOQ+sTp6qmIUscJXP52uC0rlcDpFIBCaTCb29vSxIx4O0sflxxPQ9fn+kh0LXlhr7EsTiGwJZxtTYolgsSlcx5PemXGwRZAzIuqkDYL0qZfsn2VeHw2Eob5eRP19k1MouVyJpbyTlr6+vD8DqBPqWt7wFFy9eZE05AEDTtF4AC3WGaAhbXhEpPginT5/Gj/7oj+Ls2bPYtWsXbDab0r9JOr+0XOdRKpWwvLzMhNyBJ9YpyZZaLBZkMhmMjY3h4sWLGB8flz6Yuq5jYmIC4+PjOHfuXN3KulZhYmICjx8/Znmk/HFRwYTX64Xf70cgEGDWNMlmysi4UbU12WQkG0+mEQ0Yi0dIMS4SiWBwcBD79u0zlJrLlPpIH0WE1+uV3h+LxWKwwKmNGN1nFXjyi8ViNcqLPHmqRIl6enoQj8elLjfVpL5r1y5GQPl8voYkxElAPAd+lUP3nod4T0QNEgo4WiwWA1FTDYAIXndbBipBl6UWqiDmsvPBxbWyN1rZCqxVDRAymQxbbWUyGXzzm9/E8ePH8ZM/+ZP47Gc/S5u9C8CXN3rMW+4eEZf8DocDDocD4XAY+/btw8LCAkZHR9Hd3Y2FhQXDAxmJRJBIJFhnDAoGifrBgUAANpsNy8vLzC1AATd6sYhcFhYW4PP50Nvby0R6bt26BV3XMTw83HYxGeoxSIFUsjxoCUsWCvDETSEjJtGCo2skfibLN5b5E2UEJLPIeTcKD/KnU9rW0NAQANR0ngFqc5gJsswXYNUvLrpeMpkMenp66ga6+bHIZUCBNpkS3fLyMsLhMFvlkU8fkF+LlZWVGp+9w+GoIUbx2orXL5VKGXzqlLJIol8UMKRxSduDjr9arUqrMqkQi0BWryxDiJ6zes8GNd2geIsqMwRQxxkorkIZJ9ls1iBY5XA4lM0v1gNRtpb6aTaL+fl5vOUtbwGweh1/7ud+Dm9605swPDyMZ599Fh/5yEfuAZgA8C83eszbMhAJrL5EDx48QCwWwxve8AbYbDZkMhncvXsXDx8+RDgcrrHS4vE464qSTCZZcIXE5IPBIHuBaFlHDVOJAO12O2KxGBKJBKsKi0Qi0oYFrUQqlcLMzAzLQSf9CyIS0jmWXTPxJaNrxcPtdtf4XWW51LJcbNk+VJD5w4FaXy0JH0UiEdY5nYhXdZ1Vn6teYhKKymQyNeTt9/trzimXy8Hn82FpaQldXV1SHzz/gvf09DBiTCQS0iwTfkINBoPsmeMnhHw+byDlQqFgCI5WKhUD+dPqiid3PgBJY/Ag2VmeFGUGiEj41KSXjkMsmqF3hECBbOpHqVJ/lL33fIyLvqd7WygUUK1WW95wt1KpGPzj63WP7N27F9evX6/5PBwO49vf/jYAHNjAYRqw5T5t2XK3XC7j2rVrKJVKOHfuHLtxbrcbZ8+exY/92I8pA4iFQgGpVIoJ9tCLoOs6YrEYAoGAoeIrk8kYBOXJqjWbzexBWV5exujoKB49elTXclsPEokE7t69i/v37xv0F/hydToHOiYeMp9ho75rmQ9TZrWriilk16KeYJMISnUjbY19+/YhFAopx1DlU6usuUAggFwuh2g0WjOm6sUsFouGzjSyY+jt7ZW6EmTBsXg8zqxDsuBIo5qg63qN5KuY+UP3mM5FFjSsB75cm4iPmvPW21Y8Dgqi8n/LQAaG7HlS5b2rqhupzZnX620LafOT13bvxA5ssXtE1V9vZGQEe/bsMaim8fB6vXjta1+L6elpXLt2raZyKhKJYGlpqSZ9CgAj7lQqZRCMdzqdrEKMrHCbzcbkJLPZLIrFIpaWlmCz2ZilIhPgWQvFYhHLy8tIJBKsQwhgDLLxbhCC7GGXWSyNEqyqPZQI2Yupaigg21aWoUJj8P/mg2zib1S6IiaTSZmuR/cll8uxfGoi+HqVo2tp1hSLRfT19dW4CuLxODwej2H1QimWlPdMvxddB6Lxkkwma6puef0T0SImVT5+9SDmUvMqhgRyq/D3jVwGsjRH2o4CmKrrRO8O8MStRW6OZl0mfPFYvbL19YCEsQjbvakvsMXuERELCwu4d+8eTpw40VCEuL+/H5FIhGWAUJUTLSPj8bghF5lAS1myaImQ+QeVLEB6+Og/KghaXl6G2WzG9evXWdqTxWKB3W5nDzTvL6eccfKp8y+DGGiUvQyiHjYgd2XISq5lYvwqf7bshfJ4PDWBYFUnbdnkYLfbpftSkTCwaiX39PRgfn6e5c7KgtE8OYjg95nNZtHT04OZmRllY2L+eB0Oh1JfhKx3mX9XJG06RvG6iiXkVDTF52zzLpGenp6aQqZ65eTAqtuFJ2S3212jh05EKk62ZLTIngeeRBttBEKNgiuVinRM1Vh8zn87JFMpvkXYCSp/24K0dX21HVcikcDw8HBTgQa73Y7Xvva1GBsbw+LiYs0SulKpwO12s6agwOqLRctl/gGmCDb/ABGZEwmTFU5uCbIc6LeiT5OW0ZQGR5YNXyQjWlniCw0YNR0INputhjhkBCmrjHQ6ndIMDdln9XSRxXNdy6LmP5P5ycnCJss7GAwiGo0qU/1CoRAWFxel44jXhnJwK5WKsr8kZRRRbraYfgqsuigymUxN1SPwRB2QriOlDfp8PsM9EC1lADWWMsk29PT0sNZaPHK5nIFw+epG4InyI3UXp+9EkqZnm7fAKchZr8UYAOk1kBEwr2siS+tT6QTxx9Sq3GweoqVNpfrbGVvabgxYvZlXr15FpVIx+K+bHe/QoUM4dOiQdPmUyWRY49Kuri5UKhVkMhn24vEPBlkC/DjkG7fb7XA6nTVLW7LCKaDJZxXQA0yTBlna9ELS9pQd4nQ6WYEQaaxQMEgkPxlBNupzl11nvjx+rf3IQL0GRcgI1+12K2U6eVA6GFneIlSWnurFS6fTdYWGwuGwoYxcZnXRRCsbR9efNOel/oh0DiJEyzGTyRjucTabRV9fnyFrhPcRU1YID/G+UoUq/U70SRPEjAm6j9VqVTrp8u+MuE/VtacVJekH8e+YalKm68a/U62EmPK3E7Clgch0Oo1sNovu7m4cOnRow9kZ0WgUr3/966UzMgmiiz32stlszYNJVo3VamUBJN765R/oYrEIs9ls+D0RLFk04nnRdzzhVKtVphdNesJU+ksvBXX29ng8TNg9Eomwf4ulyASZRdtoLrbdbpcSTiuCkDLUc3WYTCYMDQ0xIiX9FxlUVpnJZEIsFlOqMYr3kVLPCJFIxJAxIksPSyQScDgcLBgOPJE3Fc+JH5uU++g4e3p6aghWJC6ZCBQPi8VSk0NeLBZrnknSryZCJdBzKlbfivul+1nPZ80/X5VKBRaLBW63m0koiOALdtpFrDxp07va7hqMjWLLSHthYQEjIyPweDwbljPl4fF48PrXv97gE7fb7cwvq2laDbnoul7TOslms7H/+C7XtKzlH2L6nqLlZFFUq1X2nc1mY24WVYBH1iDVYrEYXkQak6occ7kcI3eXywWn04lAIIBoNIru7m709fXB5/Ox1mP04siIVEaAMvJTuUFkEFPC+DFkkI3Lj1EsFuH3+1lnclVneBWZE7mQ7oe4H5kWNlW6AUbioedGRLVaRTQarZnYRAImGVfx2M1mM3p6elCpVKRl6Txxix3ZeRIymUzSQjCVtU0pkjKRKP48VX50Up5UQUbM5MLhn00CnSe5adoB0dJupmp3q7AlpK3rOuLxOIaHh+FwOFrecsxut+M1r3kNQqGQQcIUWH3IZbM2SWpaLBb2MhcKBRaM5EEl4fwNJmtbddMpdY+sd9Fi4ttZ8RD3AzwpYhAhihEVCgWDv5Kaqfb09CAcDqOnpwddXV3MmpRdF9l+XC6XUolQhKoiURYIVBG8OAaV9ff19UnTs/hWa7JjJ5TLZUN1JlmaIqjTTCgUqrFkqYCGB+XYi9dTLFGnc+FBAVNeK4SfOHVdX9MlQis9Sm/lV2uEYrEo7Y6jIt1SqQS73Q6bzaZMt6XmB6rvVBWifLaWx+NhgXzeN98uS5tfCVOa4nbHlvm0Dx8+zJTmGolANwur1YoLFy6wICQPCtjIHtpQKGQgFNI8UPkKTSYT0+2mqkqg9kWiUnvKJNE0jQm6i9Y0QVXoInsxVM0TZNeWlrf0ErlcLnR3dyMcDmNgYAB9fX1M00VmyTYThFT5IZsheNUYtJTv7+83kK3KNUJ57zyq1SrzlatIhXzHjR5fd3e3Uj9DdKeQ3Cqw+oxEo9Ga+ytOJOKEJHt2QqGQ4XmQlbqL95EycVTEVa1W65IaxXZkE5+KdEULmgKDHo+HxXfIBdkO8MeayWS2fdcaYAvdI3Sx2tWRHVh9UCKRiDSYRNKSdCzRaBSFQkHav4981+JDTtarePxUCUYvH5G7KI5VKBRY6bBsmS2zsunYRaiISkb6sjHJ5UP+S6vVCp/PB7/fj4GBAfT29tYtfFFZ342SPtAcwQNPWm6Vy2UMDg6ya6CysmUWOE3KAwMDdVd85XJZ+UKn02m2OvN6vYxEZauXdDot7fdoNptZkFxmZPDXRlz9ic+f7D5RbjgPXqOGd4vUK34R4zc86PqQK5DvU7qe1TSJXa2lfdIq7IRWY8AWByIBdVVkq0Bd2WWkSI1YeQF7QN54lXzJlG9KPRnpBVMppJH8pGpiopLmUqkEp9PJevpZrVZlJ2oZEcoIU7Xcb9Qi5i1y0oWJRCIIBALo7+9HOBw2pH7JIDsHVR6s7Lxk+emAUdsZWCUgyjBR+bPrycB6PJ66L6zNZkMymVRamkSK9HzQuOJzROl/PLLZLCNsoDZLROYSEZ83un+U0SILNsqOXVawotKzIReHTNFPXDGbTCYWZKy3UqrnMgGeWP+bkeGxE3K0gW1A2u20tIHVh4cKKkT/p8