{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Universidade Federal do Rio Grande do Sul (UFRGS)   \n",
    "Programa de Pós-Graduação em Engenharia Civil (PPGEC)   \n",
    "\n",
    "# Tower: \n",
    "## Análise da Resposta Dinâmica de Torres à Ação do Vento\n",
    "\n",
    "---\n",
    "_Prof. Marcelo M. Rocha, Dr.techn._ [(ORCID)](https://orcid.org/0000-0001-5640-1020)  \n",
    "_Prof. Acir M. Loredo-Souza, Ph.D._ \n",
    "\n",
    "_Porto Alegre, RS, Brazil_ \n",
    "\n",
    "[![DOI](https://zenodo.org/badge/153307961.svg)](https://zenodo.org/badge/latestdoi/153307961)\n",
    "___\n",
    "\n",
    "[1 Introdução](#section_1)   \n",
    "[2 Dados da torre utilizada como exemplo de análise](#section_2)   \n",
    "[3 Fundamentos teóricos para o cálculo das forças aerodinâmicas](#section_3)   \n",
    "[4 Resposta dinâmica por superposição modal](#section_4)   \n",
    "[5 A força modal conforme a NBR-6123](#section_5)   \n",
    "[6 Cálculo da resposta modal média e flutuante](#section_6)   \n",
    "[7 Cálculo das amplitudes de deslocamento](#section_7)   \n",
    "[8 Cálculo comparativo da resposta sem amplificação dinâmica](#section_8)   \n",
    "[9 Forças estáticas equivalentes](#section_9)   \n",
    "[10 Referências](#section_10)   \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Módulos Python necessários neste notebook:\n",
    "\n",
    "import numpy  as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# O módulo \"Tower\" contém algumas funções desenvolvidas especialmente para este notebook:\n",
    "\n",
    "from Tower import *\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1 Introdução <a name=\"section_1\"></a> \n",
    "\n",
    "A metodologia de análise apresentada neste artigo corresponde ao método dinâmico apresentado no Capítulo 9 da NBR-6123. Faz-se uso dos mesmos modelos para a densidade espectral da velocidade do vento e para sua estrutura de correlação dependente da freqüência (função de coerência). \n",
    "A resposta dinâmica é calculada através do método de superposição modal, mas restringe-se aqui a resposta a um único modo de translação pura (sem torção).\n",
    "Como muitas das fórmulas apresentadas a seguir incluem constantes físicas dimensionais, deve-se adotar estritamente o sistema internacional de unidades (SI).\n",
    "\n",
    "O método do Capítulo 9 da NBR-6123 considera a disponibilidade de um modelo discreto da estrutura a ser analisada. O presente artigo inclui a preparação deste modelo, o cálculo de suas propriedades dinâmicas, o cálculo da resposta estrutural e, por fim, o cálculo das forças estáticas equivalentes a serem utilizadas no projeto.\n",
    "\n",
    "<img src=\"resources/tower.png\" alt=\"Tower\" width=\"320px\"/>\n",
    "\n",
    "É importante lembrar que a norma impõe uma análise dinâmica para estruturas sujeitas à ação do vento cuja frequência fundamental de vibração livre esteja abaixo de 1Hz. \n",
    "Dependendo da massa posicionada na parte superior da torre, a frequência fundamental\n",
    "pode ser afetada pelo efeito de segunda ordem devido à carga compressiva, o que\n",
    "neste caso precisa ser devidamente considerado.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2 Dados da torre utilizada como exemplo de análise <a name=\"section_2\"></a> \n",
    "\n",
    "Para os procedimentos de cálculo apresentados ao longo deste artigo será utilizada como exemplo uma torre metálica constituída de um tubo com seção circular variável, com segmentos emendados por traspasse, cujas propriedades estão dadas abaixo (carregadas de uma planilha Excel utilizando-se o módulo ```pandas```):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Lê arquivo de dados com \"pandas\" e ajusta unidade\n",
    "\n",
    "with open('resources/structure.xlsx', 'rb') as target:\n",
    "    sheet =  pd.read_excel(target, sheet_name='data')\n",
    "    data  =  sheet.values\n",
    "    \n",
    "z  =  data[:,0]              # coluna 1: cota vertical dos limites (m)\n",
    "D  =  data[:,1]/1e2          # coluna 2: diâmetro externo nas cotas dadas (cm)\n",
    "S  =  data[:,2]/1e4          # coluna 3: área da seção transversal (cm^2)\n",
    "I  =  data[:,3]/1e8          # coluna 4: momento de inércia de área (cm^4)\n",
    "\n",
    "H  =  z[0]                   # altura total da torre\n",
    "\n",
    "# Média das duas extremidades para obter propriedades dos segmentos\n",
    "\n",
    "zm = (z[:-1] + z[1:])/2      # cota média de cada segmento\n",
    "Dm = (D[:-1] + D[1:])/2      # diâmetro externo médio de cada segmento\n",
    "Sm = (S[:-1] + S[1:])/2      # seção transversal média de cada segmento\n",
    "Im = (I[:-1] + I[1:])/2      # inércia de área média de cada segmento\n",
    "\n",
    "NS =  len(zm)                # número de segmentos       \n",
    "\n",
    "# Propriedades derivadas dos dados fornecidos\n",
    "\n",
    "L  =  z[:-1] - z[1:]         # comprimento de cada segmento\n",
    "M  =  7850*Sm*L              # massa de cada segmento\n",
    "EI =  2.05e11*Im             # rigidez à flexão de cada segmento\n",
    "IR =  M*L**2/12 + 7850*L*Im  # inércia rotacional do fuste\n",
    "CA =  0.6*L*Dm               # área efetiva de arrasto (cilindro, vide gráfico)\n",
    "\n",
    "# O seguinte artifício aproxima a solução estática com o método dinâmico,\n",
    "# pois mantém a rigidez da estrutura aumentando sua frequência fundamental.\n",
    "# Para fazer esta verificação, retirar o simbolo de comentário da linha abaixo:\n",
    "# M = M/100                   \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "O coeficiente de arrasto definido para o fuste da torre foi obtido do gráfico abaixo:\n",
    "\n",
    "<img src=\"resources/drag.png\" alt=\"drag\" width=\"640px\"/>\n",
    "\n",
    "Foi utilizado um número de Reynolds $ Re = 70000 V_k D \\approx 2\\times 10^6$, o que implica em $C_{\\rm a} \\approx 0.6$. Este coeficiente foi utilizado ao longo de todo o fuste na entrada de dados acima.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3 Fundamentos teóricos para o cálculo das forças aerodinâmicas <a name=\"section_3\"></a> \n",
    "\n",
    "A força dinâmica exercida pelo vento em um segmento vertical de uma torre, com área de exposição, $A$,  e coeficiente de arrasto associado, $C_{\\rm a}$, é uma função da altura em relação ao solo, $z$, e do tempo, $t$, dada (com unidades no SI) por:\n",
    "\n",
    "$$F(z, t) = 0.613 V^2(z, t) C_{\\rm{a}} A$$\n",
    "\n",
    "A velocidade do vento, $V(z,t)$, pode ser decomposta em uma parcela média sobre 600 segundos (função de $z$), e uma parcela flutuante:\n",
    "\n",
    "$$V(z, t) = \\bar{V}(z) + v(z,t)$$\n",
    "\n",
    "e consequentemente o seu quadrado resulta ser:\n",
    "\n",
    "$$V^2(z, t) = \\bar{V}^2(z) + 2\\bar{V}(z)v(z,t) + v^2(z,t) \\approx \\bar{V}^2(z) + 2\\bar{V}(z)v(t)$$\n",
    "\n",
    "onde a aproximação acima é aceitável porque a parcela flutuante é relativamente menor que a parcela média e, portanto, $v^2(z,t) \\approx 0$. A força aerodinâmica também pode ser dividida em uma parcela média e outra flutuante como:\n",
    "\n",
    "$$F(z,t) = \\bar{F}(z) + f(z, t)$$\n",
    "\n",
    "onde:\n",
    "\n",
    "\\begin{align*}\n",
    "\\bar{F}(z) &= 0.613\\bar{V}(z)^2 C_{\\rm{a}} A \\\\\n",
    " f(z, t)   &= \\frac{2\\bar{F}(z)}{\\bar{V}(z)}v(z, t)\n",
    "\\end{align*}\n",
    "\n",
    "A NBR-6123 adota uma lei exponencial para o perfil de velocidade média do vento:\n",
    "\n",
    "$$\\bar{V}(z) = \\left (S_1 S_3 V_0 \\right ) b F_{\\mathrm{r}} \\left ( \\frac{z}{10 \\rm{m}} \\right )^p$$\n",
    "\n",
    "onde o termo $\\left (S_1 S_3 V_0 \\right )$ segue as definições da norma e os demais parâmetros necessários estão dados na tabela abaixo. <br><br>\n",
    "\n",
    "<img src=\"resources/wind.png\" alt=\"wind\" width=\"800px\"/>\n",
    "\n",
    "Caso não houvesse amplificação dinâmica na resposta estrutural, poderia ser utilizado o cálculo estático da norma, aplicando-se diretamente forças médias com tempo de média, $T_{\\rm gust}$, definido pela equação (NBR-6123, Anexo A, item 2):\n",
    "\n",
    "$$T_{\\rm{gust}} = \\frac{7.5L} {\\bar{V}_{T{\\rm{, topo}}}}$$\n",
    "\n",
    "onde $L$ é a maior dimensão, em metros, do plano de exposição ao vento (no caso de torres corresponde à altura exposta acima da superfície) e $\\bar{V}_{T{\\rm{, topo}}}$ é a velocidade média sobre $T_{\\rm gust}$ no topo da estrutura. Nota-se que a equação acima exige uma iteração para seu cálculo, já que $\\bar{V}_{T{\\rm{, topo}}}$ é desconhecida _a priori_. Após a determinação de $T_{\\rm gust}$ seria ainda necessária uma interpolação para se determinar os demais parâmetros da equação para $\\bar{V}(z)$. Esta interpolação está disponível por meio da função ```profile``` do módulo ```Tower.py```, demonstrada a seguir.\n",
    "\n",
    "Para o exemplo da torre a ser analisada tem-se os seguintes dados meteorológicos referentes à categoria de rugosidade II e velocidade básica $V_0 = 45{\\rm m/s^2}$:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " Vm_10 = 31.05m/s\n",
      " sig_V =  6.46m/s\n"
     ]
    }
   ],
   "source": [
    "V0  =  45.0          # velocidade básica\n",
    "S1  =  1.00          # fator topográfico\n",
    "S3  =  1.00          # fator estatístico\n",
    "\n",
    "# Parametros do perfil são obtidos por interpolação (módulo \"Tower\")\n",
    "\n",
    "S2_10, b, p, Fr, z0, bt, ca = profile(10, Tav=600, Cat=2)  # fator S2 para 10m de altura\n",
    "\n",
    "Vm_10 = S1*S3*S2_10*V0\n",
    "sig_V = 2.58*Vm_10*np.sqrt(ca/1000)\n",
    "\n",
    "print(' Vm_10 = {0:5.2f}m/s\\n sig_V = {1:5.2f}m/s'.format(Vm_10, sig_V))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "O cálculo do tempo de rajada para a análise estática, $T_{\\rm gust}$, bem como da correspondente velocidade média no topo é feito por um processo iterativo:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Convergência da iteração... \n",
      "\n",
      "Tgust = 7.27s, VmT =  51.6m/s\n",
      "Tgust = 7.41s, VmT =  50.6m/s\n",
      "Tgust = 7.41s, VmT =  50.6m/s\n"
     ]
    }
   ],
   "source": [
    "Tgust = 3     # valor inicial do tempo de média\n",
    "\n",
    "print('Convergência da iteração... \\n')\n",
    "\n",
    "for ii in range(3):\n",
    "    S2, *garb = profile(50, Tav=Tgust, Cat=2)\n",
    "    \n",
    "    VmT   = S1*S2*S3*V0\n",
    "    Tgust = 7.5*H/VmT\n",
    "\n",
    "    print('Tgust = {0:4.2f}s, VmT = {1:5.1f}m/s'.format(Tgust, VmT))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Caso a avaliação da resposta dinâmica se faça de fato necessária (frequência fundamental inferior a 1Hz), as duas parcelas na equação para $V(z,t)$ devem ser consideradas. Neste caso, a abordagem matemática mais conveniente é a passagem das equações do domínio do tempo para o domínio da frequência, onde se faz uso de espectros de potência para caracterizar as parcelas flutuantes da velocidade do vento e das respectivas forças. Note-se que ao se desprezar o termo $v^2(z,t)$ permitiu-se uma proporcionalidade direta entre os espectros de potência das parcelas flutuantes de força e velocidade, que pode então ser expressa como:\n",
    "\n",
    "$$ S_f(z, f) = \\left [ \\chi_{\\mathrm{A}}(f) \\; \n",
    "               \\frac{2\\bar{F}(z)}{\\bar{V}(z)} \\right ]^2 S_v(z, f)$$\n",
    "\n",
    "onde $f$ é a frequência (variável independente no novo domínio de análise, em Hz), e $\\chi_{\\rm{A}}(f)$ é a chamada _função de admitância aerodinâmica_. Esta função, que varia de 1 a 0 de forma decrescente com a frequência, pode ser entendida como uma correção no coeficiente de arrasto implícito em $\\bar{F}(z)$ e considera que flutuações rápidas na velocidade do vento não implicam em flutuações proporcionais na força aerodinâmica sobre todo o perímetro da estrutura a uma dada altura. Caso se desconsidere a função de admitância, fazendo-se $\\chi_{\\rm{A}}(f) = 1$, está-se adotando uma simplificação conservadora. \n",
    "\n",
    "Para as flutuações da componente longitudinal da velocidade do vento a NBR-6123 adota o chamado espectro de Harris, que é independente da altura acima da superfície:\n",
    "\n",
    "$$\\frac{S_v(f)}{\\sigma_v^2 } = \\frac{0.61 X}{\\left [ 2 + (fX)^2 \\right ] ^{5/6}}$$\n",
    "\n",
    "onde a constante $X$ é dada por:\n",
    "\n",
    "$$X = \\frac{1800}{\\bar{V}_{10{\\rm{m}}}}$$\n",
    "\n",
    "sendo que $\\bar{V}_{10\\rm{m}}$ é a velocidade média sobre 600s na altura de referência,  $z = 10\\rm{m}$. No modelo de Harris a variância da velocidade do vento, $\\sigma_v^2$, é considerada como sendo aproximadamente independente da altura, e estimada por:\n",
    "\n",
    "$$\\sigma_v = 2.58 \\bar{V}_{10{\\rm{m}}}\\sqrt{c_{\\rm{as}}}$$\n",
    "\n",
    "onde $c_{\\rm{as}}$ é um coeficiente de arrasto superficial adimensional, dependente da categoria de rugosidade do terreno conforme apresentado na tabela acima. \n",
    "\n",
    "O gráfico do espectro de velocidade de Harris para a torre em questão, que é independente da coordenada vertical $z$, pode ser visualizado abaixo:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGMCAYAAAAIiKIXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABebUlEQVR4nO3deVhUZf8G8HsYBoZd2WXHFRBQQTRRBNxxt3y1zD0tldx9y6VyqeTV3EpRs0XTysxMTcMQFQR3RDEVXHADWURA2US2Ob8/jPmFDAoIHJb7c11cl/PMmXO+MzzIzTnP8xyJIAgCiIiIiESiJnYBRERE1LgxjBAREZGoGEaIiIhIVAwjREREJCqGESIiIhIVwwgRERGJimGEiIiIRMUwQkRERKJiGCEiIiJRMYxQnbZt2zZIJJJyv8LCwsQu8aWSkpKwZMkSREdHi10KfHx84OPjI3YZ5VqyZAkkEkmd2L+dnR3Gjx9fbce+e/cuJBIJtm3bVm37rK3jSCQSvP/++yqf++2332r9Z7Gu92OqPHWxCyCqiK1bt8LBwaFMu5OTkwjVVE5SUhKWLl0KOzs7tG/fXuxyGrVJkyahX79+YpdBr2jjxo1il0DVjGGE6gVnZ2d07NhR7DJqxZMnT6CtrS12GQ2SlZUVrKysxC6DXiAvLw9yuVzlGaySn4368EcIVQ4v01CDsXv3bnTu3BkGBgbQ1tZG8+bNMXHiROXzYWFhkEgk+PHHHzFnzhyYm5tDS0sL3t7euHjxYpn9nT9/HoMHD4ahoSHkcjk6dOiAX3/9tcx2iYmJePfdd2FtbQ0NDQ1YWFhg+PDhePDgAcLCwuDh4QEAmDBhgvLy0pIlSwAA48ePh66uLi5fvow+ffpAT08PPXv2BABkZGRg2rRpsLS0hIaGBpo3b45FixYhPz//pZ+FIAhYuXIlbG1tIZfL4ebmhkOHDqncNisrC/PmzYO9vT00NDRgaWmJWbNmITc394XHmDVrFnR0dJCVlVXmuZEjR8LMzAyFhYXKtl27dqFLly7Q0dGBrq4u+vbtq/Jzf55CocDKlSvh4OAATU1NmJqaYuzYsbh//36Zbf/66y/07NlT2QccHR0REBCgfF7VZZrCwkJ88MEHMDc3h7a2Nrp164Zz586V2ffDhw8xbdo0ODk5QVdXF6ampujRowciIiLKbJuUlIQRI0ZAT08PBgYGGDlyJFJSUlS+v4r2M1Vq6ziVdf78ebz55puws7ODlpYW7Ozs8NZbb+HevXultiu5DHv48GFMnDgRJiYm0NbWRn5+Pnx8fODs7Izw8HB4enpCW1tb+fOs6jLNpk2b0K5dO+jq6kJPTw8ODg5YuHBhjbw/qn48M0L1QnFxMYqKikq1SSQSSKVSAMDp06cxcuRIjBw5EkuWLIFcLse9e/dw7NixMvtauHAh3Nzc8O233yIzMxNLliyBj48PLl68iObNmwMAQkND0a9fP3Tu3BmbN2+GgYEBfvnlF4wcORJPnjxRjiVITEyEh4cHCgsLsXDhQri6uiI9PR3BwcF49OgR3NzcsHXrVkyYMAEfffQRBgwYAACl/jovKCjA4MGD8d5772H+/PkoKirC06dP4evri1u3bmHp0qVwdXVFREQEAgICEB0djT///POFn9fSpUuxdOlSvPPOOxg+fDgSEhIwefJkFBcXo02bNsrtnjx5Am9vb9y/f19Z/9WrV/HJJ5/g8uXLOHLkSLljLCZOnIgvv/wSv/76KyZNmqRsf/z4Mfbv3w9/f3/IZDIAwPLly/HRRx8pP4eCggJ88cUX8PLywrlz5174l+7UqVOxZcsWvP/++xg4cCDu3r2Ljz/+GGFhYbhw4QKMjY0BAN999x0mT54Mb29vbN68Gaamprhx4wauXLnyws9q8uTJ2L59O+bNm4fevXvjypUreP3115GdnV1qu4yMDADA4sWLYW5ujpycHOzduxc+Pj44evSo8pdjXl4eevXqhaSkJAQEBKB169b4888/MXLkyDLHrmg/U6W2jlNCEIQyP4PAs7D4vLt376JNmzZ48803YWhoiOTkZGzatAkeHh6IiYlRfs9KTJw4EQMGDMCOHTuQm5ur7DfJyckYPXo0PvjgAyxfvhxqaqr/fv7ll18wbdo0TJ8+HatWrYKamhri4uIQExPz0vdFdYRAVIdt3bpVAKDySyqVKrdbtWqVAEB4/PhxufsKDQ0VAAhubm6CQqFQtt+9e1eQyWTCpEmTlG0ODg5Chw4dhMLCwlL7GDhwoNCsWTOhuLhYEARBmDhxoiCTyYSYmJhyjxsZGSkAELZu3VrmuXHjxgkAhO+//75U++bNmwUAwq+//lqqfcWKFQIA4fDhw+Ue79GjR4JcLheGDRtWqv3kyZMCAMHb21vZFhAQIKipqQmRkZGltv3tt98EAEJQUFC5xxEEQXBzcxM8PT1LtW3cuFEAIFy+fFkQBEGIj48X1NXVhenTp5faLjs7WzA3NxdGjBihbFu8eLHw7/+WYmNjBQDCtGnTSr327NmzAgBh4cKFyn3p6+sL3bp1K/W9fV55+589e3ap7X766ScBgDBu3Lhy91VUVCQUFhYKPXv2LPVZb9q0SQAg7N+/v9T2kydPLtMPKtrPVKmt4wiCUO7P4L+/QkNDy319UVGRkJOTI+jo6Ahffvmlsr3k53vs2LFlXuPt7S0AEI4eParyuX/34/fff19o0qTJC98D1W28TEP1wvbt2xEZGVnq6+zZs8rnSy6FjBgxAr/++isSExPL3deoUaNK/bVva2sLT09PhIaGAgDi4uJw7do1vP322wCAoqIi5Vf//v2RnJyM69evAwAOHToEX19fODo6vtL7e+ONN0o9PnbsGHR0dDB8+PBS7SV/wR49erTcfZ0+fRpPnz5V1l/C09MTtra2pdoOHjwIZ2dntG/fvtT77Nu3b4VmSEyYMAGnTp1Sfh7As8HGHh4ecHZ2BgAEBwejqKgIY8eOLXUMuVwOb2/vFx6j5Hvy/F/unTp1gqOjo/JzOHXqFLKysjBt2rRKzcYp2f/zn9WIESOgrl72xPHmzZvh5uYGuVwOdXV1yGQyHD16FLGxsaX2qaenh8GDB5d67ahRo0o9rkw/K6/22jjOvz+T538GIyMjsWLFijLb5uTk4MMPP0TLli2hrq4OdXV16OrqIjc3t9RnVeL5/l+iadOm6NGjx0tr69SpEx4/foy33noL+/fvR1pa2ktfQ3ULL9NQveDo6PjCAazdu3fHvn378NVXX2Hs2LHIz89H27ZtsWjRIrz11lultjU3Ny/zenNzc1y6dAkA8ODBAwDAvHnzMG/ePJXHK/nP7uHDh688IFJbWxv6+vql2tLT02Fubl7mF6upqSnU1dWRnp5e7v5Knivvff7bgwcPEBcXpzwt/ryX/af+9ttvY968edi2bRsCAgIQExODyMjIUrMdSj7PksD4vPJOvf/7vTRr1qzMcxYWFsoxCA8fPgSASn8vyvus1NXVYWRkVKptzZo1mDt3LqZMmYJPP/0UxsbGkEql+Pjjj0v9gk1PT4eZmVmZY6n67IGK9bPyaq+N45QwMTFR+TN49+7dMm2jRo3C0aNH8fHHH8PDwwP6+vqQSCTo378/8vLyymyv6vv7ovbnjRkzBkVFRfjmm2/wxhtvQKFQwMPDA5999hl69+5doX2QuBhGqMEYMmQIhgwZgvz8fJw5cwYBAQEYNWoU7Ozs0KVLF+V2qgb4paSkKH/5lFzPXrBgAV5//XWVxyoZd2FiYqJyIGVlqPpL3sjICGfPnoUgCKWeT01NRVFRUZlr7s+/Fij/fdrZ2SkfGxsbQ0tLC99//73Kfb3oOMCzv1yHDBmC7du347PPPsPWrVshl8tLBcCSffz2229lzsy8TMl7SU5OLhM0kpKSlPs2MTEBgEp/L/79WVlaWirbi4qKygS+H3/8ET4+Pti0aVOp9ufHlhgZGakcAPv896My/ay82mvjOJWVmZmJgwcPYvHixZg/f76yPT8/Xznu5nnlnc2qzFmuCRMmYMKECcjNzUV4eDgWL16MgQMH4saNG5Xud1T7eJmGGhxNTU14e3srTx8/P2Nj586dEARB+fjevXs4deqUcgBimzZt0KpVK1y6dAkdO3ZU+aWnpwcA8PPzQ2ho6AtPc2tqagKAyr8Iy9OzZ0/k5ORg3759pdq3b9+ufL48r732GuRyOX766adS7adOnSozm2HgwIG4desWjIyMVL7PfweX8kyYMAFJSUkICgrCjz/+iGHDhqFJkybK5/v27Qt1dXXcunWr3M+zPCWn6H/88cdS7ZGRkYiNjVV+Dp6enjAwMMDmzZtLfW9fpuR7/vxn9euvv6ocMF3yvSzx999/4/Tp06XafH19kZ2djT/++KNU+88//1zqcWX6mSq1dZzKkkgkEAShzGf17bffori4uNqOUx4dHR34+flh0aJFKCgowNWrV2v8mPTqeGaE6oUrV66oHMnfokULmJiY4JNPPsH9+/fRs2dPWFlZ4fHjx/jyyy8hk8ng7e1d6jWpqakYNmwYJk+ejMzMTCxevBhyuRwLFixQbvP111/Dz88Pffv2xfjx42FpaYmMjAzExsbiwoUL2L17NwBg2bJlOHToELp3746FCxfCxcUFjx8/xl9//YU5c+bAwcEBLVq0gJaWFn766Sc4OjpCV1cXFhYWsLCwKPf9jh07FoGBgRg3bhzu3r0LFxcXnDhxAsuXL0f//v3Rq1evcl/btGlTzJs3D5999hkmTZqE//znP0hISMCSJUvKnMKfNWsW9uzZg+7du2P27NlwdXWFQqFAfHw8Dh8+jLlz56Jz584v/N706dMHVlZWmDZtGlJSUjBhwoRSz9vZ2WHZsmVYtGgRbt++jX79+qFp06Z48OABzp07Bx0dHSxdulTlvtu0aYN3330X69evh5qaGvz8/JSzaaytrTF79mwAgK6uLlavXo1JkyahV69emDx5MszMzBAXF4dLly5hw4YNKvfv6OiI0aNHY926dZDJZOjVqxeuXLmCVatWlbl0NnDgQHz66adYvHgxvL29cf36dSxbtgz29val+ubYsWOxdu1ajB07Fp9//jlatWqFoKAgBAcHlzl+RfuZKrV1nMrS19dH9+7d8cUXX8DY2Bh2dnY4fvw4vvvuu1IhtTpNnjwZWlpa6Nq1K5o1a4aUlBQEBATAwMCg3MuDVMeIO36W6MVeNJsGgPDNN98IgiAIBw8eFPz8/ARLS0tBQ0NDMDU1Ffr37y9EREQo91Uym2bHjh3CjBkzBBMTE0FTU1Pw8vISzp8/X+bYly5dEkaMGCGYmpoKMplMMDc3F3r06CFs3ry51HYJCQnCxIkTBXNzc0EmkwkWFhbCiBEjhAcPHii32blzp+Dg4CDIZDIBgLB48WJBEJ7NptHR0VH53tPT04UpU6YIzZo1E9TV1QVbW1thwYIFwtOnT1/6uSkUCiEgIECwtrYWNDQ0BFdXV+HAgQNlZiEIgiDk5OQIH330kdCmTRtBQ0NDMDAwEFxcXITZs2cLKSkpLz2WIAjCwoULBQCCtbV1uTMz9u3bJ/j6+gr6+vqCpqamYGtrKwwfPlw4cuSIcpvnZ7sIgiAUFxcLK1asEFq3bi3IZDLB2NhYGD16tJCQkFDmGEFBQYK3t7ego6MjaGtrC05OTsKKFSteuP/8/Hxh7ty5gqmpqSCXy4XXXntNOH36tGBra1tqNk1+fr4wb948wdLSUpDL5YKbm5uwb98+Ydy4cYKtrW2pfd6/f1944403BF1dXUFPT0944403hFOnTqmcVVXRfqZKbR0HgODv76/yud27d5eZTVNSV9OmTQU9PT2hX79+wpUrV8p8piU/38/P5hKEZzNm2rZtq/KYz/fjH374QfD19RXMzMwEDQ0N5c/g33///dL3RnWDRBAqcU6TqB4LCwuDr68vdu/eXWaWChERiYdjRoiIiEhUDT6MZGdnw8PDA+3bt4eLiwu++eYbsUsiIiKif2nwl2mKi4uRn58PbW1tPHnyBM7OzoiMjCyzhgARERGJo8GfGZFKpco7oD59+hTFxcWVmvpHRERENavOh5Hw8HAMGjQIFhYWkEgkZdZdAICNGzfC3t4ecrkc7u7uZe6i+fjxY7Rr1w5WVlb44IMPXrqQExEREdWeOh9GcnNz0a5du3LXCdi1axdmzZqFRYsW4eLFi/Dy8oKfnx/i4+OV2zRp0gSXLl3CnTt38PPPPyuXRyYiIiLx1asxIxKJBHv37sXQoUOVbZ07d4abm1upJZodHR0xdOhQBAQElNnH1KlT0aNHD/znP/8p81x+fj7y8/OVjxUKBTIyMmBkZFSpZYmJiIgaO0EQkJ2dDQsLixfegwqo5yuwFhQUICoqqtT9D4BnK0KeOnUKwLObRGlpaUFfXx9ZWVkIDw/H1KlTVe4vICCg3JUgiYiIqPISEhJeehPLeh1G0tLSUFxcXObOlWZmZsqbRd2/fx/vvPMOBEGAIAh4//334erqqnJ/CxYswJw5c5SPMzMzYWNjgxs3bsDQ0LDm3ghRNSksLERoaCh8fX3LvRMvUV3B/tqwZWdnw97evkL3PqrXYaTE85dQhH/d6dTd3R3R0dEV2o+mpmaZmzsBgKGhIacCU71QWFgIbW1tGBkZ8T93qvPYXxu2ku9pRYY51PkBrC9ibGwMqVRa5pbZqampZc6WVEZgYCCcnJx4gyUiIqJaUK/DiIaGBtzd3RESElKqPSQkBJ6enlXer7+/P2JiYhAZGfmqJRIREdFL1PnLNDk5OYiLi1M+vnPnDqKjo2FoaAgbGxvMmTMHY8aMQceOHdGlSxds2bIF8fHxmDJliohVExERUUXV+TBy/vx5+Pr6Kh+XDDAdN24ctm3bhpEjRyI9PR3Lli1DcnIynJ2dERQUBFtb2yofMzAwEIGBgSguLn7l+omIiOjF6tU6I7UtKysLBgYGCLkQB0d7C5jpaUJdWq+vbFEDV1hYiKCgIPTv358DAqnOY39t2Ep+h2ZmZkJfX/+F29b5MyN1wcTtF6CmeQ1qEsBcXw6LJlrKL8smpR/ry9W5QBoREVElMIxUgGUTOdIKJCgsFpCU+RRJmU+Be49UbqurqQ6LfwUUyyZazx4bPHtsbiCHjGdXiIiIlBhGVHh+zMjB9z3RtKkh0nLykfg4D0mPnyLpcd4//85DUuaztozcAuTkF+HGgxzceJCjct8SCWCmJ1cGFst/nVWxaCKHZRMtGGjJeHaFiIgaDYYRFfz9/eHv76+83gUAamoSmOrLYaovRwcb1a/LKyj+J5jk/RNWnir/nfRPiCkoViAl6ylSsp7iQvxjlfsx0JKhrYU+2lrow9nSAG0tDGBvrAOpGgMKERE1PAwj1UhLQ4oWJrpoYaKr8nmFQkB6bsG/wsr/n2UpCTFpOQXIzCvEqVvpOHUr/f/3LZPCyUIfzhb6aGtpAGcLA7Qy0+UlHyIiqvcYRmqRmpoEJnqaMNHTRDvrJiq3eVpYjFsPc3A1MQtXkjJxNSkLMUlZyCssRtS9R4j611gVDaka2pjrwdlSH04WBnC20IdjM33IZdJaekdERESvjmFEBTHXGZHLpGhr8ezSzAhYAwCKFQLupOXgSmIWriZl4so/QSX7aREuJ2bicmImgAQAgFRNgpYmus8u81g+CyhOFvrQk3PaHBER1U1cZ+QFSsaMpKWl1bkb5QmCgISMvGfh5J+AcjUpE2k5BSq3tzPSRid7Q3RtaQzPFsYw0St7Q0Cq/7huA9Un7K8NG9cZaQQkEglsjLRhY6QNP5dmAJ4FlNTsfFxJ/P+zJzFJWUh8nIe76U9wN/0Jfj1/HwDgYK6Hri2N0a2lMTrZG0JHk12BiIjEwd9ADYhEIoGZvhxm+nL0dPz/uxZn5Bbg0v3HOHMrHSfi0nA1KQvXUrJxLSUb3524A3U1Cdxsmj4LJ62M4GrVhANjiYio1jCMNAKGOhrwbWMK3zamAID0nHycvp2Ok3FpiLiZhvuP8nDubgbO3c3A2iPPFm57rbmh8sxJS1NdrntCREQ1hmFEhYZ+ozwjXU0MdLXAQFcLAEB8+hOciEvDybg0nLyVhsdPCnEkNhVHYlMBAKZ6mujW0hjdWhmjh4MpmmhriFk+ERE1MBzA+gJ1eQBrTVEoBMQkZynDybk7GcgvUiifV1eToEsLI/g5N0OftmYw1uVA2LqEAwKpPmF/bdg4gJWqTE1NAmdLAzhbGmCKdws8LSzGhXuPcCIuDceupeJaSjYibj67vPPRvsvoZG8IP+dm6OdsDjN9udjlExFRPcQwQi8kl0nh2dIYni2N8UE/B9xJy8WhK8n460oK/r6fiTO3M3DmdgYW/3EV7rZN4edsjn7O5rBqqi126UREVE8wjFCl2BvrYJpPS0zzaYmEjCcIvpqCQ1dSlKvDRt17hM/+jIWrlQH6OZvDz7kZ7I11xC6biIjqMIYRqjJrQ21M8mqOSV7NkZL59J9gkoxzdzLw9/1M/H0/Eyv/ug6nZvoY7m6FIe0tYMQxJkRE9ByGERUa+myammBuIMc4TzuM87RDWk4+Dl99gENXknH6VjpikrOw7GAMlgfFwtfBFMPdreDbxhQa6lzLhIiIOJvmhRrjbJrq9ii3AAf/TsJvUfdx6X6mst1QRwOD21lguLsV2lrocx2TasLZCVSfsL82bJxNQ3VGUx0NjOlihzFd7HDjQTb2RN3H3ouJSM3Ox7ZTd7Ht1F04mOv9cxnHkvfMISJqhHienGpNazM9LOjviFPze2DrBA8McG0GDakarqVk47M/Y/FawFG8sy0SR2IeoFjBE3ZERI0Fz4xQrVOXqimXp898UogD/1zGiU54jKPXUnH0Wiosm2hhVGcbjOhozbMlREQNHMMIicpAW4bRr9li9Gu2iEvNxq7IBOyOuo/Ex3n4Ivg61h25AT/nZhj9mi087JpybAkRUQPEMEJ1RktTPSwa4IS5fdrg4N/J+PHMPUQnPMYfl5Lwx6UktDHTw+jXbDC0gyX05BzsRkTUUHDMiAqBgYFwcnKCh4eH2KU0SnKZFMPdrbDPvysOTu+GNz2sIZep4fqDbHy8/ypeW34Ui/Zexs0H2WKXSkRE1YBTe1+AU3vrjsy8Qvx+4T52nLmH2w9zle3erU3wTjd7eLUy5iUccKok1S/srw0bp/ZSg2OgJcOErvYY72mH07fT8cOpuzgc8wDHbzzE8RsP0dpMF+90s8eQ9paQy6Ril0tERJXAMEL1ikQigWcLY3i2MMa99FxsPXkXu88n4MaDHHy45zJW/nUdb79mizGv2XIWDhFRPcExI1Rv2RrpYMngtji1oCcW9XeEZRMtpOcW4KujN9H1f8fw392XOK6EiKgeYBihes9AS4bJ3Zvj+H99sGFUB7S3boKCYgV2R91H77XhmPTDeUTdeyR2mUREVA5epqEGQ12qhoGuFhjoaoGoe4+wJfwWDsc8wJHYZ1+d7Awx1acFfNqYcLArEVEdwjBCDZK7bVN8PaYj4lJzsCX8FvZeTMS5uxk4ty0DDuZ6mOLdAgNdm0FdypODRERi4//E1KC1NNXFyuHtEPFBD0z2soeOhhTXUrIxa1c0fFaF4aez91BQpBC7TCKiRo1hhBoFcwM5Fg1wwqn5PTGvT2sY6Wjg/qM8LNp7BT5fhGLH6bvILyoWu0wiokaJYYQaFQNtGd7v0Qon5/fAJwOdYKqniaTMp/h4/1V4rwzDtpN38LSQoYSIqDYxjKjA5eAbPrlMiond7BH+gS+WDWmLZgZypGQ9xZIDMfBaGYpvI24jr4ChhIioNjCMqODv74+YmBhERkaKXQrVMLlMirFd7BD2Xx98PswZlk208DA7H5/9GQuvlcewJfwWnhQUiV0mEVGDxjBCBEBTXYq3O9sidJ4P/ve6C6wNtZCWU4DlQdfQbUUoNobFISefoYSIqCYwjBD9i4a6Gt7sZINjc33wxXBX2BppIyO3ACv/uo5uK45hw7GbyH5aKHaZREQNCsMIkQoyqRr+09EaR+d4Y82IdmhurIPHTwqx6vANeK0MxaYwXr4hIqouDCNEL6AuVcPrblYImeONL99sjxYmz0LJir+uofs/s284JZiI6NUwjBBVgFRNgiHtLXF4tjdW/6fdP2NK8rHkQAx8vwjDL+fiUVTMxdOIiKqCYYSoEqRqErzhboVjc5/NvjHXlyMp8ynm/34ZvdYcx/7oRCgUgthlEhHVKwwjRFUgk6rh7c62CPuvDz4a4AgjHQ3cTX+Cmb9Ew+/LCARfTYEgMJQQEVUEwwjRK5DLpJjk1RzhH/jiv33bQF+ujusPsvHejigMCTyJ4zceMpQQEb0EwwhRNdDRVIe/b0tEfNgD7/u2hLaGFH/fz8S4789h1DdncSnhsdglEhHVWQwjRNXIQEuGeX3bIPwDX7zTzR4a6mo4fTsdQwJPwv+nC7iTlit2iUREdQ7DCFENMNbVxMcDnRA6zwfD3a0gkQB/Xk5GrzXH8dG+y0jNfip2iUREdUaDDyMJCQnw8fGBk5MTXF1dsXv3brFLokbEsokWVv2nHQ7N9EJPB1MUKwT8eCYe3ivDsObwda7mSkSERhBG1NXVsW7dOsTExODIkSOYPXs2cnN5qpxql4O5Pr4b74Fd776GDjZNkFdYjK+OxcH7izBs5cJpRNTINfgw0qxZM7Rv3x4AYGpqCkNDQ2RkZIhbFDVanZsb4fepntg82h3NTXSQkVuApQdiuEYJETVqdT6MhIeHY9CgQbCwsIBEIsG+ffvKbLNx40bY29tDLpfD3d0dERERKvd1/vx5KBQKWFtb13DVROWTSCTo52yOw7O6I+B1F5jqaSIhIw8zf4nGwPUnEM7pwETUyNT5MJKbm4t27dphw4YNKp/ftWsXZs2ahUWLFuHixYvw8vKCn58f4uPjS22Xnp6OsWPHYsuWLbVRNtFLqUvV8FYnGxz/77M1SvQ01RGTnIWx35/D6O/O4vL9TLFLJCKqFRKhHv0JJpFIsHfvXgwdOlTZ1rlzZ7i5uWHTpk3KNkdHRwwdOhQBAQEAgPz8fPTu3RuTJ0/GmDFjyt1/fn4+8vPzlY+zsrJgbW2N5ORkGBkZVf8bIvqXjNwCbA6/gx/PxqOw+NmP5ZB2zTCnV0tYNNGq0D4KCwsREhKC3r17QyaT1WS5RK+M/bVhy8rKgrGxMTIzM6Gvr//CbdVrqaYaUVBQgKioKMyfP79Ue58+fXDq1CkAgCAIGD9+PHr06PHCIAIAAQEBWLp0aZn20NBQaGtrV1/hROVoD8DaFQhKUMP5NDXsv5SMoL+T4G0hoLeFAvIK/sSGhITUZJlE1Yr9tWF68uRJhbet12EkLS0NxcXFMDMzK9VuZmaGlJQUAMDJkyexa9cuuLq6Kseb7NixAy4uLmX2t2DBAsyZM0f5uOTMiK+vL8+MUK0aA+BKYhYC/rqOc3cf4UiiBBcea2JGj5YY6W4JdanqK6z8S5PqE/bXhi0rK6vC29brMFJCIpGUeiwIgrKtW7duUCgqdmt3TU1NaGpqlmmXyWT8QaFa18HOCLve64IjsakICIrF7bRcLDkQix1n4rGwvyN6OJiW6fsl2GepPmF/bZgq8z2t8wNYX8TY2BhSqVR5FqREampqmbMllREYGAgnJyd4eHi8aolEr0QikaC3kxmCZ3fHsiFtYaijgVsPc/HOD+cx6puzuJLIQa5EVP/V6zCioaEBd3f3MtcbQ0JC4OnpWeX9+vv7IyYmBpGRka9aIlG1kEnVMLaLHcL+64P3vJsr73kzaMMJzP31EpIz88QukYioyur8ZZqcnBzExcUpH9+5cwfR0dEwNDSEjY0N5syZgzFjxqBjx47o0qULtmzZgvj4eEyZMkXEqolqhr5chgV+jhjd2RZfBF/HH5eSsOfCffx5OQmTujXHO11txC6RiKjS6nwYOX/+PHx9fZWPSwaYjhs3Dtu2bcPIkSORnp6OZcuWITk5Gc7OzggKCoKtrW2VjxkYGIjAwEAUF3OJbqqbrA218dVbHTCxmz0+/zMGkXcfYUNoHHaei0dPMwn6FCvAS/BEVF/Uq3VGaltWVhYMDAyQlpbG2TRUZwmCgOCrD/C/Q7G4m/5sKl1LEx18NNAJPm1MRa6OqHyFhYUICgpC//79OYC1ASr5HVqRdUbq9ZgRIvrX8vKzvfFR/zbQVhcQ9zAX47dGYvzWc4hLzRa7RCKiF2IYUYGzaag+0lBXw7gutvi4QzEmetpCJpUg7PpD9F0XgSV/XMWj3AKxSyQiUolhRAXOpqH6TFsdWODXBodne6O3kxmKFQK2nboLn1Vh2HryDgqLK7buDhFRbWEYIWqg7I118M3YjvhpUmc4mOshM68QSw/EoN+6cIReTxW7PCIiJYYRogaua0tj/DnDC58Pc1YumjZhayTGfn8ONx9wPAkRiY9hRAWOGaGGRqomwdudbRH2Xx+82705ZFIJwm88RL8vI7B4/xWOJyEiUTGMqMAxI9RQ6ctlWNjfESGzvdHnn/EkP5y+B+8vQvH9CY4nISJxMIwQNUJ2xjrYMrYjfp7cGY7N9JH1tAjLDsag77pwHLv2AFx+iIhqE8MIUSPm2cIYB6d3Q8DrLjDS0cDth7mYuO08xn5/Djc4noSIagnDCFEjJ1WT4K1ONggtuQmfVA0RN9Pg92UEPt53BRkcT0JENYxhRAUOYKXGqOQmfCFzuqNfW3MUKwTsOPNsPMl3HE9CRDWIYUQFDmClxszWSAebx7hj5+TX4NRMH9lPi/DpwRj4fRmB8BsPxS6PiBoghhEiUqlLCyMc+Gc8iaGOBuJSczD2+3OY9MN53EvPFbs8ImpAGEaIqFzK8STzfDCxqz3U1SQ4EvsAvdeEY8Vf15CTXyR2iUTUADCMENFLGWjJ8MkgJ/w1ywvdW5ugoFiBTWG30GNVGPZE3YdCwanARFR1DCNEVGEtTfXwwwQPfDu2I2yNtJGanY+5uy/h9U2nEJ3wWOzyiKieYhhRgbNpiMonkUjQy8kMh2d3x4f9HKCjIUV0wmMMDTyJebsvITX7qdglElE9wzCiAmfTEL2cproUU31aIHSeD153swQA/BZ1Hz1WHcfXx2+hoIhTgYmoYhhGiOiVmOrLsWZEe+yd5ol21k2Qk1+EgEPXlEvLExG9DMMIEVWLDjZNsXeqJ1b9px1M9DRxJ+3Z0vLjt55DXGqO2OURUR3GMEJE1UZNTYLh7lY4Ntcb73k3h0wqQdj1h+i3LhyfHYxB1tNCsUskojqIYYSIqp3eP0vLH57tjZ4OpihSCPj2xB30WBWGXZHxnApMRKUwjBBRjbE31sF34z2wbYIHmpvoIC2nAB/uuYwhgScRdS9D7PKIqI5gGCGiGufTxhTBs7rjowGO0NNUx+XETLyx6TRm/XIRKZmcCkzU2DGMqMB1Roiqn0yqhklezRH6Xx+86WENiQTYF50E31Vh2HDsJp4WFotdIhGJhGFEBa4zQlRzjHU18b83XPGHfzd0tG2KvMJirDp8A73XHsfhqykQBI4nIWpsGEaISBQuVgbYPaULvnyzPcz15UjIyMO7O6Iwbmskbj3kVGCixoRhhIhEI5FIMKS9JY7N84a/bwtoSNUQfuMh+q4Nx/KgWGRzKjBRo8AwQkSi09ZQx3/7OuDw7O7KqcBbwm+jx+rj+P3CfV66IWrgGEaIqM6w+2cq8NbxHrAz0sbD7HzM+fUShm8+jSuJmWKXR0Q1hGGEiOocXwdTBM/ujg/6tYG2hhRR9x5h0IYTWLj3MjJyC8Quj4iqGcMIEdVJmupSTPNpiWNzfTCkvQUEAfj5bDx8V4Vh++m7KCrmXYGJGgqGESKq08wN5PjyzQ749b0ucGymj8y8Qnyy/yoGbTiJs7fTxS6PiKoBwwgR1Qud7A1x4P2u+HRIWxhoyRCbnIWRW85gxk6u4kpU3zGMEFG9oS5Vw5gudgid54NRnW0gkQB/XEpCj9Vh2BgWh/wiruJKVB8xjKjA5eCJ6jZDHQ0sH+aCA+93g7ttUzwpKMbKv66j37oIhF5LFbs8IqokhhEVuBw8Uf3gbGmA36Z0wZoR7WCip4k7abmYsC0SE7dF4m5artjlEVEFMYwQUb0mkUjwupsVQuf54L3uzSGTSnDsWir6rA3Hyr+u4UlBkdglEtFLMIwQUYOgq6mOBf0d8des7uje2gQFxQpsDLuFHquO449LSVzFlagOYxghogalhYkufpjggS1j3GFtqIWUrKeYsfMi3txyBrHJWWKXR0QqMIwQUYMjkUjQp605QmZ7Y07v1pDL1HD2TgYGfBWBxfuvIPMJb8BHVJcwjBBRgyWXSTGjZyscneuDAS7NoBCAH07fg+/qMOw8F49iBS/dENUFDCNE1OBZNtFC4Ntu+HlSZ7Q200VGbgEW/H4ZQwNPIureI7HLI2r0GEaIqNHwbGmMP2d44ZOBTtCTq+NyYibe2HQKc36NRmo2V3ElEgvDCBE1KjKpGiZ2s0foPB+M6GgFAPj9QiJ6rDqOb8Jvo6CIN+Ajqm0MI0TUKBnramLl8HbY598V7aybICe/CJ8HxcLvy3BE3HwodnlEjQrDCBE1au2tm2DvVE+sHO4KY10N3HqYizHfncN7O84jIeOJ2OURNQqNIowMGzYMTZs2xfDhw8UuhYjqIDU1CUZ0tMbRuT6Y2NUeUjUJgq8+QK81x7HuyA08LeQN+IhqUqMIIzNmzMD27dvFLoOI6jgDLRk+GeSEQzO94NnCCPlFCqw7chO91hzH4aspXMWVqIY0ijDi6+sLPT09scsgonqitZkefprUGYGj3NDMQI77j/Lw7o4ojN8aidsPc8Quj6jBeeUwkp+fXx11lCs8PByDBg2ChYUFJBIJ9u3bV2abjRs3wt7eHnK5HO7u7oiIiKjRmoio4ZNIJBjg2gxH53rD37cFNKRqOH7jIfquC8cK3oCPqFpVOowEBwdj/PjxaNGiBWQyGbS1taGnpwdvb298/vnnSEpKqtYCc3Nz0a5dO2zYsEHl87t27cKsWbOwaNEiXLx4EV5eXvDz80N8fHy11kFEjZO2hjr+29cBwbO7w6eNCQqLBWwKu4Weq4/j4N+8AR9RdVCv6Ib79u3Dhx9+iMzMTPTv3x///e9/YWlpCS0tLWRkZODKlSs4cuQIPv30U4wfPx6ffvopTExMXrlAPz8/+Pn5lfv8mjVr8M4772DSpEkAgHXr1iE4OBibNm1CQEBApY6Vn59f6kxPVtazm2oVFhaisJD3sqC6r6Sfsr9WPysDDWx5uz2OXX+Iz4Ku4/6jPLz/80X8aH8XnwxwRCszXbFLrHfYXxu2ynxfKxxGli9fjlWrVmHAgAFQUyt7QmXEiBEAgMTERHz55ZfYvn075s6dW+FCqqKgoABRUVGYP39+qfY+ffrg1KlTld5fQEAAli5dWqY9NDQU2traVa6TqLaFhISIXUKDNrMVcCxJgiOJajhz5xEGbjiJ7s0E9LNSQKvC/6tSCfbXhunJk4pPja/wj825c+cqtJ2lpSVWrlxZ4QJeRVpaGoqLi2FmZlaq3czMDCkpKcrHffv2xYULF5CbmwsrKyvs3bsXHh4eZfa3YMECzJkzR/k4KysL1tbW8PX1hZGRUc29EaJqUlhYiJCQEPTu3RsymUzschq0oQDuP8rD8kPXERKbirBkCa5ky/FBn9YY0q4Z1NQkYpdY57G/NmwlVxcqotIZvrCwEG3atMHBgwfh5ORU2ZfXCImk9A+9IAil2oKDgyu0H01NTWhqapZpl8lk/EGheoV9tnbYm8rwzTgPHL/xEEv/uIrbabn44Pcr2BWViKWD28LZ0kDsEusF9teGqTLf00oPYJXJZMjPzy8TAMRgbGwMqVRa6iwIAKSmppY5W1IZgYGBcHJyUnn2hIjoed6tTfDXrO6Y7+cAbQ0pou49wuANJ/DRvst4/KRA7PKI6rwqTe2dPn06VqxYgaIicae2aWhowN3dvcz1xpCQEHh6elZ5v/7+/oiJiUFkZOSrlkhEjYSGuhqmeLfAsbk+GNzOAgoB+PFMPHxXheHns/EoVnDWDVF5qjTU6uzZszh69CgOHz4MFxcX6OjolHr+999/r5biACAnJwdxcXHKx3fu3EF0dDQMDQ1hY2ODOXPmYMyYMejYsSO6dOmCLVu2ID4+HlOmTKm2GoiIKsrcQI6v3uqAtzrZYMkfV3H9QTYW7r2MXyLjsXRwW3SwaSp2iUR1TpXCSJMmTfDGG29Udy0qnT9/Hr6+vsrHJQNMx40bh23btmHkyJFIT0/HsmXLkJycDGdnZwQFBcHW1rbKxwwMDERgYCCKi3k/CiKqmi4tjHBwRjfsOH0Pa0Nu4O/7mRi28RRGdLTCB/0cYKxbdnwaUWMlEbhiT7mysrJgYGCAtLQ0zqaheqGwsBBBQUHo378/BwTWIQ+z87Hir2v4Leo+AEBPro65vVtj9Gu2UJc2irtyqMT+2rCV/A7NzMyEvr7+C7et8k9BUVERjhw5gq+//hrZ2dkAgKSkJOTk8L4NRET/ZqKniVX/aYc9Uz3hbKmP7KdFWHIgBgPXn8DZ2+lil0ckuiqFkXv37sHFxQVDhgyBv78/Hj58CABYuXIl5s2bV60FEhE1FO62TbHfvxs+H+aMJtoyXEvJxsgtZzDrl4t4kPVU7PKIRFOlMDJz5kx07NgRjx49gpaWlrJ92LBhOHr0aLUVJxZO7SWimiJVk+DtzrYIneuDUZ1tIJEA+6KT0GNVGLaE30JBkULsEolqXZXCyIkTJ/DRRx9BQ0OjVLutrS0SExOrpTAxcWovEdW0pjoaWD7MBX/4d0MHmybILSjG8qBr8PsyHBE3H4pdHlGtqlIYUSgUKmea3L9/H3p6eq9cFBFRY+FiZYA9UzzxxXBXGOtq4NbDXIz57hym/hiF+48qfm8PovqsSmGkd+/eWLdunfKxRCJBTk4OFi9ejP79+1dXbUREjYKamgT/6WiNo3N9MKGrHaRqEhy6koJea45j/dGbeFrIZQaoYatSGFm7di2OHz8OJycnPH36FKNGjYKdnR0SExOxYsWK6q6x1nHMCBGJwUBLhsWD2uLPGd3Q2d4QTwsVWB1yA33WhuNo7AOxyyOqMVVeZyQvLw87d+7EhQsXoFAo4ObmhrfffrvUgNb6juuMUH3DdRsaDkEQcODvZHz+ZwweZOUDAHo6mOKTQU6wNdJ5yavrB/bXhq0y64xUaQVWANDS0sLEiRMxceLEqu6CiIjKIZFIMLidBXo6mOKrYzfx/Yk7OHotFRE30/Ced3NM82kJLQ2p2GUSVYsqXaaxsLDAqFGjsGXLFty4caO6ayIion/oaKpjgZ8jDs3sDq9WxigoVmD9sTj0WnMchy4ng4toU0NQpTCyevVq6OvrY82aNXBwcECzZs3w5ptvYvPmzYiNja3uGomIGr2WprrYPrETNo92h2UTLSQ+zsPUny5gzHfnEJeaLXZ5RK+kSmHkrbfewubNm3Ht2jUkJydj7dq1UFdXx/Tp0+Hs7FzdNdY6DmAlorpIIpGgn7M5jszxxoyeraChroYTcWnoty4Cy4NikZNfJHaJRFVS5TEjOTk5OHHiBI4fP46wsDBcvHgRLi4u8Pb2rs76ROHv7w9/f3/l4BsiorpES0OKOb1bY7ibFZYdjMGR2AfYEn4b+y4mYmF/RwxpbwGJRCJ2mUQVVqUw0rlzZ/z9999wdnaGj48PFi5cCC8vLzRp0qSayyMiovLYGGnj23EdEXotFUsPXMXd9CeYtSsaP5+Nx5LBbeFk8eIZDER1RZUu09y8eRPa2tpo3rw5mjdvjpYtWzKIEBGJxNfBFMGzu+O/fdtASybFubsZGLg+Aov3X0FmXqHY5RG9VJXCSEZGBkJDQ9G1a1ccOXIE3t7eMDc3x8iRI7F58+bqrpGIiF5CU10Kf9+WODrXGwNcm0EhAD+cvoceq8Lwa2QCFArOuqG6q0phBABcXV0xY8YM7NmzB4cOHYKfnx9+//13+Pv7V2d9RERUCRZNtBA4yg0/TeqMlqa6SM8twAd7/sawTafw9/3HYpdHpFKVwsjFixexdu1aDBkyBIaGhnjttddw+fJlzJw5E3/88Ud111jrOJuGiOq7ri2NcWimFz4a4AhdTXVcSniMIYEnseD3v5GRWyB2eUSlVGk5eHV1dXTo0AHe3t7w8fFB9+7dX7rUa33E5eCpvuHy2qRKatZT/O/QNfx+MRHAs3vgzOvTGqM620KqJt6sG/bXhq3Gl4PPyMhokOGDiKghMtWXY83I9nirsw0+2X8VsclZ+Hj/Vew8l4BlQ9qio52h2CVSI1elMFISRKKiohAbGwuJRAJHR0e4ublVa3FERFR9POwMceD9rth5Lh5fBF9HTHIWhm8+jdfdLDHfzwGmenKxS6RGqkphJDU1FW+++SbCwsLQpEkTCIKAzMxM+Pr64pdffoGJiUl110lERNVAXaqGMV3s0N+lGb4Ivo5d5xPw+4VEHL76ALN6tcI4TzvIpFWe20BUJVXqcdOnT0dWVhauXr2KjIwMPHr0CFeuXEFWVhZmzJhR3TUSEVE1M9LVxP/ecMXeaV3RzsoAOflF+OzPWPT/MgKn4tLELo8amSqFkb/++gubNm2Co6Ojss3JyQmBgYE4dOhQtRVHREQ1q711E+yd1hUr3nCBoY4GbqbmYNS3Z+H/8wUkPc4TuzxqJKoURhQKhcqRzzKZDAqF4pWLIiKi2qOmJsFIDxuEzvXBuC62UJMAf/6djJ6rjyMwNA75RcVil0gNXJXCSI8ePTBz5kwkJSUp2xITEzF79mz07Nmz2ooTC9cZIaLGyEBbhqVDnHFwuhc87Joir7AYXwRfR791EQi7nip2edSAVSmMbNiwAdnZ2bCzs0OLFi3QsmVL2NvbIzs7G+vXr6/uGmudv78/YmJiEBkZKXYpRES1zslCH7++1wVrR7aDiZ4m7qTlYvzWSEzefh4JGU/ELo8aoCrNprG2tsaFCxdw5MgRxMbGQhAEODk5oVevXtVdHxERiUAikWBYByv0cjTDl0duYuupuwiJeYDwGw8xzacl3vNuDrlMKnaZ1EBUOozs3r0b+/btQ2FhIXr16oXp06fXRF1ERFQH6Mll+GigE0Z4WGPx/qs4fTsda4/cwG8XEvDJwLbo5WgKiUS8VVypYajUZZotW7Zg5MiROH/+PK5fv46pU6diwYIFNVUbERHVEa3N9PDz5M7YMKoDzPXlSMjIw+Tt5zFxWyTupuWKXR7Vc5UKI+vXr8eiRYtw/fp1XLp0Cd999x02bNhQU7UREVEdIpFIMNDVAkfnemOqTwvIpBKEXn+IPmvDsSr4OvIKOOuGqqZSYeT27duYMGGC8vGYMWOQn5+PlJSUai+MiIjqJh1NdXzYzwF/zeoOr1bGKChWYENoHHqtOY5Dl5NRhfuvUiNXqTCSl5cHXV1d5WOpVApNTU08ecLR1UREjU0LE11sn9gJm0e7w7KJFhIf52HqTxcw9vtziEvNEbs8qkcqPYD122+/LRVIioqKsG3bNhgbGyvbuCQ8EVHjIJFI0M/ZHN6tTbDp+C1sPn4LETfT0G9dON7pZo/pPVtBV7NKEzepEZEIlTifZmdn99JR0xKJBLdv337lwuqCrKwsGBgYIC0tDUZGRmKXQ/RShYWFCAoKQv/+/VWukkxU0+6l52LZgRgcvfZskTQzfU0s7O+Iwe0syvz+YH9t2Ep+h2ZmZkJfX/+F21Yqrt69e/dV6qo3AgMDERgYiOJiDsYiIqoMWyMdfDfeA0djH2DpgRjEZzzBzF+isfNcPJYOdkYbcz2xS6Q6iPeJVoErsBIRvZqejmY4PLs75vZuDblMDWduZ6D/VxFYdiAGWU8LxS6P6pgKh5FffvmlwjtNSEjAyZMnq1QQERE1DHKZFNN7tsKROd7o19YcxQoB35+8gx6rjmNP1H3OuiGlCoeRTZs2wcHBAStWrEBsbGyZ5zMzMxEUFIRRo0bB3d0dGRkZ1VooERHVT1ZNtbF5jDu2T+yE5sY6SMvJx9zdl/DWt5G4z/XSCJUYM3L8+HEcPHgQ69evx8KFC6GjowMzMzPI5XI8evQIKSkpMDExwYQJE3DlyhWYmprWZN1ERFTPdG9tgr9mdcd3J+5g/bGbiIp/jAvxUiRrxeK/fR1hoM1BrI1VpWbTlEhPT8eJEydw9+5d5OXlwdjYGB06dECHDh2gptZwhqFwNg3VN5ydQPVFcmYePjsQgz+vPFs001BHAx/0bYMRHa2hpsZ73TQENTabpoSRkRGGDBlSpeKIiIiaGWhh3UhX2CsS8ddDfcQ9zMX83y9jZ2QCPh3SFq5WTcQukWpRwzmNQURE9U4rAwF/+HfBRwMcoaupjksJjzEk8CQW/P43MnILxC6PakmVwkjTpk1haGhY5svIyAiWlpbw9vbG1q1bq7tWIiJqgGRSNUzyao5jc73xegdLCAKw81wCfFeFYceZeyhWcNZNQ1elMPLJJ59ATU0NAwYMwNKlS7FkyRIMGDAAampq8Pf3R+vWrTF16lR888031V0vERE1UKb6cqwZ2R67p3SBg7keMvMK8fG+Kxi84QSi7j0SuzyqQVUaM3LixAl89tlnmDJlSqn2r7/+GocPH8aePXvg6uqKr776CpMnT66WQomIqHHwsDPEwend8NPZeKw6fB1Xk7LwxqZTeMPNCvP9HGCipyl2iVTNqnRmJDg4GL169SrT3rNnTwQHBwMA+vfv32DuUUNERLVLXaqGcZ52CJ3ngxEdrQAAey7cR4/VYdh68g6KihUiV0jVqUphxNDQEAcOHCjTfuDAARgaGgIAcnNzoafHexAQEVHVGetqYuXwdtg7zRMulgbIflqEpQdiMHD9CZy9nS52eVRNqnSZ5uOPP8bUqVMRGhqKTp06QSKR4Ny5cwgKCsLmzZsBACEhIfD29q7WYqvi4MGDmDt3LhQKBT788ENMmjRJ7JKIiKiSOtg0xT7/rvglMh5fBF/HtZRsjNxyBkPaW2Bhf0eY6cvFLpFeQZUWPQOAkydPYsOGDbh+/ToEQYCDgwOmT58OT0/P6q6xyoqKiuDk5ITQ0FDo6+vDzc0NZ8+eVZ69eRkuekb1DRc9o/qkqv31UW4Bvjh8HTvPxUMQAB0NKWb2aoUJXe0hk3LFirqixhc9A4CuXbuia9euVX15rTh37hzatm0LS0tLAM/GsQQHB+Ott94SuTIiIqqqpjoaWD7MBW952ODj/VcQnfAYy4Ou4dfz97F0cFt0bWksdolUSVWOkMXFxdizZw8+++wzfP7559i7dy+Ki4urszaEh4dj0KBBsLCwgEQiwb59+8pss3HjRtjb20Mul8Pd3R0RERHK55KSkpRBBACsrKyQmJhYrTUSEZE4XKwM8PtUT6wc7gojHQ3Epebg7W/Pwv+nC0h6nCd2eVQJVQojcXFxcHR0xNixY/H777/jt99+w+jRo9G2bVvcunWr2orLzc1Fu3btsGHDBpXP79q1C7NmzcKiRYtw8eJFeHl5wc/PD/Hx8QCg8vbUEgnveUBE1FCoqUkwoqM1js3zwXhPO6hJgD8vJ6Pn6uMIDI1DflH1/pFMNaNKl2lmzJiBFi1a4MyZM8rxF+np6Rg9ejRmzJiBP//8s1qK8/Pzg5+fX7nPr1mzBu+8845yUOq6desQHByMTZs2ISAgAJaWlqXOhNy/fx+dO3cud3/5+fnIz89XPs7KygLw7LpmYWHhq74dohpX0k/ZX6k+qM7+qq0OLPJrjdfbN8OyP2Nx/t5jfBF8HbvPJ+DjAQ7o3oqXbmpbZb6vVRrAqqOjgzNnzsDFxaVU+6VLl9C1a1fk5ORUdpcvJZFIsHfvXgwdOhQAUFBQAG1tbezevRvDhg1Tbjdz5kxER0fj+PHjKCoqgqOjI8LCwpQDWM+cOVPuYNQlS5Zg6dKlZdp//vlnaGtrV/t7IiKi6icIQFSaBPvvqSGr8NnZcJemCgyzU8CIk25qzZMnTzBq1KiaG8CqqamJ7OzsMu05OTnQ0NCoyi4rLS0tDcXFxTAzMyvVbmZmhpSUZ7ekVldXx+rVq+Hr6wuFQoEPPvjghbNiFixYgDlz5igfZ2VlwdraGr6+vpxNQ/VCYWEhQkJC0Lt3b86moTqvJvvrAACznxZhQ+gt/HAmHpcfqeFGtjre87LHZC87yGXSaj0elVVydaEiqhRGBg4ciHfffRffffcdOnXqBAA4e/YspkyZgsGDB1dll1X2/BgQQRBKtQ0ePLjCNWlqakJTs+wywzKZjP+xU73CPkv1SU31V0OZDJ8MdsabnW2xeP9VnL6djq9Cb2HvpSR8MrAtejmachxhDarM97RKA1i/+uortGjRAl26dIFcLodcLoenpydatmyJdevWVWWXlWZsbAypVKo8C1IiNTW1zNmSygoMDISTkxM8PDxeaT9ERCS+1mZ6+HlyZ2wY1QHm+nIkZORh8vbzmLgtEnfTcsUuj1DFMNKkSRPs378fN27cwG+//Ybdu3fjxo0b2Lt3L5o0aVLNJaqmoaEBd3d3hISElGoPCQl55YXX/P39ERMTg8jIyFfaDxER1Q0SiQQDXS1wdK43pvq0gEwqQej1h+izNhyrgq/jSUGR2CU2ahW+TPPvsRSqhIWFKf+9Zs2aKhf0bzk5OYiLi1M+vnPnDqKjo2FoaAgbGxvMmTMHY8aMQceOHdGlSxds2bIF8fHxZe4mTEREBAA6mur4sJ8DhrtbYckfVxFxMw0bQuPw+4X7+HigE/o5m/PSjQgqHEYuXrxYoe2q85t4/vx5+Pr6Kh+XBKJx48Zh27ZtGDlyJNLT07Fs2TIkJyfD2dkZQUFBsLW1faXjBgYGIjAwsNoXcSMiorqhhYkutk/shOCrD/DpwRgkPs7D1J8uwKuVMRYPaouWprpil9ioVPneNI0B701D9Q3vTUP1SV3pr3kFxdh0/BY2H7+FgiIF1NUkeKebPab3bAVdzSrfNaXRq8y9aXhHISIiatS0NKSY07s1QmZ3Ry9HUxQpBHwdfhs9V4dhf3SiytW8qXoxjKjA2TRERI2PrZEOvh3nge/Hd4SNoTYeZOVj5i/ReHPLGVxPKbu2FlUfhhEVOJuGiKjx6uFghsOzu2Nu79aQy9Rw9k4G+n8VgWUHYpD1lLdaqAkMI0RERM+Ry6SY3rMVjszxRr+25ihWCPj+5B30WHUce6LuQ6HgpZvqxDBCRERUDqum2tg8xh3bJ3ZCc2MdpOXkY+7uS/jP16dxNSlT7PIaDIYRIiKil+je2gR/zeqOD/s5QFtDiqh7jzBo/Ql8vO8KMp/w0s2rYhhRgQNYiYjoeRrqapjq0wJH53pjoGszKARgx5l78F0dhl/OxfPSzStgGFGBA1iJiKg8zQy0sGGUG36e3BmtTHWRkVuA+b9fxrCNJ3Ep4bHY5dVLDCNERERV4NnCGEEzvfDRAEfoaqrj0v1MDN14Egt+/xsZuQVil1evMIwQERFVkUyqhklezXFsrjde72AJQQB2nkuA76ow7DhzD8W8dFMhDCMqcMwIERFVhqm+HGtGtsfuKV3gYK6HzLxCfLzvCgZvOIGoe4/ELq/OYxhRgWNGiIioKjzsDHFwejcsHdwWenJ1XE3KwhubTmHur5fwMDtf7PLqLIYRIiKiaqQuVcM4TzuEzvPBiI5WAIA9F+6jx6owfH/iDoqKFSJXWPcwjBAREdUAY11NrBzeDnunecLF0gDZ+UVYdjAGA9efwNnb6WKXV6cwjBAREdWgDjZNsc+/K5YPc0ETbRmupWRj5JYzmPnLRTzIeip2eXUCwwgREVENk6pJMKqzDULn+uDtzjaQSID90UnosSoMW8JvoaCocV+6YRhRgbNpiIioJjTV0cDnw1zwh383tLdugtyCYiwPuga/L8NxMi5N7PJEwzCiAmfTEBFRTXKxMsDvUz2xcrgrjHQ0cOthLt7+9iz8f7qApMd5YpdX6xhGiIiIRKCmJsGIjtY4Ns8H4z3toCYB/rycjJ6rjyMwNA75RcVil1hrGEaIiIhEZKAlw5LBbXFwuhc87Joir7AYXwRfR791EQi7nip2ebWCYYSIiKgOcLLQx6/vdcG6ke1hoqeJO2m5GL81EpO3n0dCxhOxy6tRDCNERER1hEQiwdAOljg21xuTveyhriZBSMwD9FpzHOuO3MDTwoZ56YZhhIiIqI7Rk8uwaIATDs30QpfmRsgvUmDdkZvovfY4QmIeQBAa1g34GEaIiIjqqFZmevh5cmdsGNUB5vpyJGTkYfL285iwLRJ303LFLq/aMIyowHVGiIiorpBIJBjoaoGjc70x1acFZFIJwq4/RJ+14VgVfB1PCorELvGVMYyowHVGiIiortHRVMeH/RwQPKs7urc2QUGxAhtC49Br9XEcupxcry/dMIwQERHVI81NdPHDBA98PcYdlk20kJT5FFN/uoAx351DXGq22OVVCcMIERFRPSORSNC3rTmOzPHGjJ6toKGuhhNxaei3LgIBQbHIya9fl24YRoiIiOopLQ0p5vRujZDZ3dHL0RRFCgFfh99Gz9Vh2B+dWG8u3TCMEBER1XO2Rjr4dpwHvh/fETaG2niQlY+Zv0TjzS1ncD2l7l+6YRghIiJqIHo4mOHw7O6Y27s15DI1nL2Tgf5fRWDpgavIeloodnnlYhghIiJqQOQyKab3bIUjc7zRr605ihUCtp68ix6rjmNP1H0oFHXv0g3DCBERUQNk1VQbm8e4Y/vETmhuooO0nHzM3X0J//n6NK4mZYpdXikMI0RERA1Y99Ym+Gtmd3zYzwHaGlJE3XuEQetP4ON9V/D4SYHY5QFgGCEiImrwNNTVMNWnBY7O9cZA12ZQCMCOM/fQY/Vx/HIuXvRLNwwjKnA5eCIiaoiaGWhhwyg3/Dy5M1qZ6iIjtwDzf7+MYRtP4lLCY9HqYhhRgcvBExFRQ+bZwhhBM73w0QBH6Gqq49L9TAzdeBILfv8bGbm1f+mGYYSIiKgRkknVMMmrOY7N9cbrHSwhCMDOcwnwXRWGHWfuobgWL90wjBARETVipvpyrBnZHrundIGDuR4y8wrx8b4rGLzhBKLuPaqVGhhGiIiICB52hjg4vRuWDWkLfbk6riZl4Y1NpzD310t4mJ1fo8dmGCEiIiIAgLpUDWO72OHYPB+M6GgFANhz4T56rArD9yfuoKhYUSPHZRghIiKiUox1NbFyeDvsneYJF0sDZOcXYdnBGAz46gTO3k6v9uMxjBAREZFKHWyaYp9/Vywf5oIm2jJcf5CNkVvOYOYvF/Eg62m1HYdhhIiIiMolVZNgVGcbhM71wdudbSCRAPujk9BjVRi2hN9CQdGrX7phGCEiIqKXaqqjgc+HueAP/25ob90EuQXFWB50DX5fhuPEzbRX2jfDCBEREVWYi5UBfp/qiZXDXWGko4FbD3Mx+ruzmPZTFJIe51VpnwwjREREVClqahKM6GiNY/N8MN7TDmoSIOhyCnquPo7A0DjkFxVXbn81VCcRERE1cAZaMiwZ3BZ/zvCCh11T5BUW44vg6+i7NhzhNx9WeD+NIowMGzYMTZs2xfDhw8UuhYiIqMFxbKaPX9/rgnUj28NETxN3059g2o8XKvz6RhFGZsyYge3bt4tdBhERUYMlkUgwtIMljs31xmQve6irSSr82kYRRnx9faGnpyd2GURERA2enlyGRQOcsGdqlwq/RvQwEh4ejkGDBsHCwgISiQT79u0rs83GjRthb28PuVwOd3d3RERE1H6hREREVGEtTCt+EkD0MJKbm4t27dphw4YNKp/ftWsXZs2ahUWLFuHixYvw8vKCn58f4uPjldu4u7vD2dm5zFdSUlJtvQ0iIiKqInWxC/Dz84Ofn1+5z69ZswbvvPMOJk2aBABYt24dgoODsWnTJgQEBAAAoqKiqqWW/Px85Of//50Js7KyAACFhYUoLCyslmMQ1aSSfsr+SvUB+2vDVpnvq+hh5EUKCgoQFRWF+fPnl2rv06cPTp06Ve3HCwgIwNKlS8u0h4aGQltbu9qPR1RTQkJCxC6BqMLYXxumJ0+eVHjbOh1G0tLSUFxcDDMzs1LtZmZmSElJqfB++vbtiwsXLiA3NxdWVlbYu3cvPDw8ymy3YMECzJkzR/k4KysL1tbW8PX1hZGRUdXfCFEtKSwsREhICHr37g2ZTCZ2OUQvxP7asJVcXaiIOh1GSkgkpacHCYJQpu1FgoODK7SdpqYmNDU1ERgYiMDAQBQXP1tBTiaT8QeF6hX2WapP2F8bpsp8T0UfwPoixsbGkEqlZc6CpKamljlbUp38/f0RExODyMjIGjsGERERPVOnw4iGhgbc3d3LXE8MCQmBp6enSFURERFRdRL9Mk1OTg7i4uKUj+/cuYPo6GgYGhrCxsYGc+bMwZgxY9CxY0d06dIFW7ZsQXx8PKZMmVJjNT1/mYaIiIhqjuhh5Pz58/D19VU+LhlAOm7cOGzbtg0jR45Eeno6li1bhuTkZDg7OyMoKAi2trY1VpO/vz/8/f2RlZUFAwODGjsOERER1YEw4uPjA0EQXrjNtGnTMG3atFqqiIiIiGpTnR4zQkRERA0fw4gKgYGBcHJyUrkWCREREVUvhhEVOLWXiIio9jCMEBERkagYRoiIiEhUDCMqcMwIERFR7WEYUYFjRoiIiGoPwwgRERGJimGEiIiIRMUwQkRERKJiGFGBA1iJiIhqD8OIChzASkREVHsYRoiIiEhUDCNEREQkKoYRIiIiEhXDCBEREYmKYUQFzqYhIiKqPQwjKnA2DRERUe1hGCEiIiJRMYwQERGRqBhGiIiISFQMI0RERCQqhhEiIiISFcMIERERiYphRAWuM0JERFR7GEZU4DojREREtYdhhIiIiETFMEJERESiYhghIiIiUTGMEBERkagYRoiIiEhUDCNEREQkKoYRIiIiEhXDCBEREYmKYYSIiIhExTCiApeDJyIiqj0MIypwOXgiIqLawzBCREREomIYISIiIlExjBAREZGoGEaIiIhIVAwjREREJCqGESIiIhIVwwgRERGJimGEiIiIRMUwQkRERKJiGCEiIiJRNfgwkpCQAB8fHzg5OcHV1RW7d+8WuyQiIiL6F3WxC6hp6urqWLduHdq3b4/U1FS4ubmhf//+0NHREbs0IiIiQiMII82aNUOzZs0AAKampjA0NERGRgbDCBERUR0h+mWa8PBwDBo0CBYWFpBIJNi3b1+ZbTZu3Ah7e3vI5XK4u7sjIiKiSsc6f/48FAoFrK2tX7FqIiIiqi6ih5Hc3Fy0a9cOGzZsUPn8rl27MGvWLCxatAgXL16El5cX/Pz8EB8fr9zG3d0dzs7OZb6SkpKU26Snp2Ps2LHYsmVLjb8nIiIiqjjRL9P4+fnBz8+v3OfXrFmDd955B5MmTQIArFu3DsHBwdi0aRMCAgIAAFFRUS88Rn5+PoYNG4YFCxbA09Pzhdvl5+crH2dmZgIAMjIyKvx+iMRUWFiIJ0+eID09HTKZTOxyiF6I/bVhy87OBgAIgvDSbUUPIy9SUFCAqKgozJ8/v1R7nz59cOrUqQrtQxAEjB8/Hj169MCYMWNeuG1AQACWLl1apr1169YVL5qIiIiUsrOzYWBg8MJt6nQYSUtLQ3FxMczMzEq1m5mZISUlpUL7OHnyJHbt2gVXV1fleJQdO3bAxcWlzLYLFizAnDlzlI8fP34MW1tbxMfHv/SDrC88PDwQGRnZYI5dHfus6j4q87qKbluR7V60TVZWFqytrZGQkAB9ff0K1VbXidVn2V/ZX6uiIfXXV92vIAhwd3eHhYXFS7et02GkhEQiKfVYEIQybeXp1q0bFApFhbbV1NSEpqZmmXYDA4MG84MilUpFey81cezq2GdV91GZ11V024psV5Ft9PX12Wfr4HHZX1Vjf627x33V/WpoaEBN7eXDU0UfwPoixsbGkEqlZc6CpKamljlbQhXj7+/foI5dHfus6j4q87qKbluR7cT8HopBrPfL/lo927G/1u/jvup+K/p6iVCRkSW1RCKRYO/evRg6dKiyrXPnznB3d8fGjRuVbU5OThgyZIhyAGtNycrKgoGBATIzMxtMaqeGjX2W6hP2Vyoh+mWanJwcxMXFKR/fuXMH0dHRMDQ0hI2NDebMmYMxY8agY8eO6NKlC7Zs2YL4+HhMmTKlxmvT1NTE4sWLVV66IaqL2GepPmF/pRKinxkJCwuDr69vmfZx48Zh27ZtAJ4terZy5UokJyfD2dkZa9euRffu3Wu5UiIiIqoJoocRIiIiatzq9ABWIiIiavgYRoiIiEhUDCNEREQkKoYRIiIiEhXDSDVJSEiAj48PnJyc4Orqit27d4tdEtELDRs2DE2bNsXw4cPFLoWojIMHD6JNmzZo1aoVvv32W7HLoRrG2TTVJDk5GQ8ePED79u2RmpoKNzc3XL9+HTo6OmKXRqRSaGgocnJy8MMPP+C3334TuxwipaKiIjg5OSE0NBT6+vpwc3PD2bNnYWhoKHZpVEN4ZqSaNGvWDO3btwcAmJqawtDQEBkZGeIWRfQCvr6+0NPTE7sMojLOnTuHtm3bwtLSEnp6eujfvz+Cg4PFLotqUKMJI+Hh4Rg0aBAsLCwgkUiUd/D9t40bN8Le3h5yuRzu7u6IiIio0rHOnz8PhUIBa2vrV6yaGqva7K9E1e1V+29SUhIsLS2Vj62srJCYmFgbpZNIGk0Yyc3NRbt27bBhwwaVz+/atQuzZs3CokWLcPHiRXh5ecHPzw/x8fHKbdzd3eHs7FzmKykpSblNeno6xo4diy1bttT4e6KGq7b6K1FNeNX+q2r0QEXv1E71lNAIARD27t1bqq1Tp07ClClTSrU5ODgI8+fPr/B+nz59Knh5eQnbt2+vjjKJBEGouf4qCIIQGhoqvPHGG69aIlG5qtJ/T548KQwdOlT53IwZM4Sffvqpxmsl8TSaMyMvUlBQgKioKPTp06dUe58+fXDq1KkK7UMQBIwfPx49evTAmDFjaqJMIgDV01+JxFKR/tupUydcuXIFiYmJyM7ORlBQEPr27StGuVRLRL9rb12QlpaG4uJimJmZlWo3MzNDSkpKhfZx8uRJ7Nq1C66ursrrozt27ICLi0t1l0uNXHX0VwDo27cvLly4gNzcXFhZWWHv3r3w8PCo7nKJSqlI/1VXV8fq1avh6+sLhUKBDz74AEZGRmKUS7WEYeRfnr8mKQhCha9TduvWDQqFoibKIlLpVforAM5OIFG9rP8OHjwYgwcPru2ySCS8TAPA2NgYUqm0zF+VqampZdI7kdjYX6k+Y/8lVRhGAGhoaMDd3R0hISGl2kNCQuDp6SlSVUSqsb9Sfcb+S6o0mss0OTk5iIuLUz6+c+cOoqOjYWhoCBsbG8yZMwdjxoxBx44d0aVLF2zZsgXx8fGYMmWKiFVTY8X+SvUZ+y9VmriTeWpPaGioAKDM17hx45TbBAYGCra2toKGhobg5uYmHD9+XLyCqVFjf6X6jP2XKov3piEiIiJRccwIERERiYphhIiIiETFMEJERESiYhghIiIiUTGMEBERkagYRoiIiEhUDCNEREQkKoYRIiIiEhXDCFEj5ePjg1mzZlX7frt3746ff/5Z+TglJQW9e/eGjo4OmjRpUu3Hq48uX74MKysr5Obmil0KUZ3AMEJE1ebgwYNISUnBm2++qWxbu3YtkpOTER0djRs3bohYXd3h4uKCTp06Ye3atWKXQlQnMIwQUbX56quvMGHCBKip/f9/Lbdu3YK7uztatWoFU1NTla8rLCysrRLrjAkTJmDTpk0oLi4WuxQi0TGMEBEePXqEsWPHomnTptDW1oafnx9u3rxZaptvvvkG1tbW0NbWxrBhw7BmzZpSl13S0tJw5MgRDB48WNlmZ2eHPXv2YPv27ZBIJBg/fjwAQCKRYPPmzRgyZAh0dHTw2WefAQAOHDgAd3d3yOVyNG/eHEuXLkVRUZFyfzdv3kT37t0hl8vh5OSEkJAQSCQS7Nu3DwAQFhYGiUSCx48fK18THR0NiUSCu3fvKttOnTqF7t27Q0tLC9bW1pgxY0apSyZ2dnZYvnw5Jk6cCD09PdjY2GDLli2lPo/79+/jzTffhKGhIXR0dNCxY0ecPXsWd+/ehZqaGs6fP19q+/Xr18PW1hYltwPr27cv0tPTcfz48Yp9k4gaMIYRIsL48eNx/vx5/PHHHzh9+jQEQUD//v2VZyxOnjyJKVOmYObMmYiOjkbv3r3x+eefl9rHiRMnoK2tDUdHR2VbZGQk+vXrhxEjRiA5ORlffvml8rnFixdjyJAhuHz5MiZOnIjg4GCMHj0aM2bMQExMDL7++mts27ZNeRyFQoHXX38dUqkUZ86cwebNm/Hhhx9W+r1evnwZffv2xeuvv46///4bu3btwokTJ/D++++X2m716tXo2LEjLl68iGnTpmHq1Km4du0aACAnJwfe3t5ISkrCH3/8gUuXLuGDDz6AQqGAnZ0devXqha1bt5ba39atWzF+/HhIJBIAgIaGBtq1a4eIiIhKvweiBkfcmwYTkVi8vb2FmTNnCjdu3BAACCdPnlQ+l5aWJmhpaQm//vqrIAiCMHLkSGHAgAGlXv/2228LBgYGysdr164VmjdvXuY4Q4YMKXXreEEQBADCrFmzSrV5eXkJy5cvL9W2Y8cOoVmzZoIgCEJwcLAglUqFhIQE5fOHDh0SAAh79+4VBOH/b13/6NEj5TYXL14UAAh37twRBEEQxowZI7z77ruljhMRESGoqakJeXl5giAIgq2trTB69Gjl8wqFQjA1NRU2bdokCIIgfP3114Kenp6Qnp5e5v0KgiDs2rVLaNq0qfD06VNBEAQhOjpakEgkyhpKDBs2TBg/frzKfRA1JjwzQtTIxcbGQl1dHZ07d1a2GRkZoU2bNoiNjQUAXL9+HZ06dSr1uucf5+XlQS6XV/i4HTt2LPU4KioKy5Ytg66urvJr8uTJSE5OxpMnTxAbGwsbGxtYWVkpX9OlS5cKH+/fx9m2bVup4/Tt2xcKhQJ37txRbufq6qr8t0Qigbm5OVJTUwE8u/TToUMHGBoaqjzG0KFDoa6ujr179wIAvv/+e/j6+sLOzq7UdlpaWnjy5Eml3wNRQ6MudgFEJC7hnzEMqtpLLin8+9/lvc7Y2BiPHj2q8HF1dHRKPVYoFFi6dClef/31MtvK5XKVdT5fU8nA2X9v+/zgWIVCgffeew8zZswosz8bGxvlv2UyWZljKRQKAM9CxItoaGhgzJgx2Lp1K15//XX8/PPPWLduXZntMjIy0KJFixfui6gxYBghauScnJxQVFSEs2fPwtPTEwCQnp6OGzduKMd/ODg44Ny5c6Ve9/wAzQ4dOiAlJQWPHj1C06ZNK12Hm5sbrl+/jpYtW5ZbZ3x8PJKSkmBhYQEAOH36dKltTExMAADJycnKGqKjo8sc5+rVq+UepyJcXV3x7bffIiMjo9yzI5MmTYKzszM2btyIwsJClSHrypUrGD58eJXrIGooeJmGqJFr1aoVhgwZgsmTJ+PEiRO4dOkSRo8eDUtLSwwZMgQAMH36dAQFBWHNmjW4efMmvv76axw6dKjUmYkOHTrAxMQEJ0+erFIdn3zyCbZv344lS5bg6tWriI2Nxa5du/DRRx8BAHr16oU2bdpg7NixuHTpEiIiIrBo0aJS+2jZsiWsra2xZMkS3LhxA3/++SdWr15dapsPP/wQp0+fhr+/P6Kjo3Hz5k388ccfmD59eoVrfeutt2Bubo6hQ4fi5MmTuH37Nvbs2VMqHDk6OuK1117Dhx9+iLfeeqvM2ZS7d+8iMTERvXr1quxHRdTgMIwQEbZu3Qp3d3cMHDgQXbp0gSAICAoKUl6q6Nq1KzZv3ow1a9agXbt2+OuvvzB79uxSY0SkUikmTpyIn376qUo19O3bFwcPHkRISAg8PDzw2muvYc2aNbC1tQXw7BLM3r17kZ+fj06dOmHSpEllZvTIZDLs3LkT165dQ7t27bBixQrltOESrq6uOH78OG7evAkvLy906NABH3/8MZo1a1bhWjU0NHD48GGYmpqif//+cHFxwf/+9z9IpdJS273zzjsoKCjAxIkTy+xj586d6NOnj/L9ETVmEqG8C8ZERC8wefJkXLt2rdTU1AcPHqBt27aIioqqtV+yEokEe/fuxdChQ2vleJXx+eef45dffsHly5dLtefn56NVq1bYuXMnunbtKlJ1RHUHz4wQUYWsWrUKly5dQlxcHNavX48ffvgB48aNK7WNmZkZvvvuO8THx4tUZd2Qk5ODyMhIrF+/XuVA2Xv37mHRokUMIkT/4JkRIqqQESNGICwsDNnZ2WjevDmmT5+OKVOmiF1WnTwzMn78eOzcuRNDhw7Fzz//XObyDRGVxjBCREREouJlGiIiIhIVwwgRERGJimGEiIiIRMUwQkRERKJiGCEiIiJRMYwQERGRqBhGiIiISFQMI0RERCQqhhEiIiIS1f8BCXBVxS6f7QYAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 600x400 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "Nf = 1024                       # número de pontos do espectro\n",
