{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Universidade Federal do Rio Grande do Sul (UFRGS) \n", "Programa de Pós-Graduação em Engenharia Civil (PPGEC) \n", "\n", "# PEC00144: Experimental Methods in Civil Engineering\n", "\n", "\n", "### Part II: Instrumentation\n", "[12. Strain gages and load cells](#section_12) \n", "\n", "   [12.1. Strain gage principles](#section_121) \n", "   [12.2. Wheatstone bridge configuration](#section_122) \n", "   [12.3. Strain gage installation](#section_123) \n", "   [12.4. Load cell design](#section_124) \n", "   [12.5. Bridge signal conditioning](#section_125) \n", "\n", "---\n", "_Prof. Marcelo M. Rocha, Dr.techn._ [(ORCID)](https://orcid.org/0000-0001-5640-1020) \n", "_Porto Alegre, RS, Brazil_ \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 12. Strain gages and load cells \n", "\n", "### 12.1. Strain gage principles \n", "\n", "\"Strain\n", "\n", "\n", "\n", "\n", "
\"Strain \"Strain
\n", "\n", "The gage equation is:\n", "\n", "$$ \\frac{\\Delta R}{R} = K\\varepsilon $$\n", "\n", "where $R$ is the gage resistance (usually 120 or 350Ω), $K$ is the gage factor\n", "(approximatelly 2.1 for comercial foil gages) and $\\varepsilon$ is the local strain.\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.735\n", "1.344000000000051\n" ] } ], "source": [ "R = 350.\n", "K = 2.1\n", "e = 1/1000.\n", "\n", "DR = R*K*e\n", "\n", "print(DR)\n", "\n", "VA = 5*(350 + DR)/(2*R)\n", "VB = 5*(350 - DR)/(2*R)\n", "\n", "G = 128\n", "print(G*(VA - VB))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.2. Wheatstone bridge configuration \n", "\n", "A Wheatstone bridge can be seen as a double voltage divider.\n", "The resistors can be replaced by strain gages as shown below:\n", "\n", "\n", "\n", "\n", "
\"Quarter \"Half
\n", "\n", "\"Full \n", "\n", "For the full bridge with four strain gages the voltage difference, $\\Delta V = V_2 - V_1$, \n", "between the central nodes are given by:\n", "\n", "$$ \\Delta V = \\frac{1}{4}\\left( \n", " \\frac{\\Delta R_A}{R_A} + \\frac{\\Delta R_B}{R_B} +\n", " \\frac{\\Delta R_C}{R_C} + \\frac{\\Delta R_D}{R_D}\n", " \\right) V_{\\rm in} $$\n", "\n", "To maximize this difference, variations $\\Delta R_A$ and $\\Delta R_C$ must \n", "opose the variations $\\Delta R_B$ and $\\Delta R_D$. In the best case, with all\n", "gages subjected to the same strain and with oposition ensured, we get:\n", "\n", "$$ \\Delta V = K \\varepsilon V_{\\rm in} $$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.3. Strain gage installation\n", "\n", "[A nice video showing how to glue a strain gage in place!](https://www.youtube.com/watch?v=7DXERPk_164)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12.4. Load cell design\n", "\n", "\"Ring\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 2 }