fjqRGMIZB2CQ9aOorCRbQslC03yUpXWdI88VDgyWw2w+v1St0gqvQr2RJZ9rKoSEc2ccquC+9icDgciEajGBgYYIqD/PGpMk9UeduyyUSVRihbWZA2RW9vr/TcVZ3kNU1jHcxlk4/dbmfkonqpqVGseKzUQIEHf881bbXz0lpZIuJ1FM+FGiiI11/cr0h+VIUqc8HwzwpP1DLXimoFRi4hlc6JDPwxtrPPq5g11nGPrAFe6a9dlnapVMLs7Cx0XcfZs2dx5swZRp6k9VAqlZBMJqUBrWw2a7A4aHktJuQDYD5t2p4sLnrZyeqmF4EvuBFBmt+U80utlepZnbJxZISp8rU2KgglZs5Q8NViscDr9WJgYACDg4OIRqN19T1EqNwrKjJQLdGpSjAQCBheQLfbrTzHQCDAArfBYLDm3vKBxlwuVyPhSscjc4dQuzIe+XyeTXDd3d0sEMdDdIlQgQxB/A01VOBRryiG4HK5lFasSJ4ixJxxGShTiiqFeaxFkKQYSQVBVMQmu17rQSu1tDcTW25pt2smzWQyuHTpEquoI7W8M2fOoKurq6aUnMqIeVAFpM1mY81hyQcqIxPyZZNlIT5YRFZUOKPy1fJWDOVsO51O+Hy+hpeJsgpK2rcImVwoIHdt1HMPAMbKN6/Xi3A4bAiuqSxqVdaB6uVUWWl8n1C3283SSeuJAPH3MpPJGEhZNlEmk8kawvH5fOwZEyESMIEIGwDrWE6QuUTEa893Jac6ArHeQGZt84VfFGuRPc/kJlE1OKDvxYlcdsyUpUEtA1Xt28j4AVbv5fj4OM6ePcuOg35HRXAbIXCRtDuWdoNoh3tkaWkJ165dw/HjxxEMBg3jO51O7Nu3TxpNl5Wwapom1XFWpQ5S8HAtEqIHV4TKl827YILBoCGI2miGCY0jQkbEKn9jvSCmCPLT2+12RCIR7Nq1C729vQ2nFgLyiUN1jURJANKQqddlSNYFiM/NJk11HuQeoGN2u92GtDGZxSuzcMXrLv4tWsriOZfLZYRCIUM+szhp1NNBV03W4j7qbVMv24SOSTweKhKTgb+u8/PzsNlsuHr1KsbHx7GyssJqIWw2G1upEoFT5XKjJC4j7Z1gaW95UmIr3SO6ruPx48dYWFhgGiakLsbD7Xbj4MGDuHPnTk2RDB/o46U03W53TW4xPbB0/Ha7na0cSDlQfNH4Ih1empSgaopLUXT6LbDq4jGZTFIhJRmJqnQkZA+5TAwfWF2RiJONSriIn5BpEiBXD/nhY7GYVFdDPGceKs1uu92ubIlFKxvRF0yNe0Ukk8m6TRTIdUZNHfhMCVmzAP5+0PYikVPVJ90PasZAY5GFSUQTDAZht9sNxyhr/ybed+q8LlrlMh0RSiWt544C5Bok9XKzKeVV13XDtaLrVCqVcPLkSZadFYvFMD8/j7t378LtdiMSiSAcDrN4A/3Ha3/zzadlkMmydki7Dnifdiss7Uqlgps3b8JsNuP8+fMGPWDZ+MFgEHv27DF0fAdWrRkiFv4hpBsqEjeJ+ZNgFL8vsTEqsLpM5+U0gSfKcCoLEpAHFcWME+qGDsiDbirSlhGTbH+qF0BF2KrJmPzgdrudWbSqYhtVRokMqo43JODk8XjgcrkQi8XYd/VSyaiOQEXcuq6ju7u75p6Rb5Q/J+pZyu9PbJhLFZb8JCIeH01koVBIKjZGAURRNVI8L5lxQIE5UaaV8qVV95mIWRTAqicCJU5iwJM+rgBYkQ2NE41GEY1GmQb+0tISbty4gWq1inA4jEgkwnRedF2vIXJ6dkWdIX6VkMlkaqpktyO23NKu93I3inw+j+vXr6O3txe7du0yfFdvUujp6UEul2ONN/nfyF7WTCYj1YamEnJV6y7enyd78PP5PBNQkl0LWfMD4EkmB+9np4KYZDLZkIaC1WqVkpLKDSKbDFQqgKoGF+JvKZDq9XpRKpVYY+Zm87ZVn9M4tNTv7e3F7OwsrFZrXYlWIkVRl5pAfRZllbCqAhMxiCs+N+J+RCU/6qTE69+IVq64euUNCpPJxLKaxOOm/Hwaq1AosIA9pfrxk6jol6aJmIrHVO+daIHTMVAhjcPhUPqWyV3p8XgwNDTEesFOTk4ilUrB6/UiGo2yjBxemZNWwLQv8RnLZDLSBs/bDVtO2hu1tFdWVjA6OoojR44gFAo1Pf7Q0BCy2SxrSeb3+5kOsWyZS+TIC8pTsEq0NPhjUJVo8yB1P5H8Vb35ZH0MSbObshMymYxBt0OEirRln6ksXNkSOJVKSbevNy5l5USjUWkTCGD1GslWIzKZWqA28EmZMv39/SgWi8qcbo/Hw35HGjTi8VCsQ6b1ncvlDHrY1ARZnACI4GQZOXS8ZD2bTCYEg8GaeyZOGJSjzX9Orio+vU/Ww5GsUlVrL56oZQFKmoTrBQhVQUuaIE0mU8Pl5FarFT09PaxBRDKZxNLSEh4/fswaolB1L1nhdGwk2EXkvVPcI1ue8reRQOTMzAxu3bqFM2fOSAkbWJu0NW1V1tXtdsPn87EXn14WWdsnqgqjZSbf7ECVomY2m+t2Bqdlpqwgo16XFRn4ohqXy4VAIACfz9fwiqaZ1Q/fqo2H7OFXpTjKPiPLjhosk0Wk6gCvsszcbrf0/lNbKVXAlr9XZP3x8Pv9bMKkHG8R1JeR5HxpLB5EpKp9A0+uG11T8XkgS5qHTGuED5jSvlVuN5nMA2DMtFGRL1n/MqieAT6lcb3iUGR07du3DxcuXMCJEydgs9nw4MED/PCHP8Tdu3cRi8VgNpuRTqextLTEJBAqlQouXbokda9tN2wLS7tZ94iu67h79y5yuRyGh4frzsr1giEEi8WCgwcP4u7du4bPZS2cgCedrEUrl4SZRCvH6/Wyl1W21Bar+0iiM5/PK1P3VJaoeL50LOSXBFZJhl582bVXuTZU/nDViy9C5a5RBV7z+TybJCl1T+XzV42tssCtVitSqRTcbjdsNpvB4pY1Ri4WiwiFQojFYjVKjZSnLt73UqmEYDDIfKz0mbiaUpWt028obsHvTyx+EY0T8ZpSabk4gcneD8qplk12fBqhirTpeXA6nazPKv+dSkedxmuVoh/FTEiTPJFIYGlpCWNjYygWixgaGsLi4iJ27dqF//k//ycsFgueeeaZluy7ndjylL9m3SOlUgkvvfQSLBYLTp8+veYyStT8UMHpdEr9WblcrsZqJFeHzEqj/G8iEVG9j/K4ecgIhxoxqCwWVZqdant+W5fLhWAwyHzIImQkrJokZBa1ylKXXS/yx8vGELejlLbu7u4a61RF5qp8bt5q1TTNEICigJaIbDbL/KUy0SaxOS8FvtaqbiQi50Hju91uaQGMTFuEB2/tknqfrKGBzNomlT3VRLiWcBSvT02uJf639UDCaq0GtSKMRCKwWCw4d+4czGYz3v/+9+PEiRP41Kc+hV/7tV+ruYfbEVvuHlGp08mQTqdx6dIlDAwMYP/+/Q0F2pqZFILBILq7u6X7pQg3ES5JXsqsApNptXu0ygcsNrBVrTTIZUKpfRuBmE1A1rff70coFDLkzaqsbxnq5QHXOwaCKl9Xdc/omrjdbvT09MDv9yuzTGQ+f9mxUNpld3e3MkuCIBbB8MhkMobzoUpL8XrISFo8X2peQL8VVzRk3fMQiZsPgPPZWiJES5h3XcpA7sFG/c70PtTraNNqK1uGeDyOsbExnD59Gj6fD7t27cI73vEO7NmzB5/4xCfw3HPPYXh4GF/96lfbdgytwJa7RxrF4uIia/rbTIt71XJMhb6+PmSz2ZoAValUYpYpP1mIS2VCLpczpEOJIB9jvQmFAp6lUollheTzeSWx8BrEPFRxA/4FdTqdTGJWZrXWm4Bk4za6rWpcsasLgJqcZCo28vv9yGaz0j6YskCjKrBL7b34lEARXq8X2WxWGjDWdZ0RWjAYZMeazWZrgtTifSLNGbJ8/X5/zfmKrjLxOosGgPisAvJJlqxqss75FETZqolvsiAaRfWInMSfRDEr/t/tIu1EIoG7d+/izJkzbNL94he/iL/6q7/C1772Nbjdbrz1rW9lgcrtjC13j6wFXdfx8OFDPHr0COfPn2+KsAG1r7Pe9kNDQ0qNBpmwjowovV6vUlqVQNVdMlBKEoFeZp/Pp3ywVS6TevrIIkiIPhwOw+/3s9+u5YfkIXvoVdap6nhl961e7EPTNITDYZa/rDpmoH6DWLKMZRMP5VDTKkt2Tvl8Xtq1Rjwfmoh5UDk5aZ2Ibb74DkpArZKfGAj3eDw174uu6zXnRpopquvOfya+A6I7o96KkPYtarTQfVLtf6NYWVnBnTt3cPr0aXbP/v7v/x6f/vSn8dxzz9W0V9vujRC23D1SD5VKBTdu3EAul1t309/1wGq1Ys+ePQCeRKRJUEhGslar1bDc5S1o6lQjAxG+LPNBJQJFv5E9WKoXRjVxrFW4YrFYWKsySoPksZYOCQ/VRKPq1iPDWtY+la2HQiFpl5l6+wRWyZzy6p1OZ40LQ9SwlglEud1uZlnzyOfzNeOJKw/KYOJzskV/sDiueK34rCEiWJlPXZzQKpWKcmIVA56y78l3r3rW+N9Rfjt1iG+naySZTOL27ds4deoUe3e/9rWv4Y/+6I/w3HPP1WRq7QRsiymFlmb8w5XP53Ht2jX09/djcHBw04/J4/FgYGAAKysrhpc8n89Lc3bJ10npQ/wSk5bNqmUk6SfzJKNaovFi/OLyf62O1jxU5fIi6N6Ew2HmIy0Wi9JiEzov2bgyq1e1rerFV2UzyD4jYSKr1YpYLMZ+63K5lKTNkygV4vj9fqysrMDn89W4jUjIK5vNssISPr9ahHgfaB+6rjNZV1Xhiep8xetHMsD88yW676gjEm+