    "fp = 5.                         # frequência máxima\n",
    "df = fp/Nf                      # resolução da frequência\n",
    "\n",
    "f  = np.linspace(0, fp, Nf)     # domínio da frequência (Hz)\n",
    "X  = 1800/Vm_10\n",
    "\n",
    "SV = 0.61*X*(sig_V**2)/(2 + f*f*X*X)**(5/6)\n",
    "\n",
    "plt.figure(1, figsize=(6,4))\n",
    "plt.loglog(f, SV)\n",
    "plt.axis([0.01, fp, 0.01, 1000])\n",
    "plt.title('Espectro de velocidade de Harris')\n",
    "plt.xlabel('log(frequency)')\n",
    "plt.ylabel('log(Power)')\n",
    "plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Deve ser observado que a integral da densidade espectral corresponde, por definição, à variância da parcela flutuante da velocidade do vento:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " sig_V spectrum:   6.45m/s\n",
      " sig_V specified:  6.46m/s\n"
     ]
    }
   ],
   "source": [
    "sV2 = np.trapz(SV, dx=df)\n",
    "\n",
    "print(' sig_V spectrum:  {0:5.2f}m/s\\n sig_V specified: {1:5.2f}m/s'.format(np.sqrt(sV2), sig_V))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4 Resposta dinâmica por superposição modal <a name=\"section_4\"></a> \n",
    "\n",
    "A resposta dinâmica de um sistema estrutural linear elástico (ou linearizado no entorno de uma dada resposta média) pode ser calculada a partir da equação diferencial de equilíbrio dinâmico:\n",
    "\n",
    "$${\\bf M} \\ddot{\\vec{u}} + {\\bf C} \\dot{\\vec{u}} + {\\bf K} \\vec{u} = \\vec{F}(t)$$\n",
    "\n",
    "onde ${\\bf M}$ é a matriz de massa, ${\\bf C}$ é a matriz de amortecimento (viscoso, ou Newtoniano), ${\\bf K}$ é a matriz de rigidez, $\\vec{u}$ é o vetor de deslocamentos generalizados, e $\\vec{F}(t)$ é o vetor de forças externas generalizadas. \n",
    "Considerando-se que as forças de amortecimento são pequenas e que não há forças externas atuantes, tem-se a equação de equilíbrio em vibração livre:\n",
    "\n",
    "$${\\bf M} \\ddot{\\vec{u}} + {\\bf K} \\vec{u} = \\vec{0}$$\n",
    "\n",
    "para a qual se admite a solução:\n",
    "\n",
    "$$\\vec{u}(t) = u_k(t) \\; \\vec \\phi_k$$\n",
    "\n",
    "ou seja, a resposta é composta de uma função escalar do tempo e um vetor de constantes adimensionais. Admitindo-se que em vibração livre não-amortecida os deslocamentos são funções sinusoidais do tempo:\n",
    "\n",
    "$$u_k(t) = u_{k, {\\rm max}} \\cos \\omega_k t$$\n",
    "\n",
    "e substituindo-se esta expressão na equação de equilíbrio chega-se a:\n",
    "\n",
    "$${\\bf K} \\vec \\phi_k = \\omega_k^2 {\\bf M} \\vec \\phi_k$$\n",
    "\n",
    "que resulta ser um _problema de autovalores-autovetores_ com tantas soluções  quanto o número de graus de liberdade, $n$, do modelo estrutural. As frequências $\\omega_k$ são denominadas _frequências naturais de vibração livre_ e os vetores $\\vec \\phi_k$ são denominados _formas modais_, com o sub-índice $k$ denotando o _modo de vibração_. \n",
    "\n",
    "Por se tratar de um sistema linear (ou linearizado), a equação de equilíbrio dinâmico pode ser resolvida por um método denominado superposição modal, sendo que a resposta total é obtida através da soma das respostas em cada modo de vibração. Subtituindo-se a $\\vec{u}(t)$ na equação de equilíbrio e pré-multiplicando-se todos os termos por $\\vec\\phi_k^{\\; \\rm T}$ (com o $\\rm T$ denotando _transposição_) tem-se:\n",
    "\n",
    "$$\n",
    "(\\vec\\phi_k^{\\; \\rm T}{\\bf M} \\vec\\phi_k) \\, \\ddot{u}_k + \n",
    "(\\vec\\phi_k^{\\; \\rm T}{\\bf C}  \\vec\\phi_k) \\, \\dot{u}_k + \n",
    "(\\vec\\phi_k^{\\; \\rm T}{\\bf K}  \\vec\\phi_k) \\,  u_k = \\vec\\phi_k^{\\; \\rm T} \\vec{F}(t)\n",
    "$$\n",
    "\n",
    "Devido à propriedade de ortogonalidade dos autovetores $\\vec \\phi_k$, e desde que a matriz de amortecimento, ${\\bf C}$, possa ser representada como uma combinação linear das matrizes ${\\bf M}$ e ${\\bf K}$ (denominada _matriz de amortecimento proporcional_, ou de Rayleigh), todos os termos da equação acima resultam escalares e pode-se escrever:\n",
    "\n",
    "$$M_k \\ddot{u}_k + C_k \\dot{u}_k + K_k  u_k = F_k(t)$$\n",
    "\n",
    "onde $M_k$, $C_k$, $K_k$ e $u_k(t)$ são denominados _massa, amortecimento, rigidez e resposta modais_, respectivamente. Deve-se dar um destaque especial à chamada _força modal_:\n",
    "\n",
    "$$F_k(t) = \\vec\\phi_k^{\\; \\rm T} \\vec{F}(t)$$\n",
    "\n",
    "já que o método de análise dinâmica da NBR-6123 traz implícito um espectro de potência para esta função escalar do tempo, que será apresentado na próxima seção. \n",
    "\n",
    "A solução da equação de equilíbrio dinâmico por meio de superposição modal implica que uma única equação matricial é substituída por $n$ equações escalares acima, com $k = 1, 2, \\dots, n$. \n",
    "A resposta total do sistema é dada pela superposição de todas as respostas modais:\n",
    "\n",
    "$$\\vec{u}(t) =  \\sum_{k = 1}^n  \\;  u_k(t)  \\; \\vec \\phi_k$$\n",
    "\n",
    "A grande vantagem da solução por superposição modal está na evidência de que o somatório na equação acima pode ser truncado para um número de termos muito menor que o número total de graus de liberdade. Para torres esbeltas submetidas à ação do vento, o número de modos que precisam ser considerados na solução  é geralmente apenas 1, no máximo 2. Este truncamento implica que o modelo estrutural pode ser satisfatoriamente caracterizado por uns poucos conjuntos de propriedades ($M_k$, $K_k$, $\\vec \\phi_k$) e alguma regra para definição do amortecimento, $C_k$. \n",
    "\n",
    "É importante observar que as formas modais, $\\vec \\phi_k$, tem escala (normalização) arbitrária, a qual deve ser claramente definida e consistentemente mantida durante todas as etapas da análise. É conveniente adotar-se uma normalização pela matriz de massa, tal que:\n",
    "\n",
    "$$M_k = \\vec\\phi_k^{\\; \\rm T} {\\bf M} \\vec\\phi_k = 1$$\n",
    "\n",
    "que tem a vantagem de evitar problemas de ordem de grandeza nos parâmetros da equação de equilíbrio modal. Aplicando-se esta normalização tem-se a forma alternativa da equação de equilíbrio dinâmico:\n",
    "\n",
    "$$\\ddot{u}_k + 2\\zeta_k \\omega_k \\dot{u}_k + \\omega_k^2  u_k = F_k(t)$$\n",
    "\n",
    "onde $\\zeta_k$ é um parâmetro muito importante denominado _razão de amortecimento crítico_ no $k$-ésimo modo. Por ser adimensional, $\\zeta_k$ é muito mais conveniente para definir níveis de amortecimento do que a constante $C_k$ (que pode ter, por exemplo, unidade Ns/m). Para estruturas de Engenharia Civil (pontes, edifícios, torres, pisos), em geral, a razão de amortecimento situa-se entre 0.005 e 0.03. Para torres metálicas aparafusadas é recomendável adotar-se $\\zeta_k$ = 0.01. \n",
    "\n",
    "Para a torre do exemplo, a montagem das matrizes do sistema e a solução do problema de autovalores é feita como descrito abaixo. Deve-se observar que cada nó estrutural tem dois graus de liberdade, o primeiro de translação e o segundo de rotação:\n",
    "\n",
    "<table>\n",
    " <tr>\n",
    "   <td><img src=\"resources/discretization.png\" alt=\"Discretization\" width=\"280px\"/></td>\n",
    "   <td><img src=\"resources/element.png\"        alt=\"Finite element\" width=\"280px\"/></td>\n",
    " </tr>\n",
    "</table> \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[1 5 2 6 3 7 4 8]\n"
     ]
    }
   ],
   "source": [
    "a = np.array([[1,2,3,4],[5,6,7,8]]).T\n",
    "\n",
    "print(a.reshape(2*4))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFjCAYAAAAZyTFsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1H0lEQVR4nO3de3Bc5X0+8Ofc9uyutJItG3YtbIM8ow4kJgRsYGqY2CngDHGIM8zkwiWQSf/ANRAUtzG4ThuHKRK4v7qexIUUJkPcUgemE4hphyYWSSpg3BbH4AQMg0sxIIiFwLFXl72dc/b9/eG8r88erSzJ3tXu2X0+MzuWdo/EOePk4cv3vWlCCAEiIqp7eq1vgIiIpoeBTUQUEgxsIqKQYGATEYUEA5uIKCQY2EREIcHAJiIKCQY2EVFIMLCJiEKCgU1EFBI1DewHH3wQXV1diEajWLZsGZ5//vla3g4RUV0za/UPfuKJJ9DT04MHH3wQV1xxBf7xH/8R1157LV577TUsXrz4lD9bLBbxu9/9DolEApqmzdIdExFVnhACo6Oj6OzshK5PUUOLGrnsssvEunXrSt47//zzxT333DPlzw4ODgoAfPHFF18N8xocHJwy+2pSYRcKBezfvx/33HNPyfurV6/G3r17J1yfz+eRz+fV9+IPGwyuWbMGplmz/0ggIjpjjuPgmWeeQSKRmPLamqTdRx99BM/zkEwmS95PJpMYGhqacH1fXx+++93vTnjfNE1YllW1+yQimi3Tae/WdNAxeINCiLI3vWnTJqTTafUaHBycrVskIqobNamw58+fD8MwJlTTw8PDE6puALBtG7Ztz9btERHVpZpU2JFIBMuWLUN/f3/J+/39/VixYsUZ/W7OGiGiRlWzEbsNGzbgq1/9KpYvX44//uM/xsMPP4x3330X69atO+3fKcNa0zQ1MElE1ChqFthf/vKXcfToUdx77704cuQIli5dimeeeQbnnnvuaf9O2QNnWBNRI6rpnLj169dj/fr1Ff2dDGsialTcS4SIKCSaIrA1TeNgJBGFXsMH9mRBzdYJEYVNwwf2ZFhxE1HYNPxGHKykiahRNG2FTUQUNk0b2ByIJKKwaYrADrZFOBBJRGHUFIHNSpqIGkHDDzqWM1klzWAnonrWFBU2EVEjaMoKuxz/IKQQQlXhnucBAAzD4MZSRFRTTVth+0MZOBHYuq5D13UV3uXCmW0TIqqVpq2wOVOEiMKmaQM7SAiBYrGovgbKnzlJRFQrDOw/mCyMdb1pu0ZEVGcY2D6ywvYfNSYD29/z9lfgHIgkotnCwP4DORtEkgOQlmWhWCzC8zwV2jLYpxqgJCKqJP73/hRkOBMR1Ror7D8wDGPCe0IIVXnLA37LYXVNRLOBgf0H/jD296rLzRiRfW22QohoNjGw/2CyCrrcTn/+FZFERLOFge0TDGD/ACNwcpBRtk+KxSKKxeKEFZOsvImoGjjoeJqmWqLOJexEVGmssE/BPw9bfj/Zikh/Rc3qmoiqgYF9CsFjxGQQ+9skMqzZBiGiamNL5BQmq5rLrXoE2AYhoupiYE8huA1r8DNJtk+CFTmrbiKqFAb2GZpsZz8iokpjD/s0TGe+tryOFTYRVQoD+zSUWzgTbI+w8iaiSmNL5DRMVTWzqiaiamBgn6ZyqyInW8bOk2uIqBIY2BVWLrRn8jkR0WTYw66Q6W69ylWRRHS6GNhVxIFIIqoktkSIiEKCgV1lkx3cy4FIIpopBnYVldtvBJh8IJItEyI6Ffawq4gDkURUSRWvsPv6+nDppZcikUjg7LPPxhe+8AW88cYbJdcIIbBlyxZ0dnYiFoth1apVOHjwYKVvpS7J+dpyS1Z/qLOyJqJTqXhgDwwM4Pbbb8d///d/o7+/H67rYvXq1RgfH1fXbN26Fdu2bcOOHTuwb98+pFIpXHPNNRgdHa307dTcdEOYYU1EU9FElf/7+8MPP8TZZ5+NgYEBfOpTn4IQAp2dnejp6cHdd98NAMjn80gmk3jggQdw2223Tfk7R0ZG0N7ejrVr18KyrGreflUED/zVdR26rpecZiPPiwQAwzB48C9Rg3IcB7t370Y6nUZbW9spr636oGM6nQYAdHR0AAAOHz6MoaEhrF69Wl1j2zZWrlyJvXv3lv0d+XweIyMjJa+w8g8wyq91XYdhGCX7aReLRXiex4FIIlKqGthCCGzYsAFXXnklli5dCgAYGhoCACSTyZJrk8mk+iyor68P7e3t6rVo0aJq3nZVletZy8p6sr1I5DVE1NyqGth33HEHfvvb3+LHP/7xhM/KTW2brIrctGkT0um0eg0ODlblfmdLcLBRVtP+0JZtEj+GNlFzq9q0vjvvvBNPP/00nnvuOSxcuFC9n0qlAJyotBcsWKDeHx4enlB1S7Ztw7btat3qrCt3sEG56tof2AxrIqp4hS2EwB133IEnn3wSv/zlL9HV1VXyeVdXF1KpFPr7+9V7hUIBAwMDWLFiRaVvpy4Fw7dYLMJ1Xbiuq6pswzAQiURgWVZJW8TzPHieB2BipU5Eja3iFfbtt9+OXbt2Yffu3UgkEqov3d7ejlgsBk3T0NPTg97eXnR3d6O7uxu9vb2Ix+O48cYbK307oSBbIjJ8ZTskEomoAJctE3mdnDnCypuoeVQ8sB966CEAwKpVq0ref/TRR/G1r30NALBx40Zks1msX78ex44dw+WXX449e/YgkUhU+nZCo9yJ6zKsg7v+saomak5Vn4ddDWGfhz0dsoftnwZYbm52CP/6iMhnJvOwuZdIHZBVc3COtr9XLf/kQCRR82Jg14ngjn3+VY+yXeIPbH+r5FRTIomocXB71Trg3xBK8s/Nlr1sTdNgWRYMwyj5Ofk1wB43USNjYNexcuErq+5TYauEqDGxJVKnDMNQlbQkhIDruup7OSjJvbSJmgMDu04F9xEJtk1kL5t7jRA1D7ZE6li53rb/Myk4e4SIGhMr7Do1VUhPNsh4qkFIVuFE4cayLER40jpRc2OFHTJThfZ0dgIkonBihR0y5ab6letzcy42UeNhhR1Ck1XMDG2ixsbADpnpzBgBMOkSdnkNByKJwoctkQZTLryJqDGwwm4A5YLZX1lzIJKoMbDCbgDTGYjkplBE4cfAbnAciCRqHGyJNICpBiIlua+2f69t+bU8R3KynyWi2mOF3QT8vWwiCi9W2A1qsoFI+ad/IJIbRxGFAwO7QZWbZy3bIP4zIuU1PNCXqP6xtGpCHIgkCidW2A3qTAcipeCJ7kRUO6ywm4g80BeYuEx9srMjWX0T1Q9W2E3EP7gY7HFP1seW7xNR7TGwm4g/sGUwTzYQWe5aIqottkQIQPm+dbnjxxjeRLXDCruJTGcgUtM0mKYJwzDgeR48zwMAuK4L13Wh6zosy4Ku6wxwolnGwCbVFpFtEMMwVCgXi0U1g8R1XZjmif/JcD9totnHwKYJKx09z4Ou66q6Bk4EtGEYJUHNsCaaXQzsJhecZ61pGjzPU4EsZ4kYhqE+B1hZE9UCBx2bXLll6kIIeJ5XMmdbBntw9giDm2j2sMJucuUC13VdFIvFkjaIZVloaWlBsVhEPp9HsVhUg5Lycw5EElUXK2wqIYSA67ooFApwXVe1RyKRCOLxOKLRqKqyi8UiHMdR1/BUG6LqYmDTBLquwzAMtc8IADVLxHVddZ1skTCoiWYHWyJUQrY3LMsqeT+fz8NxHABQJ9TIgUhJ9ryJqDoY2DSBfwc//xL24HztyQ7/JaLqYGDTBP4NoeTXctaIfyBSrnoMziqRuDUrUWUxsGmC4EwPGciO45RU15ZlwbZtFItF5HK5CYHtn7vN0CY6cxx0pCn552AH52HLpesAz4YkqjZW2DQtlmXBNM2SnrXnecjlcgBOhLe/9+3H6pqoMqpeEvX19UHTNPT09Kj3hBDYsmULOjs7EYvFsGrVKhw8eLDat0JnQNd1tYufrLj987ABDkISVVtVA3vfvn14+OGH8YlPfKLk/a1bt2Lbtm3YsWMH9u3bh1QqhWuuuQajo6PVvB06A/69ReT3kmyL+Fsj/jnc/p8notNXtcAeGxvDTTfdhEceeQRz585V7wshsH37dmzevBnXX389li5dip07dyKTyWDXrl1lf1c+n8fIyEjJi2aX7Ff7e9blPgdODDb652j7fxYoX4kT0dSqFti333471qxZg6uvvrrk/cOHD2NoaAirV69W79m2jZUrV2Lv3r1lf1dfXx/a29vVa9GiRdW6baqQ4Ak2RHTmqhLYjz/+OF566SX09fVN+GxoaAgAkEwmS95PJpPqs6BNmzYhnU6r1+DgYOVvmmZMzsn297UBlMzJ9p8RyVkkRGem4rNEBgcHcdddd2HPnj2IRqOTXlducGqySsy2bdi2XdH7pDNX7u+wXGUdnDnCXjbR6al4ybN//34MDw9j2bJlME0TpmliYGAA3/ve92Capqqsg9X08PDwhKqb6ttkIVxuYNI/EFnu1Br2tYmmVvHAvuqqq/DKK6/gwIED6rV8+XLcdNNNOHDgAJYsWYJUKoX+/n71M4VCAQMDA1ixYkWlb4eqrNyqSLlXtn8gUv7L298W8V9HRFOreEskkUhg6dKlJe+1tLRg3rx56v2enh709vaiu7sb3d3d6O3tRTwex4033ljp26GQ4PJ1oqnVZKXjxo0bkc1msX79ehw7dgyXX3459uzZg0QiUYvboQryn//o5z9uLHh9ufeJaCJNhPD/KSMjI2hvb8fatWsn7NtMtRdcMBPsTctqWs7NDi6yIWomjuNg9+7dSKfTaGtrO+W13EuEqm6ymsA/1S84UMkAJ5qIgU0VV27zJ//WqzKo5SCk53lwXbdk9z95RNlkv5OoGXElA82K4Ok1AE7ZCpGHJbDSJjqJFTZV3WQDkXKXv2CfW+69XW4+N1EzY2BT1clK2X9OpBBCncDur6R1XS+ZUcIKm+gkBjbNmukcbFDuVBvZ2/avlGTVTc2IgU1VN9V2rMDJoI5Go9B1Ha7rwnEcVYl7ngfDMEr2lGFoU7PhoCPVTLmBSMMwYFlWSc87uISdbRJqVqywqSbkQKRsdUiO46ijx+R1uq6raX6sqqmZMbCpZmQQ+yttx3FUWAMnAzvYu2ZwUzNiYFNd8M8gkd/L1oe/PVJu7xG2SKhZMLCppoIH+7quq9okcjVkLBaDaZrwPA+5XA7FYrFkIDISiUwIfKJGxEFHqplgwMrBRRnG8nPTNBGPx9VGX/49t3mwLzUTVthUN/yDi/5l67KydhxHBXPwGoB9bWp8DGyqG5qmTWhvaJqGXC6HfD6vrpNhbVlWyVatRI2OgU11w7+E3U/u4Ccra+DEQKTnedzRj5oKA5vqRnDKnn/PEf9ApGEYME0Ttm2rOduywg4uYff/PqKw46Aj1RX/5lCSHIiUe2b7Z4fItog8vQY4uTUrUaNhhU11zzCMknaJ3NHP8zy1Rat/lz+AO/1RY2JgU12TA5GSf0Wkf3tWGersa1MjY0uE6l5wGp+cGSJ728HriBoVK2yqe+UGIyX/UWL+k23K9cI5EElhx3KE6p7/cN7gdqwA1IpHGdjB48j8A5Lsa1OYMbAplPytD/n1dHbyY2VNYcaWCIWSpmkwTbMkgMudE+k/oZ0o7BjYFEqytTHZXiL+z4NhzSqbwoqBTaE31WBkJBKZ0AeX87dlz5tbs1IYMLAplMqFa3ADKF3XEYlEYNs2hBAoFApqgFK2TuT87VP9XqJ6wcYeNYzJBiKnWz0zrKnescKmhuGfhy0Vi0UUCgX1NQB1+K/EdgiFBQObGkbwoF4AJf1qeQ0ALl+nUGJgU0MJhrX/cANZfcvDDwCoo8jk4hohhDr1Jvj7iGqNgU0No1y4yq1ZgZN7ZVuWhZaWFmiahkwmg3w+r/bVlrv8maapfoahTfWCg47UlPwzQ7hcncKCFTY1tHJ7i3ieh0wmo76Wg5X+ano6y9yJZhsDmxqaf561f4pfPp8v2eXPvyJS13UGNdUlBjY1tOAgJFC6e5//NBvbttXnwRWRcj/u4O8kmk0MbGpoky1bdxxHfa3rOmzbRmtrK3RdRzabRS6Xg+d5cBwHnufBtm0ORFLNMbCp4QXD1b9Qxv+ZPJE9uFRdXsPBSao1BjY1nWAoywN8s9ksNE2D4zgqvP0tk+BeJUSzrSrT+t5//33cfPPNmDdvHuLxOD75yU9i//796nMhBLZs2YLOzk7EYjGsWrUKBw8erMatEE0gN4WKRCKwLEsNMuZyOWSzWbXTnwxt2QqZyb4kRNVQ8cA+duwYrrjiCliWhf/4j//Aa6+9hr/7u7/DnDlz1DVbt27Ftm3bsGPHDuzbtw+pVArXXHMNRkdHK307RNMiDz9wXVft6AcAlmXBtm21MlIORMoVkv5zIomqreItkQceeACLFi3Co48+qt4777zz1NdCCGzfvh2bN2/G9ddfDwDYuXMnkskkdu3ahdtuu63St0RUwr9cXVbLcoBRLk03DAOWZaGtrQ2maSKbzarq23EcuK6LSCSCWCwGTdNUgBNVU8Ur7KeffhrLly/HF7/4RZx99tm4+OKL8cgjj6jPDx8+jKGhIaxevVq9Z9s2Vq5cib1795b9nfl8HiMjIyUvojMRbG34K2c5C0QuUY9EIiUzRPzXAGCVTbOm4oH91ltv4aGHHkJ3dzd+/vOfY926dfjGN76Bf/qnfwIADA0NAQCSyWTJzyWTSfVZUF9fH9rb29Vr0aJFlb5tanKGYcC2bdX+kLv+5XI5jI+Po1AoqBWRpmmqDaL8J9kQVVvFWyLFYhHLly9Hb28vAODiiy/GwYMH8dBDD+GWW25R1wUrElnRlLNp0yZs2LBBfT8yMsLQporSdR2maarZILICl0vYZRUtA1supOEgJM2milfYCxYswMc+9rGS9y644AK8++67AIBUKgUAE6rp4eHhCVW3ZNs22traSl5E1SbbJI7jlIS4v8r2zxxhcFO1VTywr7jiCrzxxhsl7x06dAjnnnsuAKCrqwupVAr9/f3q80KhgIGBAaxYsaLSt0M0LbK1IQcPZVjn83nkcjnkcjkUCgUUi0XEYjG0tbWppeyy9y1fckog+9pUaRVviXzzm9/EihUr0Nvbiy996Ut48cUX8fDDD+Phhx8GcOI/LXt6etDb24vu7m50d3ejt7cX8XgcN954Y6Vvh2jaylXIruuqGSWyDWKaJmzbRrFYRC6XUz/LaX5UbRUP7EsvvRRPPfUUNm3ahHvvvRddXV3Yvn07brrpJnXNxo0bkc1msX79ehw7dgyXX3459uzZg0QiUenbITptcoGNEEKFtaZpqtJ2XVe95z+G7FTjMURnQhMhbLyNjIygvb0da9euVQsaiCrNv+VqsE/tD3GgtBL3r4wkmorjONi9ezfS6fSU43PcS4ToFPz7iPgX2cjP/Nf5D/YlqgYGNtEk5MBj8CR2/2eSnBIo3z/V56y86XSxJCA6Bf/CmHIv/54ikUhkwk6A/h3+2NemM8UKm2gG/EeK+cnNo2RAlwtnVtZ0phjYRDPkb29I/h3+/KsiJYY1VQJbIkQzJKvn4Mk0wT1FZGgHDwL27+zHNgnNBCtsohkqd7Cvf4BRBnRLSwui0Sg8z0Mmk4HneRgfH8fY2Bgsy0IikYBlWWqFJdFUWGETzdBke4fI09hlBR2NRjF37ly0traqHQAdx8Ho6CjGx8dRLBbVRlKstGk6WGETVUhwMNLzPORyObiuW9ICkftry7Mk2d+m6WJgE1WAXN0InFyanslk1Ck2rusCOLHzZCKRKFkhybnZNF0MbKIKkNX1ZDNHJMMwEIlESgYh/YHN1gidCgObqALKHTk2Pj4Ox3GgaRps24ZhGEgkEmhra1O97Hw+r7Zw1TQN8Xgc0WhU9cNZeZMfBx2JKqDcCsixsTF89NFHSKfTyGazKBQKaGtrw5IlS7B48WJEo1EIIZDP55FOpzE6OgohhOpvEwWxwiaqAl3XYVkWbNsumQkiByILhYLqdeu6rs6IBLjIhibHwCaqAk3TkEgk0NLSUlItp9Np5PN5VVmbpqnmass+OAciaTIMbKIq0DQNlmXBNE112IEMadmvlpW3HIiU2LumyTCwiapALlX3V8sysAuFAjRNQzQahWmasCwLra2tAKDmbftnmMgDfwFMmHVCzYWBTVQl/tCVgZ3L5ZBOp2EYBjzPQyQSwVlnnYXOzk4Ui0UcOXIE6XQaruvCcRwApUeVsVXS3BjYRFUUDFe5IZR/OfpkG0cRBTGwiWaJnGcdi8XU98CJNsiRI0cAAPl8HpFIZMLAI/vaBDCwiWaV7Fv7DzxwXRfpdBoAEIlE1ECkYRjqsF9/a4WaFwObaBbJgAZQssjGdV01pU+2TGQl7l/1KCtvDkQ2JwY20SyS4QugpN0hBxiFEDAMA7FYDHPmzIFhGBgdHVX7aefzeRSLRcRiMQ5ENiEGNtEsmipY/eEbHJwMfk7Nh4FNVGPBvUNkz3p0dFQdeiD72vKEGk3T2AppQgxsohrzr3SULZNisYhMJgPgRIDLQPfvOcKByObDwCaqAzJ0/X/Kcx7l4KIQQvWt/T8n53H7g50h3pgY2EQ1FpxjLWeDyE2iLMtSVXhLSwtM00Q2m0U2m1U/6+97+38PNRYGNlEdCIarf/WjrJ790/kmG4j0r56kxsPAJqpDpmlOWBEJANlstmS+tvyM/ezmwMAmqkPlBiKBE4EtP5eBLUNaVuEAg7tRMbCJ6tRkbRLg5KG/ACbM1Q7+LAciGwcDm6gOlRuIDK5qlPuM2LYNXdfhOI5aui63dvVX4txAKvwY2ER1Khiu/hkh/kpbLqqRs0vkz8rBSlmN+9snFE4MbKKQCJ6kLsPYcRwV1nKVpAxyf0gzrMOPgU0UErKSliEsA1geKSaraHmdxP1HGgcDmyjkZCDLsAZOnmxzqvnabJGEDwObKCTKLV+XA4wysGVI27atzo10HAfFYhGe58HzPBiGoTac4kBkuOhTX0JE9aLc/tcyjOWfck9t27ZhmmbJdfLlH4ik8GCFTRRywX2zNU2D53koFAolve1gSLOyDp+KV9iu6+Lb3/42urq6EIvFsGTJEtx7770le/cKIbBlyxZ0dnYiFoth1apVOHjwYKVvhajh6boOy7Jg2zYsy4JpmmrmSDabheM4qlUSXB3JwcjwqXhgP/DAA/jBD36AHTt24PXXX8fWrVvxt3/7t/j+97+vrtm6dSu2bduGHTt2YN++fUilUrjmmmswOjpa6dshanjl2hv+9ockq3D/ykcGd7hUvCXyX//1X1i7di3WrFkDADjvvPPw4x//GL/+9a8BnPgfyfbt27F582Zcf/31AICdO3cimUxi165duO222yp9S0QNSy6QCc63lj1tObCo67ranlW2S+SBwHL+thyoDAY91Y+KV9hXXnklfvGLX+DQoUMAgN/85jd44YUX8NnPfhYAcPjwYQwNDWH16tXqZ2zbxsqVK7F3796yvzOfz2NkZKTkRUQn+Ldi9c8ckaexyz8ty0JLSwui0aiqsmV4y0OAORBZ3ypeYd99991Ip9M4//zz1bSi++67DzfccAMAYGhoCACQTCZLfi6ZTOKdd94p+zv7+vrw3e9+t9K3StSwZK/av5hGhrNcvi7f959UQ/Wt4n9LTzzxBB577DHs2rULL730Enbu3In/9//+H3bu3FlyXbndxSb7N/umTZuQTqfVa3BwsNK3TdQwNE2DaZqwbRuRSETNuS4UChgbG0MulwMANR9bDlb6WylUnypeYX/rW9/CPffcg6985SsAgAsvvBDvvPMO+vr6cOuttyKVSgE4UWkvWLBA/dzw8PCEqluybRu2bVf6Voka0mT7iPjnYMul6+VWRFL9qniFnclkJvznlRzIAICuri6kUin09/erzwuFAgYGBrBixYpK3w5R0/GHs7+v7TgOcrkc8vm86lvbto05c+YgkUioKlueJ1koFACUntROtVXxCvu6667Dfffdh8WLF+PjH/84Xn75ZWzbtg1f//rXAZz4N3pPTw96e3vR3d2N7u5u9Pb2Ih6P48Ybb6z07RA1peBUPRnEhUJBzRwxDAOJRALt7e1wHAfHjx9Xg5T5fF7NLJEn2XD6X+1VPLC///3v46/+6q+wfv16DA8Po7OzE7fddhv++q//Wl2zceNGZLNZrF+/HseOHcPll1+OPXv2IJFIVPp2iOgP5C5+cpBRHmogDz4ILlkPbhxFtaeJEP5NjIyMoL29HWvXroVlWbW+HaJQKBfA8hR2/0BjoVBQ7RA5N9t/aAJVluM42L17N9LpNNra2k55LfcSIWoS/sFFz/PUn67rqpklACZM82MrpH4wsImahGx5ACcrbP/hB3JFpGEYaG1tLdkF0F9hy7YKg3z2MbCJmkS5lobjOCgUCtA0TQ0wtra2IpFIQAiBkZERdQSZrMr9gc39tGcX5+oQNbFyKx2DFbV/61aqLVbYRE0sEokgEokAONkm8TxP7dcjhIBlWXBdt2RqnwxzVtezi4FN1MT8i2L8lbXjOGqvbf/KSYlBXRsMbKImFtwTO1hFy61XdV1HNBoFUBrssvKW0wP9v5Mqj4FN1MT8g4byTzk7RL6naRqi0SgSiQQ0TUMmk0E+n1crIoUQalWkf3CSKo+BTdTkTlUN+z+bbOBxOtdQZTCwiaiEPPsRKK26M5mM+lqufjRNUw1AciVk9TGwiaiEf5qff8e/fD4PACrM5SIb/2Ic9q+ri4FNRCXKhW6wry0DXQ5E+hfReJ4HIcSESp1BfuYY2ERUotw8a7lHNnByw6hoNIq5c+fCMAyMjY1hfHwcnuchl8uhWCwiFoupOd4yxOnMMLCJaIJguAan+8k2iKyig3O0uWS9OhjYRDQleS6knxACY2Nj0DQNruuq9odpmmo/ba6IrCwGNhFNyTAM1d7wL5wZHx9Xn/sDO3imJFUGA5uIpiV45Nhki2T8e5P4e+BA+b22afoY2EQ0pWA4y+9zuZyaj22aJiKRCNrb22GaJrLZLMbHx+G6LhzHged5iEQiiMViAMA+92lgYBPRlMoFq/90drlBFHCiJRKNRuE4jrrW8zw1U4SrIU8fA5uITovcY0R+LXvW2WxWHYzg72vL6/yzTGhmGNhEdFosy1KB7F8RGRyIDJ4XKQOb7ZCZY2ATUUXJAUYAKpj9M0eA0naKfyCSIX5qDGwiOi3+gUj/bBA5wCgHIk3TRGtrK2zbRi6XQyaTged5KBQKcF0XlmUhFoupdgk3kZocA5uITstk+4PIAUZJ13XYto1YLIZisYhsNgvgRLjLBTeyB87e9qkxsImoYvwHGfiPFpP7i8gT2nVdh2ma6rrgIQpUHgObiCpG1/Wy7Y1MJoNsNquqaNkqAU4MTnIgcnoY2ERUFf6pfrJFIitr4OS+2lJwP23/z9MJDGwiqij/oKGcDVIoFNRJNbJvHY1GYVmW2rpV9r7lzBHLsqDresl2r82OgU1EFTPZ4Qf+AUbLsgCcmMfd2tqKXC6HfD6vWiiO48CyLNXrZlifxMAmoqqS1bKcDSJbIXIvEsdxVF9bnlQTPHaMTmBgE1FV+Qci/e2NXC6HXC6nKmlZTftnjnCDqFL61JcQEZ0Z/zxrWT17ngfHcUpaHjK4gyfYBAcjmxUrbCKqKv+xYv7wlQOM8nNd1xGPxxGNRuG6LjKZjBqwzGazMAwDra2tME2z5FDgZsLAJqKqCw4cypB2HAeGYaiT2OXBvvl8Xs0ecRwHmUxGDVJalqUq82ZrlzCwiagm5GAkANXH9oe07GXLXf/8OwM2KwY2Ec06TdPU1D3g5JL0TCYD13VL2iSWZSEej6uWiuu6TVldAwxsIqoB/8wQ/8yRYrGIfD5fcoKNYRgl27P6w7rZTrBhYBPRrJMDj/6DD4QQKBQKqq8t527H43GcddZZ8DwP4+PjKBQKKBQKKtjj8TgikYhaeNPIlTcDm4hqotxAZC6Xw/j4uApq0zRx1llnYdGiRcjn83j33XeRz+dRKBQwOjqqjimzLEvtsd3IGNhEVDdkz1rO19Z1XQWxDGP/XG05ENks+40wsImoLmiahtbWVrS2tgI42Z8eHx/HO++8AwDqhJpIJIKWlhb1s3IgstHNeKXjc889h+uuuw6dnZ3QNA0//elPSz4XQmDLli3o7OxELBbDqlWrcPDgwZJr8vk87rzzTsyfPx8tLS34/Oc/j/fee++MHoSIwk3OHJGLZ+RufbL9MT4+rnb8syxLvYATqyabYd+RGQf2+Pg4LrroIuzYsaPs51u3bsW2bduwY8cO7Nu3D6lUCtdccw1GR0fVNT09PXjqqafw+OOP44UXXsDY2Bg+97nPNeXKJSI6wb+Yxr8KslAoYHx8HOPj48hkMsjlcjAMAx0dHejo6IBt2+rn5EtuIhVc5h52M26JXHvttbj22mvLfiaEwPbt27F582Zcf/31AICdO3cimUxi165duO2225BOp/HDH/4Q//zP/4yrr74aAPDYY49h0aJFePbZZ/GZz3xmwu/N5/PI5/Pq+5GRkZneNhGFgAxq4OTc7Hw+rwYYW1paYFkW5s2bh1QqBSEEPvjgA7WfdrDPDZSe4h52Fd386fDhwxgaGsLq1avVe7ZtY+XKldi7dy8AYP/+/XAcp+Sazs5OLF26VF0T1NfXh/b2dvVatGhRJW+biOqIv7Uh+9j+AUb/NY3eAgmqaGAPDQ0BAJLJZMn7yWRSfTY0NIRIJIK5c+dOek3Qpk2bkE6n1WtwcLCSt01EdUrOsz7rrLPQ0dGBeDwOy7JQKBTwwQcfYHh4GK7rIhqNIhKJlJwV2YgzR6oySyTYM5rOaqRTXWPbNmzbrtj9EVF4RCIRWJallqV7nqf2HAGAaDRacviB3Egq2FppBBWtsFOpFABMqJSHh4dV1Z1KpVAoFHDs2LFJryEikuRWqv6pe/L8R7mntuM4AIB4PI6WlhZVZcvjyeRAZLn9tsOkooHd1dWFVCqF/v5+9V6hUMDAwABWrFgBAFi2bBksyyq55siRI3j11VfVNUREktwTWwa2fMnFNLlcDtlsFpqmYc6cOZg3bx6i0ajaczufzyOXy6kpgcHT2sNkxi2RsbExvPnmm+r7w4cP48CBA+jo6MDixYvR09OD3t5edHd3o7u7G729vYjH47jxxhsBAO3t7fjTP/1T/Pmf/znmzZuHjo4O/MVf/AUuvPBCNWuEiEiaTktDXlNuKl+5AUq581/YzDiwf/3rX+PTn/60+n7Dhg0AgFtvvRU/+tGPsHHjRmSzWaxfvx7Hjh3D5Zdfjj179iCRSKif+fu//3uYpokvfelLyGazuOqqq/CjH/0o1P/mI6LZI3fv8ysWi2r6n+u6qi1imiY8z5tw4k0YaSKEdz4yMoL29nasXbtWrXQiouYhK2mgdDaIjDPTNGEYBlzXRS6Xg+d5ME1T5UU9hbbjONi9ezfS6TTa2tpOeS33EiGi0PGHrfw6eM6jfD8SiUx4Ty6m8S+wCf7eesTAJqLQkVP8gt/n83kIIdR87Egkgvb2dpimqZa2y5klnufBtm1VdYdhL20GNhGFTrlg9R+IIHvWAFR4l1spCUxcN1LPGNhE1BBM00Q8Hp+wCE8eiOA4DkzThKZpqnUijxwD6r8dAjCwiahBGIah+tX+ajuTyQA4WWnLWSRSGIJaYmATUcPxh7C/mpaVdzQaLbnWvzjHNE3Ytj3hwN96wMAmooYge9fyawAly9Ll8vZoNIpFixahpaUFx48fx9GjR5HL5XD06FGMjIygo6MD55xzDkzTVIcC1wsGNhE1hMnmVsvTaCRd19HS0oI5c+agUCjg+PHjAKAOAI7H4xOm+9ULBjYRNSxd19VOn7IdUiwWcfz4cRQKBYyNjalNoVpaWuC6LmKxGFzXrcvl6wxsImpY/lPYZT9aCIGjR4/i+PHj6nvDMNDa2gpd1xGNRlVVXm/7aTOwiagpyIq5WCwil8sBOBHohmGgWCyipaUF0WhUbR4lz4l0XVcd/Ovfj6QWGNhE1NCC86wLhYIaaGxpaUFraytaWlpwwQUXIJlMYnh4GG+++Say2SyOHj2KdDqNRCKBhQsXwrbtmg5EMrCJqGGVq4Zd18XIyAjGx8fhui50XUcsFkMymcQf/dEfQdd1vP322ygWi8hkMjh27JiaEmhZllraXgsMbCJqKqZpYu7cuYjH44hGo4hGo9A0DcPDw9B1HcPDwwAAy7IQjUaRSCTUgQjyiLKa3XvN/slERDVg2zYWLlwIXddVAGuahv/7v//D22+/ra6LRqOYM2eO2kRKnl7DwCYimiWapqkDEPwDkZlMBsViUVXWwIkqOxaLqcMQ5OwR/8ZRszn9j4FNRE1FLkMHTi5LdxwHR48eRSaTUZW1ZVlIJpOYM2cOMpkMPvjgA1VhyyXssVhMzTKZjcqbgU1ETUUIMWHQ0HVdpNNpHDt2DIlEQoXxnDlzsGTJEnz44YcYHh5W0/xkpR2Px2EYBitsIqLZYhgGEokENE1DNBpFJBKBaZrIZDL48MMPMTIyomaJAFBbuPr3L5kNDGwianqWZWHhwoUTQviDDz7A8PAwNE1TqyGz2SyAE4tu/Nu4zgYGNhE1PU3T1HFh8qgxOSvEcRxYloXW1lYYhqFe/kOAZ+sEGwY2ETU9IQQKhQI8z1Mv/5asAJDNZtUhCS0tLRBClAxCFgoFaJqmZpVUYyCSgU1ETU8ORPoHI/0LZWT1LHvdHR0daom767pwXRe5XA6GYajAdl234u0SBjYR0SRM01QDjHKPbM/z1Ok08n3/n0D1jh1jYBMRlSHbG/JgXxnC+XweR48eVeHs319EDkS6rluVXf0Y2EREZciZIYZhwPM81d6QPWu517asvOVqSGDy02/OFAObiKiM4JQ9GcKyZ61pGjzPU3tqd3R0qMFL/17awIn9S2R75Uz62gxsIqJJBGd5yEDO5XLQdR2O48A0TXR0dOCss86C53lqibvnecjlctA0TS3EkZX66WJgExHNgGyVyIFG4OSJ7TKM/QOQlcTAJiKaJrl0PRaLAZh4io18LxKJqGpcOtPqGmBgExHNiGVZqh8tZ4PI7Vl1XVftD7mjnwx1/yHAp4uBTUQ0A8ViUQ0mygB2HEcdhCCDPBaLYcGCBQCAsbExZLNZjI+PY3h4GK7rYv78+ejo6IBhGNP+ZzOwiYhmwN/akNWyXOkov9Z1HQsWLMBll10GXdfx+uuvY3BwEEePHsWhQ4eQzWZxySWXYPHixSr8p4OBTUQ0Q+XaGnKQsVgsqq/llD85Vxs4Gfgy9GcyOMnAJiI6Q7ZtIxKJlLw3NjaG119/Hbqu4/e//z2EEIhGo1i4cCEKhQLi8Tiy2eyMTmBnYBMRnSHTNEvOfSwWi8hms3jvvfdKzny0bRsdHR1wXReWZantW6f9z6nK3RMRNRH/oQdyNsj4+Lia6heNRmHbNqLRKC666CLouo7R0VGMjY3NaNYIA5uI6Az5e9LAiQAfHh7GoUOHUCwWcc4552DevHm46KKLcPPNN2POnDn4+c9/jueff35Ge2YzsImIzlC5Ktl1XWSzWXVKu+M4MAwDc+fOxbx58xCPxwFw0JGIqObmz5+PSy65BMViEfF4HJZlYWRkBD/72c8Qj8fx1ltvIRaLqdkj08HAJiKqgo6ODixevBjAiePF8vk8RkdH8fzzzwMAYrEYbNtu/Apb/ufHTEZXiYhmk2EYahtWefyYHJz0n1Ajc2w6g4+hDOzR0VEAwDPPPFPjOyEiqozR0VG0t7ef8hpNVOvwsSoqFov43e9+ByEEFi9ejMHBQbS1tdX6ts7IyMgIFi1axGepQ430PHyW+iOEwOjoKDo7O6fsZ4eywtZ1HQsXLsTIyAgAoK2tLdR/YX58lvrVSM/DZ6kvU1XW0vSHJ4mIqKYY2EREIRHqwLZtG9/5zndg23atb+WM8VnqVyM9D58l3EI56EhE1IxCXWETETUTBjYRUUgwsImIQoKBTUQUEgxsIqKQCG1gP/jgg+jq6kI0GsWyZcvUDlj1rK+vD5deeikSiQTOPvtsfOELX8Abb7xRco0QAlu2bEFnZydisRhWrVqFgwcP1uiOp6+vrw+apqGnp0e9F7Znef/993HzzTervYo/+clPYv/+/erzsDyP67r49re/ja6uLsRiMSxZsgT33nvvhA326/VZnnvuOVx33XXo7OyEpmn46U9/WvL5dO49n8/jzjvvxPz589HS0oLPf/7zeO+992bxKapEhNDjjz8uLMsSjzzyiHjttdfEXXfdJVpaWsQ777xT61s7pc985jPi0UcfFa+++qo4cOCAWLNmjVi8eLEYGxtT19x///0ikUiIn/zkJ+KVV14RX/7yl8WCBQvEyMhIDe/81F588UVx3nnniU984hPirrvuUu+H6Vl+//vfi3PPPVd87WtfE//zP/8jDh8+LJ599lnx5ptvqmvC8jx/8zd/I+bNmyf+/d//XRw+fFj867/+q2htbRXbt29X19TzszzzzDNi8+bN4ic/+YkAIJ566qmSz6dz7+vWrRPnnHOO6O/vFy+99JL49Kc/LS666CLhuu4sP01lhTKwL7vsMrFu3bqS984//3xxzz331OiOTs/w8LAAIAYGBoQQQhSLRZFKpcT999+vrsnlcqK9vV384Ac/qNVtntLo6Kjo7u4W/f39YuXKlSqww/Ysd999t7jyyisn/TxMz7NmzRrx9a9/veS966+/Xtx8881CiHA9SzCwp3Pvx48fF5Zliccff1xd8/777wtd18XPfvazWbv3aghdS6RQKGD//v1YvXp1yfurV6/G3r17a3RXpyedTgM4sdE5ABw+fBhDQ0Mlz2bbNlauXFm3z3b77bdjzZo1uPrqq0veD9uzPP3001i+fDm++MUv4uyzz8bFF1+MRx55RH0epue58sor8Ytf/AKHDh0CAPzmN7/BCy+8gM9+9rMAwvUsQdO59/3798NxnJJrOjs7sXTp0rp/vqmEbre+jz76CJ7nIZlMlryfTCYxNDRUo7uaOSEENmzYgCuvvBJLly4FAHX/5Z7tnXfemfV7nMrjjz+Ol156Cfv27ZvwWdie5a233sJDDz2EDRs24C//8i/x4osv4hvf+AZs28Ytt9wSque5++67kU6ncf7558MwDHieh/vuuw833HADgPD93fhN596HhoYQiUQwd+7cCdeEKSPKCV1gS8FjdYQQMzpqp9buuOMO/Pa3v8ULL7ww4bMwPNvg4CDuuusu7NmzB9FodNLrwvAswIk91pcvX47e3l4AwMUXX4yDBw/ioYcewi233KKuC8PzPPHEE3jsscewa9cufPzjH8eBAwfQ09ODzs5O3Hrrreq6MDzLZE7n3sP0fJMJXUtk/vz5MAxjwr8ph4eHJ/xbt17deeedePrpp/GrX/0KCxcuVO+nUikACMWz7d+/H8PDw1i2bBlM04RpmhgYGMD3vvc9mKap7jcMzwIACxYswMc+9rGS9y644AK8++67AML1d/Otb30L99xzD77yla/gwgsvxFe/+lV885vfRF9fH4BwPUvQdO49lUqhUCjg2LFjk14TVqEL7EgkgmXLlqG/v7/k/f7+fqxYsaJGdzU9QgjccccdePLJJ/HLX/4SXV1dJZ93dXUhlUqVPFuhUMDAwEDdPdtVV12FV155BQcOHFCv5cuX46abbsKBAwewZMmS0DwLAFxxxRUTplgeOnQI5557LoBw/d1kMpkJJ5cYhqGm9YXpWYKmc+/Lli2DZVkl1xw5cgSvvvpq3T/flGo23HkG5LS+H/7wh+K1114TPT09oqWlRbz99tu1vrVT+rM/+zPR3t4u/vM//1McOXJEvTKZjLrm/vvvF+3t7eLJJ58Ur7zyirjhhhvqZrrVVPyzRIQI17O8+OKLwjRNcd9994n//d//Ff/yL/8i4vG4eOyxx9Q1YXmeW2+9VZxzzjlqWt+TTz4p5s+fLzZu3KiuqednGR0dFS+//LJ4+eWXBQCxbds28fLLL6tpu9O593Xr1omFCxeKZ599Vrz00kviT/7kTzitr5b+4R/+QZx77rkiEomISy65RE2Nq2cAyr4effRRdU2xWBTf+c53RCqVErZti0996lPilVdeqd1Nz0AwsMP2LP/2b/8mli5dKmzbFueff754+OGHSz4Py/OMjIyIu+66SyxevFhEo1GxZMkSsXnzZpHP59U19fwsv/rVr8r+/+TWW28VQkzv3rPZrLjjjjtER0eHiMVi4nOf+5x49913a/A0lcX9sImIQiJ0PWwiombFwCYiCgkGNhFRSDCwiYhCgoFNRBQSDGwiopBgYBMRhQQDm4goJBjYREQhwcAmIgoJBjYRUUj8f3EwZjBhvZRzAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 400x400 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Montagem da matriz de rigidez global\n",
    "\n",
    "KG = stiffness(L, EI)   # matriz completa (módulo \"Tower\")\n",
    "KG = KG[:-2,:-2]        # último nó (base) tem deslocamentos impedidos\n",
    "\n",
    "# Montagem da matriz de massa global (tipo \"lumped\", matriz diagonal)\n",
    "\n",
    "MG = np.diag(np.vstack((M, IR)).T.reshape(2*NS) )\n",
    "\n",
    "# Solução do problema de autovalores com o módulo scipy\n",
    "\n",
    "import scipy.linalg as sc\n",
    "w2, Phi  =  sc.eig(KG, MG)\n",
    "\n",
    "# Impõe ordem crescente dos modos\n",
    "iw  = w2.argsort()\n",
    "w2  = w2[iw]\n",
    "Phi = Phi[:,iw]\n",
    "\n",
    "# Converte autovalores em frequências\n",
    "wk  = np.sqrt(np.real(w2)) \n",
    "fk  = wk/2/np.pi\n",
    "\n",
    "# Normaliza formas modais pela matriz de massa\n",
    "# (portanto, a partir daqui a massa modal é unitária)\n",
    "for k in range(len(wk)):\n",
    "    \n",
    "    Mk       = np.sum(np.diag(MG)*Phi[:,k]*Phi[:,k])\n",
    "    Phi[:,k] = Phi[:,k]/np.sqrt(Mk)\n",
    "    \n",
    "    if (Phi[0,k] < 0): Phi[:,k] *= -1   # impõe sinal positivo no topo\n",
    "\n",
    "# Visualização da matriz de rigidez    \n",
    "plt.figure(2, figsize=(4,4))\n",
    "kh = plt.imshow(KG, cmap=plt.cm.gray)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Os três primeiros modos de vibração da torre são visualizados abaixo, sendo que a escala dos modos é reajustada para que a máxima amplitude seja unitária (apenas para os gráficos):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAIOCAYAAABK0QWNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACKmElEQVR4nOzdd3iV9f3/8dc5OcnJ3mQRRoCEDSLIcrAEcaDVWq1Wq1bbutpav2pr+fYnthVHW7+2VWtt1eK2rVqtogUVERQwIHuPsDPI3snJOffvj5MTCTOBnNznPuf5uC4u5eSc5JWbk3fO+3yWzTAMQwAAAAAAoEvZzQ4AAAAAAEAwouEGAAAAAMAPaLgBAAAAAPADGm4AAAAAAPyAhhsAAAAAAD+g4QYAAAAAwA9ouAEAAAAA8AMabgAAAAAA/ICGGwAAAAAAP6Dh7mJ///vfZbPZZLPZ9Omnnx71ccMwNGDAANlsNk2ePLlLv7bNZtOcOXO67PO9+OKL+va3v62BAwfKbrerb9++Xfa5O+qNN97Q0KFDFRUVJZvNpjVr1ujGG29UbGxst2c5ltraWt11113KyspSZGSkzjjjDL3++uud+hzvvPOOJk2apPj4eMXExGjo0KF69tln2z5eXV2thx56SJMnT1ZGRoZiY2M1fPhwPfroo2psbGz3uT799FPZbDb961//OubXuvPOO2Wz2Tr/jQJdJFhqZGFhof73f/9XEyZMUGpqquLj4zV69Gg9++yzcrvdXfI1OiKQa+Qnn3yi733vexo0aJBiYmLUs2dPXXbZZVq1alWHHv/RRx9p+vTpysrKktPpVFpamqZOnar58+cfdd/Zs2dr1KhRSk5OVmRkpPr166cf/OAH2rNnT7v7USMRyIKlPkrSLbfcomHDhikxMVFRUVHKy8vTvffeq9LS0i77GicTyPXRV4uO9Wf58uUnffzkyZOP+3ibzaaioqKT3nfmzJnHzER97HoOswMEq7i4OD333HNHFcTFixdr586diouLMydYJ7z00ksqKirS2LFj5fF45HK5uvXrHzp0SNdff71mzpypp59+Wk6nU3l5ed2a4WSuuOIK5efn65FHHlFeXp5effVVXXPNNfJ4PLr22mtP+vhHHnlEs2fP1q233qr7779f4eHh2rJli5qbm9vus3fvXj3xxBO6/vrrdffddys2NlZLlizRnDlztHDhQi1cuJACCMuxeo1ctWqVXnzxRX33u9/VL3/5S4WHh+uDDz7QbbfdpuXLl+v555/3e4ZAr5F//vOfVVZWpp/85CcaMmSIDh06pN///vcaP368/vvf/2rq1KknfHxZWZmGDh2qW265RRkZGSovL9czzzyjiy++WC+99JKuu+66tvtWVlbqmmuu0eDBgxUXF6dNmzbpN7/5jd59911t3LhRKSkp/v52gS5j9fooSXV1dfrBD36gAQMGKDIyUitXrtRDDz2k+fPna/Xq1YqIiPDr1w/0+ugzd+5cTZkypd1tw4YNO+njnn76aVVXV7e7rb6+XjNnztTo0aOVkZHR7mP9+vXTK6+80u62xMTEUwuNTqPh9pOrr75ar7zyip566inFx8e33f7cc89pwoQJR/2QBKL//ve/stu9kyAuueQSbdiwoVu//rZt2+RyuXTddddp0qRJ3fq1O2L+/PlauHBhW5MtSVOmTNGePXt077336uqrr1ZYWNhxH79q1SrNnj1bDz/8sO67776226dNm9bufjk5Odq9e7diYmLabps6dapiYmJ077336vPPP9c555zTxd8d4F9Wr5Fnn322du7cqfDw8Lbbpk+frubmZj311FN68MEH1atXL79mCPQa+dRTTyktLa3dbTNnztSAAQM0d+7ckzbcV199ta6++up2t11yySXKycnRs88+267hfuqpp9rdb/LkycrJydFFF12kd955R9/73vdO87sBuo/V66Mkvfbaa+3+PnXqVMXFxen222/X0qVLT/rzf7oCvT765Obmavz48Z1+3JAhQ466bd68eXK5XLrllluO+lhUVNQpfR10DaaU+4mvATu84FRVVenNN9887i/+8vJy3X777erZs6ciIiLUr18/zZ49W01NTe3uV11dre9///tKSUlRbGysZs6cqW3bth3zcy5dulTTpk1TXFycoqOjNXHiRL3//vsd+h58zbYZbrzxxrYm8uqrrz7p9KnPP/9cqampuuSSS1RXV9ctGd9++23FxsbqW9/6Vrvbb7rpJh08eFArVqw44eOffPJJOZ1O/ehHPzrh/WJiYto12z5jx46VJO3bt6+Tyb92+PS1I/909XQ14HBWr5FJSUntmm0f38/l/v37T/o5TocVauSRzbYkxcbGasiQIadct8LDw5WYmCiH4+TjBT169JCkDt33eKiRMIPV6+PxdMXPZEdYoT76w3PPPafY2Nij3qj0F+pjx9Fw+0l8fLyuvPLKdtMKX3vtNdnt9mP+IDQ2NmrKlCl68cUXdffdd+v999/Xddddp8cee0xXXHFF2/0Mw9A3vvENvfTSS/qf//kfvf322xo/frwuvPDCoz7n4sWLNXXqVFVVVem5557Ta6+9pri4OM2aNUtvvPGGf77xw/jWjBypIz+Iv/zlL9tGLObOnatly5bp6aefPuZ9//GPf2jatGm66qqr9M477xyzOfUxDEMtLS0d+nMyGzZs0ODBg4/6xTFixIi2j5/IZ599psGDB+vNN9/UwIEDFRYWpuzsbP385z9vN6X8eD755BNJ0tChQ4/6mMfjOeb3ZBhGu/tdfPHFWrZsWbs/jz/++HE/L9BVgrVGfvLJJ3I4HB2auhjsNfJYqqqq9NVXX3Wqvvjq2cGDB/XAAw9o27Zt+p//+Z9j3relpUUNDQ1avXq17rrrLuXl5bV7fhz5OamRCETBVB9bWlpUV1enzz//XL/85S91zjnn6Oyzzz7p40KlPt5xxx1yOByKj4/XBRdcoKVLl3b4sYfbvn27lixZom9/+9vHXKO+c+dOJScny+FwqH///po9e7YaGhqO+bmoj35goEu98MILhiQjPz/fWLRokSHJ2LBhg2EYhnHWWWcZN954o2EYhjF06FBj0qRJbY975plnDEnGP/7xj3af79FHHzUkGQsWLDAMwzA++OADQ5Lxhz/8od39HnroIUOS8cADD7TdNn78eCMtLc2oqalpu62lpcUYNmyYkZ2dbXg8ng5/XxdffLHRp0+fDt/fMAxj6tSpRlhY2FG3h4WFGVOnTj3p433X75///Ge722+44QYjJibGMAzDeOSRR4ywsDDj0Ucf7VAm379PR/6cTG5urnHBBRccdfvBgwcNScbcuXNP+Hin02nExcUZSUlJxpNPPml88sknxuzZs42wsDDj2muvPeFj165da0RFRRmXX355u9t91+xUv7ctW7YYKSkpxpQpU4ympqYTZgBORbDWSMMwjP/+97+G3W43fvrTn3bo/sFeI4/lO9/5juFwOIyVK1d2+DEXXHBB29eMj4833nrrrWPer7CwsF2+cePGGQcOHGh3H2okAlmw1cdly5a1+7m66KKLjOrq6g5di2Cvj1999ZXxk5/8xHj77beNzz77zHj++eeNwYMHG2FhYcaHH37YoTyH+9nPfmZIMpYtW3bUx2bPnm08/fTTxieffGK8//77xp133mk4HA7jvPPOM9xud9v9qI/+Q8PdxQ4vlh6Px+jfv79x9913G+vWrTMkGZ999plhGEcXy6uuusqIiYk5qoAVFxcbkoyf/exnhmEYxn333WdIMkpLS9vdr6CgoF2xrK2tNWw2m3H77bcfldFXgDdv3tzh7+tUGu7TdaJiGR0dbfzgBz8wnE6n8cYbb3T4c5aWlhr5+fkd+nMyubm5xsyZM4+63ddwP/zwwyd8fHh4uCHJeO2119rdftdddxmSjO3btx/zcQUFBUavXr2MvLw8o6ysrN3HfNfs0UcfPeb3dNVVVx23WBYWFhp9+/Y1hg0bZlRWVp4wO3CqgrVGrlq1ykhISDAmTpxoNDY2dvhxpyPQa+SR/vd//9eQZPzpT3/q1OO2bdtmfPnll8Y777xjfOtb3zLCw8ONV1999aj7uVwuIz8/31i6dKnx17/+1cjNzTXy8vKMgwcPtt2HGolAFmz1sba21sjPzzcWL15s/OEPfzAyMzONcePGGXV1dZ25LKfEavXRMAyjoqLCyM7ONkaMGNGpx7lcLiMjI8MYOnRohx/zu9/9zpDU7g1M6qP/sGmaH9lsNt1000364x//qMbGRuXl5encc8895n3LysqUkZFx1PSZtLQ0ORwOlZWVtd3P4XActePqkbsRVlRUyDAMZWZmHvW1srKy2j6XVTU3N7cd93CsqVDHk5ycrISEhC7JkJKScsxrWF5e3va1Tvb4oqIiXXDBBe1uv/DCC/XEE0/oq6++0oABA9p9bM+ePZoyZYocDoc+/vjj436Nfv36acyYMUfd7ls/daSamhpddNFFcrlc+uCDD7rsGgEnEiw1cvXq1Zo+fbpyc3M1f/58OZ3ODj3OnwKhRh7uwQcf1G9+8xs99NBDuvPOOzv12Nzc3Lb/v/TSS3XhhRfqjjvu0NVXX91urxGHw9FW984++2zNnDlTOTk5euSRR/SHP/yh3eekRiLQBUN9jImJafs5O++88zRu3DiNHz9ef/nLX/TTn/70pI/3l0Crjz6JiYm65JJL9Mwzz6ihoUFRUVEdetz8+fNVVFSkn/3sZx3+Wtddd53uueceLV++XJdffnm7j1Efux5ruP3sxhtvVGlpqZ555hnddNNNx71fSkqKiouLj1ofUVJSopaWFqWmprbdr6Wl5ahCd/h5e5J3Qx+73a7CwsKjvtbBgwclqe1zWpHT6dSiRYu0b98+nX/++aqoqOjQ4+bNm6fw8PAO/TmZ4cOHa/PmzUet1Vm/fr2kkx/r4FvrfSTfc+DITev27NmjyZMnyzAMLVq0SNnZ2SfN2BEul0vf/OY3tXPnTs2fP7/LPi/QEVavkatXr9b555+vPn36aMGCBQHzQiMQaqTPgw8+qDlz5mjOnDn6xS9+carfUpuxY8eqoqJChw4dOuH9srOzlZWVddwNoTqKGgmzWL0+HmnMmDGy2+2n/TN5ugKpPh7J92/YmeNen3vuOUVEROj666/v9Nc73Q2SqY8dQ8PtZz179tS9996rWbNm6YYbbjju/aZNm6ba2lr9+9//bnf7iy++2PZxSW1n9R15lt6rr77a7u8xMTEaN26c3nrrrXabIng8Hr388svKzs4OyPMIO2PUqFFavHix9u/fr8mTJ6ukpOSkj5k1a5by8/M79OdkLr/8ctXW1urNN99sd/u8efOUlZWlcePGnfDx3/zmNyVJH3zwQbvb58+fL7vdrrPOOqvttr1792ry5Mlyu9365JNP1KdPn5Pm66ibb75Zn376qd56663jvgkA+IuVa+SaNWt0/vnnKzs7WwsXLlRSUtKJv9luZnaNlKRf//rXmjNnjv73f/9XDzzwwOl+SzIMQ4sXL1ZiYuJJz9besWOH9u/ff9RMoc6iRsIsVq6Px7J48WJ5PJ7T/pnsCoFQH49UUVGh9957T2eccYYiIyM79JiioiLNnz9f3/jGN05aEw83b948STrto8Kojx3DlPJu8Mgjj5z0Pt/97nf11FNP6YYbbtDu3bs1fPhwLV26VHPnztVFF12k888/X5I0Y8YMnXfeebrvvvtUV1enMWPG6PPPP9dLL7101Od8+OGHNX36dE2ZMkX33HOPIiIi9PTTT2vDhg167bXXTvru2aZNm7Rp0yZJ3h/o+vp6/etf/5LkPf/vWGcAHm7atGlavHjxUSPADodDkyZN0scff3zS63IygwcP1pIlS3T++efrvPPO00cffXTCd9dSUlI6VZBO5MILL9T06dN12223qbq6WgMGDNBrr72mDz/8UC+//HK7M7hvvvlmzZs3Tzt37mxrlm+66Sb95S9/0e23367S0lINGTJEH330kZ566indfvvtbfcrKSnRlClTVFhYqOeee04lJSXtfjFkZ2ef8juKv/3tb/XSSy/pRz/6kWJiYrR8+fK2j8XHx5/03xjoClaskVu3bm37mg899JC2b9+u7du3t328f//+x51+5xPsNfL3v/+9/t//+3+aOXOmLr744nb1RWr/Qu9YNfKyyy7TyJEjdcYZZyglJUUHDx7U3//+dy1evFhPPfVU2wkR69at009/+lNdeeWV6tevn+x2u9avX6//+7//U0pKiu65555T/h6okTCbFevje++9p7/+9a+69NJL1adPH7lcLq1cuVJPPPGEBgwYcMxzoo8U7PXx2muvVe/evTVmzBilpqZq+/bt+v3vf6/i4mL9/e9/b3ffY9VHn3nz5qmlpeW413TJkiV66KGHdPnll6tfv35qbGzUBx98oGeffVZTp07VrFmzTvl7oD52glmLx4PV4RtenMiRG14YhmGUlZUZt956q5GZmWk4HA6jT58+xv3333/UBjyVlZXG9773PSMxMdGIjo42pk+fbmzZsuWoHSYNwzCWLFliTJ061YiJiTGioqKM8ePHG//5z3869L088MADx92h8MivcyyTJk065uYKko763o+lIztM+uzfv98YNGiQ0bdvX2Pnzp0n/dxdpaamxvjxj39sZGRkGBEREcaIESOO2gTNMLyZJRkFBQXtbi8rKzN++MMfGunp6UZ4eLiRl5dn/Pa3v+3UrpGH/1sc75r53HHHHe3+TXy5jvWnI/9GQGcFS4082W61L7zwwkk/R7DXSN/3d7w/R2Y+skY++uijxllnnWUkJSUZYWFhRkpKinHBBRcY7733XrvHFhUVGdddd53Rv39/Izo62oiIiDD69etn3HrrrcbevXvb3ZcaiUAWLPVx8+bNxpVXXmn06dPHiIyMNCIjI41BgwYZ995771GbvR5PsNfHhx9+2DjjjDOMhIQEIywszOjRo4dx+eWXG19++eVR9z3ea0jDMIy8vDyjb9++x901fvv27cZFF11k9OzZ03A6nUZkZKQxfPhw46GHHjrquUF99B+bYRyx4AMAAAAAAJw21nADAAAAAOAHNNwAAAAAAPgBDTcAAAAAAH7QqYZ7zpw5stls7f5kZGS0fdwwDM2ZM0dZWVmKiorS5MmTtXHjxi4PDQCBhvoIAMdHjQQQqjo9wj106FAVFha2/Vm/fn3bxx577DE9/vjjevLJJ5Wfn6+MjAxNnz5dNTU1XRoaAAIR9REAjo8aCSAUdbrhdjgcysjIaPvjO2fUMAw98cQTmj17tq644goNGzZM8+bNU319vV599dUuDw4AgYb6CADHR40EEIocnX3A9u3blZWVJafTqXHjxmnu3Lnq16+fCgoKVFRUpBkzZrTd1+l0atKkSfriiy/0wx/+8Jifr6mpSU1NTW1/93g8Ki8vV0pKimw22yl8SwBCnWEYqqmpUVZWluz27tuqoqvro0SNBNC1zKqPEq8hAQQ2f9XHTjXc48aN04svvqi8vDwVFxfrN7/5jSZOnKiNGzeqqKhIkpSent7uMenp6dqzZ89xP+fDDz+sBx988BSiA8CJ7du3T9nZ2d3ytfxRHyVqJAD/6M76KPEaEoB1dHV9tBmGYZzqg+vq6tS/f3/dd999Gj9+vM4++2wdPHhQmZmZbff5/ve/r3379unDDz885uc48t3Jqqoq9e7dW9u2bVNycvKpRut2LpdLixYt0pQpUxQeHm52nA6zYm4rZpasmduKmSWpvLxceXl5qqysVEJCgikZuqI+SsFRI636PLJibitmlsjdnQKhPkq8hjycFZ9HVswsWTO3FTNL1sztr/rY6Snlh4uJidHw4cO1fft2feMb35AkFRUVtSuWJSUlR71jeTin0ymn03nU7cnJyUpJSTmdeN3K5XIpOjpaKSkplnlSSdbMbcXMkjVzWzHz4cycUtgV9VEKjhpp1eeRFXNbMbNEbjOYPeWa15Bfs+LzyIqZJWvmtmJmybq5pa6vj6c1Ob2pqUmbN29WZmamcnJylJGRoYULF7Z9vLm5WYsXL9bEiRNPOyiA7negskEH68xOYU3URyD4fby5RC6P2SmsiRoJBLfCqkbtqTU7RWDo1Aj3Pffco1mzZql3794qKSnRb37zG1VXV+uGG26QzWbTXXfdpblz5yo3N1e5ubmaO3euoqOjde211/orPwA/enHZXj2/zqFDsVv1/y4dZnacgEZ9BELLM4t36pEPtmh4kl0Xuz2y2ABOt6NGAqGhpLpRT3+6U6+s2KPkiDD9wGMo1Mtjpxru/fv365prrlFpaal69Oih8ePHa/ny5erTp48k6b777lNDQ4Nuv/12VVRUaNy4cVqwYIHi4uL8Eh6A/7g9ht5f793IZmzfJJPTBD7qIxAaDMPQox9u1TOLd0qS0qOkMDs7Yp8MNRIIbqW1TfrL4p16cdkeNbV4p/7EOqSK+mZlOiNMTmeuTjXcr7/++gk/brPZNGfOHM2ZM+d0MgEIACsKylRc06ToMEPn5qaaHSfgUR+B4Of2GPrlOxv06oq9kqR7Z+Qqu2az6euhrYAaCQSnirpmPbtkl+Z9sVv1zW5J0pm9E/WTqf1VsWWFUmOP3mch1JzWpmkAgte7aw5KkkamGIpwdO9ZrQAQaJpbPLr7H2v03rpC2WzS3MuH68pRmZo/f7PZ0QCg21U1uPTckl16/vPdqm1qkSSNyE7Q3dPzNCmvh1paWjR/q8khAwQNN4CjNLW4NX99oSRpdOopnxwIAEGhodmt215ZpU+3HlJ4mE1PXD1KF4/IlMvlMjsaAHSrmkaX/v75bv11yS5VN3ob7SGZ8bp7ep6mDU5jxs8x0HADOMrirYdU3dii9Din+sezTTmA0FXV4NLNf8/Xyj0Vigy365nrRmvywDSzYwFAt6pvbtG8L/boL5/tVGW9983GvPRY/fT8PF0wNEN29rI4LhpuAEd5Z613OvnFwzNkN3aanAYAzHGopkk3PP+lNhVWKy7SoRduPEtj+iabHQsAuk2jy62Xl+/RM4t3qrS2WZLUr0eM7jo/T5cMz6TR7gAabgDt1Da16OPNxZKkWSMytXctDTeA0LO/ol7XP/elCkrrlBoboRe/N05DsuLNjgUA3aKpxa3Xv9ynpxbtUElNkySpT0q0fjItV5eOzJIjjP19OoqGG0A7CzcVqdHlUb/UGA3NitPetWYnAoDutaOkVtc/t0KFVY3qmRill28Zp5zUGLNjAYDfNbd49M9V+/TkJztUWNUoSeqZGKUfTxugK87MVjiNdqfRcANo553W3ckvPSOLjS8AhJwNB6r03ee/VHldswakxeqlm8cqMyHK7FgA4Fctbo/eXn1Af/h4u/ZXNEiSMuIjdefUAbpqTC9OrDkNNNwA2pTVNmnJ9lJJ0qUjs0xOAwDda8WuMt0yb6Vqmlo0vGeC5n1vrJJjIsyOBQB+4/EYen99of7vo23adci7UW6POKfumNxf3x7bW5HhYSYntD4abgBt5q8vlNtjaER2gvr1iOXIGwAhY9GWEt368io1tXg0LidZf7thjOIiw82OBQB+YRiGPtpcot8v2KotRTWSpKTocN02ub+uH99XURE02l2FhhtAm7bp5IxuAwgh7649qLvfWKMWj6Fpg9L01HfOZFQHQFAyDENLd5Tqdwu2ae2+SklSnNOh75/XT987J0exTtrDrsYVBSDJuyPvyj0VstmkWTTcAELEqyv2ava/18swpMvOyNLvvjWSTYEABKUvC8r1uwVb9WVBuSQpKjxMN53dVz84r58So1k+4y803AAkSf9ZWyhJGp+TovT4SJPTAID/PbN4px75YIsk6TvjeuvXlw3jTFkAQWftvkr9fuE2fbbtkCQpwmHX9eP76LbJ/ZUa6zQ5XfCj4QYgSXpnzQFJ3hEeAAhmhmHosf9u1Z8/3SlJun1yf917wUBOZgAQVLYUVev3C7Zp4aZiSZLDbtPVZ/XSnVMHcPpCN6LhBqCtRTXaUlSj8DCbLhyWaXYcAPAbj8fQL9/ZoFdW7JUk/WzmIN02ub/JqQCg6+w6VKv/+2i73lt3UIYh2W3S5aOy9ZNpueqdEm12vJBDww1A7671jm5PHpimhGh25QUQnFxuj+7551q9s+agbDbpN98Ypu+M62N2LADoEvvK6/XHj7frza/2y2N4b7t4RKZ+en6eBqTFmhsuhNFwAyHOMAy9u9a7OznTyQEEq0aXW3e88pU+3lIih92mx68+gxMZAASFkppG/enjHXo9f69cbm+nff7gNN09faCGZMWbnA403ECIW72vUvvKGxQdEaZpg9LNjgMAXa62qUXfn7dSy3aVyemw65nrRmvKoDSzYwHAaaludOkvi3fq+aW71eByS5LOzU3V3dPzNKp3ksnp4EPDDYS4d1vP3r5gaIaiIjh3FkBwqaxv1o0v5GvNvkrFOh362w1jNL5fitmxAOCUNbrcenHZbj396U5V1rskSaN6J+q+CwZpQn/qW6Ch4QZCWIvbo/fWeRvuS5lODiDIlNQ06rvPfaktRTVKjA7XvJvGamSvRLNjAcApaXF79OZX+/XER9tVWNUoScpNi9W9FwzU9CHpnLQQoGi4gRC2bFeZSmublRQdrnMGpJodBwC6zIHKBl33txUqKK1TjzinXr55nAZmxJkdCwA6zTCkDzcW6/8+3qFdh+okSVkJkfrp9DxdcWa2wuw02oGMhhsIYe+0Tie/eESmwsPsJqcBgK6x61CtrvvbCh2salTPxCi9css49U2NMTsWAHTasl1lenx9mPYuXytJSooO1x1TBui68X0UGc5SQCug4QZCVKPLrf9uKJIkXXZGT5PTAEDX2FxYreufW6HS2mb16xGjV24Zp8yEKLNjAUCnrN9fpcf+u0VLtpdKsik6Iky3nJOj75/XT3GRHOFqJTTcQIj6dGuJappalJUQqdHsZAkgCKzeW6Ebnv9S1Y0tGpIZrxdvHqvUWKfZsQCgwwpK6/S7BVv1/rpCSVJ4mE3je7j12A2TlJnEWdpWRMMNhCjfdPJZZ2TJztofABb3xc5S3TJvpeqb3Tqzd6JeuGmsEqIYBQJgDcXVjfrDx9v1Rv4+uT2GbDbpspFZ+tGUftqw/FPePLQwGm4gBFU3uvTxlhJJ0mUjmU4OwNo+2lSs21/9Ss0tHp09IEXPXj9GMU5e4gAIfKW1TXpuaYFe+LxAjS6PJGnqoDTdM2OghmTFy+VyaYPJGXF6+G0EhKD31haqucWjAWmxGpzJrr0ArMntMfTHj7frj59sl2FI04ek60/XjGIjIQABb1txjZ5bUqC31xxQc4u30R7dJ0k/mzlIY3OSTU6HrkTDDYQYwzD0/OcFkqRrxvbmzEYAlnSopkl3vbFan+8okyRdM7aXfnXZME5cABCwDMPQZ9tL9bclu1o3Q/MamZ2gO6fm6vzBabwuC0I03ECIWbztkHaU1CrW6dBVY7LNjgMAnbZiV5l+9NpqldQ0KSo8TA9dPkxXnEk9AxCYGl1u/Xv1AT23tEDbS2olSXabNGNIhm45N0ej+yTRaAcxGm4gxDy31Du6ffVZvThWAoCleDyG/vLZLv1uwVa5PYYGpMXqz985U7npLI0BEHhKahr18rI9ennFXpXXNUuSYiLCdPVZvXXT2X3VKzna5IToDjTcQAjZVlyjJdtLZbdJN07sa3YcAOiwirpm3f2PNVq09ZAk6YpRPfWby4cpOoKXMgACy+bCaj23tEDvrjmoZrd3fXbPxCjddHZfXXVWL8Uz4BFS+C0FhJDnW0e3LxiawbuqACzjq70VuvOVr3SwqlFOh10PXjpUV5/ViymYAAKGx2No8bZD+tvSXW17S0jSmb0TdfM5/XTB0HQ52GMiJNFwAyGirLZJb60+IEm6+Zwck9MAwMl5N3ncrYfnb1aLx1BOaoyeuvZMDcmKNzsaAEiSGprdemv1fj23tEC7DtVJksLsNs0clqGbz8nRmb2TTE4Is9FwAyHi9fx9am7xaGR2gkb3ofgDCGxuj6FfvLVeb6zcJ0m6eHimHvnmcPaeABAQDMPQu2sPau78zSqubpIkxTkd+vbYXrphYl9lJzGTEF403EAIMAxDb321X5J0/YS+TMMEENBa3B7d+691env1Adlt0v+7ZIhumEjtAhAYNhdW64F3N+rLgnJJ3vXZN5+To6vO6qVYJ+0V2uMZAYSATYXV2nmoThEOuy4Ymm52HAA4Lpfbo7v/sVb/WXtQYXab/vjtUbp4RKbZsQBAVQ0u/d/CbXpx2W55DCky3K4fTc3VzefkKDI8zOx4CFA03EAIeHftQUnS1IFpTMcEELCaWzz6n3+t04cbixQeZtOfrjlTM4dlmB0LQIjzeAz9a9V+PfrhFpW1Hu910fAMzb54iHomRpmcDoGOhhsIch6PoffWFkqSLj0jy+Q0AHBsLR7pR6+v1SdbDykizK4/X3empg1mRg4Ac63dV6n/9+5Grd1XKUnq3yNGD146TOfkppobDJZBww0Eua/2VuhAZYNinQ5NHZRmdhwAOIrL7dFzW+3aVHlIToddz353jCbl9TA7FoAQ1uhy66H3N+vlFXtkGFKs06GfTMvVDRP7KsLB8V7oOBpuIMgt2FQsSTp/cBrriwAEpIfmb9WmSrsiw+167oazdPYARo4AmGdPWZ1ue/krbSqsliRdMaqnfn7hIKXFR5qcDFZEww0EucVbD0mSpjI1E0AAenn5Hr3y5T7ZZOiJb42g2QZgqg83FOnef65VTVOLkmMi9MTVZ+g8ZtzgNNBwA0HsYGWDthbXyG6TzuVFLIAAs2xnmea8u1GSdHFvj6YNZtkLAHO43B499uEW/XVJgSRpdJ8kPXntKGUmsCkaTg8NNxDEPtvmHd0e2StRSTERJqcBgK/tLavXba+sUovH0KwRGZoWvd/sSABCVFFVo+589Sut3FMhSfr+uTm6b+YghYexVhunj4YbCGKftk4nn5zHqBGAwFHT6NItL+arst6lkdkJmvuNofpkIQ03gO73+Y5S/fi11Sqra1ac06HffmuEZg7LNDsWgggNNxCkXG6PPt9RKkmaNJC1RwACg9tj6K7X12hbca3S4pz6y/Vj2NARQLfzeAw9tWiHHv9omwxDGpwZrz9/50z1TY0xOxqCDA03EKRW7alo2/BjRM8Es+MAgAzD0EPvb9bHW0oU0Xr8V0ZCpFwul9nRAISQ0tom3ffWV1qy3TswcfWYXnrwsqG8+Qe/oOEGgtTC1uPAJuf1kN1uMzkNAEh/XbJLz3/u3ZDot1eO0Bm9Es0NBCDkbK206ddPLVNpbbMiw+369WXD9K0xvcyOhSBGww0EIcMw9N+NRZKkGUMzTE4DANJbX+3X3PlbJEm/uGiQLjujp8mJAISSFrdHj3+0Xc9ststQswamx+nJa0cpNz3O7GgIcjTcQBDaXFij/RUNcjrsOi+P48AAmGvxtkO671/rJEk3n5Oj75/bz+REAELJwcoG/eT11crfXSHJpqvH9NScS4crKoIp5PA/Gm4gCPlGt8/L66HoCH7MAZhn3f5K3fay9/ivS0dmafZFg2WzscwFQPdYuKlY9/5rrSrrXYpxhunK3s3638uGKpz12ugmvBIHgtCC1vXbM4akm5wEQCgrKK3TTS/kq77ZrXMGpOp33xrJnhIAukVTi1uPfLBFL3y+W5I0vGeC/u+q4dq4/FNTcyH00HADQWZfeb02F1bLbpPOH0zDDcAcJTWN+u7zK1RW16yhWfH683VnKsJhNzsWgBCwu7ROd772lTYcqJbkXcrys5mDZDPc2mhyNoQeGm4gyPimk4/NSVZSTITJaQCEoppGl256IV/7yhvUOzlaf79prOIiw82OBSAEvLPmgGa/vUG1TS1KjA7X764cqfNbZ/y5XG6T0yEU0XADQWbBRu908gvYnRyACZpa3Lr15VXaeLBaKTERmve9seoR5zQ7FoAg1+hya867G/V6/j5J0ll9k/SHb49SVmKUyckQ6mi4gSBSUt2o/D3lkqTprN8G0M1cbo9+9Opqfb6jTNERYXrhprOUkxpjdiwAQW53aZ1ue+UrbS6sls0m3TllgH4yLVeOMJaxwHw03EAQmb++UIYhndErUdlJ0WbHARBCPB5D9/5zrRZsKlaEw65nrx+jEdmJZscCEOQ+3FCoe/+5TjVNLUqJidAfvj1K5+RyJCoCBw03EETeW1coSZo1MsvkJABCiWEY+t93Nujfaw7KYbfp6WvP5AUvAL9yuT169IMt+tvSAknSmD5JevLaM5WREGlyMqA9Gm4gSBysbNDKPRWy2aSLh2eaHQdAiDAMQw+9v1mvrtgrm016/Ooz2jYoAgB/KKxq0J2vrtaqPRWSpO+fm6P7Zg5SOFPIEYBouIEg8X7r6PZZfZN5dxdAt3nio+1tI0yPXjFClzLDBoAfLdl+SD95fY3K65oV53Tot98aqZnD2CgWgYuGGwgS/1l3UBLTyQF0n79+tkt/+Hi7JOmBWUN01Vm9TE4EIFi5PYb+9Ml2/eHj7TIMaUhmvP583Znqk8LGjAhsNNxAENhTVqd1+6tkt0kX8i4vgG7wyoo9emj+ZknSvRcM1E1n55icCECwKq9r1k9eX60l20slSdeM7aUHZg1VZHiYycmAk6PhBoKAb7O0swekKjWW824B+Nfbq/frf/+9QZJ02+T+umPKAJMTAQhWq/ZU6M5Xv1JhVaMiw+166BvD9c3R2WbHAjqMhhsIAv9Z651OfskINksD4F8fbijSPf9cJ8OQbpjQR/ddMNDsSACCkGEY+vsXu/XQ+5vV4jHULzVGT193pgZlxJsdDegUGm7A4naU1GpLUY3Cw2y6YCjTyQH4z7KdZfrxa6vl9hi6cnS2Hpg1VDabzexYAIKMx2PoV+9t0t+/2C1JunhEph795gjFOmldYD08awGLe691s7Rzc3soMTrC5DQAgtXGg1X6wYsr1ez2aObQDD36zRGy22m2AXSt5haP7vnnWr3bOntv9kWDdcu5Oby5B8ui4QYsznccGGdvA/CXvWX1uvGFfNU0tWhcTrKe+PYZCqPZBtDF6ppadOvLq7Rke6kcdpt+f9VIXXZGT7NjAaeFhhuwsK1FNdpeUquIMLumD003Ow6AIFRa26TvPr9Ch2qaNDgzXn+9YQw7AwPocmW1Tfre3/O1dn+VoiPC9OfrRmtSXg+zYwGnjYYbsLD3W6eTn5fXQ/GR4SanARBsaptadNML+dpdVq/spCjNu+ksag2ALrevvF43PP+ldpXWKSk6XC/cNFZn9Eo0OxbQJWi4AYsyDKPtOLBZI5lODqBrNbd4dOtLq7T+QJVSYiL00s3jlBYfaXYsAEFmS1G1bnj+SxVXN6lnYpTmfW+sBqTFmh0L6DI03IBFbS6s0a7SOjkddk0bzHRyAF3H4zH0P/9cq6U7ShUdEaYXbjpLOakxZscCEGTyd5fr5r/nq7qxRXnpsXrxe+OUkcAbewguNNyARfl2J58yMI1jMgB0GcPwHsfzn7UH5bDb9Mx1ozUiO9HsWACCzMJNxbrz1a/U1OLRmD5Jeu6Gs5QQzZIVBB9epQMWdPh08otHMJ0cQNf58+KdbWff/v6qkTqPTYsAdLF/rNyn+99aL7fH0LRBaXry2jMVFcFmjAhONNyABa3dX6W95fWKDLdr2uA0s+MACBJ//WyXHvtwqyTpl5cM4TgeAF3KMAz9efHOtjrzrdHZeviK4XKE2U1OBvgPDTdgQS8t2yNJunBYpqIj+DEGcHoMw9DvFmzVU4t2SpLumNJfN5+TY3IqAMHE4/EuV/HNoLl1Un/9bOZA2Ww2c4MBfsYrdcBiyuua9Z/W9dvXT+hjchoAVuf2GPrlOxv06oq9kqSfzRyk2yb3NzkVgGDS1OLW3f9Yq/dbl8P98pIhvKmHkEHDDVjMG/n71Nzi0fCeCRrFGZUATkNzi0d3/2ON3ltXKJtNeugbw3XtuN5mxwIQRGoaXfrhS6v0xc4yhYfZ9PurztClI7PMjgV0GxpuwELcHkMvL/dOJ79+Qh+mYQE4ZQ3Nbt368iot3nZI4WE2PX7VGZrFi2AAXaikplE3Pp+vTYXViokI01+uH6NzclPNjgV0KxpuwEI+2VKiA5UNSowO591hAKesqt6l783L16o9FYoMt+uZ60Zr8kA2YATQdQpK6/Td51doX3mDUmMj9MKNYzU8O8HsWEC3o+EGLOTFZbslSVeP6aXIcI7PANB5JTWN+u5zX2pLUY3iIx16/sazNKZvstmxAASRdfsrddML+Sqra1bv5Gi9dPNY9UmJMTsWYAoabsAidh2q1ZLtpbLZpOvGs1kagM4rrW3SVc8s0+6yeqXGOvXSzWM1ODPe7FgAgsjqvRX6zt9WqL7ZrWE94/XCjWPVI85pdizANDTcgEW8s8a7M/mkvB7qlRxtchoAVtPc4tHtL3+l3WX16pkYpVduGae+qYw4Aeg6tU0t+vHrq1Xf7NbE/il69rtjFOuk3UBo45R5wCI+2OA9SmPWCNZuA+i8Of/ZqC93lyvO6dC8742l2QbQ5R58d6P2lTeoZ2KUnrl+NM02oNNsuB9++GHZbDbdddddbbcZhqE5c+YoKytLUVFRmjx5sjZu3Hi6OYGQtqOkRtuKaxUeZtP5Q9LNjoMOoD4ikLy8fI9eXbFXNpv0h2vO0IC0WLMjIYRRH4PTB+sL9c9V+2WzSY9fNVLxkeFmRwICwik33Pn5+Xr22Wc1YsSIdrc/9thjevzxx/Xkk08qPz9fGRkZmj59umpqak47LBCq5q8vkiSdMyBVCVH8Agt01EcEkhW7yjTnXW/jcu8FAzV1EG/awTzUx+BUXN2o+99eL0m6dVJ/jeuXYnIiIHCcUsNdW1ur73znO/rrX/+qpKSkttsNw9ATTzyh2bNn64orrtCwYcM0b9481dfX69VXX+2y0EComb/eO538wuGZJifByVAfEUj2V9Tr9le+UovH0CUjMnXbpP5mR0IIoz4GJ4/H0D3/XKvKepeG9YzXT8/PMzsSEFBOqeG+4447dPHFF+v8889vd3tBQYGKioo0Y8aMttucTqcmTZqkL7744vSSAiFqX3m9thTVyGG3aQbTyQMe9RGBwjAM/ezNdSqra9bQrHj99sqRstlsZsdCCKM+BqcFm4q0ZHupIsPteuLqUYpwsEUUcLhO72Tw+uuv66uvvlJ+fv5RHysq8k57TU9v3xSkp6drz549x/x8TU1Nampqavt7dXW1JMnlcsnlcnU2nml8Wa2UWbJmbitmlk4999LtJZKkEdkJigm3dev3bfVr3d26uj5KwVEjrf48slLuwzP/d2OxPt9RpgiHXX+4eoQcNo9cLo/JCY/NitdasmZu6mPgsfLzyOVy6bmlBZKkmyb0UZ8kZ0B/H1a/1lZixdz+ytqphnvfvn36yU9+ogULFigyMvK49zvyHXTDMI77rvrDDz+sBx988KjbFy1apOho6x19tHDhQrMjnBIr5rZiZqnzud/eYZdkV7K7XPPnz/dPqJOw2rWur6/v9q/pj/ooBVeNtNrzyMeKud//cKEeXhsmyaYp6S3auPxTWWH7KStea8lauamPgctKzyOfF/69UPm7HbLLUEbtds2fv93sSB1ixWttxcyStXL7qz7aDMMwOnrnf//737r88ssVFhbWdpvb7ZbNZpPdbtfWrVs1YMAAffXVVxo1alTbfS677DIlJiZq3rx5R33OY7072atXLxUWFiolxTobLrhcLi1cuFDTp09XeLh1NrWyYm4rZpZOPfeU33+m/ZWNeu67Z+q83FQ/JjyaVa91WVmZMjMzVVVVpfj4+G75mv6oj1Jw1EirPo+smNuXeXvEAD25eLcyEyL13x+fraiIsJM/2ERWvNaSNXNTHwOPFZ9HvsyLG3rprTWFunhYhp64esTJH2gyK19rK2WWrJnbX/WxUyPc06ZN0/r169vddtNNN2nQoEH62c9+pn79+ikjI0MLFy5sK5jNzc1avHixHn300WN+TqfTKafTedTt4eHhlvnHORy5u48VM0udy32gskH7KxsVZrdpXP8eCg835zxLq11rM7L6oz5KwVUjrZhZsl7u8ibpr/l7JUmzLx6s+JjjjygGGqtdax8r5aY+Bi6r5a51Se9tKJYkfe/cfpbKbrVrLVkzs2St3P7K2alX73FxcRo2bFi722JiYpSSktJ2+1133aW5c+cqNzdXubm5mjt3rqKjo3Xttdd2XWogRKzYVSZJGpYVr1inOc02Oob6iEDxzh67mlo8GpeTrIs52QABgPoYnL4otqm5xaMR2Qk6s3ei2XGAgNXlr+Dvu+8+NTQ06Pbbb1dFRYXGjRunBQsWKC4urqu/FBD0VuwqlyTOswwS1Ef42/Jd5VpTZpfdJj0wayi7ksMyqI/W4nJ7tLTYuxv5jRP7UmuAEzjthvvTTz9t93ebzaY5c+Zozpw5p/upgZBmGIaWF3hHuMflJJucBqeC+oju1NDs1pz3NkuSrjmrl4Zkdc/6XOBUUB+t7aPNJapqtik1NkIXj2AmDXAiHJQHBKgdJbXaU1aviDC7xtJwAziJ37y/STsP1Sk+3NBPpvU3Ow6AIPZ6/n5J0lWjs+V0BPamjIDZaLiBAPXhBu+5pGcPSFFcpDU2mwBgjg83FOqVFXtls0nXDfAoKTrC7EgAgtTu0jp9satcNhm6akxPs+MAAY+GGwhQH270Ntwzh2WYnARAIDtQ2aD7/rVOknTL2X01MLHDp30CQKe9nr9PkjQo0VDPxCiT0wCBj4YbCED7yuu18WC17Dbp/MHpZscBEKDcHkM/fX2NqhtbNDI7QXdNG2B2JABBrLnFo3+t8jbcE9N5cw/oCBpuIAD9t3V0e2xOslJijz5jFAAk6clPdujL3eWKdTr0x2tGKcLBr3UA/vPR5mKV1jYrLc6pocymATqE38xAAFqwsViSdMFQppMDOLb83eX6w8fbJEm//sZQ9UmJMTkRgGD32pd7JUnfPDNLYXQRQIfwowIEmEM1Tcrf4z1/m4YbwLFU1bv0k9dWy2NIV4zqqctHZZsdCUCQ21deryXbSyVJ3xrNZmlAR9FwAwFm4aZiGYY0MjtBWWxGAuAIhmHo52+t08GqRvVNidavvjHM7EgAQsDr+d7R7XNzU9UrKdrkNIB10HADAca3fnsGo9sAjuGN/H36YEORHHab/njNKMU6HWZHAhDk3B5D/1jpPXv72rG9TU4DWAsNNxBAqhtd+mKnd7oW08kBHGl/Rb1+8/5mSdI9FwzUiOxEcwMBCAkFpXU6VNOkqPAwTeP0FKBTaLiBALJoS4lcbkMD0mI1IC3W7DgAAohhGPrZm+tU29Si0X2S9P1z+5kdCUCI2HiwSpI0KDOO0xCATuInBgggvunkFwzl3WMA7b2yYq8+31GmyHC7fnvlCIXZbWZHAhAiNh2sliQNzYo3OQlgPTTcQIBodLn16dZDkphODqC9feX1mjvfO5X83gsGqV8PZsAA6D4b2xruBJOTANZDww0EiKXbS1Xf7FZmQqSG9+QXGgAvj8fQff9ap/pmt8b2TdZNE/uaHQlACDEMo21KOSPcQOfRcAMBYsGm1t3Jh6TLZmOqKACvl1fs0bJdZYoKD9NjV46QnankALpRYVWjKupdCrPblJceZ3YcwHJouIEA0OL26KPNJZKYTg7ga3vL6vXw/C2SpJ9fOEh9U2NMTgQg1Pimk+emxSoyPMzkNID10HADAWDlngqV1zUrMTpcY3OSzY4DIAB4PIbu+ddaNbjcGt8vWdeP72N2JAAhyDedfAjTyYFTQsMNBADf7uTTBqXLEcaPJQDpxWW79WVBuaIjwvTbK0cylRyAKTaxYRpwWnhlD5jMMAwt2FgsiePAAHgdrGzQY//dKkm6/6LB6pUcbXIiAKHqQGWDJKkfS1qAU0LDDZhsw4FqHahsUFR4mM7L62F2HAABYM67G1Xf7NaYPkn6ztjeZscBEMJ8+7iynytwami4AZP5ppNPHtiDzUgAaOGmYi3YVCyH3aaHLh/OVHIAprK3dtqGYXIQwKJouAGT+RpudicHUNfUogfe2SBJuuXcfhqYwRE8AMzlO6rUQ8cNnBIabsBEOw/VantJrRx2m6YMSjM7DgCTPfHRNh2salR2UpR+Mi3X7DgAIN8kG7eHhhs4FTTcgIl8o9sT+qcoISrc5DQAzLTpYLWe/3y3JOnXlw1TVARLTACYz942wm1yEMCiaLgBE/23dXfymcOYTg6EMrfH0C/eXi+3x9BFwzOY8QIgYIS1reGm4wZOBQ03YJLCqgat3Vcpm02aPoTjwIBQ9uqXe7VmX6VinQ49MGuo2XEAoI1vd3JGuIFTQ8MNmMR39vaZvZOUFhdpchoAZimpadRjH26RJN0zI0/p8dQDAIHDzqZpwGmh4QZMsnCTt+Geweg2ENKe+Gi7ahpbNLxngq6f0NfsOADQTnTrfhKVDS6TkwDWRMMNmKC60aUVBWWSmE4OhLKdh2r1Rv4+SdIvLxmiMM7cBhBgctO9xxNuKaw2OQlgTTTcgAk+23ZILrehfqkx6tcj1uw4AEzy2w+3yu0xdP7gNI3NSTY7DgAcZXCmt+HeTMMNnBIabsAEH28ukSSdz+g2ELJW7anQhxuLZLdJ980cZHYcADimIZnxkqQtRTXysHMa0Gk03EA3a3F79MkWb8M9jaN/gJBkGIYe/cC7UdqVo7OV1zplEwACTU5qjCIcdtU3u7Wvot7sOIDl0HAD3eyrfZWqanApMTpco/skmR0HgAk+3lyiL3eXy+mw66fT88yOAwDH5QizKy/du/yNaeVA59FwA93sky2HJElTBqbJEcaPIBBqWtwePdp6DNj3zslRZkKUyYkA4MQGZ3inlW8qrDE5CWA9vNoHupmv4T5/MOu3gVD01lcHtL2kVonR4bp1Un+z4wDASQ1uXcfNCDfQeTTcQDcqbpAKyuoVHmbTeXmpZscB0M3qm1v0+MJtkqQ7pwxQQlS4yYkA4OR8Dfemg9UyDDZOAzqDhhvoRqsOeX/kJvZPVVwkL7SBUPOnT3aoqLpR2UlRun5CH7PjAECHDOsZL6fDrgOVDfpqb4XZcQBLoeEGuonHYyi/1CZJuuLMnianAdDddpTU6m9LdkmS5swaKqcjzOREANAxcZHhuuyMLEnSi8v2mJwGsBYabqCb5O+pUHmTTbFOhy4YmmF2HADdyDAMPfDuBrnchqYNStP5Q9jDAYC1fHdCX0nS/PWFKq1tMjcMYCE03EA3eWv1QUnSRcPSFRnOyBYQSt5fX6jPd5QpwmHXA7OGmh0HADptWM8EndErUS63oX+sPGB2HMAyaLiBblDX1KIPNxZLki4flWVyGgDdqbapRb9+b5Mk6fbJ/dU7JdrkRABwar7buvfEa/n75GbvNKBDaLiBbvDhhiLVN7uV6jQ0unei2XEAdKM/frxdxdVN6p0czTFgACztouGZSo6JUFF1kzZW2MyOA1gCDTfQDd5avV+SdFYPj2w2fkEBoWLXoVo9v7RAkjTn0iEsJwFgaZHhYbr6rF6SpCVFvJ4BOoKGG/Cz6kaXlu8qlySN6cH8KyCU/P2L3WrxGJo8sIemDmKjNADW951xvWW3Sduq7NpeXGt2HCDg0XADfrZ0e6ncHkP9UmOUGml2GgDdparBpX+t8s5u+cG5/UxOAwBdIzspWtMHp0mS5i3niDDgZGi4AT9btKVEkjQ5L9XkJAC60z9X7lN9s1t56bGa0D/F7DgA0GVuaN087d9rClVR12xyGiCw0XADfuTxGFq09ZAkaRINNxAy3B5DLy7zjvzcODGHvRsABJUxfRKVHWOoqcWjV7/ca3YcIKDRcAN+tPFgtUprmxQTEaYxfZLMjgOgm3y6tUR7y+uVEBWub3AUIIAgY7PZNCnTI0l6adkeudwekxMBgYuGG/CjFQVlkqQJ/VMU4eDHDQgV768vlCR988xsRUc4TE4DAF3vzBRDyTHhKqpu1JLth8yOAwQsOgDAj9YfqJIkndEr0dwgALqNx2Pos22lkqTzh6SZnAYA/MNhl2aNyJQkvfXVAZPTAIGLhhvwo3X7vQ338OxEc4MA6DabCr1LSaIjwjSmT7LZcQDAby4b6W24F24qVk2jy+Q0QGCi4Qb8pKrBpYLSOknS8J4JJqcB0F0Wb/NOrZzYP5WlJACC2rCsePXvEaOmFo8+2FBkdhwgIPFKAPCTja3TyXslRyk5JsLkNAC6y2LfyQQDe5icBAD8y2az6YozsyVJbzOtHDgmGm7AT9a2Ticf0TPR3CAAuk11o0ur9lZIkibl0nADCH6XjvSexLC8oEwHKxtMTgMEHhpuwE/WH6iUJA3PZjo5ECq+2FEqt8dQv9QY9U6JNjsOAPhdr+Rojc1JlmFI/17DKDdwJBpuwA8Mw9DK3d5RrhE03EDIWLipRJJ0Xh6j2wBCxzfP7ClJeuHz3aptajE5DRBYaLgBP9haXKOSmiZFhtt1Zu8ks+MA6AZNLW4t2OjdNOii4ZkmpwGA7vONUT3VNyVah2qa9KdPtpsdBwgoNNyAH/g2TRrfL0WR4WEmpwHQHRZvPaSaphZlxEdqTB/eaAMQOpyOMP2/WUMkSc8vLdCuQ7UmJwICBw034Aefbfc23OexaRIQMt5bVyjJO7ptt9tMTgMA3WvqoHRNGdhDLrehX7+3yew4QMCg4Qa6WH1zi/ILWncp5lggICQ0NLv10eZiSdIlI5lODiA0/fKSIQoPs2nR1kP6ZEux2XGAgEDDDXSxFbvK1ez2qGdilPqlxpgdB0A3WLS1RPXNbvVMjNKoXolmxwEAU/TrEavvnZ0jSfrVfzapqcVtciLAfDTcQBdbvK11OnleD9lsTCsFQsF76w5Kki4ZkcnPPYCQdufUAeoR59Tusno9v3S32XEA09FwA13Mt357Ul6qyUkAdIe6phZ9ssV7HNiskVkmpwEAc8VFhuvnMwdJkv70yXYVVzeanAgwFw030IX2V9Rr16E6hdltmjiAhhsIBR9tLlajy6O+KdEamhVvdhwAMN3lo3pqVO9E1Te79cgHW8yOA5iKhhvoQr7p5KN6JSo+MtzkNAC6w/z13t3JLxmRxXRyAJBkt9s0Z9ZQ2WzS26sPsIEaQhoNN9CFFrVOK50yKM3kJAC6Q6PLrc+2lUqSZg7LMDkNAASOkb0SdePEvpKke/65jqnlCFk03EAXaXS5tXSH94X3VBpuICQs21mmBpdbGfGRTCcHgCP8/MJBGpIZr/K6Zt31+hq5PYbZkYBuR8MNdJFlO8vU6PIoKyFSgzLizI4DoBv4zt6eNjiN6eQAcASnI0x/unaUoiPCtGxXmZ5etMPsSEC3o+EGusjHreuTpvLCGwgJhmG0NdznD0k3OQ0ABKb+PWL168uGSZKe+Hi78neXm5wI6F403EAXMAxDn2z2rt9mOjkQGjYcqFZxdZOiI8I0oV+K2XEAIGB9c3S2rhjVU26PoZ+8tlqV9c1mRwK6DQ030AW2FtfoYFWjIsPtmtif48CAUOAb3T43N1WR4WEmpwGAwParbwxT35RoHaxq1M/eXCfDYD03QgMNN9AFPm4d3T67Py+8gVDRNp18MNPJAeBkYp0OPXntmQoPs+m/G4v18vI9ZkcCugUNN9AFPmk9DmzqYKaTA6GgsKpBGw9Wy2bjGEAA6KhhPRN0/4WDJUm/fn+zNhdWm5wI8D8abuA0VTe6tHpvhSRp8kBeeAOh4MsC76Y/w3smKDXWaXIaALCOm87uq2mD0tTc4tGPX1utRpfb7EiAX9FwA6dpxa5yeQypb0q0eiZGmR0HQDdYvbdSknRm7yRzgwCAxdhsNj125Qj1iHNqe0mtHnp/s9mRAL+i4QZO0+c7SiVJEwewWRoQKnyzWkb1TjQ3CABYUEqsU49fNVKS9NLyPVq4qdjkRID/0HADp2nZzjJJ3g3TAAS/RpdbGw961x0ywg0Ap+bc3B76/rk5kqT7/rVWxdWNJicC/IOGGzgNh2qatLW4RpI0oT/n8AKhYOPBKrV4DKXGRig7iWUkAHCq7rlgoIZmxaui3qW7/7FGHg9HhSH40HADp+GLnd7p5EMy45UcE2FyGgDdwbd++4xeSbLZbOaGAQALczrC9MdrRikqPEyf7yjTX5fsMjsS0OVouIHT8MWO1unkAxjdBkJF24ZpfRJNzQEAwaB/j1j9v1lDJEm/W7BV6/dXmZwI6Fo03MApMgxDS9kwDQg5a/ZVSpLO6JVoag4ACBbfPquXZg7NkMtt6NaXV+lQTZPZkYAuQ8MNnKKdh2p1oLJBEQ67xucwwg2EgvK6Zh2obJDkPYMbAHD6bDabHvnmcPVNidaBygb94KWVnM+NoNGphvvPf/6zRowYofj4eMXHx2vChAn64IMP2j5uGIbmzJmjrKwsRUVFafLkydq4cWOXhwYCwaIthyRJE/qlKCoizOQ0MBv1MTRsPOid6tg3JVpxkeEmpwGsgxqJk0mMjtBzN56lhKhwrd5bqXv+uZZN1BAUOtVwZ2dn65FHHtHKlSu1cuVKTZ06VZdddllbQXzsscf0+OOP68knn1R+fr4yMjI0ffp01dTU+CU8YKZFW0skSZMH9jA5CQIB9TE0+I4DG8roNtAp1Eh0RP8esXrmutFy2G16b12hnvhom9mRgNPWqYZ71qxZuuiii5SXl6e8vDw99NBDio2N1fLly2UYhp544gnNnj1bV1xxhYYNG6Z58+apvr5er776qr/yA6aoaXQpf3e5JGnKwDST0yAQUB9Dw4YD3hHuoVnxJicBrIUaiY6a0D9Fc68YLkn64yc79Pbq/SYnAk6P41Qf6Ha79c9//lN1dXWaMGGCCgoKVFRUpBkzZrTdx+l0atKkSfriiy/0wx/+8Jifp6mpSU1NX2+MUF3tHT1wuVxyuVynGq/b+bJaKbNkzdyBkPmzrcVyuQ31TYlWz4SIDmUJhNydZcXMkvl5u6o+SsFRI63+PDo898bWhntQekxAfj/BdK2twIq5AyErryHbs/LzyF+ZLx+ZoZ3FNfrLkgLd9691yoiL0Jg+Saf9ebnW3ceKuf2VtdMN9/r16zVhwgQ1NjYqNjZWb7/9toYMGaIvvvhCkpSent7u/unp6dqzZ89xP9/DDz+sBx988KjbFy1apOjo6M7GM93ChQvNjnBKrJjbzMyv77RLsqtPeK3mz5/fqcdyrf2vvr7elK/b1fVRCq4aabXnkY8vd6Nb2l0WJsmmwo1fan4Az3S0+rW2GivlNqs+SryGPBkrPY98/Jl5kCGNTLZrbbldt/z9S/3PcLdSIrvmc3Otu4+VcvurPna64R44cKDWrFmjyspKvfnmm7rhhhu0ePHito/bbLZ29zcM46jbDnf//ffr7rvvbvt7dXW1evXqpSlTpiglxTo7P7tcLi1cuFDTp09XeLh1NtKxYu5AyPzY7z+T1Kjvzhij83I7diRYIOTuLCtmlqSysjJTvm5X10cpOGqkVZ9HR+Zeu79KxpcrlBbn1FWXzTj5JzBBsFxrq7BibrPqo8RryOOx4vOouzJPm+7Wd57P1/oD1XqrOFmvf3+snI5TP2SJa919rJjbX/Wx0w13RESEBgwYIEkaM2aM8vPz9Yc//EE/+9nPJElFRUXKzMxsu39JSclR71gezul0yul0HnV7eHi4Zf5xDkfu7mNW5v0V9TpQ2agwu03j+/dQeHjnfoy41v5nVtauro9ScNVIK2aWvs5dVNMsSeqTEh3w34fVr7XVWCm3mTl5DXliVszt78zh4eH6y/VjdPEfl2jDwWo9tmC7fnXZsC75vFzr7mGl3P7KedrncBuGoaamJuXk5CgjI6PdtIHm5mYtXrxYEydOPN0vAwSMFbu8m6WNyE5QjPOUt0FACKA+Bpd95d7zt7OTrDdVFQhE1Eh0RFZilB6/+gxJ0ovL9ug/aw+aGwjopE51C7/4xS904YUXqlevXqqpqdHrr7+uTz/9VB9++KFsNpvuuusuzZ07V7m5ucrNzdXcuXMVHR2ta6+91l/5gW63osA73WRcjnWmq8H/qI/Bb1+Fd21Xr6Qok5MA1kONxOmYMjBNd0zpr6cW7dTP31ynoVnx6tcj1uxYQId0quEuLi7W9ddfr8LCQiUkJGjEiBH68MMPNX36dEnSfffdp4aGBt1+++2qqKjQuHHjtGDBAsXFxfklPGCG5a0j3OP6JZucBIGE+hj89pV7G+7sZEa4gc6iRuJ0/fT8PK3cXaEVBeW6/ZWv9O87zlZkeJjZsYCT6lTD/dxzz53w4zabTXPmzNGcOXNOJxMQsIqqGrW3vF52m7rkeAoED+pj8DtQ4ZtSzgg30FnUSJwuR5hdf7xmlC7+4xJtKarR3Pmbu2Q9N+Bvp72GGwgl6/ZXSpIGZsQrLtIaG0AA6BqHarzn/WbEd9G5NACATkmPj9T/ta7nfmn5Hm08WGVuIKADaLiBTthUWC1JGpIZb3ISAN3J5faopqlFkpQUHWFyGgAIXefm9tAlIzJlGNKv/rNJhmGYHQk4IRpuoBM2tzbcgzNZUwaEkqoGV9v/x0cxuwUAzHT/RYPldNi1oqBc89cXmR0HOCEabqATNhfWSJKGZDHCDYSSynpvwx0f6VCY3WZyGgAIbT0To3TrpP6SpLnzN6vR5TY5EXB8NNxAB9U0urS3dZdippQDoaWqoVmSlMh0cgAICLdO6q+shEgdqGzQs5/tMjsOcFw03EAHbSnyjm5nJkTyohsIMb4R7sRoppMDQCCIigjT/RcNliQ9/ekOHaxsMDkRcGw03EAHfb1+m9FtINRUtDbcCazfBoCAccmITJ3VN0mNLo8e+WCL2XGAY6LhBjpowwHv0RNMJwdCj2/TNBpuAAgcNptND8waKptNenftQX2wvtDsSMBRaLiBDlq5p0KSdGafRHODAOh2da1HgsVFOkxOAgA43LCeCfrBef0kSfe9uU77WvfbAQIFDTfQAWW1Tdp1qE6SdGbvJJPTAOhudc3ehjsmgoYbAALNPTMGalTvRNU0tujO11arucVjdiSgDQ030AGrWke389Jj2TANCEG+Ee5oJw03AASa8DC7/nTNKMVHOrR2X6V++1/WcyNw0HADHeCbTj6mb7LJSQCYob7Je8ZrrDPM5CQAgGPJTorWb781UpL01yUF+nhzscmJAC8abqAD8neXS5LG9GE6ORCKan0j3EwpB4CAdcHQDN04sa8k6X/+uVaFVRwVBvPRcAMn0ehyt+1QfhYj3EBIqm/2jXDTcANAILv/okEa1jNelfUu/fi11Wpxs54b5qLhBk5i7b5KudyG0uKcyk6KMjsOABP4Nk2LjmBKOQAEMqcjTE9ec6ZinQ7l767QEx9tNzsSQhwNN3ASvvXbZ/VNls1mMzkNADP4Nk1jhBsAAl/f1BjNvWK4JOmpT3doyfZDJidCKKPhBk7Ct357NOu3gZBV17ppWhQj3ABgCZeOzNI1Y3vLMKSfvL6G87lhGhpu4ASaWzz6ssDbcI/vl2JyGgBmMQxDkhRmZ5YLAFjFA7OGaFjPeJXXNevmefmqaWwxOxJCEA03cAJr91eqvtmt5JgIDcqIMzsOAJP4lpO09t0AAAuIDA/TX787RmlxTm0rrtVP/7lOHuo4uhkNN3ACS7eXSpIm9k+RnZEtAAAAS8lMiNJfvztGToddi7eV6p09tD/oXjzjgBP4Yqe34T57QKrJSQAEAgZGAMB6RvZK1O+vGilJ+rTQrn+s3G9yIoQSGm7gOOqaWrR6b6Uk6RwabiCk+Q4oMJhTDgCWdMmILP14Sn9J0gP/2axlO8tMToRQQcMNHMeXBeVq8RjqlRylXsnRZscBYKK2htvcGACA03DnlH46M8WjFo+h215Zpd2ldWZHQgig4QaOY+kO73RyRrcB2MSmaQBgdTabTdf092hEz3hV1rt087x8VTW4zI6FIEfDDRzH8l3eqUYT+9NwA6HOzpRyAAgKEWHSn78zShnxkdp5qE4PvrvR7EgIcjTcwDE0NLu1pahGkjS6T5LJaQCYLTI8TJLU4HKbnAQAcLrS4px6+rozZbdJb60+oI82FZsdCUGMhhs4hvUHquT2GEqLcyozIdLsOABMFh3hbbjrm2m4ASAYnNk7Sd8/t58k6Rdvr1dVPVPL4R803MAxrNlXIUk6o1eibDbO3wZCXXSEQ5J39gsAIDj8dHqe+vWIUUlNk3713iaz4yBI0XADx7B2X5Uk6YzeieYGARAQolpHuOuaW0xOAgDoKpHhYfrtlSNls0lvfrVfn2xhajm6Hg03cAxr9lVK8o5wA0BMa8PNCDcABJfRfZJ0yzk5kqT731rPruXocjTcwBFKahp1oLJBNps0IjvR7DgAAkBU65Ry1nADQPD5nxkDlZMao+LqJs19f7PZcRBkaLiBI6xrnU6emxarWKfD5DQAAkF8pLcWVDPyAQBBJzI8TI9dOUKS9MbKffqyoNzkRAgmNNzAEdbur5TE6DaAryVGR0iSyuubTU4CAPCHs/om65qxvSRJs99er+YWj8mJECxouIEjrN3vHeEemZ1gchIAgSIpOlySVMmxMQAQtH42c5BSYiK0vaRWf1u6y+w4CBI03MBhDMPQOka4ARzBN8JdwQg3AAStxOgIzb54sCTpjx9v177yepMTIRjQcAOH2VfeoMp6l8LDbBqUGWd2HAABghFuAAgNl4/qqQn9UtTo8uiX72yQYRhmR4LF0XADh/Gt3x6cGS+nI8zcMAACRlIMI9wAEApsNpt+c/kwRYTZ9enWQ/pgQ5HZkWBxNNzAYdYf8K7fHsH6bQCHSW5tuCvrXXK52UgHAIJZ/x6xunVyf0nSQ+9vVqOLIyFx6mi4gcO0rd/umWhqDgCBJTk6Qg67TZJUWttkchoAgL/dNqm/shIidaCyQc9+xgZqOHU03EArj8fQxgPVkqRhPRnhBvA1u92mtDinJKm4moYbAIJdVESYfn6RdwO1P3+6U0VVjSYnglXRcAOtdpfVqaapRU6HXbnpsWbHARBg0uIjJUnF1bzoAoBQMGtEpkb3SVKDy63HPtxidhxYFA030Mq3fntwZrzCw/jRANBeerx3hLuEhhsAQoLNZtP/u2SIJOmt1Qe0em+FyYlgRXQVQKsNbJgG4ATS20a4mVIOAKFiZK9EffPMbEnSr97bxDFh6DQabqDVBtZvAzgBX8NdxAg3AISU+2YOVHREmFbvrdTCTcVmx4HF0HADrbaX1EqSBmXEmZwEQCDybZpWUsMINwCEkvT4SF0/oY8k6e9f7DY3DCyHhhuQVFXvajvqp18PNkwDcDTfCDdruAEg9Hx3Ql/ZbdIXO8u0tajG7DiwEBpuQNKOQ97CmZkQqVinw+Q0AAJROruUA0DI6pkYpQuGZkhilBudQ8MNSNpZUidJ6s/oNoDj8O1SXlHvUlOL2+Q0AIDuduPEvpKkt1fvV2V9s7lhYBk03ICkHYe867cHpNFwAzi2hKhwRTi8vzZL2KkcAELO2JxkDc6MV6PLozfy95kdBxZBww1I2tG6YVp/Gm4Ax2Gz2b4+i7uGaeUAEGpsNptuah3lfnHZHrW4PeYGgiXQcAOSdraOcPfvEWNyEgCBLD2Os7gBIJRdekaWkqLDdaCyQR9tLjE7DiyAhhshr6HZrX3l9ZKYUg7gxNITvA33wcoGk5MAAMwQGR6ma8b2liT9dckuk9PACmi4EfK2FtfIY0ipsRHqEes0Ow6AANYnOVqStLuszuQkAACz3DCxryLC7Fq1p0L5u8vNjoMAR8ONkLfxYJUkaXBmvGw2m8lpAASynFTvspOCUhpuAAhV6fGR+ubonpKkZz7daXIaBDoaboS8TQerJUlDsxJMTgIg0PVr3eeh4BANNwCEsh+c1182m/TxlhJtKao2Ow4CGA03Qt6mQm+RHJIVb3ISAIEuJ9W7z8PBqkY1NHMWNwCEqpzUGF00LFOS9JfFrOXG8dFwI6S5PYa2FNZIkoZk0nADOLGk6HAlRIVLkvaUM8oNAKHs1kn9JUnvrj3YtgEvcCQaboS03WV1anC5FRlub1ubCQDHY7PZvl7HzbRyAAhpw7MTdM6AVLk9hp5bWmB2HAQoGm6ENN/67UEZ8Qqzs2EagJPr19pw72LjNAAIebdN9o5yv56/V2W1TSanQSCi4UZI863fHsr6bQAd1JedygEArSb2T9GI7AQ1ujya98Vus+MgANFwI6RtOPD1kWAA0BG+KeU7D9WanAQAYDabzabbWtdy//2L3apudJmcCIGGhhshy+0xtGZvpSTpjF6JpmYBYB2+GTEbD1arucVjchoAgNlmDM3QgLRYVTe26IWlu82OgwBDw42Qta24RjVNLYqJCNOgjDiz4wCwiJzUGCVFh6u5xdO2LAUAELrC7Db9ZFquJOlvS3epqoFRbnyNhhsha+WeCknSqN5JcoTxowCgY2w2m0b1TpIkrd5bYXIaAEAguHh4pvLSY1XT2KLn2bEch6HLQMhatbtckjS6T5LJSQBYzajWZShftS5LAQCENrvdprvOz5MkPb+0QFX1jHLDi4YbIcs3wj2mLw03gM45s/WNuq/2MMINAPCaOTRDgzLiVNPUor8t3WV2HAQIGm6EpOLqRu2vaJDdprapoQDQUSN7Jcpmkw5UNqikutHsOACAAOAd5fau5X7h892qqGs2ORECAQ03QtKq1lGpQRnxinU6TE4DwGpinQ4NTPdutsi0cgCAz4whGRqSGa/apha9wLncEA03QtSmg96dhUf2SjA5CQCrGpmdKEnaeLDK3CAAgIBht9v0w0n9JEnvrDkgwzBMTgSz0XAjJG0trpGkthEqAOisIa3ncfvewAMAQJLOH5wup8OuPWX12sjviJBHw42QtK214c7j/G0Ap6it4eYsbgDAYWKcDk0ZmCZJ+mBDoclpYDYaboSc+uYW7S2vl8QIN4BTNzjT23AXVjWqnI1xAACHuXB4hiRp/voippWHOBpuhJwdJbUyDCk11qmUWKfZcQBYVKzTob4p0ZKYVg4AaG/a4HRFOOwqKK3T5sIas+PARDTcCDk7SmolSblpsSYnAWB1vlHuLUU03ACAr8U6HTovN1WS9Nn2QyangZlouBFyCkrrJEk5PWJMTgLA6vJal6VsLWL0AgDQ3oT+3oZ7+a4yk5PATDTcCDltDXcKDTeA0zOodeNF38kHAAD4jO+XLEnKLyhXi9tjchqYhYYbIaet4U6l4QZwenwnHWwrrpHHw6Y4AICvDc6IV0JUuOqa3drAXh8hi4YbIcUwDO1ubbj70nADOE19U2LkdNjV6PJoX0W92XEAAAHEbrdpbI53lJtp5aGLhhsh5VBNk+qa3bLbpN7J0WbHAWBxYXabctO9GzBuYR03AOAI4/ulSJKW7aThDlU03AgpOw95R7ezk6IV4eDpD+D0Dcrw7lS+kemCAIAj+NZxr9pTITdLj0ISHQdCyvYS7whUXjpHggHoGiOzEyRJa/ZVmhsEABBwBmXEK87pUG1TizYX8sZsKOpUw/3www/rrLPOUlxcnNLS0vSNb3xDW7dubXcfwzA0Z84cZWVlKSoqSpMnT9bGjRu7NDRwqrYXe8/gHpAWZ3ISBBvqY+g6o1eSJGntvkoZBqMXwJGojwhlYXabRvf1/p74sqDc5DQwQ6ca7sWLF+uOO+7Q8uXLtXDhQrW0tGjGjBmqq6tru89jjz2mxx9/XE8++aTy8/OVkZGh6dOnq6aGtW0wn2+EOzeNEW50Lepj6BqUGacIh11VDS7tLmPjNOBI1EeEurP6th4PtpuGOxQ5OnPnDz/8sN3fX3jhBaWlpWnVqlU677zzZBiGnnjiCc2ePVtXXHGFJGnevHlKT0/Xq6++qh/+8Iddlxw4BTtKvCPcuUwpRxejPoau8DC7hmXF66u9lVqzr4IjB4EjUB8R6nw7lX9ZUC7DMGSz2UxOhO7UqYb7SFVVVZKk5GTvk6igoEBFRUWaMWNG232cTqcmTZqkL7744pgFs6mpSU1NTW1/r672rm1wuVxyuVynE69b+bJaKbNkzdynmrm8rlmltc2SpN6Jzm7/nkPpWpstEPJ2RX2UgqNGWv151JHcI3p6G+6vdpfrkmHp/o52XKFwrQOJFXMHQlbqY3tWfh5ZKbNkXu7B6TGKcNhVVtesbYVV6tej42/Mcq27j7+ynnLDbRiG7r77bp1zzjkaNmyYJKmoqEiSlJ7e/sVGenq69uzZc8zP8/DDD+vBBx886vZFixYpOtp6xzYtXLjQ7AinxIq5O5t5R7UkOZTsNLT44wV+ydQRoXCtzVZfb+603q6qj1Jw1UirPY98OpLbKLVJCtPiDXs1317g/1AnEczXOhBZKTf1MXBZ6XnkY8XMkjm5e0WFaWeNTS+895kmpHd+vw+utf/5qz6ecsN95513at26dVq6dOlRHztymsSJpk7cf//9uvvuu9v+Xl1drV69emnKlClKSUk51XjdzuVyaeHChZo+fbrCw8PNjtNhVsx9qpn/sXK/tHGThvZK1UUXjfZjwmMLpWtttrIyc8+67Kr6KAVHjbTq86gzuYeW12ve/y1VYaNd0y+YrvAwcw4BCYVrHUismJv6GHis+DyyYmbJ3NwbwrZp59LdcvToq4suGtzhx3Gtu4+/6uMpNdw/+tGP9O677+qzzz5TdnZ22+0ZGRmSvO9UZmZmtt1eUlJy1LuWPk6nU06n86jbw8PDLfOPczhyd5/OZj5Q5Z121jc11tTvNRSutdnMzNqV9VEKrhppxcxSx3L36+E99qWmqUV7Kpo0ODO+m9IdWzBf60BkpdzUx8BlxdxWzCyZkzs3w/t7YXdZwyl9ba61//krZ6fegjcMQ3feeafeeustffLJJ8rJyWn38ZycHGVkZLSbOtDc3KzFixdr4sSJXZMYOEV7y73TRPqkWG+aGQIf9TG02e02Dc7yvpjaeJBzVoHDUR8BqV/rhpoFpXUnuSeCTadGuO+44w69+uqreueddxQXF9e25iYhIUFRUVGy2Wy66667NHfuXOXm5io3N1dz585VdHS0rr32Wr98A0BH+RruXsk03Oh61EcMzYrXlwXl2niwSleOzj75A4AQQX0EpH49vCfkHKhsUEOzW1ERYSYnQnfpVMP95z//WZI0efLkdre/8MILuvHGGyVJ9913nxoaGnT77beroqJC48aN04IFCxQXF9clgYFT5Wu4e9Nwww+ojxialSCJEW7gSNRHQEqOiVBidLgq610qKK3TkCxzlx6h+3Sq4TaMk++oZ7PZNGfOHM2ZM+dUMwFdrqrBpcp671b/NNzwB+ojhra+eNp8sFoejyG7nXNWAYn6CPjkpMZo9d5KGu4QY842qkA329c6up0aG6EY52kdPw8AxzQgLVYRDrtqmlq0v6LB7DgAgADTL9U7rXzXoVqTk6A70XAjJLB+G4C/hYfZNTDdO/1148Eqk9MAAAJNvx5snBaKaLgREnyFrW9KjMlJAASz4dneddyr91WaGwQAEHB8J+XsaR0IQmig4UZI2HXI23D7jmQAAH84q2+SJGlFQbnJSQAAgSYzIUqSVFTVaHISdCcaboSEna1rZfqnxZqcBEAwG5uTIknaeKBKdU0tJqcBAASSrMRISVJxdaPcnpNvJojgQMONoGcYRtvmFL61MwDgDz0To9QzMUotHkOr91aaHQcAEEB6xDplt0ktHkNltU1mx0E3oeFG0CutbVZ1Y4tsNtZwA/C/cTnJkqQvC8pMTgIACCSOMLvS472j3IVMKw8ZNNwIer7p5NlJUYoMDzM5DYBgd1Zrw806bgDAkTISfA03x0eGChpuBD3fhmn9e7B+G4D/jW1tuFfvq1RTi9vkNACAQJKZwAh3qKHhRtDzjXD3S6XhBuB//VJjlBoboeYWj9bv5zxuAMDX2Kk89NBwI+jtatuhnPXbAPzPZrO1jXIzrRwAcDjfCPdBGu6QQcONoFdQ6p1SnsMZ3AC6ydi+NNwAgKOlxjolSeV17FIeKmi4EdRcbo/2VXg3paDhBtBdfOdxr9pdrha3x+Q0AIBAERnubb+aXPxuCBU03AhqByoa5PYYigy3Kz0u0uw4AELEoIw4JUSFq67ZrY0Hq82OAwAIEM7WE3Ma2VQzZNBwI6gVlHmnk/dJjpHdbjM5DYBQYbfbdFbbtHLO4wYAeEU6WhtuRrhDBg03gtqe1vXbfVOjTU4CINSM822ctot13AAAL2frlPJGFyPcoYKGG0Ftd1m9JKlvCuu3AXSvcf28DfeXu8vl9hgmpwEABALfCHdTCyPcoYKGG0Ftd5lvhJuGG0D3GpIZr1inQzWNLdpSxDpuAMDXm6Yxwh06aLgR1Pa0jnD3SWFKOYDu5Qiza0zfJElMKwcAePk2TWOX8tBBw42g1eL2aF85U8oBmGds6zru5bvYOA0AIEU6vO1Xs9vDcqMQQcONoLW/okEtHkNOh10Z8RwJBqD7TejnPY97+a4yXlgBAHT4bwLOzwkNNNwIWr4jwfqmcCQYAHOMyE5UfKRD1Y0tWre/0uw4AACT+dZuRzjsvD4NETTcCFq7ORIMgMnC7DadPSBVkrRke6nJaQAAZvOdvx3VupYbwY+GG0GroLXhzkmNNTkJgFB2bm4PSdKS7YdMTgIAMJtvhNu3WzmCH//SCFpfN9yMcAMwz7m53hHu1XsrVdPoMjkNAMBMXzfcjHCHChpuBK3dh63hBgCz9EqOVp+UaLV4DC3neDAACGlMKQ89NNwISs0tHh2oaJAk5aTScAMwl2+UeynTygEgpPlGuJ003CGDhhtBaW95vTyGFBMRph5xTrPjAAhx5wzwreNm4zQACGWNLa1Tyh20YaGCf2kEpb3l3unkvVNiZLNx5AIAc03onyK7TdpVWqfCqgaz4wAATFLd0CJJiot0mJwE3YWGG0FpX7n3BW2vpCiTkwCAlBAVruE9EyRJy3aWmZwGAGCWQzVNksQMzBBCw42gtK+8XpJ3syIACAQT+nvXcX9Bww0AIau0trXhjqXhDhU03AhK+1s3TMtmhBtAgJjQP0WSd4TbMAyT0wAAzOAb4U5lhDtk0HAjKO2raB3hTmKEG0BgOKtvkhx2mw5UNrQtewEAhJZDjHCHHBpuBCWmlAMINNERDo3qnShJWraL3coBIBQxwh16aLgRdKoaXKpu9O4AyZRyAIFkQj/vtHLWcQNAaGINd+ih4UbQOdC6fjs5JkIxTo5cABA4fBunLd/FOm4ACDW1TS2qb/aew80Id+ig4UbQKar2NtyZCZEmJwGA9s7olSiH3abi6iYdqGQdNwCEEt+gUEJUuGIZFAoZNNwIOkVV3qk6GfE03AACS1REmIZmxUuSVu2pMDkNAKA77W/d1Jclj6GFhhtBp6jK++5hBiPcAALQmX2SJNFwA0Co4dja0ETDjaBTVN0oiRFuAIFpTJ9kSTTcABBqvh7h5hSdUELDjaBTWOVtuNMZ4QYQgM7skyhJ2lxYrbqmFnPDAAC6DSPcoYmGG0GnuHWEm03TAASizIQo9UyMkseQ1u6rNDsOAKCbfN1wM8IdSmi4EXSKqphSDiCw+dZxr2RaOQCEDDZNC0003Agq9c0tqm70TtFkSjmAQDW6d6IkKX93ublBAADdoqbRpYp6lySpJw13SKHhRlA52HqubZzTofjIcJPTAMCxjeuXIsnbcDe63CanAQD426aD1ZK8MzB5jRpaaLgRVPa1ro3hnUMAgWxQRpzS4pxqdHm0cjfTygEg2K3bXyVJGpGdYHISdDcabgSVA+z+CMACbDabzs3tIUn6bPshk9MAAPxt7f5KSdLIXomm5kD3o+FGUGH3RwBWcV5eqiTps2003AAQ7NYfYIQ7VNFwI6gcaF3D3TOREW4Age3c3B6y2aQtRTUqaT3OEAAQfCrrm7WnzLtD+YieieaGQbej4UZQOdB63AJruAEEuuSYCA3L8o50fLa91OQ0AAB/8a3f7pMSrYRoNkwLNTTcCCr7WcMNwEKYVg4AwW9d6/rtEdmJpuaAOWi4ETSaWtwqqWmSxJRyANZwXuvGaUt3lMrjMUxOAwDwh7WtI9wjWb8dkmi4ETSKqrxrICPD7UqOiTA5DQCc3Jl9khQTEabyumZtKqw2Ow4AoIsZhqE1+yolMcIdqmi4ETQKWxvujPhI2Ww2k9MAwMmFh9l1Vk6yJGn5rjKT0wAAutre8nodqmlSRJidHcpDFA03gkZx6y6/GQmRJicBgI6b0C9FEg03AASjlbsrJEnDsxMUGR5mchqYgYYbQaPosBFuALCK8a0N94qCcrlZxw0AQWXlnnJJ0pg+SSYngVlouBE0ilpHuNMZ4QZgIUOz4hXndKimsUWbDrKOGwCCSX7rCPeYvskmJ4FZaLgRNNqmlDPCDcBCHKzjBoCgVF7XrB0ltZKk0YxwhywabgSNQqaUA7Ao3zruZTTcABA0Vu3xjm4PSIvlBJ0QRsONoFFcxZRyANY0ob+34f6yoFwtbo/JaQAAXWHlbu/67bP6Mrodymi4ERQ8HkMlNU2SpHRGuAFYzODMeMVFOlTb1KLNhTVmxwEAdAHfMqExfVi/HcpouBEUKhtcamnd3bdHrNPkNADQOWF2W9sOtisKmFYOAFZX1eDS+gNVkqSzB6SanAZmouFGUCip8U4nT4oOV4SDpzUA6xmb451Wnt86BREAYF0rdpXJY0j9esQog+WOIY3OBEGhpNo7nTwtjoIGwJrGtu5U/mVBuQyD87gBwMq+2OmdrTSxdY8OhC4abgSFQ63rt9PimU4OwJqG90xQZLhdFfWutmNkAADW9PmOUknS2f2ZTh7qaLgRFHwbprF+G4BVRTjsOrO3bx0308oBwKpKahq1vaRWNps0vh8j3KGOhhtBwbeGuwcj3AAs7Ky+X08rBwBY07LW6eRDMuOVxPnbIY+GG0GhbUo5a7gBWNg41nEDgOW1TSdnd3KIhhtBwtdw94hjhBuAdY3qnSSH3aai6kbtr2gwOw4AoJMMw9CnWw9Jks6h4YZouBEkSmu9DXdqLNN2AFhXVESYhvVMkMS0cgCwok2F1SqpaVJUeJjG9Us2Ow4CAA03gsIhNk0DECR8x4NxHjcAWM+iLSWSvNPJnY4wk9MgENBww/KaWtyqbmyRxJRyANbXtnEaDTcAWM6i1unkUwb1MDkJAgUNNyyvtLZZkhQeZlNCVLjJaQDg9Izp4z0abNehOpW1LpcBAAS+irpmrd5bIUmaPDDN5DQIFDTcsLzS1unkKTFO2Ww2k9MAwOlJiolQXnqsJCl/d4XJaQAAHfXZ9kPyGNKgjDj1TIwyOw4CBA03LM+3YRrTyQEEC9+0ctZxA4B1+NZvM7qNw9Fww/J8G6axQzmAYMHGaQBgLW6PocXbWtdvD2T9Nr5Gww3LK6/3ruFOYYdyAEFidOs67s2F1Wp0uU1OAwA4mbX7K1VR71JcpENnttZwQKLhRhCoqPM23EnRbJgGIDj0TIxSamyEXG5DmwqrzY4DADiJT1t3Jz83N1XhYbRY+BrPBlheeZ1LknejIQAIBjabTSOzEyVJa/dVmpoFAHByn25l/TaOjYYbllfROqU8OZqGG0DwGNkrURINNwAEutLaJq3bXyVJmpzH+m20R8MNyyv3TSlnhBtAEPE13GtouAEgoH3WulnakMx4pcVHmpwGgabTDfdnn32mWbNmKSsrSzabTf/+97/bfdwwDM2ZM0dZWVmKiorS5MmTtXHjxq7KCxylbYSbhhsmoz6iK43MTpAk7S6rV2VrnQOsivqIYOZbvz1lEKPbOFqnG+66ujqNHDlSTz755DE//thjj+nxxx/Xk08+qfz8fGVkZGj69Omqqak57bDAsXy9aRoNN8xFfURXSoyOUE5qjCRpbetURcCqqI8IVm6Poc+2extu1m/jWBydfcCFF16oCy+88JgfMwxDTzzxhGbPnq0rrrhCkjRv3jylp6fr1Vdf1Q9/+MPTSwscweX2qLqxRRIj3DAf9RFdbWR2ggpK67Rmb6UmsS4QFkZ9RLBas69SlfUuxUc6NKp1KRBwuC5dw11QUKCioiLNmDGj7Tan06lJkybpiy++6MovBUj6ejq5zSYlRHEsGAIX9RGn4ozWF2+r9laYGwTwI+ojrOzDDYWSpHPzesjBcWA4hk6PcJ9IUVGRJCk9Pb3d7enp6dqzZ88xH9PU1KSmpqa2v1dXe88bdblccrlcXRnPr3xZrZRZsmbuwzMXVzZK8p7B7XG3yOM2M9mJWf1aW0kg5j2V+igFR420+vPIzNxn9vKu4161u1z1jU0nPds1EDKfCnJ3n0DMGsr1UbL288hKmaWuz93i9ujt1QckSZcMS/fL9eBadx9/Ze3ShtvHZrO1+7thGEfd5vPwww/rwQcfPOr2RYsWKTo62h/x/GrhwoVmRzglVsy9cOFCbam0SQqT09Os+fPnmx2pQ6x6ra2kvr7e7AjH1Zn6KAVXjbTa88jHzNweQ4oOC1Nds1t//deH6hvXscdxrbuXlXJTHwOXlZ5HPlbMLHVd7o0VNpXWhinWYahh50rNL+iST3tMoX6tu4O/6mOXNtwZGRmSvO9UZmZmtt1eUlJy1LuWPvfff7/uvvvutr9XV1erV69emjJlilJSUroynl+5XC4tXLhQ06dPV3i4daY2WzH34ZldGw9Jmzeob2aKLrpojNnRTsjq19oqmSWprKzM7AhHOZX6KAVHjbTq8yhQcs+vWqOFm0sUljlYF52Xc8L7BkrmziJ396E+Bh4rPo+smFnq+twfvr5WUrG+eVYfzbpo0OkHPAaudffxV33s0oY7JydHGRkZWrhwoUaNGiVJam5u1uLFi/Xoo48e8zFOp1NOp/Oo28PDwy3zj3M4cnef8PBwVTZ655D3iIu0TH6rXmsrZQ7ErKdSH6XgqpFWzCyZn3tC/1Qt3FyiL/dU6s4O5jA786kit/8FYk7qo5cVc1sxs9Q1uavqXfp4i3d38qvO6u336xDK17q7+Ctnpxvu2tpa7dixo+3vBQUFWrNmjZKTk9W7d2/dddddmjt3rnJzc5Wbm6u5c+cqOjpa1157bZcGByTpUK137VZKLDuUw3zUR/jD+H7ekbqVu8vlcntOuo4bCETURwSbd9cdVLPbo0EZcRqalWB2HASwTjfcK1eu1JQpU9r+7pvKc8MNN+jvf/+77rvvPjU0NOj2229XRUWFxo0bpwULFiguroMLz4BOKKv17lKeGnv0O9xAd6M+wh8GZcQpMTpclfUurT9QpTN7J5kdCeg06iOCzZur9kuSrhydbXISBLpON9yTJ0+WYRjH/bjNZtOcOXM0Z86c08kFdEhp6wh3KiPcCADUR/iD3W7TuJxk/XdjsZbvKqPhhiVRHxFMdpTUas2+SoXZbbrsjJ5mx0GAY14aLK28zjvCnRLDCDeA4DUuxzutPL+g3OQkAIB313iPApuc10M94ngNihOj4YalVdZ7z8tLirHGZgwAcCpG9kqUJK0/UH3CUUIAgP99sMF7dvwlIzNPck+AhhsWV1nvHeFOiKLhBhC8hmTGK8xuU2ltk4qqG82OAwAha3txjbaX1Co8zKZpg49/bB3gQ8MNy3J7DNU0tUiSEqJYww0geEVFhCkv3bt51Lr9VSanAYDQ5RvdPmdAquIjGfDBydFww7JqGlvkm1nJCDeAYDeip/fYmfU03ABgGl/DfeFwppOjY2i4YVlVDd7129ERYYpw8FQGENyGZ3sb7nUHaLgBwAwFpXXaXFgth92mGUOYTo6OoUuBZVW2NtyJjG4DCAEjfA33/ko2TgMAE3ywoVCSNKF/ihKjWc6IjqHhhmVVN3ob7ngabgAhYGBGnBx2myrrXWycBgAm+HhziSTpgqEZJieBldBww7JqG70bpsVFOkxOAgD+53SEqW9qjCRpa1GNyWkAILRU1DVr9d4KSdLUQWkmp4GV0HDDsmpbdyiPddJwAwgNA1t3Kt9eXGtyEgAILZ9tPySPIQ3KiFNWYpTZcWAhNNywrNomtyQpjiMZAIQI39FgW4sZ4QaA7vTp1kOSpMkDGd1G59Bww7J8U8pjmVIOIETkpcdKkrbRcANAt3F7DC3e5m24pwzsYXIaWA0NNyyrpok13ABCS17G11PKPR52KgeA7rBuf6XK65oVF+nQmX2SzI4Di6HhhmX51nDHsYYbQIjokxytCIddDS639lc0mB0HAELCotbp5Ofl9lB4GO0TOodnDCyrbUo5DTeAEOEIs6t/D++08i1F1SanAYDQsGiL9ziwyUwnxymg4YZlfT2lnE3TAISOQa3TylnHDQD+d6CyQesPVMluk6ZwHBhOAQ03LKvtWDDWcAMIIQNbG+7NnMUNAH63YGORJGlMn2SlxjpNTgMrouGGZdU0smkagNDja7i30nADgN/9t7XhnjE03eQksCoabljW15umMaUcQOjwTSkvKK1TU4vb5DQAELzK65r1ZUG5JOmCoRkmp4FV0XDDsphSDiAUZcRHKj7SIbfH0I6SWrPjAEDQ+mhzsTyGNCQzXr2So82OA4ui4YYleQyprsk7ssOUcgChxGazaVBGvCSmlQOAP/nWbzO6jdNBww1LajpsFiXHggEINazjBgD/qmtq0WfbSyVJFwxj/TZOHQ03LKmxteGOCLMrMjzM3DAA0M3YqRwA/OuzbYfU3OJR7+RoDUyPMzsOLIyGG5bka7ijnTTbAEKPr+HeyRpuAPCLj7eUSJJmDEmXzWYzOQ2sjIYbluSbUh4TwXRyAKGnX2qMJOlAZYMaXexUDgBdyeMxtHjbIUnSlEFpJqeB1dFww5KaPd53GmMY4QYQgpJjIhTfumFkQWmdyWkAILhsKqzWoZomRUeEaUzfJLPjwOJouGFJvhHuaEa4AYQgm82mfj1iJdFwA0BX841uT+yfIqeDwR2cHhpuWFLblHJGuAGEqH49vNPKdx1iHTcAdKVPt3rXb08ayHRynD4ablhSs8f7X0a4AYQq3zruXYxwA0CXqWpw6au9lZKkyXk9zA2DoEDDDUv6etM0RrgBhCbflPJdh2i4AaCrLN1eKrfHUP8eMeqVHG12HAQBGm5YUtsabicj3ABCU07q11PKDcMwOQ0ABAffdPLJTCdHF6HhhiU1te5SHh3OCDeA0ORruKsbW1Re12xyGgCwvsOPA5s8kOnk6Bo03LCkrzdNY4QbQGiKDA9TdlKUJGl7CRunAcDp+mpvhUpqmhTrdGhsTrLZcRAkaLhhSY3sUg4AykuPkyRtL64xOQkAWN/76wslSdOHpHMcGLoMDTcsqZkRbgBQbrp347RtxYxwA8Dp8HgMzW9tuC8enmlyGgQTGm5Ykm+EO5aGG0AIy0vzjnBvY4QbAE7Lqr0VKq5uUpzToXPzUs2OgyBCww1LanJ7N02L4RxuACGsbUo5a7gB4LS8v47p5PAPGm5YUpPH+1+mlAMIZQPSYmWzSeV1zSqtbTI7DgBYUrvp5COYTo6uRcMNS2JKOQBIURFh6p0cLYlp5QBwqlbu8e5OHhfp0Dm5TCdH16LhhiX5Nk2LZpdyACEuN827cdpOppUDwCn5aHOxJGn6YKaTo+vRcMOSmlunlEeFUxQBhLbsJO8I94HKRpOTAIA1Ld9VJklslga/oOGG5bg9htyGd9O0SBpuACGuZ2KUJOlAZYPJSQDAemoaXdpwoEqSNC4nxeQ0CEY03LCcRpe77f8jw3kKAwhtPZO8DfdBGm4A6LSVeyrkMaTeydHKan0DE+hKdCuwnMYWT9v/R7LOBkCI871APFBBww0AnbViV7kkaVxOsslJEKxouGE5za0Nd3iYTXa7zeQ0AGCurMRISVJxTaNcbs9J7g0AONyKAu/67XH9mE4O/6DhhuU0tXinlLOLJABIqTFOhYfZZBhSaW2z2XEAwDJcbo82HqiWJJ3VN8nkNAhWNNywHFeLIUmKcDC6DQB2u01J0RGSpPI6Gm4A6Kg9ZXVqdnsUExGmXq0nPgBdjYYbltPs9k0p5+kLAJKUHNPacNfTcANAR20tqpUk5abHsUwRfkPHAsvxrVEMpzACgKTDGu46l8lJAMA6thbXSJIGpseZnATBjIYbluNye6eUM8INAF5fN9yMcANAR20r8jbceRk03PAfOhZYjosp5QDQTkprw13BlHIA6LBtjHCjG9CxwHLaGm42TQMASVJyjFMSU8oBoKMaXW7tLquTJOVlxJqcBsGMhhuW09I6pdxh5+kLAJKUHBMuiSnlANBRO0pq5TGkpOhw9Yh1mh0HQYyOBZbj26U8wsHTFwAkKaX1xSJTygGgYzYVes/fHpQRL5uNWZPwHzoWWM7Xm6ZRHAFA+nrTtLJaGm4A6IjNrQ334Mx4k5Mg2NFww3LYNA0A2kuN5RxuAOiMrxtuNkyDf9GxwHJ8I9wRNNwAIOnrTdOqGlrU+p4kAOA4DMPQpoOMcKN70LHAcr4e4WZKOQBIUmJUuOytJbG2xdwsABDoCqsaVd3YIofdptx0diiHf9Fww3KYUg4A7dnttrZ13LWcDAYAJ7S5yHv+9oC0WDkdYSanQbCjY4HlfL1pGk9fAPD5uuFm9g8AnMiWolpJTCdH96BjgeU0M6UcAI6S0rqOu4YRbgA4oS2tI9xsmIbuQMMNy/FNKXcwwg0AbZJbdyqvYw03AJzQtmLvCPegDEa44X90LLAct6d1SrmdEW4A8ImPDJckNdBwA8BxeQxpX0W9JCknNcbkNAgFNNywHF/DHUbDDQBt4qMckqQGN7URAI6nstm7H1B4mE1ZiVFmx0EIoOGG5fg2TXPQcANAG0a4AeDkDjV6Xz/2Sopm8AbdgoYbluMb4XawaRoAtImP9I1wmxwEAAJYWaP3v31Sos0NgpBBww3LaWmbUs7TFwB84qMY4QaAk/GNcPdJYf02ugcdCyynxdO6SznTgACgTVzrCHcja7gB4LhKGeFGN6PhhuW43WyaBgBHYg03AJxcaesId19GuNFNaLhhOS2s4QaAo7RNKWcNNwAck2EYbSPcvRnhRjeh4YbltB0LZqPhBgAf35Tyhhbvi0oAQHtldc1q9thks0nZSRwJhu5Bww3LaeEcbgA4SozT23B7ZFNTi8fkNAAQeA5Weoe30+KccjrCTE6DUEHDDcvxGJzDDQBHiolwtP1/XTPzygHgSAervA13VkKkyUkQSmi4YTm+EW47DTcAtAmz2xQV7v21XtfEzmkAcKTCtoab6eToPjTcsBwPa7gB4Jh808rrmhjhBoAjHaxskCRlJjLCje5Dww3LcbOGGwCOyTetvK6ZEW4AOBJTymEGGm5Yjtug4QaAY4lxejcBYko5ABytkIYbJqDhhuX4RrjptwGgPaaUA8Dx+RpuppSjO9Fww3Ja+21GuAHgCJEO7691jgUDgPYMw1BFvUuSlBITYXIahBIabliOYfhGuGm4AeBwjjBvXWzx0HADwOGaWjxtsyR9s4GA7kDDDcvxjXDTbgNAe+Fh3l/rzW7D5CQAEFhqD9vbIjo8zMQkCDU03LAcQ94XkjamlANAO+F276/1Fjcj3ABwuNpGb8PttBuy8xoS3chvDffTTz+tnJwcRUZGavTo0VqyZIm/vhRCjMEINyyO+gh/CW+dUu5ihBsWRX2Ev/hGuJ0MbqOb+aXhfuONN3TXXXdp9uzZWr16tc4991xdeOGF2rt3rz++HEKMr+HmzUlYEfUR/uQIY4Qb1kV9hD/5jkuMpOFGN/NLw/3444/r5ptv1i233KLBgwfriSeeUK9evfTnP//ZH18OIebSkZmanOlRdlK02VGATqM+wp/OHZCiqZkejchOMDsK0GnUR/hTenykfnBuX41N4w1JdK8u36KvublZq1at0s9//vN2t8+YMUNffPHFUfdvampSU1NT29+rqqokSeXl5V0dza9cLpfq6+tVVlam8PBws+N0mBVzXzowVnEHa5Vob1RZWZnZcTrMitfaipmlr+uHb0f7QNHZ+igFR4206vPIirnHZYWrPq1WAxNFfewGVsxNfQw8VnweWTFznE363ugULapeZ6ncVrzWkjVz+6s+dnnDXVpaKrfbrfT09Ha3p6enq6io6Kj7P/zww3rwwQePuj0vL6+rowEIMWVlZUpICJyRvs7WR4kaCcA/qI8AcGxdXR/9dgid7Ygzkg3DOOo2Sbr//vt19913t/29srJSffr00d69ewPqF8HJVFdXq1evXtq3b5/i4+PNjtNhVsxtxcySNXNbMbPkHeXo3bu3kpOTzY5yTB2tj1Jw1EirPo+smNuKmSVydyfqY+Cx4vPIipkla+a2YmbJmrn9VR+7vOFOTU1VWFjYUe9GlpSUHPWupSQ5nU45nc6jbk9ISLDMP87h4uPjyd1NrJhZsmZuK2aWJLs9sE4+7Gx9lIKrRlr1eWTF3FbMLJG7O1EfA48Vn0dWzCxZM7cVM0vWzN3V9bHLq21ERIRGjx6thQsXtrt94cKFmjhxYld/OQCwDOojABwb9RFAsPLLlPK7775b119/vcaMGaMJEybo2Wef1d69e3Xrrbf648sBgGVQHwHg2KiPAIKRXxruq6++WmVlZfrVr36lwsJCDRs2TPPnz1efPn1O+lin06kHHnjgmFOEAhm5u48VM0vWzG3FzFJg5z6d+igF9vd2PFbMLFkztxUzS+TuToGcORTro2TN3FbMLFkztxUzS9bM7a/MNiPQzoUAAAAAACAIBNaOGQAAAAAABAkabgAAAAAA/ICGGwAAAAAAP6DhBgAAAADADwKi4X7ooYc0ceJERUdHKzExsUOPufHGG2Wz2dr9GT9+vH+DHuFUchuGoTlz5igrK0tRUVGaPHmyNm7c6N+gh6moqND111+vhIQEJSQk6Prrr1dlZeUJH2PGtX766aeVk5OjyMhIjR49WkuWLDnh/RcvXqzRo0crMjJS/fr10zPPPOPXfMfTmdyffvrpUdfVZrNpy5Yt3Zb3s88+06xZs5SVlSWbzaZ///vfJ31MIFzrzuYOhGt9qqiP3VcfJWvUSOpj96A+Bn59lKxZI6mPvIY8EvWxe5hVHwOi4W5ubta3vvUt3XbbbZ163MyZM1VYWNj2Z/78+X5KeGynkvuxxx7T448/rieffFL5+fnKyMjQ9OnTVVNT48ekX7v22mu1Zs0affjhh/rwww+1Zs0aXX/99Sd9XHde6zfeeEN33XWXZs+erdWrV+vcc8/VhRdeqL179x7z/gUFBbrooot07rnnavXq1frFL36hH//4x3rzzTf9lrErcvts3bq13bXNzc3tpsRSXV2dRo4cqSeffLJD9w+Ua93Z3D5mXutTRX3svvooBX6NpD5SH08mlOqjZM0aSX3kNeTpZPahPnaeafXRCCAvvPCCkZCQ0KH73nDDDcZll13m1zwd1dHcHo/HyMjIMB555JG22xobG42EhATjmWee8WNCr02bNhmSjOXLl7fdtmzZMkOSsWXLluM+rruv9dixY41bb7213W2DBg0yfv7znx/z/vfdd58xaNCgdrf98Ic/NMaPH++3jMfS2dyLFi0yJBkVFRXdkO7kJBlvv/32Ce8TKNf6cB3JHWjX+lRQH/3PCjWS+mgO6mPgs2KNpD52PSvWSOqjObqzPgbECPep+vTTT5WWlqa8vDx9//vfV0lJidmRTqigoEBFRUWaMWNG221Op1OTJk3SF1984fevv2zZMiUkJGjcuHFtt40fP14JCQkn/frdda2bm5u1atWqdtdIkmbMmHHcjMuWLTvq/hdccIFWrlwpl8vll5xHOpXcPqNGjVJmZqamTZumRYsW+TPmaQuEa306rHStTxf1sfMCvUZSHwP7ZzYQrvXpsNK17gpWqpHUx46xYo2kPoZGfbRsw33hhRfqlVde0SeffKLf//73ys/P19SpU9XU1GR2tOMqKiqSJKWnp7e7PT09ve1j/v76aWlpR92elpZ2wq/fnde6tLRUbre7U9eoqKjomPdvaWlRaWlpl2c8llPJnZmZqWeffVZvvvmm3nrrLQ0cOFDTpk3TZ5991h2RT0kgXOtTYcVrfTqoj6eeIZBrJPUxsH9mA+FanworXuvTZbUaSX3sGCvWSOpjaNRHh5/yac6cOXrwwQdPeJ/8/HyNGTPmlD7/1Vdf3fb/w4YN05gxY9SnTx+9//77uuKKK07pc0r+zy1JNput3d8Nwzjqts7oaOZjfe2OfH1/XesT6ew1Otb9j3W7v3Um98CBAzVw4MC2v0+YMEH79u3T7373O5133nl+zXk6AuVad0agXWvq4/F1dX2Ugq9GUh+pj10pEK+1FWsk9fHYeA3ZMdTHwNRV19pvDfedd96pb3/72ye8T9++fbvs62VmZqpPnz7avn37aX0ef+bOyMiQ5H2XJzMzs+32kpKSo9716YyOZl63bp2Ki4uP+tihQ4c69fW76lofS2pqqsLCwo56V+9E1ygjI+OY93c4HEpJSenyjMdyKrmPZfz48Xr55Ze7Ol6XCYRr3VXMvNbUx6P5qz5KwVMjqY/Ux+5i9rW2Yo2kPnYMryHboz6GRn30W8Odmpqq1NRUf336o5SVlWnfvn3tCtGp8GfunJwcZWRkaOHChRo1apQk79qNxYsX69FHHz3lz9vRzBMmTFBVVZW+/PJLjR07VpK0YsUKVVVVaeLEiR3+el11rY8lIiJCo0eP1sKFC3X55Ze33b5w4UJddtllx3zMhAkT9J///KfdbQsWLNCY/9/eHbM0EoVRGL5bTCJqEAvBIKhgYWVAsRHEdCFF/oAEmb+g2KQTO220Eqtga6Gxso42prxFJIWFGnsbB2yPxe4G1CxszNzxZvd9YKrc4vCRHOYrMrO8bIIgiD1jN1/J3Y211slc4+LDrOPynbOmHz9z1Y/G/DsdST/Sj0n57lkPYkfSj3+He8j36Mf/pB/7euRaTNrttqy12t3d1ejoqKy1stYqiqLOmfn5edVqNUlSFEXa3t7Wzc2NHh4eVK/XtbKyoqmpKb28vHibW5L29vY0NjamWq2mZrOp9fV1ZbPZxHIXi0Xlcjk1Gg01Gg0tLCyoVCq9O/Pdsz49PVUQBKpWq2q1Wtrc3NTIyIgeHx8lSZVKRRsbG53z9/f3Gh4e1tbWllqtlqrVqoIg0NnZmZN8ceU+PDzUxcWF7u7udHt7q0qlImOMzs/PE8scRVHne2uM0cHBgay1arfbXTP7Mutec/sw66+iH5PrR8n/jqQf6ce4c/sw634MYkfSj9xD9pPZh98s/djbrL1YuMMwlDHm01Wv1ztnjDE6OTmRJL2+vqpQKGhiYkJBEGh6elphGOrp6cnr3NLPVzvs7OxocnJS6XRaa2trajabiWV+fn5WuVxWJpNRJpNRuVz+9Kh7H2Z9dHSkmZkZpVIpLS0t6fr6uvNZGIbK5/Pvzl9dXWlxcVGpVEqzs7M6Pj52mu9Pesm9v7+vubk5DQ0NaXx8XKurq7q8vEw07+/XHXy8wjDsmlnyY9a95vZh1l9FPybXj9JgdCT9mAz6cTAMYkfSj9xDfkQ/+pk7rln/kH79Yx0AAAAAAMRmYF8LBgAAAACAz1i4AQAAAABwgIUbAAAAAAAHWLgBAAAAAHCAhRsAAAAAAAdYuAEAAAAAcICFGwAAAAAAB1i4AQAAAABwgIUbAAAAAAAHWLgBAAAAAHCAhRsAAAAAAAdYuAEAAAAAcOAN6O2LTrZAFpcAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 1200x600 with 3 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(2, figsize=(12,6))\n",