AiBrePMhNIgtk8mOqzpuOU0X49HmrLdxUKoWbN2/i9OnTbHX1zW9+Ex//+Mfx9a9/nWmP7zRsqXuED3jwD18ikcCVK1dw6NChLSFsgqz1E7D6csseTvLxyfyI/NKPNErEbega8LnfInirnHK6qWmCjNRUCm0qq7Wea4OO32azMelTv99vsJCaCUKqtpVNCLIO4IBavY8q4PL5PKuSq9fDUAbSxaj3cpPsgdlsNtw3ilnwkK2qNE0z6HBTbjf/G/5eiassUaGPBLp4yMiWt/rJ7WY2m+s2bF6LVFXuDZmUMYGvhmylaySdTmN0dBSnTp1ihP2d73wHH/3oR/GVr3zF0Bt0p2Fb+LT5QNn09DRu376Ns2fPtnQmbDRDhd++Wq2iq6ur5mGlakkeZDGolnik/iZbUhNcLlfdLjey8yB5TJWfdq2XhYeq9FilykcpXX6/H5FIhFXrybaVWbeyl1TmcwXUS2fVtRJXLfl8Hh6Ph6nDiajn56alvIpU0uk0gsFgzcQkK7rJZrPseaKGGuLkJT5v4vGqjsPpdCqfH3EMPvuE9+Gr3AWybBXZ+OQq4VGv+QShlWl+6XQaN27cwMmTJ9nk9L3vfQ+/9Vu/ha985StSPfSdhG1B2qQFfPv2bSwuLuLChQt1X6L1jN9MRJgvdbVYLOjt7a3ZhtTdaHxaGtdbZjaSMSLrsMND9ltaVpPVzUNlsTcikM+PL4LfD2UfWCwWuFwuRCIRhEIhVpLcjExsvapREZqmSTNS6rUVI39zMBhkRLGWTkahUGBKjzLiCgQCyv6Cor4FPSO8z1yc0ERrm0rdCWIAkix4/v7JmjGIzwJVna6VAw488eGr0iHF4CQfwG6kNLxVpJ3JZHDjxg2cOHGC3Y8f/OAH+MhHPoLnnnuONXHeydgW7hFN03Dz5k3YbDacOnWq5f3gmiFtqjbjI925XE66ZCc/tsPhMLwQqiYJtKKoF1ClrBFZILJeBRqJ4fCkr0oBVLlMmqlYVN0j2pbKt0OhEAKBAEth46FSjZNBJd3ajOuHyJzSGsnS9Xq9Sv8+taQDVu+31Wo1TAo+n4+5FMROR0Ctvjbpj/DuCTHAKLNqxeeJ/iYBpbV0tEkoioemacqCJ55EKdcbAEs9FbcXQQTfyLvcqvc9m81iZGQEx48fZxPFpUuX8Cu/8iv48pe/jP7+/pbsZ6ux5ZZ2Op3G4uIiurq6sG/fvrak/DRK2pVKhQWH6KGdnp7G+Pg4Dh8+XGNJ0bJZ1SxAtB6sViuz6mSkzi9tZZkC9VwvPEjsp1mXicyfqdKKUI2r8vVbrVZ4vV5mhQcCAelxNKMYqLLOVFotMq3ocrlsCCLzsFqtUkVHKu6hMm3+2IvFYg05ZrNZQ3EWiRTx5ypa0+LfKr0Rj8cjrfqVPX/ita3n8uF/K/qqeUkEQJ2NQ5OJqsJW9u/1IpfLYWRkBMeOHWNGy9WrV/HBD34Qf/d3f1ej/rmTsaWkPT8/j5GREXR3d7dVXWst0ubdIbTU13UdY2NjWF5exrlz5+B0OtHT08MsIKrwUpWz09KTQIUr/D5F0pJZmfSy12vppKpys9ls0qaqKtEmVbduGVTFOo1sS2qGfr+fpRSSJrjM+lZNVqpVRDM9KO12O0tVo0mVQCL9IihoLPueRL/ENLlCoWBoPCCzwHmyp+Phx+W/p3x60S3BQ7yWoh+bL5KRgchaRux84FAl1kUTrSwHnK5bvXL5RkHSzEeOHGE++Rs3buADH/gA/vZv/5al775SsKWkres6zp8/D5fL1dYqpHqiURRw5Am7XC7j+vXrMJlMOHHiBHu4zWYzenp6al4WmXUFPEmjkgWH+Oo5QJ2CRyL0KsjycPnjIoLkx2hUb6TePmX3S1WYoVLZA8DU5Gw2G0KhkIHE67mRVM0Jms3ll/lzqe+hKq0RWJ20qaegrOCK8pYdDgc7P3ElksvlDPsXW9iJ1jaN6/F4mIuLH098xmVKffTcNZoTXa/ghfddyyAKl9H2rbSyKTX4yJEjTDfk1q1b+IVf+AX8zd/8DQ4cOLCh8bcjtpS0e3t7YbPZWtIIoR5UolEyCzufz+Oll15Cd3e3VN+EmvLKhHdUVXx8abD4GyKZeudPVphsjHp6Dnznd6q+bFZoSpVfvdFtZZ+LhT1utxvBYBAOhwM+n88gOdtMcFPT5M2ELRaL9PNqtQqHwwGHwyFthOxyuVhGBPmxRfKn4CC/ohKLs2QuDH4c0dq22WysqxIdp7h9IyTIX0eC7Heapq1J7vX80aJ/n94xmoxkYlrNoFAo4Nq1azh8+DAj7LGxMbz73e/GX/7lX+LIkSPrHns7Y1sU16g6s7RyfJmlywfNgNVy11u3buHIkSOslFgGkmUVe/PJluZELioNFKpwlJEDgfJ/qWJPtGBkkOmNUDszsn7XemFo1SFC9jv+eopjyLaVQRVUpDgDyYvShESyq0SgJpNJ2QhBNraqp6TL5WKFNOT+stlsrCWc+KyShC65dygPn1ZgfLYH+bfpOcnn8zX9P/lVF2Up8dKvVOQE1E6UhULBYB1T0RrfEkx1PcTPefeJ7NnlXSSieFo9lwcJWC0sLGB6ehqRSATRaLSpjLFisYhr167h4MGD7F198OAB3vnOd+Kzn/0sTpw40fBYzWJoaIjl5lssFly+fLlt+5JhS0mbL66pl9S/UYikLVrXADA3N4fHjx8bqqfqHXcoFML8/HyNNgQvDMT7PFW62ACYprNq4qIxKDhJvfRUpFoPPp+PnX86nWZ61SqhqUYrFpvZVlZRCqg7xcsUCsvlMgvo0mqNsmXEBr6qSUKVPyweR7lcNnRVkblN6BhJVIzGoKpJfl/ktuI1tnnQc0kWPF+0Q/5yPmDNu11oUpNN7PyKQEbc/Ge8FczHecTtgSc1Cvx1q0fa9F1XVxd8Ph+WlpZw+/ZtFItFhMNhRKNR1nlJhmKxiKtXr2L//v2s+cnjx4/xjne8A5/+9Kdx5swZ5b5bhe9+97tb1k9y21ja7XSP0AMl81/ruo4HDx4gmUzi3LlzDZfSWiwWhEIhLC8vGz4vFovsReMfckrHE4mZXBeyHnwAakSnyFVSKpXqaoWrPqffURUcVf3Jmhk0GlgE1PewUetbNQGprG/+OlHuM6nIUVYFZWjY7XamkEjjqfo+knaI7PgqlQpyuRzrWMRvRz7bXC7HJm86z1wuZ7DeabKhiZfiFpQqarVaDYFrMddbtHrXyu6hZ6+R1DoifHFb8VkTKxjp/En/RQXxN06nE4ODgxgcHES5XEYsFsPMzAxu377Nso3C4TCz4kulEq5du4Z9+/axqsbp6Wn87M/+LP7kT/4Ew8PDa57jToe2xg1vroywSVCK3crKCqampnDs2LG27GdychK6rqO/v5+5BehluXXrFmw2Gw4ePLiuKHY8Hq95+cVMER4iOYm+WdHNoEoppLFUDQRU2hcyXzBNGuVymeloALXdqgG1/rlspaDK2pH1JpS5HWh/4hiqbjRiYA5YvX68ZggfnCsWiygUCmx8Ih7ZMcukWIlgqbRcbK4r6unwxE1/kzuFilzoXvNWLu1L1A+RZeXw/6btya0kg+r9byRrSLaN7B7wEElbBV3XkUqlsLi4iOXlZdbEYH5+Hvv372edjGZnZ/H2t78dn/rUp/D0008rx2sl9uzZg2AwCE3T8L73vQ/vfe97G/lZy3KZt4V7pN2WtslkQjabNbQDKxQKGBkZQW9vLwYGBtY9diAQQKFQYMdPLhGZ1Qw80cRQ6WCQFUzL4HqETZF4kcBUFrjK0qJVh9Vqhc/nY8UnMoJW3SvZ/lTB30atb9W+VJOGjMjF35NFTttSgJauZbFYZBrmBJVVTn5cInqepGnC4ycomhApv99kMsHr9RrcdeSvphQ/uoaiBon4XKhy5OsRtgr1Vpt0jVRVp3w2k3j/mzGKNE2Dz+eDz+fDvn37kMlkcPXqVVitVty5cwe/+Zu/iaeffhp/9Ed/hE984hObRtgA8MILL6Cvrw8LCwt45plncPjw4U3d/7Zxj7Qr5U/Xdfh8PszOzuLSpUusM/ODBw9w6NChDQvHaNqqjvPy8rLBJUI9/ETSoCUhuWvEB5kIn9wsKtKmF4tS+sSO4zKoRJf47cnaJDIhtwIhk8ko26yJkKVCqnzfzbhcGtUxqRdH4EFuFF6vmnzldAwyP7zoSqHf8F2+K5UK84XzKyOavHgNbHJj0DmTK4vAW8/VahX5fJ7FX8gQ4OMf9bon8ddNDD6u1ThEJVHMj0ljkUtStU0jKJfLuH37Ng4cOIDu7m4UCgU8ePAA/+2//Tckk0n8j//xPzA9PY2f+Imf2BTlvr6+PgCrPvm3vOUtuHjx4qaS9pZXRAIb68heD+R+cTqdOHPmDM6dO4dKpYLbt28DAJaXl5FIJJoWkxJhtVrh9/ulhRaqVL961WgUcKz34oi/pQKHekSvenlUVYykG+Lz+ZjuhqyQQnXvZBkxKhJptOO8rARf1/WGS+ItFovUIhddStVqFcViEblcjvmpzWYznE4nPB4PPB5PDYmXSiVkMhmmweJ2u5l7plqtMnVIMZWPvgeMuiNiCp/YiUaVvskHMRsBjUkqlfxnIrLZrKHRhGos+jeNud7UvkqlguvXr2NgYIC1AsxkMvjMZz6D3/3d38X9+/fxG7/xG6xyud3IZDJMDjmTyeCb3/wmjh8/3vb98tg2lnYr3SOqgOP09DRSqRRe//rXw2w2IxaLMVVBv9+P7u5ug5BQM6A+hfyLTC8dpawR+IarKsKjtDaVn1dGXG63m1lvIlTL50bK1MkVQ8RWLpcNXbZVYzSTeSKziDfiRqlH5OK+ZOXqRKy8D5r8/uVy2TAGlXXT/c7n8yw9kFYlFMCklUYul