    "\n",
    "for k in range(3):\n",
    "    \n",
    "    pk = Phi[0:-1:2,k]        # retem somente a translação\n",
    "    pm = pk[0]                # normaliza máxima amplitude unitária\n",
    "    \n",
    "    plt.subplot(1,3,k+1)\n",
    "    plt.plot(pk/pm, zm)\n",
    "    plt.axis([-1.5, 1.5, 0, H])\n",
    "    plt.title('Modo {0} :: fk = {1:4.2f}Hz'.format(k+1,fk[k]))\n",
    "    plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Para o restante da análise serão retidos apenas os graus de liberdade de translação no primeiro modo:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "pk1 = Phi[0:-1:2,0]\n",
    "wk1 = wk[0]\n",
    "fk1 = fk[0]\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5 A força modal conforme a NBR-6123 <a name=\"section_5\"></a> \n",
    "\n",
    "Sem perda de generalidade, é possível adotar a convenção de que os $n$ graus de liberdade do sistema estrutural correspondem aos deslocamentos horizontais na direção do vento, coincidindo assim com $n$ pontos de aplicação das forças aerodinâmicas, cada ponto correspondendo a uma cota vertical $z_i$, com $i = 1, 2, \\dots, n$. Neste caso, as forças aerodinâmicas são discretizadas como:\n",
    "\n",
    "$$F(z_i,t) = F_i(t) = \\bar{F}_i + f_i(t)$$\n",
    "\n",
    "A partir desta convenção, a força modal pode ser calculada através de um simples somatório:\n",
    "\n",
    "$$F_k(t) = \\vec\\phi_k^{\\; \\rm T} \\vec{F}(t) = \\sum_{i = 1}^n \\phi_{ik} F_i(t)$$\n",
    "\n",
    "O método da superposição modal é válido tanto para a parcela média como para a parcela flutuante da força modal. Isto significa que o método também fornece a parte estática da resposta estrutura, e torna-se assim conveniente decompor também a força modal em parcelas estáticas e flutuantes:\n",
    "\n",
    "$$F_k(t) =  \\bar{F}_k + f_k(t)$$\n",
    "\n",
    "Admitindo-se que a força modal é um processo aleatório ergódico e estacionário, e considerando-se que a variância de uma soma é igual à soma cruzada das covariâncias, tem-se o espectro da _parcela flutuante_ força modal:\n",
    "\n",
    "$$S_{f_k}(f) = \\sum_{i = 1}^n \\sum_{j = 1}^n \\phi_{ik} \\phi_{jk} S_{f_i f_j} (f)$$\n",
    "\n",
    "onde $S_{f_i f_j}(f)$ é o espectro cruzado (análogo à covariância) entre as parcelas flutuantes das forças atuantes no graus de liberdade $i$ e $j$, que é modelado através dos espectros marginais e de uma função de coerência, $R_{ij} (z_i, z_j,f)$:\n",
    "\n",
    "$$S_{f_i f_j} (f) = R_{ij} (z_i, z_j, f) \\sqrt{S_{f} (z_i,f) S_{f} (z_j, f)}$$\n",
    "\n",
    "A função de coerência utilizada na NBR-6123 tem a forma:\n",
    "\n",
    "$$R_{ij} (z_i, z_j, f) = \\exp\\left [ -C \\;\\; \\frac{f \\Delta z_{ij}}{\\bar{V}_{10{\\rm{m}}}} \\left ( \\frac{\\bar{z}_{ij}}{10{\\rm{m}}} \\right )^\\gamma \\right ]$$\n",
    "\n",
    "com $C = 10$, $\\gamma = -0.3$, e onde:\n",
    "\n",
    "\\begin{align*}\n",
    "\\Delta z_{ij} &= |z_i - z_j| \\\\\n",
    "\\bar{z}_{ij}  &= \\frac{1}{2} (z_i + z_j)\n",
    "\\end{align*}\n",
    "\n",
    "são a diferença de altura e a altura média dos graus de liberdade $i$ e $j$, respectivamente. É importante observar que forças $f_i(t)$ e $f_j(t)$ perfeitamente correlacionadas estariam associadas a uma função de coerência constante unitária, o que simplificaria a análise mas conduziria a uma maior variância para a força modal, e consequentemente a um projeto antieconômico. Portanto, uma função de coerência que corretamente represente as características da turbulência atmosférica é muito relevante para uma análise mais realista e econômica.\n",
    "\n",
    "Fazendo-se uso as equações anteriores, obtem-se para a parcela média:\n",
    "\n",
    "$$\\bar{F}_k = 0.613 \\left ( C_{\\rm{a}} A \\right )  \n",
    "                    \\left ( b F_{\\rm{r}}S_1 S_3 V_0 \\right )^2 \n",
    "                    \\sum_{i = 1}^n \\phi_{ik} \\left (\\frac{z_i}{10 {\\mathrm{m}}} \\right )^{2p}$$\n",
    "\n",
    "Da mesma forma, o espectro da parcela flutuante da força modal resulta ser:\n",
    "\n",
    "$$S_{f_k}(f) = 4 S_v(f) \\sum_{i = 1}^n \\sum_{j = 1}^n \n",
    "               \\left [ \\frac{\\phi_{ik} \\bar{F}(z_i)}{\\bar{V}(z_i)} \\right ]\n",
    "               \\left [ \\frac{\\phi_{jk} \\bar{F}(z_j)}{\\bar{V}(z_j)} \\right ] R_{ij} (z_i, z_j, f)$$\n",
    "\n",
    "onde o espectro da velocidade pode ser fatorado do somatório por não depender das cotas $z_i$ ou $z_j$. \n",
    "\n",
    "Deve ser observado que a determinação deste espectro é computacionalmente custosa, e algumas medidas devem ser tomadas para aumentar sua eficiência. O procedimento é ilustrado a seguir para a torre do exemplo de análise.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAK8CAYAAAAd/3W2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkrElEQVR4nOzdeXxU9b3/8ffsyZCQwBAgLAJqACvivhGKooXUFavc3moXtNXaa29vrbUp1rbGW6tIe+1qy+3txaWV1vu7XblVg20UCmJxa9lU3BVCgBCSkG3mzOT8/pickZBAtjk5Z2Zez8fDR5uTIXlnMpnvfOb7/X6+HtM0TQEAAAAA0sLrdAAAAAAAyCYUWQAAAACQRhRZAAAAAJBGFFkAAAAAkEYUWQAAAACQRhRZAAAAAJBGFFkAAAAAkEYUWQAAAACQRhRZAAAAAJBGFFnAMGtpadHMmTP1T//0T+rs7HQ6DgAgg3z84x/XjBkzVF9f73QUAEdBkeVyH/nIR5Sfn6/GxsYj3ubjH/+4AoGA9uzZ0++v6/F4VFVVNfSAQ/z6Dz74oDwej95+++20fe9rr71WU6dOTdvXS7cbbrhB48aN0y9/+Ut5vX3/Cb799tvyeDx68MEHU9eqqqrk8XhsTDl4VjYnXwCsX79e119/vU4//XSFQqE+H2M/+tGPNHPmTIVCIU2bNk133nmnDMNIa6ann35aHo9HTz/9dFq/LpCNrLGht/9uvfVWp+M5ZsWKFfrLX/6iJ554QmPGjOnXv5k6daquvfba1Mdufi6ysv3v//6vYxl27typm2++Weedd56Ki4t7jL+H+/Of/6xzzz1X4XBYY8aM0bXXXqu9e/emPZfdr9uQfn6nA+DoPvOZz+j3v/+9Vq1apZtuuqnH55uamvS73/1Ol156qcaNG+dAwt5t3LhRkyZNcjqG69x///3avHmzNmzYoFAoNOivc/311+vDH/5wGpNll7/85S/685//rFNPPVUjR4486ouJb3/72/rGN76hpUuXauHChXruuef09a9/Xbt27dLPfvaztGU67bTTtHHjRn3gAx9I29cEst0DDzygmTNndrs2YcIEh9I468UXX9Q3vvENVVdXa9q0aYP+OjwXHd3rr7+uRx55RKeccoouvvhi/epXvzribdeuXauLLrpIl1xyif7whz9o7969+upXv6oLL7xQzz///JDG+cPxuirzUGS53EUXXaQJEyZo5cqVvRZZv/rVr9Te3q7PfOYzDqQ7snPOOcfpCK70+c9/Xp///OeH/HUmTZqUtU+27e3tys/PH9LX+MY3vqE77rhDkvTd7373iEXW/v37ddddd+mGG27Q3XffLUk6//zzZRiGvv71r+vmm29O2wuRkSNH8ncBDNCsWbN0xhlnpP3rtrW1KRwOp/3r2um0007Tvn37hvx1svm5KB2/13nz5qXu5+eff/6oRdZXvvIVTZ8+Xf/7v/8rvz/5knratGkqLy/XypUr9S//8i9DynKobP2dZTOWC7qcz+fTkiVL9MILL2jLli09Pv/AAw+otLRUF110kSSprq5ON954oyZNmqRgMJha+hSPx/v8Xlu3btWiRYs0atQo5eXl6ZRTTtFDDz3U43aNjY368pe/rGOPPVahUEhjx47VxRdfrFdeeSV1m96mtZ999lmVl5crLy9PEyZM0G233dbrkqxHH31UCxcuVGlpqfLz83XCCSdo6dKlam1t7XHbBx98UDNmzFAoFNIJJ5yghx9+uNefLRaL6a677kotCSspKdF1113XrwHr2muvVUFBgV555RVVVFRoxIgRKi0t1bJly1I/19y5czVixAhNnz691/usv7+X2tpaffSjH1VhYaGKior0z//8z6qrq+vx9XpbLjiQ++1wbW1tuvXWWzVt2jTl5eVp9OjROuOMM3oMLn/84x9TyyIKCwu1YMECbdy4sdev+d577+nKK6/UyJEjVVRUpE984hM97u+pU6fq0ksv1W9/+1udeuqpysvL05133jmg+6w3/VmGKUlPPPGEOjo6dN1113W7ft1118k0Tf3+979PXRvq46C3JTrW13z99dd18cUXq6CgQJMnT9aXv/xlRaPRfv0MQC7rz3OS9Xz54osvavHixRo1apSOO+44SVJnZ6d+9KMf6ZRTTlF+fr6Ki4t1zjnn6I9//GPq3w/ludVa9lhTU6MbbrhBkUhEI0eO1Kc+9Sm1traqrq5OH/3oR1VcXKzS0lLdeuutPcbF/o5fhmGosrJS48ePVzgc1ty5c7Vp06YemXp7Lnr++ef1sY99TFOnTlV+fr6mTp2qq6++Wu+8806fP6Mk/fSnP9XJJ5+sgoICFRYWaubMmfra177W7Tb9fY0hSR0dHbrllls0fvx45efn67zzztNLL73U7TbW8+eWLVu0cOFCFRYW6sILLxzQfdab/o4fu3bt0nPPPadPfvKTqQJLkubMmaPp06frd7/7XepaOh4Hh7+usr7mU089pX/5l3/RmDFjFIlEdOWVV6q2trZfPwPsxUxWBvj0pz+tZcuWaeXKlfre976Xur59+3Zt2rRJS5culc/nU11dnc466yx5vV5985vf1HHHHaeNGzfqrrvu0ttvv60HHnjgiN/j1Vdf1Zw5czR27Fj98Ic/VCQS0S9/+Utde+212rNnjyorKyVJBw8e1Ny5c/X222/rq1/9qs4++2y1tLRo3bp12r17d49lHYdmvfDCCzV16lQ9+OCDCofD+slPfqJVq1b1uO1rr72miy++WDfffLNGjBihV155Rffee682bdqkmpqa1O0efPBBXXfddVq0aJH+4z/+Q01NTaqqqlI0Gu32JNnZ2alFixbpr3/9qyorKzVnzhy98847uuOOO3T++efr+eef73PmxDAMXXnllfrc5z6nr3zlK1q1apVuu+02NTc36ze/+Y2++tWvatKkSfrRj36ka6+9VrNmzdLpp58uSf3+vbS3t+tDH/qQamtrdc8992j69On605/+pH/+538+araB3m+9ueWWW/SLX/xCd911l0499VS1trZq69at2r9/f+o2q1at0sc//nEtXLhQv/rVrxSNRrV8+XKdf/75+stf/qK5c+d2+5of+chH9NGPflSf+9zntG3bNn3jG9/Q9u3b9be//U2BQCB1uxdffFEvv/yyvv71r2vatGkaMWLEkB7LA7F161ZJ0kknndTtemlpqcaMGZP6vGUoj4MjMQxDl19+uT7zmc/oy1/+statW6dvfetbKioq0je/+c20/JxApkokEj3eWLFe0A70OenKK6/Uxz72MX3uc59LFUjXXnutfvnLX+ozn/mM/v3f/13BYFAvvvhitz2cQ3lutVx//fW68sor9etf/1ovvfSSvva1rykej+vVV1/VlVdeqc9+9rP685//rHvvvVcTJkzQLbfcImlg49cNN9yghx9+WLfeeqsWLFigrVu36sorr9TBgwf7zPf2229rxowZ+tjHPqbRo0dr9+7d+ulPf6ozzzxT27dvP+r+r1//+te66aab9IUvfEHf/e535fV69frrr2v79u2p2/T3NYbla1/7mk477TT9/Oc/T43t559/vl566SUde+yxqdvFYjFdfvnluvHGG7V06VLF4/G0jPn9YY0Ps2fP7vG52bNna8OGDT2uD/ZxcDTXX3+9LrnkEq1atUrvvfeevvKVr+gTn/hEvx+bsJGJjHDeeeeZY8aMMWOxWOral7/8ZVOSuWPHDtM0TfPGG280CwoKzHfeeafbv/3ud79rSjK3bduWuibJvOOOO1Iff+xjHzNDoZD57rvvdvu3F110kRkOh83GxkbTNE3z3//9301J5pNPPnnUvId//X/+53828/Pzzbq6utS1eDxuzpw505RkvvXWW71+nc7OTtMwDHPt2rWmJPMf//iHaZqmmUgkzAkTJpinnXaa2dnZmbr922+/bQYCAXPKlCmpa7/61a9MSeZvfvObbl/7ueeeMyWZP/nJT476syxZsqTHvzcMwywpKTElmS+++GLq+v79+02fz2fecsstqWv9/b389Kc/NSWZf/jDH7rd7oYbbjAlmQ888EDq2h133GEe7c/3SPfbkcyaNcu84oorjvh56/4+6aSTzEQikbp+8OBBc+zYseacOXN6ZPvSl77U7Ws88sgjpiTzl7/8ZeralClTTJ/PZ7766qvdbjuQx3JfvvOd7xzxMXbDDTeYoVCo1383ffp0c+HChamPh/o4eOqpp0xJ5lNPPdXja/7P//xPt+998cUXmzNmzOj3zwhkmwceeMCU1Ot/hmEM6jnpm9/8ZrfvsW7dOlOSefvtt/c710CfW62f4wtf+EK361dccYUpybzvvvu6XT/llFPM0047LfVxf8evl19++ajPu0uWLEld6+256HDxeNxsaWkxR4wYYf7gBz846s/4r//6r2ZxcfFRb9Pf1xhWtiON7ddff33qmvX8uXLlym5fc6hjfm//5tDx12Ldtxs3buzxuc9+9rNmMBhMfTzUx4Fp9nxdZX3Nm266qdvtli9fbkoyd+/e3d8fEzZhuWCG+MxnPqP6+vrUEoZ4PK5f/vKX+uAHP6iysjJJ0v/93/9p/vz5mjBhguLxeOo/aynh2rVrj/j1a2pqdOGFF2ry5Mndrl977bVqa2tLLb94/PHHNX36dH3oQx8aUP6nnnpKF154YbfmHD6fr9dZmjfffFPXXHONxo8fL5/Pp0AgoPPOO0+S9PLLL0tKvitWW1ura665ptuyuSlTpmjOnDndvt7//d//qbi4WJdddlm3++WUU07R+PHj+9VhyePx6OKLL0597Pf7dfzxx6u0tFSnnnpq6vro0aM1duzYbkss+vt7eeqpp1RYWKjLL7+82/e+5ppr+swn9e9+O5KzzjpLjz/+uJYuXaqnn35a7e3t3T5v3d+f/OQnu80SFhQU6KqrrtKzzz6rtra2bv/m4x//eLePP/rRj8rv9+upp57qdn327NmaPn16t2tDeSwP1NG6NB7+uaE8Do72PS677LJu12bPnt3vZTpANnv44Yf13HPPdfvP7/cP6jnpqquu6vbx448/Lkl97pMdynOr5dJLL+328QknnCBJuuSSS3pcP3z86M/4ZT2vHul5ty8tLS366le/quOPP15+v19+v18FBQVqbW3t1/jR2Nioq6++Wn/4wx967Szb39cYliON7YePH1LP32s6xvyBONIY0tv1wT4Ojubw1wzWzBpjiPNYLpghFi9erC984Qt64IEHdNVVV+mxxx7Tnj17dO+996Zus2fPHq1evbrbUqxDHa2l9v79+1VaWtrjutXFyVo2tm/fPh1zzDEDzr9//36NHz++x/XDr7W0tOiDH/yg8vLydNddd2n69OkKh8Op/T3Wi38rz5G+5qFLPfbs2aPGxkYFg8Fes/Wn1Xg4HFZeXl63a8FgUKNHj+5x22AwqI6Ojm7fvz+/l/379/faIbK3n/Fw/b3fjuSHP/yhJk2apEcffVT33nuv8vLyVFFRoe985zsqKytL3d9Heox0dnbqwIED3TYcH57b7/crEol0W4J4pK85lMfyQEQiEXV0dPS6WbqhoaHHUr+hPA6OpLevGQqF+vVvgWx3wgkn9Nr4YjDPSYffdt++ffL5fEd9jh3qc6vl8OcIazzq7frh40d/xq8jjYnW825frrnmGv3lL3/RN77xDZ155pkaOXJk6k2lvn7GT37yk4rH4/qv//ovXXXVVers7NSZZ56pu+66SwsWLEjl689rDMuRxvZ//OMf3a6Fw2GNHDmy27V0jPn9Yd2vh2eXkuNHb+PCYB8H/clhsToa9vexCftQZGWI/Px8XX311fqv//ov7d69WytXrlRhYaH+6Z/+KXWbMWPGaPbs2fr2t7/d69c4WtvbSCSi3bt397hubZ601mOXlJRo586dA84fiUR6beBw+LWamhrV1tbq6aefTr1TKKnHOWHWk0p/vqa1GfSJJ57oNVthYWG/fobB6u/vJRKJ9LpJubef8XD9vd+OZMSIEbrzzjt15513as+ePalZrcsuu0yvvPJK6v4+0mPE6/Vq1KhRPXJPnDgx9XE8Htf+/ft7DAi9vds3lMfyQFh7sbZs2aKzzz47db2urk719fWaNWtWWr4PgPQazHPS4c81JSUlSiQSqqur67UAkIb+3DpU/R2/Dh0Te3vePZqmpib93//9n+644w4tXbo0dT0ajaqhoaFfOa+77jpdd911am1t1bp163THHXfo0ksv1Y4dOzRlypR+v8awHGls7+/4MRxjvjU+bNmypdsKB+sa4wdYLphBPvOZzyiRSOg73/mOHnvsMX3sYx/r9i7dpZdeqq1bt+q4447TGWec0eO/o70wvfDCC1ODyaEefvhhhcPhVOvQiy66SDt27Bjwhsr58+frL3/5S7cDkxOJhB599NFut7OeMA8/W+I///M/u308Y8YMlZaW6le/+pVM00xdf+edd/TMM890u+2ll16q/fv3K5FI9Hq/zJgxY0A/y0D19/cyf/58HTx4sFtXK0m9Ngc5XH/vt/4YN26crr32Wl199dV69dVX1dbWphkzZmjixIlatWpVt/u7tbVVv/nNb1LdvQ71yCOPdPv4f/7nfxSPx3X++ef3mWEoj+WB+PCHP6y8vLweB01aXZuuuOKKtHwfAOk1mOekw1nLj3/6058e8TbpfG4djP6OX9bz6pGed4/G4/HINM0eP+PPf/5zJRKJAeUdMWKELrroIt1+++2KxWLatm2bpP6/xrAcaWzv7/gxHGP+xIkTddZZZ+mXv/xlt/vp2WefTTWyQG5jJiuDnHHGGZo9e7a+//3vyzTNHmdj/fu//7uefPJJzZkzR//2b/+mGTNmqKOjQ2+//bYee+wxrVix4ohnK91xxx2pfTDf/OY3NXr0aD3yyCP605/+pOXLl6uoqEiSdPPNN+vRRx/VokWLtHTpUp111llqb2/X2rVrdemll2r+/Pm9fv2vf/3r+uMf/6gLLrhA3/zmNxUOh3X//ff3aIE7Z84cjRo1Sp/73Od0xx13KBAI6JFHHumxRMDr9epb3/qWrr/+en3kIx/RDTfcoMbGRlVVVfVYZvCxj31MjzzyiC6++GJ98Ytf1FlnnaVAIKCdO3fqqaee0qJFi/SRj3xkQL+Lgejv7+VTn/qUvve97+lTn/qUvv3tb6usrEyPPfaYqqur+/we/b3fjuTss8/WpZdeqtmzZ2vUqFF6+eWX9Ytf/KLbC5Xly5fr4x//uC699FLdeOONikaj+s53vqPGxsZUG/ND/fa3v5Xf79eCBQtS3QVPPvlkffSjH03bfXYk+/btS+3bso4+ePzxx1VSUqKSkpLUO9KjR4/W17/+dX3jG9/Q6NGjU4cRV1VV6frrr+ewTsClvF7vgJ+TDvfBD35Qn/zkJ3XXXXdpz549uvTSSxUKhfTSSy8pHA7rC1/4wpCfW4eqv+PXCSecoE984hP6/ve/r0AgoA996EPaunWrvvvd7/ZYTne4kSNHat68efrOd76jMWPGaOrUqVq7dq3++7//W8XFxX1mvOGGG5Sfn6/y8nKVlpaqrq5O99xzj4qKinTmmWdK6v9rDMvevXtTY3tTU5PuuOMO5eXl6bbbbkvbfXY0//u//yspuR9PSra4LygokJTcvmG59957tWDBAv3TP/2TbrrpJu3du1dLly7VrFmzehwNghzkZNcNDNwPfvADU5L5gQ98oNfP79u3z/y3f/s3c9q0aWYgEDBHjx5tnn766ebtt99utrS0pG6nw7rUmKZpbtmyxbzsssvMoqIiMxgMmieffHKvHXUOHDhgfvGLXzSPOeYYMxAImGPHjjUvueQS85VXXjnq19+wYYN5zjnnmKFQyBw/frz5la98xfzZz37Wo/PbM888Y5577rlmOBw2S0pKzOuvv9588cUXe+3w8/Of/9wsKyszg8GgOX36dHPlypXmkiVLunUXNM1kF7jvfve75sknn2zm5eWZBQUF5syZM80bb7zRfO211454f5tmsoPRiBEjelw/77zzzBNPPLHH9SlTppiXXHJJt2v9/b3s3LnTvOqqq8yCggKzsLDQvOqqq8xnnnmmX90FB3K/HW7p0qXmGWecYY4aNcoMhULmsccea37pS18y6+vru93u97//vXn22WebeXl55ogRI8wLL7zQ3LBhQ7fbWNleeOEF87LLLkv9LFdffbW5Z8+ePu+rgd5nvbE6VPX233nnndfj9j/4wQ/M6dOnm8Fg0DzmmGPMO+64o1snT9Mc+uPgSN0Fe/uafXWPBLKd1TntueeeO+rtBvKctG/fvh7/PpFImN/73vfMWbNmpZ4jzj33XHP16tWp2wzlufVIP8eRMvX2nNDf8SsajZpf/vKXzbFjx5p5eXnmOeecY27cuNGcMmVKn90FrbFn1KhRZmFhofnhD3/Y3Lp1a49/25uHHnrInD9/vjlu3DgzGAyaEyZMMD/60Y+amzdv7na7/rzGsLL94he/MP/t3/7NLCkpMUOhkPnBD37QfP755/u8rwZ6nx3JkcaP3p6X16xZY55zzjlmXl6eOXr0aPNTn/pUj7EuHY+Dw19XHelr9qd7JIaHxzQPmY8FAADIQQ0NDZozZ46eeeaZXpsWAMBAsCcLAADktN///vd66aWXdODAAa1bt87pOACyADNZAAAgp02ZMkV1dXU6+eST9ac//UklJSVORwKQ4SiyAAAAACCNHF0uWFVVJY/H0+2/QzvDmaapqqoqTZgwQfn5+Tr//PNT7UABAEg3xiUAQDo4vifrxBNP1O7du1P/We2WpWTL6Pvuu08//vGP9dxzz2n8+PFasGCBDh486GBiAEA2Y1wCAAyV40WW3+/X+PHjU/9Z66BN09T3v/993X777bryyis1a9YsPfTQQ2pra+vX4awAAAwG4xIAYKgcP4z4tdde04QJExQKhXT22Wfr7rvv1rHHHqu33npLdXV1WrhwYeq2oVBI5513np555hndeOONvX69aDSqaDSa+rizs1MNDQ2KRCKpk9sBAPYzTVMHDx7UhAkT5PU6/p5ev6V7XJIYmwDALYZrbHK0yDr77LP18MMPa/r06dqzZ4/uuusuzZkzR9u2bVNdXZ0kady4cd3+zbhx4/TOO+8c8Wvec889uvPOO23NDQDov/fee0+TJk1yOka/2DEuSYxNAOA2do9Nruou2NraquOOO06VlZU655xzVF5ertraWpWWlqZuc8MNN+i9997TE0880evXOPzdwqamJh1zzDHasWNHRhwuaBiGnnrqKc2fP1+BQMDpOH0ir73Iay/y2quhoUHTp09XY2OjioqKnI4zKOkYlyTGpuFGXns5nTca71TQ5+n3LLDTeQeKvPYarrHJ8eWChxoxYoROOukkvfbaa7riiiskSXV1dd0Gs7179/Z4F/FQoVBIoVCox/XRo0crEomkPXO6GYahcDisSCSSEQ9U8tqLvPYi7/DI5OVw6RiXJMam4UZeezmZt7axXZf/dL0mFOfrywtnaF7ZmD6fY7h/7ZVpeS12j02uWiQfjUb18ssvq7S0VNOmTdP48eP15JNPpj4fi8W0du1azZkzx8GUAIBcwbgEuEtDa0z1LTFt2dWkJSs3adH9G7R2xz65aGEWIMnhmaxbb71Vl112mY455hjt3btXd911l5qbm7VkyRJ5PB7dfPPNuvvuu1VWVqaysjLdfffdCofDuuaaa5yMDQA4zP6WqPa1RDW2ME+jRwSdjjNowz0utcXiyo/F0/xTpJ9hxBVNJPMGTPfPTJLXXk7m7TASkiSrptraVWzNnlTU75ktYDg4WmTt3LlTV199terr61VSUqJzzjlHzz77rKZMmSJJqqysVHt7u2666SYdOHBAZ599ttasWaPCwkInYwMADrNm+x7d9tstunDmWP33tWc6HWfQhntcKl++Tt5QOJ0/go38qtxU43SIASCvvdyRt7OXYquyYqbmlo1xNhhynqNF1q9//eujft7j8aiqqkpVVVXDEwgAMCj7W5JNHSIFmTuLJTEuAZnKKrY272xS1ept+vMt5zkbCDnPVY0vAACZqb4lJkmKFPRs7oAj21A5L2MaX1RXr1FFxcKM2NhOXns5mXd7bbMWr9jY47rXkyy0rJkswGkUWQCAIdvf2lVkZfB+LCeEg36Fg+4fig2PqZAvmTcQIG+6kbf/8gK+bh9bxdWsiezJgru4/y8ZAOB61nLBMcxkARgGHk+y+QXFFdyKIgsAMGT7U8sFmckCYJ9IQVAlBSGVFudRXMHVKLIAAENWbzW+GMFMFgD7lBbla/3S+Qr6vBRXcDWKLADAkCQ6TTW0JWeyxhQykwXAXiG/r+8bAQ7zOh0AAJDZDrTFUgeDjg5TZAFwVjSekGk9KQEOocgCAAyJtR9rVDggv49hBYBzahvbVb6sRovu36C1O/ZRbMExLBcEAAzJ+wcRsx8LgLMaWmOqb4lpf2tMS1Zu0uxJRbr5guNErYXhRpEFABiSes7IGrS2WFz5sbjTMfpkGHFFE8m8AdP9zQbIay835+0wEpKUKqq27mrSpx9+UZNH+DRyer3mnzCehhkYFhRZAIAh4YyswStfvk7eUNjpGP3kV+WmGqdDDAB57ZUZeTu7iq2drdKnH35RsycVqbJipuaWjXE2GLIei+cBAENi7ckazUwWAJcylZy92ryzSVWrtzmcBrmAmSwAwJDUM5M1aBsq5ykSiTgdo0+GYai6eo0qKhYqEAg4HadP5LWXm/Nur23W4hUbe1z3yJQpT2omC7AbRRYAYEjqWzgja7DCQb/CQfcPxYbHVMiXzBsIkDfdyJs+eYHuZ2h5Pcklg5NGSHdedRp7sjBs3PWXAQDIONZMVmQEM1kA3MHjSTa/mDUx2V2weccmfbBsDAUWhg1FFgBgSPa3JousEmayADgsUhBUSUFIpcV5+vLCGZpXNkbxeFyPveZ0MuQaiiwAwJBYjS+YyQLgtNKifK1fOl9Bn5dZKziKIgsAMGhtsbjaYslzacYUUmQBcF7I7+v7RoDNaOEOABg0axYr5PdqRJAXNgAASBRZAIAh2HdI+3aW5gDIBNF4QqZpOh0DWY4iCwAwaNZM1pgCml4AcL/axnaVL6vRovs3aO2OfRRbsA1FFgBg0PZzEDGADNLQGlN9S0xbdjVpycpNFFuwDY0vAACDljoji5msQWmLxZUfizsdo0+GEVc0kcwbMN2/LJS89srkvB1GslGPVVNt7Sq2Zk8qSrV8Z+kz0oEiCwAwaPVW+3ZmsgalfPk6eUNhp2P0k1+Vm2qcDjEA5LVXduTt7KXYqqyYqbllY4Y5H7INywUBAINWz3JBAFnAKrY272xS1eptzoZBVmAmCwAwaO8XWSwXHIwNlfMUiUScjtEnwzBUXb1GFRULFQgEnI7TJ/LaK5PzvravXYtXbOxxG68nWWhZM1nAUFFkAQAGzVouWMJM1qCEg36Fg+4fig2PqZAvmTcQIG+6kddeh+bNC3Q/z88qrmZNZE8W0sv9fxkAANdKzWQVUmQByBweT7L5BcUV7EKRBQAYFCPRqcY2QxJ7sgBkhkhBUCUFIZUW51FcwVYUWQCAQbEOIvZ5PSrOd/++DAAoLcrX+qXzFfR5Ka5gK4osAMCgpM7IGhGU18uLFQCZIeT39X0jYIho4Q4AGJR9tG8HkGWi8YRM66RiYAgosgAAg1J/sGsmi/btALJAbWO7ypfVaNH9G7R2xz6KLQwJRRYAYFD2t9K+HUD2aGiNqb4lpi27mrRk5SaKLQwJe7IAAINizWTRvn3w2mJx5cfiTsfok2HEFU0k8wZM9++/I6+9sjVvh5GQlGztLklbu4qt2ZNo846Bo8gCAAxK6owslgsOWvnydfKGwk7H6Ce/KjfVOB1iAMhrr+zP29lLsVVZMVNzy8bYkA/ZhuWCAIBBqe9q4U7jCwDZzCq2Nu9sUtXqbc6GQcZgJgsAMCj7DtJdcKg2VM5TJBJxOkafDMNQdfUaVVQsVCDg/jPRyGuvbM27vbZZi1ds7HHd60kWWtZMFtAfFFkAgEGxlguWsCdr0MJBv8JB9w/FhsdUyJfMGwiQN93Ia6/+5s0LdD8/yyquZk1kTxYGzv1/GQAA14knOtXQxnJBANnH40k2v6C4wlBQZAEABqyhLSbTTL7TO3oEjS8AZL5IQVAlBSGVFudRXGHIKLIAAANWfzA5izV6RFA+Ly9CgHSKxhMK+ry8wB9mpUX5Wr90Pvc90oLuggCAAdvXQtMLwA61je0qX1bDQbgOCfl9FFhIC4osAMCAWQcR0/QCSK+G1pjqW2La0nU2E8UWkJlYLggAGLB6ZrLSoi0WV34s7nSMPhlGXNFEMm/AdP+7/Jmct8NISEo2XpC6H4TLPiEgc1BkAQAG7P0ii6YXQ1G+fJ28obDTMfrJr8pNNU6HGIDsyNvZS7FVWTFTc8vGDHM+AAPBckEAwIDtY7kgMKysYmvzziZVrd7mbBgAfWImCwAwYPUtye6CFFlDs6FyniKRiNMx+mQYhqqr16iiYqECgYDTcfqUyXlf29euxSs29riNdTCuNZMFwN0osgAAA2bNZLEna2jCQb/CQfcPxYbHVMiXzBsIkDfdDs2bF/B1+5xHkikOxgUyjfufeQAArmO1cGcmC7CHx5NsfuHzejR5dFi3LJhOgQVkEPZkAQAGxEh06kBb13JBZrKAtIoUBFVSENJJE4t05+UnKt5p6u39rbr2gedo5w5kEGayAAAD0tAaS73DPipMd8GhoIW7PTI5b1F+QE/eMk8Bn0cv7z4oiXbuQCaiyAIADIi1H2v0iKC8Xl7gDQUt3O2UfXlp5w5kDpYLAgAGxNqPNZb9WIAjaOcOuB8zWQCAAaGzYPrQwt0e2ZJ3e20z7dyBDEWRBQAYEA4iTh9auNsjW/Ie3s7dKq5o5w64n/ufeQAArkKRBQwvq517LhdX0XhCQZ83535uZC6KLADAgKTOyGK5IGArq517aXFezhZXklTb2K7Lf7xeE4rzc/p+QGahyAIADEi9tSeLmSzAVqVF+Vq/dH7Oz+A0tMZU3xLT/tYYLeyRMSiyAAADwkxW+nBOlj2yLW97Z8KBVEc23Pdvh5H8+TkvDJmEIgsAMCDsyUofzsmyE3nt5VxezgtDJuCcLABAv3UYCR3sSM68MJMFwEmcFwY3YyYLANBv1ixW0O/VyHyGkKHinCx7kNdew52X88KQiRghAQD9duh+LPZADB3nZNmDvPYa7rycF4ZM5P6/ZACAa+xtThZZY0eyVBDA8OK8MGQSiiwAQL/RWRDAcOO8MGQiiiwAQL/RWRDAcOO8MGQiiiwAQL9RZAFwQsjv6/tGgIvQwh0A0G/7DnZIksYW5jmcBADcKxpPyLROT0ZOosgCAPQbM1kAcHS1je0qX1ajRfdv0Nod+yi2chRFFgCg3yiyAODoGlpjqm+JacuuJi1ZuYliK0exJwsA0C+mab7fXZAiKy3aYnHlx+JOx+iTYcQVTSTzBkz3Nx4gr73Ie3QdRkJSst28JG3tKrZmT6L1fC6hyAIA9EtjmyEjkXzVMKYg6HCa7FC+fJ28obDTMfrJr8pNNU6HGADy2ou8/dXZS7FVWTFTc8vGOJIHw4PlggCAfrFmsYrDATp9AcAAWcXW5p1Nqlq9zdkwsB0zWQCAftnbnCyyxrJUMG02VM5TJBJxOkafDMNQdfUaVVQsVCAQcDpOn8hrL/Ie3fbaZi1esbHHda8nWWhZM1nIbhRZAIB+2dvVvp39WOkTDvoVDrp/KDY8pkK+ZN5AgLzpRl57DXfevED3mX6ruJo1kT1ZucT9fxkAAFewOgtyRhYA9M3jSTa/oLjKTRRZAIB+2XuQ5YIA0JdIQVAlBSGVFudRXOUwiiwAQL9wRhYA9K20KF/rl85X0OeluMphFFkAgH5hTxYA9A8dWEELdwBAv+xlTxYADFk0npBpnVSMrEWRBQDoF5YLAsDQ1Da2q3xZjRbdv0Frd+yj2MpiFFkAgD51GAkd7IhLksaOpMgCgMFoaI2pviWmLbuatGTlJoqtLMaeLABAn6xZrLyAV4Uhho50aYvFlR+LOx2jT4YRVzSRzBsw3b+Rn7z2Iu/gdRgJScnW7pK0tavYmj3p/TbvyA6MlACAPh3a9IJuWelTvnydvKGw0zH6ya/KTTVOhxgA8tqLvOnQ2UuxdcuHjnc2FNKC5YIAgD7tbabpBQDYxSq2Nu9s0rf+9IqzYZAWzGQBAPrEQcT22FA5T5FIxOkYfTIMQ9XVa1RRsVCBQMDpOH0ir73IO3jba5u1eMXGHte9nmShZc1kNb36NwfSIZ0osgAAfbKWC1JkpVc46Fc46P6h2PCYCvmSeQMB8qYbee3lprx5ge7nZ1nF1ayJ7+/JisfjeuxVhwIibdz/lwEAcFxqueBIlgsCwFB5PMnmF4cWV+x3zS4UWQCAPu1huSAADFmkIKiSgpBKi/MorrIcRRYAoE97m7uWCzKTBQCDVlqUr/VL5yvo81JcZTmKLABAn/YxkwUAaRHy+/q+ETIeLdwBAEdlJDq1vzUmiSILAOwUjSdkWicVI6MxkwUAOKr6luQslt/r0ahw0OE0AJCdahvbdfmP16u0KE/lIz26iGIrozGTBQA4KquzYElhSF4vewgAwA4NrTHVt8S0tbZZK1726ar//JvW7tjHzFaGYiYLAHBUe2h6YZu2WFz5sbjTMfpkGHFFE8m8AdP9hTZ57UVee3QYCUnJ1u6StK22WUtWbtLsSbR5z0QUWQCAo9pL0wvblC9fJ28o7HSMfvKrclON0yEGgLz2Iq/dOruKra27mlLFVmXFTM0tG+NsMPQLywUBAEdFkQUAzrGKrc07m1S1epuzYdBvzGQBAI5q38HkcsFxLBdMuw2V8xSJRJyO0SfDMFRdvUYVFQsVCAScjtMn8tqLvPbYXtusxSs29rju9SQLLWsmC5mBIgsAcFR7mpnJsks46Fc46P6h2PCYCvmSeQMB8qYbee2VKXnzAt3Pz7KKq1kT2ZOVidz7SAMAuILV+IKZLACwn8eTbH5x4oSRurViJsVVhqLIAgAcVWpP1khmsgDALpGCoEoKQhpfFFL5yAO65eqzFQxyNmGmosgCABxRPNGZOox4bCEzWUCmisYTCvq8zIi4WGlRvtYvnS9PZ0KPP/44v6sMR3dBAMAR1bfEZJqSz+tRZATvqAKZqLaxXeXLarTo/g0cbutyIb+P4ipLUGQBAI5ob1dnwbGFIXm9DPxAJmpojam+JaYtXectUWwB9mO5IADgiOgsaK+2WFz5sbjTMfpkGHFFE8m8AdP9xTZ5u+swEpKSzRSk7ofb0rUOsAdFFgDgiFIzWXQWtEX58nXyhsJOx+gnvyo31TgdYgDIeySdvRRblRUzNbdszLB8fyAXsFwQAHBEzGQB2csqtjbvbFLV6m3OhgGyDDNZAIAj2tt1RtZ4ZrJssaFyniKRiNMx+mQYhqqr16iiYqECgYDTcfpE3u621zZr8YqNPa5bh91aM1kA0ociCwBwRBxEbK9w0K9w0P1DseExFfIl8wYC5E03u/PmBXzdPraKq1kT2ZMF2MX9zzwAAMeklgtyEDGQ8TyeZPOLEyeM1K0VMymuABtRZAEAjshqfMFMFpC5IgVBlRSEFCkIqraxXR5RWAF2c03ji3vuuUcej0c333xz6pppmqqqqtKECROUn5+v888/X9u2sTETAIaDkehUfUtMUu4WWYxNyAalRflav3S+vrN4tpo74tpSy3lZgN1cMZP13HPP6Wc/+5lmz57d7fry5ct133336cEHH9T06dN11113acGCBXr11VdVWFjoUFoAyA37DiaXCgZ8Ho0Ku795QLoNx9jEOVn2IG/vovFOSZyXBQwHx4uslpYWffzjH9d//dd/6a677kpdN01T3//+93X77bfryiuvlCQ99NBDGjdunFatWqUbb7zRqcgAkBOsphdjC/Ny7oXXcI1NnJNlJ/L2hfOyAPs4XmR9/vOf1yWXXKIPfehD3Qayt956S3V1dVq4cGHqWigU0nnnnadnnnnmiANZNBpVNBpNfdzc3Cwp2R7VMAybfor0sTJmQlaJvHYjr73Ie3S7GlolSWMLg4P6nplyv/ZmuMYmwA0OPS/rjj9u1RP/Vn7U2/PcaS/y2mu4cjpaZP3617/Wiy++qOeee67H5+rq6iRJ48aN63Z93Lhxeuedd474Ne+55x7deeedPa4/9dRTCocz5d1C6cknn3Q6woCQ117ktRd5e7dut0eST52tB/TYY48N+N+3tbWlP9QwGM6x6d9Pjyscdv9yQWSHna3SD7f1fOnnkSlTHk0eYapiTHO//9557rQXee0xXGOTY0XWe++9py9+8Ytas2aN8vKOvKH68CUqpmkeddnKbbfdpltuuSX1cXNzsyZPnqz58+dnzIGPTz75pBYsWJAxByiS1z7ktRd5j277mtekt9/S7OlTdfHFAz+odP/+/Takstdwj00f/hBjkx3I27tttc364bZnUx8fel7Wly48XnOPj/RraTD3r73Ia6/hGpscK7JeeOEF7d27V6effnrqWiKR0Lp16/TjH/9Yr776qqTku4alpaWp2+zdu7fHO4iHCoVCCoV6nucSCAQy4hdvIa+9yGsv8tpruPLua012FpxQHB7U98uk+9TC2HR05LWX3Xn9/uTLPuu8rKEeRsz9ay/y2mO4MjpWZF144YXasmVLt2vXXXedZs6cqa9+9as69thjNX78eD355JM69dRTJUmxWExr167Vvffe60RkAMgpVuOLcTl0EDFjE7KZdV5WaXEe3QQzTDSeUNDn5feVQRwrsgoLCzVr1qxu10aMGKFIJJK6fvPNN+vuu+9WWVmZysrKdPfddyscDuuaa65xIjIA5JQ9zclGDeNz6IwsxiZkM+u8LF6sZ5baxnZd/uP1mlCcT3GcQRzvLng0lZWVam9v10033aQDBw7o7LPP1po1azgjCwCGwZ6mrhbuOVRk9QdjEzJZyO9zOgIGqKE1pvqWmPa3xjjXLIO4qsh6+umnu33s8XhUVVWlqqoqR/IAQK5qjcZ1MJrsepdLywV7Y+fYxGHE9iCvvchrr8PzdhgJSRwinWlcVWQBANzB2o81IuhTYZ77NzJnKg4jthN57UVeex05L4dIZwav0wEAAO5Tl2p6wVJBAHCjQw+Rrlq9zdkw6IGZLABAD3u7ml5QZNlrQ+W8jDknq7p6jSoqFmZEi2by2ou89jo87/baZi1esbHH7axzzqyZLLgLRRYAoAdrJmt8EUWWncJBv8JB9w/FhsdUyJfMGwiQN93Ia69Mz5sX6N6s5NBDpNmT5V7uf6QBAIZdXaqzYG43vQAAt0jXIdIYHhRZAIAerMYXuXRGFgC4EYdIZyaKLABAD3UUWQDgChwinZkosgAAPVgHEY9jTxYAOI5DpDMPLdwBAN10dpraezDZXZCZLADIHNF4QqZ1ajEcRZEFAOimvjWqeKcpj0cqKaTxBQBkgtrGdpUvq9Gi+zdo7Y59FFsOo8gCAHSzpyk5izWmIKSAj2ECADJBQ2tM9S0xbdnVpCUrN1FsOYw9WQCAbmh6MXzaYnHlx+JOx+iTYcQVTSTzBkz3b7wnr73Ia6/B5u0wEpKSbd4laWtXsTV7Ei3fnUCRBQDoxmrfPo4iy3bly9fJGwo7HaOf/KrcVON0iAEgr73Ia6+h5+3spdiqrJipuWVj0pAPfWEdCACgm/eLLPZjAUCms4qtzTubVLV6m7NhcggzWQCAbnZ3tW8vpX277TZUzlMkEnE6Rp8Mw1B19RpVVCxUIBBwOk6fyGsv8tprsHm31zZr8YqNPa57PclCy5rJwvCgyAIAdGPNZI0vync4SfYLB/0KB90/FBseUyFfMm8gQN50I6+9ciVvXqD7WVpWcTVrInuynOD+RxoAYFhZM1k0vgCAzOPxJJtfUFw5iyILANDNHqvIYrkgAGSMSEFQJQUhlRbnUVy5AEUWACClJRrXwWiypThFFgBkjtKifK1fOl9Bn5fiygUosgAAKXVds1iFIb8KQgwRAJBJQn5f3zfCsKCFOwAgJdW+nVksAAAGjSILAJBC+3YAyD7ReEKmaTodI6dQZAEAUt4/iJgiCwCyQW1ju8qX1WjR/Ru0dsc+iq1hQpEFAEjZ3dQuiZksAMgWDa0x1bfEtGVXk5as3ESxNUzY1QwASKlrikpiJmu4tMXiyo/FnY7RJ8OIK5pI5g2Y7u9aRl57kdde6c7bYSQkJc/OkqStXcXW7Emco2UniiwAQEpdc3Imi4OIh0f58nXyhsJOx+gnvyo31TgdYgDIay/y2su+vJ29FFuVFTM1t2yMLd8vV7FcEACQYs1klRZTZAFANrOKrc07m1S1epuzYbIQM1kAAEnJ7lP1LV1FVlG+w2lyw4bKeYpEIk7H6JNhGKquXqOKioUKBAJOx+kTee1FXnulO+/22mYtXrGxx3WvJ1loWTNZSC+KLACAJGlvc7LACvq9GhV2/wuRbBAO+hUOun8oNjymQr5k3kCAvOlGXnvlet68QPcDiq3iatZE9mTZyf2PNADAsDj0jCwGXADILh5PsvkFxdXwoMgCAEiifTsAZKNIQVAlBSGVFudRXA0jiiwAgCSpLjWTxX4sAMgWpUX5Wr90voI+L8XVMKLIAgBIen+54HhmsgAgq4T8vr5vhLSihTsAQNKhM1kUWQCQKaLxhEzrpGG4BkUWAEDS+3uyOIgYADJDbWO7ypfVaNH9G7R2xz6KLRehyAIASDq0uyB7sgAgEzS0xlTfEtOWXU1asnITxZaLsCcLACAj0al9XQcRsydr+LTF4sqPxZ2O0SfDiCuaSOYNmO7fOE9ee5HXXgPJ22EkJCVbs0vS1q5ia/Yk2rQ7jSILAKC9B6MyTSng8ygyIuh0nJxRvnydvKGw0zH6ya/KTTVOhxgA8tqLvPYaXN7OXoqtyoqZmls2Js350BeWCwIAtLuxaz9WUZ68Xt71BIBMZhVbm3c2qWr1NmfD5ChmsgAAqrX2Y41kP9Zw2lA5T5FIxOkYfTIMQ9XVa1RRsVCBQMDpOH0ir73Ia6+B5N1e26zFKzb2uO71JAstayYLw48iCwCQmskqLWY/1nAKB/0KB90/FBseUyFfMm8gQN50I6+9sjlvXqD7+VdWcTVrInuynOb+RxoAwHZ0FgSAzOXxJJtfUFy5B0UWACB1RtYEZrIAIGNECoIqKQiptDiP4splKLIAAMxkAUAGKi3K1/ql8xX0eSmuXIbuggAA1TZaRRYzWQCQSUJ+X48CKxpPcCCxwyiyACDHReMJ1XcdREyRBQCZrbaxXeXLarTo/g1au2MfxZZDKLIAIMftbU4WWCG/V6M5iBgAMlpDa0z1LTFt6TqQmGLLGezJAoAcV2u1by/KY03/MGuLxZUfizsdo0+GEVc0kcwbMN3/GCGvvchrr6Hm7TASkpLdBiVpa1exNXsSnQeHE0UWAOQ4ml44p3z5OnlDYadj9JNflZtqnA4xAOS1F3ntlb68nb0UW5UVMzW3bExavj56x3JBAMhxtU3vz2QBALKTVWxt3tmkqtXbnA2TA5jJAoAct7urs+CEYmayhtuGynmKRCJOx+iTYRiqrl6jioqFCgQCTsfpE3ntRV57DTXv9tpmLV6xscd1rydZaFkzWbAXRRYA5LjUniwOIh524aBf4aD7h2LDYyrkS+YNBMibbuS1V67lzQv4un1sFVezJrInazi5/5EGALBVbdeerAnsyQKArOHxJJtfUFw5gyILAHLc7q49WSwXBIDMFykIqqQgpNLiPIorB1FkAUAOa4vF1dhmSGK5IJDrovGEgj4vL8gzXGlRvtYvnc/v0mF0FwSAHFbb1fSiIOTXyDz3bwgHYI/axnaVL6vh4NosEfL7KLAcRpEFADns/aWCzGIBuayhNab6lpi2dJ2lRLEFDA3LBQEgh6U6C9L0whFtsbjyY3GnY/TJMOKKJpJ5A6b73x0n78B1GAlJyUYJUveDa9nXAwwcRRYA5LDa1BlZzGQ5oXz5OnlDYadj9JNflZtqnA4xAOQdis5eiq3KipmaWzbG2WBAhmC5IADkMGsmi/btAHpjFVubdzapavU2Z8MAGYSZLADIYbW0b3fUhsp5ikQiTsfok2EYqq5eo4qKhQoE3N8ghbwDt722WYtXbOxx3TrI1prJAtA/FFkAkMN2p5YLUmQ5IRz0Kxx0/1BseEyFfMm8gQB5080NefMCvm4fW8UVB9kCg+P+Zx4AgC1M09SuruWCEymygJy272C028cnThipWytmUlwBg8SeLADIUQ2tMUXjnfJ4pHFFIafjAHDQ4XWURxRWwFAwkwUAOcrqLFhSEFLI7+vj1rADLdztQd6BKwh1f0m4tZYW7sBQUGQBQI6ylgqWslTQMbRwtxN5h4IW7sDQsFwQAHKU1b59EkUWgCOghTswOMxkAUCOsmayOIjYObRwtwd5B44W7kB6UWQBQI5KHUTMTJZjaOFuD/IOHC3cgfRy/zMPAMAWtbRvB3AYj0cyKa6AIaPIAoActYuDiAF0iRQEVVIQUmlxHsUVjioaTyjo8/L46ANFFgDkoA4jofqW5OGjk0ZRZAG5rrQoX+uXzufFM46qtrFdl/94vSYU56eKcfSOIgsActDupuQsVjjoU1G++xsDALAf5+WhLw2tMdW3xLS/NZZq7X/zBcfJNJ1O5j4UWQCQgw5tesG71s7hMGJ7kNde5LWXm/N2GAlJShVVW3c16dMPv6jJI3waOb1e808Yz5jShSILAHLQrgM0vXADDiO2E3ntRV57ZUZe6xy1na3Spx9+kUOrD8FhxACQg3bRvh0AkCamkrNXHFr9PmayACAHWUUWTS+cxWHE9iCvvchrLzfnPdKh1R6ZMuXh0OpDUGQBQA7aeaBNEssFncZhxPYgr73Iay835z3SodWTRkh3XnUae7IO4a7fHABgWFgzWROZyQIADNChh1bffMFxat6xSR/kbLVuKLIAIMckOk3t7jqImJksAEB/9XZodTwe12OvOZ3MfSiyACDH7D3YoXinKb/Xo3Ej85yOAwDIEBxa3X8UWQCQY6z27eOL8uTzMkgCAPqPQ6v7hxbuAJBjUvuxWCoIAIAtKLIAIMfsPEDTCwBA+sQ7JdM0nY7hKhRZAJBjUmdkMZMFABii3U0dqnrRp6v+829au2MfxVYXiiwAyDG7mMkCAKRJQ2tMBw2PttY2a8nKTVp0/waKLdH4AgByzvt7ssIOJ0FbLK78WNzpGH0yjLiiiWTegOn+ZinktRd57ZVpeTuMhKTkuVmStHVXk5as3KTZk4pSbd5zsRMhRRYA5BDTNFXLQcSuUb58nbyhTCl2/arcVON0iAEgr73Ia69My/u+zl6KrcqKmZpbNsbZYMOM5YIAkEMOtBlqiyXfdZxQzBlZAAB7WMXW5p1Nqlq9zdkwDmAmCwByyM4DbZKkcSNDnHXiAhsq5ykSiTgdo0+GYai6eo0qKhYqEAg4HadP5LUXee2VaXk3v9ugj/38uR7XvZ5koWXNZOUaiiwAyCFW+/ZJozJliVp2Cwf9CgfdPxQbHlMhXzJvIEDedCOvvchrr7xA9zfsrOJq1kT2ZAEAcoQ1k8VBxACAdPJ4ks0vcr24slBkAUAOeX8miyILADB0o0cEVRgwNXVskW6tmJnzxZWFIgsAcsgulgsCANKotChPVacldNklZysYDDodxzXoLggAOYSZLABwXjSeyKrDev1eMXt1GIosAMgRpmmm9mRRZAGAM2ob21W+rEaL7t+gtTv2ZVWxhfdRZAFAjmhsM9SaOiOLIgsAnNDQGlN9S0xbug7rpdjKTuzJAoAcYS0VLCkM9Wi5C2e0xeLKj8WdjtEnw4grmkjmDZjuXxJEXnuRd2g6jOSbXVZNtbWr2Jo9KdmV79ypRQ6mQ7pQZAFAjqB9u/uUL18nbyhTmpD4VbmpxukQA0Bee5E3XToPK7ZOmjhSHxzp0cXOxsIQsVwQAHKENZM1eXSmvKgHgNxhFVtbdjXrN2/zEj3TMZMFADniva6ZrMk0vXCNDZXzFIlEnI7RJ8MwVF29RhUVCxUIBJyO0yfy2ou8Q7O9tlmLV2zscd3rSRZayZmsAw4kQzpRZAFAjnivweosyEyWW4SDfoWD7h+KDY+pkC+ZNxAgb7qR115uy3v4nliruJo18f09WY8//rhD6ZAuzj/SAADD4v3lgsxkAYDTPJ5k8wuruJpXNkYej0eGYTgdDWlAkQUAOSB5RlZXkcVMFgA4JlIQVElBSKXFed2KK2QXiiwAyAH7W2NqNxLyeKTS4jyn4wBAziotytf6pfMV9Hnl8XgUjSdS/x/Zg9YlAJADrP1Y40fmKeTnjCwAcFLI75PH41FtY7vKl9VwIHEWYiYLAHKAtVRwEp0FAcA1Glpjqm+JaX9rLHUg8c0XHCdqrcxHkQUAOeD99u3sx3KTtlhc+bG40zH6ZBhxRRPJvAHT/UuayGsv8qZPh5GQpFRRtXVXkz798IuaPMKnkdPrNf+E8SwjzFAUWQCQA95rYCbLjcqXr5M3lCmFr1+Vm2qcDjEA5LUXee1gHUi8s1X69MMvavakIlVWzNTcsjHOBsOAsScLAHLAzq6ZrEmjM+UFPQDkLlPJ2avNO5tUtXqbw2kwGMxkAUAOsBpfHEOR5SobKucpEok4HaNPhmGounqNKioWKhAIOB2nT+S1F3nTZ3ttsxav2NjjukemTHlSM1nIPBRZAJDlEp2mdjVaBxFTZLlJOOhXOOj+odjwmAr5knkDAfKmG3nt5ea8eYHu3V69nuSSwUkjpDuvOo09WRnM0eWCP/3pTzV79myNHDlSI0eO1LnnnqvHH3889XnTNFVVVaUJEyYoPz9f559/vrZtY8oUAAairrlDRsJUwOfR+JGckXU0jEsAnGDVUbMmFmnlp07Tl09K6IMcUpzRHC2yJk2apGXLlun555/X888/rwsuuECLFi1KDVjLly/Xfffdpx//+Md67rnnNH78eC1YsEAHDx50MjYAZBRrqeDE4nz5vAzYR8O4BDgjGk/k5BlRkYKgSgpCOmlikR769Fn6w+fLu4orp5NhqBwtsi677DJdfPHFmj59uqZPn65vf/vbKigo0LPPPivTNPX9739ft99+u6688krNmjVLDz30kNra2rRq1SonYwNARrGKLJYK9o1xCRh+uXwgb2lRvtYvna8/fL5c500vYeYqi7hmYWoikdD/+3//T62trTr33HP11ltvqa6uTgsXLkzdJhQK6bzzztMzzzyjG2+8sdevE41GFY1GUx83NzdLSm56NAzD3h8iDayMmZBVIq/dyGuvXMn7Tn2LJGlCUd6w/qyZcr8eSbrGJYmxabiR117pzru3qa3bgbwnTRypL114vOYeH0lL0eH2+9crKR7vTH3s9ryHy9S8dvOYDr9dsGXLFp177rnq6OhQQUGBVq1apYsvvljPPPOMysvLtWvXLk2YMCF1+89+9rN65513VF1d3evXq6qq0p133tnj+qpVqxQO8y4ugNzzi9e8er7eq8uOSehDE4fvKb+trU3XXHONmpqaNHLkyGH7vkOV7nFJOvLY9MAvGJuAna3SD7e9/76/1Vlv8ghTlxzTqZlFJsvnkDbDNTY5PpM1Y8YM/f3vf1djY6N+85vfaMmSJVq7dm3q84e/g2Ga5lHf1bjtttt0yy23pD5ubm7W5MmTNX/+/Ixpk/vkk09qwYIFrmsz2hvy2ou89sqVvA//1yZJjfrQOafq4pPG2xfwMPv37x+275VO6R6XpCOPTd98wS9vyPGhGHAV64yoXW0erXjZp5MmjtSXF5Sp/LjBvY7Lled6p2Ra3uEamxx/Zg8Ggzr++OMlSWeccYaee+45/eAHP9BXv/pVSVJdXZ1KS0tTt9+7d6/GjRt3xK8XCoUUCoV6XA8EAhnxi7eQ117ktRd57TXQvDu72rdPG1s4rD9nJt2nh0r3uCQdeWwCcGSdXRPvW3Y1667HXtWfbzlvSF8v25/rnZYpeYcro+NF1uFM01Q0GtW0adM0fvx4Pfnkkzr11FMlSbFYTGvXrtW9997rcEoAyAwdRkJ7mpN7gTiIeHDsHJc4jNge5LVXuvMe6UBe68woDuRFJnK0yPra176miy66SJMnT9bBgwf161//Wk8//bSeeOIJeTwe3Xzzzbr77rtVVlamsrIy3X333QqHw7rmmmucjA0AGWPngWRnwcI8v4ry3f/izWnDPS5xGLE9yGuvdOc90oG8syYW6csLZ2ge50UhAzn6l7xnzx598pOf1O7du1VUVKTZs2friSee0IIFCyRJlZWVam9v10033aQDBw7o7LPP1po1a1RYWOhkbADIGO92tW8/ZnSYFyn9wLgEDL99B6PdPj5xwkjdWjGT4goZzdEi67//+7+P+nmPx6OqqipVVVUNTyAAyDLv7n+/yELfGJeA4Xd4HeURhRUyn/vnpAEAg/ZuQ7LpBUWWO7XF4sqPxZ2O0SfDiCuaSOYNmO5/AUxee6U7b8FhHTa31jZpycpNmj2J5YLIXBRZAJDFrOWCkymyXKl8+Tp5Q5nyu/GrclON0yEGgLz2si+v1VVw6673i63KipmaWzbGlu8H2MHrdAAAgH3eo8gCkKGsYmvzziZVrd7mbBhggJjJAoAsZZpmaiZrCkWWK9HC3R7ktRct3IG+UWQBQJbadzCqdiMhr0eaUJzvdBz0ghbu9iCvvWjhDvTN/X/JAIBBeadrFmtCcb6CflaHA3A3j0cyKa6QJSiyACBLWe3bp0RYKgjAvSIFQZUUhFRanEdxhaxBkQUAWeqdBs7IAuB+pUX5Wr90voI+L8VVDorGE1n5u2f9CABkqXf3t0qSjhk9wuEkAHB0Ib8v615ko2+1je0qX1ajRfdv0Nod+2SaptOR0oYiCwCyVKqzIMsFAQAu1NAaU31LTFu6zkTLpmKL5YIAkKXeZbmg67XF4sqPxZ2O0SfDiCuaSOYNmO6fbSCvvchrr1zK22EkJCUbnkjdD6DO9P15FFkAkIVaonHVt8QkSccwk+Va5cvXyRvKlN+PX5WbapwOMQDktRd57ZWbeTt7KbYqK2ZqbtmYIX/t4cZyQQDIQlZnwVHhgEbmuf9wUwAALFaxtXlnk6pWb3M2zCAxkwUAWejdhq6mFxGaXrjZhsp5ikQiTsfok2EYqq5eo4qKhQoE3F+0k9de5LVXLuXdXtusxSs29rhuHUhtzWRlIoosAMhCb3fNZE1lqaCrhYN+hYPuH4oNj6mQL5k3ECBvupHXXuS111Dy5gV83T62iqtsOJDa/b85AMCAvWMdREzTCwCAy3k8yeYX2VBcWSiyACALvdN1RtYUlgsCAFwqUhBUSUFIpcV5WVNcWSiyACALWTNZU8cwkwUAcKfSonytXzpfQZ83a4orC0UWAGSZaDyh2qZ2SdIxo5nJAgC4V8jv6/tGGYgW7gCQZXYeaJdpSiOCPo0pCDodBwCAnEORBQBZxtqPdUxkRNYtvwAAZLdoPCHTNJ2OMWQUWQCQZd6hfTsAIAPVNrarfFmNFt2/QWt37MvoYosiCwCyjFVkHUORBQDIIA2tMdW3xLRlV5OWrNyU0cUWjS8AIMu83bVccCrt212vLRZXfizudIw+GUZc0UQyb8B0/xJU8tqLvPbK5bwdRkJS8swsSdraVWzNnpR552dRZAFAlnmXg4gzRvnydfKGMuX35FflphqnQwwAee1FXnuRV5I6eym2Kitmam7ZmLR/r3RjuSAAZJF4olPvNlhnZDGTBQDIfFaxtXlnk6pWb3M2TD8xkwUAWaS2sUPxTlMhv1fjR+Y5HQd92FA5T5FIxOkYfTIMQ9XVa1RRsVCBQMDpOH0ir73Ia69czru9tlmLV2zscd3rSRZa1kxWJqDIAoAs8lbXfqwpkbC83sxYt57LwkG/wkH3D8WGx1TIl8wbCJA33chrL/LaK5158wLdDya2iqtZE9mTBQBw0Nv1NL0AAGQ2jyfZ/CITiysLRRYAZJFUZ0H2YwEAMkykIKiSgpBKi/MytriyUGQBQBZhJgsA+i8aTyjo82bsC/lsU1qUr/VL52fF74TuggCQRd7eb3UWzJS24ADgjNrGdpUvq8noA2+zUcjvy/gCS6LIAoCsEU906j2rfTszWQBwVA2tMdW3xLSl6wwmii2kE8sFASBL7Gpsp317hmmLxZUfizsdo0+GEVc0kcwbMN3/DjN57ZUteTuMhKRkgwWp+4G3mb4fCM6jyAKALJFaKhgZQfv2DFG+fJ28oUxZ2ulX5aYap0MMAHntlX15O3sptiorZmpu2ZhhyIdsw3JBAMgSVtOLKZFMedEOAO5jFVubdzapavU2Z8MgYzGTBQBZ4q2uImtaCfuxMsWGynmKRCJOx+iTYRiqrl6jioqFCgQCTsfpE3ntlS15t9c2a/GKjT1ubx2Aa81kAYNBkQUAWeLNriLrWM7IyhjhoF/hoPuHYsNjKuRL5g0EyJtu5LXXkfLmBXzdbmcVV5l8AC7cw/1/GQCAfuGMLAAYOI8n2fyC4grpNKAi69VXX9WvfvUr/fWvf9Xbb7+ttrY2lZSU6NRTT1VFRYWuuuoqhUIhu7ICAI4gFu/UzgPJxhe5tlyQsQnAYEQKgiopCKm0OE//dmGZLphRIq+XdgVIj349kl566SUtWLBAJ598statW6czzzxTN998s771rW/pE5/4hEzT1O23364JEybo3nvvVTQatTs3AOAQ7za0qdOURgR9KinIjYKCsQnAUJQW5Wv90vn66cdP09LfbNYVP3mGc7KQNv2aybriiiv0la98RY8++qhGjx59xNtt3LhR3/ve9/Qf//Ef+trXvpa2kACAozu06UWuLHNhbAIwVCG/TwfaDNW3xLS/NcY5WUibfhVZr732moLBYJ+3O/fcc3XuuecqFosNORgAoP9ycT9WNoxNHEZsD/LaK9vycigx7NCvIqs/g9hQbg8AGBqrs+C0HOosmA1jE4cR24m89srevBxKjHQYVHfBTZs26emnn9bevXvV2dnZ7XP33XdfWoIBAPrvrfoWSdKxOdb04lCMTQDS6fBDif98y3nOBkJGGXCRdffdd+vrX/+6ZsyYoXHjxnWbPmUqFQCc8eY+ayarwOEkzsjUsYnDiO1BXntlW14OJYYdBlxk/eAHP9DKlSt17bXX2hAHADBQLdG49h5Mds7LpeWCh8rUsYnDiO1BXntlW14OJYYdBvyX4fV6VV5ebkcWAMAgvNU1izWmIKiifPe/q2wHxiYA6UJxhXQY8IlrX/rSl3T//ffbkQUAMAhvdu3HytVZLImxCcDgRQqCGh0Oyu/1aNqYEbplwXQKLAzZgGeybr31Vl1yySU67rjj9IEPfKDH2tbf/va3aQsHAOibtR/r2BzdjyUxNgEYvNKifP382tN15U826u39rbr2gedo344hG3CR9YUvfEFPPfWU5s+fr0gkwgMPABx26EHEuSpTxybOybIHee2VjXmthqSclYV0GXCR9fDDD+s3v/mNLrnkEjvyAAAGiOWCmTs2cU6Wnchrr+zOy1lZGKoB78kaPXq0jjvuODuyAAAGyDTNVOOL43J4JouxCYAdDj8rC+ivAc9kVVVV6Y477tADDzygcDhT3n0DgOy0pzmq1lhCPq9Hx4zO3SIrU8cmzsmyB3ntlY15OSsL6TbgIuuHP/yh3njjDY0bN05Tp07t8WB98cUX0xYOAHB0b+5LLhWcPCpfQf+AFydkjUwdmzgnyx7ktVc25uWsLKTbgP8yrrjiChtiAAAG4416a6lg7nYWlBibAKSHx5NsfkFxhaEacJF1xx132JEDADAI1kzWsTm8H0tibAIwNJGCoMaMCKq0OE+3VsykuMKQ2bK2xLT6XwIAbPWGdUZWjs9k9QdjE4AjMU3J9EgeUVghPfpVZJ1wwglatWqVYrHYUW/32muv6V/+5V907733piUcAODoUjNZOdi+nbEJQLo0tMa0vyWmLbXJlu2L7t+gtTv28eYMBq1fywXvv/9+ffWrX9XnP/95LVy4UGeccYYmTJigvLw8HThwQNu3b9f69eu1fft2/eu//qtuuukmu3MDQM7rMBLa1dguSTpubO7NZGXD2MRhxPYgr72yMW+HkZDEYcRIn34VWRdccIGee+45PfPMM3r00Ue1atUqvf3222pvb9eYMWN06qmn6lOf+pQ+8YlPqLi42ObIAABJent/q0xTGpnnV2RE0Ok4wy4bxiYOI7YTee2V3Xk5jBhDNaDGF3PmzNGcOXPsygIAGIDX9yaXCh43tiCn32FlbAJgl8MPI/7zLec5GwgZw/2HGwAAevXG3mTTi+NpepGxOIzYHuS1Vzbm5TBipBtFFgBkqDf2vT+ThczEYcT2IK+9sjEvhxEj3dz/lwEA6JW1XJCZLABIDw4jRrpQZAFABursNPVmPTNZAJAOkYKgSgpCKi3Oo7hCWlBkAUAGqm1qV4fRqaDPq8mj8p2OAwAZrbQoX+uXzlfQ56W4ygDReML1v6t+HUZ8qAsuuEB33nlnj+sHDhzQBRdckJZQAICjs5YKTh0Tlt834KfyrMPYBGCoQn6fq1+0I6m2sV3ly2pcf2D0gGeynn76aW3ZskUvvfSSHnnkEY0YMUKSFIvFtHbt2rQHBAD09Ma+ZGfB49iPJYmxCQByRUNrTPUtMe1vjbn6wOhBLRf885//rBtvvFHnnHOOVq9eralTp6Y5FgDgaKzOgsezHyslE8emtlhc+bG40zH6ZBhxRRPJvAHTPS9ijoS89iKvvch7dB1GQlKyQYnU/cBoNxVbgyqySktLtXbtWn3605/WmWeeqf/3//6fTjjhhHRnAwAcQeogYmayUjJxbCpfvk7eUNjpGP3kV+WmGqdDDAB57UVee5G3vzp7KbYqK2ZqbtkYR/JYBryQ36oMQ6GQHnnkEX3xi1/Uhz/8Yf3kJz9JezgAQO/eoMjqhrEJAHKbVWxt3tmkqtXbnA2jQcxkHb657Otf/7pOOOEELVmyJG2hAABH1tCaXIvu8bBc0JKpY9OGynmKRCJOx+iTYRiqrl6jioqFCgQCTsfpE3ntRV57kffottc2a/GKjT2uWwdIWzNZThtwkfXWW2+ppKSk27WrrrpKM2fO1PPPP5+2YACA3llNLyYW5ys/6HM4jTtk6tgUDvoVDrr/NBXDYyrkS+YNBMibbuS1F3ntNdx58wLdxz2ruHLbAdIDviemTJnS6/UTTzxRJ5544pADAQCO7vWuphdlzGKlMDYBQG7xeJLNL9xWXFncXx4DALp5fW9yJqtsXKHDSQAAGF6RgqBKCkIqLc5zZXFlocgCgAxjzWQdT9MLAECOKS3K1/ql8xX0eV1ZXFkosgAgw1h7so4fR5EFAMg9Ib/79yMPuIU7AMA57XFpT3NUEp0FAQCIxhM9Osy6AUUWAGSQPe3J/x0/Mk8j89zf2hcAALvUNrarfFmNFt2/QWt37HNVsUWRBQAZpK49uf6cWSwAQK5raI2pviWmLbuatGTlJlcVW+zJAoAMsqeNIiubtMXiyo/FnY7RJ8OIK5pI5g2Y7t1obiGvvchrL/L2X4eRkJRs5S5JW7uKrdmTnG/rTpEFABmkrmu5YBlNL7JC+fJ18obCTsfoJ78qN9U4HWIAyGsv8tqLvIPR2UuxVVkxU3PLxgx7FpYLAkAGSS0XpH07AAC9soqtzTubVLV6myMZmMkCgAzRGo2rIZossqZzEHFW2FA5T5FIxOkYfTIMQ9XVa1RRsVCBgPsbrpDXXuS1F3n7b3ttsxav2NjjuteTLLSsmSwnUGQBQIZ4vet8rDEFQY0aEXQ4DdIhHPQrHHT/UGx4TIV8ybyBAHnTjbz2Iq+9nMybF+h+XpZVXM2ayJ4sAEA/vba3RZI0naYXAACkeDzJ5hduKK4sFFkAkCFe7yqy6CwIAIAUKQiqpCCk0uI81xRXFoosAMgQ1kxWGUUWgAwUjScU9Hld8yIYma+0KF/rl8535eOK7oIAkCFe25vck1U2doTDSQBgYGob21W+rMZVh8UiO4T8PtcVWBJFFgBkhIMdhnY3dUhiJgtA5mlojam+JaYtXecXUWwh27FcEAAywI49yaWCRQFTI/Pd39IX/dMWiys/Fnc6Rp8MI65oIpk3YLrvHePDkddeg8nbYSQkJZsTSN0Pi3XbXhogHSiyACADvLbnoCSpNMy7vtmkfPk6eUNhp2P0k1+Vm2qcDjEA5LXX0PJ29lJsVVbM1NyyMWnKBziL5YIAkAGsmazxmfJ6HAD6wSq2Nu9sUtXqbc6GAdKImSwAyACv7mmWxExWttlQOU+RSMTpGH0yDEPV1WtUUbFQgYD7l6uS116Dybu9tlmLV2zscd06PNaayQKyBUUWAGSAV+uSM1kUWdklHPQrHHT/UGx4TIV8ybyBAHnTLRfy5gV83T62iqsTJ4zUrRUz2ZOFrMNyQQBwuf0tUdW3RCVJ4/MdDgMAQ2DVUdPHFWpknl8eUVghO1FkAYDLWfuxJo/KV8jXx40BwIUiBUGVFIR00sQiPfTps/SdxbPV3BHXllpauiM7uX9OGgBy3Kt1yf1YM8YVSDrobBikFS3c7UFeew0mb1F+QE/eMk8Bn0cej0fba5PPa7R0R7aiyAIAl3u1ayarbFyBFHM4DNKKFu52Iq+90puXlu7INiwXBACXs2aypo8tcDgJANiLlu7IFsxkAYCLdXaaerUuuURwxvhCvbbT4UBIK1q424O89kpHXlq6I9tRZAGAi+1qbFdrLKGgz6upkbBeczoQ0ooW7vYgr73SkfdILd1nTWRPFrKD+/+SASCHvbw7uVTwuLEFCvhY4Q0gu3g8yeYXuVRcRePJN86y/efMdRRZAOBi1lLBE8YXOpwEANLHauleWpyXM8WVJNU2tuvyH6/XhOL8nPq5cxFFFgC42Ct73t+PBQDZorQoX+uXzs+5GZ2G1pjqW2La3xqjZX2Wo8gCABd7pWu5IEVWduKcLHuQ117pzNvemUhTqiNz0/3bYSR/3qOdD4bsQJEFAC7VYST0Vn2rJOmE0pEOp4EdOCfLTuS1F3nTobfzwW750PHOhkJasIsaAFzqtT0t6jSl4nBAYwtDTscBANjk0PPBvvWnV5wNg7RgJgsAXOrlrkOITxg/krX6WYpzsuxBXnuRd/D6cz7YLR86Xk2v/s2BdEgniiwAcCmrfTtLBbMX52TZg7z2Iu/g9ed8sHg8rsdedSgg0sb9fxkAkKNe2d3Vvr2UphcAkE1y8XywXOPonqx77rlHZ555pgoLCzV27FhdccUVevXV7qW7aZqqqqrShAkTlJ+fr/PPP1/btm1zKDEADA/TNN9fLshM1rBhXAKQbtF4QmZXO0HrfLCTJhbpoU+fpT98vlznTS+hwMpCjhZZa9eu1ec//3k9++yzevLJJxWPx7Vw4UK1trambrN8+XLdd999+vGPf6znnntO48eP14IFC3Tw4EEHkwOAveqaO9TYZsjn9ej4sQVOx8kZjEsA0qm2sV3ly2q06P4NWrtjn8aPzNP6pfMprnKAo8sFn3jiiW4fP/DAAxo7dqxeeOEFzZs3T6Zp6vvf/75uv/12XXnllZKkhx56SOPGjdOqVat04403OhEbAGxnLRU8rmREjzX8sA/jEoB0Otrhw8hurtqT1dTUJEkaPXq0JOmtt95SXV2dFi5cmLpNKBTSeeedp2eeeabXwSwajSoajaY+bm5OLrcxDEOGYdgZPy2sjJmQVSKv3chrLzfn3brzgCRpxriCHjndmLc3mZLzaNIxLklHHpuaWzvkz2u3K37aWIe5NrV2KBDInMOTyWsP8vZfS3vy7/7ww4dPmjhSX7rweM09PtJjNitTn+szLa/dPKa1SNRhpmlq0aJFOnDggP76179Kkp555hmVl5dr165dmjBhQuq2n/3sZ/XOO++ourq6x9epqqrSnXfe2eP6qlWrFA5nyoGPAHLdgzu8emm/V5cdk9CHJrriaXrA2tradM0116ipqUkjR2bevrJ0jUvSkcemyTf/TwYdRgwgXTwyZcqjySNMXXZMp2YUZ+bzfCYarrHJNTNZ//qv/6rNmzdr/fr1PT53eIVvmuYR17DedtttuuWWW1IfNzc3a/LkyZo/f37GnEXy5JNPasGCBY6f5dAf5LUXee3l5rw/eG2DpFZdcf6ZqWUlbs7bm/379zsdYUjSNS5JRx6bAOQmU8nni/daPaquH6kvXVOe+lymPddnWt7hGptcUWR94Qtf0B//+EetW7dOkyZNSl0fP368JKmurk6lpaWp63v37tW4ceN6/VqhUEihUKjH9UAgkBG/eAt57UVee5F3aNpicb21P9loYfbk0T2yuS3vkWRCxiNJ57gkHXls4jBie5DXXuTtv/4cPlxZMbPXXJnyXG/JlLzDldHRIss0TX3hC1/Q7373Oz399NOaNm1at89PmzZN48eP15NPPqlTTz1VkhSLxbR27Vrde++9TkQGANu9UndQpimVFIZUUtjzhTnsM9zjEocR24O89iJv//Xn8GE6DGYnR/8yPv/5z2vVqlX6wx/+oMLCQtXV1UmSioqKlJ+fL4/Ho5tvvll33323ysrKVFZWprvvvlvhcFjXXHONk9EBwDbba5NNET7A+VjDjnEJgB04fDj3OFpk/fSnP5UknX/++d2uP/DAA7r22mslSZWVlWpvb9dNN92kAwcO6Oyzz9aaNWtUWFg4zGkBYHhs350ssk6cQJE13BiXAKSTdfhwaXEexVWOcXy5YF88Ho+qqqpUVVVlfyAAcIFt1kwWRdawY1wCkE6lRflav3S+gj4vxVWO8TodAADwvniiU6/sZrkgAGSLkN9HgTVMovFEv94sGw4UWQDgIm/Vtyoa71Q46NPUyAin4wAAkBFqG9tVvqxGi+7foLU79jlebFFkAYCLWPuxTigdKa+Xdz4BAOiPhtaY6lti2rKrSUtWbnK82HJ/300AyCF0FswtbbG48mNxp2P0yTDiiiaSeQOm+4t/8tqLvPYi7+B0GAlJyS6OkrS1q9iaPcmZjo4UWQDgIjS9yC3ly9fJGwo7HaOf/KrcVON0iAEgr73Iay/yDlVnL8VWZcVMnTB6eAotlgsCgEuYpqmttU2SaN8OAEA6WMXW5p1Nqlq9bdi+LzNZAOASuxrb1dhmyO/1aMZ4zlzKBRsq5ykSiTgdo0+GYai6eo0qKhYqEAg4HadP5LUXee1F3sHZXtusxSs29rju9SQLLWsma7hQZAGAS2zdlVwqOH1coUJ+n8NpMBzCQb/CQfcPxYbHVMiXzBsIkDfdyGsv8trLLXnzAt3HTau4mjWx+56s/fv3D0se9//mACBHbN2VXCo4ayJLBQEAGAyPJ9n84vDiarhRZAGAS1j7sU6aWORwEgAAMkukIKiSgpBKi/McLa4sFFkA4AKmaaZmsk6kyAIAYEBKi/K1ful8BX1eR4srC0UWALjA3oNR1bfE5PVIJ4xnuSAAAAPlpv3MtHAHABfYsjM5i1U2tlD5QfcMEgAADJdoPCHTOk04w1FkAYALpM7HoukFACAH1Ta2q3xZjRbdv0Frd+zL+GKLIgsAXMBq3z5rAvuxAAC5p6E1pvqWmLbsatKSlZsyvthiTxYAuIDV9OKkSRRZuaQtFld+LO50jD4ZRlzRRDJvwHR+Q3lfyGsv8torV/N2GAlJyfbrUnJcXLJyk2ZPcrYV+2BRZAGAw+pboqpr7pDHI51QynLBXFK+fJ28obDTMfrJr8pNNU6HGADy2ou89iJvZy/FVmXFTM0tG5PW72MXlgsCgMM272yUJB07ZoQKQrz3BQCAxSq2Nu9sUtXqbc6GGQBGcwBw2OauzoInTyp2NgiG3YbKeYpEIk7H6JNhGKquXqOKioUKBAJOx+kTee1FXnvlat7ttc1avGJjj+teT7LQsmayMgVFFgA4zCqyZrMfK+eEg36Fg+4fig2PqZAvmTcQIG+6kdde5LVXuvLmBbofX2IVV7MmsicLADBApmmmlguexEwWACDHeTzJ5heZWlxZKLIAwEG1TR2qb4nJ7/XoxAk0vQAA5KZIQVAlBSGVFudldHFlocgCAAdt6ZrFmj6usMdSCQAAckVpUb7WL52voM+b0cWVhSILABz0D6vpxWT2YwEAclvInz1vNtLCHQAcZO3Hms1+LAAAFI0nZFonEmcwiiwAcEhnp5nqLHjSRGayAAC5rbaxXeXLarTo/g1au2NfRhdbFFkA4JB3Gtp0sCOukN+rGeMLnY4DAICjGlpjqm+JacuuJi1ZuSmjiy32ZAGAQ6ylgh+YMFIBH+955aK2WFz5sbjTMfpkGHFFE8m8AdP9G9LJay/y2iuX83YYCUnJFu6StLWr2Jo9KfPauVNkAYBD/vFe1yHELBXMWeXL18kbCjsdo5/8qtxU43SIASCvvchrL/JKycOIpe7FVmXFTM0tG5P275VuvHUKAA75+3sHJEmnHFPsbBAAAFzMKrY272xS1eptzobpJ2ayAMABsXinttY2S5JOmTzK4TRwyobKeYpEIk7H6JNhGKquXqOKioUKBAJOx+kTee1FXnvlct7ttc1avGJjj+teT7LQsmayMgFFFgA44JW6ZsXinSoOBzQ1kinLxZBu4aBf4aD7h2LDYyrkS+YNBMibbuS1F3ntlc68eYHu52RZxdWsiezJAgD0w0vvNkqSTp5UnDEDBgAAw8HjSTa/yMTiykKRBQAO+Pt7jZKkUyYXO5oDAAC3iBQEVVIQUmlxXsYWVxaKLABwQKrIoukFAGCIovGEgj5vxhYkltKifK1fOj8rfha6CwLAMGtsi+mt+lZJ0imTip0NAwDIaLWN7SpfVpPRB/ceKuT3ZXyBJVFkAcCws2axpo0ZoVEjgs6GAQBktIbWmOpbYtrSdZZUthRbmY7lggAwzNiPBUtbLK78WNzpGH0yjLiiiWTegOn+d5jJay/y2mugeTuMhKRkowip+8G9mb6vKZNRZAHAMKPIgqV8+Tp5Q5nSwt+vyk01TocYAPLai7z2Gnzezl6KrcqKmZpbNiaN+dAXlgsCwDAyTZMiCwBgO6vY2ryzSVWrtzkbJgcxkwUAw+jN+lY1thkK+b06oXSk03HgsA2V8xSJRJyO0SfDMFRdvUYVFQsVCAScjtMn8