2PPDF1bup7ZbJaVf5MLhrew6RrQfaFniIwBsbKzUYh6I3Qd+GtClcuy7/nPZWOT26dRI6lSqeDatWvo7e1lQk8rKyt49tln8eEPfxg/8RM/AQA4fvz4phHn/Pw83vKWtwBYfT5/7ud+Dm9605s2Zd+ELQ1EklYDALz44ot43ete15IxRcKuVqu4c+cOAODw4cM1pFytVpFIJLCwsIB4PM70lyORSFNiNjROveg++U75PFrZg8+XEIvkU6+NmcVikfpf6+ltN2qB85MFWYykHidar6oq0UYDi6qJnCZBHpTbvNaYKtKwWq012zqdzprryKdb8sdDKX20WiAfOfAkvY+aDGuaZmjEwDcldjqdhtoBekbIhULPLf8dH/8gd856CVslh8CDX73QM7BWSTq/YmiUtMnC7u7uZkJPqVQKb3/72/FLv/RLePbZZxs/ue2BV0YgstWgCkfyFVPe7sjICCKRCHbt2iV9qCgyHQqFoOs6kskkFhcX8fDhQzgcDnR1dSEaja4Z0KHA0srKiuFzWiby1XEEWSYFXxxBKX6N+GaJaElno5Fc5WY+54mcri8RMxEiXXOZ+4Duj4hGu9qo8skdDkdDQS+73V5jUfOf8WXWtHLhQXEGWjlRKTuREk2mlCfO52qTCiPFDMjqzufzCAQCzPqmc+EDkXQt+OpZekZoQhArI5shbnJfyH6naZqy6pM3iurtk3+WGyHsarWKkZERdHV1McLOZDL46Z/+abzvfe/biYTdUrxiLG0ZYZO27r59+1iKULMgFcLFxUWYzWZ0dXWhq6urbgeUubk5qZC9ymqnZTBgtLJFFIvFuloQhUKhhmiIkFS50SoFNhmR1vOXy0BERQFNVTYJ/3+CLIVQZZHLilN4i44nSt7q44t0eHEj+ozAt3WjHGZaodAzTIFH+oyyLGj//MqKdL0peEhWstvtRjgcZuXv/CRJlZnkUiuXy0xki4yBRtPpxGtFxshaE3i9VScRsiywLpJ7PRBhh8Nh1rUql8vh2WefxTve8Q68+93vbui8tiFeGZb2epZxMlAaHfDELxeLxTA2NmaQalwPKOi0Z88e5HI5LC4uYnR0FNVqFdFoFF1dXSzgRoU6qVQKQ0NDhqUukbbK0iRrqh4py6rdeMjcES6XS9kxXuWLVu1fti2JJsm2pWAmiTARsZG/mVIlqaKOSIp8x7JjIouQsiOI8MQJiKxVIgqZ31pVhUr3SNd1lnNPxE2TKvn0NU1DPB5n49B58r07gSeNdpPJJDTtiQZ2Nptl1yKbzSKRSDCd756eHoNKI0/M/PlqmoZkMsn0N5oBT8T8akmEyhKn67RWpkgjVna1WsWNGzcQDAYZYefzefzcz/0cnn32Wfzrf/2vmz29VyS21NIGnshH/uAHP8BTTz3VVBBQ5r8GgKmpKczOzuLkyZNN9QRsBsViEYuLi1hYWGDlt6lUCk6nE4cOHYKu64jH4zXylvRiyEDb1Vtmyny6QK24EA+y5GUBOJWmhPh5sxOs6rkSx5X5uGUWmYoQZC4XctHw24ifkSXM74eU/agsvlKpIJ1OG3LhHQ4HstksMpkMPB4P4vE4a/NF14339ZI/OpFIKIPOXV1dKJVKjNDpWCiHPBwOo6uri00YBJl1Te8PaZrUu2+y1mB0PUUy56sdVaROoHeSftuIlV2tVjE6Ogqfz4ehoSEAq9zwr/7Vv8I//+f/HP/u3/27lhl5W4SWHfyWkza9OJcuXcLp06cbLgRQZYiMjY2hUCjg2LFjLe+Ao0Iul8PVq1fZgxsKhdDV1QW3263Ut5Bdd76YQga+iYJI3I307yM/N71QqspJ1RjNBCxlAl2q1EJxWxI9ErcTVwu8C6LeZxaLpaaTumh5UxccKqyhbA5N0xCLxZgEQT6fZyuLbDbLxvB6vdIgdDgcxtLSEmsvVq1WsbKywmIPJpMJ6XSajeH3+xnZEnkSAdP3PFnz10ksLS8WiwajhSdjfkUnkqHYOo3fh0jcsjgNvz/+dyrouo6bN2/C5XJh7969AFbTG9/1rnfhR37kR/ChD31opxM28Epxj/AgX2IjpC0j7HK5jBs3bsDn8627JH09oBZHBw4cQDQaRaVSYamEyWQSu3btqmmWKiMqeolUlZRA/QpSGXnyv6H9UraC2DmF36YZv3WjpK8ictkkZbfbaz5fWVmpyftey+IjyK51NpuF2WxmZJ1Op9m5OBwO5PN5Rtg0uZFlWigUDO4Pt9uNlZWVmusWCoWwtLQEACzfm/YfDoeRzWYZYe/atQsnTpyAzWZjMRRymZGPe3l5GZlMBn6/n7lC+CpMvuIXeJJlxJNzMplEIBAw+PVF69nj8RjSOcXryxN3PVcaTS685S3b7tatW3A6nYywy+Uy3vOe9+Cpp556pRB2S7FtLO3r169j3759a3awkQUcqdXQ7t27N7VxZyKRwO3bt3Hs2DFpF2s+BVB00/DES2TNP5wyS1rls6Xlqwyqz6vVKmudJW6v6kojs6jrvYzituI5qYhcNqZYHQiAPQf8b8Xfi1Y2ZbxUKhUWQKRr4XA4DJke6XSaZZfQtjabDclkko1H4l2ide/3+5lFLSIYDLKirlAohKGhIeYSiMfjuHv3Lk6ePIl8Po9UKsWCuLxwlNlsRnd3d00jAtHFJrpPZIUuZMmL94GunwxE3PWeL/qOrzQV93H79m1YrVamXV+pVPC+970PBw8exG/91m+9kgj7lWNpk4XYSFUk+QiBJxYVEefRo0fXFYhZL+bm5jAxMYEzZ84oS3oplbBardbk/BIxUCaC+HCKKW/ii0aBTbFwp1Hwcpq8b7eeL7rR/aheUBGy8WRuGFF4iT4Tx5QVI9FYlLLG3wveGiT3C7kjqGt7IpFgY5FIUF9fH1wuF+tKRM8wlfyTBV0ul5klTfD5fIzMNU3DgQMHWFrb8vIy7t27h9OnT7MGDF6vFwsLC0yzm4p7dF3HwsICkyblA7n8daW/+ewlcRu73Y50Ol1jMNEKQ5V5JNsfjb9WXrau67h79y4sFouBsH/pl34JQ0NDrzTCbim2nLQJ9aoiVQHH2dlZTE5ONqSB3Srouo6HDx9iZWUFZ8+ebUjKldwSol/VZDIhl8spg6UqmUwe9GKtR9+BAluUNiezvAEYNC7WQjPWc6OuFVlzCZkqIFUh8tvQNaCVCf8bsqyp6pAsQiLsZDKJaDSKaDSKcDhcV29DhWw2i9nZWUxMTCCXyxliCmfOnGGEvbS0hPv37+Ps2bOGLCCr1Yq+vj7EYjGmaUJSs5VKBUtLSwgGg4YWeDTJ0X+ylZjoNuHTDGny4ldHsmeJnj2xaxNP2qo0z7GxMTZp0WrnQx/6EMLhMH73d3+3Q9h1sOXuESKK8fFx+Hw+dHV1GQ9AEXC8f/8+0uk0jh8/3rAG9kZRrVZx+/ZtmEwmHDp0qOlyd7HbDZ9xoHpIqbhirYwSstx5rKXqJ4JS7USfukyiVQUZaZMVxaNeTrCM4Pnfy9wgFIDk3TgUUOSPI5/Ps8KWlZUVVrhkNpuxsrLCfMjRaBTd3d1NK+TVQyKRwPj4OCYnJ7Fv3z6cPHkSALCwsIBHjx7h9OnTdXtcZjIZJJNJlg9Oz02xWEQgEEAgEGD3VlbhKLPAefD52PxvKSuK94OLmSuqjBGZvMD4+DjK5TIOHz7Mtvu1X/s1aJqG//pf/+u6dUq2OV452SNUyPDw4UPY7XamoAXICbtSqeDmzZtwOBxslt4MNFJZuRZ0XUcul2PuoEbSAMkSV5EmH3gSibteMY8MvKVGEwxfLSeOobLuZWl9jfiz6RzE8WS/FbWrKduDz9fnM3f4PGoqbqHyc03TWErewYMH112I1SjS6TTLHJmfn8fExETDmVPFYhErKysoFouMFMmSdrvdjLgJPNGKk7XMJQLI+46SWJXJZEIqlVK24+PddWKwm4ytYrGII0eOsGflN37jN5DNZvHHf/zHbSXsSqWC8+fPo7+/H1/96lfbth8FXjk+bYIYAJMFHEkDu6+vjy0rNwO5XA7Xr1/H3r17a1YCzUDTVkufZdaHLPtD13Um1UlLXdmYBLJ+Niq+Re4c2rcY8BP3yx/vRvzZqpxx2W+pqIaeE5Eg+LEovY5S9qgLOq8XAgDnz59vW14/DyLK2dlZTE9P48yZMw2vZGw2G6sJIBEqukdU/MO36uIzSkTrmneJEGjyE687XwGqih1RkRg9g+J9f/DgAQqFAo4ePcqO53d+53eQSCTwZ3/2Z223sD/1qU/hyJEjhkDyTsS2WYfwgTcKOJJvTNNWK8xeeukl7Nu3b1MJe2VlBdeuXcORI0c2RNgEUu+TQSQy8q2SLKoIVZYHCfO34lhtNhucTicrIOHzc2Xbi1Cl9ckIWvT589uRL5eW6XzjAbGyk7fEqSkvyaLabDaWUpjL5ZBMJhGPxzE0NNRSV8hamJ6exszMTFOETTCZTPD7/fD5fCyQTeeZTCaVpESZVvzfwJN7Sfe3XvqobNVFoElDjB0AwMOHD5HNZg2E/V/+y3/B9PQ0/uzP/qztNRVTU1P42te+hn/zb/5NW/ezGdhyS1vMPea7eNB3CwsLePDgAU6dOlW3a3mrMT8/z3yNrQx08qSjQi6XM6QR0gtDJFbPrUWWaKPSpvU+54/ZZrOxRgq8rki9MRottKGydP53ZLWJqoYi4YvnyXeNqVZXu/DQ9SB328DAAHK5HObm5rB7927EYjE8fPiQ+bMjkUjbSHxychKLi4s4ffr0hsjK5XLBZrOxtEBKLS0UCgbXB285k/6KmAoodlKX5W8DxsYG/DtarVaZy2RhYQG3b9+G0+lENBplRUjHjx9nY//hH/4h7ty5g7/6q7/alCK4f//v/z1+//d/v0ZeYCdiy0mbQKQtBhwfP36M5eVlnDt3btMsIdpvLBbD2bNn27JflVYDLdc9Hk+N5coTdz2LvVKpsDZTMjElGWS5uirwmiJ8UJDuHV/Krco6IN8niUnR+YpWnkjIMn85f458bnClUmFdVmh/drsdu3fvxtTUFOLxOM6cOQOz2YxoNMqKbBYWFnD16lVYLBaWPbKezBEZHj9+jHg8jtOnT7fEHWCxWOD3+5FOpw2VsuQCImODpHLFVQnFLGSl6/wqh1wf9DelT8rI2+/346mnnkImk8G9e/ewsrICt9uNz33uczh58iS+//3v48qVK/ibv/mbTUki+OpXv4quri6cO3cOzz//fNv3125seSCSXtpsNourV6/C7Xajq6sLoVAI9+7dW3emxnpRrdbX3m4leDcQv3+ZJoR4jPW+LxQKbEVCVjHtQ/W7RqtRVaiX381/rwq6yiYwmWtFJlFLpC3qXfNZK+VyGd3d3XA6nXjw4AEymQyOHz9e9zqSQNji4iIqlQoikQiTJ1hPIPrhw4dIJpM4ceJEW54r8tnTpFkqleDz+VhqIwlr0X+iNjZQ+3zQfamXwcQX/fBpo5OTk1heXsbJkydRLpfxF3/xF/jc5z6H+/fv413vehd+6qd+Cq9//evbTtwf+chH8LnPfY5J4SaTSbz1rW/F5z//+bbuV8ArJ3tELD7IZDKYmZnB9PQ0nE4ndu/e3ZCWdStQLpcxMjKCYDCIoaGhTclMoZeL9k+6E2u5P+i3MogaFLq+qhFOZdsiRI2K9aDRACQg98WLRRgqXzhP2pTuRmSk6zrLGDGbzczatNvtiEaj0DQNY2NjqFQqLHuhUZRKJSwtLWFhYQHZbBbhcBjRaLQmW0MGXV9Vf8xmszh27FhbDQHqKkTPFLmKfD5fTSqgWAMgI24+SK5qkkDPG9/RZ2pqCouLizh16hTzg3/mM5/BV77yFfz1X/81XnzxRTz33HPw+Xz4/d///bZdDxHPP/88Pv7xj+/o7JEtJ+1f//Vfxze+8Q38+I//ON785jcjl8vhT//0T/E7v/M7cDgcWFhYwOLiImw2G9OybgeBUyn80NAQ60W3GSgWixgbG8OePXvgdDpryFYG/qWTbaPyEVK6oZgL3IrJqVHSbiQPmyC6Rsh9RhBdTEQYJAZltVoRCATgcrlYybTZbN6wNg3pyywuLmJlZQU+n48V4MiKWMbHx1EsFlkQrt2g1Sv1m6TmwtRTkixbcmGpiJsSAejfoiuE35bEyABgZmYGc3NzOHXqFBv785//PL74xS/iueee29S4lIgOabcIsVgMX/7yl/Enf/InePjwIf7lv/yXeNe73oWjR4+yWT+bzWJ+fp41I+ju7kY0Gm1JilYymcTNmzdx5MgRZf5pO0BiU/v371d2hZel2vHlyCLZiVY2Pw6/hOX9zZtpaadSKelLK5NnFcmdSJmqOMUMBRqjVCrB6XSyfp/V6qrsp9vtxt69e1tKnLquY2VlBQsLC4jFYiz4RoHMsbExVKtVVkiyWXj06BHMZjMikQhzkVEaJwDDMwTUWtdE7ir5AN761nWd6YvPzs5iZmbGEGT94he/iM985jP42te+JtVef5XglZWnHQqFWCDsxRdfxA9/+EP83u/9Hh4+fIhnnnkGb37zm3H69Gns2bOHNSNYWFjAyMgINE1jFvh6gkVblZmysrKCW7duGcSmVGlWYjob/x2vc7wWiDRI5Ij2Wa8KrxE0sm+CbF8yy1vm3+YzQv7/7Z15dFNl+se/KbSF7i1tgm3YCypbWwq2MlqOyKZUklasMDp0LAw6AzNwHEfkcETrHBdm3FCOyxyXg4qgTcpiizCIAoqiMrSUspWlLd1I2rRp0yXbzf390d/7ehMSmrbJTZf38xdNwn3fJDff+97nfZ7v42q1PmTIEERGRlJx4DiOGuuPGTPG7Xm6i0QiodWIPM+jra0N9fX1KC4upuX/U6ZMEV2wW1paMHXqVHphJwVOJBuHfFbk/HLciHRl20vOP3IsofHY9evXad45Odbu3bvx0UcfoaCgYDALtkfpEytts9mMF198ERs3brQTXoPBgP3790OlUuHixYuYO3cuFAoFZs2aZWf2TpoR2Gw2KuBdpejxPE9Tr6ZPny5qjq5Wq0V5eTmmT59+wzxdfR/OSoeFzzneujri7DlhAZMjLS0tTp0LXc3NncecXVxchUuEoRFhWTRB2MqLCEdAQAAiIiLo7b/VaqXNYeVyuVvvxRPwfKfdqJ+fH0JCQlBfXw+LxYLo6GjExMQgNDTUayJeXl4Og8FwwyarsBXa0KFD6fkuzL12troWirvjYwCoZw2p7BTmnRcUFODNN99EYWEhIiMjvfJ++xEDKzziDh0dHThw4ADUajWKi4uRlpYGpVKJO++8k55AZrMZWq0WWq0WVquVtgNzvMLbbDaUlZXBarXahWDEoKqqChqNBgkJCU4vFK6+D+GuvzNu9j0Ki5ScPUeyLFyV0hMcV2Ndje2uQLsKjRABcfSwIJu3pMM8CYcIxdBisaC4uBijRo0S1a7XZrPZGfoLS7obGhpQX1+P1tZWREZGQiqV2nlb9xZXgk1wTM0kxTQk7Y9cAJ1tZJNNS0fLVYvFAq1Wi8rKSjvBPnjwILZs2YLCwkKXob9BxuATbSEmkwmHDh2CSqXCr7/+itmzZyMjIwO/+93vqBBaLBbU19dDo9HAbDYjOjoaMpkMw4YNw5kzZxAeHo5x48aJdttKNqQ6Ojq6TDVzFscmq6GbzVdoUC/EbDY7DR2R4wk3lm4m3h0dHd26M3DE2dwcH3O8MDlLixR2luE4DiEhIXbvz2w2o7i4GOPGjfO6j4gQm81GG3GMGzfupq9ramqCVquFXq9HaGgo3cjsafpbeXk5Wltb3cpOEX6/5MIo3CshzztuUAq/A5ITXl9fj/LyciQlJdHf3rfffovc3Fzs379f1M+/jzO4RVuIxWLBd999B5VKhePHj+OOO+6AUqnEnDlzaPyUnFx1dXVoamrCiBEjaMMFMUSbrL4CAwPdNrkSCqqjiDkLcwhvYYVVpUDnRc5ZuEi4OSmEWG26Cp0IaWtru2EvwFlhTVerbKG/t6NviDD+Dtgb8DuW+BuNRhQXF2PSpEnUa1oMbDYbTRftTuycpGPW19ejoaGBpid2Z5Od5J13N51QGFIT+ooLvbAJwi40xKxKp9PhypUrdoJ97NgxbNq0CYWFhaLe4fQDmGg7w2q14vvvv0deXh6OHTuGxMREKJVKzJ07F8XFxTh69ChWrlwJjuOg0Whovq1UKqV5rJ6GuANKpVLaYbo7uIpFO5YhO+vqQhocuNpgdSXawsfJ7bSrkntntrImk+mGDUdH0SbvyzFrwTEMQlbZ5PVCT5GgoCC7sUk2zm233SZqFhDHcdQBsiffsZD29nZotVo0NDSA53kq4K428Xoq2ELI50v+vzA8Iox3C7+fxsZGXLp0CUlJSfS7/vHHH/GPf/wDBQUFovoD9ROYaHcFx3H48ccfoVKpsG/fPnAch/Xr12PFihVUxDiOg06ng1arhcFgoA153SmYcAeS+z1u3LheuwPeTLhd5WWTbieuhPlmx3V8nIizMC7qeMtM0Ov11AlOOE+hMAirFYVjODo9klAIz/O05ZcwdY3Q2tqKM2fOYOrUqQgNDXX6eXgDjuNQXFyMkSNHelyozGYzrcg0Go03LDCuXLmCjo4Oj2enCL9/oS0BoampCWVlZUhMTKTfw6+//op169Zh3759GD16tMfmMoBgou0u7777Lr788kts3LgR//3vf3Ho0CFMmDABCoUCixYtoj9wm82GxsZGaDQa2vxUJpP1eKPIYDCgtLTUY7nfroT0ZuXFZMXsqntIV6tsx7GclTgLzx+z2Qyr1YrAwEAq8CTO7riJ6SxcIoxdCzNiyApPIpEgKCjohrhvc3Mzzp8/j2nTpomaVma1WlFcXIy4uDjccsstXh3LcYFBytCF6XVioNfrceHCBSQlJVHBLioqwl/+8hfs2bPnprH8QQ4TbXeora3Fc889h23bttETzGazobi4GCqVCl9//TXkcjkUCgXuv/9+Kq6OG0Xh4eHUD8UdASe9/qZPn+7R3G/HTUNS2OBqTsLXCLMGhMdz9n+cibOz15P8XyHu5FwDoB1khK9xvLiQv8mchg0bdsN4pBFuQkKCaC3ngN+yU0aPHi1qBS0AXL58mZowNTU1ieJMCPx2cSQ9LAHgzJkz+NOf/gS1Wo2JEyd6bewBABNtT8DzPEpLS6FSqVBYWIjo6GgolUosXryYpinxPA+9Xk8r3kJDQyGTyRAVFeV0hUN8UxISEnpdtOIMYSyYiKizHG1naX7CsEZ3QiauDKqcxbMd+wWS1zn+7Sj4ZLORzJnErknxj7PPkvRVFN6miwHJThk7dqxHPNbdhec7PUyEIRGe/82ZUKfTecWZEOjM2z937pzdxfHcuXPIycnBF198gdtvv91jYw1QmGh7Gp7v7A6tUqlQUFCA0NBQLFmyBA888AA1GyI7/RqNBjqdDiEhIZBKpYiOjoafn5+di5s3b1mdhUSIB4bw8Zvl6rrKQulOaMTZ6xyP62rlLfz/JpMJJpMJ/v7+1JGO3CW4auig0WhQWVnZZV9FT2M2m1FUVIQJEyYgOjpatHF5vrNVl7DzizM87UwIdIb6zp49ayfYFy9eRHZ2Nnbs2IFp06b1+H3dDKPRiLS0NJhMJlitVixduhS5ubleGUsEmGh7E7KiUalU2Lt3LwICArBkyRIoFAqMHDmSCrjBYKA7/RaLBUFBQaJVVzoTbuF36eqiISyOEGZmEFwd05OhkZs1+SUtwAwGA61wdQwx1dbWUn8LsZo6k7mdPn36pl4x3sBdwXakN86EhNbWVpSWltqF+q5cuYJHHnkEn3zyCRITE3v6trqE5zttAUJCQmCxWHDXXXdh69atSE1N9dqYXoSJtljwPI9r164hPz8fu3fvhs1mQ3p6OjIyMiCXy9Hc3IyvvvoKd9xxB4YOHYqGhgYEBARQQytvCjgJHTg+5iwFUPi8UNBJqMLRplP4vLNVtslkuiEk4U5oxFnJPRFxYf61zWaj1a2kBFwqlaKxsRGNjY2YPn26qBtwJP/71ltvFbUku6eC7Uh3nAkJJCNn+vTpdIO3srISy5Ytw4cffoiZM2f2+H11l/b2dtx111149913kZKSItq4HoSJti/geR51dXXIz89Hfn4+9Ho9DAYDVqxYgSeffJL+oNra2qil7NChQ6kfiidv469du0Y76wgd24RVbc5Wwq78S4T9Obsq5jEYDDd08XY3NCJcuZMKTOHjzu4gyIqxoqICRqMRsbGxkMlkdg1svQlp7Cx2/jeporVYLN32/+7quM3Nzaivr4dOp8OwYcNomI+co21tbSgpKcG0adPod11dXY2srCy89957oq12OY5DcnIyLl++jDVr1mDLli2ijOsFmGj7mvPnzyMrKwsLFizAmTNn0NTUhPvvvx8KhQK33nor/YF1dHRQS1k/Pz8q4D3dOCM/ZKPRSAsqiLG948YjWfkSgXS1AheufIUxb1cbkGaz+YY7iJuFRoTHFp5vjhujrlZ85D2bzWZMmjSJbgyT1EypVEptWD0NES+hG6MYeEuwnY1DnAnJORoREQGNRoPp06fTlNi6ujosXboUW7duRVpamlfmcjP0ej0yMjLw9ttvY+rUqaKP7wGYaPuStrY2zJ07Fx999BGmTJkCoDPNb+/evVCr1bh+/ToWLlyIjIwM3H777XaOhOSWn+d5tx0JCTabDefOnYO/v/8NRv6kZ6Oz8IRwFesMV0ZQRPRJkQsJiTjLShGuoIVpiY4XEYJwlS0snXaE53lcuHABEonE7mJIxiUC3tTUhNDQUEil0pve8ncHXxXsiCXYztDr9SgpKcGwYcPQ0tKC/fv3Y968eXjxxRfx2muvYe7cuaLNxZHc3FwEBwfjqaee8tkcekH/FO0DBw5g3bp14DgOq1atwjPPPOPJw4sKcZlzhl6vx1dffYX8/HzqCa5UKmnrJaAzY4IIOMdxVMBd5XWTUmnSCs0ZEkmnc5urDUJnTn+uLF1dbUBardYbmsM6S/0jxTDC1zgWzrhyHhT+n3PnzmHYsGGYMGHCTV9LMntI6tvw4cPpLX9P9hVIcZQwPCAGvhRsEgaaPHkywsLCYDAYsH37dnz88ccwmUxYvHgxlEol0tLSRNlsr6+vp92HOjo6sGDBAmzYsAHp6eleH9sL9D/R5jgOkyZNwqFDhyCXyzFr1izs3LkTkydP9tQQfRKDwYDCwkKo1WrqCa5UKjFz5kwqrqRcWaPRwGKxICYmBjKZjG7+mM1mnD59GnK53K3KO2K+BNjHsZ2JpasQiLPVtzMjKPJaZ/ngwjGEgk3oSrDdccxzBrnlJ5k9ZF/BXRMm0slIuAEnBjzP49KlS+A4TvRON2Sj9fbbb6cWBI2NjcjMzMTmzZuxYMECHD16FHv37sWSJUuwYMECr8+ppKQE2dnZdKM8KysLmzdv9vq4XqL/ifZPP/2E559/HgcPHgQAvPzyywA6OyUPFognuEqlQklJCfUET01NtfMobmhogEajgdFoREREBHQ6HSZNmtQtm0tS5uwsJCIUUVcZI85W32SVLcRZxojjKtvRLbArMeI4DqdPn0ZMTEyvDZgA0E5H9fX1XYalSJm22BWWvhRsk8mEoqIiu41WvV6PBx98EE8//TQyMjJEm8sApv+JtkqlwoEDB/DBBx8AAD799FP8/PPP2LZtm6eG6FcQT/C8vDz873//s/MEJ0JbXV2Nq1evIjg4GBaLpUeOhKRA5WYGUI4C7e4q21nGiGM2iCtTKVdYLBacPn0asbGxiI2Ndfv/uYvJZKKdjoSphCEhIdDr9bh48aJdmbYY8DyPsrIy8Dx/Q9ze25hMJmplS1IZW1pasHTpUvztb39DVlaWaHMZ4HjsSxWtMsHZD1fMk7OvERgYiPT0dKSnp8NsNlNP8KeeegopKSkYP348duzYgcOHDyMiIoIaBl27dg2tra2IiopyK+2NWLQKV92OJe7CjBGe512uzp3FyoWPOVY6dlewSXn4mDFjvObnERgYCLlcDrlcTu9qrl69CoPBAI7jMHnyZFFL4n0p2OTznjhxIhXs1tZWLFu2DE888QQT7D6KaKItl8tRVVVF/66urvbKSqo/EhAQgIULF2LhwoWwWq345z//iXfeeQcjR47Ehg0boFQqcc8999DbemJAX1NTg/Pnz9PWVZGRkS5/9FarlYY3HFfeEomENiDw8/OD2WymK21izUlW5YC9GAufI6tuZx1quoJUG4pZHu7v749bbrkF/v7+uHz5MsaPHw+tVovLly97PZUQ8K1gE8Or+Ph42iyivb0dy5YtQ3Z2Nh599FHR5sLoHqKFR6xWKyZNmoTDhw8jLi4Os2bNwueff05T5hidvP/++1Cr1VCpVAgODsbx48ehVqvx7bffYsqUKVAoFJg/fz7NMiGOhBqNBs3NzQgPD4dMJutSbEjM27EYx1kzBcfwiTAsQv7tTpcbV5CsBbGrDYHOJssVFRV2HibeTiUEfC/YRUVFdu3YjEYjli9fjszMTKxevXpQ3wV7if4X0waA/fv3Y/369eA4Djk5Odi0aZNHjpuTk4OCggJIpVKUlpZ65Ji+oqioyOktus1mwy+//AKVSoVDhw4hPj4eSqUSCxcupClpPM9TS9mmpiaEhYVRsbmZgHMch5qaGkilUrtwizDThKykhWGUnqyoHfFV8QoA2kE8MTHRZQqbp1MJyTEvXrwIiURyQ769t7FarSgqKsKYMWOoQ6HJZMKjjz6KRYsWYe3atUywvUP/FG1vcezYMYSEhGDFihX9XrTdgXiC5+Xl4cCBAxg1ahT1BBd2jGluboZGo0FjYyNCQkIgk8luWC2SdEKxu5YDv6XWiZ0LDXRW+NXU1HTLdKq3qYTkGL4UbNKhnuwZmM1m/PGPf8Tdd99tZ8XA8DhMtB2pqKhAenr6oBBtITzf6Qmel5dHu18rFAqkp6fTWKXjajEoKAhSqRShoaEoLS0V3WYU+C21ztONItyhpqYG169fR2JiYq/CHd1JJQR8K9ikLVpcXBy9OFutVuTk5CA5ORnPPPMME2zvwkTbkcEq2kJIyTfxBA8LC6MCLvQEb21tRXV1NWpraxEWFga5XO71ridCdDodLl++jISEBFFT6wCgqqoKDQ0NHncJdJZKSAqkyOd+4cIFDBkyBBMnTvSJYMfGxtLiLI7j8Pjjj2PSpEl47rnnmGB7HybajjDRtodYeqrVauzduxeBgYF44IEHoFAocOnSJezbtw/PP/88ANDbfX9/f3q7763GAs42/sSisrISTU1NmD59utcyQgB7H+uOjg5ERUWhvb0dw4cP98kK+/Tp05DJZLTxMMdx+Otf/4rY2Fi8+OKLTLDFgYm2I0y0XUM8wdVqNT7++GPodDrk5OTgD3/4A+RyOf3Rtre309t9Pz8/6gnuqbxlEkdOSEgQbVVPKC8vh8FgwNSpU70q2I5YrVacPn2atk8TI5WQYLPZaGWpXC6nj61fvx7h4eH497//LepnMcjpf8U1DN8hkUgwZswYjBs3DiEhIfjss89w7NgxPPHEEzAajUhPT4dCocC4ceMwduxYjB07lsZrS0pKIJFIaLy2p+GM6upqaLVa0buHky5E7e3togs2SesLCwtDfHw8eP63fqNlZWVeSSUk2Gw2lJSUIDo62k6wn376aQwfPpwJdj9mQKy0ly9fjiNHjqChoQEymQy5ublYuXKlr6fVpzCbzXjiiSfwxhtv2GWYaLVa7N69mzZ1IJ7gwtt4oSOhzWajhlbuenNUVFRAr9d7vXemI0If7t50fenp2OfPn4e/vz/i4+Oduih6OpWQQMy2IiMjMXr0aPrYs88+i46ODrzzzjteE+yqqiqsWLEC169fh5+fH1avXo1169Z5Zax+BguPeJvBePLpdDrs2bMH+fn5uH79OhYtWkQ9wYnomM1mKuBWqxUxMTG0cawjJK5Ouof7YpVrs9lEN2Aigh0QENClpSx5fW9TCQk2mw2lpaUICwujFr48z+OFF16AVqvFBx984NULZ11dHerq6jBjxgwYDAYkJydjz549A97N0w2YaHubwX7y6fV67Nu3D/n5+aisrKSe4MJNPIvFQi1lzWazXcYEAJSVlYHjONF9oUmmhp+fn+gbfzzP49y5cwgMDHRLsJ3R3VRC4dhnz55FcHAwtbPleR6vvPIKysvLsX37dlHvdABAoVBg7dq1mD9/vqjj9kGYaIvNYD75hJ7gZWVl1BM8OTmZCrjVaqUpbx0dHeB5HqGhoZg8ebLoK+xz584hICDAaVhCjLF7I9iOOKYSCu9sHHt5ChtGkMdef/11lJaWYseOHaJ2rgc6w2JpaWl05T/IYaItJuzk+4329nZ8/fXXUKvVOHPmDObMmQOlUomUlBQMGTIERqMR33//Pa24a2trw4gRIyCTybplKdsTbDYbzp49i6CgIIwfP94ngj1s2DCvje2YSkisekNDQ3HhwgW7cAzP89i2bRtOnDiBL7/8UvRsndbWVsyZMwebNm1CZmamqGP3UZhoiwU7+VxjNBqpJ/ipU6eQkpKCkpISLFmyBH//+98BdOYENzY2QqPRwGAwICoqClKpFBERER4VNhLLDQ0N7Xanm95CwhLDhw+nq1xvQ6x6SRycrLDDwsIQEBCA//znPzh8+DDUarWoVrNA58UlPT0dCxcuxJNPPinq2H0YJtpiwE