tqLvPYaaN7ttc1avGJjj+vWQb7WTBaGF0UWAAyjF945ICl5CHHQz2KCXBcO+hUOun8oNjymQr5k3kCAvOlGXntle968gK/bx1ZxlckH+WYD9z/SACCLvNhVZJ02ZZTDSQAA2cTjSTa/oLhyB4osABhGL77bVWRxCDEAIA0iBUGVFIRUWpxHceUiFFkAMEya2g3t2NMiiZksAMDgROMJBX3eVCFVWpSv9Uvnd7sG57EhAACGyUtds1hTImGNKQg5nAYAkGlqG9tVvqymx4HDIb+PAstlKLIAYJi8+G6jJOn0Y5jFAgAMXENrTPUtMW3pOgPr8GIL7sFyQQAYJjS9wOHaYnHlx+JOx+iTYcQVTSTzBkz3v1tOXnuR115Hy9thJCQlG1xI3Q8cZj+Wu1BkAcAwSHSaqeWCpzGThS7ly9fJGwo7HaOf/KrcVON0iAEgr73Ia6/+5e3spdiqrJipuWVjbM6HvrBcEACGwat1B9UaS2hE0KcZ4wudjgMAyCJWsbV5Z5OqVm9zNgwkMZMFAMPiubcbJCWXCvq8LOVA0obKeYpEIk7H6JNhGKquXqOKioUKBAJOx+kTee1FXnsdLe/22mYtXrGxx7+xDiC2ZrLgPIosABgGVpF15tTRDieBm4SDfoWD7h+KDY+pkC+ZNxAgb7qR117ZlDcv4Ov2sVVccQCx+7j/kQYAGc40TYosAEDaeDzJ5hcUV+5FkQUANtt5oF17mqPyez06ZXKx03EAABkqUhBUSUFIpcV5FFcuR5EFADazZrFmTSxSftDXx60BAOhdaVG+1i+dr6DPS3HlcnQXBACbPfd2snX7WdNYKggAGJqQ30eBdYhoPOHKw5gpsgDAZtZM1hkcQgwAQNrUNrarfFmNFt2/QWt37HNVsUWRBQA2amiN6fW9LZKkM2h6AQBA2jS0xlTfEtOWrsOY3VRssScLAGz0fNcs1vFjCzR6RNDhNHCbtlhc+bG40zH6ZBhxRRPJvAHT/cuUyGsv8tqLvP3XYSQkJTstStLWrmJr9iTnuy5SZAGAjZ5/J7kf68ypLBVET+XL18kbCjsdo5/8qtxU43SIASCvvchrL/IORmcvxVZlxUzNLRsz7FlYLggANtr0lrUfi6WCAAAMB6vY2ryzSVWrtzmSgZksALBJSzSuLbuaJElnH0uRhZ42VM5TJBJxOkafDMNQdfUaVVQsVCAQcDpOn8hrL/Lai7z9t722WYtXbOxx3etJFlrWTJYTKLIAwCbPv92gRKepSaPyNWlUpiwJw3AKB/0KB90/FBseUyFfMm8gQN50I6+9yGsvJ/PmBbqfPWkVV7MmsicLALLW37qWCp5zrPtnKgAAyFQeT7L5hRuKKwtFFgDY5Nk390uiyAIAwA6RgqBKCkIqLc5zTXFlocgCABu0RuPavLNrP9Y09mMBAJBupUX5Wr90voI+r2uKKwtFFgDY4IV3DijRaWpicb4mj2Y/FgAAdgj5fX3fyAG0cAcAG7BUEADgFtF4QqZ1Yi+GBUUWANjg/SKLpYIAAOfUNrarfFmNFt2/QWt37KPYGiYUWQCQZm2x9/djMZMFAHBSQ2tM9S0xbdnVpCUrN1FsDRP2ZAFAmr3wzgHFu/ZjTRqV73QcuFhbLK78WNzpGH0yjLiiiWTegOmuzeW9Ia+9yGuvdOftMBKSki3OJWlrV7E1e5J72p1nI4osAEgza6ng2ceOZuDCUZUvXydvKFMao/hVuanG6RADQF57kdde9uXt7KXYqqyYqbllY2z5frmK5YIAkGYbXk8WWeeyVBAA4FJWsbV5Z5OqVm9zNkwWYiYLANKoqd3Q5p2NkqTy43lXEEe3oXKeIhH3F+OGYai6eo0qKhYqEAg4HadP5LUXee2V7rzba5u1eMXGHte9nmShZc1kIb0osgAgjf725n51mtK0MSM0oZj9WDi6cNCvcND9Q7HhMRXyJfMGAuRNN/LaK9fz5gW6nyNlFVezJrIny07uf6QBQAZ55o3kUsHy490/OwEAyB0eT7L5BcXV8KDIAoA02vB6vSSp/DiWCgIAnBcpCKqkIKTS4jyKq2FEkQUAabKnuUOv7W2RxyOdexwzWQCA4ReNJxT0eVOFVGlRvtYvnd/tGuxHd0EASJNn3kjOYp04YaSKw0GH0wAAck1tY7vKl9X0OHA45PdRYA0ziiwASBOrdTtdBQEATmhojam+JaYtXWdgHV5sYfiwXBAA0sA0TT3DfiwMUFssrvxY3OkYfTKMuKKJZN6A6f53w8lrL/Laayh5O4yEpGSDC6n7gcPsxxpeFFkAkAZv1beqtqlDQZ9XZ04d7XQcZIjy5evkDYWdjtFPflVuqnE6xACQ117ktVd68nb2UmxVVszU3DLeDLQbywUBIA3++lpyFuu0KcXKD/r6uDUAAMPHKrY272xS1eptzobJEcxkAUAarNuxT5I0b3qJw0mQSTZUzlMk4v5OlIZhqLp6jSoqFioQCDgdp0/ktRd57TWUvNtrm7V4xcYe160DiK2ZLNiPIgsAhigW79TGN5NNL+aVUWSh/8JBv8JB9w/FhsdUyJfMGwiQN93Ia69cypsX6L6SwiquOIB4+Ln/kQYALvf8Ow1qiyU0piCkD5SOdDoOACDHeTzJ5hcUV86hyAKAIVq3I7kfa17ZGHm9DGIAAGdECoIqKQiptDiP4sphFFkAMERr2Y8FAHCB0qJ8rV86X0Gft9fiKhpPHPFzSC+6CwLAEOw92KGXdzdLEi1xAQCOC/l9vRZRtY3tKl9WwwHFw4QiCwCG4K9dSwVnTRypMQUhh9MAANC7htaY6lti2tJ1ZhbFlr1YLggAQ7Duta6lgnQVxCC0xeLKj8WdjtEnw4grmkjmDZjuX2ZEXnuR11525e0wEpKSDTGk7gcUs38r/SiyAGCQOjvN1CHE57EfC4NQvnydvKGw0zH6ya/KTTVOhxgA8tqLvPayP29nL8VWZcVMlr6nCcsFAWCQtuxqUkNrTAUhv06bMsrpOAAADJhVbG3e2aSq1ducDZNFmMkCgEGqeWWvJGnu8WMU8PGeFQZuQ+U8RSIRp2P0yTAMVVevUUXFQgUCAafj9Im89iKvvezKu722WYtXbOxx3Tqw2JrJQnpQZAHAIFlF1gUnjHU4CTJVOOhXOOj+odjwmAr5knkDAfKmG3ntRd6kvICv28dWccWBxfZw/yMNAFxob3OHtuxqkiSdP4P9WACAzODxJJtfUFzZiyILAAbhqVeTs1gnTyrS2MI8h9MAAHB0kYKgSgpCKi3Oo7gaBhRZADAIqaWCM8c5nAQAgL6VFuVr/dL5Cvq8FFfDgJ3aADBA0Xgi1br9gpnsxwIAuFM0nuh22HDI76PAGiYUWQAwQJvealBbLKGxhSGdOGGk03EAAOihtrFd5ctqtOj+DVq7Y1+3Ygv2o8gCgAH6y8vJpYLzZ4yV18s7ggAA92lojam+JaYtXYcNU2wNL/ZkAcAAmKZJ63akTVssrvxY3OkYfTKMuKKJZN6A6f43FshrL/LaK115O4yEpGQnQUna2lVszZ5EV8HhQJEFAAPwxr5WvdvQpqDPq7nHj3E6DjJc+fJ18obCTsfoJ78qN9U4HWIAyGsv8tor/Xk7eym2Kitmam4ZY5kdWC4IAAOwZnudJOnsY0drRIj3qQAAmcUqtjbvbFLV6m3OhslivEIAgAGo3rZHklRx4niHkyAbbKicp0gk4nSMPhmGoerqNaqoWKhAIOB0nD6R117ktVe68m6vbdbiFRt7XPd6koWWNZMFe1BkAUA/1TV16B/vNcrjkRZ+gPOxMHThoF/hoPuHYsNjKuRL5g0EyJtu5LVXrubNC/i6fWwVV7MmsidrOLj/kQYALmEtFTx1crHGjsxzOA0AAH3zeJLNLyiuhhdFFgD0U/W2ZJHFUkEAgNtFCoIqKQiptDiP4soBFFkA0A+NbTE9+2aDJIosAID7lRbla/3S+Qr6vBRXDqDIAoB++MvLe5XoNDVjXKGmjhnhdBwAAPoU8vv6vhFsQQt3AOiH95cK0vACAIB0i8YTMq2Tk7MARRYA9KE9ltC61/ZJkipmsVQQAIB0qm1sV/myGi26f4PW7tiXFcUWRRYA9GHtjn3qMDo1aVS+PlA60uk4AABklYbWmOpbYtqyq0lLVm7KimLL0T1Z69at03e+8x298MIL2r17t373u9/piiuuSH3eNE3deeed+tnPfqYDBw7o7LPP1v33368TTzzRudAAcs6aQ7oKsnk4+w3n2NQWiys/Fk9jensYRlzRRDJvwHT/3wB57UVee+Vi3g4jISnZal6StnYVW7MnZW7beUeLrNbWVp188sm67rrrdNVVV/X4/PLly3XffffpwQcf1PTp03XXXXdpwYIFevXVV1VYWOhAYgC5Jhbv1J9f3iOJroK5YjjHpvLl6+QNhdMV3WZ+VW6qcTrEAJDXXuS1V27n7eyl2KqsmKm5ZWPS9j3s5miRddFFF+miiy7q9XOmaer73/++br/9dl155ZWSpIceekjjxo3TqlWrdOONNw5nVAA56q+v7VNzR1xjC0M6fcoop+NgGDA2AYA7WMXW5p1Nqlq9TX++5TxnAw2Aa1u4v/XWW6qrq9PChQtT10KhkM477zw988wzRxzIotGootFo6uPm5mZJkmEYMgzD3tBpYGXMhKwSee1GXnv1J+8f/75LkvThE8epMxFXZ2JYovUqU+/fbJLusWntl+ZodGS0vaHTwDDiqqmp0QUXXKBAwLUvHVLIay/y2isX8768+6A+9vPnelz3epKF1kkTR+rLC8rSMq4M19jk2t9cXV1yD8S4cd3bJY8bN07vvPPOEf/dPffcozvvvLPH9aeeekrhcKYsyZCefPJJpyMMCHntRV57HSlvLCE9scUnyaPRLW/qscfeHN5gR5Ap929bW5vTEdIu3WPTsxvWZczYFPJJG9ZmzvIl8tqLvPbKtbzvtUiHliUemTLl0cSwqUuO6dTMogY1vfo3Pfbq0LMO19jk2iLLcvgmN9M0j7rx7bbbbtMtt9yS+ri5uVmTJ0/W/PnzFYlEbMuZLoZh6Mknn9SCBQsUCAScjtMn8tqLvPbqK2/1tj2KbvqHSovy9C//9EF5vc5uus20+3f//v1OR7ANY5O7kdde5LVXLubdVtus7255Vh5PsvnFrIlF+tKFx2vu8ZG0N7wYrrHJtUXW+PHJDeZ1dXUqLS1NXd+7d2+PdxAPFQqFFAqFelwPBAIZ8UC1kNde5LVXtuR9fPteSdJlJ09QKBQc7lhHlCn3byZkHCjGJvLaibz2Iq+9hpJ3XHFYJQUhlRbn2d5NcLjuU9eekzVt2jSNHz++27KYWCymtWvXas6cOQ4mA5AL2mJx1bycLLIunV3ax62RKxibgNwSjScy+qymTFFalK/1S+frD58v13nTSzKuXXtvHJ3Jamlp0euvv576+K233tLf//53jR49Wsccc4xuvvlm3X333SorK1NZWZnuvvtuhcNhXXPNNQ6mBpAL/vzyXrUbCR0zOqyTJhY5HQfDiLEJgCTVNrbr8h+v14Ti/Iw9qymThPw+pyOklaNF1vPPP6/58+enPrbWqy9ZskQPPvigKisr1d7erptuuil14OOaNWs4IwuA7f7vH7WSpMtOLmVQzTGMTQAkqaE1pvqWmPa3xjL+YFwMP0eLrPPPP/+oU7Aej0dVVVWqqqoavlAAct7BDkNP79gnSbp09gSH02C4DefY1BaLKz8WH/LXsZthxBVNJPMGTPe/uCSvvXIlb4eRPLPD7OVgXIot9MW1jS8AwClPbt+jWLxTx5WM0MzxzE7APuXL18kbyowW7pJflZsyp6U0ee2We3k7eym2Kitmam7ZmDTkQ7ZxbeMLAHDK715KHkB82ckTeJcSANCNVWxt3tmkqtXbnA0D12ImCwAOsae5Qxter5ckfeTUiQ6nQbbbUDkvY87Jqq5eo4qKhRnRUpq89sqVvNtrm7V4xcYe172eZKFlzWQBvaHIAoBD/OHvu9RpSmdMGaUpkRFOx0GWCwf9CgfdPxQbHlMhXzJvIEDedCOvvQabNy/QvdudVVzNmsieLPTN/X8ZADBMTNPUb15ILhW88rRJDqcBALiBx5NsfkFxhYGgyAKALtt3N+vVPQcV9Ht1yUkcQAwAuSgaTyjo8ypSEFRJQUilxXkUVxgwiiwA6PLbF5OzWAtOGKeisPv3GQAA0uvwA4j/+tXzFfL7KK4wYHQXBABJ8USn/vB3a6kgDS8AIBdZBxBv6WrT/tH/fFbrXqs/6tl5QG+YyQIASX99rV71LTFFRgQ1b3qJ03GQIziM2B7ktVc25+UAYqQLRRYASPrNizslSZefMkEBH5P8GB4cRmwn8torN/JyADEGi1cSAHLegbaY1mzbI0m6iq6CAIDDcAAxBoqZLAA57/d/361YolMnThipWROLnI6DHMJhxPYgr72yOS8HECNdKLIA5DTTlB59PrlU8OqzjnE4DXINhxHbg7z2yua8HECMdHH/XwYA2Oitg9Ib+1qVH/Bp0SkTnI4DAHABDiDGUFFkAchpG/cmt6ZednKpCvPcv+wFAGAfDiBGulBkAchZze2GXtqfHDw/xlJBAMh5pUX5Wr90voI+b1YUV9F4Imt+lkxDd0EAOeuPm3fL6PRoxrgCnTq52Ok4AAAXCPl9WVGU1Da2q3xZjRbdv0Frd+zjQOVhRpEFICeZpqlHn0s2vPjoGZOyYkAFAMDS0BpTfUtMW7rO+KLYGl4sFwSQk/6xs0mv7GlRwGNq0cmlTsdBjmqLxZUfizsdo0+GEVc0kcwbMN3/hgR57UVee6Urb4eRkJRs4CF1P1CZ/Wb2o8gCkJN+9bd3JUmnREwV5dPwAs4oX75O3lDY6Rj95FflphqnQwwAee1FXnulP29nL8VWZcVMzS0bk9bvgySWCwLIOY1tMf3hH7skSeeO63Q4DQAAw8cqtjbvbFLV6m3OhslizGQByDm/2vSeOoxOnTC+UMcWHnA6DnLYhsp5ikQiTsfok2EYqq5eo4qKhQoE3D/zS157kdde6cq7vbZZi1ds7HHdOmDZmsmCPSiyAOQUI9Gphze+LUm6ds4x8uymyIJzwkG/wkH3D8WGx1TIl8wbCJA33chrr1zNmxfwdfvYKq44YHl4uP+RBgBpVL2tTrubOjSmIKhLTirVX3b/w+lIAADYxuNJNr+guBpeFFkAcsrK9W9Jkj5+9hSF/GxLBQBkp0hBUCUFIZUW51FcOYAiC0DO+Pt7jXrx3UYFfB59/JxjnI4DAIBtSovytX7pfAV9XoorB/A2LoCc8cCG5CzWZSdP0NjCPIfTAABgr5DfR4HlEIosADlhT3OH/rR5tyTp0+XTHE4DAMDQReMJmdZpw3AViiwAOeEXG99RvNPUWVNHa9bEIqfjAAAwJLWN7SpfVqNF92/Q2h37KLZchiILQNbrMBJ65G/vSJI+PXeqs2EAAEiDhtaY6lti2rKrSUtWbqLYchkaXwDIen/4+y4daDM0sThfCz4w3uk4QEpbLK78WNzpGH0yjLiiiWTegOn+/R3ktRd57dXfvB1GQlKyPbskbe0qtmZPolW7G1BkAchqiU5TP1v3piRpyZwp8nkZcOAe5cvXyRsKOx2jn/yq3FTjdIgBIK+9yGuvgeft7KXYqqyYqbllY2zIh76wXBBAVnt86269sa9VI/P8uvos2rYDALKbVWxt3tmkqtXbnA2Tw5jJApC1OjtN/egvr0uSPj13mgrzAg4nArrbUDlPkUjE6Rh9MgxD1dVrVFGxUIGA+/+OyGsv8tqrv3m31zZr8YqNPa57PclCy5rJgjMosgBkrTXb9+jVPQdVGPLrujm0bYf7hIN+hYPuH4oNj6mQL5k3ECBvupHXXtmaNy/g6/axVVzNmsieLDdw/yMNAAbBNE39qOY1SdKSOVNVFHb/u5cAAAyUx5NsfkFx5S4UWQCyUs0re7WttlnhoE+fmcssFgAgu0QKgiopCKm0OI/iyoUosgBkHdM09cOa5F6sT547RaNGBB1OBABAepUW5Wv90vkK+rwUVy5Ed0EAWWfda/X6x3uNygt4dcMHj3U6DgAAtgj5fWkrsKLxBAcZpxFFFoCsYpqmfviX5F6sj589RWMKQg4nAgDA3Wob21W+rEaL7t+gtTv2UWylAUUWgKyy8Y39euGdAwr6vbpxHrNYAAD0paE1pvqWmLZ0HWRMsTV07MkCkFV+2NVR8OozJ2vsyDyH0wBH1xaLKz8WdzpGnwwjrmgimTdgun/vB3ntRV57OZG3w0hISnYplKStXcXW7El0LBwsiiwAWWPTWw169s0GBX1efe7845yOA/SpfPk6eUNhp2P0k1+Vm2qcDjEA5LUXee3lbN7OXoqtyoqZmls2xrFMmYblggCygmmaWvb4y5KkxWdMUmlRvsOJAADIbFaxtXlnk6pWb3M2TIZhJgtAVnh8a51efLdR+QGfvnhhmdNxgH7ZUDlPkUjE6Rh9MgxD1dVrVFGxUIGA+w/2Jq+9yGsvJ/Jur23W4hUbe1z3epKFljWThf6jyAKQ8aLxhJY9/ook6cbzjtU49mIhQ4SDfoWD7h+KDY+pkC+ZNxAgb7qR117k7VtewNftY6u4mjWRPVmD5f5HGgD04Rcb39G7DW0aWxjSZ+koCADAoHg8yeYXFFdDR5EFIKM1tsX0o5rXJUm3LpyREbMCAAC4SaQgqJKCkEqL8yiu0oRXIwAy2g//8rqa2g3NHF+oq06f5HQcAMgZ0Xin/H6TF+NZoLQoX+uXzlfQ5+X3mSZ0FwSQsd6ub9Uvnn1bknT7JSfI52VgAIDhcCAqnffddRxam0VCfh8FVhpRZAHIWPc+8YqMhKnzppfog2UlTscBgJzRYkj7W2Pa0nWOEsUW0B3LBQFkpOffbtDjW+vk9Uhfu/gEp+MAg9IWiys/Fnc6Rp8MI65oIpk3YLr/nW7y2ssw4op1Jv+/2cuhtezpASiyAGSgzk5Td/0pefDwP585WTPGFzqcCBic8uXr5A2FnY7RT35VbqpxOsQAkNde3V9CdvZSbFVWzNTcsjEOZAOcx3JBABnnf55/T39/r1HhoE9f+tB0p+MAALpYxdbmnU2qWr3N2TCAg5jJApBR9h2M6u7HkrNYtyyYrrEcPIwMtqFyniKRiNMx+mQYhqqr16iiYqECgYDTcfpEXnsZhqH//u0a/XBbz5eR1iG21kwWkKsosgBklLv+tF3NHXHNmjhS186Z6nQcYEjCQX9GnO1meEyFfMm8gQB50y0T8wYPWwtlFVccYgskuf8vGQC6rN2xT3/4e628Humej8yW38eKZwCwSzSe6PPcJI8n2fyC4grojiILQEZojyX09d9vkSQtmTNVJ00qcjgRAGSv2sZ2Xf7j9ZpQnN9r8VQYkMYUBI/4eSDXUWQByAg/rHlN7zW0q7QoT19eOMPpOACQ1RpaY6pviWl/a6xHa3ZJKg5JT395nkbkBSmugF5QZAFwvVfqmvVf696UJP37olkqCPHUhezAOVn2IO/QdRgJSb2fg3XzBcfJNKWQ/+hLCYFcxisVAK4WT3Rq6W+2KN5pquLEcVrwgXFORwLShnOy7ETedDr0HKxPP/yiJo/wqXjmfp0/c7yzwQCXYtc4AFf74V9e09/fa1RhyK+qy090Og4A5DSr2Hqv1aNv/ekVZ8MALsZMFgDX+tub+/Xjp16XJH37ypNUWpTvcCIgvTgnyx7kHbrttc1avGJjj+tWq/bJI0x94xLOwQKOhCILgCs1tRn60qN/V6cpLT59ki4/eYLTkYC045wse5B36PICvm4fH3oO1s0XHKfmHZtUfpz73yAAnOKOv2QAOIRpmrrtd5tV29ShaWNG6E6WCQKAI3o7Bysej+ux15xOBrgbRRYA13n0uff02JY6BXwe/eBjp2gE3QQBYFhFCoIqKQiptDiPc7CAQeCVCwBXeX1vi+5cvV2SdOvCGZo9qdjZQACQg0qL8rV+6XwFfbRpH6poPMH9mIPoLgjANaLxhP7tVy+p3Uio/PiIbvjgsU5HAoCcFfL7KAyGqLaxXeXLarTo/g1au2OfTOvgMWQ9iiwArvGdJ17V9t3NGhUO6L6PniKvl8EdAJC5Glpjqm+JaUvXYc4UW7mD5YIAXOHpV/fq5+vfkiR9Z/HJGjcyz+FEgP3aYnHlx+JOx+iTYcQVTSTzBkz3v/lBXnuRt/86jISkZPMQKXmY85KVmzR7UhF73bIcRRYAx71V36pb/ucfkqRPnTtFH/rAOIcTAcOjfPk6eUNhp2P0k1+Vm2qcDjEA5LUXeQejs5diq7JipuaWjXE2GNKO5YIAHLXvYFRLVm5SQ2tMJ00s0tcuPsHpSAAA2MoqtjbvbFLV6m3OhoEtmMkC4JjWaFyffvA5vdvQpmNGh7Xy2jN7HIAJZLMNlfMUibj/QFfDMFRdvUYVFQsVCAScjtMn8tqLvP23vbZZi1ds7HHdOtzZmslC9qHIAuAII9Gpmx55UVt2NWn0iKAe+vRZKikMOR0LGFbhoF/hoPuHYsNjKuRL5g0EyJtu5LWXk3kPf+PQKq4OPdyZPVnZyf1/GQCyjmmauu23W7R2xz7lBbz67yVnaNqYEU7HAgDAFh5PsvkFxVXuoMgCMOzue3KH/veFnfJ6pPuvOU2nHjPK6UgAAKRdpCCokoKQSovzKK5yDEUWgGH1yN/e0Y9qXpckffsjJ+nCE+gkCADITqVF+Vq/dL6CPi/FVY6hyAIwbJ7cvkff+P1WSdIXLyzT1Wcd43AiAADsFfLT0CkX0cIdwLB44Z0D+sKvXlSnKf3zGZN184fKnI4EAMARReMJmdYpwsAAUWQBsN0b+1p0/UPPqcPo1PwZJfr2R2axbAIA4Fq1je0qX1ajRfdv0Nod+yi2MGAUWQBstfdgh5as3KQDbYZOnlSk+z9+mvw+nnoAAO7V0BpTfUtMW3Y1acnKTRRbGDD2ZAGwTUvXYcM7D7RrSiSs/772zIw4EwgYLm2xuPJjcadj9Mkw4oomknkDpvtnoclrr1zI22EkJCXbrkvS1q5ia/YkWrCjf3i1A8AW7zW06YaHn9crdQcVGRHUQ9edpTEFHDYMHKp8+Tp5Q2GnY/STX5WbapwOMQDktVdu5e3spdiqrJipuWVj0pQP2YY1OwDS7tk3G3T5j9frlbqDGlMQ0oPXnaWpHDYMAMhwVrG1eWeTqlZvczYMXI2ZLABpY5qm/lrn0e/+9oISnaZmTyrSf37ydJUW5TsdDXClDZXzFIlEnI7RJ8MwVF29RhUVCxUIBJyO0yfy2isX8m6vbdbiFRt7XPd6koWWNZMFHAlFFoC0iMU79Y0/btf/vuWTZOqKUyZo2VWzlRfgfBDgSMJBf0bsUzQ8pkK+ZN5AgLzpRl57DSbv4WOXVVzNmsieLPSP+/8yALjevoNR/csvX9Dz7xyQR6YqK2boc+cfzwAEAMhoHk+y+QXFFQaKIgvAkGzd1aTPPvy8aps6VJjn1zVTo7p+7lQGIQBAxooUBFVSEFJpcR7FFQaFIgvAoK3+R62+8r//UIfRqWPHjNBPrzlFrzy31ulYAAAMSWlRvtYvna+gz0txhUGhyAIwYJ2dpr675lX95Ok3JEnnzyjRDz52qsJ+6RWHswEAkA4hP3uKMXgUWQAG5GCHoZt//Xf95ZW9kqQbzztWlRUz5fN6ZBiGw+kAALkoGk8w6wRXocgC0G9v1bfqhoef1+t7WxTye3XvVbN1xakTnY4FAMhhtY3tuvzH6zWhOJ/9U3ANiiwA/bJuxz7966oX1dwR1/iRefrZp07X7EnFTscCAOS4htaY6lti2t8a05KVmzR7Ep0A4TyKLABHZZqm/nv9W7r7sZfVaUqnHVOsFZ84XWNH5jkdDch4bbG48mNxp2P0yTDiiiaSeQOm+1+0ktdebsvbYSQkJVutS8mut4cWW+dOLXIwHXIVRRaAXpmmqad37NN9a3Zoy64mSdJHz5ikb10xi83AQJqUL18nbyjsdIx+8qtyU43TIQaAvPZyb97Ow4qtkyaO1AdHenSxs7GQYyiyAPSw8Y39+o81r+r5dw5IkkYEfar88Ex96twpLL0AAGQEq9jasqtZexu8+pKzcZBjKLIApLz47gH9x5pXteH1/ZKkkN+rJXOm6sZ5xypSEHI4HZB9NlTOUyQScTpGnwzDUHX1GlVULFQgEHA6Tp/Iay+35d1e26zFKzb2uO71JAut5EzWAQeSIZdRZAHQttom3bdmR6ote8Dn0dVnHaPPzz9e49h7BdgmHPQrHHT/UGx4TIV8ybyBAHnTjbxDkxfovoTdKq5mTXx/T9bjjz/uUDrkKuf/MgA45vW9B/W9J1/Tn7bsliT5vB4tPm2SvnDh8Zo0KlP2iQAAIHk8yeYXVnFldRfkDEc4gSILyEHv7G/VD/78mn7/913qNJMD0+UnT9AXLyzTsSUFTscDAKDfIgVBlRSEVFqcR+t2uAZFFpBDahvb9aOa1/X/nn9P8a4dwRUnjtMtC2ZoxvhCh9MBgHtE4wkFfV5erGeA0qJ8rV86n98XXIUiC8gBew926CdPvaFVf3tXsUSnJOn8GSX68oIZOmkS54cAwKFqG9t1+Y/Xa0JxPjMjGYKjReA2FFlAFjvQGtN/rntTDz3zttq7Dms859jRunXhDJ0xdbTD6QDAnRpaY6pviWl/a6zbobYUWwD6iyILyDKmaeq1vS36v8279cD6t3QwGpcknTK5WF+pmKE5x0V4kQC4RFssrvxY3OkYfTKMuKKJZN6A6f7nj6Hm7eh6U8o87FBbii0A/UWRBWQ40zT19v42PfNGvTa+sV/Pvtmg+pZo6vMfKB2pWyuma/6MsbwoAFymfPk6eUOZ0snTr8pNNU6HGID05e3spdiqrJipuWVj0vL1AWQfiiwgA73X0KaNb+7XxjeS/9U1d3T7fF7AqzOmjNbVZx2ji2aNl9dLcQUAQ2UVW5t3Nqlq9Tb9+ZbznA0EwLUosoAMUNfcoeff3aONb+zXM2/s184D7d0+H/R5deoxxTr3uIjOPTaiU44pZhMwkAE2VM5TJBJxOkafDMNQdfUaVVQsVCAQcDpOn4aad3ttsxav2NjjunXIrTWTBQBHQpEFuFB9S1Qb39ivDa/vU80Wn/ZuXNft836vR7MnFWnOcWN07nERnT5lVI8T7wG4XzjoVzjo/qHY8JgK+ZJ5A4HhzzvQdupDzXv486lVXB1+yC0AHIn7n9mBHNDYFtOzbzZo4xv12vjmfu3Y03LIZz3yepKD+7nHRnTucRGdOXW0RoT48wWQ/Zxsp+7xJJtfUFwBGChepQEOONhhaNNbDanlfy/XNae6WFlmji/UOdNGyd/wlv7lqg8pMjJTNscDQPo40U49UhBUSUFIpcV5FFcABoUiCxgGbbG4nnv7QLJRxZv7tWVnY2oDteX4sQU699iI5hwX0dnHRjR6RFCGYeixx97UyHz374EAMHC0cO+bE+3US4vytX7p/AEtUQSAQ1FkATb7r3Vvann1KzIS3auqqZGwzj0uonOOTTarGDsyz6GEAJxCC/eBG6526jQPAjAUXqcD9MdPfvITTZs2TXl5eTr99NP117/+1elIQL9NHJUvI2FqYnG+Fp8+Sf/xTyfrmaUX6OmvzNc9V87WolMmUmABGYixyVmHt1MHADdx/UzWo48+qptvvlk/+clPVF5erv/8z//URRddpO3bt+uYY45xOh7Qp/Oml2jdV+Zr8uh8lp0AWSJdYxMt3PtGO3UAmcj1RdZ9992nz3zmM7r++uslSd///vdVXV2tn/70p7rnnnscTgf0bUTITydAIMuka2yihXvfaKcOIBO5+pk9FovphRde0NKlS7tdX7hwoZ555ple/000GlU0Gk193NTUJElqaGiwL2gaGYahtrY27d+/P2MOfCSvfchrL/Lay3reNQ9vnZnhGJuG97HXeOCgOqNtqXbqM0sL9fnzj9W5x46Wx+Pp9T7MtL8V8tqLvPbKtLzDNTa5usiqr69XIpHQuHHjul0fN26c6urqev0399xzj+68884e16dPn25LRgDA0e3fv19FRUVOx0gbxiZnvSep2ukQADKe3WOTq4ssy+HLAEzTPOLSgNtuu0233HJL6uPGxkZNmTLl/7d390FRXfcbwJ8VlkUQqBEQ0fJiTKBEFIQYwQaiEtCKeTFGotQCoU3NqIVqpvUlKSSZQZzWJFUjRqtgUpHEoJGICnQU0aA1CowojhoFNQ2UajQiREnx2z/6Y38uu7woi3ugz2dmZ9x7z7377OMOhwO7F1y6dKlXTPI3btzAj3/8Y1y+fBmOjo6WjtMp5u1ZzNuzmLdnfffdd/Dw8MBDDz1k6Sg9gnOTupi3ZzFvz2LenvWg5ialF1nOzs6wsrIy+slgfX290U8QW+l0Ouh0OqPtTk5OveI/vpWjoyPz9iDm7VnM27N6W95+/XrFhWy7jHMT8/YU5u1ZzNuzelvenp6blJ75bGxsEBQUhKKiIoPtRUVFCA0NtVAqIiL6X8a5iYiIOqP0b7IAYOHChZgzZw6Cg4MREhKC9evX49KlS5g7d66loxER0f8ozk1ERNQR5RdZMTExuHr1Kt566y3U1tZi5MiR2L17Nzw9Pbt0vE6nQ0pKism3aaiIeXsW8/Ys5u1ZzKsOzk1qY96exbw9i3l71oPKq5G+dm1dIiIiIiIiC1L6M1lERERERES9DRdZREREREREZsRFFhERERERkRlxkUVERERERGRGfXqRtXbtWnh7e8PW1hZBQUE4ePCgpSO1KzU1FRqNxuDm5uZm6Vh6JSUlmDZtGtzd3aHRaPDZZ58Z7BcRpKamwt3dHf3798dTTz2FU6dOWSYsOs8bHx9v1Pe4ceMsknX58uV4/PHH4eDgAFdXVzz33HM4c+aMwRiV+u1KXpX6zcjIwKhRo/R/JDEkJAR79uzR71ep267kValbU5YvXw6NRoPk5GT9NtU67gn3Ot8cOHAAQUFBsLW1xfDhw7Fu3TqjMbm5ufDz84NOp4Ofnx927NihbN6srCyj16VGo8GtW7ceeN7a2lrMnj0bPj4+6Nevn8Fr8W6q9NuVvCr1u337djz99NNwcXHRf40qKCgwGqdKv13Jq1K/hw4dwvjx4zFo0CD0798fvr6+ePfdd43GqdJvV/Kq1O/dvvjiC1hbWyMgIMBon1n6lT4qJydHtFqtbNiwQaqqqiQpKUns7e3l4sWLlo5mUkpKijz22GNSW1urv9XX11s6lt7u3btl2bJlkpubKwBkx44dBvvT09PFwcFBcnNzpbKyUmJiYmTIkCFy48YNJfPGxcXJ5MmTDfq+evWqRbJGRUVJZmamnDx5UioqKmTq1Kni4eEhN2/e1I9Rqd+u5FWp37y8PMnPz5czZ87ImTNnZOnSpaLVauXkyZMiola3XcmrUrdtHT16VLy8vGTUqFGSlJSk365ax+Z2r/PNhQsXxM7OTpKSkqSqqko2bNggWq1WPv30U/2Y0tJSsbKykrS0NDl9+rSkpaWJtbW1HDlyRMm8mZmZ4ujoaPC6rK2t7XbW+8lbXV0tv/nNb2Tz5s0SEBBg8FpspVK/XcmrUr9JSUmyYsUKOXr0qJw9e1aWLFkiWq1WysrK9GNU6rcreVXqt6ysTLKzs+XkyZNSXV0tH330kdjZ2ckHH3ygH6NSv13Jq1K/ra5fvy7Dhw+XyMhIGT16tME+c/XbZxdZY8eOlblz5xps8/X1lcWLF1soUcdSUlKM/pNV1XbRcufOHXFzc5P09HT9tlu3bomTk5OsW7fOAgkNtbfIevbZZy2SpzP19fUCQA4cOCAi6vfbNq+I2v2KiAwcOFD+8pe/KN9tq9a8Iup229DQII888ogUFRVJeHi4/hvF3tJxd9zrfPO73/1OfH19Dbb9+te/lnHjxunvz5w5UyZPnmwwJioqSl566SUl82ZmZoqTk1O3s5nSnfn87tfi3VTq927t5VW131Z+fn7y5ptv6u+r2m+rtnlV7/f555+Xn//85/r7qvfbNq+K/cbExMjrr79u8vtvc/XbJ98u2NzcjOPHjyMyMtJge2RkJEpLSy2UqnPnzp2Du7s7vL298dJLL+HChQuWjtQl1dXVqKurM+hbp9MhPDxc6b6Li4vh6uqKRx99FL/61a9QX19v6UgAgO+++w4A8NBDDwFQv9+2eVup2G9LSwtycnLQ2NiIkJAQ5bttm7eVit3OmzcPU6dORUREhMF21TvurvuZbw4fPmw0PioqCseOHcMPP/zQ4ZjudtZTeQHg5s2b8PT0xLBhwxAdHY3y8vJuZb3fvF2hUr9dpWq/d+7cQUNDg8EcoHK/pvIC6vZbXl6O0tJShIeH67ep3K+pvIBa/WZmZuL8+fNISUkxud9c/fbJRdaVK1fQ0tKCwYMHG2wfPHgw6urqLJSqY0888QQ+/PBDFBQUYMOGDairq0NoaCiuXr1q6Widau20N/U9ZcoUbNmyBfv27cPKlSvx5ZdfYuLEibh9+7ZFc4kIFi5ciJ/+9KcYOXIkALX7NZUXUK/fyspKDBgwADqdDnPnzsWOHTvg5+enbLft5QXU6xYAcnJyUFZWhuXLlxvtU7Vjc7mf+aaurs7k+H//+9+4cuVKh2O621lP5fX19UVWVhby8vKwdetW2NraYvz48Th37twDz9sVKvXbFSr3u3LlSjQ2NmLmzJn6bSr3ayqviv0OGzYMOp0OwcHBmDdvHn75y1/q96nYb0d5Ver33LlzWLx4MbZs2QJra2uTY8zVr+mz9xEajcbgvogYbVPFlClT9P/29/dHSEgIHn74YWzevBkLFy60YLKu6019x8TE6P89cuRIBAcHw9PTE/n5+Zg+fbrFcs2fPx8nTpzAoUOHjPap2G97eVXr18fHBxUVFbh+/Tpyc3MRFxeHAwcO6Per1m17ef38/JTr9vLly0hKSkJhYSFsbW3bHadax+Z2r8/P1Pi223uyM3PnHTdunMEFWMaPH48xY8Zg9erVWLVq1QPPa6lz9tS5Ve1369atSE1Nxc6dO+Hq6mqWc3aFufOq2O/Bgwdx8+ZNHDlyBIsXL8aIESMwa9asbp3TUnlV6belpQWzZ8/Gm2++iUcffdQs5+xIn1xkOTs7w8rKymjFWV9fb7QyVZW9vT38/f27vcp/EFqvglhXV4chQ4bot/emvocMGQJPT0+L9r1gwQLk5eWhpKQEw4YN029Xtd/28ppi6X5tbGwwYsQIAEBwcDC+/PJL/PnPf8bvf/97AOp1217eDz74wGispbs9fvw46uvrERQUpN/W0tKCkpISrFmzRn/lSdU6Npf7mW/c3NxMjre2tsagQYM6HNPdznoqb1v9+vXD448/3u3XZU/N5yr1ez9U6Pfjjz9GYmIitm3bZvQ2YRX77ShvWyr06+3tDeC/P3j/5z//idTUVP2iRcV+O8rblqX6bWhowLFjx1BeXo758+cD+O/bR0UE1tbWKCwsxMSJE83Wb598u6CNjQ2CgoJQVFRksL2oqAihoaEWSnVvbt++jdOnTxt8U6Iqb29vuLm5GfTd3NyMAwcO9Jq+r169isuXL1ukbxHB/PnzsX37duzbt0//haqVav12ltcUS/Zriojg9u3bynXbnta8pli620mTJqGyshIVFRX6W3BwMGJjY1FRUYHhw4f3io7v1/3MNyEhIUbjCwsLERwcDK1W2+GY7nbWU3nbEhFUVFR0+3XZU/O5Sv3eD0v3u3XrVsTHxyM7OxtTp0412q9av53lbcvS/ZrKc/ccoFq/neU1td8S/To6OhrNV3PnztW/e+SJJ54AYMZ+7+kyGb1I6yUdN27cKFVVVZKcnCz29vZSU1Nj6WgmLVq0SIqLi+XChQty5MgRiY6OFgcHB2XyNjQ0SHl5uZSXlwsAeeedd6S8vFx/icz09HRxcnKS7du3S2VlpcyaNcuil2juKG9DQ4MsWrRISktLpbq6Wvbv3y8hISEydOhQi+R99dVXxcnJSYqLiw0ubdrU1KQfo1K/neVVrd8lS5ZISUmJVFdXy4kTJ2Tp0qXSr18/KSwsFBG1uu0sr2rdtqftFdJU69jcOptvFi9eLHPmzNGPb70k+m9/+1upqqqSjRs3Gl0S/YsvvhArKytJT0+X06dPS3p6utkv0WzOvKmpqbJ37145f/68lJeXS0JCglhbW8vf//73B55XRPRf/4OCgmT27NlSXl4up06d0u9Xqd+u5FWp3+zsbLG2tpb333/fYA64fv26foxK/XYlr0r9rlmzRvLy8uTs2bNy9uxZ2bRpkzg6OsqyZcv0Y1Tqtyt5Veq3LVNXFzRXv312kSUi8v7774unp6fY2NjImDFjDC4xrZrWvxuj1WrF3d1dpk+fbvAF1tL2798vAIxucXFxIvLfyzSnpKSIm5ub6HQ6CQsLk8rKSiXzNjU1SWRkpLi4uIhWqxUPDw+Ji4uTS5cuWSSrqZwAJDMzUz9GpX47y6tavy+//LL+64CLi4tMmjRJv8ASUavbzvKq1m172i6yVOu4J3Q038TFxUl4eLjB+OLiYgkMDBQbGxvx8vKSjIwMo3Nu27ZNfHx8RKvViq+vr+Tm5iqbNzk5WTw8PPSv28jISCktLbVYXlNfozw9PQ3GqNRvZ3lV6jc8PLzD7wdaqdJvV/Kq1O+qVavkscceEzs7O3F0dJTAwEBZu3attLS0GJxTlX67klelfttq708omaNfjcj/fXqViIiIiIiIuq1PfiaLiIiIiIjIUrjIIiIiIiIiMiMusoiIiIiIiMyIiywiIiIiIiIz4iKLiIiIiIjIjLjIIiIiIiIiMiMusoiIiIiIiMyIiywiIiIiIiIz4iKLyILOnDkDNzc3NDQ0PLDHrK+vh4uLC/7xj388sMckIqLeac6cOUhLS9Pf9/Lywnvvvdft8+7atQuBgYG4c+dOt89FpCIusoi6Ydq0aYiIiDC57/Dhw9BoNCgrK2v3+GXLlmHevHlwcHAwS56nnnoK69at63CMq6sr5syZg5SUFLM8JhERqS8+Ph4ajcbo9tVXX7V7zIkTJ5Cfn48FCxbc8+Okp6cbbP/ss8+g0Wj096Ojo6HRaJCdnX3vT4aoF+Aii6gbEhMTsW/fPly8eNFo36ZNmxAQEIAxY8aYPPbrr79GXl4eEhISzJLl22+/RWlpKaZNm9bp2ISEBGzZsgXXrl0zy2MTEZH6Jk+ejNraWoObt7d3u+PXrFmDF1988Z5/EGhra4sVK1Z0OsckJCRg9erV93Ruot6CiyyiboiOjoarqyuysrIMtjc1NeHjjz9GYmJiu8d+8sknGD16NIYNG6bflpWVhR/96EfYtWsXfHx8YGdnhxkzZqCxsRGbN2+Gl5cXBg4ciAULFqClpcXgfPn5+Rg9ejSGDh2Ka9euITY2Fi4uLujfvz8eeeQRZGZm6sf6+/vDzc0NO3bsME8RRESkPJ1OBzc3N4OblZWVybF37tzBtm3b8Mwzz3R4zszMTDg5OaGoqEi/LSIiAm5ubli+fHmHxz7zzDM4evQoLly4cO9PhkhxXGQRdYO1tTV+8YtfICsrCyKi375t2zY0NzcjNja23WNLSkoQHBxstL2pqQmrVq1CTk4O9u7di+LiYkyfPh27d+/G7t278dFHH2H9+vX49NNPDY7Ly8vDs88+CwB44403UFVVhT179uD06dPIyMiAs7OzwfixY8fi4MGD3Xn6RETUR504cQLXr183OU+1+tOf/oTXXnsNBQUFePrpp/XbrayskJaWhtWrV+Prr79u93hPT0+4urpyLqI+iYssom56+eWXUVNTg+LiYv22TZs2Yfr06Rg4cGC7x9XU1MDd3d1o+w8//ICMjAwEBgYiLCwMM2bMwKFDh7Bx40b4+fkhOjoaEyZMwP79+/XH3L59GwUFBfpF1qVLlxAYGIjg4GB4eXkhIiLC6G2EQ4cORU1NTfeePBER9Rq7du3CgAED9LcXX3yx3bE1NTWwsrKCq6uryf1LlizBO++8g+LiYowbN85o//PPP4+AgIBOP//LuYj6KmtLByDq7Xx9fREaGopNmzZhwoQJOH/+PA4ePIjCwsIOj/v+++9ha2trtN3Ozg4PP/yw/v7gwYPh5eWFAQMGGGyrr6/X39+3bx8GDRoEf39/AMCrr76KF154AWVlZYiMjMRzzz2H0NBQg8fp378/mpqa7us5ExFR7zNhwgRkZGTo79vb27c79vvvv4dOpzO4WEWrlStXorGxEceOHcPw4cPbPceKFSswceJELFq0qN0xnIuor+JvsojMIDExEbm5ubhx4wYyMzPh6emJSZMmdXiMs7OzyQ8Fa7Vag/sajcbktrsve3v3WwUBYMqUKbh48SKSk5PxzTffYNKkSXjttdcMzvHtt9/CxcWly8+RiIh6N3t7e4wYMUJ/GzJkSLtjnZ2d0dTUhObmZqN9Tz75JFpaWvDJJ590+HhhYWGIiorC0qVL2x3DuYj6Ki6yiMxg5syZsLKyQnZ2NjZv3oyEhASTP/27W2BgIKqqqrr92CKCzz//3OjDyS4uLoiPj8df//pXvPfee1i/fr3B/pMnTyIwMLDbj09ERH1PQEAAAJicp8aOHYu9e/ciLS0Nf/zjHzs8T3p6Oj7//HOUlpYa7bt16xbOnz/PuYj6JC6yiMxgwIABiImJwdKlS/HNN98gPj6+02OioqJw+PBho6sE3qvjx4+jsbERYWFh+m1/+MMfsHPnTnz11Vc4deoUdu3ahZ/85Cf6/U1NTTh+/DgiIyO79dhERNQ3ubi4YMyYMTh06JDJ/SEhIdizZw/eeustvPvuu+2ex9/fH7GxsSYv1X7kyBHodDqEhISYLTeRKrjIIjKTxMREXLt2DREREfDw8Oh0/M9+9jNotVr87W9/69bj7ty5E1OnToW19f9/xNLGxgZLlizBqFGjEBYWBisrK+Tk5Bgc4+HhgSeffLJbj01ERH3XK6+8gi1btrS7f/z48cjPz8cbb7yBVatWtTvu7bffNrgCb6utW7ciNjYWdnZ2ZslLpBKNmHrVE9EDsXbtWuzcuRMFBQX3fY5Ro0bh9ddfx8yZM7t8zNixY5GcnIzZs2ff9+MSEVHfduvWLfj4+CAnJ8fsv23617/+BV9fXxw7dqzDP4hM1Fvx6oJEFvTKK6/g2rVraGhogIODwz0f39zcjBdeeAFTpkzp8jH19fWYMWMGZs2adc+PR0RE/ztsbW3x4Ycf4sqVK2Y/d3V1NdauXcsFFvVZ/E0WERERERGRGfEzWURERERERGbERRYREREREZEZcZFFRERERERkRlxkERERERERmREXWURERERERGbERRYREREREZEZcZFFRERERERkRlxkERERERERmREXWURERERERGb0H3MrlIo1s7rwAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1000x800 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Utiliza o módulo \"Tower\" para calcular o perfil médio\n",
    "S2, *garb = profile(zm, Tav=600, Cat=2)\n",
    "\n",
    "# Velocidades e forças de arrasto médias sobre 10min\n",
    "Vm = S1*S2*S3*V0\n",
    "Fm = 0.613*(Vm**2)*CA\n",
    "\n",
    "# Visualiza perfis\n",
    "plt.figure(3, figsize=(10,8))\n",
    "\n",
    "plt.subplot(1,2,1)\n",
    "plt.plot(Vm, zm)\n",
    "plt.axis([0, 40, 0, H])\n",
    "plt.title('Velocidade média sobre 10min')\n",
    "plt.xlabel('V (m/s)')\n",
    "plt.ylabel('z (m)')\n",
    "plt.grid(True)\n",
    "\n",
    "plt.subplot(1,2,2)\n",
    "plt.errorbar(Fm/1000, zm, xerr=[Fm/1000, 0*Fm], fmt='>')\n",
    "#plt.plot(Fm/1000, zm)\n",
    "plt.axis([0, 0.4, 0, H])\n",
    "plt.title('Força média sobre 10min')\n",
    "plt.xlabel('F (kN)')\n",
    "plt.ylabel('z (m)')\n",
    "plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A força modal média é obtida do produto interno com a forma modal:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Força modal média: 205.8N.\n"
     ]
    }
   ],
   "source": [
    "Fmk = np.sum(pk1*Fm); \n",
    "\n",
    "print('Força modal média: {0:5.1f}N.'.format(Fmk))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "O valor da força modal média está relacionado com a escala da forma modal, e não deve ser avaliado pelo seu valor absoluto. Ele será usado para calcular a resposta média do deslocamento e essa sim terá um significado físico claro.\n",
    "\n",
    "Já o cálculo do espectro da parcela flutuante da força modal demanda um algoritmo mais elaborado, de modo a tornar eficiente o duplo somatório envolvendo a função de coerência. Abaixo está o procedimento com comentários."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAIhCAYAAADw5Oi/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7wsRXX3j39W9cze+xxBBJWrCEpAQYGoBAE14AXyIBIiGp+IBogYFNSI4k+RRAFR8BLR/OItJkEwSMzzJIqaGBVF0Sd4l3hDvCQgRkQuIiCcs/dM1/r+UbWqVnVX9/TMnn3OPmfPer1mT093dXX1ZVe9e92KmJkxk5nMZCYzmclMZjKmmM3dgJnMZCYzmclMZrJlygwiZjKTmcxkJjOZyUQyg4iZzGQmM5nJTGYykcwgYiYzmclMZjKTmUwkM4iYyUxmMpOZzGQmE8kMImYyk5nMZCYzmclEMoOImcxkJjOZyUxmMpHMIGImM5nJTGYyk5lMJDOImMlMZjKTmcxkJhPJDCK2QHnmM5+JdevW4de//nVjmec973no9/v45S9/iUsuuQREhBtvvHGTtTEnN954I4gIl1xySVi3Wtr2z//8z3jAAx6Agw8+GNdeey1OO+00vOENb9gkx95zzz1x8sknb5JjrSbJPQ/Tlttuuw0HHnggdtxxR7zrXe/CNddcg4c//OErdrwtQa699locfvjh2G677UBEeOc737nJjv3Zz34Whx56KNavX48HPehBOPnkk3Hrrbd23v/222/Hy1/+cuy5556Yn5/HTjvthKOPPhq/+tWvQpmrrroKL3jBC/DIRz4S97vf/bDbbrvhuOOOwze/+c1afUcccQQe/ehHNx6LiHDuueeOfZ5rSXqbuwEzGV9OOeUUXHHFFbj88stx+umn17bfdddd+OhHP4pnPOMZ2GmnnXDMMcfgy1/+MnbZZZfN0Np2WS1te/vb345Xv/rVWFxcxJFHHokHPOAB+MxnPrNZ2zST5ctHPvIRbLfddnjta1+Lt771rXjta1+Lt73tbZu7WZtVXvCCF+Dee+/Fhz/8YWy//fbYc889N8lxr776ahx99NE45phj8LGPfQy33norXvOa1+CpT30qvvGNb2B+fr51/5tvvhlPetKT0Ov18LrXvQ577703br/9dnz+85/H0tJSKPfe974Xd9xxB17+8pdjv/32w2233Ya3v/3tOOSQQ/DpT38aT3nKU1b6VNeW8Ey2OBkOh7zrrrvy4x73uOz29773vQyAP/GJT2zilrXLDTfcwAD4Ax/4wOZuyqqSPfbYg0866aTN3YzOcu+992bXW2v5vvvu61zP7HkYT5qu+7jS6/X4tNNOm0pd48jv/M7v8H777ceDwSCs+4//+A8GwO95z3tG7n/cccfxbrvtxr/61a9ay/3yl7+srbvnnnt4p5124qc+9anJ+sMPP5wf9ahHZeu57bbbGACfc845I9u2lmVmztgCpSgKnHTSSfjmN7+J7373u7XtH/jAB7DLLrvg6KOPBpA3GVx77bV4xjOegR133BHz8/PYddddccwxx+B//ud/ALSrmqsqvp/85Cf4kz/5E+y9995Yv349dtttNxx77LHZtlWl2rYvfOELIKLsR78x/dM//ROOOuoo7LLLLli3bh323XdfnHXWWbj33ntrx/jqV7+KY489Fg984AOxsLCAvfbaC2ecccZE7b/pppvw/Oc/P1y3fffdF29/+9thrR15roPBAK9+9aux8847Y/369XjiE5+Ir33ta7Vyt912G04//XTst99+2GabbbDjjjviKU95Cr70pS+NPIbI5ZdfjkMPPRTbbLMNttlmG/z2b/82/v7v/z4pc/HFF+PAAw/EwsICdthhBzzzmc/ED37wg6TMySefjG222Qbf/e53cdRRR2HbbbfFU5/6VADuOXjpS1+K973vfdh3330xPz+PSy+9FADw4x//GCeccEJynd797nePbPc49+LXv/41zjzzTDz84Q/H/Pw8dtxxRzz96U/H9ddfH8qcd955ePzjH48ddtgB97///fHYxz4Wf//3fw+uzDtorcVb3/pWPPKRjwx1nXjiieH/oU3OPfdcEBGuvfZaHH/88bj//e+P7bbbDs9//vNx2223JWW7Prdt1/3KK6/Ecccdh4c85CFYWFjAb/3Wb+FFL3oRbr/99tZ2yv/acDjEe9/73vB/tSnk5z//Ob7+9a/jj//4j9HrRQX4YYcdhn322Qcf/ehHW/e/8cYb8fGPfxx/+qd/iu2337617I477lhbt80222C//fbDz372s8lOwMuee+7Z2D994QtfWFbdW6rMzBlbqLzgBS/Am9/8Zlx88cV4xzveEdZfd911+NrXvoazzjoLRVFk97333ntx5JFH4mEPexje/e53Y6eddsItt9yCz3/+87jnnnvGbsvNN9+MBz7wgXjzm9+MBz/4wfjVr36FSy+9FI9//ONx7bXX4hGPeETnuh772Mfiy1/+crLuxz/+MU455RQ86lGPStY9/elPxxlnnIH73e9+uP766/GWt7wFX/va13DVVVeFcp/+9Kdx7LHHYt9998VFF12Ehz70objxxhsTU0XX9t9222047LDDsLS0hPPPPx977rkn/vVf/xWvetWr8F//9V94z3ve03puf/qnf4oPfvCDeNWrXoUjjzwS3/ve93D88cfXrrnYd8855xzsvPPO+M1vfoOPfvSjOOKII/C5z30ORxxxROtxXv/61+P888/H8ccfjzPPPBPbbbcdvve97+GnP/1pKHPhhRfi7LPPxnOf+1xceOGFuOOOO3Duuefi0EMPxde//nXsvffeoezS0hJ+//d/Hy960Ytw1llnYTgchm1XXHEFvvSlL+H1r389dt55Z+y444647rrrcNhhh+GhD30o3v72t2PnnXfGpz/9afzZn/0Zbr/9dpxzzjmNbe96L+655x488YlPxI033ojXvOY1ePzjH4/f/OY3+OIXv4hf/OIXeOQjHwnADT4vetGL8NCHPhQA8JWvfAUve9nL8POf/xyvf/3rw3FPO+00vP/978dLX/pSPOMZz8CNN96I173udfjCF76Ab33rW3jQgx7Ues0B56v0nOc8By9+8Yvx/e9/H6973etw3XXX4atf/Sr6/T6A7s9t23X/r//6Lxx66KF44QtfiO222w433ngjLrroIjzxiU/Ed7/73XCsqojp8NBDD8Wzn/1snHnmmSPPqSzLGnDlxBgDY5rfSb/3ve8BAA444IDatgMOOAD/8R//0Vr/l770JTAzdt11Vzz3uc/FJz7xCQyHQxxyyCG48MILceihh7buf9ddd+Fb3/pWoylDP9MiZVnW1n30ox/F4uJi+G2txYtf/GL893//d3jG1pxsZk3ITJYhhx9+OD/oQQ/ipaWlsO7MM89kAPyjH/0orPvABz7AAPiGG25gZuZvfOMbDICvuOKKxrrbVM0YoeIbDoe8tLTEe++9N7/iFa9orbPatqr88pe/5Ic//OH8qEc9iu+8885sGWstDwYDvvrqqxkAf/vb3w7b9tprL95rr714w4YNje3t2v6zzjqLAfBXv/rVpPxpp53GRMQ//OEPG+v8wQ9+wACS+piZP/ShDzGAVnPGcDjkwWDAT33qU/mZz3xma9v/+7//m4ui4Oc973mNZe68805et24dP/3pT0/W33TTTTw/P88nnHBCWHfSSScxAL744otr9QDg7bbbrqZe/r3f+z1+yEMewnfddVey/qUvfSkvLCyE8l3MGU334g1veAMD4CuvvLJx36qUZcmDwYDf8IY38AMf+EC21jJzvDenn356Uv6rX/0qA+Czzz67td5zzjmn9d5edtll2f3antu2656r46c//SkD4I997GOt5ZndfXvJS14yshyzM7UBGPkZpfKXa/HlL3+5tu3UU0/lubm51v0vvPBCBsD3v//9+bjjjuNPfepT/C//8i98wAEH8MLCQnLtcvK85z2Pe70ef+Mb30jWH3744cs6t5e+9KXc6/X4k5/8ZOvxt2aZmTO2YDnllFNw++234+Mf/zgAR9OXXXYZnvSkJyVvklX5rd/6LWy//fZ4zWteg/e973247rrrltWO4XCICy64APvttx/m5ubQ6/UwNzeHH//4xzX1+Dhy77334phjjsHGjRvx7//+73jAAx4Qtv33f/83TjjhBOy8884oigL9fh+HH344AIRj/uhHP8J//dd/4ZRTTsHCwsKy23/VVVdhv/32w8EHH5zsf/LJJ4OZa2+SWj7/+c8DcFEzWp7znOck6l2R973vfXjsYx+LhYUF9Ho99Pt9fO5znxt5Pa+88kqUZYmXvOQljWW+/OUvY8OGDbWIkN133x1PecpT8LnPfa62z7Oe9axsXU95ylMS9fLGjRvxuc99Ds985jOxfv16DIfD8Hn605+OjRs34itf+Upj27rei3//93/HPvvsg6c97WmNdQHunj3taU/DdtttF56T17/+9bjjjjtCVIDcm+r1OPjgg7Hvvvtmr0dOmu6t1A90e2615K77rbfeihe/+MXYfffdw7Oxxx57NNaxHPnEJz6Br3/96yM/p556aqf6mswno8wqYi58yEMegn/5l3/B7/3e7+H444/Hpz71KRhj8Na3vrVx39e97nX40Ic+hHe84x143OMeV9u+1157Zc/ps5/9bGub3vzmN+Nd73oX3ve+9wXT8VqUmTljC5ZnP/vZeNnLXoYPfOADeNaznoVPfvKT+OUvf4m3vOUtrfttt912uPrqq/GmN70JZ599Nu68807ssssu+NM//VP8xV/8RaM6tEle+cpX4t3vfjde85rX4PDDD8f2228PYwxe+MIXYsOGDROd23A4xLOf/Wz86Ec/whe/+EXsvvvuYdtvfvMbPOlJT8LCwgLe+MY3Yp999sH69evxs5/9DMcff3w4ptijH/KQh0yl/XfccUfWk33XXXcN25tEtu28887J+l6vhwc+8IHJuosuughnnnkmXvziF+P888/Hgx70IBRFgde97nUjB4ku5yxtyUXE7LrrrrjyyiuTdevXr8f973//bF3VOu644w4Mh0P89V//Nf76r/86u0+b7b7rvbjttttGqo+/9rWv4aijjsIRRxyBv/3bv8VDHvIQzM3N4YorrsCb3vSmUN+o66HNQG3SdG+l/q7PrUjuultrcdRRR+Hmm2/G6173Ouy///643/3uB2stDjnkkIn/35pkv/3262zOaBN5xnP/I7/61a+www47dNr/aU97WmKm3WWXXXDggQfiW9/6Vna/8847D2984xvxpje9CS996UuzZRYWFnDQQQfV1rc9p5dddhnOPvtsvP71r8cpp5zS2vatXWYQsQXLunXr8NznPhd/+7d/i1/84he4+OKLse222+IP//APR+67//7748Mf/jCYGd/5zndwySWX4A1veAPWrVuHs846K7y5a/sfkO8ELrvsMpx44om44IILkvW33357oj0YR0499VR87nOfwyc/+UkceOCBybarrroKN998M77whS+EtzgAtbwZD37wgwFgpHNc1/Y/8IEPxC9+8Yva/jfffDMAtNrNpRO85ZZbsNtuu4X1w+Gwdk0vu+wyHHHEEXjve9+brO/ir6LPWYNXri1N51I9j7a3xOq27bffHkVR4I//+I8btSEPe9jDGuvrei8e/OAHj7yvH/7wh9Hv9/Gv//qviSbqiiuuSMrp61GFr9z1aJKmeyv1d31uRXLX/Xvf+x6+/e1v45JLLsFJJ50U1v/kJz/p1MZxZa+99uoEUeecc05rPgXJxfDd734XT3/605Nt3/3udxtzNYjkfClEmDkLMeeddx7OPfdcnHvuuTj77LNb6x9HrrzySrzgBS/AySefjPPOO29q9W6pMjNnbOFyyimnoCxLvO1tb8MnP/lJ/NEf/RHWr1/feX8iwoEHHoh3vOMdeMADHhCIfqeddsLCwgK+853vJOU/9rGPZeuoxnj/27/9G37+859PcEbAX/zFX+ADH/gA/u7v/i6rrpbOtXrMv/mbv0l+77PPPthrr71w8cUX12BokvY/9alPxXXXXVd76/ngBz8IIsKTn/zkxmOIM+SHPvShZP3/+T//p+bUlWvPd77znZrDaU6OOuooFEVRAxAthx56KNatW4fLLrssWf8///M/uOqqq0IUwCSyfv16PPnJT8a1116LAw44AAcddFDtU9W8aOl6L44++mj86Ec/ajUhERF6vV7y5rphwwb8wz/8Q1JOnO2q1+PrX/86fvCDH3S+Hk33Vu591+e2TaZRxzgyLXPGbrvthoMPPhiXXXZZ4rD4la98BT/84Q9x/PHHt+7/+Mc/Hg95yEPwmc98Jtn/5ptvxre//W0ccsghSfnzzz8f5557Lv7iL/6i1ZF3XPnP//xPPOtZz8JTnvIUvP/9759avVuyzDQRW7gcdNBBOOCAA/DOd74TzNxJtfav//qveM973oM/+IM/wMMf/nAwMz7ykY/g17/+NY488kgArrN6/vOfj4svvhh77bUXDjzwQHzta1/D5ZdfXqvvGc94Bi655BI88pGPxAEHHIBvfvObeNvb3jbSjJCT//t//y/e9KY34dnPfjb22WefxH4+Pz+PxzzmMTjssMOw/fbb48UvfjHOOecc9Pt9fOhDH8K3v/3tWn3vfve7ceyxx+KQQw7BK17xCjz0oQ/FTTfdhE9/+tOh0+/a/le84hX44Ac/iGOOOQZveMMbsMcee+Df/u3f8J73vAennXYa9tlnn8bz2nffffH85z8f73znO9Hv9/G0pz0N3/ve9/CXf/mXNZX1M57xDJx//vk455xzcPjhh+OHP/wh3vCGN+BhD3tY1otcy5577omzzz4b559/PjZs2IDnPve52G677XDdddfh9ttvx3nnnYcHPOABeN3rXoezzz4bJ554Ip773OfijjvuwHnnnYeFhYVld7p/9Vd/hSc+8Yl40pOehNNOOw177rkn7rnnHvzkJz/BJz7xidaBv+u9OOOMM/BP//RPOO6443DWWWfh4IMPxoYNG3D11VfjGc94Bp785CfjmGOOwUUXXYQTTjgBp556Ku644w785V/+ZW0AfsQjHoFTTz0Vf/3Xfw1jDI4++ugQnbH77rvjFa94Rafz/shHPoJer4cjjzwyRGcceOCBeM5zngMAYz23TfLIRz4Se+21F8466ywwM3bYYQd84hOfqJmgpiX777//1Op6y1vegiOPPBJ/+Id/iNNPPx233norzjrrLDz60Y/Gn/zJn4RyP/3pT7HXXnvhpJNOCmHJxhi84x3vwHOe8xwcd9xxOO2003Dvvffi/PPPx9zcHF772teG/d/+9rfj9a9/Pf7X//pfOOaYY2o+OFXg6Cp33303nv70p2PdunV41atehW984xvJ9v3226/R7LdVy2Z06pzJlOSv/uqvGADvt99+2e3VCIjrr7+en/vc5/Jee+3F69at4+22244PPvhgvuSSS5L97rrrLn7hC1/IO+20E9/vfvfjY489lm+88caax/Kdd97Jp5xyCu+44468fv16fuITn8hf+tKX+PDDD+fDDz88lOsSnSGe7rnPHnvsEfa75ppr+NBDD+X169fzgx/8YH7hC1/I3/rWt7Le/l/+8pf56KOP5m233ZYB8F577ZV40ndtPzPzT3/6Uz7hhBP4gQ98IPf7fX7EIx7Bb3vb27gsy9Z7xMy8uLjIZ555Ju+44468sLDAhxxyCH/5y1+uJZtaXFzkV73qVbzbbrvxwsICP/axj+UrrriCTzrppOQatMkHP/hB/p3f+R1eWFjgbbbZhh/zmMfUrsvf/d3f8QEHHMBzc3O83Xbb8XHHHcff//73kzInnXQS3+9+98seAy1e/jfccAO/4AUv4N122437/T4/+MEP5sMOO4zf+MY3JmWq92uce3HnnXfyy1/+cn7oQx/KALjX6/ExxxzD119/fShz8cUX8yMe8Qien5/nhz/84XzhhRfy3//939cigsqy5Le85S28zz77cL/f5wc96EH8/Oc/n3/2s5+1XGUn8sx+85vf5GOPPZa32WYb3nbbbfm5z31uLfFR1+e27bpfd911fOSRR/K2227L22+/Pf/hH/4h33TTTZ0TI7Xdt5WWz3zmM3zIIYfwwsIC77DDDnziiSfWrpE8F7mIpSuuuCI819tttx3//u//fu2ZHRVxUS3bNdmUtKvp8/nPf37i67IlCzF38JqZyUy2Ejn55JPxtKc9Dc9//vM3d1NmMkX5whe+gDe+8Y0jPepXQs4991ycd955uO222zr7T8xkJluLzHwiZrIm5Ctf+Qq+9KUvYXFxEf/8z/+8uZszkynJzTffjM9+9rO46aab8LnPfa51UrqZzGQm05eZT8RM1oR87GMfwzve8Q5sv/32jaGHM9ny5Be/+AX+6I/+CPfddx+e97znTRwNNJOZzGQymZkzZjKTmcxkJjOZyUQyM2fMZCYzmclMZjKTiWQGETOZyUxmMpOZzGQimUHETGYyk5nMZCYzmUi2esdKay1uvvlmbLvttiMneZnJTGYyk5nMZK0LM+Oee+7BrrvuOnJelC0i2dS73/1u3nPPPXl+fp4f+9jH8he/+MXO+/7sZz/rNJXt7DP7zD6zz+wz+8w+8dMl2dqq10T80z/9E8444wy85z3vwROe8AT8zd/8DY4++mhcd911I2fxA4Btt90WAHD9N3bF/bYBlsp5fPXbb8IB+58FW2zEkIGNXGAjF1jkHu61c1jkPjZyHxt4DhttH4vcx33lHJa4h422j41lH4u2wJLt+Y9bLi1hYAsMygJDa2CZULLBsDQorQEDsNbAWsBaApjAlsDsPxZgEGAJzAAs+Q8AJoABkt+WQAyQLFu47WFdXE/sfpN/NMgils9tD98MMDBvCGc+eU+8/aobMRhwpYz6Rrof+d+xbm48Rmw/h0fY1en3sVzbB/DLVtUNtxzKwe0L+PbIdmkb/LWCKp+U4aRMUq5WJv7uzRc46c8fh0vf+A0MNw7z+7Ut24b1ud92xHYgnYmxVt5WC4+sL7tfU/1N7ahIb76Hk///v4dLXvbv4Zp1agcA2Ia2jFFFq7ScU/sBu7Wrvlu34/XW9fCCv/0DXPynV2C4oT0l+nLaM1XZzAGBvXV9vODvj8fFp3wEww2DzdqW1SpDDPD/8MkwfrbJqoeIiy66CKeccgpe+MIXAgDe+c534tOf/jTe+9734sILLxy5v5gw7rcNcL9tCf0hYf369dh2WwNbGAwY6LEJn4IJG5nQtwZ9JhS2QM8WKJhwX9mDsQUKa9CzPZiyD7I9kF+3ZHugsoBhA1MWKJlgrIGxBqUllB4srCVYa8AcYcJ6oADDf/vfHgbcwOp+C0jEb7XMFUBIyiAFjQxQJAO8dYNxz7hr1ptbgCU9gFfKV8Egu53T44+CCK5DhDu2AgUPEbFNVchQ2xDLhm9l5Woc6AvUYaNWT/zdLwqsX78e/WIe8BNAUQ4MmiACermtHJxnU3UQrZRJBm+DCqSMgAigYRBtGJCKpvIAqBkk+qbnrpmZAyijQqWGtoVjdhggW47fKm3n1CoTDtpFN5Dok79m1Ac6mWtXAURUn+1NLH3qq2u2WZuyekW6tA7P1KqGiKWlJXzzm9/EWWedlaw/6qijcM0112T3WVxcTGZsvPvuuwEAG4dz6A8Nlso5V3c5D8vAAATLBsQGxAV6KNCzPfS5wMD2MM8GbA1KvwwYWC5g2YBBMCAYNhiwAcGgIMKQDXrktBIlCCWMYwEQShAsGbBxWgn3TWB2y2wJLDeOyH0KRK2EAfSTT+EXueLsVoRvolANyA/WcH00WQCmQRthARgCMaNv3BHmev64FTgAqqBAdZCwelt1nwpI2CqoZLQRUBABRJDQoJBsHwESOW0EKmVy5bRWQ2ki+vNuEOzPF0k5spk6x13O/baZf/Y2kEgGqGJ8bUcoNz1tRH+hl3w37Ny8rbM2YsJBbBVqI/rresn3SrVl6rIZOWLsa7YWhQFs6FZ0VSebuvnmm7HbbrvhP/7jP3DYYYeF9RdccAEuvfRS/PCHP6ztI3nsq3L55ZePNUX2TGYyk5nMZCZrUe677z6ccMIJuOuuu0bOTLpFoFhVpcLMjWqW1772tXjlK18Zft99993Yfffdse/+Z2HbbQ3Kch4/+O5bsM+jXwMqFp1mgAkDOFPDEgiL3MeAC2zkPhat84+4z85j0faCn8SS7WHRFtho57BY9rBoexiywaA0WOIehtZgaAuU1mBoDUr25gzrNBAlExjktRBi4khNG2LeCFoIVv4RYuYQc4SYLMTkwXo9RU2DNl8gY8rImDzmDOH/d/ie+MvP34DBUL155zQSNqNhqJTT3519I5q0EVDllVkDfp/ErAF01kgk+1Q1Em3aCH+M/rzBSWc/Dpe+6RsYbCyTcmOZNUZpCGoagzHMGr6tneuulg/lWt5ux9BI9Be8T8SffRqDDUvNdY5671mNGokV0kb01/Xwgr99Ji7+049i0MUnYpntmapsptfX/roeXvD3z8LFp/zLeNdsDcmAu/uKrGqIeNCDHoSiKHDLLbck62+99VbstNNO2X3m5+cxPz9fW89mI6wx4f/fFksoikUUAMCEvjc1MBuAByAUsLYPa/oouY95O0Bp59HnoVtv+1iyczDWojA9FGUPQ9sDUwGyJZh6YCpRUgFLzrGyJEJJBiVZsECF8RAB92EPENY4yHBaewoOlyAPFkTBXJF8M4P8ftHUwSBvRqiZEiqmDBnEE5DwsmQZi7buHOkPkcJB1eehChCZeiYCiY5OlmE7MBlIjDJ/5GAAwGDRYrBka9vHAolRjpPLAYlxnSxz++T2G1U+1xYvg41DDBZtOwxMwazRdPxOsopAAgAGG4ZbHkQAo4FwBcVds5ljZU6GY0DEqk42NTc3h8c97nG48sork/VXXnllYt7oIjECw9moXeSE+wCAAaMAo08WfSoxhxILZoAF8h8zCL/nzQB9ctvnzRBzZoj5YuiXS/SMxZwZomcs+qZEv/AfY/2yRWEYhbHoGQtjLIxhFIX7JsMwxH4ZIL8O4QM3AhqATfVbLZP7LdvZb4dXasBvZ0JanmKZsA/gfDXUOl1fUqcuI/tUyoCotk7X3ySurVTbJ4hRdQMBtkL74fYPdUkZ/e2vWbJPrkzb9ibx29lQbV2yr142FNqcPUb1dzWuu7KdqnUnG9v3ze6T229U+Vxbavu11DnpfuMcv01azqn5YJN1tzTJsUZXOv06Z7ImZVVrIgDgla98Jf74j/8YBx10EA499FC8//3vx0033YQXv/jFY9VzH/fQY4L1EDGAgYFBAYbxr6omvLJ6SmfA+n82CwNLA+/ZDufsWKIRw4x/zTVUYKjfJKwBjAURg8hFbcAakLGwTAAsiAiWvHnDGt9hsTTJC7m3IUNgOO1D/HYlieNgSQZgp8KQvcHWf/tzIuNfUAyCRoARdvEwIlqOWBurItV1rm6qlXcOndJmvZ93yiRUzgZew8JygcGW4z5y9uwhS+oWrY13xGSSMu76cXBC9XXLoBLqUfvoMm3bffvchVbfIYrDLbOhqJGo1l3dR+qslg+PQ7WsSd/IK9uJKL6F63oB9SA01J3bR/YD8m+5ufK5ttT2M82ahVy7uuyXOT4wgVai5ZymLeSf9ylXuvk1Em33cCZbhKx6iPjf//t/44477sAb3vAG/OIXv8CjH/1ofPKTn8Qee+wxVj0buY85Blgggl0Ip4x+jSDhxUIBhP+2xsTfFTH+ddpYhlxmA8aQGMb7SZiihCGDkoDSEgwTSnLhnyJM1pk35I1a3sBdI9tBgpHAgYvQ4PAW3AYSso44vrEHLQL0wL0MkCCoNqs6vDbCQUwdJAIc+DaNBRJStgIS8HW7Ah1AoWk75FhKWgChE0hIm4A6SOhttbLtIJHItEAit++o8uigkRjDRDHpfq0w03iMMUFiNQzcWlZDe2YgsUXLqocIADj99NNx+umnL6uOjbaHwhYw3AcALLLTQRTMARiaQKLU+nINEgAM2axGwtjCF4/fQ2KQdaYKIkbpNRBaK0FMKAEfmumAwgIw1iklADU4y6BeIgsSYD88CxxATqsFJNgva02EHNeoMgywT4AV/A5YbZM6gWaQEHCpgAT8wDoSJLQ2Ae0gAShNhtdyAEqr26SVkHoAsO0AEkA4hn9A/EWfACSkLr1e6kwG/BathKj2ZTBV22qD5qgBcVogAWT3mQgkRg1AWxFIrIg2YrXIDCS2WNkiIGIasoHnUTAFiNjIfVjuYw7ec74BJCwYfSrTyioaCRRAYa33q7AoYGHgjlMEs4bTQIh5Q7QSpTUwTG67d8AEbNBKuBwPXhNhCdaPaPGN3g+9GZAAq+G5K0j48yMbgSH4KJB+89eah4xWwqQg0gQSolWpgQT5NVMCCbCUiSDRZN4AlFZCxNfFNl6zVpBInhc/yIwLEm3L44AEkA6mXUEiN9hNAyTa9mmTGUhsvWaNmWyxsmYgYiP30WNCYfuYAzDgHogLNXKiBhKAG/znZITVUgWJJt+IYNYoPEhwTSsx9CBBQM1XAqZauQXDhCjPkSCByUECAgHyUixOmkrrUNNK2AgCWruBxGwSWxeAJW1pWq4jSMiJdAKJUMsEWoma1iHd5ioLNOIfhBUCCd/e5JiNPhVbBkisFo0EgPFgYgYSy2zDTBuxJcqagYj77ByMNehzgTkAi14TUbIJAyYAVH0hCq/fz4GEMbYVJBw09FCQ0zwYdq6cWa0EG1BYz8FXgmxq3gAMrHPIgCkAJobDnimBRE57kNFEAFobotYZ1xHoOiD1jAkSCRB0AAmW0M8uIJEAAhq1EpOAhGgrgoRtKwAS7kFr1kpMChJJ+8cACWAqDpcTOVt2AQlgZbUSm8jZcgYSM1ktsmYgYiP30bMGA9vH/QHca+ewYAcoaeicJFXIk4XTEBR+sNIgUaj1AACzCCP/eBWQMP6fIXzbwgFFg1aiZBMAQ2sliBjDsvB1WxAZWLKwpfEdtztwI0iEl/QOIOHNGDoyQ2sigmYhaCDU7xDUQoDhRAMh+48DEqiAw3JAAoALk/UDfOJwWQEJV9a3OUzeNSZIBE2E+p42SMhxgemDxChHy1y9of4xtRKTgESTdBmEVtq8MQ5ILGPgXpHQz9UgM5DYomTNQMSS7WMju4mzAGDR9gHup06TcE6UfSqD5kGDREHsR9joI2FEf23csmEHGYasOwbg1zk/CaeNaNZKlNZEEEnMGaXLdBlUvW4U6wYSSmXfASTCStFKKIiA7/NqGghpksCFMkUkgNEGEqTr9WvDuuWBRNA0GPZ2oIrDpT7xJq2Efla6mDZEapqMbiAh96UVHkaZN7YkkMhI4wA+aehnl/3Hacc0ZDVoAERWU1tmskXImoGI+2wfKHuY9yPiRu5jaOexQAQYuDwQUFm6CAlIiJ9EnyxMzUHCS8ZPwoCxyD0MJEqDozaiTSshERxV8wZKAxTWjyXuQBwcLpcHEq7jpVQbYRBJwWslxGkS6lOLyDAAs4+y8E0dCRJ6PTwY+EF/KiAhdRh/xssxb8j1agIJuaRVTUQbSOj9/YAVtBJt8NBm3lgJkADSgabatlw7tKwFkNiE/hFTl9UAEjNtxBYjawYiFm0fBRcovSZig+1jzg5dUiedSEoLRROGSFMeCVUgAgRbLIJRsMVG9CMssPaRGOErocwboVmWMFQHtBBPiREgwe0g4aDBD8fs17HSRAB1c0YNHPyPAAmjQaLq+1AFCZCO/BgPJKD384BQ85MAGrUSidPlCJBwBStQAAUjo0Ciun8VJPT23LK0B+gOEg3SChJyQVbS4bKtPUnZKYAE0BkmVhQkVpPMQGImHWUNQUQPxvYw5/M3LHIfQ1ti3lCrc6SYMJwGwj3QOvwT1fBPVwAFMzbaPgpjsZH7wbxRkMXAFlhEbyythAgRw88NHkCCyE03ngUJBtKEVCNAgv2Aykj8KYAIEHFAr2sl8tqGPEhI86q+D7JejgG1/7ggUQv/VCABIDFvjNRKKD+JHEgkeSTUswCsMEhIG6rbuoBEgzZCnqupgQSwbIfLFQOJUXXUqlwhkFht/hEzkJhJB1kzELFke0DZB/vX6kXbhxEAyJghRAoPCqILqIZ/ulErBYmCLDZaDgAB6+sxcIDg58boscXQluhRgSEX6JHFoi2yWgnAA0RZAEUJ8h1wqU4gDxIAQN1BQsZNC8CwS00t/RMhyRMRFhjBKTIJDU2W6yCROHAqIHDHXTmQkPOOcODvaZtWQsr6gX8kSMi+3lzWnvVyBEj4+htBovp7NYJE0/5NdTSUn4FE265bacTGTFa1rBmI2FD2wbYH8nkbNpQ99MidfslGXu4bNRIAoE0Y0ayBBCQMWRRsvTaiB1jAGIuNzIl5Qz4DFM68ISYOsliqaCV02mwAMDbXuO4g4VYwsiABP7hD+l0Odv2gidDgQGofRpoyuwoIywUJBTBjgwQQ5toIQKBMFtG8gbxWola2HSQabk83kJC6ujhcSllVprasNQHTAAmpKxSYEkjkZHOABNAJJtYMSGxumWkjVrWsGYhY4gLG9gAxZ9g+SjtECYMFMwBKuLkwgNDhG2Nj9IUXl8HSwvoBWKI2oqbCZayUbcZYGO7XzRtso1bCQ0QBG00ciL4Srl5n3gAQvrWZQzdcgwSzygLpQcLl2HJrcyARqvLVsxxHmS4CALDSSmhtht7uoawGEhpALCqg4EbwBBp8RzwRSDDiwO9PsdG8AbSGgnYCiWDSIAUK6AYSQH2bXgcsz09iuSCh6woFGkBCH79pX11HR1mx8E+RjlqJNQESq0EbMQOJVStrByJsD1T2IBNwLdkeBnYOc+JZIOBAtl0jQSXg8znofBGFH1kLlY3JRXVEoHDaCRcGOuACAyq9w2ddKwEg+EoACOYNAM6GUSCYNlKJIEHMMAVUZkugC0hUNQoibLgOCBWoqC7rSb1qIJH4Taj9lC9FFRpAaXrscUACiB2sjtyQc09NFghaiaa5N0aBRHxmKus3BUjI8arbVhokgG5aiXEG1HHySIwa/Dc3SGwimYHETDaVrB2IKAuQLVyqawCLtgCVldM3iAO0irCoCZUAq3kxEL8tEdwcGjFfRMEWGz0obLR9r63ouXk2DGMj92paCalPp8124qAnDB4NIOE6NZdHIgEJed33g3gWJNgPvNb/3/paWSIUDAWA0I6UQStRhYmuIKE0E00g4fafDCSCiaISuZEzbwDIO12OAgkgDuIAakmnlgMSsn8bSEgZvW91WWQlQMJduOWBRE4jMRZ0dAAJoNuANG2Q2ETaiBWR1daemawKWTsQYXsg20PB8Xc2TNO4ybSSsL2sf4RztgzJqMLc1LLdxt9aM6HMG6KVMGxrWglX3pk3XBOiRsKJunUVkIhdlDsJW5oYfRG2CzzUQUJ8JkJ0htLMOw0De0igdFZPi3Rgr2oXRoGEiXWAtPah0naK2oXlgIR2uAxn7AEhgEUup0QbSIRtKUhQFQS6gATQ2eHSPXIj4KENUqrLmxIk5DxH7T8t/4i29uRkCwWJrdLRcqaNWHWyZiCitIShNVjyRDAoDcgYwNYvQXCaFBMHbB4kAECFfgIIabENU1z2fhJV80bhU1yJVkI0H8a6QUbMG1IvANdeUUpUQMKa+M89hPyvGTBb7yUR+EAa7wZLwwlIhIEfaXQGi78DCwwwwBQdIBUEjAQJ0TqIBkBAQTQficNlGpkRoaIBJMKg2AAScqba4ZJjebcrR5AIg/4IkABQy2wpGn7S7ZLBHO0g4c+91fwwiZ9EV5DQspIgIfvXjjkDCVfpKgOJzS0zkFhVsmYgYmCdOUPMA0MU4LKAzXReBdQ/rIEbyCv+EYY8ALCfppuRzqvhR7Z+dSYqOQZZFNyDYZtoJRZtH4VXo4t5A0D4dsuaaHpgJgUWcL8Th1CDEhYURjTFEQzAUitIyMDKhDiABwdKZd6oOlbKZaiCBKECFRSjMbJOlgBIeTao9RokohYo1uPaXQEJTytVh0u5bTnzRitIyDHE3EOImgKiFBbcDdq8IBEeiwaQCNsrA+cMJLZIH4mt0j9iJqtG1gxElNZgUBbo+c59qSzA6AEq9yPgtBCLlcsiTpGwQGHYA4CPwqCouag7WiKARM5PImopolZC+2EU3ODkWfZgySbg4KJLCJbJmzYKMLPPQGnBftS2MGGwTbQSOZAQ2AiDGaKfhICCmDcs1SMzND/J+KAH+ET7QJBojKSs2r8tq2XbPBt1KMiDRJt5oxUktNbCg0RNtHmsZrrApgWJXL1amswa1W1YAZDIScdBa4sDiU3oH7HVgcRMG7FqZM1AxMAawBoM/Ehs2bjJrjxIGPIhlTnzhorYKDJaCYnMMH4Eqk7aVYKSbVXzhtZKuMRUvTpMAPVoEdvzmpQUhFAWYGNhOZxd7NCY/T5+wOG4XAMJBQaQUgIKQPSHsHCwwgh+Eo05IDRAVMtJp5rbvwIIVT+JaI7oDhKu2jRyI01tPRok3I4RJPwDoxJ0UQILSVbL1QYSXfwjqtuwiUCiKuOmlN4MINGtXZsOJLY6mYHEqpA1AxHWGpRMYdbOQVmgDK+G+cvgwMKZGGRQl1wPBfeCZiFxrvSDT14rYRujN0J5BSriJ5HAg4Uzn2gtBADLFtYQeiBwGMGAAQDD5DUSADPHSaXA7o06Gg2yIBFezSXEE0pDgCos8GiQoHQ5p32IPhMKWIL2IWotoqZitKOlNne4hiMxSwSHS6A+gVcDSCR5JIIGR66vEj3ANzpTYtOARKZN2XWbCyRWwqyRO4ecTBEkVsSssZr8I1YD1MxAYrPLmoGIkg3IGpR+NB5aA6tCyQwVYc6KIqOVcGaONJW1JKMyfpQswMEHIoZ/xv3btBLxOBZhR4t0OdFCAKUhWDgThjVlWBbAYACWCcwW0hpmBrMFrHHhh0alwVav9AlIeChxg7/kiqBkTM6CRBUEfOHEubKjo6WARk7roGGgU8SGkFBl3wASjOAn0QoSQIQXdTFiOitE/wiBAe/v0goKGLF9uSAxjqOllhED54qHf