4+99HpdJg3bx5GjBiB69evIyUlBQqFAmlpaXbueY2NjdBqtWhubkZERARkMhkiIiJ6FUIh6W2RkZEYM2aMp96SW/hCsIVjE6fAmJgYFBUVYf369YiLi0NbWxsOHz4sumsiz/PIzs5GVFQU3nzzTVHH7uMw0fY27ORzH9J0de3atXj44YdhtVpx9OhRqFQqfP/995gxYwYUCgXmzp1LV33E/lSj0UCv1yMsLAwymQxRUVHdEnDS8Dg6Otojrcm6g68F+9KlS7DZbHbWrtu3b8euXbuQnJyM7777DhMmTMCzzz6LhIQEUeb1ww8/4O6778a0adPo9/jSSy/h/vvvF2X8PgwTbW/jzZPPaDQiLS0NJpMJVqsVS5cuRW5ubq+P6yuIEdJtt912w3Mcx+H48eNQqVT47rvvMHXqVCgUCsybN48aRQmLThobG90uOiGeGiNHjqQl2mJBBJvEz8Ue+8qVKzCbzXaZOV988QW2b9+OwsJCBAcH0zlGRETQAhuGz2Ci3Z8hebkhISGwWCy46667sHXrVqSmpvp6al6FeILn5eXhm2++QXx8PDIyMrBgwQI7T/CWlhZoNBrodDoEBwdDJpMhOjraTsCJzWhcXJxbHeo9CXFWDA4OFl2wAeDKlSswGo12BUP5+fl4//33sX//foSGhoo+J0aXsDL2/oxEIqEiZbFYYLFYBoVpj5+fH1JTU5GamgqbzYaioiLk5eXhtddew+jRo6FQKHDfffchPDwc4eHh1JFQo9GgvLycVg1GRESgtLQUo0eP9lovSVeQDBVfCXZ5eTktViLnTEFBAd555x0UFhYywR4EsJW2j+A4DsnJybh8+TLWrFmDLVu2+HpKPoNkfqhUKhQWFkImk0GhUGDx4sXUExzozOSpra1FdXU1goODMWrUKMTExIiWzubLDBWgM/W0paXFzkPl4MGD2LJlCwoLCzFixAjR58RwGxYeGSjo9XpkZGTg7bffxtSpU309HZ/j6AkeHh5OPcFNJhP+9a9/YfPmzRg+fDitGiRl31Kp1Gt2r74W7MrKSurfQgT78OHDeOGFF2jzC0afhon2QCI3NxfBwcF46qmnfD2VPgXZcFOpVFCpVKitrcVDDz2EdevWQSaT0fAAKfvWarXw8/Ojvh2earDga8GuqqqCTqezsxA4duwYNm3ahMLCQtHbxDF6BBPt/kx9fT38/f0RERFB0+U2bNiA9PR0X0+tT1JVVQWlUokNGzagqqoKe/bsgUQiQXp6OpRKJeLi4qiAG41GKuDd8e1whTMDJjGprq5GfX09EhISqGAfP34cTz/9NAoKCkTPmmH0GCba/ZmSkhJkZ2eD4zjYbDZkZWVh8+bNvp5Wn2XVqlVYtWoVza7heR61tbVQq9XYvXs3TCYT9QQfO3asnaUs8e2wWq1UwN3tSelrwa6pqYFGo0FCQgLNnPnll1+wfv167Nu3j9quMvoFTLQZruE4DjNnzkRcXBwKCgp8PZ1ew/O8y+wa4gmen5+P/Px8NDc3Y/HixVAoFHa9GM1mMxVws9lMjZdcdYEnntTh4eE+Eey6ujrU1tbaNR8+deoU1qxZgz179vgkTMPoFUy0Ga55/fXXcfLkSbS0tAwI0e4ODQ0N2Lt3L9RqNbRaLRYtWgSlUmlXhOJovEQsZUNCQiCRSKhgR0REiF4WDwDXr19HTU2NnWCXlJRg9erVUKvVmDhxouhzYvQaJtoM51RXVyM7OxubNm3C66+/PuhEWwjxBFer1bh27RoWLFgApVJpl4FhtVqh0+mg0WjQ3t6OqKgotLS0IDo62icrbI1Gg6qqKiQmJlIr1XPnziEnJwdffvml06pTRr+AiTbDOUuXLsXGjRthMBjw6quvDmrRFtLS0kI9wS9duoR7770XSqUSM2bMoAJuNBpRUlICm80GnucRFRUFmUyG8PBwUYqftFotKisrkZSURAX74sWLyM7Oxueff85SQvs3HjuBWGfPAURBQQGkUimSk5N9PZU+R1hYGJYvXw6VSoWffvoJs2fPxrvvvovZs2djw4YNOHr0KJRKJTQaDVJTU5GSkoKoqCjU1NTgxIkTuHDhAhobG9HFIqfH1NfXo6Kiwm6FfeXKFWRnZ+OTTz5hgs2gsJX2AGLjxo349NNPMXToUBiNRrS0tCAzMxOfffaZr6fWZzEajSgsLMSTTz6J6OhozJo1C0qlErNnz6biabPZ0NTUBK1WC71ej/DwcMhkMkRGRnqkK49Op8OVK1eQlJREqzsrKyuxbNkyfPjhh5g5c2avx3BFTk4OvdiXlpZ6bRwGC48wuuDIkSMsPOIGJpMJWVlZmD9/PlavXk0bB5w4cQKpqanUE5yIKXEk1Gg0aGpqQlhYGHUk7ImANzY24tKlS0hKSqLVnNXV1cjKysJ7773ndROxY8eOISQkBCtWrGCi7V2YYRRDfMaOHYvQ0FAMGTIEQ4cOxcmTJ309pV6j1WqhVCrx2GOPAQDuu+8+3HfffbBYLDh27Bjy8vKwceNGJCcnQ6FQ4J577kFkZCQiIyPB8zyam5uh1Wpx+fJlhISEQCaTdWkpS2hqarpBsOvq6vDwww/jrbfeEsX1MS0tDRUVFV4fh+E52Eqb4TZjx47FyZMnER0d7eupiArHcfjhhx+gUqlw5MgRTJs2jXqCk0pLnudhMBiopWxQUBCkUimio6OdNtTV6/W4cOECkpKSaGMIjUaDBx98EK+++irmzp0r2vurqKhAeno6W2l7F7bSZjDEYsiQIZgzZw7mzJkDm82GEydOQKVS4aWXXsLEiROpJ3hYWBjCwsIQHx+P1tZWmg0SGBhI/VD8/f3R3NyMCxcuIDExkQp2fX09HnroIbz88suiCjaj/8FW2gy3GTduHCIjIyGRSPD4449j9erVvp6ST7HZbDh16hRUKhUOHjyIMWPGUE/wsLAw+rq2tjbqSAh0bn4mJibS1zQ2NiIzMxObN2/2if8MW2mLAtuIZIhPbW0tYmNjodVqMX/+fLz99ttIS0vz9bT6BMSnJC8vD/v378fIkSOpJzhprltWVob6+npIpVI0NjYiNzcXs2fPxjfffIONGzciIyPDJ3Nnoi0KTLQZvuX5559HSEgIs5N1As/zOH/+PPUEj4yMREpKCnbs2IHCwkJq9HT69Gls2LABOp0OMTExyMzMRGZmpqj9HJcvX44jR46goaEBMpkMubm5WLlypWjjDyKYaDPEpa2tDTabDaGhoWhra8P8+fOxefNmLFq0yNdT69PwPI8DBw5g5cqVmDBhAvz9/bFkyRLMmzcPa9aswerVq/HII4+grq4Oe/bsAcdxWLt2ra+nzfA8TLQZ4nL16lV6+261WvH73/8emzZt8vGs+j5lZWXIysrCzp07cdttt6GiogJqtRrbtm3DY489hueee87XU2SIAxNtxsBDr9dj1apVKC0thUQiwUcffYQ777zT19PqFdXV1WhubsaUKVPsHr+Z3SxjQMJEmzHwyM7Oxt13341Vq1bBbDajvb0dERERvp4Wg+EJmGgzBhYtLS1ISEjA1atX2QqUMRBhLn+MgcXVq1cRExODxx57DElJSVi1ahXa2tp8PS0Go8/BRJvRJ7BarTh16hT+/Oc/o6ioCMHBwXjllVd8PS0Go8/BRJvRJ5DL5ZDL5UhJSQHQ2czh1KlTPp4Vg9H3YKLN6BOMHDkSo0aNwsWLFwEAhw8fxuTJk308Kwaj78E2Ihl9huLiYpo5Mn78eHz88ce0BJzB6Oew7BEGw10uXryIhx9+mP599epVvPDCC1i/fr3vJsUYbDDRZjB6AsdxiIuLw88//4wxY8b4ejqMwQNL+WMwesLhw4cxYcIEJtiMfgsTbcagYteuXVi+fLmvp9FjDhw4gFtvvRXx8fEsJXKQwsIjjEGD2WxGbGwszp49C5lM5uvpdBuO4zBp0iQcOnQIcrkcs2bNws6dO1mWTf+AhUcYjO7y9ddfY8aMGf1SsAHgl19+QXx8PMaPH4+AgAAsW7YMe/fu9fW0GCLDRJsxaNi5c2e/Do3U1NRg1KhR9G+5XI6amhofzojhC5hoMwYF7e3tOHToEDIzM309lR7jLJTJzLUGH0y0GYOCoKAg6HQ6hIeHe+X4b7zxBqZMmYKpU6di+fLlMBqNHh9DLpejqqqK/l1dXY3Y2FiPj8Po2zDRZjB6SU1NDd566y2cPHkSpaWl4DgOu3bt8vg4s2bNwqVLl1BeXg6z2Yxdu3ZhyZIlHh+H0bcZ6usJMBgDAavVio6ODvj7+6O9vd0rK+ChQ4di27ZtWLhwITiOQ05Ozg0dcRgDH5byx2B4gK1bt2LTpk0YPnw4FixYgB07dvh6Soy+BUv5YzD6Ck1NTdi7dy/Ky8tRW1uLtrY2fPbZZ76eFmOA0tVKm8FgdIFEInkIwCKe51f+/98rAKTyPP8X386MMRBhK20Go/dcA5AqkUiCJJ05ePcCOO/jOTEGKEy0GYxewvP8zwBUAE4BOIPO39V/fDopxoCFhUcYDAajH8FW2gwGg9GPYKLNYDAY/Qgm2gwGg9GPYKLNYDAY/Qgm2gwGg9GPYKLNYDAY/Qgm2gwGg9GP+D+mXrYlkprHbAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 360x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Calculate specific elastic energy\n", "\n", "Cxx = polyder2D(Cij, 2, 0)\n", "Cxy = polyder2D(Cij, 1, 1)\n", "Cyy = polyder2D(Cij, 0, 2)\n", "\n", "wxx = np.polynomial.polynomial.polyval2d(X, Y, Cxx)\n", "wyy = np.polynomial.polynomial.polyval2d(X, Y, Cyy)\n", "wxy = np.polynomial.polynomial.polyval2d(X, Y, Cxy)\n", "\n", "dV = ((wxx + wyy)**2 - 2*(1 - nu)*(wxx*wyy - wxy**2))*D/2\n", "\n", "# Visualize energy density\n", "\n", "f4 = plt.figure(3, figsize=(5,5))\n", "ax = f4.add_subplot(projection='3d')\n", "\n", "ax.plot_surface(X, Y, dV/1000, \n", " rstride=sy, cstride=sx, \n", " cmap=cm.Greys, shade=True)\n", "\n", "ax.set_xticks(np.linspace(0, a, sx)); ax.set_xlim((0, a));\n", "ax.set_yticks(np.linspace(0, b, sy)); ax.set_ylim((0, b));\n", " \n", "f4.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The total elastic potential energy can be obtained by integrating the specific energy:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total elastic energy in the plate: 3933kJ\n" ] } ], "source": [ "V = np.sum(dV)*dx*dy\n", "\n", "print('Total elastic energy in the plate: {0:5.0f}kJ'.format(V/1000))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With this value, it becomes possible to calculate which displacement amplitude, $W_0$,\n", "satisfies the energy conservation condition with:\n", "\n", "$$ w_{\\rm max} = p \\; \\frac{W_{\\rm ext}}{V}$$\n", "\n", "ou:\n", "\n", "$$ p = \\left( \\frac{V}{W_{\\rm ext}} \\right) \\; w_{\\rm max} = K w_{\\rm max}$$\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Stiffness coefficient at the plate center: 485170 (N/m2)/m\n", "Displacement for p = 2000N/m2: 4.12 mm\n" ] } ], "source": [ "print('Stiffness coefficient at the plate center: {0:6.0f} (N/m2)/m'.format(V/Wext))\n", "print('Displacement for p = 2000N/m2: {0:6.2f} mm'.format(1000*2000*Wext/V))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the example, the exact maximum displacement has been calculated with the\n", "_engineering Fundamentals site_ ([efunda](https://www.efunda.com/formulae/solid_mechanics/plates/calculators/SSSS_PUniform.cfm)) as $w_{\\rm max} = 3.99$mm, what implies that\n", "the tentative function leads to an error in the order of only 3%.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.2. Reference kinetic energy <a name=\"section_32\"></a> \n", "\n", "On the other hand the reference kinetic energy per unit area depends directly \n", "from the solution $w(x,y)$, which is assumed to be quite close to the first vibration mode\n", "(it was chosen intentionally so!!!) as:\n", "\n", "$$ dT_{\\rm ref} = \\frac{1}{2} \\mu w^2 \\, dx \\, dy$$\n", "\n", "which can be easily evaluated and integrated with the tentative solution:\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total kinetic reference energy in the plate: 1250J\n" ] } ], "source": [ "dTr = (W0**2)*mu/2\n", "Tr = np.sum(dTr)*dx*dy\n", "\n", "print('Total kinetic reference energy in the plate: {0:5.0f}J'.format(Tr))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once both potential and reference kinetic energies are known, the principle of minimum\n", "Rayleigh quotient can be used for calculating the natural frequency estimated with\n", "the tentative solution. This is demonstrated in the next section.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Vibration modes and frequencies <a name=\"section_4\"></a> \n", "\n", "The table below was taken from a _Sonderausdruck_ (special edition) of the german _Betonkalender_ \n", "(concrete almanac), 1988. The table shows the natural frequencies and vibration modes for rectangular\n", "plates with some common kinematic boundary conditions:\n", "\n", "<img src=\"images/plates.png\" alt=\"Plates modal shapes\" width=\"640px\"/>\n" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exact frequency for the given thin plate: 8.92Hz\n", "Estimated modal frequency for the given shape: 8.93Hz\n" ] } ], "source": [ "f0 = np.sqrt(D/mu)*((np.pi/a)**2 +(np.pi/b)**2)/2/np.pi\n", "f1 = np.sqrt(V/Tr)/2/np.pi\n", "\n", "print('Exact frequency for the given thin plate: {0:5.2f}Hz'.format(f0))\n", "print('Estimated modal frequency for the given shape: {0:5.2f}Hz'.format(f1))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5. Assignments <a name=\"section_5\"></a> \n", "\n", "Apresentar o modelo estrutural proposto submetido a uma carga dinâmica definida como a densidade espectral, com valor r.m.s. prescrito, de uma força concentrada (aplicada no topo para estruturas verticais, e no centro para estruturas horizontais). Resolver:\n", "\n", "1. no domínio do tempo (simulação da série temporal e solução por superposição modal através de Duhamel) e \n", "2. no domínio da frequência (integrando o espectro da força modal multiplicado pela função de admitância), calculando o espectro da resposta e seu valor r.m.s. e pico (fórmula de Davenport).\n", "\n", "Apresentar os resultados e gráficos pertinentes.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Raw Cell Format", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 2 }