26tIDGuVmUZslWCxEw2q6wdiLAElAal94kombw5w2kchiq9tEhBMW/DIvd8vgcFENx35Vh8I9wo2ieLEpRqI/zIJjABRnDIlDGnpr3IgERJxu2ngaIiS8o/whoLZt+RGQtmgNnlsxRHS5Y/Bq4x1oME+QgGaZZ3pxDzBYWsjhmQUIAQvllpFAgpKGiny4x/hNZOJP4Rar1rxzJBAoD2k2gFCckjgRRE3O9mTURN46BF3/PqvtMAiVx7wrFzA3fLgJrZtiyQqErXfbNNWz0g0UlmZo3JZaaN2KyyhiDC+UTItAal9UBhDSiZ6lvmrCiUw6TLJumm83amh43MLqoCjI0qr4ODCQ7aBgcNru5CDVpzHjTkt3p5RZJquwoSIt6sYcnAkkUZNBElrHEmDQEJ8Y+ANT7rpD9fZljv16D8LRFAQt5apJm+bDRVuNE3H4nB0dlSQUMoSEj8I+SwTWYN2S+FBj2opyCR7VTUMRtBwlPNSJAAYh6JnH9EuH803vThObNGroyve2yQWGGzRlamDRKTlKntM0WQGCGzaI1NIDOQ2GyyZiDCsnvvFu2D9W/1MDakkzZgDMPsmWLSKGDgNA6G6v4Rkso68Y1QPhCidSi08oCcxcE4u4CDDqRptBMRLQScCaYkA2vc9N8lohnDkvXgkPpHsD9/wAb/CGY3AFIpDfODjYx4MhgaPZhEDUQMoZTZJesgAfI+AhVoYH9OwT9CoID0+g5mjcoyA8GsoE0oCXAAywMJqLYpDU3iHwHEOqVqgtqWaiw6+UdomRAkavuP0kZMyz+iWm8oOOHgMw1tBDA9kNgcZo3VMHBrWW3tmckmk7UDEZZgrTcFwDtaknM0MMSANRgSgyzn/SPYrSvIJYMS/4iQylpN1iVAYck5cpoKHGiYiJ6K3mvQZbBIypegYIbRDpYw8PBAjf4RqVmjQGGcfwT7kTzxjyCAjDIGWApainBsbgeJIAEa3GDFChqIFTz4ctGUodaPMmtwHNADQASoaDZrJNqUriCBCCbh9lQ0E7EMqd+UH5i7+Ec0OVrqerSMAIlWs0YOTNpkU4LEMrQRqwkkpi5jTFhW33WWhGom05E1BhEU/AlKdlABWBilkRD/iKpZQ/wjBraAMS451IB7fgrv6B8BICSiErOGjtrQ//biglAHCQRTh5U9qtoI485n3gw9SHQ1axgUxMGsYQxgmePcSfJHhYHGQTMOtjmQcINuqo0QZ8zgaKk0ElXzxUqYNdpAItbfAhJANk12N7OGvtnaLKIHbDRrHHLbx3GKzHSqUzNrAJOBRBfJmTVqZbo5WXaSTWTamDlZzmRrlDUDEcweJMj4N3iDki3IO1gSMYb+u9ms4RJRGWLvZOkzTqIX/CN0IiqdcGqObBKVWcDN9aVBQsNGNfeD9fBgMQwajqppo6tZg5lhAki4AdBI6Ci5N2AXMeFHTBlNKcIDUAeJ8FvGqKBRQNAuNMFBzawRlhvMGlrrkGgg1LqmZ0G0FwpmOkVtJIN1BkiAoL2oHS8AB+pmjTb/iFw945ghVLumbtboIFOL2FjG4LrJfBK2MG3EVikzbcQml7UDETYOpAB8lIJEaFgQGZiiRNnBrNHzk2QZyxhQ6YBBwKGSPyIxa/hByiBOFhrEj36Fzx9tQeiTm1SrBHmThgtRlW8NEX0uxzBruE6VfbQGYFAynIOpTkQVLp5qYxUk1MAfvpUzpfaPyJk1NBw0LY+TzTLVMOS1EUmZMUACQM0/Ih4rjdZI7qtIk1mjo39EWm8GAEbU32rWqNbbVabpaDnyWJX9xtBGbDKzxgiZaSNmsrXJGoIIAxZzBpxPhA1ppgmlJRgyIGNRjjBrDG3pJscyca6LaNYQU4YNZo04aFlAgYRIgAmvkQABfdmPnAmjZIOShsE/omrW6FOZjdYYWqd1MOR8OHS0hi3dOWizhtMOUNAcsB51M+YMGJXZ0sL5VFiqO0ISamaNGghQflmrGKrQotcl25NdG8waYgIZARLw1yTnH1H1iQjZLDU8UFouidZoMmt0cbTs6s/QNvhNQxsxLf+Ipra1luk+aG0SkNgc2oiZpDLTRmxSWTsQAad5kN5dNBHMzj8C1qAk9zZu2M342WTW6FER8kd0MWvI6GWCeSMOUgIQdZCwoeEWZZIYCwbBSVTMGvNmmI3W6GltBBEMMYgYhXFJp9gaDxLKrKH8IwhIQ0w5rG0GCUodLbV2Qps1akmoqG1ZaSOUBgNJHcrJUsrlnoUqADSBBOJxEkfLBrNGDSh8m+Jx00m6Ws0aOZlGxMZynCxXGiRyvhCTmDWW8yY/DQgYNylXto6ZNmImW4asHYjw5gwL0UTEZUA0EOTMGgISbLJmjSGnENFm1ghCHiLCXNl1kHAtcWUtM0o4DUIfZeJo6fwjBs5B1EazRtRGOLPGgA16xuadLANIMJgYxrhwj5IBklGWZEZKpYnwg2ANJFQ4ZxKVwUjMG8GsoUBBzBraVNG0rMFBw0SSx8GbNVKtRNRGZJ0qoUACSMM49TEgUJQxa8h+htMBkUSNIjc5MzB3MWtUj9PkaKml5a1sbCfLqizXP2JaMk2zBjAaJFbjm+7MNyKV1XiPtlJZMxAh47dkEmQxZ8C9OVum1Kzh15dsamaNXpiV0yZmDWcaiWYNkbb8EYnaW4mBc8aMJo28f8QCDYJZY0FpHCwZDMmOdLJ0mTfJOVOKWQNeHRH8I+Jbd5JDQhpPCHARNBCiaUgAAtFp0vgawts/olaBmpY75o6oAUQdJBrBQ0CCG0ACaeeUaDWqTpZybdTytMwaQKYMVF1toNLFvKGlS0psoJN/RCdHy1FtWuZb+lRgZplmjRXRRszm1ai0YQYSm0LWDEQ400Xs0RkAvDlDQj1LoiRaQ8wY4mwpvxdt4fwdqhoJtgEmJI+Dqemnh2FUcyDBXksRJWojXBnLjDlvFsn5R8wbg9JHnvRNGcwa8xjtZCm5IsSsIdfKaRYAyJs1EDURYGf398NqNGsgqNHZwA3Z3j/CX24PD27/xKyhB2pqXs46WSpo0IN/ChBTAAk5B6mj0snH46Y3NJcSu4tZYyJHy6SezCDUZNYYpY2YklkjK13MGqNkzJDPqfhHzGQmM1k7EAEmwJLSRLjB1FjXHxO5vBHufd9Gs4Z1IaFVs8YScTK3hpg1nJNl9I8Q0YmoAASNRNW0occHNw4xmvwjdNjngArnG0HDML+GJcKcIZcTAw25I5RZw82t4WDCAtE/IjSIIemwG0GCEEM9CcE/AraqlfCwQRVQ8Nem0ckSsazWVkhLwromzYB6HMYGCSDWp/wj2FbMJFqqAyKpcm3agib/iCbQ0Nu05PwjmqSLpqJtv3DMCf0jkjorUDCpNmIlQWKmjVixtkyvDTNtxErLmoEI9vkLZCRiS2CQ09pLjgS4f+yuZo3q3BqShCqYMrw2IpeBUjQS1jtRWuaYM8JLEQac1D9CxCL6RbSZNawpYdk0mjUAJHNrSMMFJKImAj76AhEkWDo5ijN/SghnMFl4YGAFDP5bfCgApJN3UcMy1KCeaCgUdMiy0lBUtRFgHgsk5Pyhy+vnqwIvyQRcAhyijZDjeG1BNglVqLfNZIHxIjYazBrLdrLM/Z5GIqpxQWKCQWtzg0Qn2YROllOX1QASM1lRWTMQAQsfehdHAg5Jk5yjJeA6FZmYS6I1UDrXx1FzayRi/IRcHiRyUqJ0ZgoAJRhz5EIvDdRkXZDfHDUXUL4RICyQCWYNNzFXQ7RGxqwRLg8TgOgfkYKE68DIcLTnC0iIZqIKEtqUIdoJkN9PBlw/pGsfChnMdbREEjkh0OAKaw1FqolwBdvMGiNBAvHY1dBPqaPJrBFgcJRZI+cfAeQhIatpQDeQqMq0zRq53+OCRFUbMYlMkMlyxUGiRVbE2XQ1aSNWg8y0ESsqawcivDkjzj3hlxnOB8AaMFlYa1w/bizIR2tISuyRc2so00YCDxWQsPqHH8FMmKiLfaPS5otTpmWGBaNPZeIfsWDi3CDzhlCywYIZuOOxi9aY9yNbDiC0fwS8CUcaLgOqJFMKmgn2g3kVJMgPrMH7ADHBlIyRslyN1vCDYtAqUH5Zrp0GB70uaiWWARKiNaiCRHKcdrOGmzvDP296kBdtx3L9I4BuILFcs8akINFUd/g5YhDdBGaNTu1YjkZhCzNrTF1WU1tmMnVZOxBh/UeGG2/OcCJqZQr+EYDzj3DThEf/CElCBZ/+GmXDJVTOleH4Js6JAYg2wcCidGYKiuYNgOvOlg3+EbmwzwUzACxCRkvLMQnVXGhDL/GPgM9mCaQgYfzRDbEDCBZNg+8fwtt1BAq27K6jUSAhUBH2E4nv/rVoDZ1fQi8DdbMGkABB1EqMAAlE3AljuOyXA4kq5GX8I+KzlSmXHsTfYIogEcweKwwS45g1qstNZaq/J5nhcrn+EU2D1nJBok02hVljE8lMGzGTcWTtQAT7V1lWvy0lA5klqvlHDEs3y4X4R2hZQg8ohrVJuhLPyApIlP7N1MI4iGCf5wFUM28U5BJXVa0hBvX8EQCSsE8BluAf4bUSALL+Ea6CAigkIXcECXEKdcmofNSGaBrYj4U+6VQCEog5JKK2wS+zaCKQ+EdojUMyu2du2cTjhmjYmiaiA0j4HXUeibaEVIm5Q/avCsXvOEGXPo4M4OoYHRwtsyAB5Msk7RkTJEbBQy6ioitIZOoj7UOSrX/Mt9mVAInNbdaYOVkusw0zkFgJWTsQIQ5yEubpO3RAvVSSRCNEiJDskKXq46qTdNWkGmIRtBAmHFsSRJWUTrSVmjdErx8f/JxZA/DA4KMgorPl0C17z0U9SVdOxKxTBQkJ/TSG/Vs4I+SRYDUwJxdSgQT0tzufJv+IcAkspuofMQokXHEFEtX9RoFExaxRvafVuTVSjUMKEjVHy1EgAXQrIzLCtDGRf0R1W63sBCDRJl3MGqsNJGZmjdXTlplMTdYMRJClMGkUAKWVUCAR+EKrEFz+CJRuINaOllGGbtC36nIqkCglJNPPIOoGc3F8pHDMdvNGGuVhwOgnyahMclzReDgOiBAhUs0fkUgFJIw/d2NckiyX7dPNgCpAIm/ksYUdQEL2DVoIpbEQc4f2j8jARBUqYBAtPsq/YhRIhHMIWzP7jQMSAWbita1OGb7JQWKUOaINGrr4R1S31cqOBolERmkjVitItMnmiNaYcPDeas0aM5mqrBmIACP1iRBqUCmcw0AEwOWddPkiAACF9RDiVP7iaKkiLoECMGyCn0SY7Mt/a5iw5LNONpg3RKxvUZh3Q4mYNebYwnro0I6WVT+MkPKbXf6IVCqPggcJIoMeSqAECmNhVJ/CjJBLgij2U11AAozULKFulGgpgnnDnWxwztTLETDc27PWQADdQQLQZQSMRk/a1QQSwa5PSBJWrRhIyA3pChLj+EesNEhI23OyJYLESps1NqFsnWaNzXv4rU3WDkRYCmaK8BtIowoQBxLnX+icEQEXseEMDwosAKCA72x7qmobtimFhouIsEBpKGgdShgfVTGomTdK+OnA2Zk3XC6J9B9azBt9uHI5U4r1oFKy04Q0mTP0OQSNi3GZOVG6yBE3gRdBknNZAIYZnKTJHgESvp1dHC0BBH+HYPqoOloGrYQHCQUO0oSq5qEKEkBaxu1WyW4p+/lOvhUkZGwMIFRxyBSzWRUkoAZ+1YG3OVsC6Dbz50qDBFD36YgPVAoSQB4mgOn7R7TtszlAYmbWWD1tmcmyZc1ABLHr8EP3ZCtvjSE80ZWxAEwB2DL1jtQeDKZm2vCXs0AwbZQmaiNK+EHcypTdJmglxMxRgny0xaBm3rDehKFBIiyrqA0NEi7Z1CCaNSxQGgVBNUkfCWMNCpTAACgKix67NOASueFgwpk30BUkGEHNnwUJP2JrsEgSUWlTh/RH/r6F1NNaA2EQNFFZkPAr9bbYjAaQ0EDQJiY+U7XZPhVIuJP0RxGNhRroa1EbAIJaqBUURm2fIkj4811WHomwmInYaBo0u2gjgHaQABrr3xwg0UnGzauxmswaM5DYamTtQISN4yyAMMjWQCK8NQJMbn0VJLQFA0WZBQnJwxBMCOQTPzG5RFDiWClaCZ91siRSvhNp9IbWSrioDfePnQOJEPrpAUI7dtZ8ICpiEJNrLQEhfXdhGAUziErvbEp+3hF/WLIuTJb8qEl5kBBS0CAh85gQubbW5tdQPhBdIjaqIAFEmNBAIr4xo8wbTSDRpI2o2l5HgUT0w9AQ1gASwJigMGr7KgIJ6KItIDFp/oi2wasFVDY1SHQ2a2zJILG5ZcxLN5O8rBmIEHOGPDdk9eCgQKIE4gDne99MDolEFEjESb688YMFIqxzZiQ1CZahmlZi3ninS2t8JsphLTnVnMpc2QgSWoKzpak1vU2WAMwBIU9Ez1j0YJ0mwmseyNi6ecMrJXSbZYiEZXARB0tWg2JrxIbygUjSZFeXR4GEXA9GcARNB3e3It02AUjIaREqg1+7RqLNRyJJSDU2KIza3jTojgES/j4C1XNeIY3E1gASLbJJp07vtNtW6B8xk2XLmoEI0USIvVXG2q4g4VIuWf82H7USQQQkXFoJAPB5GHwIpilD5kjr8zn0uUSfyqiZMG7OjgEVQSuxYChARD16w51EE0joHBJBE5Fpek6MT34wJAb5HfpFiSE7vwhDLuy1tORgomAQuetriYDSBJBI3/D9YGgqIOG1E51CP7F8kKDsN3mAaAgDJd9OZqXRaACJQKsSbaIdJccHCQD1zJYtoCDXK0gXkECmTrWuESSkfr3ePUQpSDSVA6KfhIjavlWARJNMwz9iE8pWBxITAt5MoqwdiGBA7OIAvFYizN4wFZBwqaOVKcNQNGeAlDZCaSW8r0SfSpcYymskQiiocrpcUB7/UeeeB4lqDgm/0Te01vSaGOtNGtZEiDAlhmC/DiBiELlp063MZKYPYgnsU1XVQEJd+0Qj0RUkeAKQYCSuIwkk+B/ir5GYN5JtUM9JM0gEBYu7UEgyWk4AEmDEFNlA6nCZ3DgOlz8bvdEGEh5SxgaJtuW2yI2a9mIMkEjKLQMkgPwg1uInMRFIbApHy3Fkcw/eq0lmILEsWTMQAT/wSHZBt5wOZlPRSHhZAtBDzKMg03A7bURVK1EGM0fflG46bxAWaJg4XQbfBh9l0QQSAELoZ3WM6QISBSl/C2IQO9NMYZxjpSkYpCci81oJsuRThVOoPF6x0SCBMKtoB5BAHR5AqPtOGIBZhX9qU4aApf/ktBJB61Bp/0iQkAGSEIBgFEgAyId/+msSQGJS8wbQDhLuhq8MSADdzRtamkBiktBP3YbkGONrJTY1SHSSLTV/xGoAmhlITCxrBiKCOUN+e60EVQazSUFCHj8O0EBuuQCWSqg00+VIrURJJmgl5k10uoy+DcMIARWQEJHQz64goaFh0erlAjBOKzFnSpRgDCUdNtW1Eq5e4/JqEIHIoGwDCUac4TMaAzAOSAg8yGWogQSQ5JHQQIBKm0ZqJZLvZpCID1o4zZEgEbUNHiTkyRNIWGmQCNtWACTcA9UOEqGcQeK+PC2QyO3TtG+HfaYOEi0ylqPlDCRmsgllzUAErP9Q/B0zSy8PJOSfexgOVIBN/IewxgGFmDe6aiXmzTDOxmlcKmvxk5BDVRNTSeQGMBokclOVL3JPFfGdROHObL4YomQ3i+nQ6lBPOHDw5yzmjaGCLAEJpngbQhdUUgQJbgEJBkBuAIOuo8FPIoAEy7IfzZnjXBu+CQIOTVqJkSBBlbKiKScKBxkfJIBgCtEg4Y8DIG/emBQkALVfN5Bw1zu/PSzL8YDxQKIhu2UrSFRlXJBwF7O+bRKQGKdNwPT8I2YgMeHxZ9qISWTNQISkvQ5aZg8RMAokWFChO0i4zjeOxEMAzBz+hxkI0Rhi3uiqlQAQE1SBwlwYOVOEhIAKMHQFCXeQ+nIBi0X0YMiGuTfmzBAWjCXrpkGPU6PXzRsDuIerDAODAwlY4/JvoAUkMhoJJKaLMUHCn2v0hyDnO6ChQd2vOih0AAmZJl3qV5qIkLFSl1cggcoxmkAC0JCAZq1E9Ub7ekaChKwbAyQApHNt6DpkuVK+1eEyaXfzoNoIErmBaByQaKqjZZ/GwX1zOlqOCxITylYX+jkDibFlzUCEvI0m0Rm+Lw4DM8H9YYazz2dAgmXg8ztV8kgwA2wYPQADCEDYYN6oaiWGltEzJYZs0COLIRvMqQiOeQyDeSMBCK+FsMYlpgqigKENJMI8HH7QLdiigIUhi8JabETfbWbG0HhNhCnBZGGIMTQWQ2swpAJLfhbToTJvAAh+EoCMFS4DqC3HB4moL/Kn2QEkpLBonBJ/CJuHAqCulYifvCYjCxL+ORPTRlN6bEoG/2o5DxLA8v0kpgkS1TLAdPwkRJo0Eq0+BROChG5DUn6FQWKlHS1b2pqvdHItwFRBYnNrI2YytqwZiJCMldL/kiVv8/ax/+S1mVZ35KRe+lSHGrp5Z8qQzJbMcYQfwsAwgdmCmcDGZrUShrhu4lATY0XNhU88ZXxWS6IkkRSgojA6gkQStWHTb0MWBVlstH30vTljzgxhfcZMwwYGhdc8WCxRL9FKAPDfhb8eIl6LU5o0Q6WIgARnQIKpksUyDxLxHqPiYBk1E+JwKVAwrlYimX48bIsgkWgiKj4T0OUFJABn3vD1hzk6ZNkgBQmBhBbzxoqBBCr1TgoSQF4rUS3XABJjhX7mjp3bLyk/A4muslWBxEwbMZasGYgQn4jQT8lYaqUjd89tHSRkOQ8S5Kt2UZlOZc/s4IIN+zHKmTdyWgk3J0bGxMEm+kqwzzypJTPwJ1IBiZhDosW0IQDBjEXbd8tgDNg5Vs6bAZjYRW/YInxLTgnxlQhOmj5RhDhclpmDSVcR/mXZ35Mio5FgRCCQ0/SDGwfnSwUPepnT5TRvRItWorKuChK6LgEDEKtkU9QNJBiQuTJC/UC4AgCaHS4bzBtZP4kOIOFv2ngg4evoDBJyTKBlEF8lIAHU62nQYmxqkOgkmwgkpiqbux0zkOgsawYixAciJJlS/VHoqim+pWZBgptBwo8loKQnBtxI7HwBAAvmItFKFMbCUrPj5TwoTOgVJuyC1kr49NkwrSAhMsq0YdjCWBuWF8Hoe4hYVwxBZLHoQcFpI+K3+EpIpsthgIvcP2MLSAANIOGvdgUkAAbZFpBgJBN1AQomvOahTSvB6ncKDcqJUoFEErNPCD4RI2f+RHyjI78xPwMoUPOTUFcwm+WyDSQABQtwph4NEDmQAGqaiEaHS11WlvUxa9dsmRoJLTkIaPLDmJJ5Y6ogsTlk5mg5kzFk7UCEHgSAMEDEAVZ0xCNAAhmQiC+CAAALpzvn8AHYMIxAg9cyiFbCEDc6XgIu26WrV3WumlWqy8mJdzNtuF0tDPphjoyNto/CWBfmCaeJANnodMlFopUAUDNvuBNw06fXZROBhFX9UeIXkdM8dNBKJNDgnw9Csk+MzgCCWWIESARThQYJZJ7BnJ8EI9FKZLNcNoEEUIGFDiAB1LfpdcD45o0meBgXJHJv3pvYvDE1kNgc2ohlyFblaLna4G6VypqBCFFny4uJaCakUwfSTm8USIABLpD6SChIkYhHC9TMGwUJXDhficJY2LLIOl4CSMwbIs7UoYjBt7WAjc6S0pgOIFHADf6wQCHfxmIj90F+evL1tAQQYIzzfehxXSuxaHuJeSM0z1bpJjacOeaRkMsYT7TubAn2Kv4uIMEY4Reh7lvQPNS1ErVMl9pE4k0biY+E6ttrk2+1gQQcpGZDQJv8JPw+kDqq5o2VAAn3EKbbqnVgApDQstZAokmmkYgKmPlHTHT8GUiMkjUDESHZlPQ9QBwESL1tdgSJsEaBhOwjC9a4Tph8/gT2M1WyH4S1r4QhNwzUwkGZMMfDZFbQ0pcRCRoK39ZRpo0cSJSS09n4SA3D2Mh9Z94w7jGZM0PAlBhwgUXbDxEdWisBAMa/hpvOHUmakCq5jr7xVU1E8BXIgISM4ASlbcj5ReTgAHmtRJMGQyea0iAhlURNREeQYEBMFbkQUH01ACTmjaCV0LqTlQIJYGX8JHLLywEJIB04m0BCzl1Lk3ljGiCRk63IP2KrAomZtMqaggitKQiaCKSDDTABSJhQMuzja/Kds3vldWpopZUIGgg3aOccL530YP0/kdZGZCWjkRgVteHSXJN3wHRgINsNLOCdOhdoAEOl28c4c4doJYxlGN8Bhnk3oKdIz/tGxDUVkPD3JhboDhI1Z8vKoB81CEjhQJ4P1uuonunS1OusgYSMSwZKE9ENJKDPrhICGqAgAQS/V1P0xnJAAsjPsyHl2kBCLXfyk9ADYVNSquU6W0LdwKqMo5VYLkjMIjbGrWzzgcRMG9EqawYiZOAI2aHlLZRQG2yACUBCCvqPU4kzZEIkawAqXcinMQhaCWMYbH2oqJ/AiomhH1kNFOIn0Spj+Ejoibus9ywtVNZLAwuIOcMsOmhgdhoKslEj4cNBC+9XASBoJkSWSqDCFQAkQZc7motNiY2udMcpSHC7RiIxbShwEM2EgEMte6WUCWW9KiFETmRAIoCCH8EpNDlqFpK6m0FClClNIaBAWr7JvDEJSLg2NwBGk/9DR4dLAO1aCSBd7gISDdIJJNxFre64fJDo0h5gTYDEViMzkGiUNQMR2egM6evtlEBCheAhDHfqjdoAsAa2opUwhsHEIa9EYeLDqs0brqld1ZaogUTVR0IG+TDYM9AnC6OOYcjCmEVsALBghjBmiD6XARic2aPnTBcGGChKELOGljiPCIVZT7Wwd2BwzqmyLg6EMAokwul0MG3IPdbmhoqpI9VAZODCuI4k8anQdYRlUiGectwxQSKUy4SA+gqqfhIA2tNlt4GEf06y5otxQEKvWy5INNWbbM9rI9zPESABdROTdcsEiXEG6BWI2FhN04dvNdqImTTKmoEI9yaJ+GYugwQpOFghkAgAAQ6duLFA6ftAZnJaCIOglajmlUil/baFnBDev6GaR6IAo/QmDD3zZ9BAJN6mAFOJDQDmaQBDQ1fG122YvROm+zYKgAxn1A4ZcVoZBgpFPcywYXcLFrtDiQgSrAbPBpBIElIpkJDTDOCgtRTynfWdoNSJUoGE3GpZhqwjeE3FGCDBur52kJDzj5DQHSTczkqDMA5IyD7TBImcNIFE2L5CICHn19SWtv2X6x/RJh0cLTtPHz4za4xx7Jk2IidrBiLaNBFJkqkGkKi+gXYGCQ8Q4dHzqy0RiDirldB5JSB5Jnz0RpRuty74RkhVcGYIsIMJbcIQ6ZOF8UZ453wZfSIKGqIgi4Kd+cLAhigOwEOLFzPuP1xpnK8Ie+IrjTfjONVAADLrBywGAqihG0iElRoigcS8UQcHVHwp8iARfSMQjicAUQMCTAYSQNopk2/gqHwSTSCRZLYEmkFCroEGCaAOC00gIXW3gYSILOecOHPHBFYGJDJ1jbX/ZvSP6CwzkBjz2DOQqMragQggDA7wyyENtrxN+oEidO5qIIGHg6DqBrqBhEpGwew6dwbceuP21FoJV86EvBKSNhtF6cFCS/72GWI3G6dFCNsMiaTQT4AC7KBBO1qWIAcV7BJhWb9tngYozNBHZXCos/DaCPkdRGlALBs3YyliMq0QyupDXS3rM/JQ5U0bbnZP+f91HZ8DPnfNBTCI3OASxhh/fAGJ6gyfiXNtuFM5cFCwkQMJYRqBkqwmYvkgERwnuzpctoCEf1giSEBOxD/POa3DpCCRK4cRIFEDhdzgPWWQAOoD1GoGiRZZEbPGzKQwk4qsGYiQwSDkiVBAQX6wC9oH/xZbTZkM3fmreuTtNQwuGiQgnYgDiqp5A0TO6ZIJFtabNhgIGgRRIxRZkKhGQBTEWJROywBFyD7JMNb5MIgmoYANkRlggz5ZBxDhwoi2wnUaC1RiSINa9IYARTUqBHDr3DwfQ3SRAeDgyWskLODDZCGKB38/3egpOSRk8Io4R6mZwTSABOLgLgu5nBCJf0RQarh7mqyT2yW/yYMkpcdacZCQ+lpAIvhUhMupBu4RWS1XDCRykgOJLo6Wk4AEkB8olwMSm1GmbtZYTltm2oitUtYURGhNhA7xlO2J9kGBBBDfWsEV2LDqbVi/peZAQt4CDcXnX72xeprw/pC+p24ACaL0ITYyj0U8IxRws3FKFIXzY+Dgw1CAFTA4E4Y2a8i2nr8IzunSJmViZgc0+mBUxc0FIlk5ndMosxv6rGhfIP+nLhlViNiQeyZNsAQmn1Ohphei1MyQAwl9P9lrDVo1ELE+uW/ZdYkmIsLGioOE1KEcLrMgEdre7mjZlkNi2iARJGfOyHXco/wjMmU2CUhUZTNqIxqP1aGNzRXOzBoziTL6CVxB+eIXv4hjjz0Wu+66K4gIV1xxRbKdmXHuuedi1113xbp163DEEUfg+9///kTHImb3kQeYI0iEt0/1DVbaCllvAZn9Mykj661eR2G9S1vpRwD5bQlsKXyzhVPvs/ttLcFa476ZUFqD0hKGZYGSCYOywNAalNZgyRZYKntYsgUWbQ8DW2Dol92nj43cw4ALbLR998398BlwgQEbDGBQMoW8EsZ/+gom5qlEnywWaIgFGmDBDPz3EhZogD6V6FOJBRpg3rjt82aInrHomRJ9U2LeDDFnSvRMiZ5x4aGFcXBSGNGWMIrCwhgbclGQiR/XOH+xjdNIwCD1QVDfYUpuA4A4/vbQIL8BtZ+/AMnvWn0U11WOq+uqticBjewDq4+nCCHsT7F+Qw5Mq+ACaQMl/+l6/7i9MojLdt1D6MFdbdPHqpfJbMuVQwtIVMVk1ulyHdT8tfqydU7YPeb2y9SfTRDV1PZc2c0pk16brUVW2/3YjLJZn4R7770XBx54IN71rndlt7/1rW/FRRddhHe96134+te/jp133hlHHnkk7rnnnrGPVU02peGAmqCB030jcFDMOcHxLTaAhNQpIMEKJGz6qYGEHQ0SpfWDvQeI0hoM2WDovxcFJriI4OBhQgBiiYv4gStnOaba1lL4VX24wb0Piz5Z9KnEHEosmAH6KANILJgIEwEqPEzMmWGAiTlT+t8WvQpIGL9sjPtQAAlUQAIIeRkIgHGAwCYuh0G8DST8+tqcFwIZOZAIZSgPCtBlqWE7ZeBCD6yVY0CXpbg/kIIE0n0CSGj40HVm9q+Bhl63QiCRlVw5k1nXBBKZ+vMDeIeBoTPUrK5BtlNGyy7nPwWhaR5nlV3ntSib1Zxx9NFH4+ijj85uY2a8853vxJ//+Z/j+OOPBwBceuml2GmnnXD55ZfjRS960XgH8xAgqlxiZcsQU0bVudJrGWqJiQz8yFDx0IdbHzIcGgcFgEphbOAAQjleOtu6b5dhBxAGYe6NqmnDmTKMywBpDYbkNCyGCpc5EoX3jXC3VxwtC7Y+lTWHmToBb4Kg6GjpGmJhwCgoTuFdUMxwCdYhobGJMEvRnKEdKy2hJOP9IyhxtJzj1F9CmtDkH8Fis5fjVv0jvF2CCSDykRneZJE4VYppQ5s0oO43EE0NFH8ng3nY5u5l2B4G7/g7ybdZMU80mTXAaDdt+AbUQkAhl0HtEx4l9+wGkbZ19Y+omS1QN22EuqUMtYdp5jQSXU0YXWzUmTJ5k4JqJ4CZWaOtwlViTthc7Zj5RgBYxT4RN9xwA2655RYcddRRYd38/DwOP/xwXHPNNY0Qsbi4iMXFxfD77rvvBgDMFYReQZjzr9VzPnQwvCEmb6nqrVSWfX3hDRSu42VxmgsDBcJwwKGzVyOQdLqOOOI6wP/zunUE//ZtGQSG8QmhjWH0SnJRETDu7R0Ghc/6QGxAXIK5AEwBFAWGXMCaAkumh55ZxBL10DM9DMwABQ2wwfTBNIChAYhKKNuNAwg77863nA/NdVOGGBQgzLGB5QLzMGDbQ58LlOxMLZYLn/tClAYGxOSVBgaGjW8/oSBCjwgFnGmlRwYlAUMCSgM/Zwhg3dXxIa/+QxTDav0ITrLJ+jcxgUiqfLP4BaCujZLalHYqaK/8d9UURizPFzDX922x6lgSDaG1W6zaB72ek7bodfF3fIZcuzipw50Dx31DXb4eVZ/brvwmmNXzqcrIwaVMbrvuYGVRD1CVcv35InxTS7m03pZ1KOqDcaXTzw6qtUG0yA8W1XW5wTc3uNkObWjat3Lc/kIv+R4V9tkpWmNcn4UJB/CpzvY5Rhv663rJ9/KOu/wqVqUwgA3dihKvktRmRISPfvSj+IM/+AMAwDXXXIMnPOEJ+PnPf45dd901lDv11FPx05/+FJ/+9Kez9Zx77rk477zzausvv/xyrF+/fkXaPpOZzGQmM5nJ1iL33XcfTjjhBNx11124//3v31p21WoiRKq2PGZute+99rWvxStf+crw++6778buu++Ot3/2RvTmFzBXEM582sPw9qtuwFLJytYdNRLaDq6d62p28qCt4FRzIduBxC6v7fPOKVB+h9d09dvb/QnKH0CcDd203T3vdNgrLPrGol+UKMh9z9EQ80WJ+cL5IcyZIdYVQ8ybAeZpiHVm0TlHmkFYnvf+DPM0wBwY81S6qI9yDj/63lvwqP1fg6JwWh4Ll9vCAhiwgQVho3fQXPQOm4vcx0bb8999bLBzfn0PG8o+Fm0PG8s5LNoCS7aHQWmwxD0slT0MygIDazAoC1gL71BqUJbeR8R/syWg9FoI9ssM5cCK6L9ifZRB1Q9GawkYzRoJrTnQWomqJsIy5g3hzKc8DG//7A0YDDgcK2orcuvUN6C0ARWNhNYaaG1DRiOR1KG1EXITtTZCHyvRZqi3/Y7aiKSMqjuIrWwD0J8zOOkvDsKl538dg0VnRKNqua5aiJqWYBoaiUy9XfZbQW1Ef6GHk9/1dFzy0k9isNGbBWfaiFbpr+vhBX/3LFz8wn/BYEO30PP24y6/itUmAx50LrtqIWLnnXcGANxyyy3YZZddwvpbb70VO+20U+N+8/PzmJ+fr60fDBlW7OgAloaMxZIjOFg0mzU0NAhIiJbX29fZd8ahLPtyyq7tvj0o6GWxEQhc+JA7MWmQHwCIrfd5YBQFwzDQg0v2NITFkBl9475LAzBZWDAs3NwcfrJxwDsxGrIgY32ERInCDDGkIXo0BNMQpQ/plKBJKhZRFBsBOHNGAQcSBYAlNpiHM08w90DcA3EfpZ1HyUP07BCFtSh4iMJnujRUgohBZQ8gC6YCXDJKZpSwKFGghMUQBUqwi0Zh97FGklCRm6tCbE4U7U2EyjexAwk9WLMyV7C7gfF3+g00mDJqZo3YqyxZxlLJCXxoU0UWIDhn7lCDvK2vq4JEgAdlOnHbFUgos0aAhQQyOpo1qt810MiU8fXX1gEYLNk6ROTqGFVXsr0dItyqCYFgErNGpkz++KNNGgAw2DhMB8RNDRLL8EnYXGaNwYbhdCACyMPkFizDMSBi1bq2PuxhD8POO++MK6+8MqxbWlrC1VdfjcMOO2zs+rRTJYB0cGDducZ1cVvDshoAqm+wOpIjfUsltT+p41TeoFkiNmL4J/tIDWYKERtWRWwM/YeZwvKQjQvf9GGfErEhkRoSveFCPXvqE8M+Bz5kQTQPIgbO2dIAmCObRG30aYg+DbFglsLyvIrakLBPHa3RIxs0LNVoDfJOiyFagxCiNURbg6Dp4TTsMwn/zERlKM0TiBsjMtyDlO6XaK3CekrK56I1qo6X6fcYERvqGLG+TMSGVt7JvtX//hBBoo5Fle1y46GPT+3bc2Wqx21Yx23hnKPqagv7nDRiIxcNkAsZHSVdIxRmIZ8zWeWyWTURv/nNb/CTn/wk/L7hhhvwn//5n9hhhx3w0Ic+FGeccQYuuOAC7L333th7771xwQUXYP369TjhhBPGP5ge3PVvv8xwb/us3kQZCF76si8DEGe9NGqDnOmC1TZ/GDclNauoAElClS6HPXxEh8wP4eDa/SYm/5LhPAFLIsA6B0QihvHRGrDA0KTRGoYNjO3BEMe5L8hnrvS/c1gpb/JiwoAaf4xqdkFuLpA5HwpRwmkNFmgASwYWQxedQQYlGfSphCXCkApYsihNiTlQSEaVTUJljZv1lBklu3NOsllKg0rEwdUPxkRy/TkOUlD3yWukQtoqUttJlZNz9t8MBCdOWU4H0EpZeb5IRWtU2xJaodc3RGyIFktOCK4ROrFUbH8lgsJHayRJqODb5jVitWiNXETGNCI2GiRktGyNTqDRb84jElG5VR0iGLpEA3SJ8qhW2+XYXWUaU4ZvokyWU5VZpMYml80KEd/4xjfw5Cc/OfwWX4aTTjoJl1xyCV796ldjw4YNOP3003HnnXfi8Y9/PD7zmc9g2223HftY2p4tv0OHy7Hzrq3ToKFDQEkDBELYJ/k5HWp2MvZduAYJgvN9yIEEu39gySjI7BpjmULoJ5HTRJCxKC2ByPjMlQYu5bVxcRsUs1lKWuzCR3os2j4Kwy7sE9bPr+E/Pn6VRBMBckm2KyABOI2ElYsBF0kxh9LDg4E1A5ffggzmzQAlCAuQKcEHfk4NgiWXlCr8VtOGh9k+jfXadTezBokDShUmBN78NWVQmC+F/XVXp1MHCclsmaz3x5BBXJQOlC5rzUAYwBWIQA/qUGGf2Yd3PJAIdQlIJIO1PmY6wAdYEIIG8qGZozrMUaCRlMkMVFrT0HSctrbkjiMyCUh0SW/dKcy0ss80Qj5Xk0w4gE81i+Uy2jGTyWSzQsQRRxzRSsNEhHPPPRfnnnvu8g/moSF1VlMwAIEF6VyboaIROizSGT8TbYTfhso2r8EgS2FwA3znIimNY9cOAC6HBDOsHwTJayOIGIZMeCkdkAuZM2QdSLAJMLEIpZHwk3UVxvlXhFTYFoABrJ/Se+i9R+eSiSSiGH8hSjD6AhOg8Fkgg5IIJQwWaAhLBn1TooTBHIYuhFPgwQNEbpIuWxZBG8FMMMRqtk+KEOfjOJm8M67kjAj3Y0yQoFitmAhkXXW5Zs7Q+0OtQwoBSTtQ1xBoCIhahxaQgH/GqxNt6f0kZ4n+X9R1JtOPq3JtkKAfipFl/PPeZJ5gbtdGjMpFsVIg0dDWsfZZrrSBxBakjZg6SGwOWaPaiFXrWDltadRExBe0AAUjzRqieSCkZg2pt2q+QANIkAxYnmQSU4cCCXYJqEI9BOcf4T0UiAhUsPOPIHgHQg8VYCyRTzrlNREuP4MzdRTknDULw246bw8OAFD4GUDn/YoBGxgQlhRIFJk+TMwaFow+lcGsUdIQCz7xkyVCnwrM0zCbhGqUWQM2ThsuZg1JQhVgT13DgGJ+IIpJp8YACYPk20Ffw3LQRHiIkYdMnimllZCcFSlAVECiVjadYyMZ9KHr04N+TERVM2u4ByleJ79NmyMEuKVsJ7OGktYyNd+DzP5VkGgDkqqsBEhM8sY7bW3EKNnUILFatAAzs8YmkzUDEQk8KAlwANFEpBqGZIZPE7eLI2UyiVOuXAYk3CDmO3PZLwx4GZAARX8Lfyz3j21cBIY17oXEWJd6mwxgbPCPkGyWS74jiDDB0Q9C/t9kOXwvgX3my41cgLlwWgaOsKDNGjVtBAMWZajPwjgThxk4uNBmDXKzfYpZY64YNpo1gDhJV2LW8Otio8j5RxiEAZIhJqQGkKDK/VQgoTUMMthnASKjiQgmDA0Qoa4x/CNGgUR4+Cr7+2c68Y+QqyKTdIXtFB7iaflHuLpHw0bNnDENs0budweQqMkokJhEG9F1kJ4UJDa1rBazxkw2iawZiKjG1GuNAqnVYqqAjarvYL7gFqiAGngY0dES6XF8dcEnwqW59n1PUOv6jr8KErqd8G/YloJ/BGBCimoAwT/CEGPoHSwNxXTYgJvpcwBnHijY+kyYztESgNdEuGMPUMB404ZrllwQgZMokhrbEKOP0sEEGVgMAAOUNjpcwgBl8LswmEc0a8w1TiFeOHOG10a4S8JuwlP5KX+8f4Qb7NVwHVOPQtQDZP39M9X7yUg1GAhmDu0fAdEuadjwDpRhUK/6V9QG9clAAvKstYFEZcCKzp0ZswZFkPAPVLN/xDRAojrHRqbMsswaud/jzvpZvQ5QN7TxGONrMMZ2stxKzBpTlZk2YpPImoEIsAMJnchHTBpJZ61+d/GPCFCBdJ04T1ZBArqcN2UQ6bdJDw/Wd/ykO8U6SFjyjpa+E8n5RwSzBnL+Ef36tfIdfukHeFjCHICNtg82fe/jULooDACl12zolhXhItlATzn/iHnjQlQXvHPlPIYeHtxODibKRv8IwwQU7iYws7sW4h8BeK2Fb5doG0w0baSmispcGia9n6hqMJRGASQgCO/16u9Q0ESQ931B1HZIMbW8HJAAa7hJ/SZEgyAgoefXqN/7ii+GHKPJP2JaINEko0BilFljJUCi1sZlgsRmNmt0q2MMkFgt2ogZSKy4rBmICB2mAgHRRiQQEMwLss37I0gHWX0T9W++oWOvlVFvwNp2Tkg0EOQ1EEnkhurwG0HCMYObXELsEIUN/hFa5oDgHzFSRK1gAbCDiEXug1lBB7kojD5ZWOYAE4UamcTkAbIolZ6kJJP4R1gymKehd+T0AMEm0URYrvtHACWGZVGbpAvB0VIPu6iDRAUUieP9Fj/F5F5rkJDnhZFoAuQ+yjXSAzsq/hHsr7X2VR0HJFDZJwsS0IXrIJGN1qj6R2wSkJBnj0IbOnfETX4WKwUSK/FmvlyzxjIGrqmGl4ZKV4l/xExWVNYMRICV9gHurZNkgOFKZ61+u23K0TIHEBm/h+RtNajTOV1PsTzImzfAqcMlXGQBowEkfH9r5RhwHcJQGRd0/ojcbJ/B0ZI5+kYAzswAE/wFNnIP1kOE0ygYzHkwcE6UaiSE00aUIBg/gun8EQvkMqJp/wgAsJYwL34RHiDEwXKOtbFGpACzVdjiRilbGjfYcRwoE5AgQHwjNChyuN8e5uSZyIGE3KdwDxEBQiDBxPXuNynfl/BoTgwSYNR8HJpAImgvIM9lA0jk/CM2BUho0REbk5o1dD3V9bnfywWJ1WLWaCq/hZg1ZtqILUvWFERoTUTIKAn20RQZCAAUNPiOy9cVOuSq5iFTh3aeJHFOI3UMoG7egEAGIeSSaAKJcIrewdCrTUoiDwBF9+ukOnjADfLkNQMbbR/WDoMWoWTnJFmC0Cfn92C8LaAgBxBA6h9RMNfyR2jTiexjg1NBZRmpoyWKCBZDyP+sgURwmCJaFxKQYMSoDW/yCOAQ/Cr8CK2cThOQACltEoIiKPhHwB1YsloKNIj5ogYSpJ6feITRIJHZB2gBCYGCijT5RyQgIeVWEiS0RmIckNCd9pYKEtMwaywDJDrJzKwxxnG3fpBYUxAR5i2Q3wIDGZAIsOGXHRgoL33leNcKEhSfXyK4P8pPQgYZXUabN9zhCU4NngcJGZRcswxKv0TkBlZ4sDDEQDkaKMS/AnCDu+TBWuQ5WB46rYEFShrC+giLEgYWpXOiJPioDfGVcFLITUDqH+GgZOBNGyZxtPStd985R8uySCI2ovjrkAMJ8gOkhH+yqO0BcbhMzBuIuSKyIKHvpS+TaCKk/wr7ephU9YWydkyQIADMtX0A91y3gUSjf4RoHHIgIZqOCkgACjTGAQnEMolUnSS3JpAYJeOYNZpkQpDYqs0aM5BYEVkzENGUJyJ2vilIIAwUSP0mxgUJaICQMv6Vk7gOGf7Y4mAZ316jjboKEnpgqYIEICDhpShdRssGcaYDt0cJP7j7C3Gf7WPe9lF6p8g5KrwpwmklEN7g5aKp3wAM2Ge9dPkj1Aao5rplxTolWjrLRFzEhnO0dBVrkGBygwxbrSaQ++4GR+eY6rUSoGjeQHS4bAIJOW1GfHZCxspxQIJjPaNAwp1FxeEScunTENAuIKH9IlxoZwNI6LKSFC1slwaMAIlMGXdC6ntTgoS0B5g+SGiZplljBeasWBGzxgQD+Czkc8uQNQMRYHZvbCqsT0diTBskQKq8P0jVHyJoJTRkyIAjgxj5QYz0YNENJCzFkTnnTWCIsVTZUBrl/Ch7+Yuw5GfldBNoubkwXKimSyQlmgQdvWG8o6UBw3qAAAEFM+ATUbnGhIYHTYc10va6VqJVSpMFieBsKX+18oIBcF4rAX+Fwz3pCBJyXkHD0BUk5Hr4m5kFCX8q8Rlud7gcGyS0xqHJtCEaiypIMBQRA6LKEngLW3JaCZGa1qICEk0yLkhIO6r7A/FNX2BiOSCxUmaNNpn5R+QqnF5dYx1369VGrBmIGK2JmB5IaGCQ5fB2GQBitFYifEP5SXQECSY458LkFT8jBRKQ0IO0LGufiIJKlIZQWpccSrQSC4b8jBuD4NcQYcEGDYRI34/A4mAJoK6RyEiZTCvZIhWQsGRdTg2S6+2OVTNvQGkl/GAZPA/Y/ekCEiLiD8Hugo4FEoT47ISbyvBAnHt2/TNBVUBeeZAA5PmvgMQE5o1EI5EDicy2oI3I7afXAZkBPKOVaDJvVMBjrKiNlQSJpsFxNYHEavKP2ByylYLEmoEI6YjzPhFTBImqxkGDBVALB0y0EuTefgUyEvU+udaFTl9BEReogYQFnC9AB5CwKsmP9REQlg0sE0qJSgGwwc6hb4ZuGnJyTpXzElmh/Rn8Hjp6I+SNQIza0CBRiErAN7ckaoWJLiJRJa7fN+4qeKUE4O8HcTRvyIXzAzaTZLL0A6ONQ28WJBghWiM8ZhSfg64gEYATuWdTQUFmO0j8Oep+EisJErGMP+9JHC6VtCakskjXTQoSwFT8JFpBYlM5WrbJMkCik2wCkNhqZCsEiTUDEaKJ0MmmnHkD7sYKGGAZIKEAQiBAmypg/IAiZSluq4WC+hfmqnkDvlN3x1ddvX8bngQkkugHSfKkkj0Zf+KLtsCgnPPmDBel4RJH+Sm+/UydzrwRM1JK9EbBLgxUtBICEkWY/tKLhicFJZ1MGYkUAGzwCSHymghLYBg3wAefE8Q5TCpaCW3e0ENvHSTcvuTvZ6hXmzOARpAAA5AB3CAmvUIHkPAbm8wbKwoSUoOUWY7Dpbr/rSmyR/lH5MrodSJt5o1NBRKjZDNGbHQGlhUGia3KP2IrA4k1AxFRJRxXRY96Vkmh2kEiAYUqSPgyTYmHklwCQPSVICRmjKpWIrzQWd/RE6CHstxwMBZIFGWI2uCQ6Mn6bwoDxcD2ACqdGQMGfSrdvBdkMG8opLIW84a7HEaZN0qATQISbj0w50dL7SNRgkaaN0YJkfhVuA5RKrPiJ1H4e2CR10pYAheMkEFUX2vvqClzc7g7IVfeiQDEKJAI2gfjOpigifAAGTRp4m8h5OBhWBQ9KWysMEj4840+EAqv2hwugcRPIp8nAs2g4c0mywIJIP5uM2/Uyq4ASHRxtGwAiZpMChItsloiNrYaswawVYHEmoEIl/Kag+e5hHvGztW/cWotAuogwUBQX6faB1YTFSGBg+S3h4gEJoBEYxHKwb8ZI7YpmkbSd+Jkjd9Fg4T7f0lBQj/C1nhoUJoICxdSaXz5DWUfAGNoSszBax+Y3HTebJypgwzmTTRvSPQGoJJMeZAQ0c6W4iNRir9Ehn2MarkOIc2JIengGcOyAAoLIgJR9JNgryFiDXmilQgk5s0bRCHKw4GFH6bFZA73LImfAJv4rNRAQgZ+RvJMSW4Qp5mISMJyCxONgwKD8HsFQUKWJSEVyZGhNA4I59/FTyKJlgHiwN0EEu7GTgYSQAoIk5g3pgUSWiaI2GiUSUBiLTtabi7zylYCEmsHIkq4s5X/5+zbWyXuvwISCVxIpw+EN02Cz3xIcVtizvDrgepxkWolApggvOFVzRuodf6qqzcMyXmtocL9q6Sjsqj6owbCfffgkzpx1Bgsll4T4X0lhiHE05sv4N4SxemymkhKZIEGwYQhdYccEuz9KKSZ9SbXpM3ZUsJZjX/rcOnA3T0S84a1FLUSogFo0kqIeUOBQhimGRWNBJL7XgOJik9F+Gb/hu4Herk0civroKDAQFYmH/J1cL38uCChIIEkgcgU/STCRWszfQDIRmx0AYncstTnHpRu5o1xQELLCkRsZGUSX4e17Gi5lv00lilrBiKkIw4vwIyYSAjdQEKSDjWBhIMMVS4DDiO1EtIQqHIgv12ZN2RgZd8RcTNI+NOFHB7wGR1hQh8mnQN7jYRMdsVMWPLtH1gDtj1YchNvy7fWSpTscks4XwiTJJISCCj867WYMJK5NsCO+PyAnAMJXT7s16CRMJX1JQFkCUPAayQ6aiUCiY0AiRIJ7IgmIjCFjb8FMqvOmQEyOONwyUjMG1lYaNBKwJtKamGjY4KEPl8KA30FJKQWAYmcn0S4SFwHRD04eq3HioFE9fco84YGCQC5ENBkwF3h0M9GmWSOjS0EJLYa2Qq0EWsGIqpTgZOF6nBHgIS8STaBhNcOxPKu8wI6gEMTTNi4TV7e3Bua6uSNvPSpQY6V3b4FJKoJqVBYoDThf5+BkF6679ctcQ9c2pByujRRK2ENhUyXFuQm0wJSLUJVm0AxBFTEBD19ChIFWQcPY/pIDFVnRgCIGKJyKK3TkBDZRCtBLA6Ycu2dqSrcI7k3LSAR0pEYTrUQkAEbUWshTWSk2gqg7nCJyJg5UEjgILvdPxfLAIkABvrcJ/GTiA+2v/n+vGRd4gdRAQm9vQNIuOteAZBJzRu1gd9sdpAYWyOxhYPEVqWN2MJBYs1AhGgeQgekOuyRIAGkJgulaaiaLaJmgj0kUIQEsYWHY6i3xMw6CQcNWg2g0jEjcbhEGDjcP3kCEgoO/OkEkGA/urFh9AAMIABhYZkw8J37UlmA0YNlC2vKRBshmS5LGMzDz8ZpXVprK/rsCkhoH4kCHLQGOZAo2EZ4GAESxtdliLGkHnGZiMwtu+nSrTXeHOJ+ExlYCxhmVCM4Ehyx7EJrKQ7Gbot7PkKfYNx1hX9msiBRNWdobYUcW7QIXFmPzQQSar8AFdPwk5C6q34QVZAAUmAYARJyDZdt3pgmSGgZdyAZJ/RzBUBi0jY2ygwktliQWFMQkWgixCdiTJBwMBDLRrhAormomkGgtxE6aSXqzpvyrdBDjpUDCa2RCM5rKUiQGtmlAzJMYHbzUbCxGPjX6qWyBwvGkCx6bNCzFj3RRvjveURfinlT0UboZQUBcygDMDSCBKn9Ua9jlBhys5YOVf2GTDBvlHL/yHXG1hIsbNRK6PsiF966wSs6LiqQ8NcszJ0hd4UVNLaBBKMeuaHAYBzzRhLtIee5XJBguRYZh0tgtHkj5ycRbhaCw2XdoRIrBxJSX3VbG0jofcYFiWlEbFRkqiDRIisS+jmBbFWhn1uorBmICNkq5XljRJ+IEgEO3EChozFSkAigUAGJmqZBAYN4+SdaiVEwYWK9cszEudJvcPZ5tIMES5hiBSSkv4e3iwhM+AnCmBmWgaHvrAZlAQsbfCUkgsMyYU5pJeYkwoOjn4Q4LTo/Cd8Og3TOjQxISCSGgeoAxQKT6cQKZDpKRAdLGUCMNf5Wc6KVICPRGxS1EhZpgip/D0DwPhB1kAiDlgCg3BWW+xKfEw0F4SDBL6ICFgIGY5o3qtEe0wAJqPoTh0vtJ+HPu828wXqA1t9VkJDrOilI+LI1kFD3q9n/oQISTfssFyS0bG6QmIZZQ9rYZaBfDY6WM23E2LJmIAK+I9MZK12Hrjo1pZVIozFGg0RY5wcN6LLhW9vP0221dTaFizCIABXnSlXrKI1EDiT8gi0AlE4b4T5wfhLWYOgLDq1zlBRfiRDBYZw5Y64YhugOPZGXiMyFIYOAS1SlnC4rIBHzSEhCqnqK7KbMlgWsMmtYLJF71A0V/puDeUNrJUpLMEy1CI4kQRUxnNHE37EMSASrmfRJif+DHp4RBnehgao5I3G4lF0q5o2aVsJWnzEV7VEBCYSU6uOBBIBGh0sAE5k3ggQoaAeJpOwokFBlEz8JXUfbclc/ieWAxLj+EQ2y6kCiq8xAYosDiTUDEZKhMvxDS2cr22WobfR9aAAJiommwluh7EMpCExDK6EHm/ByhwlBgpNLAGsIxqVhgozMbBhDf8DSEgYogq+EjuDQeSXku1WqZo0KSCS5IBztJXkkVBOTegw1//MbMJYs++8CBoyhBwkCglai9M6VkqBKR3DY0vjBxPrB0TfapvdBzBkwHO5JEoWhwZTj8xQAlFE3Z8j1EWCQMFCkwODuWyyb0zRokIBKuz0WSDCCJiEcNynbYt7wIAFGYt5wJy//CBgJEjWTxxgg4a5TB/PGJH4SDSCRyDRBYhyNxLiyBThaut1mILE5ZM1ABICKJoIT+zTQAhKAH7zZv3FWOm3vRJnbxqFuVLbF3AJNMNHktBkARipOWo/xNRIsdMKwMM7Mw87hkplRGgIIKEtxxCzAxrrxqaKVcJcjnX/DwmW41LNxlqBGkDDB0cQ255GQ5ldNGxZA4aI5tDhtBPtl9z0kBlnOayWsa5xhwrASYsLWTTYmI3QACRlUA1S40+DC3+QSwazjt7r7IaYLKFhoMmdoLYJBNG+0OV3m/CqmBBJA7LwTP4km80aLn4QMhDFl+AqAhOxXMW8AqEdvSBvG9ZPIgUQ4pZYBdxogsZz02MtwtNxqk1HNZKSsHYiwHD9AnDvDd2ZxsG8GCdfJ50EibFNOeHrQz8FC0Er4NtTrQ1pXxfciyZyZtB6jQcIEBPLb3YjFzCADkPpdMgE9YMgGw7JAYWwEhIpWAkDtu1XU+FyQdVEYyCekAip5JChTB2xFM+FNGjY+6sYWLnKjLGCowNBrJ5q0Ej0gMW+UME5jE5wBFUh400YIxRUQkDujgEGuvYumUfedKwO/Nmf4+rSGQdXigcDvW4EOVICgBhJUfQZHg4Q8PTk/Cbc8Rhho8IWgegjotEACaFzuHL0xDkiIdDFrVKULSFRlawGJZWgCpgYSM21EJ1kzEFGdgAtWNBHS8Slnty4gQaiZMRhpWSgI8EoHX78aA2XUIDSbOJQ5oz5vB4LDZdJ6RnzD92+r0bejEgDoKUefI+CcCY0FZOKrsjQojXpbVREcDARNBHuHyrmgkajDRDKZlj+/Apz6N9AgySMRZgJltIIEAJjMP78hRuGdNQ0bZd4o2rUShBDBIfH4lsjl1SjiGSUgodoVxpYWkJDXb3ddZdBGszkjZ97IOV2afH2wGZDwHfw4IOHanPeTEA0DKW3DKD8JdbPqkRtVYAAULHQECalnU4HENCM2ctJx/oe1BhJTkxlIjJQ1AxHS2UrPR9LZ+rce0Up0BgkgdkwGqtPNl9XfkP5MIKGyH6r7aHOGhgZZJ2XCyao3YSgIqQBEAAlDkBhH1teJERJLAR4imH3fyGDrzB1OwUPJ/Bs93xrtH2FBzSmqQxuRgITOIyEnqMM/DWxtGvFUM+GgoSCLjbbviznNRCG5JAI0tGsl9Pwb0bOzASSkkyzcRa29mVdAQiZxc8vqXsszUDVnyG9OywFInS51+Up90wCJ8Iwl8Dqhn4SU1xqJNpCQ3xoCaARIAOk2XYdfbk1OtTlAQkuXAbihzNRAYlPKavCPmEmrrBmISBJNhXX+rUneoDA+SDAYMgNo0B7osoxkW04rgaQMI6eVqJkzbISDHEjoN6rOIGHjUKSHCFHbO18ACr4SxjBgLGxZBK0EgGDekOU2EQfKoIXIgERTHgkDrk0jXhgOJpGcv0UBi0X/2Is2QqI3zAithHNoKGFDwip/4OAj4Q7EMAHi4H0iZDDWd6CmkWCFArLSgwAIjeaMxIkyQEUOEDL7eZCQZ3IaIAEga94Y5ScRBmx5/v3gnwUJoB7imUuPXQUJYHnmjSaoaAIJkZWM2JDyyfE6wEaubVMov9U5Ws60Ea2yZiAidLDS8YXfDiRgKJg3JgIJRD+JaMZQnWZSHsmEWyDUt1e0EjVzhnT60qfJm6mURztIyICVBQkxf/h5OeTNzFoDywwy3oyhtBKwUnl0ugQ6+kVoMd5JUgNAuCi58M84B0e1Hsh1M86xsrAWG+G1EaS0EbZAQYwBFRgai6E1WKJeTSvh9jMYwP3jVB0uNUig9Mvk35wxGiSieY3ivdTfbeaMrNZCgYQvAyABC3k+YTjVaJCKNAm3oA4Sci4I5RSQ++cpatsq5w4kfhLhHnq/oggbGZBoyl45CiTcTZyeeWMUSDQ5WjaBhJZxQaIqXf0jmmS1mDWWIVsFSKxyWTMQodNdA64jSybgkrcmowfWWHZckMgBAUFtoLQMpE9LPhzfyqo+EFoLoQaHnGo7BxKhteyd+vxgxEbtLJ29+DpY5wtAcG/mJSNoJaoJqmxHTUSjVHwcNEjkwj+bQKKAc9bcaPuhLjFtGGIs2tRHwn0XIWW21kpIM4A4JUkCEsyJacMdjMNb8EiQ4PgsudNSkRu28lx1MW8YB4J6Eq8qSGhnSw0Sbv1okIBaB4R/rwCm4/pJBCH1X1UFCdk+CUhIuTHNGysNEkHaojByIKFla47YWA2OlptLVrk2YmKI+OY3v4kf/OAHICLsu+++eOxjHzvNdk1fLGpzZwBIQYIQ/SSmDRKiyqWKX0UFKpDbF4zsFOPTAgnIwKYiN6xvECN0Vly6bJZgp2EgYlikWgk2DMOEEM9YlEAZRtaaNM2+CSDJbCkXxsA2TCPeopEQbQQ7DcZG7sGAsci9YN4wXCRaiVwEBwAQpd9JO4HgIxGeHJI2jAYJaa/cX0huEoELBQgg1M0bsr2msfD30vJokKAIDV1AAoj7TsVPQs7NXWRkQQJqcBYAkfKjQEKXG8O8MTFIhHNqAImweRkRG8n2GUjkd50CSMzMGlkZGyJuvfVW/NEf/RG+8IUv4AEPeACYGXfddRee/OQn48Mf/jAe/OAHr0Q7pyMWocMJs3qiAgRTBom65iH1lUgdK+HfzlDXSlSnGJe3U3lhUoODDDAaJKRDDk0aBRKk39aks/W+DsaV5gatBAqLofeTABAcLptkHGfLpmnEcyAh24yxMGxhrEXhlxfhfCc2wmkkemwbtBIxgsM1w9cpebABZ7oobPKbChkQZDRHmtmSKiBBfsCWQR3SZ/gHQm6c/86aN+Q6VX4nk3hVQCLAq4BExR/C1ZeuCxBEHsKn5CcRYZEqIZ6jQSIbmdE2hfgE5o2aw2UXkGiCE5FJHC1HDShbIkh0lc1tVtjcx1+FMjZEvOxlL8Pdd9+N73//+9h3330BANdddx1OOukk/Nmf/Rn+8R//ceqNnIowxw8QNBPsevPpg4TvAKuQwEDqYBbWoQYV0PtYX4jg34p8+ZwWwg9CGiSqE3e1ggTHc480A6edIAq+EshoJZzE+TfcpW+ABCWNGomcj4S/MF1AwlXh2lUYxkZfV2EsNnIfhiwWbR8FuyiPARU1XwkgOnTKBF5L1XaKlsYfy3ifCCqs0jxwPUU2wV1jK1c/goS6gIB+5hjN5g1GrVwaJpqChNZcQZ69nGOl12bohFSqxdPxk9CaJ/HJ6AISfp9GkIDbBmB55o2qn8RyQGLaoZ+rXCMxUrYkR8vNJatUGzE2RHzqU5/CZz/72QAQALDffvvh3e9+N4466qipNm6akuSIELEIatQ0XsEJTwASqeYhY94QWPD1QDpJQloOGZCQbx8OGEChqoXAMkCCoQY5Cuci18u1VXwlUNNKgBky/wYADMOOzSaNqmQn0ar6SPhzHQUSbopx68BBvgUgmB1AGHY+EoZh2Pk/DG0Jgz6M19kb7+ygNRDDDPgM4SNX/Dm4xF2u4XmQqD5fESRIngmLkBwsAIT4UGjzhgIIeJ6pZb1sAwnlcJmP0HDthmjxOIJA4ifBiH4Psp9rfQQJoOYnocFPIjcaQQIC3BoEGkDCb1u2eWM1goSWNn+KpjJNMo2pwJWsJkfLKVQyEcRsrTI2RFhr0e/3a+v7/T7sFB+6qUvFFyJoJSy5zpTTLh0kb3LjgYTbpjteBRIJQMB3ns0QEmCEEBUCRoEEUc0voqaZAGogAW7xkaAQH+AumdFvZBSulwAEy3oPYzFBFQCYeNknJOgAALBhICgq9vM2kCglvMHAaRsMe4CI5g3RSAy4CFqJgZgvxFfC1200OEga61y7Pe0YI2m1JgAJRj1yg+O9SSbqYhnkUYOJKigsFyTUf4la3+5wGZ/1dj8JAKlGogkkvJ/JskFC9us68E8LJMKDkgeJRhl3AOtQfouM2Fimf8SyZXOBxCrURowNEU95ylPw8pe/HP/4j/+IXXfdFQDw85//HK94xSvw1Kc+deoNnKpoc4aGiWmBRM5MgQgSSNZJHbKO1RtctdNW5bUZA94WPAIkQPGNNXTYTeGfoaNGtNtrTQTgzRqRiIKzJ7vKrJG3RaU6KGwMe2wRHXkRRM834WEgkQaQcIM/+YRTzlwR/CQ8lBTMIXqjAKdaCWKXO4IjQCzaCjU0gEQRNBEOQKxSpXQFCQdtSCM3WG3zi63mDX8LWkHC3+IkiRnqy+OABCDPXDc/CdIPJ6mBvgoSoU0RJNy6CUFC9m0yb+RAYxKQEMlCRn3wbXW0rEZsaGnKIaH/Z2b+ETOZoowNEe9617tw3HHHYc8998Tuu+8OIsJNN92E/fffH5dddtlKtHE6wuoDABw7JcZ0QAIAquaN0DcyqzcxdNJKNIIEEKGhBSTkLTS0qwNIuMHKH43U8QCgJNcJiNNliWjOCA6XvjZDsKXxzpXdQUK/6ctAXJAb8A3bBCYSqYBE0BzAJ8ti53ehIcKFerKbNtxYbGR2GgrlJwEgQkQOcACgRMjsyca6F3x/XQvvE2FCHonuICHPYi3rpEE0aQlA5Mwbsr4FJARIs2XdDUn8ILqCBHR7G0Ai/E9UbNXyfxd9IBBBAmoA95q4kemxW0ACQLt5oylccxRIhOcyU1d1W8O6zhEbVVnlIDFSNoF/xFRkpo0AMAFE7L777vjWt76FK6+8Etdffz2YGfvttx+e9rSnrUT7pia5jJXSGQRV8TJBIrzxZ0DClUNWKxEBQtYxgiqAkHzCWx4wEiSA/LIGiVrUBiFM3CVQE8QPOkTidAmEUFDfrmSoMARYN/OnBgnnl5G3A2iIyA7aMg7LMtQEXR4kxBmyiJSIPlmYeNYu+RSLNqIHwxYFs9dIiNkjhoK643TvMAyXQAkY48ClhIlOgRzjYFpBgtWzpc9ZgTD8fa+ZN7RpogEk3PPkIWHKIOFuRyVyQ9Qpal+3zDH9vL+P4lPRCBL+f6QGEkACC60gAYw2b0wKEm1Qsjn8I3KyXP+ICUFiNWW0XLbMQGLyPBFHHnkkjjzyyGm2ZZNIkieC/UJHkAAwMmoDyIOEHFJAwu2j989BRUajIYND5XcWJBh5qJC3V8igozQSYpqwCOaM0LeLuYOi02WYDVRCQRkImS6ZYQrUQcJdSBD5Sa58WumhdQmeRBKgEDBAfJMMfhJeCjBKb8JIElJ5DYRRKbL1nBvR3MGJ02Xwv7AOBhbH+HcxhYODgiyMge80LWxpYIrAYwgOqkkeCQ9pYVKuGBacOFzKM8tw4aEVgGgFCdLL/kmUev23PPaTgASAeCYKJOR8gHgOEomRRBiQ2l9AArGsBgn/gNRDP7XGomHwH2nemBZIILZzWf4RVZDQUt2ni6NlRaZqblgFx5nJystEEHHvvffi6quvxk033YSlpTTY7c/+7M+m0rCpi0ujGP6p0qRT3UCCgNHhn74HHuVw6Y7azVciBxKilaiBBEcHzVpCKg0ViCABqA5QDm788YKfhFt2Dp5RE+E0Flw3b/g2W6AGEkQStdEuhqxadm0LcCC+EdY5Lxo4MwTYQUHVhFGCnGZCTB4KKAJEkEXBPVcnlAkFGT+MjFh2E48xE0j2MxbRD9Sbd6yJDpOQe041kIA3WbitERKTLJYBDtjDYAoQWZCgClTAvbGHjJXV/aSNQTswGiQQtlUcLllBi+wrICGKAK2R0P9/OrGUb0941gIwIAWJTtkrMTWQSNo2bhlgtH9EVaoaiHFBYjX7R2wpYZ9rXBvRCSI+8pGP4Mgjj8S2226La6+9Fk9/+tNx33334d5778UOO+yA22+/HevXr8eOO+64aiEip7jSeSIEJABAO1tCNlVBAvFNsAtIuGry5g23TBXAaAcJaXI4t6qt3A8QASS4siz1+HYCESRChy8aD2kw+3MO8ODPKrxJAmEehAaQsKpiN7W2m25bi2gnlshPlEUWxnqTgo/WMBRTWYdpv33Vxoej9MlGgNAXi20NMsS8UYB9cqp+MG9kw0u9WCZYsrAmTn3urpkz1xQFo2cZQ8j/u4Mp44NA9X3oBBLsr30VJDi9940gQZVlf1jROknGyvAgkmqjv79dQALhORkPJPwNj8mmgNS04bOpdnK0HAUSutyUQCKB8fAwtNRTLdOwbmL/iJysIpAYKTOQWPWS6Rbr8vWvfz2YLl7xilfg2GOPxa9+9SusW7cOX/nKV/DTn/4Uj3vc4/CXf/mXK9rY5UqSKyKnkWDVMXl1tvajkCyX7o1ePXSyn//oOqXTrO5PoawsV+uofnNtfai7WqflcOy4TtpdXx+2W0DeZpNtof3kBhFVDyz5ZfcNlnXuN/tltgAzgS3ByocJw7LAoDQorcHQfwZlgSXbw1JZYGjd8qLtYcAFNto+FrmHRdvHRu5jiXvYaPsYcA8DFBiw+5Qg96kkupKojT7Z8FmgIRZoED5zVGKBBujTEAvGrZs37rNgBpg3Q/SMRc+UmC+GmDdDzJkSPVOiZ7xGw0RNRGF8pIjxgGIYZCzIsBsUk49/UA2cqcj/ZoMQaSPrxSQR18ey8TeC+YsrZcM8KVRZ9p+kDtLbKVmXflMsC72N0uMgrgv7Qu1j0nriNg/34ThU2aZ9Kyh+G1VG1ulloF6mWgdQMblQ9lugr6YlyNWTK2NMvTzcwB7LZPbL7DOy7Dhlqm1rO2ZHoQn3m4mXVXD9OkHEwQcfjPXr1wMA/vM//xNnnnkmiqJAURRYXFzE7rvvjre+9a04++yzV7Sxy5IcKVdBwpfLgkQGBGDTslWQCGVtur4KCnGZa4AxEiR0HTb9rdc3QkW1fQ0g4a6XnHd1uwIJOW4FJNiDhFUgUZbGvclbBxElk4MJ9kDBBZZsgcWy56BCYMJ6mPCfAfewkfvYaOccTHDPw4TBAL5eNRoVcNqHPln04UBiDnWYCB8PEn0qw0dgYs4MMV8M0Tcl5kyJOTPEXFE6jQm8psO46I+eB4jwIQ4gQZOARG6wHwESVWCoAYSJg30OEmpQsIlAopaMCvo4lW05kAA6QkIsww2QkB1wR4FEW2efK9M0WI+qo+l3LqPlyCqnNECNOJeRxxnHAbLDeeV3m8K5TnjsLV06mTNe9KIX4ZOf/CQAl1RKbvpOO+2Em266Cfvuuy+222473HTTTSvX0mkIc4CJRCPh8xoEB0pmpa4HJLNl4mDJvqj4R0g/EHkDTjuc5pIIphExecB3mLKcMW+k3xXThpgtkLYLclxpD6vtSVtUPUCSQyAxbfg2RJW4OJHJuSofEXECsPGicFiGnzWc/G6EkqgxYsNA8jUUbhnRwbEg6yIovG+EOEXWxN0ogMT/IdZdkDN3GDAGiqmrWS5rJg2/7MwZhDnjtB4WBMsluHCmjZ5xUR8AMABgOF4fZnaJuUy8PxFnqd20YR1IuAmyEMwNtRBQZdLQpokwaMs+frB2z2Pe0VKOEf0kpmzayA784jCpjzeGfwSr+jqbLZDWnS1DzQ6SVWnyj5iGWSMpV1Gpj2sz30zRGlNtG1C/DptS1qBZoxNEnHjiiTj11FPxrW99C495zGPwjW98A/vssw+e/OQn4/Wvfz1uv/12/MM//AP233//lW7v5JJ5/sS+nwUJ2Q4OnVDiaBnWKZDwZbuChGtWJnpDg4ysS74r4aMaBljDRT5iI+wj7ZGd1ToNEnrgTOon8gOZ7FMBCanXAwP76+GWXeYEIu1oWY/YWJJ00+QnxLK98Huj7Xuo0FEV3snSO1rKrJ+WlF+El8K3T2AijrC+sQEclmogUcJpU+aNbzkbWFP6bwL7DrNflOiLywYTmK1vhUuPbQFQScEhNfwNg990QEI0ADqPROJoSQoQCMj5R8jzpWFkWiABfRxChNLK/+1I/wgp4/0jtG/FeP4PmTKo1lMBiS7+EVWZIFqjFSS6HCucx+gBr9H5cRKQmOQ4k8oEg/kWO7fGhNd8WtIJIrSvwwUXXIB77rkHAHD++efjpJNOwmmnnYbf+q3fwsUXX7wyrZyWKE2E1khokHDb/J8ABNzoaBkGnQpIxHpQAwkgDt4aXPQ41hUkavupsTu0MxexIfswlFNm7ju2OZg/9KnZFCQQZnxUYXsS/kn+WHJ+3tGSiJxGwprgaOnGEad5GJKfktsP9gIThvx03hzDMo21LnIjOEraaoN9Pe6nfIOBOYnukKRUCiRKGjofCyKUMFigoYMJNrBEsGbgtRA+6RQ5TYQhi0I0FiZOmw5jg6OlRGy4HBJqQJfnTgZuMxlIONhD0DgQp8AA+aC+HIAD6br0eewOErGOfPhn2E5qX6WNyL0MALF8eLDdxY8ggQ6QMAoksgN9R5Bo0kZoadvWVbpM1DWNaI1JZFNqIzanrDFtxNghngcddFBYfvCDHxzMHKteLOraclag4EGCDKItVP6hZdm6tx+d6a41YiMZvCrAoLQAywEJcLpNjhegQa0LAMCIZhBWZfXx5dsiwpWttwFIQQJw4AHmoJkIkzb5wYKI3f9YAecf4SECBs4/gjxAWIMhMcgyDBVuSm4PFgUxFn22STedt88yaSRpFCceP5IC2zAFrUOhuFBOaI4sltigTxYlygQkgLhsyflZLHh4KGHQ4xKlIcyDMLDOrNIzFj2LWkZL2DjrJ7PTynAt9FNdZWUOgn/LTuCgCSQIgGyjCCiinZABu5NZA1DahMlAIoCrqj+2VYGEEp3VMj1W1EYkA6VAyqiIiuWAxLIG+uoxMoNj2NZBG1Grf5mD2EqaNVpkpo1YhmxGbcTYEHHDDTdgOBxi7733Ttb/+Mc/Rr/fx5577jmttk1fLOJgoDUSGiSQDurj+kdAUhFPEyRQWae3cbpOv4jJtrH9I4AYOojY6QdNhEnbAkSQCHWC3OAlb94N/hFsAGvJmzUsSnb+EblEVAYFloh9yGcR/CPcnBb9MLmWaCAK7gUnSvnI4F/NhmkQT0hAYsFrE5xCIBhJ3LIZeJgwmKchSjIeFJx2hT1R9bwmQvJHMMSs4YCIiWCM0xYZYsgkoeE+kX/ORHXvgcD5wXBIMpWAhIxPhKzJQvtHhPVIy+TMGtKcPCiMCRL6OUT8P5DnIoJLh87R+9gEpA8+EQ3+EWObLdAOEuNqI9pklFmj8RrkASxb5+ZMQjXTRmx1MrY76cknn4xrrrmmtv6rX/0qTj75ZJRliW9/+9vYsGHDVBq4olIxbQBIH1D9f8ZpuRgpwWmZXOin1MXpvgDykRvhePXjpu3X7dDr0jqq5apRHzLwI7NNzB2ubhXema2D0np0+KeUk6gNH6Xhwj5NDPuUSA1LSdinjtpYsj0M2bjoC45hnS7U030vcZF+UGAJbh/nAAmUnPrPGUTtxJw3e7gw0LIWraEjNfpmGJZ7pkTflMFXokdp2KdEaxQmRm1ItAZJxIbXxCQRG+RvKCH6m6jlWvinP6EYmhkjNoL2AaiFejZ9uOF3JYK2UapRG21RF7WIDdkvE62R1V6oOiXsM7RBtutvo8rq9W1Sq4Py6/13Y7RGdf/cMRrWtUY15LJZjiMrGfLZEq0x9ZDPCSImphKpsYZkbE3Etddeiyc84Qm19YcccghOPPFEHHbYYbj11luxyy67ZGFjc0lt7gytkfCkHjQH2qwhr4QVs0Yn/whCWm94bUdeI1GpK9U+dPCP4LguwIhf1utCOU63B02FryTY1RMo8e+UWlOhqnbhof5t1JtLAkCwvLHBOXxmzRpu3zazhrGMARU1s4YxjAEXKMDYyOxm6AQn/hEF+SgMjj4QULezqpGIr82IuSdAWCCDkgjzxgGPmDXmMYRlAhmnxSgMo8cuGRUzJWYNca5kcvkjAIOS3Tm7TpzldsUHx/uXRP8IRA2EfwS1BkJ8HhL/CEKzWUPVEZejhqGigOvsaFlR/OT3GbO/75KEKhxX+0cwwv98d20DmjUW05YxnSxjGer+lr6KU2KPlJk2ouF4medmE8jYEEFEwbFSy1133QUiwuc//3ncfPPNeNSjHjWVBk5baiBhEDsLoG7WUPCQNWs0+UfkQj9XECSqZQM4QOp059Bo1pDLIPtKxazKBZ+IZpAIzpjssytKxx46IDfwBbMGITh2RrMGQMaibDFrDI31DpYOJgZUwHA0axiZ3tvUzRpy/ccBCQtCn0qUMCjZoKQh5qiAxRADKmDJuO1kMPSmGcCZM3rEsB4kqmYNlx2TvH8Ku7HC+0fIG7WYJpwmQqEjuWcM4jAp4CBROcLAVX+HCkCE54fi7+py8DFQg78s1J/HDmYN3df5+gOdUAQEVPcbx8kytDf1j5gaSCzXrDGOb8QksoWGfG5VvhFrwKwxtq7nSU96Ei688EKUZUzxW5YlLrzwQhx11FFYv349+v3+6ks8VXkoA0zYhjJjmjV0WWoo32raYATHRFdHQ71iIgm/03qWa9aQdoR9rT4GlCkjY9rQx1WmDbQmo4pmDXCazZKZWs0aQ1sEs4ZktNRmjQEXPgmVM29sZJflUhJRWRCW2Iw0bUiGyzlYzKHEHLmPmDUkEdW8/y3ZLAGgb0oHEmaEWYNiEiqngeckCRVJ0ilt2jAAexMHDAcHSQGOmvmCADZ5s0a1XHW5Vs/Ib2rZXjFrVCRmyaTKcUeYNQyQqNHVcngZaFJVjzJtdN7eUP+4klPrN2SyTMtU1rep86eZgGrc5FjLlZnJIS/TNgd1kLE1EW9961vxu7/7u3jEIx6BJz3pSQCAL33pS7j77rtx1VVXAQD22GMPnHPOOdNt6TQk6NYbtk3DrKE1GhVHy8SBU5pBiBoPP4CLWjcX/ZGTqIGYjlkj2SZvbbKOoTQQFY1E9VtBShezhiWCYfYaCZ+EilXopzJrLFEvSUJVEGNoSwxQuBk3g0bCZaQwPglVdaKuvneizGkkRNz8G85foY+y1awh2SwXyUdniCYCLglV1awBFfbJxkVqGOPyR4REVHKP/DUHOIZ+KgdLaA2ENl+EfT0Ueo2GmDUSbUTVEVPWA4lZg8JDFS7bZBoJvX4aHaB2smQgaG4Y7Y6W05bNqY1o0yBU6xqlbVhuyOdMGzHRsbckGRsf99tvP3znO9/Bc57zHNx666245557cOKJJ+L666/Hox/96JVo44pJTRtRdZKslvNlElWsTbfXnCNDau1Yf6NGwq9rmm+jTRuRaiXiupqWget11jQQqg26Xl1Ho0bCRiAJjpaihUi0ERQGwuhg6ZwsmZ2DpThZWkaSFrsUB8tSOVjawqfBVhoJP8dGTIXt5tfYaPtYgtvepJGQR0JrI2K6bO9QiTLMrzFHwwAQTivhNBFzZog+Wa+NsD5awy8rjYTxy+n8Gm6QdeYddUNFIyGZQQ2is2VV06AdLdVbfU7joFNdy++kjAB1Wx21b2rZXne0BNJjL8fJMgFvvTypo+W42ojq+q6y3Hk1qjKOc+FyUjdPeV6N0cdboXpnMpZMNBX4rrvuigsuuGDabVlZYXkdDisAIGoBtH8EgKA16JLNshL2WQvXrGokgKjt0LCCjEZC1Ze+zeX9I1Apq7US2hciSUKltB+58qGv1eZVIDjusaloJFQdDjLYayLcW4kOB9X5D0IR66InJAmVdXmyuyWhYud4WZB13z7sM804qTJQMlCiRN9rIoJGAioRFaI2ou/DUOdQVsI+By7MkwzmzQCSbKpnSswDMRGVKdUyhSfROtVX8I+Q/BEk6gjtaGmR/BaNWKKR8HctJJiSlyETnx+5s+Feyio/YJPcF/GpAKJ/hH9Q9PNRfxbRLGFfpZHwFek5NiRcuMk/wnmixjLV3BGbzT8ie86+TctNQFV1sgxF1dv7crQRqyQBVadjrHA67C1SG7FS2rUGmQgiAOC+++7DTTfdhKWlpWT9AQccsOxGrahUtArwnUACEmobAIzMZhlMGB1Bglz9fgiPb4kyuE8KEroOqV2BQNVsEdIiJ+t85w0k2S1FkhTK0Pv4TpzTOlAbBAhhDaHZrOG/iQhDGPSA1iRUIg4mKlN4AwogkAUJqHuQZKxUIkmq+p6m9KReJRksmIFzvLQEmAEAYN6UGDAw1/LWZJmAooTLhlZiWBYBJODTgy8LJBDNHPDPiTNjuGe3ZtZQ91+4WUNFuI+SqTSuTkAi7BsG+BRQg1CI/Qj3IUlEVaJREnObFm/W0C8FmwwkgNXhZJkk2lrFTpabUjbnJFlbqVljbIi47bbb8Cd/8if493//9+x27XC5qkRC2USC+aACEmrdJP4RI0ECSMI/I4xg2SCRaBHk/U6tC/10Zp2eyKsGEvLSA7W/fsMN+/jwTqPaLds0SMjBZSC0rtKoHkaYpIv8xB8ySVdTtIb2j9BiDKPwE3RVQaKkISRhVHxMCH1YlF67UZ9vg2E9KZVwz7rLXOmcQBfIharCb+tTiXk/ylk2KIMmIvpHOHYoYEPYp0ADwptYJ5Bg9zuABHFMjy3Pg433THaKdwYBCuDBIiSe0poMG/cEVRJIqeXOk3WNGluo8vwAiTYim8kyDPIV/4gVAom0vRUQ6KKlaD3/zH4Ng/XEmSw3xbwaTbIptRETyBaZxXITQtvYWHbGGWfgzjvvxFe+8hWsW7cOn/rUp3DppZdi7733xsc//vGVaON0JReNEXwVuO4foX0gbCXXhN6m9s1NHe6WdT2o+0moT3YqcVVf1UdC10FJHXFdzt+BLFeOWy+jQSONIIH3c4j7JAmnbL1Nbj2l/hHVSI3wMSEBlU5CNSgLDKzx32668KWy56YN91OFD22BoXVRG7loDYnUSD+9kJBKphBfYhOcKEUMHFzMwSb+EQs0CFEbcz7Z1LyfMtz5SQwxr6YLnzND9Isy+En0jfeXKGyI2CgKnYzKwiWhQmUKcdSjNvSU4gID3l+i6stQ820AakmotO9Cderwml+DLq/q6eQfAb2eYtvV79o+o/wjVN1QoBqm+zYU6pB6k7KjfCDatrUkkRorAVXOv6KLf8SoTJZaRkVrZOoaKznUhL4RnY4xjn/E5tZGbGUytibiqquuwsc+9jH8zu/8Dowx2GOPPXDkkUfi/ve/Py688EIcc8wxK9HOZUstQYyGBfWmQOzzFxi1DYhmCF9X8I/Q2opRGgkgqIahzRt+lG5LSjVKIyHa9+pbXlXroN/+4r7pMUIZ+R1AKYKDqL51Wenw3bTeUSMBidgIuhPEd0by/hGSMwKxbibAlu5VT/wjhqVT+ef8I0Q7sWjrU4qH205GaSLcvbJ+lHCwYGDhoMDlhnCv5oV6XU7MGgxYlJB5P2I6bG/OoAEGMMH/AYCfPtz6CA0b5nRJDYNS2ABFtLMlGglv/nFX1d8JiXwx4Z08aCac2YLV4IvkjqDhfkI/C6Kp0BoJ/yaYPI9In49gNrLNGgnFacF8ohNRVTVaFSWR2rfqHwGIyaSqkXCXLKOVQOwTRmok/DFa/SM2sVmj0T9iBcwaWW3BuGaN5abDXmGZqjZiU5k1NpE2YmyIuPfee7HjjjsCAHbYYQfcdttt2GeffbD//vvjW9/61tQbOE3JZq3UsJD4QahtAFodLbuChJgo/OFz5o3ET0LajdEgEdqAtHPWjpbQkKDU2m6gbwYJrX1IQES+OTfYjAYJ55Tq2y2dvb+ODrb8YGjd4A4AKCysNRiMdeejlPImYODqtBEsSpCfldNpH/rkJuAy3oQRpgxHBAkJ+wRHcCi9cyUAzNMQQ/UmVcJgXo+WAFD2OoGEAyk/N4fPpQGoe0EI1zALEmH49ctingD8ABv9I7QpIsLhCJDgdh8JAuJMrwz3v8LxODVNRNg3AxIcB/vGJFSELEi4TR1BQmSkD0TbNlqeWaO6P6Ago6KNaKq3DSSayo0qO7Ld0wOJ1WDWmElexoaIRzziEfjhD3+IPffcE7/927+Nv/mbv8Gee+6J973vfdhll11Woo3TkcoDmIR3VkDCdWg0XZAAki7cgQCCVkLytSf5JNxOfuCugATUOrdjMlAkb5RmfJCAf1NlXzcQgUI74klyo1QT0Q0kpJMPw4S/FvFKuZ7Zwjj3QvIHBGqOltnBtyIlnPMjrPdjoGGYxru0xud8GMLC1LQSyhEg1UqAYcEoyaKPYfCPAM0BAObN0MHQyMY1gwQRZ5wtEfJIEHngstG3YSyQCOCgnh+lbUIVIJpAAv6tXGAzXrI6eMYWhEytIUKIoDQReZCQ8d1tb/CP0P4PCiSSqA2ppQkkGPHFogkkOm1rBoGJojWaRG3v7B9RrXNzRmu0yIpEa4xz/Jk2IitjQ8QZZ5yBX/ziFwCAc845B7/3e7+HD33oQ5ibm8Mll1wy7fZNV5iTC5oN75w2SAAxPbbvEavmDQCpVkK9LenbXwOJClwE7/xRIMGqc24ACchvAQQg+jdAvexJh06xjqhJiMCQBQlSUCXtLoAQsSGjG9zsm1CmjWHGnWdILP6MWRFHSGd6oKB9cKYNlzRqjgoHFUi1EiVK7wNhoW+KgUtCNeftCjEttjvWPC2BTRrJ0STGxnMa+mtjiCFRG24+ERdlQeQdOL3vSG2uDYG8oN1pBomwj1qn728jSDCCNkOgQTtQputHgIS0Gf7ZFvNDpiyAYLJA2N4RJAAk4Z8BEtQVaQMJIG++APIgAcSOPNEGpKAwllmjqjUFvEaiTLejMvBujrDPzWHWWOGwz6nJVgISY0PE8573vLD8mMc8BjfeeCOuv/56PPShD8WDHvSgqTZuqlK9iMEZcWVAAkDQKkgeCbdO4EH99h1VTitR7eQTaIDvzDuARB44GkAiOONF6AAQnSgpfrT6O+nwbfwfaQIJUDqcBUIx5PtDBiv3d1vAg4RrTA4k/HhbE8sUzAiWCfNmiJKdZkLmvZg3BhbDmlYiiG+i8VEbBi4TZeHbXTBjzvtHMA2wBDjNh3d2rEZ6VMUojQX5TlDAwpCbkAylcSoI1S4LC2IPFQoe4hAMBxtFHiTA1C1iQwEEGEByjxVYsI/SQXV9E1D4VslYLM+TzYMECoazNE0AEmGgV/9jAgmqHODOrTFyoytIyLoEBirrlusfER4gNQB3AYkt0D+is8ZjhUwbU4/U2ArCPifOEyGyfv16PPaxj51GW1ZexAarfxNNFyRcxXG76sSDeaOLViKXLttvj12reiscARJoLJcBCQhQuLYGTYQ2Z9TK+h+y3rc3nmodJHI5JHypdpCwFCoog4ZCSQYkrMqUZX3Ha4lgQZinIUofojmgAgs0QEnOLNHsdMkBJuJhnVljjoGSSgcRNPR2ByDPPDZoM7RDqKHCf3PybLj7QCiB4GxKZGAt0jTZ4d50AAkNBOEozSABjs9d2K8KCMbf+IrDZQAQVseVdspJejhFG0iEHBXdQMJVq/5vmvwkpCb2ECDX01ZhYxkggUo9XfwkqiDRZQCeBCSSuioDca7sagaJrjLmQD4L+UylE0S88pWv7FzhRRddNHFjVlQsB5szgNhbThskZNTUgz/5fZR5w5WInVv6GyPNG8nAmwMEQmrjBhByZZhqOQUS8iYbIEFOAKk5Q5clVU/WN6IBJNQbc3I+pEDCurUJSCQJH+CiFyogoaMh9G8LwpwhWDbebGFQkkGfi6CVcFknXVipZKJcMM68IYOogwWbjO5i1lgiF5XxG7hvkJtoqwkkcmL8/R/Kc0Dx2810ys3mDRgfruiewRAaCUSQIA0S/gkZARLJoF/RSiQaCv8bEJjgZF+pqgoVEiapHSubQCJ5xjqARICCBBAU4OfMG1LOD96TgoS/cWofNDpaNmojkodDgQRU/WH7MkBiXLNGrkyTTDECY3Nns5z5R0TpBBHXXnttp8rGihneHGI5fagqbwKjQAJAGv4JpCAB1BNSIb7hJFoJ5GEiF8FRNW/ox6DqJ5E4W9o6SDCQdbbU4AAp4ztzUa2PNGfY+Ns3LtYtx/ajA/t5IWRQroEEy/WK17IGEuofgk36zyGRC7I8x6ULrWRCqdJP93zSJ9FKyGycopUImSgtYYEGASz6GALkTBiF1ySIzMFCpgJfMAP0zBAbfSdRqDYbcrN6yr6GLAz1UBBj0f9rGk++kkRLwljFvJHVSkj0hvp/DEclACWp56I7SARtmLqnNb+I7O/UgTJAB9QzCQTHSpd7QulQDCChq3GdN5mMAxLIPWcy2Kv/MQ0SSbk4cLjnuBtIsFXr20DC79PJ0bIJJML2TQwSFRkrEdUE2ojWYyR1jAESm1O2YJDoBBGf//znp3pQkQsvvBAf+chHcP3112PdunU47LDD8Ja3vAWPeMQjQhlmxnnnnYf3v//9uPPOO/H4xz8e7373u/GoRz1qvINVL5w8WJV/TgIaQSKARhUk4DstAiSzJeDhgKD2RdRKqGOk4Z9VsEBNK7ESIBHWUezMw3rpZ5Q5KOn81b5VjUTQaMibKeBtzUq5bADUbNwdTRsNPhJs4j9kz19Lq74tGwcUXisxMCXmMXQOlmzCZFrOsdL4TJQ+DwSieWMOZdRKIJofxMzRRwmi6NCZaCMqmglT6ewMMZaIYchiiXogYgyogLExR0ZOKwEdvVGo+6Irz4AExLTWBBLa5MVQzr3+X4GRN28YtPpJyH5hpCfkc09QfGbY/9YRG6NAAnJsDe2yPCIMNOsnUQUJVIABaAYJd4Prpgm/3BkkqtIEEl1kc0ZsrAaQ2NxmjS3UP6KjcrVZ7r77blxxxRW4/vrrx9736quvxkte8hJ85StfwZVXXonhcIijjjoK9957byjz1re+FRdddBHe9a534etf/zp23nlnHHnkkbjnnnvGbyxz+qBqkOC4HPJJWLWf+u6S2TKUk07SHyPJVCn1WMRj+vLJrJ6yj6hTk3pUed9xJ7/9Ogr7xv1kfbIurEfUPEj/JvVYDtv0x52H+i3LyfGg9qW4zHBzJPiMl64cgUoPW0wuptMCXBqX0bL0E1mVBqX/DK3BsDQY+OVBWcTMlmWBJdvz3wU2lH0s2R4WbQ9LtocNZR8byj7us3NY5B7us3PY6L/vs/Mh2+W9ankJBSwbLFX+lQQm+mSxQG5mzwUaYMEsYYEGuJ9ZxHqziPVmKXxcRssh1hUDrCtcpss5U4bslnNFib4p0S/8x1i/rGcBtSgK9zF+fZgRtHAfGAYKPzjKLJ+GXWSMzmppEDJOxnJ+vdJEJVkpM8sxeyX5T9xXg2fQRCTl0+M484zax5tqumS11HW7ZV3Wvxj4Y8Sy5D9qH1PZDvUtbYLat3W9AoFKXSMzWo5aByDkkVDrNntGy3Fn+2wqP450zWg5QdjnFidTthiM7Vj5nOc8B7/7u7+Ll770pdiwYQMOOugg3HjjjWBmfPjDH8aznvWsznV96lOfSn5/4AMfwI477ohvfvOb+N3f/V0wM975znfiz//8z3H88ccDAC699FLstNNOuPzyy/GiF72oe8OrtCq/BSTEdtumdeiwLZgucn4SBLW/b4aM0BkTRzaCw5s3mvwkmjQSThvg2hSa4r8lpDK3jSF//DFYtqUOoaG895VIzBtAXSMh2gpMUyMRX+17QEhIFdjOEJgJtnCZIoNJg2zUSpBBiTIbwSH+EyHXhJp7YwEDlCoBVdBEBGpS6bF0UyvaiIKsmzxMiiqHS2NdRMiSnyNEsnSK5MwbTishmTYq99XvpJ0tgaibyGkkgn8MkHGmlGcUdQdMBZLiGKnXAaHqAB6EWDaNEFHPDMXnpdOsn0DdvFHTNnCzeYMRHS5bklIFzQMQ+w2gJYeEXNC0H5o4h8SI7VOL2Jh26GeTbMqIjVnY51gyNkR88YtfxJ//+Z8DAD760Y+CmfHrX/8al156Kd74xjeOBRFVueuuuwC4TJgAcMMNN+CWW27BUUcdFcrMz8/j8MMPxzXXXJOFiMXFRSwuLobfd999NwCgN1+gXxj051yn25+vE3qgVVkV3kji20Rq8G/Ypt9kVL16gqnk2NXf4Y0sbg/dHiHzZkXpW13D21k1hE6/DdbnHojrZQbKOXlbU/Xk3v7SuRXSukIboJcjFLF/ttkvhGULSOipgx524MAMggUVDFO6odLAuKgHyzBcurkmitJDlAW4BBsLZgsuS7BhDKgPNi6plCmGGJIzQ5ApsdHMgWkIQ26Kb2uGKGnJh28OwTQAmYGL3CCXS4JKl2yKyjmv/jeYA8Dcwzwbf06Eghk9/ylg0QejB8YcGIuwWESBHgjzxFgEoSSgT8DQAEMLWAMMmDAkQmmcmcWCYS1haNyU6pbITU0C52Rp5eaA3DNX+vvnv4ngtEIedv0caEq7RImmSYOA1pBFrRiClir+pkRbFp4vAHN9P5iHfaimSZN5V5LjNWjjoqaNQxujthCBksTp0q3njLYxXY4J65QWUmsYpR6ptLpe16u1oplvatge+zPlNa4HB2YARToAq+3J4BsG2KI+wGTLybbMoJcZrLMDfW7fpsFtBHR0AgnL6C+4YU++85WNN5BPPVpjU0FMU7MZwIZuVRCPGSuzbt06/OhHP8Luu++OE088Ebvuuive/OY346abbsJ+++2H3/zmN+NUF4SZcdxxx+HOO+/El770JQDANddcgyc84Qn4+c9/jl133TWUPfXUU/HTn/4Un/70p2v1nHvuuTjvvPNq6y+//HKsX79+orbNZCYzmclMZrJW5L777sMJJ5yAu+66C/e///1by46tidh9993x5S9/GTvssAM+9alP4cMf/jAA4M4778TCwsJkLQbw0pe+FN/5znfw//7f/6ttq9rVmLkxEuS1r31tEpJ69913Y/fdd8el538d/WIe/fkCJ73ud3DpG7+BwWKZaiKqdso2jURY37ZN74uk7om0EurNXWsW4iyG42skctqCatm5PuEVv/cwXPSZG7BUcnKMJq1EoukwSkMhy+rY2iaube/RLs/RZm7g7PkGkCROMOxU3oUFGcAYCzJqBkyy6HnfgMJwMmNmQX7mTGPRQ4meYRRk0TNOqzBfDFGoGTh73uFyHXkfBq+RWKAh1ptFP/X3AL1yDr+47o146KPOhimcZqyE8+FYAmHIBQbcw0bu+9lF3WyjizyHRdvDIvewyH0s2j4W/eykJRdYLHsYsMGS7aG0rp4hO9+Pkt1Mp0P/KS05jYQ1bhry0s+KWjpNiC2dNgTy7X1U5Jsk27eluobB+7QkWgatbYAqG7QHSDQD6W/GPBHOfMrD8PbP3YClASfHi8sN6ztqJIColdA+TFGTgGggTLQN6K6R0NqCaWgkWrQR/fkCJ553CD74+i+7/qymhUC6biyNBPL15coBnTQSnbURueOFOpenkegv9PAn7z0WH3jRxzHYOGwtu1k1EpvSpFJp9oC7z040Udrr5z3vedhmm22wxx574IgjjgDgzBz777//uNUBAF72spfh4x//OL74xS/iIQ95SFi/8847AwBuueWWZF6OW2+9FTvttFO2rvn5eczPz9fWDxdLoIgZiAYbhxgsVWx/+rvBqSkLC62QofdFWrfepwYslTpMWrYKBBOBRPimDERwKC8d7GDAWCo5KVevi1PzhoaBKkh4NTl7b/6wrEHCwjn8BdOGXxaQUJ2zO6RT1htvADIMFIX/tm59nxhLzCgsUBig57f1DDnTAjF6cP8cS0yYI+eKMWBgnjiYCIbhujIKU2LRWBAN4cI73QwYXCzBFBvDY1GCYJiwBAPiAsQ9FFwA3HcfuwTmObDtw/IA1vZR2j6YHUgUpgdrC/R5AFv2QGxA1gDUA1sDNsZNoV4WsIbc9Omln0YdBpZ80qzSgAt3tVjfQH/vyJuuiAnkw4o0IPin1C9T+girgT1rzrCV7QIT3h9oyTKWxOE366DLCYQEKEigohtIhOWceUP2kWVl3khhYQyQ0NBg1X7J+sy6JpDwMliyDiL0/rrcCJBohAggHczGBYmuZo0cGLTBwBRMG4ONQww2TBci3C5bKkjEdg9XEiJOP/10HHzwwfjZz36GI488EsZ7zj784Q/HG9/4xrHqYma87GUvw0c/+lF84QtfwMMe9rBk+8Me9jDsvPPOuPLKK/GYxzwGALC0tISrr74ab3nLW8Y6FjHHyILYgDhIV52WvBNi1qGSKA0BBZq3Jfv6QylnzqzjJVzHXA0H1XNwJGGcvs5cCOhIZ0sg2Sdd79/KlCNDcKz0hZLJuORTnX/Dw4DY1hlqOThY6uVJnS09rXhXQhIygXH9seHgcGmZYI1zqGSm6HRpyIeA+vwR/txdcqp6h1OAo4OktBcAs/vXGrCBAQVHS0mRPccumsLlmLDp/v6aGbYhvfair89luOzD+FAGYwuVZ6LA0Dtfum05T3PlkFoaFY4sf/T1rztbasfJ+Liyc3Y0qg659IR62KdywCSo3wqgg2OlifuEZFX+3wXBkdKDDKkQUmlzxtlSmqfzt9ScLn17asmpLBBDTeV/29fP7nl0dai+I8xQi7S/0Q6YNUfL2K+MdLQE0rIt+7tHoO6kuCrn2Ghz/ptG6GcX2ULDLieSCZ0tJ0p7fdBBB+Gggw5K1h1zzDFj1/OSl7wEl19+OT72sY9h2223xS233AIA2G677bBu3ToQEc444wxccMEF2HvvvbH33nvjggsuwPr163HCCSdM0vS6TBMk4Dsw2QaEt6tYQOWLUAmqAISBV3rnJElVC0j4/nPlQEK9sSX5IFQZ6PLeCVJC1MYGCXYVyaCDQvYZDyRgRHVvw7ohDAyTc6pkcg6WEKgg9LzJwQGEi+AAgNK0zOwFV30hb50GmPeDfOnrBiEBiYIYRu43xyYX5MChYHZRGsIBFjBGJaHimIQqAgXDoMASgDlUJ/FKG8sKsKxvQ6Wrz4ME+6Xw7Et591AnWUoFDnKRGlWw8NfQHzqBBg0Urskx5wRIPYNUfXY7gAQjQgFDQYCUqTxzXUAitDkFiSwwADFiA6iAAOp9UhUkmqRpno0qSKh1E0dsbC6QWK6sUHjmFpnNMhxPromQ+mgZGyLKssQll1yCz33uc7j11lthKzf9qquu6lzXe9/7XgAIJhGRD3zgAzj55JMBAK9+9auxYcMGnH766SHZ1Gc+8xlsu+224zVcqwaBoJVgDQlSblKQ8NtDB9RFKyEwMSIcVIeCVsNAVxokpJKQUyLZJ5apzqkRZuM0NB5IAKFlen6GcUGCmWEKANa42S7YrWPjriYz+ySm7VoJAPGb3bqyKcWKtNNrMIZcYAkmpMgWzYJ6EONJh0FyKT43FiiMhSGLRR/6aYgdMEgyKluELJcCDENSWreySEx5urHMMfxT3WrfngpIBDhWyaeAkN/B/X9Roq0KZeTaVGBCL0dfHa9VUPc+ZBiXvo0iIATYyCSoyoGEq0aeIX8bAizFQSBo2wQOZHkUSBiglpDKn38t9FNnu5RrqAfOqiahCST0dxUEcvVpmQZIjJLlZI5sOtamSkQ1wUC+Rc6vMaGMDREvf/nLcckll+CYY47Box/96EYHxy7SRd1ERDj33HNx7rnnTnycykHT+lcIJEZudyc3WishHRuUeUNP5rUpQEKNMPGYaidCfFv0LzeiEGB1jVtBgtNjaZAIv5tAgvIgQfCX3oOEhe4IDOKMVRbMRaNWAgAsu0FYT+SlRUwSBawf/AlzADZyH8QFQNGEEVsQ6CyetAEKtglAbOR+NHFomPDPUaqNkJwSBvrfO2/acHu7bBlxuwMgdteyAhJVhAt5QSBAwB50433WICHQkeZ98Mc1oUnBlFAFiWDC8NeYIIO3QEY0hTWBhGp9PGfEAd/BcD3L5bJAwl1Y91UFhqq5I6xHCgGjBu6s6eL/Y+/vo+1Jyvpu+HtV733Ob4Y3owmg3rMGJhIVFG6UZYCVOxGUKCQY1MdJHFEYiBHBqCAO4TbhJfKiEBGQIGtMUDRRFyA+9615NPjwiMmo5AYGE9/iSnAiiYG4AhrRmd85e3ddzx91XVddVV3du3uffc7v9wNrrXN27+qq6uru2l2fvt5qAiSu8GJd5x0/YvQY+6QrCRJXuUplMUT85E/+JN761rfiSU960nn05+JSJZW4EJAAsnpjD6nEFQEJhvUvG9axvDnW9fJnuq7YDRKcJ5lBQCosAAlMgwQFpImSOUkjmM1OIjChk+W1W1IJAIPPZhK1i97MIwAbXmGl9gxOhWF2Cw4kkpTCi4GBjlfORoITQASYnUSHmCQQXK2x4ewkxhJDfwbpoka9AYhgFRvMAQlGGQ5bxoftk+PsCkxlc60CaA0JFUjohD0VjKoFEnK5x0ECMnpk0vOBr/YBiXRAObmW5AHufBdAALfG4hRwtPJGQGI0XcQaGxdtH3EWKcmO9MkAEosh4ujoCJ/1WZ91Hn0536TqDD+YHDScN0gAWCaVuBpAgpFfM5F2mr0CjdVbCBJobGs9a28GSMgb3xhIaH+iCiAgB0MEE8mEmsJGl1IKHQoqkRj+kDtpraMINYgkiXh4wmsQr6VcBoZ09BokIGqPTW4TbG2GmNs/AZudBJClEirp8HYScxKLi4ytRi5jCgwbj2MgAQkGZjYO0GGdDS5rewilu0JSoVK4gKwaiyUk2HAU0DAVBWVogBsLLZAAo7ST0E5rWTlQy+ByNkhAQCEgq0YgJzBmaKl1BhIDKmGkUmsU7TTKXJOGlnOO5dNFgMRVPJFfybQYIr7jO74Dr3vd6/CGN7zhTKqMqyZdBEgA42Vk30Aq0VJvLAQJAElHvCdIpOMySEMdM4pQ1uzb0Ur6py+12AESjPZ2OrjTq+8ACSonOQMJHoJNDAD1alwZZCIOYOJRo0t0SO11APryZ1O//Xfuml2OSUoQkOwayosyBRKwttL+CDXe9AaXnS78paoN/TQaWAEovUpU2sKcHqxpBVR5OPZBbELcpAyaBAn73TgYMGhQyND7Gav9Dj5s0FG1z4NEIYUAbKg71s7bEyDh+ykHHrOTqA0uZ4GEDjz4uu654Q0tgQIuFtlH+DQlfdhlaNnIu8jQ2IM0BgVLbTEOnf5MrTFIiyHijjvuwC/+4i/i537u5/Cwhz0M6/W62P+Od7zjYJ07aKoHnkolqh/kuYCEa2Oo3kDzYdGUSlQgAaRJfgwkCPn5rWLmJSCRyrgvnP7KhzLKB6rmeRiovudrXE4qALLBHVDYTDCnk1FjwQIkCDKBNUAiCupw7j9YrrvYSehkGkK0fG90ia4HJO4CgAFI1N4PyUYhbZ/wGkEkEXlcZFdPLW/1wGkJb4a5gKZ9pWTC20uM2Unk/oyrNDRtxRCVmUGcDFJVYMA6W0+BhI5PN67zvc3gWHhuOOlEhg4UAcgKkBBpg+7zIFJ4bBgcjINEambCToJRSLdmgwRyPfvFySRegIT0M6lsUMDFIvsIeb4UEokxdcaVso+Yka4K+4hrQa1xFabFEPEpn/Ip+Mqv/Mrz6Mv5p1qdoXlzQKIuv0cciZ3qjUG5aZAoAEUXAwNkEnZAoH2VsnNBQpoqbCLM8t7vsze/Spqhb4xOD11IGUYmEyBPJF6PnvLT9SF3K5PqgKtJYwgSej52ZoHAMSBIACnAeW84o0ugQ5SlxU+1egcEqWsLZFE09YFO4pfjGlS5aiabhlhIHAKS22fPhBQQK5r9hLatLqDaRseSJ2BRx5OYk5gpDS+mQiKhMST8vZ4EiYjkfqxjKZ2UA1C5OzVIsCurp9uABCKY94VBgvwUslTC7jrsZ1KMiWos6Z7KxqJlJzEfJKoJ2oOEppYKw32fbR9RPZtmLx9eg4Sma2Xp8DOqNSbTOao1DgISV6E0YjFE/PAP//B59OPikx+Ec0CiJZmYAxLAPPVGq9wUSKSOoFZtjAWkMvsIfWHRhzfGQSLt89cMBYQUoGGfDbWIe8tUkED1dlq8jVYwUYNE0UPTqS8HCeb0m1Q7iV5eyNK+YEaXYl1oRzeQqFKg/HNaC3ld5hWIj/LE7yAAtDGQCEgA0TmVSLBZUjodsudGx9HUGoFZJBNsbW8a0gcfREuNRldMVSmVSJQrf+Z5dQIk/JhjvS8eCOTuKIj6MshjxEsiPIgO1Bj6PKV8HPXYKFw/izHhx30JEoCOtWw7kQF5B0gALiCVKwtt4xzsI6bSFEiMlWntQzW5n7N9xCDto9ZYCkN/ls6U9go2dU0meYMp0pTKAjtAomh3AiSAneoNAJP2FKa6aBlcToEEULhkFsuIWz8gxxiChLWuZVjho5ZmzAAJBy0JcFJ/rf2GWqMOQMUOLg4BEnYJAUQiELGpN4K+lQdg23fgiv5bIGFGjcQ4kcn5lNcIKokwqcGp2TIoSESiQgVh7RXxJaoHY9AuRqjBZToZmMHlnMSAeKNE5USg5fppW22QUEIliL5f74tOxAoSEy6g2nwhZShgQt+23T10wFBIE6gel27MMJxtT4aGQWCquSCh9WuQQP4dF4aWLr+QPAAFXMyyj9DvcNfHpxoWpuwjzqrWWGqzcB5unzvSn0kjDpv2goi3v/3teOtb34oPfehDOD0tH6d33nnnQTp2LinycIDvCxK+3lKQAIbHmaUGaYCE9LsJEvKKNgYSVgeQib0ECa1bzG2sD15vlzEDJJwqo7CDCHnCMZDgkW0vqeD0OfTwmAkSOmFI/0DcVG8oSKARZ0EDOgXqEGKOJplsGVK6HNeAc9P0US0BUTtIJ9bi5pnyje4AgYx0Um3PjQQoq9zujodMCuOdYmHwQBoht1pm56iNFkNhCBIqXUp7WSQTlGHB7n0bJKDDOeT76VUXeTtNsuTqFBIKQMZ+bQtRgUSxL2PxbJBAG0TyJRoxtLR67rkDNNUaO+0jfJIyA7VGK81Va4y1ccj4EVW6CLXGQdKVBImrKA2fjDvS61//etx66624//3vjw984AP4oi/6Inzap30afvd3fxdPfOITz6OP559aA3Eqr/6cKEPM+Q0jjpRzZa1cbJSDTqquPOdyhX1fHAEAqW+LFslknPenOqRybM79spgR9slFG8NPLr63ytTlFBqa29Ivkutjq0jqPui2zycrm2Tz8infORK4p/Qp3yOn7zFSXvmS02JWW1nMahPTypmb2OG073AaVziN6ftJv8ImJqA4jSucxDUu8yqt1hnXuMxrXI5H6VNW8exB6a+a0HOI7GQncYSINfW4RJvyL8gfbXAc0t+lsJHVR7eSt8WaIlYUcdRtcRR6rEMvq5mm1U27IMcL7o8YFPIf7E8GRRAwkO9pETWkiVcXUwOkXM73C7PZp7ttmtfepryIm+ZTuc2qvvN5hDS5D/KQobxol0pQcfWLsMmuLOtErz8rqZP3+XqUwaDO02tWSRtSfpXXkEhM7S9Ss/3h1DD5Bk/BFyz31fEsKEzvb6VGf5rHmlNnTprTpzMkOuf2LzItlkS88Y1vxO23346v/dqvxVve8hbcdtttuOmmm/CiF70IH/vYx86jj+eTmLMEQb+P2D6Qe8MalUjsaGsgafDl/LF2qTdaEgl7/XJv3VLfjN3gVRxox5CQF6aBRMJBhtVHfrYWVvqo3/yczMJUJSijVgacn+snYAZ5hUQCnEBCrpWxlpyUuoGSxI1g5rTUp5NIpPDTSXKRFr7qcCokdySfJ7EDRxcnQtUaIaLjVYIE8EDyACrX2vDSiuLiA03PDdlhqUdAjx7HrqKG8LZonOLWqoaW6PK5JzvT8lpbh2uJBOd3fZU8DCQSnMaNl0j4cyoNKtvbhfShllxoc1SPR/2UflK9zxlLzpFIqFpDLohF2kTD0BKuTG0fIfdroNbYZR8xJ43ZRxzS7XPsmHumT3S1xpnTVaTSWAwRH/rQh/DYxz4WAHDdddfh4x//OADg67/+6/HoRz8ab3jDGw7bw0Ml98ZfpNj4Me4CibrcPiABLFdvjKhRCpCAe0AP7CLKcs0YEg2Q0FQsjQz3AOcFIOEAhJ30QOEA8jlqcAmg5foJ5jx5zAUJPR7ZYQs7CRBQhssOBhJEDDSMFwNFsYlI3zfcgUUqoTYPdSjrQZoBEsHBR8tzQ7scKaCngEuhXNo3wUM6cYvOWa2vse27JDFglmZVtbEDJCSuwyRIGFA4kJDWzG3TTeT1tkoaBvYR0p08Pu2Ot0ECOnZLkEjNcBskgNL909lHuIvSto9wbfh20hcHDO77qFpjbLKv1RpT6WpRa5zFvfJKqzX2TJ8oao3FEPHABz4QH/3oR3HjjTfixhtvxHve8x484hGPwF133TVPj3Wl01QfW/YRbntRDInWPjg4ANpSCQcV04t8UeG1kdqQfyqt0LdtO0Y5oY/GkBgDCUaWlBQyAK2yGyTcXJiBxCY+efA5qGjChIKL2kNIDzhw5fq5AyQIcn3kOgH5zZQhIntqgsS2T9GnAiVHTBKVw6l4aKzkHp/GFfq4ErBIthHBTfaBIwLkTyioAzsbiOHqnz1o0nOjAAm99247MuFIxkwE4Yi3iJztIxiloaWedwQs5sF5gISdD2WQIPfdYIJQ2ke4+BFWH64uJkBC6GPgAsrIUoUaJGx/GyTm2Eeot0Y5sepYdN8hg9FLKfxzoqW2aIHEmDTCp9a+XdEs63RAt89F0og9QeKajmR5lUgjFkPE4x//ePzMz/wMvuALvgDPfOYz8dznPhdvf/vb8b73vQ9f9VVfdR59PJ/kB05r4q+3JS2KIeHzWnAAzFJvzAEJUt2pAwlrZ4fHBgJNgkQx2ctTtliIK2fvBAlw3lc8Z1nzFhha6m0UwHCoYqqPBBsjIKEeDBLISOkku+NJxyqQINFhxxjQV0OAKBla9nK/T+MKa+5wovEjglv/gtlCWfuxEETU4lUXXb5STiqRpRX1mhstkIiR0FOQZc4DIkUchQQQR06lUUe0RIgyfGVZ9RgOCxKU8rVcIYmQ8zHjSkKh/kh15bgKgJTHXJZKjINEKtYGCT2tMZDQ5BftKo+n0ggM0iJvjTG1hk8joLATJK41tcZ44TMd60qkTwRpxGKIuP32223572c961n41E/9VNxxxx148pOfjGc961kH7+DBUmtwNVQDg/yWNGFJDImR9ga2D0AJCVXZfUBiymMjta9zUdnXAUjotWNkaQDclC1z8ByQqCUR/o0w5zGYnfpD7SfqbcCkJAYYjNKGQicr9mUzSEAmMJsAKZ+BXacKJEgIpycC+nQxSOwjNrLg1bEAyiZ2iH0OAKUeHBZlMiSPjSRliIXrpwcJcx9F7lMnF817bgBAzwH1cuKRAo5FpZEgwW/3hX2EggRLgC30wQJRMQtMCUjYUCS5iRYQyoEEOa+NMRuJCLD5EqOauJHhAShsIprSC70cmm/jrw0SA6kCqjqid2uBRCrXnrxa9hGHV2sMDrtfupbUGvuoKK5iacSZQOIqkEYsgojtdouXv/zleMYznoEbbrgBAHDzzTfj5ptvPpfOHTwxD38Ac0CiVbbO2wMkACyKJzEWUtsCUtXteciQ9ncaWpKrB5Sva0AJEjrhLwAJeAmGL6/PQwcTdjzZ39zWMgoYenTtH+V8VrdAZJBIb7mUQSLNylBwyL9PBxJCKEQAQlpsiygUhpanUm/LAZEDQuwQIKGpyUsjctCoKdfPHlRIIxQmjmSfdhG0sbZ62iaPDyIch+BgIq2l0SPgGAoPKoEgMJe2EWZoGWAP24gIjnVUyxLERt0/RapQSiLcEAtuwtZx5QDBIINQqDUI9WSfyg2gYF+Q0ERtkJiyj/BpEBb7LGoNGxCUy+4jjWilHW/2e7tiLrR/uCrUGrM6euUn9CuRWmZdo2m1WuHVr341+r7fXfhaSrVqo87nYR7NLNdsr9ouHlDR7a/anXIVHXX91H318bgsV7h+SruF+6c/voCEbdftcD5m8b0uz7m8fY8pjyIP9hdup7ptffdlKZdRvXpMsGDHiFIuantU1FUXULC6f4oLqHP/TH/J5bOP4gIqf714cWz6gNO4wpYDNhyw4Q4ncYXLcY2NuX+uzfVzw6vC9fMUwVw/e5Dd+o7SX4CqM7IL6BF6c/c09086xZq25vq5Dj2OwxYr6rGiiFXosQrJ/bMLMW2HmN0+QzIYHXP9hH0iTYA6vwUU7p8mMahdPAupAheQYIDh4GHg9kkwt09Uf01XzkY+oNst11DKffepKJddP4fHkptVv4Rosjrlfvbf3Ta32jmr22e9v2jbnbjbX3g4FK6r1YUaO+9W2avR/fHPXD5H0yKIAIAv/dIvxbvf/e5z6MoFp5ZEYkl5VCDRKndWkPBlWiDRgpfiWI3jFW0PgaMACaAECcaZQMJDAVWAMYAJbTOW+8kBRL1dgIgCgwKG9bkECYsf4beZBCIqkOAkvo81SLCDCYkn0ctss0WHbQw46VcCEx028nfCAhMuL31fub8uwQfCIIYEkEHiSDw21pTiSByhx5GLJ3FEGSzW1OOYtlhTn7YlfsRR6A0mOoGJIn5EiAghIgQGEUC7QEJtTiiDBIcGSCgYyNOIffkKBjxYtIChKKdtngdI6PcZqQUSg9gRPhGlv1DlaWrlH3oOqgEDwOK4CzUc+LRw0my6Yx44dsRBVqWeOufzSlfimC4ttol44hOfiBe+8IX4jd/4DXzhF34h7nWvexX7v+IrvuJgnTv31FJPAGezjxirU7cJ5LZkuxkjonHcWmWxt32EV6mogNXqqwcDlb7sDCfGJaceQKHayGVReYGgVEM0tpv2EWrjoC+5jN32EaqD9rYRgKkvcuRMUWdEZP1kANRjA6bKyDwV3X6ipDLwao1e9m1jAFEnqo4OPrR1h1gYWja9KlBHr0zAAE4AoUlB4pRDsqNwKSIkG4gI9GIb0YNwSdQY42oNEiNMtY+QeBnO0DICsLXK4O+v3Vm7TmYLgWQrwQIiNo70fCrDyUJFsUStgTz+COXY0z6OqTbkxrZVG2h7bKQy89Ualgim1lgaO2KQatuGpWqNK2Vkua/L50UuGX4WN9QZ6Vo1slwMEd/8zd8MAHjNa14z2EdEV6+qI8orae3bPzb5L7CPWAQSwHw7iWoyGfYRB7GPaE76HiSQ9+cHbIYPUH7At1xIvY1F+bA+Y/wIKTuAkRowvHGlHn8KJGTyqEHCu7UmW4tsaEmUlulK3hkBG1KI6EAhmK1EMPuIHCY7DYkoi24lT4sp189eeyHXpSNZPAwZMPSemr0EYPEi+hhwibaIFJJaA1tz++yZcAQaDYudfkbZ0HIpSNjE740rxfDSbrMroyfi7SNKFYKbfwQ60pjk8l5VY28XSCjMWqJGnQUgMfTWcL+UarLbaWTpbCYG6g4PAnPsHlppDyPLgywZvsOm4CB2C8BOacQ1aRtxBe0xFkNEvEoDd8xOrf4vAYmxsrvamgMoUyBRHWtqrY3RiJbAdCAqedp6APD2FN6uIWXMAAnog7cCCdlp73oVCOhxCthwULEzfoRCg7oZsu/fBEgQklg+7gAJ0utLiAIeREmtsQEsDsM2BqAvwbVTmOAuQQPvkEbIdnCikB4sKowEEJoCyoW7ADWiJFwKhD4SLhEhEuE4EHpOwai2FBApYEsxuX522yyZkHNhQAJURTO01M71DJC+8lNWU9iEh3QdFR6Sm64bE9GRjzOsTDorkVooPOjYIzQlEzo2rUX9eQHVmJwBEjpCDzB3tdJeRpY2WaMsV++v01xpxETdvdJU7IipdDVKI845XYvSiMXKlB/90R/FycnJIP/09BQ/+qM/epBOXUiqB92IrUJzEDfKNg0t57a7y04iVvta9hE7j9E4Tss+wrZz/YGxpbXn+smNtrQd+1xmH1GW5eb+qXrZEJOy7USsy1DOV+NMyyN37WE2EswwQ8vaPqI3+4j0UO9jwJbF4JJL+4gT96eGltk+wtlFQOwleI1TJAPNCMIpD9b1BJCDUmlES7V9WKMv7CPW1GMdtrbGxir0OO62WIdkbHkUtjjqRtbXKAwtxU4iRBAl9VGxzoZO7mYPIXCm0gSzcWC71F7aUJTRem67KOvtFXx9V6b9SRP7Z9pHtOocyshS1ZOaWnWL8lTmVZ8XamQ5lepyO4wsF9st7GHnMHmMuef1SWQbsfiot956K/7X//pfg/yPf/zjuPXWWw/SqQtLS6UqY0Ag6YqDhNtnk33k0mizAAGWidPDgz82hhC1AyRaxpY1SFjbmgdgCA35sza6rEFhbBvF9gyQYIyDhHptiNElu79kWJngIYpxZVSIcIaWyXOjS54asZPtoaFl7bGhi3XNBQn12EhGltlj44j6AiCS0eXWjCvVW+NIgCJ5a5ReG2vx2Fh1semxMQoSBhMVSAQuJnk9AQMCMcYcgADK7wNvDZ10q8n/agSJWUaW+jOpvusTvAkYUyCwJNWAAYyCxHgbE+XP08jySqY9J/VrzVNjsTqDmZs38b/9t/+G+93vfgfp1Lkk5ubEjxjzANxX/dCyj5hq71CqDflsGloCQ/sIVWuM2UdUKg5VDzQlEvLE91fU1BiqXnBtkZaVNhko1BdeBQLO+emaynlrWGynytBODGwlqvz0SXJ/XL6ULQz9RDzOoEq1QXIt9KLCpLSMFD8i/TZyJMs+JjWBhsXeEgN9CoON2Pj5qSrDbzeMLSN6AMmr4pSDSR7qx1ZA8qBYo88rhYJwiYLFj0gupMleIhlWBsTgI1hGxEA4AnAqeZCIltDAU13uoA9GpTfJoaldQ1NtyL13LGuXOKsx2CbcOWoNRn0P85jTY1Dzc4Zqo1V+zD6i8ciZTNLngZFlS63RrO+eR94+orHvYEaWxe5ryMhyX9uIczawvNbSbIh45CMfaXrfL/mSL8Fqlav2fY+77roLX/7lX34unTxoOjRI+HbPAhJAap8bP3jsBonUjtsnbcy2j6gMLa0s3IPQPdS854Y99D0MODsFn/SY3j5CoaG2j4CDEctz9hEoAAElTFANEDtAgvXZRUiGfnlSGAMJb/XPlOr2MuNHMYPoJdR0kTrgtO+ADoWhZYeIDTqEwOg4GVcW91U+U0TKdOAevUS1jPli2mFY5mxGFLVGjyB2EFtcCiI9IUIMacnzYwmDnW43GUwACSBWekP7Duj6dDKHAgmlWrFhgdq2WD0/RaOEVTGsVMlAcc+FXP3kD7d9aJAoyfpARpbODmLgrWFlXRCq+jm3xP7BpytlZLkjHdTIch87v7n93dPgcW/biCtgYDkbIp7ylKcAAH7t134NX/ZlX4Z73/vetu/o6AgPetCD8NVf/dUH7+C5pXoA7gsSY9KDuSABzG5/Ovw1Zhlaprbln0HABEiQvvKh6KOvtwskdhlaeukBgQFuAAa7boPz+hpuv0FFAzAmQYLyby+91Vb7bRKqQELfGgEwJc+JEJEmZUr3oe+T4aKGxd4Si9pr5k+vMq7USJT5Pst+gQWIl0fZBFv47Ii+kHZESkDSS1CrdIuz2+dkGgEJlcYsBgkFVBm/DGqDhNBb01vD31M5TGozHe+8QMJfcnMzrcvPBQnLRylFAOx3bd4ampxao7lk+Ii3xkEX6JoDJnONLGdIIw4WyXKsq4cClU/wSJazIeLFL34xAOBBD3oQ/vbf/tu4dOnSuXXqwlItUVgKEq125oIEsAxUpPx0+OuGa2jVdmuhrlGQANx7H8w+oV60K5WjvUHCQAAeFKptmUzg2/PxI3Q/N8pOgUQNEIC81VI+OPwk5EECdhZ6jWMHIIobZlCbiBQ/ok6BOoQZQKETvUkitFMx7Uvft9A1N3uwrbVRHi+pNcCpnsaPSC6fm5QnYbF7GUA9u/gRoUeswaIFEiF1jiig3wUSLBNoYNvBQYatXtseWU0hoCC1UxW5LjpO4O6pQoXdQz68aiNx73y3z8KdZiwpoO5Sa/j7oWNeAWOmauLMao1dK33OVWvscvk8T7XGeUojgL1A4lqRRiy2iXja0552Hv049zRKlC3VRGtfa6KfoaoYBYk57Y+UmXbv9Pvyg8BsIJaAhJQxkNDDKEgA7fU2JM0FCXCZZyoLwEGDTiwuz9lIWCCqGiomQEIfyAoQcBNUOpaqLPL1dQ6x2tt0FnqPCPBrakYxqNQUiAcun8AWoY5f4pKpQ0wSQdbP6Kwg1pQAIRAjMheBrWybhg+XviWNcFKJYaoeGwISBkoOJCC2IhyTW6ldMgUCu1AEmymDG9IyiRkQAPnac75vCrDFIl0tkIBMwixloPn7gwSoKjsGEvozqsu3pBH+eWUSDD/hAhzdvdHx56RMTcnBCCgYSNRpTJrh97XKYwIkLkKtsS8YzG3/z5KlxRBxLSdmbg+IYgJ30oh6Xws49gEJYLyO7qvtJK4wSAAymdo2XFupbzbB2iviPJCoJREk/a4NLb0Ng3VFbydXgLADJEC6LU90bwehk5FNRH5ycCBB6cGvF0QnsqQWT/l9n974ixBsXY/gwGIq9UgGj179oItpIWSISAaTARHJlTPZQKRKChD6GcHoKWKNrcWPUDiJAihqd9GGCAygx58PESPGgK0Tn0SgDEgV80RqN1HvpY5nJrF5kOvtQEInNq1SR7O07RGQ0PsJTn/E8hPS705asQskQDwsW4MEI0PoUrWGqTCgvwg5f4wEm0K5SJd+qnpkqcrCbnIDJGxfW60xCyTOQ60xlsZeGP9MGrF3+qSCCJ8Gg24pSMzwqqhBAsD+6o3Gm8RFgUTp9uklFNLdSr1Re27sBImYJwSbUrish1CBhNkIlB4bc0AiAwTM2r9Qb5A98wtPDQLbg9xAonMg4c7Z3uTN2HJeqtUFveJHgBg+bkSNQUkdQRuJRJk8LFS94aUSqXq+h2s/Q+pxpI2YyARRQWVEQBKcuiSAceryA6WAWyskMCFKD/oeYTqypU02LJBYvssbSBBE0jFtaNkCCQOG2AYD7ZfZm+jfSPlUVsaOO5+BoaWOKewJEgoAwPC5kTLzPoOOhqHlhEThwu0jWu35Ptq+PUFiSq3RSiPlD7JUuDV2gaqGCzrWJy1EAAkkCnfV8wIJoICJvaQSIwaX5woSQDFB2luae6zLi1ip3ijake7sAAmvDiGgtH2oQEIbXQQSZB3JMGIAoXBBAhicrf11COhbpb11NkCiOIZARK+hsX1j4ym6ZbgjU2HcqGqNJI0gkR5oKGtKdg2ikvBSCa/CCGBEEAIxjjgiIljMCG1bVRt63i2QCDFnbgUotmI8mvsLUCSJmZlm9Egkk2SQmA5prHChwwCKdTYqkEhbmpxdjdyCKZAwAAgAW+yPGXYSAUixRpaDRFLXsWu3Aomp+YdKkLDyXn0B5PgRJnXgbB9RP1c8SGjeXJCYcBlN/RlOxOei1jirfcTCdFC1xsLJ/WqPYvnJAxFRXynKdBCQANrSAt2u6jalErvqXQmQIGlLXy6YqxgS3gAThXpjYHCJaZBI0DANEglgcn66ltgNElTlyUggrsqQXvZERjYpEUyakR/qDZDo/QQn20yIvSORBkh4lYGGmAaA6CZ/DT8dOblhpv2ymFYMEspaDCVBhRtoOnJSb6ikQ90/W4aWg24KSCQpQzLaNBUJcXJXRRrXKqEgAEQMNbhM64oQxj03YgZWlUSMgASYSo8NRraXiPm+6vgoQILz4TIwULaTUFDmCjr0Ugb5nVSeHpMg0QHoR0BCLtaoNMI9sphGDC39fmAcJLT8Dhi40EW69lVrtIqMTfRLQOIi1BoXmS5AGrFXsKm3v/3t+MVf/EX8wR/8wWAtjXe84x0H69y5pMaNPjNIaLt7SCWACiam1CItO4nzAgkg79e2HEzU3hv5HVEeciMGl2cBiWTFvxAkHAB4YPBg4QFiIJUAl+oNgslPismAxMNAo0yZJILAXQaJ1kMuhvwb0lgJkQOOOoEFpMWxUhCojeUdk9g00FZiPShQBHMDjSK96OVVO0hQKk0dsn2EJQWmICuNUkyrizUEKUFuQiDGKa2wVYmUk0qQuLh6OwmiyuBSRpE0mrZ7GgeJ3oEE22gZACJ0W6plTw1UwNBQVzSgw/Y3PD2mQMKDAlwfs9HkBEho61yBhP3i8r2ZBAmfbzBQ5e1SQ9Qg0VCLHMw+4lBqDaANB9eQWuNqlkYshohv+7Zvw+23347HPe5xeMADHlBOvtdSqm4Iu4EuGYcFidT4cB8wruKot+vjnANIADBJg+63OcdLJQIXZQdSiZbBpZ7vBYEECG11hgMLPb1dUgk7MROLN0ACDiTsXiUXydBBQCK/5ufLmseCSiLskykHf5IZMMVw2CZVBsjUG+qq2ZMYSwJmeLnGFiDgyIJS5ZSkEr20LTt9V0US0cUIDYrVIW2HuEJHeUXSAFn2HJ2pOWbZSXQQyQUyROg9rq+xXjyRLqT5tQIJnfRrKYTUHUgadqk31J6igIY0Sc8BiVzO/RJouX2EDRqdVHScEdm9WgQSWrfKG5VG+HStgUQr7YKmQfFr0D7inI+zGCL+xb/4F3jHO96BJz3pSefRn4tN/s1eUiGVqEECwJkiW55VKuHrHBgkAAwjW6bc8kdmUpHUfi2VKFYCrewkDgkSOqEbCDgbCAsE5d0/gTZYUFXfAUQhlUBWb8wGCUA+KXUzpMosVn56WfWhxExYCTBoZMjoPo8kmuQx8uqakQnr0KPngHXYmvdGlHDbKrnIrpsBa/QDaUTax7hEG/segluSnHkQxAoAAkWcSPjuJI1wEgi5/yEGG01qJ5GQpbSTCPo63THU9gT1NeY8zQJkgONLWS2d9D0AqASiVm+wKyOTvs8DFBBcfVRlHZQMQELUNh4kCiPdfTw2VNqnyQGDfbfJGCOAgRIE3DNnlqHlWT025qSLMLScW/bQacEEfyZpxDmCxGKIuN/97oebbrrpPPpyvomj/DVksn7ixwRIAKVUYi5IAKPwMAkTu6QSS0EC8kBrgESq5yd+DKNVMppGl14qManeWAgSIHlQYggStbFl2waC80OzAQulxEG+y2Hh8+Rhn/ZnPXY6uVSJ/aPfaAMyAeTrmLosQZhUIiHXT58PjAQUSQrRIzLhiLdFwKcVdYgcsAn9QCrRw7lqxmCeF0COJdFLZEsFA5VG5OkeOdpFKUBBoIiOZPGtWNpJBIo4pZWpNwIxNtQl9QYxNsSm3gjE2FJAspUIglpA6FhGEGSSHIG1HSBhL/yxBIACJnRMO8lFcvfMEFB6deRyHjrMiHIJSGiMkjOCRDpJ9xm4dPEE0m9c76OWGwMJt38vkCj2tUEiDzIHAFP2EYcEibnpItQawDUPEosh4iUveQle+tKX4s1vfjOuu+66g3foiqXzAAngTDCxUyqxFCRM8lCBhCYFCUKh3rBZnxmF5KIBE4VUwr8V7gESLNehBokkTZgACSln7UUqJAt+EaeBlELhAmVZtlujNhCSZw/manJTSUQknQnTObOeQqrIMvNsERDcmhX+U4HiSIAiMqEPfSGV2FIwo8ueA2IIKcYEbWzy6ClHpkzqjSQPKEACAChJKgJFIAKdAgcnVUbgKIt9MTqKuBzXADBQbwRinMpnS72RhTXp/nRCKSEkJUxaGlxNONsgAZWENUDCeweppED5oogL0ZBKaFRTIbqsspByNZiYC+gOkPAgyyAMvH0WgoSdHqECg3GQGMSQkH7u7bHh0y6QsGJ7GFru4bHRnPAb0WNH1RoXBRLXcFoMEV/zNV+Dn/iJn8D9739/POhBD8J6vS7233nnnQfr3Lkm1tcKN6B2gQTgIGECJIpyZZuTKo7q+6RUogYJwN4UNZWwgKJec5/Vy3YSqt5IHSn7WHhwSFu1VKJWb+wNEpSuQ85DCRI1JDhVR11Oy0Lb0TwPF9qePf3dJwhqJ1GDRLqOlMuaOiQV9o+V6NwamdkkEiwP0RhigoauL9QbkQkrDiaVOAoqgQgWnCpK6G3Lp6GdRNpmBw0CBkzodQYOQMdxaCNhmodsJ5HAIak3AjirOZx6IxBj03fpEqsnh6g3OnlNpsDiipoPNgYSHilMxaalWPc6wGSUUohaKtGSWoCGKotarREwDhLUgAovEdNxVINEaw6iCiR0bIlqQ8FqEUhYvp/My+fMwVw/x9Qah/LYOIuNxNSxmsWvjH3E1SaNWAwRT3/60/H+978fT33qU69tw0pNS0AiZewGiUE590PRfcA4eMyRStQ/0hGpxC6QSJeAGvtI9rH1n9jPgvpYl3JeKuFsJWr1xt4gIddxABKU87L0Id9WX86DiNlSVOBged7eAg5O9NTNNbEECT0rGwoWP8KNKbcROwB9kIeRnzABZgKL50ah3giyPLdKJZiwpZhtJSo3UFVvpOBUpZ3EJdqYCsO7beYol9EmdwWKDtE+L/O6qd44NalDqd4Y894ABFYAdF00V9HkuRFl8gzYCRJ6qaUa3Dhrum2a+qICjcH3PPkrXAAogWEMJGQyyVDhyoDyy0J9JuRg3KQRclwFhurxexiQQPM5c1WAxC61RqtMfZyl6Sz2EZ8EhpaLIeJf/at/hX/9r/81/spf+SsH68SFJBHFN0nzkCABlD/KQg1StjsLJuaAhM8bAYl0mkNYMNXH6L7yUlkI3txqylfpBfNQvUEeKg4MElVelj4gR5u0t1NkOwkPDSqVcG3W62nYJIT8G8y9aICExoyK8gDLvZXbZbMcopP2pNDssG1vJ6GAwAoSAg1HIESJAWGuoBVMjEoS9OpTj46pdAGliM7bd2h5aSMZXjJO4hoIOJN6AwBW6IFeIEIvXh9sWfWkush3Kt0TubZcSiSKOBI6zlhqsl7QfNObEomBtKFhJ6HlloBEXaYRjCqN33G1Rv2sYCKbsAqQkL42gUHqtWNI4OwgoWlK7YE9Jvg9QWKQLkKtMbcvvk8zJvgzu3weECQWQ8QNN9yA+973vgc5+BVN9Y0/FEjU+1rqDWC+isPVH6g3aknEBEjshgXOC/qE8toYSKhUQj04RFWhT+ZCKuHUG7WdxHmDRIIFNO0diuBVVlf2EQq4sPK1ukQvN8ZBwuBP4isUhoB2lVSdEYGQYkmo50a6z1zYSah6A0jeG9lDI8WUUKlEDOquGSRyJZmdRLq/KEAC0HgR5aJdGpDKu4WWnhvrwk7iBCxwMVRvALAoly3vjdR2AHpgRRFdh/x7M5CoVBsMcFcaWU6BhLkyuMnf7CYUChhliGwHE4WdhAOCuSCRVRHafRn5fltHE+WJYgwk2J1dGr9k4bGb62zEChiWun6OTbBjINFq66IMLRtptsfGodUarf4eIF0tsSMWQ8T3fd/34bbbbsOb3vQmPOhBDzqHLl1gGkzeOmDl6VpN+DtBApin3mi0vZdUoiWJOCtIjKg+gAom3GUqpBKkBm1SOKaHnl8R9FAgkR6EO0BCJn9YGdlQ9UYllfAwMTDE1EYauuwaJCy0RIS9LRcgwak0i6iDORmyqucGs6g4uoht34E5DtUbgezTXECRocOHzPaW+X0SG2RpAiSglN2AWHltZJAwiEAUqQMXao4EDSKJEPUGgEGUy/TZld+dOmMV4RbwwhAktK8+IJVe8zGQYLlbAg6F2sLd28J4UkFjABY0GyTsdgdAF3ADweBgEENCKHWOoaXdYqIMI7tAQr9PgYS00QKIgTTCpz1B4iCGljM9NgZpLkic1e1zLkhcY2qNxRDx1Kc+FXfffTf+4l/8i7j++usHhpUf+9jHztypC0315A5gSioxCRLAbvWG/161PVrnvEACwNDNswESrm9+OeOmVMLeE0v1xnmABINBcQgSaV4eenQUag37LKUSxb5aghGrNlQ/jTZIpPtLIPJHkkkkUIoCyeUx0yHd5IkADgk9/NsOAyaJUKlEOv3eXEEBJMmEBqzqcrMdYlJB6ENE7ndAVmG0QKJ3tg5qcNmxqDCk213gAUycqNSBGCcmkUh5aiehcSK6wFjpehw1SASluOCGW76LA+8gBxIGtwyDjrE4Es2YEg4QslSCC/fiFkj4gFSQiZ1l8k7lpOcKEks8NupnVwUSKa98/hTAkC58Hm5+8pwAgb2DUdm+4YR8ZkPLumzdjjvO3uksao1zSFeDWmMxRLz2ta890wGvWGIep8DzBInW/l1SibrMeYGEwcLEPm2z6pd3BZ1Sb1wESCSdcg0AXICETvotlcWkVCKUICIdK1UlduwMEnrtiIGs826ARJR8hq9tnhvF8vVBbAS4VG+oNAKAGV3a0PLSCMBAQt03g8BER9lYsiV56KCxIEjcO8XAEozLYAOSgIjLzA5KGCecHzNeXaLLiesncfpchYgV8jls4Q1P07VhZrim8rXlCZDQa6xjfo56w4NBLaGQSR80LpHQSV3LqFSCJM9A14Eqcrd2goSppAjFBDtYZ0OfD7XkAcBA3eGfJWfx2ChuT2PfLkPLsdQCnak0q8xVpta4KGnEAY61GCKe9rSn7X2wqyJdTSABDGFiCiS0/HmBhEvaiyZM6A9eSvkAVYA+NHFhINGykRgFCcC1XZVvSSUUPBw0+OiYYyChecSwiW0nSMB1DkjrU0W9/EmEr3YStXojDxlKoNCnn7Zf3MtSB4hPJYJM+GYwqakCCT/5+32a0vJdWRqhUKF2EggwOwkA4rXBsi0Tn6xguu56nEYMzs3UPqL6scvF8qf2CsV9dCCBDIUJBmTcCDiMem80JBTlJ5lqw4OmwogvY9+ljI1Hmja0dL4n7URUrOuS2LoCCSk3iGoJlPAxUD/IM6ABCudhaJlvtweYiYnuUIaWc9UVE+WuBEgcxDbiDCCx1yqeH/zgB/HDP/zD+OAHP4jXve51uP/974+f//mfxw033ICHPexhe3XkwlProl8ESABDmJiSSoxJMc4FJIb1qP5BNGCmKZW4aJDgvD0ACaKmKgOt8vK6ag9g3acvTNUEoiABhYWYHuQKEfZG6nXeNA4SQG4PnCQLsuYlsiEDEmE460hGVm8AcJ95aXFNgdJk1sVo8NA56YElgYXOuegEAYpIJPEhGuGwpT1TcUBUHsiqz8B5KXE1uGTJW4ce65qtmYDOP+SCenAmcAIDPcBdnkhbIGGXUbtsYxJZUqGwAAcScm9R3f8aJAb75ToqYJTf5xlaWl9b0gj/bKDqlzGo5yZqL3mQuvsaWs4GiVZb5xWIaqah5c60UBoxO52DoeWZk5H5MpgIu4uU6Zd+6Zfw+Z//+fh3/+7f4R3veAf+5E/+BADwH/7Df8CLX/zipc1d2TQGEoO86qK6egPqrL/HOKTWVp1BPR7fX0kEAJil+2S5uoxKFGx/u16xf7RM2W+LKcGpjO2XycrDiZalNBOKCkA/IfukTKy+6/6Yyw8/k2RA/7QdkvPx+3wdtPLj8JPYtWV9VsDz5yDbEcmWw32C5TMSEAlsf0jrYPQBfU/o+5D+YsA2Bmz7gE0fsOk7bGLKP40dNrHDaexwGlc4jR1O+hVO4won8nc5rnE5rnF3PMKJbF/mNTa8sr/IKcZEDzK1SCchrtcUsUZMn9TjEm1wKWxwiTa4Vzgpvl8fTnAc0vfjsC3+juyzx5EATxcijkKPdddjFSLWXcSq65OhZkh/FCIocPrrBKxCGogcWL6nN3t22whyawQI06fUKfLkU7aZct1BGfuk5n5rh6j6DqgEwfokwAtX3pfToFJ+P4DiSW7RK7XMIN/nld9LiPT5VObNmYB9qusX+8Jg3+wJvnUM2x+m97dSKyz2VJ+b3Vp4baZSyw21WezAx5x5XGAPScQ/+Af/AC972cvwvOc9D/e5z30s/3GPexxe97rXLW3uyqdahQBkip6ZdkokgP2lErvsJHZJJOq6+0gkJBUw0ShTqDcaBpdNiYS9lgHQN8E9JRIm9QCGEgZX1gwt3X5M1EnXFoX6YiDmlna1vkkiFB7kxSi/JcOJqSckEroVCIhZJpGS6jtKqcRQhVH+zFWyoEGkAiUXzaTWiINXCzWsVJVGB0YPSu14tYacZx3hspO2fbuhAet9SP08Cj02nNxYmQnDkoCGC7fom8wyDNONVY8N1BIJlTqoZAlwUoZkqGsGlXJOA7uIhkTCroEOdxnWCh+5DYK3oYCOCbWPkNtv7XJuc8w+AhAY0PaLZ4saYaK0bUg3oa3WmGMfAVdvjjSiUecgao2lkoLqWX9eQaiulNvnlUiLIeLXf/3X8eM//uOD/L/wF/4CPvrRjx6kU+eSGksgW5oDEmeJI2F1KpBoHqf6oU+pN+aAxBwg2gUS7jE+tUpood6oQUKOMwYSXjSr9Rcv2sUoyk+BRGs/Juqka4sBSBSTDOUJyWwionvUnwNIMIfCTiKNlQj0WV2QDi1LdMfOwUAqr2tj+Anfu34GRBxxWm3TAEJ7lqgPIJjBpTvowHPDQKJWnQAIIolQiKhTVFsQAF2nF5TF1ZWLiT8tGT8DJPynwC6YBqDYBIkmKBAssqUDFWNlwsCGYrDfjfikWmA7rVH7CJKyfo0Ndw2n7CMGag12x27kn1mtUfRb9+2p1qjTIeJHHMDIcnaaAxIXaRuxR1oMEZ/yKZ+CD3/4w3jwgx9c5H/gAx/AZ37mZx6sY+eSdCXPVjovkADKNuaARCvPH2tfkBiTRrg06eIpD7OB90bTlqICCXviOpAA5KHsp1F9mmp/SjAAhiAxkGScBST0kvi/MAISnPpvb41QsLFLJYaV7sF/AJDgmGY85iTaL+0kkGwEun4AEnVqhbnuEHMgqcpjIyDBireR6OyiR2woiMHlJofK1vERMQCJrvot9hJds6NoLp4AzEU1BjEm5aR+UM8VM7TkfA9TRQKT/CYlPDogY4DlunMGiAwMOiEOQcKkAtSACi2rEz8N65Ww4L/LvdefCQiD+BH+3HTCaL0fiERisX0EkH/Ho0uKU2nfMCVV8GnKPsL6LZO3l27OeaNfah9xSNH/WaURnwBpMUTccssteMELXoC3ve1tICLEGPHLv/zLeP7zn49v+IZvOI8+Xlw6D5BotVEHptIyQHWs/UFi0MYukPAQMgUStdQCmDDK3AESqI5ZTKe57q5UhNTGGUBCvmRYgUkdiklIQUKHgk4yDHteDwwrWS5jnnP3Agmd9GrPjaHBZTcKEoEYgQNCTBElQ2QDhsu8RmAWw0hO0gQDjKLzzfxoOoJ8PB8qewwoAGArEHHcbbFlvXxpvRCf1NAyg0QEmYWrQNQQOaFePHoPWdUXeq8LYBiCBNypDaQTHgpkUi7cOgcw4Y0opR4EdvTy+Xp6buTGitpHAPbbYpTG0N5jo95XPD98Xg0XY2qNBgjMih9RH+tKqDUGXTkfacTB1BpXsTRiMUS8/OUvx9Of/nR85md+JpgZD33oQ9H3PW655Rb8w3/4D8+jj+eTVCpRG5BcFEgA89Ubc0CiKr9z0a4lIOHb9sdwYs/FIAHk4D8aQROQSfYwHhuLQMIBRDkFuTkxToAE29wKb/1vag3XKgf3PNKFnTAPJGyywnKQCGBsiXEq3ztKK20GSp4UATlIlNpGJK8KBwt2UcZAAlh71wafdoBEJxBxFLbYumo+FkZkwroTiQTSNWQWtUaxxgblGxsOAxJWpyrbgoQkqdDJVsoTbFsn/Dp+hO1nmERjyu0zGyy68shqjRIQBDIOodYoJvTyGbKXWsPGyJVTa8zpyz7lPtElEoshYr1e41/+y3+J7/7u78add96JGCMe+chH4iEPech59O/801yQ2FXvSoNEQzJRgETd1llAYo7kou5T0Wf55/vrXT+1zQsECQz27QYJmzfZQQXn/GEZBxKAk2IIYMUZIEFl3xQkeplMNVR2DRIhBpy62xhkUSygNLTsKMFD4FjYMxS2DnZRhiDRUbKZKC6oTyMg0VMACXGtKGIFoNelzjkjhcLDqqMiLzUSzD5CrzmQx7jdbYUM7WOasQv1XAskPCzYqdUA4bbtOjmwGMDC4PtQrWFux6hAYmxeMljgUq1Rifx3qjX8/ZK+DSQHS9Ua7vhNtUhxHjPbGiu/UK2xl+rE2poJHGPpGpZG7BUnAgBuuukm3HTTTYfsy5VLc0Ci+dZ/QJAAhuqNKZBonscESEypOnaAxOhx3INkCiTMBiIm3fUijw1gb0PLJSCB5r4RkODqmPqmqgDhxM/mGgrYGyWYswGmgoQ89FU6gTgCElSeH5B4gZicwWUoQILcGN0Sg2JalhvI9hABeaXNtM1FaOwADWGdZtAOjI2LBZ2MKhVb9CL4i5ZSDxqVRJyGdIzjsMkgArWJiIiBsIaG9Xb2EV1qxNtHKBvY3fMgIaGoy3vopA5yCet9AMp77svR2DaZbUNLYuHVGsoyhVqDy3qFSoKcOsMAhYa/WSp/FbPVGppXqzVqqcAStcYc9cZZpBFnVGsM0lnhQNInsrfG3hDxSZnmTORzQQJow8RckNhlH+HSLI+NOSARMYQEd8zFICF1D21ouQ9IAGjUGQGJiDwJcZ6wCkNLrST5JqGIrsciuSA57+JN0yz4K5CQzxokQEDpueFBQnKIEWJAIMY2puW4T4nFLqJtH5E4ImZ1k9xb77EBTtIMzwVTIKHdq0EihA0A4Dj06MHQpc41YJZ+X3cJJDjEcfsIOW5+JE+ABOt9nQYJEOXJnNzYIDeX1dsysUNCqxMwqtZA3abbr2oN6vO1VAiRm+v6VKs13HUn92u4WtQac8ACExPxUrXGxP7zlEZ8oqo1PnkgIupTfiQdyj6iUY/dj2CyLeCwIOFBYJfHhm9vCjaA/UACyJEtgfMxtOT80Nen8VyQAMbgow0SqW0Gs4p/UdhH6INb9xXeGwwnZkalb69AglVnXz10q76q7t+DBBGZjQQRI1TjVKHilFZN+wggLYbl18JQwEgH2ACcbCDU7bMGiR5c2Ej0RbAIFCBBlCBiFXqsAByJZYTCw1HYZvuIrk+X2bl9MgNmH+HsUnaChLp8YhokIHUs+mlEvn9RfjJueyB5qPdJlxQWNE/Xupil1tCfH8GpKFogId/qR2BLrQHMW6TrEGoNuzU1YLgJudXW1Fv7LrXG0nQgacS8Y+3o61Wo0vjkgQhNUxf2HEEiVdvTTuJAIDGoPxckFIL8D9NDAlC0MxVLYrGhJTxQYFqt4c6z8B4BHFC0QQK2PQ8k9C230JmrZCFmXtVtAw+dT2WS0/LebZSjmyRAsCBIChJ6jXxftVMFSMiTPwAxBmxc/4mSJALI9hEBbOtZ+EBUOWhU9tiwMsWFiQYSmjo5+QwSGxTJgQSReGfQFlH6keAh3SFvHxEhMCFQUbt9phhcuXPM5EDLgYR4coyBBIBC+mD3gvLzfBAgqgUQXm1R7wPS72dqka7qGE21xVQKQO32OarWmBuE6hBqjfMyspyUbvyZNOKQ6ZMPIjSNDdwrBRJA2d4hQKIqO8vQcuockUGigIRGO3NBItWVf/6BdeiIlhWo1CABtz0LJNzEb5kKCaHM08rWL0bp4hlcezKMDC4wDyTsGlUgQWJ0sUVIxookABFDYR8RRBIBoLCPOFHDyrGgUf7CyYXxa2m0vTbacSQiJbXFJdogUjK2tDVAOJgkInLElsRGQiUTXKo1ImSs6rVSYHUqIXsLlzLpRZ8KkDBOctIHSBArv56KufLqdzjwMOAQkJHbVas1BtIJhqkovASiUGvofScFmxFpRFMNIGVqtQZQAoO0f2FqjdYEPUeysUStsTQdUBqxEySuMWlE2F1kmP7tv/23eOpTn4rHPOYx+P3f/30AwI/92I/hjjvuOGjnzj1NgcTcsnvUGx1AdX697ka9v5AM8DCfh3mz19iYKocME6MuoLvKyHGsDKd9xYMsShuM4UNQH3paR/52rbGRt3M9cvup0Y7+1e1Y3dg4hp6zayNdEz0v3UfZEJPd/khlXfsuYMYEXWcDst+vt8FM4JjW24gxIEZCz4Q+ErayzkZab6PDNgac9mmNjQ0HnMQVNtzZGhubuErra3C5xsZl1u0OpwjYcPo7lTU3NOVlxJNq4whuvQ3aYE1brKnHsdhEHIVtWndD1tpI+7apbuhx1G1x1PVYhx5diOX6GiGi62JeX4OS7QlknQ3INoLcjADYWhuUt/16G8VaG/Ld1tJQ1ZnkFWtuuHq63fxufzTIUzgo1suA21budmXVPsKXsbDYWqZ+YQgu3+2btbaG31/ntdShc5JJRYZTVPESNqXebJzjaGp4auxMY2Um1tX4REyLz/anfuqn8GVf9mW47rrr8IEPfAAnJycAgI9//ON4xStecfAOnns6C0i0YGABSDRhopW3D0hMtDcLJHx7vokxkIjV/hZIuH0GCx4k/L76ODUQ2D5fB7tBAkALJEqAyPV83cF+Bxa2YJfLT9falYnt+hpm2fbL9WqChObr9VaQYIyCRIwKEmnRrj4S+hgEKkICCU77TuMKWwEJgwlOMHESEzBsuEtwIQt11SARIcCyACQuhVNcElVHAou+WrRrg+MuLda1oogVpcW59K8LEV1grIJE3AwRXedBgjNIEEqQcPBQgASl/QVIGDxwCQlj8OAgo5j4fXvV/howYCDg8oNrD4C71O00BhK+jaI8DYHBJnZ/3MaE3miP633150Tdog+2OQIStTR4sr2GWmMqzV2ca6xsUW3XsXbsvxILc42kxRDxspe9DG9605vwQz/0Q1iv89K+j33sY3HnnXcetHMXls4i8jkDSKTqBwaJVl4DEJog0aq7A0wGdhKN49WQoJ8lDHABKwYShRSjAoJm36pyc0GiyAPGoGQIGo1y7ji2Hd2275fBQwYGE423QIIrkBB48H9DkCABiQQTvQOJrfxt+rTi5zYGW/Fz66QRJ5yAwksjaqnEHJA4Il35M4OEwoRKIlaUoOESZSnEKkQchS1WocexSCJWFNOy4V2fVhcVkOhIV/t0EolQgYT96U0aAQnZX6/kqWVqScQ4PMBJMpx0wUk2hqt+wuCg3KYCJGzoCxg0pRFTyQCjIaUIVf1aSlHnh0aefA5AYrQ/NWCE4b7J+hPT2oJJ9aCrcX4Cp8U2Eb/zO7+Dv/pX/+og/773vS/+6I/+6BB9ujKpafewp33EkrrAfgaXrf31MXyZObYPrfLaJgBVOdRW2fNCYCfjtabHRm1oiaofSwJR+WcY77CRkJdSH3KKoXn5+Zy2pW9c7mcnOShiCngwqYwuzYjS2U+Y66etl4BsuOfyAZTun0EOJJ4GyU7C8xgjEqWAVGJ8kMLVZ0PLQDywj/ALdQHJiPKyxIoYi/OQL3zqgPfKGNpJmMEH1Nhyix6nAC6FDVTVoBCS3T0JkQNWFHHUbSfdPtM11+PmFT8ZyMau2mGJw2GLdkXYdrpXaUzafZH7lwCk8tjQweFAQfeBZGjrfuTvrNeOshGm5mXvJb283hqoak9H6xxvDbjfso4YOV76wpJ3Rm+NVhqzjWilJUaWY8dp7qvsC3YZWS4Jh31WI8sDxY04b9uIxRDx6Z/+6fjP//k/40EPelCRf8cdd1zVwaeYOf0Ip9JFgQQw3+ByLkjUk/5SQ8tdIDHWLw8JO0BisA/AlKHlzkBUOqGPGFoW5RogoYdSkEhVpg0u4V384NtNGeyOZwfgsg8eRIq+LQCJNKHJmVCa8HSZaT1xfx0sRDYRiKgwtNyI2ETjR5y6x0IOPlU9KhogoRN+jwDv/gnOUTG1eO3+GdGDwyZBBG2BEJMKhgiRAo5piz4EAQk1sGy7fWra9l2GLKRxZGEzuPhIF4n1/rZBAhDjVs4gAZ/vAIHlZEfhgQhFECod1lY/3UvNUzgwbw0db/oo8PYR2AMkLB/lxEUKp+67XMtF3hqyfWgjy728Nepn9z4hseem8/TWOM9+L0iLIeKbvumb8G3f9m1485vfDCLCf//v/x2/+qu/iuc///l40YtedB59PGja64YdGiRG6jfjSfgfYbNvC0CiNfnPAQnf54nj7gIJAsa9OqT9RYGo/DWZ4fpZg4Q8kzM0kDtmkVeBBFegoQdjfbgztNNebdFcOtwBRBFDInD24miARKqj3hqyHaRXsQIJvbwBIqlIU3lPlAw7KQWg2vTZ5VODUp3EiZVAJyQS3v2zjiNhZeTiB+IUiRLJO+NYvDMibQROgtz+BA49Ao5B6TuS22dkwgoJJtJwSPEjckdlAPVBYkhkTLRR7aQ5kyCB7JmRAM7lS1MWZ2IAD3BwIQNQyti9ckBhbUhHudh2QC1gssjts5GKJcO9lMIDA1BMynt7ayxNSz0k9p1kDymNuErSeUojFkPEbbfdhv/1v/4XHve4x+Hy5cv4q3/1r+L4+BjPf/7z8S3f8i3n0cdzSaMwMRbQ6IJAQvs2KZWYcv8cA4mJ/i0GiQl1ySRIAJXrpwcMKiNa6pOT8/tT0YZ/q4LN2QMXTsBBAxogAQ8IciooQQJuv0JDUUdBxAGBPlTVDoKhgOBhoQIIJ32wt8SAIUiQ9N+DBGXIqEHCJiMAjOz6SQT0ADQQFek2Wit/RgTuEJgR2L2ZzlRt6MVvu38m4IgiZjmiHkzR2uwpJGlE2KDngB7B4kf0KpGQlT79suGa2DqK1GBMBqfm/um6aBszQcKCUenk72CBGCYpKC5HSzKhkiiFkgjMUmvIb8KOoz9H5LJLpBFelHPuao3zlkbUaYla45DpLNKIA7l7nmfaK07Ey1/+cnzXd30Xfuu3fgsxRjz0oQ/Fve9970P37dxTc7IGPrFAYmq/n9x3gYTma58BWFAqoCjfBAnXbrG/AAwPAzMCUXGGgfRwLgGnKZHgCiQ0D26uQwtEPDRU0SI9VHDOsz6qHYQOAXbbDUlE3jcCEvpWCLYHPYvIuQUSPkRzArWASFHGV5I4tOJHBOoQYg6PXaSQVvgcAMQOkOiRDB/by4inh+ExbaCLcfUUcClskjQiAjGEbB/BATH06ZNFMlEtG66LBMpvAwAA97hJREFUc22105JiamwIEk5CMQAJmfgLyYOChIwZHbA2HgQMTApRw8MZ1RpGucjlyZ3PNaPW2JUMMNyEvI9aw6ddLp+HlEZcZNTLkXRe0oi9g01df/31eNSjHnXIvlyRtBgkWukQIAEst5NorQBal1tgaDkKEv6HMVNlMowY2djvDS0BTNlHFP2eY2hZwIdsj4BEOkLbTqJlcFnDi4GAnqYc1yqy1pH9NVQ0AGI2SAQuJBQ2RShIiNQgS2zSteVIZmi5neku1kwtgJgAiVFjSwcWa4pg2qIH4ZIEfOqJEIlwHChJI4IHh/QHqBojLxuOrgfQpQkglB1rgUR6GR8BCb3nfsLXYWlwkMbqwD6ihofgLstCtUaxrYOWHIw2QGKpqP0i1BpF2iWN8GnOhDwGEq1nvfXhAG/1e4LEtSyNmAURX/VVXzW7wXe84x2zy/7gD/4gfvAHfxD/5b/8FwDAwx72MLzoRS/CE5/4RABpEn3pS1+K22+/HX/4h3+Iv/yX/zL+6T/9p3jYwx42+xhz0iKQGAOBdsNtkADGYWIOSBR1HEi0jle3u0NK0QSJqfOaAxIN+4hcH6MgsXjFT3upzfYR1p4UaYGE5UtbhZ1E1YbM07LtQIKtm9YXvZ4FtLjPgXRCjzkGEnIpiJCjJYJAamwnD/gCJGK+OGwzWfbYUEPL2j6iXqir5bFhaQZIeGPLkEN2AlAjS7K2OzDWlCUKSRpBiEjuqZfCprCP6JnMRsIvG54qd2BVbfRhGiSIrVu7QKIYM3q/rNWGfUSt1mioQDwIGGg01BoJLGR86xGJhiDBfj/OT63hpBSD/Am1xrkaWU4l/0yb9Agp982SRlzl6TykEbNmw/vd7372d9/73hfvete78L73vc/2v//978e73vUu3O9+91t08P/tf/vf8D3f8z143/veh/e97314/OMfj7/1t/4WfvM3fxMA8KpXvQqvec1r8IY3vAHvfe978cAHPhBPeMIT8PGPf3zRceakSRuJQeHGwBkNWjWWPzL45kS4rL+PxZDw2zMjWgIojZ7G2pvZ9iBqpdu/KKKl1XFl1faAUZTTGBI+aFUdz6GII4Gcn8v4T87HHuwv6/jok3rcVtTMQTuxOmYsP328iLqeBqtK8SOAIigV6/eUx31IMSR6eYN3gaj6GLDtNZJljmh5GjuLaHkSV9jKp/5djmsLRjWIIxGPLIZEinC5SpEtZfIHsldHkJvbiiFxVES4TIGoUhCqHIDqSOJJrChaJEsfjGrVRReMivNfl/KGsSQAiydByHEkNJKl3yZA40qkPykrEos0GPL3ZpCpUJbxYOGDUNXRLLXtIn4E6raoHT9CP4MrU+RXLxFa1n/XNJpPwzzZnh07om53JHbE7CBUPs0t16zbKD91LhNBqCZfFg8YNOrQAahmSSJ++Id/2LZf8IIX4Oabb8ab3vQmdF0ywOr7Hs9+9rNx3/ved9HBn/zkJxffX/7yl+MHf/AH8Z73vAcPfehD8drXvhbf9V3fZZKQt7zlLXjAAx6AH//xH8c3fdM3LTrWnHRmicSoLQW3B9aYVKKh3hj0rW5zX9fPkbIDiUTruP4to7aTmCmRIOBshpYRaC0dnqUZbYlEKuPE00BTvcGwF+b8pubVF5A6zvXTQ0S6luncdJGnpkGll07IMZsSCac/97aCKmGwF0b/vllLJPT+EcAI6CuxQW1o2UrRrop8ryeTmO0ZzAWUg9z/fA8iJxfSzh0ngMHE6JhxhB6RAiKyp8aYfQQA+xxPqXPJoDRJYWIMqYsilADcPdhDIgF2EODGiV4H12K+5kCp1lAJtQz7BAfpd2bftSLy8UwG4rftfLJ9BPqRl5uqU2ofUag1RPJQ2EEA9jy4ImqNMYnEXPuIsbRLGjGWzkOtMXm8K6fSWGwT8eY3vxl33HGHAQQAdF2H5z3veXjsYx+LV7/61Xt1pO97vO1tb8Of/umf4jGPeQzuuusufOQjH8Ff/+t/3cocHx/jr/21v4Zf+ZVfGYWIk5MTC8UNAH/8x38MAFgdBaxDwPo4PSXWl8ZPfZQIW4DQItcx0pvUx80/ZtG/ut5YdLdd2yP7ORDWx+le6+fONu3totxnk1fw+Y19rk/69mRlfJuE4s3I3qyQy5VvX5TzrB2Uk2qo8sm9Sbq6PsJgjlSY3/LWXap05EFQ1TOhqt/41AlCHyf5UyawevKQmYVFFJ2EJ5SBRgmKWR6KSZxBYAQEBIroiNARIWwDAvcIHYO4Q+h6BA5g7tJf6MGhRwwr9GGLbdiCqEcXepyGNULYAOgRwxZEGyBsADpCTz2YNuipR6QNokSuTK6fDMQjAEDsj0EgdJDAUtzZ36VI6CNAnBbdYrkABEYnw2cFwpqANQGnBGwDsGHClgh9ALZMaYEvtZ0AzF2UY8pLV0YHihtr0W3rLtKhnICUCE4yRC5sefokAcZBvn530iiTUplEyuWxG2erRCypDAMr35aTlqmErsuSNQLnclHGCOfPLDF00j0nRUz75bu2AT2u5iNPxl5aqRN/a9+cT3R5Qvbqm1FJacD6kjzPrqvmgKJcHN3XjjLcmMCnYGBCDTIJEVOqiIUQManWYAb+dF47iyFiu93it3/7t/HZn/3ZRf5v//ZvI+6hH/r1X/91POYxj8Hly5dx73vfGz/90z+Nhz70ofiVX/kVAMADHvCAovwDHvAA/N7v/d5oe6985Svx0pe+dJD/9B94Iq6//vr8/fVftrivn+zpaf/w2jekvej0HV/y4Cvdhf1SL38HTqfy9ycTZf7Lb75ydN+R/B00BcxU7F696TlffdOV7sI1l5726sdf6S5ctenuu+/G//eWt84quxgibr31VjzjGc/Af/7P/xmPfvSjAQDvec978D3f8z249dZblzaHz/7sz8av/dqv4Y/+6I/wUz/1U3ja056GX/qlX7L9tVRgl6HhC1/4Qjzvec+z73/8x3+MG264AT/y938O63CE9aUVnv4DT8SP/P2fw+byti1JGDk2gAkpw0g7h5JKnKdEYsf+9XGHb3jxF+Et3/1ebE769vFabe0rkfD5XnpQSyScBGGRRELarnXVRdvwkgYnqaglAAGVdCLVX68Jz/3yB+M1v3AXTnou9eOEaYlEeqnMum/Xl1JiUS4CVbaPSnevf6Ly6OR1t2MgMEIna03ICphdJ7YFXbIl6IixditnHoUeK+qxDhHHXbZJOA4brAInmwXa4hJtsJL1L47pNK3OKWti6AqeK+pxJJKI3//Nl+NBD3shQneS1t8A2eqgG3SyjkeyrbgnHuNP4zFO4wp38xHu6Y9wt6462ssCYmrTETtbbEwXH9v0nSyUGyTehC5Wlv44BqS1R5BUDfUfw2xNEAHqVUJA2ZZF88xOpZIqVFIIy2PO9jVNKUTaf9QRvvUrbsIbfvp3cbrhcn0Wb/ejEgrbz5XtkJNIqKqjJZHQ8ra/kjyoGAxwUgrXFtIxW5KFxdIIvz1iF9aSSKwvdXjaqx6Ht3zn/w+by33Z3kxpxKDtVvlGfwZp5MX7SksjNrxp5rfSYoj4J//kn+CBD3wgvv/7vx8f/vCHAaRQ2Lfddhu+4zu+Y2lzODo6wmd91mcBAB71qEfhve99L173utfhBS94AQDgIx/5CD790z/dyv/BH/zBQDrh0/HxMY6Pjwf52woYNpe32NwjltxLjV0OBRLpAGdqaxwk+nkgEUbyG/3a3rPFZlMN0l2AUhtOTYGE37cQJExdUYOEh4Kifl1Xj1dBQwBqwCgmaqIKJJwtCYDTDWPTczHJ26JOM0ECBNOPq8V+ARrqv1/VZ5kAWCYi7tKDnIM80Lv00CcwiKKZWaiNQgjAKgIrQlohMyYVwYqBDQNHBGzA2DKwIsYWwAYBR9iiBxCJsSXCcWC5LpAw1sClEEEUJV7FFlvqYR4A3SnQnYj5BGHNhABC4A7UdaC4BniNGLdgPgXHY6zjFhvqcRw36OMRurBC16+wjStQ7ED9CpE6gHpwCOj7Dkz9YEGy1L8UajtSROxDUlPlKwWjuT6NB9IxFsgMaUl0Ubl0yqsNab0xrf9LcMHZ4NaBRAEFkk76NM4UDmpVBsUMEU2QqI2Uo9vvVBIFSPhJfQAMYyCh+RVIzFVrjO0HFoEEAGwu9+lFctDOCEjsgoi6D2Xhdv4+ao1d3hUHAIlt7eU0kRZDRAgBt912G2677TazN1hqUDmVmBknJyd48IMfjAc+8IH4hV/4BTzykY8EAJyenuKXfumX8L3f+70HOx4ATMVbaEo+lgSjmiqfDtAGiSmjyzGDy7qts6yz0TKgRP6RN91AW9vavjeWooaxpaszJ4ZEvVhXHYyqjmoJpId5ri/lAWd+JofyxpVi9Kj5tcElg9NbpjOITA9FOaZ7ezTDS9tuG1vqbG5unN6IUwCC3P40k2ngqeo4kGsV4K5GDk4FqEQmdSISJVfINDiwbcj5NbR0KkHlp4vXEJlwHNLDKFJAjzRBl4aXqXyPgJVc6A0HrKS9HIwKAPVItzggIiCK0aZGtIwy1vsR3USgiFNa2RgOMRuPpgienJZLr3xVOVJhOFo8cvvS2BI8jDzCvia7IGVqaKkDxwGqGRODzWCT3dhI4ylL0xRkBxEtNSdAjs3Wp+LXQa4sGm6f3miyNrQEMAg4lQZKruN+x6i3XfnZQah8XetD29DyTMkbLM4xshwzmhzrzz5uogeOG3FWt8+9g00BZ4eH//P//D/xxCc+ETfccAM+/vGP4yd/8ifx7ne/Gz//8z8PIsK3f/u34xWveAUe8pCH4CEPeQhe8YpX4Prrr8ctt9xypuM20z4gAczz2pgqnw6QPsdg4moACd9PoO290XgozAeJxr5DggTlN0P9wVhQKm498B009LC3/Fkg4d6+9K3QvDBkgoBNCCVI2HEa29Y+y6e+5uq1J+kLS72AZNcQtJcVSNgZ67aARIcmSNhLoO7hFCEyhZ2WRbFCn+I1hCmYCIXnRk8hqTY4PY5OQWAOGSAAiS2BBBI+hXFoqJO6kAZKcS821EGjdAbxSOnleD2RCMHIwCp2yJO9bzjWk7K7tkxlDAkdyrrpIbrK1/ur0idy2x4krCK5flgE0wwHHhS0K8RIar6l8SOsjvute5AAUofH4kcEYGc0S5dnn7u8POas9pl3lNu+zL6xI/ZJIyBxkLZnJnX73Acm9oKIt7/97XjrW9+KD33oQzg9PS323XnnnbPb+R//43/g67/+6/HhD38Y97vf/fDwhz8cP//zP48nPOEJANI6Hffccw+e/exnW7Cpd77znbjPfe6zT7d3p6UgAbSlDLsCSgHLYOJKg0Stg5R9o1KJFlRcBSAB+PdDmAtoypdJf4ZUYgwk/FtmGX8CTvqQb6eVU5Bw0FDDxhhYDMsTVGmtoKERLWeBhNxbDxL6IAveTQVZ6pAXvYpFfgpLneChR3LHPKYaJsgCSR2LJOKE1wBvoJKHPPmnSayniDVSRMsehEsUmjDRIaJDRADbYmIBjNOY1wcJSMuge6kEAFAkcwM10UlMviz2uDeY2HFtewcSrCMGJoForq/hviVgl28qGVOw1J+eHwvajwok0LFcUjfKKbt9LgqLbVIGHVsoQUK/O5DQ4w0m6/p51Hp+jIEEWu3KpOzyxkHCvbWPgcRS98ml0oiJOqMgcU5RLPeRSiyGiNe//vX4ru/6LjztaU/D//V//V+49dZb8cEPfhDvfe978ZznPGdRW//8n//zyf1EhJe85CV4yUtesrSbw8SM6v2hnQ4FEkB78t9VR/vaAgmgbG8XSAAOEvYACV+/7p/bNxrlsn4AzAUJTYcACSBHtkQGgLSNQioBwD0sy9Fij9EJkLAHYsiVzZgNmAYJ0jcwaaxWZ7TAAi5fv5P+0w64tmaBRJDr7CUS8urbRWxlpU+/yFVUqUOQqJFhmz8lNPUR0nYvsR2ORQoRKQFEpA3AaWrfcAdCB5M8VCBxJGElDRpMPUL2Vh9o+ABN6owEFOkzYhs6UJ8kEyqVSEMsqzfSdwJRiqkRECC2k+mKko2mQqXQAglwvgN5jMwDiRZAlsGmkCUUco9BdrQ07m2ZeZXQuf4uBQmRJuyMaAmgkFL458OIZCGdZwMgapBoQQewGySWpvNWa+yTdoHEnokCmXHwnLQYIt74xjfi9ttvx9d+7dfiLW95C2677TbcdNNNeNGLXoSPfexjS5u7+DTnBl4kSABnk0pMgYS2sy9I+H7odkPnCaJSKjH1JjHXRqIAhoUggfxghLRpa22wAIBTb6TLmmFiSioxRyJBkcyCXf32OZCBRBMS9NoTCpgo1BkFKLj9RjGwycQe9iS7xkCCd6g2FK50chDIY44ol92mtJw366qaWb0BuJgMsr/nZMNwHJJBY0/JQ+K+AC7zGjGuM4xVIAEkW4kj9AkmOABBJKLZlAHogI6iqCoYIa6SwSjY7CPSAmOMU5FSbKXsZkS9ASSDS5Yl1TnpA0SKA6AHuGuABOc+2TjhPL6mFupKgCFTu7fRcdvJK0hGrgMJiGrAxmdw7Qgg2NorhwKJWoWRBswOkED5TID+Ds4AEpoqkBikOdKIOl2gfcTVHoBqMUR86EMfwmMf+1gAwHXXXWchqL/+678ej370o/GGN7zhsD08r1RPiHU6NEgA+8PElQAJ3596ANd9qlQco6uBajs6rv3l2AckIA+/GiQolTGQAKBrbQBAOW1Kv+3S8qRUwoMEAKCbsJGQimoBn+CBsvShkET472wGbCZ1IEx/l3YKqQSTtJmN51KfKpBoSiT0BkVEhCy+5lyKmREZWHcxzZFMWHd9U71xDF11s1Rv9CxrYVBaUOu+AO6OR2Y0GWWc9xSTBMKlQBFHjAwNAhIdc1JjcApklbxNoqg0BCIEKE6wEsgYSiU2wEC9AaSHeo+AoIaoYrDASj1NkJDRofYMACIYwYMq530FvBpQZgAwuNBhZvC5GyQ8nDIItvZKAySKjqSTHwUJ3Z9uzkKQ0LpV/plAYiKipQwgd157qDWuBpA4J7XGkrQYIh74wAfiox/9KG688UbceOONeM973oNHPOIRuOuuu/YXFV3JtAskgCZMTIIEcFiYaEkl6raqunuDhD/OLqmELzsllWj9wGuphNadAxIABiGyTZKAIUjI9ph6A8h1TLoBjEol0gNQHpC99gUZEFKDqWxM2wYZcs4FPLiHun73dhK15KL5XduwDrhP6ENV+hCQ3BM5g1ITJGQ2YmaEDsndUda+ZgY4sNlJqHojMiF2ybgyG1kO1RsrMcj06g0Fr8viwunTGluAqpU/wQBFdEy4FDZpaXIBii5EdCw2ERTRxWQb0SEKOEScxBUCGBsOTalEIMZGoGLTdxkoZMxHIiAmdUxKcR5IuNtTSIIYBWQM5u+YQSJ/T/vy+h27QcK2Q24zQ0YJEqBaGoFRkGB1/axAQi6adLQCCd2nINJ4Vox6bJwBJCyNQcJckKjv0ZVSbVzBtBgiHv/4x+NnfuZn8AVf8AV45jOfiec+97l4+9vfjve9732LVvu8qtIUSACjUonJwFeTNg8zYOIAUgkdzE2DyxokUsFGOZ4ND3Vdk0q0JB5jIAF5gLZAYrCvAglK/c3ucQAKaYIeE4VUIrVb2kqkS9uQSjBMDz1Qb8iDzCZzIPvs68SPXK7MQ3bdhNYRWPG2EoSsovDfHTgU7aXOA27yMZCIxVmUIMGwstC5IwCkbo+c4IIDi1QiqTc4RPmuqosEC6sYETvClqJ5b0QOhXpD0z3xGDFuzW0zYiNGlAFH6BMUSAcTSPToBOyAFNPiMq8ROCIgInBaZjyF9k4SiRWnzy1Fk0psqDNbCXUFNYAAsKWAQMC2T/YSfR9AlKU16fgxxxlxtgljIOHHqI3yBSCR46nAeW7IIIg8GyRMouH7K7/LoVpDyhJmgcSk66d+r0HC53uQAKZhYA5I1OlMRpSu7mS5BSBxjUkjFkPE7bffbuGtn/WsZ+FTP/VTcccdd+DJT34ynvWsZx28gxeWWm/7Pk2ARKrWqDcFEsAQAOq6QFsqcRb1Rg0SwDyphM9r7R+pW4CElp8CCYMCPTXKIOH2zQIJlesX0gTph5NKpBIjKo5e9L1jUokaJMBJdaIFGNkl09s5uHo5D0NpA5DVGz6/JYWoJRt6XAULNy3VIJHuj/SKKQWm6vX6ucvISBMmc4IIZru1qt5QMFgbIMSBVKJ37qC2qJake+IRtnHr1BR5pU8QkgpjABJJtdGRqjAiAtZFG169seEOHSI21CVVBqv0QWwliHFKK2xVKkXVp44fAvQg5rmRL1u+1g4kdGJOcJcvrkEqsBskiOCNkItgZVHq6eQyAyQAJ0F0/QVpH4b2EWDeHyR2uX7qxZ2SZNb75oKEXkf/bNvp8TEBGnPdPpfEhFgaP+IKgsRewaaCm0xvvvlm3HzzzQft1BVNu9Qb+9hJAIeVSoypN/YBCWBcveGPNdafKfCQfTvtJEZAolBh7AIJSSZ1EJAABAoIBhopz8FEgDPMRAkTBFNx1FKJSZDQS8H5uOnhDLNjgK0+6vJ0IkAJBeq9Uec3bSX09pBrFw4kpE9gAB3kjTn30M4vcFE52TqInYPaoLBKJQjcRQQmtIwudbswuhRJRC/52u27+QiXYgq724srqLlxykqgHRNAPTqw/fWUbAxU6oCYoaJjxuW4RheiqDLW6CjiclwniUTsEcBYcShsJU7VZgJZrZGGuNhq2MhLBpdwLqBNkOASKdDLPSjv0G6QQAJsE+AEOPUE5oOEqisC0ApGBYUCjIOEXBA0QUL3eZBweQOQkP4NDC1VwjdlH2F1qzy7RTIxu+dbc8I/L/sI34fieI2+jpQ9mIfJAdMsiPgP/+E/zG7w4Q9/+N6dOdcUI7I13I50aJAAzgYTc6UShwQJYAgHY/3ZJZWgCTuJM4JEOm23T/rR9twAAM77BSxaUgkgT6dpGwNbiUmQUAkV64O9BAmGwgALUAwho1Bv6HUnLJNKePWInD5CdXY1SHBD/M6psrqAMnNWbzBDZ7ys3hg3ukwgkT051OhS79BJXCPGI4lwKWPSJAqnQITYQKSLqxKJtdhH9CqCCTA7CbWPSGqOBB0bkT5suMsGls6D4yQKSKixpQCEem+koVZOHNrZAUgwChsJ+Gutajsr2AAJznBpxwOy6gTlvd8JEsrVAUlyBgZ3SK6oDiRAmOexwa4PHiTgfs8KEkCR17abaICEnMtikCj2DZ+vNjEvVWvsYx+hfZgLEovaLUHmotIsiPjf//f/3To+tfgVkJb0vqrTXBHReYAEME/FAYzDxKFBAsj16/OaI5UASphote3yB3YSS0ECwOKgVHI5W+qN9E3q7FBxZGjhnSBhmQwLNlXYOCDDASO/YRUhrjECCB5udkkl4Op5O4mix2hLJFj7IvekTx1jlg7Kn8aT8OqNKaNLDWntQ2Yfha3l39OvsKEjcwMFYIGp0v0/TXBASbXRE2MtlBQEAIA0laeAU4zLkAXGOGLNfQaKhlTCPDiqAFXa/oZMdIBQ/E5NPwQDCXYg0ev9E5BgPy27pENYNxUkGtIqExRVkogaJIwDbV/6reV90gsqe2Tl5rp+6mRPDZCQ4xcg4fNmPD/AMzw2fNq1r05L1Boz6i6SHExJTw6VzkEaMQsi7rrrLtv+wAc+gOc///n4zu/8TjzmMY8BAPzqr/4qvu/7vg+vetWrDtq5c01zbswZQALAOEzskkoAQxjwdeeABJDrT4FEXb9lJ+EHdkuV4tsfk0ocCiS8CmMXSEAe2ASzkwAwLZWw9jFQcdRSiZ0gAeRFjZDBwN6SnJRBpu0EMg4atAysru6TB/6UVCK4YWSqFslzV2gcJGSbHUhEO4ti4huqN3gQU4IlOFVtdHkki/0EmRkvxyOE1u8zJPdNM7iFxIEAoWNCIM7eGyKVcCeaoIIiLkc2741TXhVSiRNemQcHAGiAqtxGBgi7J3Una5CQc4ZdU0iMCLmW7NVskPErY02L1FIIAULzziCy690CiVKFoWAhfTAJBaEORpW6OHT9nAQJT05Wp3w+TLp+St8WeWzUn4VUod7nLqZKNc9JrZGqLvDYmJnOJI04MEjMgogbb7zRtr/ma74Gr3/96/GkJz3J8h7+8IfjhhtuwD/6R/8IT3nKUw7WuXNPEy6clnaBxET9WVIJYLmKo1Wv1U8PIlWdSZAAJiHJygMOPqo+NVQaFw4SpvaQc/bqjT2lEvUaHGMgUUoiiservd2TBwYDiqpsLWkgVNKKEamEe3Nld5sKg0u7mTNAQs4l6c7zH7M81Cv1BnsVB2DqDb3iw5DZAZ106KRfoQvp0dRcF8PUE7U9RH546robR5yWMTfvDI6l90aM6EKWSnQx4jLW8AGqIGehkS5zNxhE3aB7ELdYPX+xIgHrTWaAO7nC1lwi2cVRLfUmqqSNHBSMgYR9ByhWBpTi+XGwYFQGDfk3NhpDAhixj2jDwCKQsIs2/jw+mFrjLCBxEdKIA6fFhpW//uu/jgc/+MGD/Ac/+MH4rd/6rYN06sLTnAlzEgbOoN4A5qk45kgldoFEVWcxSKhUYrIOX5Ug0VJvACilEqhgoiGVqCfWUZBQaZSoNgZwABR1mp4bRVn36WBhIJVwNhBevWFQAQcSDYkEfJ3qfC1HjersSjkdPoAYgBATAEypN1JZss+1QkRMy3jXyYwlRU2BkKboYIr+dOLea6MTY0ugVG+o90YCCkbHSZ2BAFNx5OOW8KBp28iregzmKGAFGEgAefVPlmurYKbjDbCJ0J1avne1OsNAVH83JUgYj5BXW0DgIcGHgaWHUMcye4OEShTk+OnScBbYaP4S+4jWZKv1WiAxNjmjH9k3AiBjao3zBolGulqkEYsh4nM/93Pxspe9DP/8n/9zXLp0CQBwcnKCl73sZfjcz/3cg3TqiqRzBgkAZ5dKHAokqr7tBIlYt9cACSDnXe0gQbmPhVSCUJbzUgmv3iCU0oUWSOhvmN3DfBdIAIW6omk74Zoe7mMUC3n5W98CCb11DPEikXJYCBKc29E/r94wEX8Atn0neTpUUhsrEE6luU3ssI3lo6nT2aVDctXkKHEg1jbxBmQVhrpyWhL1Ri2VuCxtGUAwJ4Bw6pLLsQx8ZalfAS1BRJHSuVtAKoEqm8F1sKhER/NU4qMjRoooQJg6Q29BgJNU6cSJLK0opBKpIfJdWOCxoSCBfnyimnT9lGMMDC3lcg3UGvW2y5u1dHjL0LJOZ1VrnHc6D2nEgUBiMUS86U1vwpOf/GTccMMNeMQjHgEA+Pf//t+DiPCzP/uzZ+7QFU3nCBKp+hmlEocCiSU2EmOpBoe63tUCEmjtWwAS+r2OdrkDJHT+MpuIBSCRgYIFKGQ2qP4GRphw7SuMtOwiPEjoNuB6NRMkVGHvwmTmR6rcs5gWrartJNJQIKDrgb4DM2Erw/M0dqBYzs4KEeayiRRICkHyxPsClFUYmoIARSTKLqAqzYCoPgJMvaHM0wU2uBhN/QoxEFZIrqwMiFurBt0CmJOKJwaZoBxsmccGc56wa48NgQq7O05aYeoMPyacVAvRzRUyjOBBw+whqv16z6m+/zAQUJOTljSintBHDS11Xx4UZZ7+5s9iH+FT/VybcqO82tQarUOeRRrR6vMeaTFEfNEXfRHuuusu/It/8S/wH//jfwQz42//7b+NW265Bfe6173O1JmrIl0ASADYXypxFpCYKN8EidRRV6cx2KbUGxcJEo12pyHDgQSwSL0xCyQ4N2Nl9gCJAgzqfFVZ1IDhw3rLhDMACcYQKux8Z4IEqWGePrDGQSIWsmuVEUQAnRlcbmRGPI0dqFJnmMeFW0ArMIt6I02GpsYoVBhsQNEhqVSiB0bkegolCSCSnYR1cwokZiTmNB7N5oGlD2KjQExZQhHY1j0Bo4jXYYaWQL7fQOGdoZBgK38CJp1CDRPw3yv7CBAObmgJOCkF2iqMXUuH+/y5IDHpVSGT+NWm1hjr59x0QZKSRRCx2Wzw2Z/92fjZn/1Z/L2/9/fOq09XPp0zSKQmziCV2Bckli7cpW0Ux5BBvMsVdA+QGNRfAhKj6osKJFwyQFCYmKPeaIBEagQFSNh1Y913TiCB/Hz2cDEITlWDBOCM+KSPmj8XJChPHQOQaBlcViCxBYqH6VbGwTZ24Mpg0S8F3okBpMEDi02DQoReEYoGHx4wNPplWkuDS4hIGwMvkCUgoTYfzGTSl67Tc68MLWUmV/sIsFOH1fYRREUgsnopcBBK1QVlCEBdDoCqLUqYSPfV7iQ5OHEAcxD7COnDIBCV3IPZao2xt/YxkNDnzcTzd6daw6ddk/W+k/lZpRGzj3M2acQiiFiv1zg5Odk9+X0ipGsVJHb18xAgAQzP7wAgUUS2rNvZARLpOJgBEq39ZwMJ89pw19SvnWFz2kWChPRjFCRYTsuZLJjRnkxmYLbvJNe3AAmLNdAACWoYXIrnRoaJgGSBmcZRhogAUMApkCQOGq9B1rkopRHJZqFDTHEgxNBS7SMiUbFoF5DDZIfaBVQMN62Mcs8ESESIu6qE8NagWkACqchIUTxDAqrC0JKH9hG6IBdEvcEy6afjDu0jTBKhkz2QVRcyERceGw4yUlMKg9YFGBszRK0g99tvw4EEZiY53t5qjXSThmoNrTLHPmLQJwWMM0gjBm3unpQvTBoxN50BJBYL6f7+3//7+N7v/V5st9u9DnilEjOGN+0QjU6lGTdbA/RMtzOyv3XTW2Xr9ut6VZ3Z16k+v8Fx3Hd/jFb7quYxP8Bl98reWLRLXLaze3/ZTyvPGJZzfTObB/sc6aBMFt5GYlCPc/vld//ZKu9gpcrT8oN90b1deuCJeR9Fsu9F/UiuvpYRSGP3yTKJRUohmqNMuNH/BfRM6GP6A4BN3+E0duhjwGlc4bTvsI0dTuMKW+5wElfyt8ZJXGPDHS7zGpd5jQ06bDj9pUW7UlhtTUH+1HNjjYg1RaypxxF6XAobXKINLoVT+Uzfj0PaXlNvfyvqcRS2OO62OAppexUiVpTcRlchYt2l7WB/yVWUglxwhQQSe5GQgYBtdViY1MFiQ2ieOzEztKRc3ksouNoe2w+iqrxIQGTb+mzHpqKsfYbc1ugLFxHM5qHOD41ycrwi333aS0gtbWjV3ZGaL3hjL2672m3sn/UyftYX9gXnO+ultJEW20T8u3/37/Cud70L73znO/H5n//5AzuId7zjHXt15KLSIpCYIU04hERC+7VXpMuWRKJV9mqVSDSu32EMLYfHWCSRQL48praopSiqQkmFCkkBHAxZu61U1dOXy4OqNlRiIjyRwQgZaIBRjw1zBXWSDI6VRII5xxzwEglngW+cNqLaUDvYngkcA7bESCtpdjiNnCUQSFEjL8d1YR+x5l4CSWU1RYdkUNmjlEgEuQCdXBT12gDDJBA9pRelntIiYZECjsNmcAsjB/S6wJisC+INLbvgVjzVlwZW+wiVRsjk69UaIjGCvCAnAUaylzBbGL2VHgicpEEndFVb2OSv+wB4tYZJOUyahCLglY/GquX2VWsU3hp2HpXkQfPOotYYSx4wLkIaMUetsac04swqDWvIHnqz02KI+JRP+RR89Vd/9dJqV11a9LY9AwIO0ca5g8SuektAohDf7wkS9X5X7kqCBOBgQtUbDiSSZwIMJChU6gydgKETsVcCOAgQFcLwvhwWJAxUImX7htq4UoFBy3v7iJDF7gQHEh5ApNwoSDgogUBCbWzZK0TEkO69W6siIC/TnVQaSc2x4S6FrUby2LDAUU6tkS9ImgGDHTGlI4o45SChs7cFSADApeDGi3z2HBApqUtiSLAROSAGty5ISJKXVdcP1Rqx7a2hb+DMalyZZnWFBDLQoAwBerMrgLA6Xq2hw1j3uYFS5BlMSFtuBLfUGkslh3Jjy2iWc2JH7KPWaH3OTGeyjdhXrXHotI9NxgKpxGKI+OEf/uGlVa7aNMsmATi7fcScNub26SwgMaufQ5AY6egykNjVxpwf+VKQGEm7QCKVKUEiHR9DkABm2UcUMSQwBIkCCnzX+ewgoXBAYDBTzqvsIxQSWvYReQE1uVRR3kIDO+gQkGCy6KBLvDbUqzNGIErEqhCDLNfNCDHglNICWUmtIeBA0VQYFokS68LtM4DNBqKIHyFDwINEjx5g5MW/pFCMwaQal5xEokfIthFiH3EkkggFiS4kewhhSoujMfDWYIBJPF9UElF7axAG4n/We6N2DwYcyJKM1ncdJE4aoXkKBwYT7I6ho9JB977RLOubsSh2hKYKFCZBYqLeQaURrbSPNGLmMS4ESBppMUQAwHa7xbvf/W588IMfxC233IL73Oc++O///b/jvve9L+5973sfuo/nmj6hQGJO2qXWaLR/EJDYpdZotDuQRixNk5AwARIAavVGsYCXdKUwtNQ2q4drncjtmmVoSWW9vUBCjSrhMtl4yCYvk4xQBois6kjXxiQUJomQScFNLkAWby8BiSiTY4wBGzG2TPNbXoo7RFmmG+NqjRTKmnHZvQV2dsJRXEAln1LMpBokfBJzTUTaDKURgXCMpMLog6xIClkXpEvbqtbw3hoh7DayTJMa2eSNPh03qRfSuLPrSSU81FKJtL9Ua3hJg0ob5hhZcgCod8cFMjIoSOyay+R4hZEldEBqmZG8MWnE0gl9ZjpTAKrzkkZcRe6eiyHi937v9/DlX/7l+NCHPoSTkxM84QlPwH3ucx+86lWvwuXLl/GmN73pPPp5rmk2SOxu6MqCxKHsI0bqNQf6IUBirC3g3NQawARIuL6MggTc/vTaWrwd6uM9qQzY4kcMzo9ngISvp3Mh/OdukDApgx6P3WkwmmoNgworQzlUs6o0UIEEQ4J8yTmz9GQHSDBFRLmGPYvBJQlAqH1E30HXsNhwGFdrhGihrL1thNwYgBMwBCSAqEHCg6K6gwJpjPQxoKeAHiFJIyLQUxCJQ0CkiKOwFalExJaik0ZEU2uEkAJwgUWtoZMhpUFTxI4IaZxA1CqmAnM/x8mgUw4uFBTy91ynCQ80jB2RVttEBuaqL7B2JqQRY5OmqDBmu3xOSAd2SiP851mkEUvTXuqF8wGkQ6TFyv5v+7Zvw6Me9Sj84R/+Ia677jrL/8qv/Eq8613vOmjnrro0d+XPOe3M9NxYnOZ6bMyp1yo2BhLF8Sa8Nvx2yxODG3lj+/Szbod1Atf9422PlinawbA8N8pGZG8I+DowtQY4e14Mys3x2AAa+8bqND61j1HmEgEIGpTJfaSIZnnfblJ5uH3m2UG2H1Hzs7cGR6Q3dPHWAMRQ0Tw2dDug54DT2GEbA7axw5YDtpy+n8RVodLYcJJQqNeG5m04qR5OOa+wqSABpAdi7bWxpq39eY+NNfVYh615bRyHDY7DFmuKOAo9VqHHUdebt0b6Y/HWSNIICukikm6rRwZBvDXYoGDgURE4A0VwZUSaNCyft1t/qbxOrDLUCAY3HlQKbw1XLqlaZnprWP6EBwdRkc/+uy/fAoMDpp2eGn5//XI0w75g0P4cO7xGmckXz32l1zvSYknEHXfcgV/+5V/G0dFRkX/jjTfi93//9w/WsYtOB1NrpMbmDeKzxpI4tH3EDkPLyT7tkkhMld2Rd5b4EXtLJICqHQxXAZV+tOwjvNrApyn7CHvp5ZxHyC/GVo+0jN83VgemttDv1r7o4XV/odKQisWiTyxQoIaSJj2BvCGTrb+g6g542wl9AxXIsEtDnEJFK0REQkRADyRJBAWn1mBsw9BbIxAXao28FoYpI6ALdXVgrEV14SUSmlT1EZlxJDYVPRLEIJyK9IFwHAIQIV4b21QGvak0thwGao0UEpvQR+etsY+RpUqN5CoWsAC5dxVAZMkEYdLI0rchhxgzsoTWsSFD7ReAJWlCGnEQI0ufxlQiU9KIOWmPSJbXaloMETFG9H0/yP9v/+2/4T73uc9BOnWl0icUSMxJs9Qv7YG+GCTGjrXL7bMGibnX1aW9QGKsPy2PDWQ4GKgrRDdAyBCibe/y2BhdQnwPkPDSfFVX1NAwVF84gIjSVsDQDkL7W4OEwoMHCb+eicWSkEsbPEQQiKbVGuqtsTLVBuOEV+hk/Qu1jxgEi2IA2A5Aok5BYAMMRPQ2ifW0LTw2VOUR9ZMJK+qaao0uBnCI6ILaScwwsgyU7SXUyFLuRQYxQKUFFoSKqnujsOD37Wlkmb1xHFRIZ/YysvS2EfWkXdlGjLp8+vLut7tXEKpG2rmmxtL2K5AY2Each4HlOcDLYnXGE57wBLz2ta+170SEP/mTP8GLX/xiPOlJTzpk365IOqh169y2zqraaAaYmqnWqNtdoA5ZrNrYpdaYagcYBqKaqdYAMK3aaKk/GuWaAakYrr5sRxRvUIWqoWV0JhNEHYjK7z+raqNQoVgeD/aPqjj0U/um6gvJK/dTbkPVGcU2mbqjDkYFoAhG1TNh2wds+w6bGAZqjdO4KoJQbWJSY6iNxGU+ku8rbJD2naLDZV5hwwEbBJxywAZU3Pa8jHiScgyCUYla40hUHGvqcUxbUWtsR9Ua665Pgag6MfA0tUY0lYapNST4FAi2rWtkeMkDkPPnqDUSQFD5vd5vaodhGy21hn0XCKnVGouSqizUBsnnh6qcprEgU2Pt+8+xuvoCtK9qZA+1xvJjnEObC9NiScT3f//343GPexwe+tCH4vLly7jlllvwn/7Tf8Kf//N/Hj/xEz9xHn288DQvHPU8A8lFEglgss3FEolDGlpq3Tl9miuRaLzhN/dPqT9mqjUAzDSkdKqKhuTCpAC16yeqtgxCfJ9hEoli6XDK5ZoeG0S5LvQzW7TnPP9ZSSSch4Z5ekSIaoLyfkZ7W8qXUguVEDXKyVtn4QrakkgU/ZTzEY8N0jHYRVAkEAVsiE2tcUoifXDeGieQPF19M8IMLdP9PC0kEmv0elNssrN1NvINyxMhJ/VF7bHRy+yWw2Bv0jac66eoNfoYEENEHwiBCV1XGVlWao00Dqip1sgTOtskXksWarUG9B55tYa+UEs5QtUGADWyzPvmx44wz4450ojqMTMMfY2s6vC/uZZaoyWNOEM6szRih1rjUNKIyXRgacRiiPiMz/gM/Nqv/Rp+4id+AnfeeSdijHjmM5+Jr/u6rysMLT8p0qFBYkabiz1JDhWIaqLuwUBirK7LO/P6GtYfTIIEgFEViAeJ2mOjsI8A8ts+MpyofcUAJFITi0DC7DVQ7xuCRDEnBpdnqqIWKKA8rjzPsirjcCChMzVrMCppkAiFfcQGSKGjowMJUWdA9mlKrp7rfB9FHVGqNtKhIycQAaGIbtl5fU6dQvLYuEQbi2jZc/LeOMI2GYUy4QjJe2Mr0oi0xoYs0gUgBIWEGWoNGavkOqRhsgsVmVM1wecpKHi4wPD7FVdrAGiu8jml1igm9/IZYCBRXJCq3hLbiFkxHw47YbePUYEGGjByjmmvOBHXXXcdnvGMZ+AZz3jGoftz1aSD2kekBs8fJJYYWs7pnxFzuaLilPvnYDnxsXNuTuyu3RYA1CAxBSAThpZAAxBS54s2pyQXTddPOX79FubjRxQGlDVIADZbt0ACADwUGEgAVn8KJPT5TnoqLm8SIJwBZV12DCTS+Ul/aYaNhPUsDTsOhNinWZ9oaB+x6VPciG1knJr0IS/SBQCdGlgC2SjP/wzEKDKtsdHjSDwyXFfQIa36WYOErcsBwiUKWRoRgRhCYR8ROSBywFG3zQaWXQ8GsOokjoQCxUTsCIZ69pDdG2MKp+IwSQShtI9owUOQ6T26Mt4IE6kRgn6XNvSOsbaDrOpSKNE+z40d0UpE840sGxKIUZuJ+nPBhLsobgSw2MjyWpNG7AURv/M7v4Mf+IEfwG//9m+DiPA5n/M5+JZv+RZ8zud8zkE6dbWkTyiQmFNurH+tAasDcJdUolBZjJxTS63h8xv9Go0f0TrHOaqN+niAQccYcBhIaHseEPSS+RcEDwfwde09bBIk0vN8aDiZms71x0DCSxS0f+TOK8UAQGFQiQIWpA9VXgskRr02pkBCb7t6bgRx/SRCOfsnacPGhcU+dcaWmnfZqTRSJqCeFZfUiLMM7gGwSDIkKJWuuaEgEUXH08MZlwegj4RLlPp6HChJI3z8CFFpHIXtwFtjrlrD7AQcqDK7axcUKsmfjo1d++7SQK3hQMGGcwUPY2qNBDYTag1fdq40YqAS0S88VGuYuoMm1Rqj6ZDSiKUgcQ5ppzTiQCCx2Crj7W9/Oz7v8z4P73//+/GIRzwCD3/4w3HnnXfi8z//8/G2t73tzB06txR5rwu294qW4w3OP/iONkf7dkhDy11pxE5itM2zGlr6N/xdhpa+rVZ93W4ZUrrtplGm7cvHqA0trewOQ0trh10MCUDKSFlnbFkbTrbqt4wtcxwK157uj2W7hXFlXQ8ur/ikYX69L2La2BIA+mAxJCIniYQ3tOwjYdNrvIiQtjmt/HnSr2zFz5O4wuW4xgnLp8WNOBrEkMh/2eBSV//0i3cFpMBVSWohK3qiz/EjwqbYTkaWGxx3abVPXeVzHZKBZUdcrPTZdWJgWcSOgBlY1it9IsiEbd9hQDBmGDmWZ8aZ/jspZNR1qKjv40vUK33ujB0xknI8iUY598IwML4EypebWvLQamehrcSiFT7npApuFgc/vIIGloslEbfddhte+MIX4h//439c5L/4xS/GC17wAnzN13zNwTp3LmlPkDi4RAKYN3B3GFwukkjsa2hZ93vGsWZLJBrqiqLN1n4vUdgV0bLVVkvSAEyqN3ZKJGpDywFIkK2vMZAomNuovYtNSyTg8pCZw73LjUokwHmfqTfkM03+qjuGvOkh6+h120kg7NXQPqUXMo94iYTtQ3pDZenEQCLBME8NAGlNDTGs9PYRWxnLQdw+dfskNh5rTiIRRf2g6gx100xxIOoLmiUSAGzVz0CMI46F66dvO8WMSHUik8SZSBCkkgiNIcFwao3AIpEABmoNAOgpRw0F5XcDvS8k234cAUP7CP0pWJ4aHsJggfQaEJpqDZI8G0+Ux0WSauk42KHWoLY0YvCsVskDkH/LrQW6dqg1msuFj0kxlkojDqjWKI+xn0rjIqQRiyHiIx/5CL7hG75hkP/Upz4Vr371q8/UmQtNCy/cwUEiNTqfgCfaPTeQAIb9sx/I7jbODBKtelPqiyUg4co37SQa7U2pQLKxJJyhJfInAA1EdVaQAHRy9j4aHhgmQEKOk7ZRgoLBgTO01FNslLXJZKDeINFjS33CMEQ25NJKz8hk5RCYcOGMCGAE9JVRQyCYfUT6nuwjRlMAYqS0nHeErMC5EcPIgNpzQ4+tBpedN9iUi7N2i3VFBEQfCluBQgwtvX2EqjeYe1NrcCefgdF1DCAicpfVGjaedHzZ9A0mLq6zFrbVPtN8n6FAYTS6PK/W0PlNoITc/dbv2hUDWcpqDeqtaxka0VCBYIGRpfudkvu+WK0xlgwYGvUa5WYZL+4CicmqC40jl66nsUefWmkxRHzxF38x/u2//bf4rM/6rCL/jjvuwP/xf/wfe3fkiqSFgZrODSSAeTBx0SDh+zfIn9fGtFvqDpBo2UfUfaPKY2NPkABQQgJQGlM2QaJ9jOKyMBsYQOotBglJ3jCzXmsj7Z8HEgYHfls+VTqhKona9sGDRAknEyDh6zDyROHeWgF/DWXW0z4atyWPDTW03PYeKNJiXLtSrzdHpA864deeG8UKnkZuOctWAqXGQztkl09vaJkhgoq/NXqLZLmSU0gaM53JU4hu4wbWe5/Hh6kivORIAADuPpl9hAcK+Uz3VErKS7eBAyGNTbFtMeYbsY8otuXYxBA7l4a3RjHSG8nUFFxKHvRiAdlbw+ePeWv4dmv4aB3bSyNaaUwa4es3274KpBG7jrsjzYKI//v//r9t+yu+4ivwghe8AO9///vx6Ec/GgDwnve8B29729vw0pe+dK9OXNF0NYBEavgTBySAop2iX/V57opqudRjo1VuDCSAwf5dcSKmQKJw/azUGfq43AskbAaooMGBBIDcBqZBAqqykHNsgYKVmQIJ0uM7kJDJRcXYaTJhqHDGgCKLWKzvhUiFye2TTwI4JtUAEaMnKuJHzElR7m3PsoBWyF4VLYNL77kRKNlD+KXEOzAiGKC+WKxLwUTVGj0H9EEAAu5PoELdPtNwSfdMV/1sun2CUZxxQIK2TFw2BvRCmieFlpfkAUPBwUssCikEtd0+WfIUDppunwocDiTsJAKmpRH+ZL3kQfqkcDEazbIBEIVaoy43U61RTNBTIFHcq2rCnih7KGnEeYLELIh4ylOeMsh74xvfiDe+8Y1F3nOe8xw861nPWtyJK56uJpAAdsPEPiDRLLwAJKbaAHa2sxgkWhP/2P59QaIuBxgkAJgMlT0HJFIjdgGWgQQwGZAqNT1tJzEJEu54XvqgfS5gowUSVOX5Y1bSB1v9M9pckmNHUD4fm4OjzEa9GyOkL6ABARF93x7/tr4GMdAPH28KETVMpBgPwe63hwg9/lEVKyKAEUHiFhqwlvWxeyQY8R4bXhrRso8Yc/uUW4XCPkI7xAA6GQvBAaUEolKQ0DFbhidH9i6iEh5YJ2Utq20ZTBDUPsKkH5Jn48uPD1RuvgIS6HlZECqjyvz79OdXgESRj1H1RBE7Yo5UopFGJ+gl9hE+nYM0YnbaAyRmQUTcR89yraWrBSRS44cHiSUxJKYkEmN9m9HOJEi0T+TwIAFgUlUypt5YCBKazGODsAwkBEQ8SAB5ni/Kj9hJTIKE9NnqFzYRGQzgjtF238yTiwWa0uFAGRqkw66fvkzqnQ2HKA/mwAYS1i5xAoCGoaUGorLUoQCJCMKRShoUJkK6D33I9zlGH4lSYCOhi0S4jCKBIAMJNbT0kKHSiLSYmJNItOwjZBnRSfsIF+yCWS6Ke5M3I0kdZ4V9h1MasACEgz+f0r2R+0VuLnQwwTLZGDDoLdb2FA78+LD7mH4nPmBVARLDpZmcGkQaagGDXIeBoaXUN5DQgbZLrXHoAFRL1BpFtQuURgAiqZ0/F+4VJ+ITNp0nSACHV2+cN0gA4zBxaJBY4rHh85eChM/z5zgiAh3aSbgf4RRI+GLsYkgsAIl0STNIAMgTgbaNtnrDSxnSG2a6dmMgkaUPaEgdGhIJmVzMwLKWUHCrHTdlyYQEPSaogIh0OXJMCUC9OdJB/YQ6laIbe6ouiBwQZdXNY2zRU8AlkAWeivL2mg0uMfDciEiLcylI6DkpSPRIUSyBZF+hhpYt+4iiv7Iv9TPn1/Ej7EraGOZ8L1ONEiRcnkmeCrWHFcngoHuc6srqFCoOaWMAFhkk6vgR6RiVfYT73Q2kEVz+7uycW/YRXt1R5Lcn+OYCXbVaYywtVWu0IMX2ubJXUhqxMM2CiNe//vX4e3/v7+HSpUt4/etfP1n2W7/1Ww/SsSuWzgskgPNRb5wnSGj5JX271kBirE3f1ph6Q86/CRLV9ZsNEnBgQChDZBd1c2qpN1QPrW9qCRqGIJHggUXlMAISch7m+ikAUNhFNMDCPlMns8El3FtoUSfDkAJHZZpnb7kgzAKJlRMNxCDqBvnM61ykz+OwTfkUMgQEDSSlHh2qE+gBDmWIbSGxjhlH6AuPjX4X7HhjS5VK6CeArrAZTYaWdgMh96PLE7KXPrhSacODgwIbId9Xyde82pNDIcAMLU2lAQOA7MHRMLTkXK5w+9Qyc9fWEBVGExiAafsI/ZT8nWqNMWmESwexjxjZd+HSiAVpFkR8//d/P77u674Oly5dwvd///ePliOiax8igPMHCeCwUokrBRJjfWvZSVxNIAEMt6ekElPqDSlXGGSq2gfIAaUCzQMJ0QEMvC4EJACAW5MDcp1JO4kKJOChw4OEPusbIAHJN/XFGFjAteGhQa5BbXCpkwP1MDXHACQIYCezZuex0YIJdm/6FooaWQrQB9mWiT6CcEw1TJA17W0l1tSb5KFYawOMniLW2FreUkPLdLlpcA76PXT5CgBI8Mr6tZRIgMmtlWJ3vghZ7RPBjyt9Sy9hwqQSVBlaCihOGlq27CNMArfAPsKpMCYNLfW83X0sT3gCFoBFao1ZIFFLDuYCh09nkEYcGiRmQcRdd93V3P6ETucJEsBymLjSIKF1xvoGtGHiKgAJABistbG0XTm/nSARqcwHimBUoyABwAJSeZCwbQwMLgF9EOfkQSKd954g0VBTZAM1lFKJqtxedhLIQ4XYTQhcGZf2qbQCWzrNrBdJrp/5td1fGws9zdssfQDJQl+wUNY9CUz4eBJQdURhdQFQw+CSGB1zoiFkQ0v1AKknstrQ0vor2z5PDS5jH8Rjw0FEZHCHfKfZwVdP2cND74gOXQedusskE3KvAW7e3wQTHhKkPrIqSm/1IEQ6YDBwJvsIr8LQ75Mg4W6W+30fQq0xmeau9jmi1riwuBEL05/ZREyl8wYJYJmKY5d6Yx+QAIbnOOZxMVVH+3cVggSAMrIl0H5Q6PYOqcQskPDXRGHBIABDkJBtBQkgP1Dztl7SaalEocpo2EnMBgmXn64hnPRBLOudNGKOnYSdhH1qj2zOhVn7o3pjBYE72MSiE1YJEkiTlzbl3urXXQ7sdMQ9YujF2HKbgcKpN3pONgzHzujSa0+850bH4v5JjMg5THaynZAOZ9YZeGzUST02/H31HhvaoCFk4OSp0cNAoojAwNL3DnZliTOA1tDnk62vMeKxMQAJU28kSGSgUH3UhpYg7GUfYVKtdHEkrw0S2lYxcXu1htQ5k1pD8kalEcA4SMz0iijbniGNuAC1xiyIeN7znje7wde85jV7d+aqTFOTZiPtDRLAYaQSh4ojAQwBYFadawAkptqrYWKk7V0gYQ8ue6N2sBDZGa4BHhFYJnEAbTsJ6Fu9Ask8qcRBQYJce5HyW6tTZ9izndxwoAo4dL/2SJ/prF9nggSGEgndZnlgx6CfhJVM3Gl57l7AQYEiqzdSSxkmeiQDSf3UmBJp2e8ePUWDCUBtJHrkCwx4jw9NYx4bWAHYolRnbIuqCHrOqs7AGEhIJ+TSJGat7GvY7SsPI2MuQYGV0bbMViLtJ3evywBVbUNLAwUHEtrelFoDfrLXa1BLHuSaF3YT/vJPvUwsVWsUzU6ARFmwDRL7GlkuSIcCiVkQ8YEPfGBWY4snz2spLZBKNJfFnnWMBTCxCyRG2tkLJMZ0dKOSjOrHre1cNEhoH/wEX6s3GmWKdmqpxBKQANI+V28AEirfh7Yp06a0O6XeSJd1KJU4L5DI8JC/q+cG4N4wtdyUekPmPFNvgOz+U8yT1CRIqMpGh1S6UTae/D7WiJDymbwcJE4DR0QmbDmpFbbideG9N9J3yoaVIRlc9pQMMCOFZAMhUocxkOg5G2x618+xlFUZKzsPn8TEEtRxHh/ANEgUqSGtmAIJKFyXIKH3TT00smFlqkiASSwILCCYoULtKBQkDDh2gEQ2yhwBiXTRhnYTQH5mVL/51J+R58jYhL6vfcQeaXLyXyCN2NnWzDQLIn7xF3/xTAe5KhJHpNF1Bh3RRag3gPkqjimQmGjnzMuIt+oBbZioQQLIMLEEJIB0LlMqiDlShjlSian2qx8cAW2Q8I/gCIxGtlQ+co/tlp2ElvHqDXnxawan8j04K0gUk79KEQqgSFTDRDnfldMLZUEoa7CQzlrZCAmRrPtGQMLdB50EFSRYZrcsCGIbpgxktQUSNLSkEj1n9YYlEdWPGVym7QQOTZBQlQhgrp8ISNIHtFUbOa2A1Rb+sd3pGQd2Y0NSAyTA2aW3jiEBATsPEjoofPAqAwly86Hub4HEiOun31aJ1N6GlgtAIqsxUE3u+fe9WK2RbsJ+IHFoacQFg8Qnr03EvjCxB0gAOD+pxHmABDAtlVii4til3qiOt1eIbC81WAgSAIZSian2ta+FdEFPiyqQQCmRaASkmjS4lO056g1tyx7A9lCGlQcDYJKJpQESJA9P7S+lPpuhJmleBgrLGyk7kEJElGABBxw65HsPSzJU+pkgYV1PszWLHoYDI4gUogsBqy6vV9GSSkQ1dPQBodirNqhpcKleG6mjJUj0FHHEKBfrkg7H6jfqj2l5cqdjl60NDSK66PmkDRJcXj30SAG58pXOKOvumdyqrL6Ag175KRfwMQES3vUTHQtbEWqPDfspnBEkUufd7xgolw4HZILG4DdvxsNz1Ro+nTNIHNrD4iztffJCBDA9IU6lPd7Yz1Uq0VIfzGhjenGsiXPcZXh5RvXGACR83TkgAZRSgym9JzCUSuyq46UStXpjABI8jCOhSdUXNUhoPZMo6LlhXCoBfdDLQyZUE628URI4Tcg66QcHEnIfirwIWLCpIg8ZEqqyJpXQWY0wWFoaqNpg5Ie+U2NY1xUkGKjeUfP55Q+Z35LkipnS8tohTVQqlejke1sqoTYT2Q2zF/XDHDuJfFFqiUTp+qlun/umjpPOoOtUFiIKDhoBiQrDBiDB/sqXyUCCFBxmgoTdezm+Bwkzxsy2EwQS4HSGlnuCxCCGRPX7K9UUmPf792qNGiQahpZpcyFILE1nlEYM+rggfXJDBHDhIAHgykglJkBitE+7rIV3xZWYo96YAxJ13X3tJFrbAAa2EtW+SanHGEj43+ouaQUqzw3SGYDzfn2sj0glUmlyx+EMEvJgZTuedwNtgwREVF/mSTsVOJjaogCL5UaXKomwzxZIxOIM8qc3tky6onS5grPmZwYznFQiimQiomtKJQKOum2GCBcQqg9tO4ki9pV0v5cw2UBesEvjSPQgi4q5NAUNC7pNEJEdWwNY50TNGgEJMJVRLXXY+7ouWb6BwzRI6HjIeZWkoXIftS4Qhh4biSCrDu0DEnV9DF9WpHxhH+Hyzw0kNB1CGrEnSACZ8+ekP4MIAJNv1lNpoeeGHe4sMHEOIKF9mpRKjB5vD6nE1QASQLNOEybGdKETIFH02bUzkFY49UbTToJg+1NehgkvlQDy1Jq2M0hovVq94UEiTfTZLoLBKbqkQYECBWc7iQoc9Lje6DLtm1BxeIiQWdAMKwEQC1CxTCBmUNkACTcRskkh9HoGgYaQYKKSSigcdDEgdskmonABxbh6Q/vUIzRB4khoqwOjByGIWsPOva6zINGqB7bAimIR1TK5GYcSJKLeQ29kWauFcscOARIAFVEtDSQaMSS0LIBsR1GBRIILztIIA4YGSED2eZDQPCCrNTxc1MAAYKd9RHFx9gSJun69f8QYc9LlcywdOH7En0GETxcolQD2hIk5UonzAAlgP5hogdZCkADcNdoHJPT4E/DQUnEAaHtx+B+6/hZDuX/gnaHJgwQwbicB/4AG9HE+ZiuRSpQqDgJkpUQM1RsoQcK/cWVokFZq24davaHnSWhLJSKb0eVACuG/O4W+unnmidUhkstL1zY9SAeqDW2DnZ2EgMWYVIJDBCOtmxE7Qh8jYkdYyeeYeiOG07xYFyUJRe25EcEIcpI1SHSBk2piR/JhtgMYzIkcVquIdWQQpb+8ymkFEnbPDgQSnFvYFySK8NkoJ+xZrp9jIKHjw4NEcTExDI2tIKHfgTRm5tpHaL25IGEXdIZ9hPW7kWf7Zqg1Dpz2gogf+7Efw5ve9Cbcdddd+NVf/VXceOONeO1rX4sHP/jB+Ft/628duo8Xmy4YJIAzwMRZQAJYrt4AdktfplQce4KE9mtvz426valyDZiYL5VoX5Kh54Y8eImGdhJwoDDw3tAtgQ0nlQCwM67ELJCoJA0ccvkSGmT2oFy2lkx4uChsJVCV0zL6DOWc5+bZ6qz81eC8jwncsdlPgJHVG5zUG2AGx7SYVQiMEJIxZR8ZXSCsOkKUvFoqYetboFRvALJIF2ArhNaeG2pYOQYSWqfDbpjIFyDZV6y7HqvRx4cDCR3KOBBIKBTggCAhMSSarp9mO7E/SBQXPKCMdAmU9hGt58IAFhogYe3vAIkl9hEXqNZYkhbPlj/4gz+I5z3veXjSk56EP/qjP0LfJ0Xkp3zKp+C1r33tQTp1xdNZPDd22RFMHVbekOYfb0c/macpdKL+zn5MnetYbIm6fN2/ul5VvuhT3T9/LmPl6j7X5Ua+U+T8djSmqvD99XVriYWrQ/LX3oe87kZkFwY6t29l9HgRuU2utyHtSPtR9NBSBzpxM4o6FPP5p23k9qqyxae2Xf9pP92f/56ut5Z1+/v0F3oq6/dIqp0eIN0nn4iUYKIncB/AfUDcErintNx3H9D3hL4P6S8GbGPAZtvhdNthGwNO+w6bvsNJv8Jp3+Fyv8blfoV7+rX8HeGe/gh390e4Ox7h7v4Yd8fy7zKvcZnX2HCHU3SIbrGKQBFH6HGJNvkvpL/rwwmuD6fprzvFdd0prus2uK7b4FK3xaVug+NVgoijrk9/qx6rEJONRBeT10aICB2nWBIdp8iWgRNsdQkUuUP6HhLYcUjfdbvId3/pbd6XSZIsdQllt58DGThaHYFQFsAEIfXF5YMEqgOV5VRyQJrv2yMrbyCgdj4NNUZqk1ye25ay9jLhy/ny/ruv61/WWi9n/uWq9QK2a/+g/Mxpfcn6TRNpsSTiB37gB/BDP/RDeMpTnoLv+Z7vsfxHPepReP7zn3+QTl0VaV87CeBMUgkAu9UKxbHOV72x+/iO3gcNNKQSS+0kdrmAArnulHqjKOf6sEMS4dsZDZ3dtJPI52aGfQ0VRlO9oYnEe4MwKpUAMKriqKUS6c1RVQJOKhEBEkkBQCaRyPbv+qY5rt6YlEpQfjMdeHAglysMK1Vfrm+u7g06wOuBkQwqOfeUHcykoFQ5X6+72kpMqzhEKmG2EgTWWBIcCvVGGlbyKZ1Vjw3tpw+TXUsk0kUvvTbmJFVnHHVbnOqYXQHUs92SngD0DFAA92l2t+EJHEYiwW57TCIhIFBIJAZ5cnSCSRs06JhJJERaVntsgLNrs43WWiJRXFvKv0O48Qh/QuVzYdI+Ysr1c2l4bN/+2P4pacRctcYBJBKLIeKuu+7CIx/5yEH+8fEx/vRP//RMnbkq01nUG8DFqTjOSb3h+zJ9/BFwGlvREziTncRsg0ugCQSDPkzBhNtuLujVAoniGjhYGFVhYCRolT4UUdhKAPKwlif4LsNLe+DKnDCq3ohCLZT6WNs++PJl/hh4wMTe3lbC2nceHLUkggELOmVqD2tTWmekt2mZaOxh7yfEIJX03Nl956GKo3QHTSt9rrto39foTaVRx3HQ8NWAQINMlik4VcgTmAMJdf1UkMi2FQEtF9BAjNCni7GJ6RF+1PU4JrGZ2LYe66kjfvn0JkjwfiDhM0dBAnpobwPRyItUxpBogAS4MqudCxK+y4XkgbNE0Kuj5tpHHBIkLlKtUfdrj7QYIh784Afj137t13DjjTcW+T/3cz+Hhz70oXt35KpO+4IEcBCpBDATJs4CEjPq69vaXvYSc6QSC0ECcNelBglgvlTC93kKPMakEq0Hhqk2ynNrhsrWB4qdtnuwueRtJVpxJbRM+sYDqURtdDnHTgLyVlhKGVp5c/ahjHZZSyX0OeZUG/65PwoSSNdyABcsBpcsuncQTLTDCQgUHijA3EGZIbYSBO7iQCpRLOalK206OwlAV+YUTw4dhyHFdTB3z2zRWoCELtilK396O4lA0U3/wJHMxJfCFr1CBIDQdyBiBAJOTcAxEySWSCT03lZz0FyQgIyFpSCBTibPlkQCGXabIOGeMYX0oeXFoX0be4YcGiTsAjpQsP5lYJiVWnAwBRLAXjCxGCK+8zu/E895znNw+fJlMDP+n//n/8FP/MRP4JWvfCX+2T/7Z4s7cM2ks6o3gItRcexSb9ST5NL6mAE2U1KJA4KE9mV2hMvU6ZGyEzAxIZUo1Buaapio9jdhoVZvjIKGPCRbUgnZSsfQCQEmlRhVb8w0uBxTb9j0ohstmAi+ngKE+3MTAI1AhH13fFaAhKbCLbRSbwTXht6aSRWHSCaQoIM7iSMhRpeaaoioVRtFknuWwGFb0FHL/dN7bYRqYtmKOuO426QwGQIMtURi2+s1OiNIEMqrLmO0cRdmgQTANsZUvSGHSHVtiXFCHdVyVLUBYCogVSFpsM7m3+KkoaWUHayvsS9I2OEnDC3PIo1YKmXQ52VrCfaRtBgibr31Vmy3W9x22224++67ccstt+AzP/Mz8brXvQ5/5+/8naXNXXvprFIJ4GJUHOcsldD+LJZKzAUJwE34FcDtayeh+8fKtvo9IomwCX9MvdE6v+phs0u9kU7dgUaxfwImCCVw6IO2pd7AHiAxAguqBSlgwUs1qPyrpRJ6LT1EWKRLf2HMDkL+3BTGei1iPs+mVIIo19db5v6yVCLFlujEADEyYdXBjsVOraF2EumWB/kc+X0UE1gCiVH3T7BJI2o30G1Inbmu29h9U1UHVkki0T74viDhS+0BEnK/YfUqkIBMiDImuNivnhk7QIJZTnEEJPSWiKRhuDAXSnfQkReQUZCwdmaAhMtrgoRdyApOADSlFb6dsTQmjfBpgdHlXi6e3/iN34hv/MZvxP/8n/8TMUbc//7336eZazedBSSAg8DEhYHEjL4AE2DTNKQcsZNYYnBZ1dlpJwFMSyX897o/U1KJKfWGrzsLJLDHfsxScYypNyZBggEzuHR2EvqWWAKDk0oUkAG0VBzDcNmwAEEUZcKBlIWDKoUKAwX5XgelMjsISm+Xeh0Y2c5CO9pScQykEtlWIt3WUr0Ru8o+gqefDx2igYSutzHH/bMOSrURScQlBxFWnOocub7E0AhZA5BgDCJbHhQkAAcMUo/IJA5pbIyDhF6PWSCRTnYAEoUnhRy7BQ2lqgMZCHwZU8s0ng3pJiwCCUst+4h6364827dArbFHOlOwqT//5//8QTpxEYkjy0PjYA2eDSSAM8HEbKnEWUECaNLuov7MlUocwOCy6MOUeqPZdgUTc6QSc9QbWrYFEnAT5KjUYdd+Of8dUomWeqPtuQGb9NmOMa7esLnGSyXgIME+XZ1KMmHOFYC5gnIkJ1VoQEW9r+gpYKG2PWAEwKQS4kXTVHG4P28r0XVsnKLqjTrVKowxoLAIl7nrTZDoxGYiILlrepDYUHqEXx82xZLi3m7C8ohhS4p3ZBdQQYI1+mYjRPa5ggSQAJcyOOjkr0NYwRNw0j/sAAlvLOk6oi6ehftnDRJ1XbOPqJ4RzNgZ0XIBSEzaRxxarXEgkJgFEY985CPnvfkCuPPOO8/UofNOPEZr+zWWPq8wTBwEJICDwcRiqcR520kADgx2SCWaddz9GZFEePVGARIDiYQcQ7t/VqmESy2Y8FKJlnpjkeeGA4l0DmwP5RIY1KUOBSjskkr4h7Yt/AXKl9jdklkgwbLfjONIHvoJLJjTMZoqDkZbKgENnZ2MLnV4cJclElzbRYypNDTtAInBLzfAbCPuDkcAgOu6U/RM2QBT7poZWkIAolpK3INEkmJJ6vW+nC9IZDiQEiKBSPtpZ1TLJkiwqj2ysWUekyPP/5ZEYqZ9RAYJDH6zs0DC98GDxKR0YWKfNXcxIDELIp7ylKfY9uXLl/HGN74RD33oQ/GYxzwGAPCe97wHv/mbv4lnP/vZZ+rMRSaODL+2wBkbOztIAHvDxGyQAM4ulTir4eWVAIlW/bkwMaXiGFFvUP3jboHHEvWGS4YEJpVAow2MxJZw+xsgoeUI0yCRntO7bSXU1S5PQf5zKJUYeGekp3d+FfUXwLVXgIQAQPbIkIKiCzepRGD5HFFxGEigAIvIyZ9UxzgzoWtBwhaF58auVK8AWrh/AtDVQAPFAkRJIOJ6Ok0ROAtoaKk0xkECKyBWMgw/SZ8HSAA1TOhkK23sAxKq2hsDCb0dgWyMNid0oK3qUJDQ72NqzrkgMcfQsiWNaKk8lnpw+D7vmWZBxItf/GLb/rt/9+/iW7/1W/Hd3/3dgzL/9b/+1707cqXSVQcSQHui3XX4OSABHE4qMRMmDg4Svm8zDC5TcWrX1/OoVRzFMarvLZDw2zVIMLcfKovUG432dRKbo+IobCXY9tcgkfLH7SSgcEKunIIEs8y9+0klbDlwIAebUjhQAzaoMZu7XXq9VNpAPl/6HDhziJdKGEik7wMVh4MHL5WAvrVzUm/o8dTlU7fnJlVr1O6f/tegLqBHjLxqKACEEwDAdeEUkWgCHnyaAImOcohslNfyLCBhYEsyjMMQMQqbCHBuQ1QdnE5sPkhQrdpQFYn8NogSSETDWQzcPPXsqAIJYPDb3+mxUZzsCEjMmdAPrdYYa3NmWmwT8ba3vQ3ve9/7BvlPfepT8ahHPQpvfvOb9+rIlUwHBQngMDCxh1TiYHYSqbHdIKFtAaPtjfbpggwutQ+LpBJaJnV8WKdWb4zZSQAlTIyBBDBfveHTLBUIJtUbSzw3ABSTh/d80DfJfaUSiE5NwjLpjIAE6uEANINSGSDom2aQsgSTSigAFSoOXS9kRCoR5Vp69UbXcoJY8Hi19TKCftfx1xfLiEOWELckUS6vCydgIlODdNSYKKq+qYtqlpToRLTPol2+VAUSDHhDWiADg/55+4jBEuIEJ1lAhgOBvyxFK0ECXKnr1I1YT5cEDgLaIKEdmhOISqG+NrQcwAIN642AxKg0wqdDqTX8uS2EicUQcd111+GOO+7AQx7ykCL/jjvuwKVLl5Y2d9Wk/KA9EEwcUioBLIaJg4HE3DQjUFUTJIDdUonzAglgHkzskkqMiTIl7QxMtUO9kU7PPbx2Si6qNzxQod5g1f1XIAFgh8HlUL2R2j+QVEImM3PxdBLcfKJO/+xSEYhKtgv3UJKeKFiQfPaQ644smXBSCXtzdSfM+o+T+L/+nZRSiFU7VsRIUq+NILOWgkMJEtmJn2mDUwCXwgYgRpC+dNUkMS2ZyAGp8qmMgATvBxKaPEj4b3q/7L6olMHDhJdCqAFlB6BvgwQ6AvUNkNABRZTH6QyQGLqCUraPcM+IRSCxI81Sa1jhBWqNqfgRpDdiXloMEd/+7d+Ob/7mb8b73/9+PPrRjwaQbCLe/OY340UvetHS5q66dFWqN4DFKo6DgURqbN5BZ0gl9lZvnNFzQ48PYDlM7JJKjNlJuLqjLqAz1BuTUoldkgt9q5GHAk+BhNRtgUSu21BvwIFED3vwj3lwjEklfJwImTtzWxEOFNog4Z97qh5JE5/2RycNNqYo1CDeHdQHqQpIevl6ZVBmADGFzbbbLQaXWymzclIDSa0JPVBEYIkDEZG8MCQ/uXq2QYJCgojrwyk6YnTsylSpts2o4eZUNBy5x3tKJHRoVnU1jYKEbjnpA8DNYFSzQYLKXiYXT3do8ng78ZwjmraP2BckzqLW0LSPNAKYBokFaTFE/IN/8A9w00034XWvex1+/Md/HADwuZ/7ufiRH/kR3HzzzWfu0NWQrkr1BnB+IAEcHibOAyRa5eaABDAtlWi10zqPluqi7tMYSBANQaIuP0O9kU6RcpklUgmn3qgNLvPEgIHBZbaXKEEi5Tn1hpdA1FIJakslCpDg3I6Juwt1xg6QqIcVobCTUGhQo0sLjkXIKg6VlJhRpkglfOhsBQm5CWonkW5n/RtZNUECSDARKKZPP4EF5MiUMdlArLHFULXRgyS04CXagCr3z7kpe5HIKReqGQEJ54O7GyQ0/wwgIeeuk3cdQ4KksI3REZCASRhcWS+JKE51xD4CKH7Po/YR1fahQOJQ0oidQaj2THvNbjfffDN++Zd/GR/72MfwsY99DL/8y798ZoB45StfCSLCt3/7t1seM+MlL3kJPuMzPgPXXXcdvviLvxi/+Zu/eabjzE0HdwXdd3nxOkVeZH07e9DMJVLmeTAR42ibo31qndfcJcXrOnW9qk5z2fXWudXnUcOBfo/cLlPlDQwufflWe419xfLisd1Wcwly25fb16W8wWyTOJiTREL2NZcU7zkvKy6Tqv5Z2d5JFXx9hkWo9EuMFwtwafkItyR5/Sf9jO44dRl3PPP6iAD1BNIlxGPjOL1IVSKSYV9PkkdJ9RMhS4yn77FYXjz9bWPAtg843a5wIkuKbwbLiR/hnn7tlhE/wp9WS4ifcocNr7DhrogF0YGxloumy4jfK5zY59hS4sdhi6PQ4yhscdxtcbzaYh1iWka86wfLiFNgUJfULMUy4gFuuXA2m5TWMuIqUaqXEU/SgDQx5+W8q/K6z9qpvqtawi0hDmmLA0G9MHxZIB3fYkXoPisrZKlSO/e9SFLHtitAKZYPb32O7Z8bMbJuB0DxErXrpfMAy4GfKdjUodJ73/te3H777Xj4wx9e5L/qVa/Ca17zGvzIj/wI/tJf+kt42ctehic84Qn4nd/5HdznPvc5934dTCKRG8SVkEoczHOjbDR97qkyOXeJRKveiFQinUbVVspsn8eYeqOWSOhn9RZiEglftyWdmLC5MKlES8UhqZBKVPsJzhWOs+eGqT3AmPLcSO069Qan/ukRmlIJfX03XbS+eTpbiXTwHCdCpQ0yaZhoW8tUImZvB2HbWtcd3gqJWocDZ7UHoZRKsEyQ9Vu3AIpuR+hwa/+GfLCn2anVlEgkOrC9ea+oB4mR5b3MhmC4AmgrRabUre2qGTwrhfYGgAhW61STQ5AbVn78QMabjml373JxOz+9snkQoLjvgL6F6z0VSYiOCb0rVNyh9J9gHhv5OHqQwvoHi+wj9BwVLkYMJs9kI7FLGuHTFVJrHFBpv1/6kz/5E3zd130dfuiHfgh/7s/9OctnZrz2ta/Fd33Xd+Grvuqr8Hmf93l4y1vegrvvvtvUKBeRNJ7EARsc3vx900KJxLwlvcclCCMNz2tzSZ/OIpFoSSVmtN/sx1KpxEjbxX4nkaAJaUPR3hKpROtYIlkoguSoBKEhkUjfZVukAl4qkSUOqT4xdkslItKbvc/z7ThJiM9PS5NnKYGXNmRJBWeJBKOUTlRSiTo/76eBBCOXJes/9QToJ6d96MmkEtwTYqRRicQmBpz0K2z6DqdxhdPY4Z5+jZO4cn9rnMQ1Lsf1QCKRlhofPrY7AGvqcYk2WNO2kEgchw2Ow2Ygkbiu2+BSt8WlboN16LHueqxCxLqLWIVYSSQY1IlEQqQQ6e2fAZU6yPoiKmXw39M2MhR4SYOTTHCgYb5JJmSftTGUSHCXt7WelvMSCUDKuHYUbmclL6GwvKEkYqdEwqcxaYR8txcda6vcX7Y1Lo1ovrydQSJxxSURz3nOc/A3/sbfwJd+6ZfiZS97meXfdddd+MhHPoK//tf/uuUdHx/jr/21v4Zf+ZVfwTd90zc12zs5OcHJyYl9/+M//mMAwOq6Fda0wvq6dMr6uSQdVCqRGz1MOwv6Njf6qA6s9aVV8TnR8I794+faHtg7fhyT5Wj6+0TdZl8G+tPQ3ifb66NQfA7KujqDB8zYdiGyHJYzXW+o99Fwv+uHPmCtDPn9yG9abr+9zclbu/bPhxL2oumirhdDuzaOpA/HoaxvYmlCOWmoSBwwsbdNTgQnrnaf+iIN/86r2+mtWsPj61ssc+oMg/O2wEr26FDYS38ERkBAQEwLZ8niWYQA6noAAZE79NyBwxYbDljFFU66Fbq4RujWCLQGhdMUUCqcALQF0wYcNojosaYI6lOwKf3sABxzAHOHY6YEOZxBj+VCENIy4emP0BGwDoyjjnHChFUg9AxsA7DtkhNLRFpsTK8VSABKx1ov83CffkMkUh1VCRE5SFPbFlMfoYQ4gUS0oI59HmXIdOA6AFYBaGJg1ZW/UYNsvYdaL2aVXaHiQ/1dy8hgio2XAa/OHNnX/FTbJpU8DtSdlXS02LdbpdtMLC9Lf9reXacrChE/+ZM/iTvvvBPvfe97B/s+8pGPAAAe8IAHFPkPeMAD8Hu/93ujbb7yla/ES1/60kH+M37oKbj++uvd96/ct9uftOnpb3jSle7CNZe+4R8/5kp34ZpL3/KVN13pLpxPYgAb+dszncpfnT78Wy9r5AJH8nff/Q+ZyKQZB+PaTn/3mX/pSnfhqk1333033nnLj80qe8Ug4r/+1/+Kb/u2b8M73/nOyfgS9VvhLv3+C1/4Qjzvec+z73/8x3+MG264AW/+xv831rTG+roVnvFDX4k3f+NPY3NP22p6VzoXiURq+OxtnINEYn1phae/8W/iR77l/4PN5ZnXbE+pxGyJRKuNORKJqb7tI5UYkUisL63wDd/9WPzoP/oVbE7jsF5jm8P0/oHo1PYP60xJJSYlEtJ2YYBWSycCSilCLZUoJAlDqURR10kljtaEZ/+/bsI//anfxUnPQwmCbdeGdq5t7Vso69ZtDKQSVRvpk7NEw/qp51gZDpqIn834EKICCIERuqweWIceXcc46pIK4ajb4lKXjBxVzbAOW9y7O01qCDrFdeEU14UT3CukPDWkDHGFj/7Wd+PTH/oPEbokgVWfjS13pgo5ienz7niMu+Ma98Rj3BOPcE+/wp/2x0ml0q9xOa5w2nc47dPnpu+w3QZsOatn+j6I6iaIkalIJMTYFE71UxqriuTASx5QSiFKyYRTjw0MZnkglRhIJKIvk9Vi6xXhm77hs/BDb/5P2Jwm2Yoa6ZpEwRsV99yWRgBlnkkQMK2CbO2rygzVmnFCGlF9+n1AKZGYKY3YxBaqttNiiHjGM54xuX9uxMr3v//9+IM/+AN84Rd+oeX1fY9/82/+Dd7whjfgd37ndwAkicSnf/qnW5k/+IM/GEgnfDo+Psbx8fEgf3vPtnjIbu7Z7g0RwDmCRGr8bPXPQ7UBYHP3KTYnC+wldrU9ooc7E0i0yo71Y+w6z4EJ+96PqzYAbE56bC731aTfgIJ91Bu+ry0oGQMJ2g8k2G3X6g2/PVBv+Pr658vrBC6vu6dbxmYbDUKGIMGjIJHKcFZ/uMm/CRb6PTbKmf6dh3ky0dhzX40vO8noslojqTaENQCsCFhFxjYwVjGpDHoGNpGwDYQtE64DAE5qBAi0UAC6kGbCVehxQhHHEtWBu1OE7rLd0pAMFnAdTkC8BvEaiEfo4wbMR+j7Htu4xYaOsA4R27DFNmzR9WsQrZGMKFdg6tFjlWw7ELDlDj1HWWMjGVqy+sjKuCCm9HsJnEBCbztBrkc2UjS1hP4NvGp4oOKYAonShsarMvJ3Hbyn24jNNubjOLVGtveZUGu470ANElxO8i21hvtelGnVU1usUZAo949CRL3Pt+XSlufPjYsh4g//8A+L75vNBr/xG7+BP/qjP8LjH//42e18yZd8CX7913+9yLv11lvxOZ/zOXjBC16Am266CQ984APxC7/wC3jkIx8JADg9PcUv/dIv4Xu/93uXdvvg6eCeG2Xj6XNfmDgPzw1ru+1tMdL4NEgs8dyYG91Sy9aeG8CwL2PeMo3rNxk6u/bcaJ3zWCwJokG9wUqgE2V3eXCMB5+C2+fzq+iW9rh3+1RXG5A9OyhvWw33GynC+TBSec0Vq32yB6w8+ENZL+elNghAM4aEWMp7zw4f/bKIaEluP1B4cOgn1DBCywTArwqqV8eukSynracq3QQQQMToexkrunzFNj+GQz8D0uX49woAS1CHZGVBgzgSwVsK6lCPKAJkAclDI3KQP3IzQ7nORmsJcRRRLsoYItDxwVJNbx67qJaatIy1lK+r5SnsBUCXD7dbBKAIj+0iXNo4wBByc30XGpvZ5WFWWGyLH6G/RR8HQvPldzbw2ADytveysLwwz+C92UYYgkRR5WzxIxZDxE//9E8P8mKMePazn42bbpqvy7zPfe6Dz/u8zyvy7nWve+HTPu3TLP/bv/3b8YpXvAIPechD8JCHPASveMUrcP311+OWW25Z2u1zSecKEukAVy9IAPNg4pAgAezvAjrWlzFgmxOkagokfJlWn3jkAVKDxFRZ3fZ9rcrmCT0/AD1I2L4pkNAZtXDhY9ShstPxhsGpUpnSQVSvio90qdGcC2M4QnK/rEDCIAGYBAlVf9Ruovn1uJHnJpxSVaRvfTCJhE2FvAMkKJWPfTnOqE9thr4rIlmG9I6f/ojRUUQX3aqeMn9fL1+33BkwFCCRDpJdPUNSd0QE9AhJ9cGh6QoaO7Kols11NiZAIl2PRIs2JnpkSGArmcqGDHCW9OdQ3SvAjw0Z/3r/gRIkSI4fIODCdk9N9dazAIALsOburYIE+sZEaxI9zt5RHhpaQFCDRGPfrrzFLp87QmKfBSQOYhMRQsBzn/tcfPEXfzFuu+22QzQJALjttttwzz334NnPfjb+8A//EH/5L/9lvPOd77yQGBFz00HX3GgfAHKA5XUXggSA84GJMUmAb+dKgoTWB3a20VwZdA5I1JKDOr/xsLAVCseiXI61vVMqwcN9C0Ai1dFJAmgt4JW39fLujnSZDRRQSjXiniBhgCCThM53MqHvlEpoPkpgsLdXlW74zrObiiqQUGmET5lROEkkVti5zgWQ19hAJBwBuMxrEHeIIoGoQeIIPUBAzwGXaJNWAm0K4YJIJajKz99PTdItIMFd+q2iuIXpGnAGiXRtUJTQzRxLBFkiZP3LLes9gYOJJkjofZNr5KNaejC0lUXhxq7UyfFLZDzbGAAGa2mI+sbyBiCB8je+CxbqaJYA6kiWo2nXft9+UW0/kDiYYeUHP/hBbLf72xgAwLvf/e7iOxHhJS95CV7ykpecqd2LSFetVGIBSAATE/fkMWaqOKakEhcNEsA4TCyVSoyBRH3MuSBRbY+qN1rbE2qT2SAhyaQGAhJAftvW/YV6A9gplWiqN/R4Tp2RXhhLkAClc5sNElYP+QGvoOAAYkwqUQeoSpMbOTULBiCRp8x5IGEvsvrZZzeIFBZ7/KHeIwDMDiLWydiyJZGgHqYuiEAMAYhATwGRAmIIyYWzCjZlQOHULuXco2+4smQY5z/u8rWQgVJKogQwCvLQa+6AQq4U8riD2bAYONQgId9rkEgAKX0guQGmrpDxTSiWDk/3fodawyZ6DOFiAiQGy4cP6jR+53pFziKNqPe5NtM1nj8HLIYI7/kApIfphz/8Yfyrf/Wv8LSnPW1pc59Q6ZMeJIB5UokrARLAfJhYIJUYBQnv391686hVEJq/CyTqY7W2x9QbLZDQVIBEeW1sOfHgo1sC5aSgx8akVGJSveEmEx/lMscTlAfuXJAgeW5qWcqTSEsq4cXcNiQol7PvuiFqlyyiXw4SGmbhdM/3L2LCfQGcRDGetB3pgH4hrkARHROOqEfEpimJmEwKEtWskee2asGuXu+hW2fDJBPII0MlFHpxnDspab5O/iSgoPVlDOwCCQgIoOPiXqpKwyDXlaXA6b6R3tcZ9hEmtagiWo6BBFDaR9R1gHJ7bF0Nu2BKtUPoKPYfMC2GiA984APF9xAC/sJf+Av4vu/7vp2eG58M6UJAAlgOE2MT6dhh9lFvAPOkElcCJMbKTvWnda13gQQw0tbIxD/HTkK2B+qNRpmmVGISJMp+7wQJuRyFegN+ogAWGV2y0z/r4WRyXgoSkAkhSx/y89S+Q9qrpBJNyQSqek69ke+zToUyTCSSZbl82QRI9JlCtpXOvViUC201h/6sL4v3hYJBjyAqjLxseAcWdcc2r8ER5oXGttQCiTkrf3K5YBdYQI4hPh563ZDHpW/AapLdawXEOSCRVR2U1SR632VbQ2ObHQVIpBB59A3lZ9JFciDRMrQcU1/I/qZ9BNCWRrSMLBtShTPvm5kWQ8Qv/uIvnumAVywlmeMFHSq/bZ3jQZaDBLCXVGL5MWZIJS4CJIDhNVoqldC2JtbgaBpc+nPx+XNBYmJ7IJXQfrceUtbX8pQIWAYSEFAgmJ0EAIMEtaNIeTxbvZHKuPU3gCTNUCjQWbvbDRLNfIEDuO/pj+3tdtQ2wh3eIIN1UoS9ZQ9AIvqzJbEXEJCIsLKpmFYob9DYOhu1rYKCxt3xGODTsinpWqBskBmEzNYOLqYYol4uHMD+IIFynQ30BHQ6fLREWa+Q9NgpSam4AyTs3lXrbOjvNjgilDIGtgoLLfuIQANpxMCocgwkDHiHv1czAN71m67yZq3yuVCtsSRd8bDXF5oOuW7FrMN94qg39kq7pBJ7ggSAIUyMShn2kEqkAwzbAYYwMRckWi6gUyChfZgjlRhrd4dUYhZIAKgNLtPl4KZ6w6QWTiox1+hSj28BhuCm4j71Q9UWO0FC9c1AW22hUKDtT9lGwA0Hyu1B+6GFVL1hsKDn5O3+XTuEtNYGWiBRulaOJZVO3B3X4HiM3iaxZESJAHRM6W2fRP5BEUecz0HL16lXd080YGJvkBAIYMnpyR2boa6fUEjjCip8G7tAQvanPAEJD4hBJ3l1A81l7BiEZW6f/jc3ByR8fv3smQKPpS6fwG6QAPaCib0g4u1vfzve+ta34kMf+hBOT8vIVnfeeec+TV58uiCYuBDvjQsACSBNlAePKzElAZiQaJw5lsRU+al+taQSDiRSlZFzGQMJPU7dn5lSCQDz4kqMgEQ6LWpIHjBhP+HHtrTh3iP3kUr4pcj95FFM9DoRGDxUIOHgIMURQP4Lvk1kGKikEoUUwsMDynZsfQeGTITurNw1kd4NQCJ9JoDwIEF2IXaDRCdgcE88BseNNocehEu0ASJwRD1AW4DDLJDwrp+T6awggcZOLcHp+sYOObyESwOQkPvuQQKDPMpRSKUR9dgo3DoNELQrCYQTQ6RjzjK03AMkzNASmACA4W99lpFlnfZcCbROi2ef17/+9bj11ltx//vfHx/4wAfwRV/0Rfi0T/s0/O7v/i6e+MQnLm3uyqYLlEwcfDXQsvH9zmPP/sxeEdSOE3dT81R7E6uAtss38qeuUeTxa9E6xpIIcFOqjdFyI/m+TlWfWnXq8r7tKt+i9VX7ilVCfZvs1Q+uDZ1UC6mC1IkYrAharOgZyzp+RdByISUUIZFtRVRpJ0c4dG0X+cAgjHKs2mnul3q970fdFpXfeyRpjIZ81hVAJVS0ho9Oq38G9D1hu+1GV/683K9xuV/hnn4tf2nhrXviEe7uj3F3PJLQ1nn1T1sFFB38CqCBIo6QV/7UUNr3Ciey4mf6vK7bpLDb3QbHEqJbV/48Xm2xDhFHqx6rrkcX/MqfEaFjkKz0qeHAbeXPDmBdAVQmdFu9s171M7h9wedR9R0WydRHLfUrf9rPhDJk+mirfsXPnJ+I0q/2mcKr+zwBEN0GMjCgle8IzvcrUPF9dLta5XOQWqt81i9MYxF/F7xgLpZEvPGNb8Ttt9+Or/3ar8Vb3vIW3Hbbbbjpppvwohe9CB/72MeWNnd1pLMEdVp8qHNUcexzHgsNLovDTb15N491PuqN2XYSQAaAJZKJllSibqdhcFnUN7VFJV2ZUm9oX8bEnFXfdkolJiQS0yoMPeXWPpE4HEAqQQoqkU0l4t/cBxEuvRRCr5k+yIs82IO//muqOCK3pRKMNCHoPMCwN12GgxVRH5hEosceEolOokMCwCoHe5KDq5phJSR3T79CH46Sm2bIwaOS+6Zb8YuAI0YhkYDEjgCAS2qYOvIz1QBYRWpIJIiWSCTkmwWjku/VYQiDrJ2qDYAsaqXm2cKXOuF3nDxgg5YlsftJY3zSPqJOIn2YJZEAMPDY8PvG1Bq6j7lQawykEXW/WlINAGf12FgMER/60Ifw2Mc+FgBw3XXX4eMf/zgA4Ou//uvx6Ec/Gm94wxv27swVTRcMEgDOByYuUL1hh1yi4rhokACW2UpovbleHL6dJeqROeqNui9jthJVG80gVfUDT58ZwbWnIDGqwhjZBwcKY7YSUmbKVkKnVVu3wBtcylugwkcBEs7+gcHpjV8BwICiMsysPgGFDtlQFYcauxlgaEEUQadqO4kAeaAzko1ELxUWqjZ2pZUc83I8Qt9vDS7U+6LXsembciDRqTjFG1uqSsS9RWtqeYhY3hLVBpMEEJPtjH2yv/6e+mVXkFVisBwkvG2qhc8OXNxbM8Yk176Mv8n4ETZRYzdI6D4PEnrsSbWGa3OJWuOcQGIxRDzwgQ/ERz/6Udx444248cYb8Z73vAePeMQjcNdddy0TcV+N6axrViw+3DnBxFlAAjh/qcRFGlwCFyOVaHlvuH4V9cdAwrc7JpWo902AxeQaHIVUwvVvAAvuGMjP2MKGooAQtKUSlMpOSiXcjKrtkJy3TboRIMqW7AP7h4Bigm55ZMyVSsgMkKUScOV0G25bIQOa7xClQxXdchlI1F4ZmrdWm4h+jRM6NgmE2jNEuQk9QnGfuyK0Z8NGQstWLNPR9ETjg2UBaIMEkyxQJhO1BKVKaq+RqJbpJAwa6qG5BCS8JCJLoPJ9SZIogd4OQL9H/AjmSZBInfZlaaBOnOWtAWCnkeVcQNgTJBZDxOMf/3j8zM/8DL7gC74Az3zmM/Hc5z4Xb3/72/G+970PX/VVX7W4A1dlukCpRDrcOcDEBYXLHhx2LkzscgPdBRIjdRerN4D9YWIhSIwGpvLnso9UYqLe6BocY+oNSQSMLt7VVH24tK9UwiJWgg0kQDAVYAkHbLN328uCC1VH+SkSgimYUAlGRIYP5PJaXc/ItqdAItR5y0DCB6TSKJKXKU3a9/RrBMrrW5g6o/6NuK+XaANvbAlIOG1Sz45kNN/JfenA6OIRWqktoZA+D0AiRYZIyY0DQwEFzfR/EIzKgYRnmrkg4SVJJs1w0qYUw4Iz9AkggHbEj1gAEs3w2ED1TGn8xvXCLjGy9GlKGgF48p+dFkPE7bffjigPvmc961n41E/9VNxxxx148pOfjGc961lLm7t60wWDRDrkOcHEBUslgInJfHCcCalE64c1o+5e6g1gN0wsBYmpftV1zyKV0LIj9UbVGzvsJGzaH4UFt3+JVMK2dLIQSYK9icGAwh7TDZAABCaYJMRyI5YEoQkL6U1zQsURMW4rUakviosB15D+eZCwY0yDBHOQ6XYIEpFhdggrua4n/QppCW8UxpPNOA9uiK6pTxIIZPsIICaPDkYCCTl8hzhsS5ucCM/dBAmeBglDUYYFo7IjOJCojzoJEoQElvmwRUwJhAwZCRTYbt9O+4hDgERt8wAM1Rrahn6vpRFnVWvYhZw/ZyyCiO12i5e//OV4xjOegRtuuAEAcPPNN+Pmm29e0sy1k64ASKTDHhgmzroa6L6HPQRIpIb2AgkAh4WJVr3BxK0P2q6s4/o1GuGyPpddUgnflxkqjkK9MRMkRtUb+0gl5JKORrvUe6a2BKgm+jGQAOeFleqgVEBR3vL1yxwVh4cGym+iTYhguUaqf9ddZg+Ri1kveXhOaQ4M6Vp05MZVTtyRAcDlfoXOJBEOIhpqEAADG4kOChC61sZWwmTHBBBn9GIbgMRqRCLBQF5inbR7hwEJqcdugjaQkLIgGhhamn1ER6BepGqE0j7irCABObaOtYF9RJnXdBFdotaYAxIz0yKIWK1WePWrX/3JtUbGBdtJlIc+IExcQZAARibz4hiHBwk9/uixd6ltlgSqGkgluCwPWJ2dS4oD01IJ/32JiqMGiVaKWA4ScHPoBEw0o13aloJF6gP18uA1xNgNEgyyoFRDMBjmlVAxAhNhKJUA5G2V8tuyBbZy7Q5Aws6Rof9HJRIMKyNWC8A2XW7u8qU6FUg47Vcg6pN3hgaIYkLshuPX7CYoJG8Mu4GxWLSrk5U/9fuYNCItFBYRdoTtngMS6AD2d4apiGpZgNaeIFF4Z5gqIxl6pnbTBF8a1JaGliatOAtIpIvUyKOBfUQ6qep3vo9aY8zu4SKDTX3pl34p3v3ud+PpT3/64oNd0+kKSSXSoQ/kFnpWINJ4CnsaXl61IAHsJ5XYBRKtY40Fploilai/z1VxzFVv6DOmOuVRUJgJGzulEtpX/YzI3hhLQMIZXI5JJSzD/ZVTuXx3hpkDqYS+SXpY0Fug12sAErCe5HINkJixjDgAbORebfoOTCuwrriJcSmEXzdD71PPwYJSdcjRLY84GVPaQl6Nn9jA5XMi1SDBXeoEi8GIXo8CJCQ8ttSw+8fAXiBhEEEElgW9AIhXD5fSCZSGlmYfoe6gNUhIt2eBxFSenYT8Zg6l1iguEJXHAvaSSiyGiCc+8Yl44QtfiN/4jd/AF37hF+Je97pXsf8rvuIrljZ57aQrDBLAVSCVAPa2l5gNEsB+dhI7DC5TtTPAxFz1xphEQutU8SQOKpXw/WlIInzeQdUbLo3Chu2fkkpAnvT5rfBQIJHBwVnfa38LqOCh1EInKi+VgLSF0nvDnwa5vPMAia18Pe07MHUJIoDBkt6aeg5FJMocJvsUYIjbZ15XI1AcckOVEXZ4bPikQ5QFCphJziuCpV+jIGHHLa/YIpBw984CUpntDOS3w0NDy8o+YmBo6T021J6HFoCEdbgCPLev6a1R21GMSRiB3fYRRbn5z/bFEPHN3/zNAIDXvOY1g31EhL7vB/mfUOkKgkQ6/AGlEmc9jz1g4mpQb0wef1dsCWC3VKL+UU6EytY+jYIE0JZKpJNof69VHC2QkPJnAYl0au6ht0AF0pJKZHkzWzRMNbr0IGGv/KqCKHTbyGXUF1PUG6p+yOCQYUGLummrBBAnkTCoMONKzrRQDxtGMekuBomqbg0SvXzte0JP+rq+GgSlSqdAQ+mETlYAEE6T7QNVcSQA+NVAqy5AYmNNpqaBp6atKEmY/RBIXhkMmKSqaGNPkACGq3gGV8vfZ29ouSMQVctjwzoi0FGABPJ4TGUq+wipV2iPxn73mrdLGlFclB0gsSAthog4ZbjxyZKuoJ1EOvyBpBKHAqI9VBxXUr0x6/i7YGIfkAByvYadBODgpqXeAPZTcTRUGr78IpDw6dBSCVNn5HbsjdSBRMofSiXU0IxlEhiVSsh8lMFhXMUxkEqISNxW/FR1hYib7W2xvgAuLQaJqm56GQ1gJmwZwBGwiR36LYs6I/tBjBpW+hTEjTMCndyfrpJA+GXEfT3bnGl4GZ26JQNDurCxS4NImSEDHZUVbHtPkGjaROS/MUPLLH0aBqKa9NgQdcKclT8XqTU0vyWNmKPWqEGiPubM9Mm1iueh0yeCVOJQQLSnVOLcQQLYXyoBjAPSHJDQ/k3V20cqASxTcbTiRGiZOSABuLfVYZlDSSUGa3AQbL8HCSA/uJeoN1Lf5M1Sj2rgMFRxNKUSxZsqsnoDMKmEf8O0wFRVOitI6Bynb/h9H7C1WT2FyfYTtqZJiUDIXhheAlEvI94CiUXeG3VkSyQbCXZGGp4nCwBQ2HM2EktBQrnKB57yNdTQEsRFREugbR9h/SOMG1qOgMRQ+oASJBpqjdTJ6veuUov6d9tKU4aWe0glZkPEPffcg3e96134m3/zbwIAXvjCF+Lk5MT2d12H7/7u78alS5cWdeCaT58IIJEauiJSiXMHiRn191Zx7FgefLR/M0Ci6E/LDmSOimOJemMMJLTNi5BK6FeRStTeGxZPAlhsJwFGmtydVMLy4CZ1p+IYlUpoEKvCet+91fo3SgUNDNOZQCKJbwqI6NEY440Ju5WSN4YCarlPlxH3IbI9SIQQ8z2fm7YrtzZIOp8kDAlp/Dv1SFJtAEV47B7LQUKHvoM+Lu4vuXucCuRYIxgEokJw407bw4THxhRI+JOtU6XWOLOR5a5ENP08rdJsiPjRH/1R/OzP/qxBxBve8AY87GEPw3XXXQcA+I//8T/iMz7j/9/ev0dbVtTX4visWnufc7qbfvCyH0KgEWjFC4gSsY2IiTaGeBWjiUYYF/zKzyiIAzQOhui90o5wBR/XK4kS44NHRC7EgBkaTISotNxBCM0rQPN+owGRkRvAbrrP3qs+vz+qPrWqar3345yzu2uOccbeez1q1aq19llzz8/8fGoNPvaxjzU++E6DSCR8tFQlRkYkgGpVomp/NCQTTVQJzmIJ+1dHJIDhVIlwG3dMwvBGEyLB+xaFN8K2RqRKuOMRZm9YImH2bUwkzHMnVCWahDgKVQnOz+eHjfVGuK+On6IpkRDh8oBIBCWh3amwlCERRAKUBN6HAiLBE2lJQTr7wqlEmUD5hMBMI44SIiF5+xIioUjqdFPnz+0P9xkA+n0AiTZb6munrz+7JXTYyRDMFkTCTpYG2DoRVk3yemv2CEIcdYWoCo2WZUQCyNQMIE8kGhCLnMkSCBQG831qG9YYAI1JxHe/+90cQbj88stxwAEHAAAuu+wyfO1rX9s1SQRQ/Kt0Tg9vvmQLJbwBtFIlRpK5oRuqJhJ1+9f1pUqVqBuzIiIBjEaVAKpDHKEqUUESaktl835FpkuzbhhVQphfnpTL3hiASJDuT6UqQc7DATWqBHsiXELi+iSsGqHH2hIJESoPGbLl9hHoLA+IhKtI8FMMgFLCkIjsSR5Wt2wdvK4gEolIIcOzMUQiFRKQhjxAlGaKKEN2VKBIMDtQBD1tuBkbcq4ij0ZjIkHZ6IbhDJHt6v2RUSMyUiFK/RGFRsuKGhK5Hxm5MEZILFBssjR98JY1DUmERAIYiEw0vq0eeOABHHzwwfbzzMwMpPPP+LWvfS0+8pGPtO7AToeoSvhooUrMSeZGk/2b9KUwbFHik6jrW014g/uTUyV0B539CkIcTcMbBUQCQLFPwt2vgpS0ViVsINyMvSES/vwbDpEAUJcCCiD/8IXzSDYPhMaqhPcL1TFSchsq288jEmzAxCiJRHY9KBXQ6ZIlksAIiQRXxtSqhJ+1YefqUMjP21GDTJHQv4y9GhK6A5oAEo8KASRA3ukWEwkeUgGHRAhTJ0IE58n3mb3WArZ+BIQmvGTuN5FRGtj7pRmRKMrYaAS+5kxY3e9eG5Ml4BMJYCBVovEt9dxzz6HTyTb/9a9/7a1XSnkeiV0aC0CVGGlxqlFgHKrEsEQCGF6VaEokijI3hg1vcFt1qsSARAJAc58E93UIVcKr0sdEAqKcSPBPzBIigdT8k3fCG+a5Y9rmR3G9KlEW3nDnXciKUCELX4REgpx17gB4BKMNkTAtpcZLUDDfhkUDIqFDHMr/1RsQCQnhVbZ0iYRCr7E3woY5En0u5IRg9C0Q1JCgbCzcGhIhQeSLnCMS9hyy8/LSO82uIXGw19chFrqGR+aPKDJatiYSdWGNYUyWbYnEOObO2GeffXD33Xdj3bp1hevvvPNO7LPPPo0PvEtgZ6hyqRsbTTvzQSSAoclE62nGi8arqeESqFQlCvtSp0oUyZyuiuD2pYgE1PkkwvaGUCV03/11lkiYoWlKJAB4qoQbVyfAPjCaqBKsPGQPGFgpXCsUur9uOMOSBaEPVumRSDAQkbCNKGHOWT9phiESCgLKzOBpEX49nKyNIkUCEsVGT/cY/gjYDiozoRqA4hoSaEgkXEXCXcO3vIQJRYmMPBYoEqbDHqEo9EcERsuxEgk+F4l8ymfDsEYlkWiBxiTiD/7gD/CZz3wGb3vb23IZGC+++CI++9nP4m1ve9tAndipMc9zb4xlevFhMNdEQjdUTSS4HaCWTIydSPC+DVQJoIBMtA1vVBEJZ1mpT0J3YjhVouifnclyYFjCwIZL5980oP8l54pSOVtYB730tAr7gPEUCL50QTpoqEq4Dxab8aEKiIT9x19BJLLnf3MiQciuUyoALs7ERIISgJRe5v6nd4hE8RTeVKhISKm0idL2OSMSQDZxl1dWuwQhgdDZGQIqSXPLEdaQcMaCrLTUnEjkPBGUkQd3W59AOqpFiT+CTANstByISLQJa7goVCOC72egRuhVwxOJxiTiU5/6FP72b/8W69atw+mnn46DDz4YQgjcd999+OpXv4p+v49PfepTrTuwy2AeZwQdC5EYtmz2QiQSDdoqVSXq0kCrtmsS3uB923olmoQ3ah78lT4Jt52BVQn30QBfkXDCH2VEQreZJxJ6H5cyON8HcvL9+TlkttefnRCH92/fJxL2gW9DGQGREGafMiJBplEv/NGASPAY8TNXAVkmg25I36v6uveBYiIBvvSU/aXOPZsAksxsnkXZF54/Qg9Y11UlSr5KXiVNyqsSypwHhzi8GhLBWDRVJGDIQq5OBD/9zeAJhxi64+/Wj2By6daP0BtlRstGRKIoNDGMGlFmsqwgEh74/0uL34uNScTKlStx44034tRTT8UnP/lJ75/phg0bcOGFF2LlypXNj7wrYp5UiZFPLa4bhWl0sP3nK3MDmB9VYpAJvMrCG8BwqkSdT6KMIBT5JPSBi/9pDeyVIJ9oBERCLw+IBJwHSklRKr2N/32oDXEEXgkOZeg/sr9QLcFgBUWJvLpQRCQcWOLQQpGwl5iP5ygsgg/XkEjUoiRCYgkEACmUnp5cBPs5SEkidWYXTQtKc1OilQlb3ZJgQzTsjwABlDQgEs4HkZaRCOgVQe0Su7zKHyH1NgLkzfhZSSSYZxkyUhvWQEG/3C5WpXyWEYYif4S7b0O08uquXbsW//RP/4T/+I//wEMPPQQAOPDAA7HHHnu0aSZiHsnESImEblS/DnIuLTM3aokEMHpVAihtr5JI5DYekEhU7QtUk4kiVWJYImHaG6UqYYmE++vHXR8QCas8uERC6PUukQBQGt7Qw5rP4NDvzWH4Z71JtyhTJew/aukQCTdzY4xEwv7oT/V1J2cPJkV1REKmNRNfuDD9UlJqEyUAztqQDYhECpmFO8znRSbFM0z35A67NSQUpDHYZuddTySczrhfTQlL9AgwapbZn5AVogoUiSJ/hDVaws/YKCIS+mAN/BFuZyUGS/msCmvA3cXcMwOEUwYqe73HHnvgta997SC7RriYBzIxFiKhGx67KjGyFFDdGExjDfpX3t5IiATQLLwBNCIitTODtiES3I+SbUehSuRGjyggDJQPfTQhEoacFIU3+LgDqRIFRIJAZipp3kaP4ziJBPcb0L+wrbEveGgSaohEWwSKRAqBrkjtpF1ARiTqphHnsIYiCZX4c34U15BQQEeTCY9IyOZEgm8tkrAGTnPr2D2JyBvtOn+EADmqQpaxUUQkIFBdQyLNxqswrFEUAjHnk0v5bBnWaFzV0kGcO2MhYI7JxFiJBDC4KjHXPgndmH4dIsTRmNwArchAqSoR7t9UlSjySZQRhTLDpbuteT9qr4SX6mkgACf0UUEk9I7OAwWF4Q373jwcao2XvJSNdMZ0acMb0qEE1h+B8RAJ4v1gTaBCwZaG5gYsEcLoiUTK9597GwvkiARXtmT1gQtRMawXIpzjI5g4LAttmDQWt6olb+MoAPoeDIgE6VEkZ0z8cIY5DUJmtOT7o8IfYefXMEbLWiIhM3IbEglQdh56EAuIA3+/+B4qIRV2eVlYo4JINPpfZhBJxELCHJKJsREJ3fjCIRLA6MlEG1WizO3cdgKvIUIcrcIbRQ98d33F+6FVCSY+RL5PgmO3qCcSAJOJfOYGkFcl4G3pfC/IlaWR9Yt/bYaqhI2PO4ZLSxxGTSRgDkb2gSyU93s2e01g4+9VRMK97Zzf+IVQJG0hqRSylEi4ZssZoUMfM+YBmgoBJYTXjvLCGr38gW1oQ8JWtYRDJBqGNvj6k4RfqMojE9lD3YPrjzDEQt/3AE/UJZQ5quBe5ImEq1q4RIJnhs2FNSxxGNBkWRTWcBH+j2iBSCIWIuYok2MshsuscZjG2+03aiIBNFcldKP6tardGlWiVeZGk/AG96uJKsFtVBWpahPeCB/4wPhUCQe5EEYVkYD5R11QlMquK1El9PrqEEdRBkdZeAPGD+FN0mWIhH16jJBIsCeCS4VbcgGW5IVX+6CMSMw6E3PWobC+g3OMxKn/XZi1IeH5InLth5kbSZhxwQcsIBJ2jPLpnzDbsUpnMmAzUPgqsnuMB95VJKziJLK6EY7pktgv4fSnap4NuCSViQQhH9aoIXk5k2WTsAajzIRZgUgiFip2ZVViXEQCaEcmBlQlSmOKTTM3SrcdXJWoDW8MUuGy4v1gqoR/nn72hksYAiJhCUZRUSqgSpXI1rZUJSqIBJnz54eKXxbbPI3aEgnzMLGfuR98LimCsyW3l77sj8GJhPYulHwvTP+4XkQWpDfKhDGopqxMBLdsatiO4lcIKPI7RV6Yo4RIICAS2VXRY0TO7jL7KCgb6+zVhBKk337WJrzwFZOHOiIBCjQjSYZD+HqSq0DYjI62JsuysEYVkYjhjJ0Ic0QmFiSRAEZruATGo0qMgkgAc69KjJJIAPWqhLtNkSpRcI5laaDZg17kiYTQfQ1nAdX7+aqEHrIgxEHIpggvUCW4OcGyNk+WwT4JViHMmHEKKOwP9HZEwo3RZ+Nj+sDLlaNQ8MPP/BInUDADaHMika/fUPMdc8yWM6IHN2sjMUedCupIKEgva8OGNUrVCvex5RMJCICc8I1HJFih4TGQZMIfemNbgZTyr6bpjMEFf2Qf0GafGiKBRECkAZEQztU3IQi3CBXfk/q0S0yWACCcOiXh97SKSAAIszaaIJKIScEchDh2qfAGMDoyUeOTyG9fck6jUiUAv51REAk+Vll4o2ifUJVwl1epEuQcEyFh8PuTpYC62xvVIfRJmCeCp0oAlSEOz3jJRIL0sUtVCfNP2s3SgHBIg0skeFj4khUQCco2s+CHhI0QpI7ewM9Vyn6Bj0qRqCURWXMAgK5IkVA410a/dPvmKCASQoJSLQlYooC8ImELWCXmfx4x0XR28l7NOFLY10yNcBUIJnS1RIJvSb4yxldBIEMonLCGEL4fIvzuuWpEmRJRFqrw1ArZmkhEEjFJ2JVViVETCWC0IY5BDZejUCWAYjJRkcFRargsy9zg7cpUCd5uGFWCl1sy4f9iKq8ZUV1LgofTDW8A8MlEgxBHUQZHKZHgNvUzDTYFNCQSxmjIvcouo0MkRPYD2IUTLTAPLv9hxw+szCPhPvayY5YRCWUvR3bkOhLB82WkQmoTJbjjqhWRYBWiqDx2Bv34EoLAWRvunCFlRILsvQij8Dijy03xe/saPICtIpERWM7YINmQSCQA0swGDIHMH6GZQj6swZ0KSQWPYZXJsiyskVsvkb/byrHrkAgi2C/YpGNnUCUWCpEA2oc4qogE0NxwCYxGleB+AX7falSJkdSTAAbzSrjLq9SaJkQC5h92roy2+WctYMMbQDGZqAtxlKoSTCRIP8zYA5HL3GhKJFxi4Mjc3NvclTfnZFM9czTBjo499xyRIAHlFH6oqmxZRSJSkv68GabJlKQOYYh+JZFQQiIVEkpIOwFYeDwFYTrodg5e+mcdkSAzoG6dCJDzZ0NnzjoA1qRJ8MNLSkCbafVHoZoTCbDSABiymPdHeGGNNpUs24Q1zPZtTZXArkQiQkw6mZjDDA4mFCNueDAiAYzeJwG0UyWahDdK+lRZmGpYVYL71kSVGNZwqXfKtTe0KsFtEGW/qtzTd4kEgMrMDccnoYchUyWA7NdfkxBHoSphSY7uFwHWUAkzE2VhCmhbIsHmTOSJhORbhI2VpI/NzMZu70jyHpEgASQEgoQiBXQyIkFuIcuS2T95Nk5FwitlDeg0TuuNsNevmEgoSCjpp3WG5bGBjFQILsgEQIhEd7gDCCGRpqyIlBAJvlUlOWSgkKLp9s1vTzZahoWozFbWE6ENls2IhDvzJ0SxP4LTPpGSr0AQVZss68IaZUSiJXZdEgFU/6qcBMxDkaoRN6hfF5oqATQnE2Vtl8x42npacW6rTJUAmoU4wrEe1CfhtttGleD96siEu73rlQgIRy5zo4xIOPDIhJcKCriqhP5E1aoEAKQma6MkvIHUkJTETwEdhEjYn6pwHneE7NcvYOoTuI9CPSYEfggVKBKSnHalViQ6/r1mH8JseHSyM8rNj4By4/UuCoiEq2CkgdEyhJ5ltOuepX5N/eut+HwCImEjFxzO4HEkbUB1BWtBGU90X7mZHJEAWSWjMZFw7iEo3x/BB9WE13PKZN+vqoJUcO6v8HtbRiSC/euwa5MIYCgGtmAwhzOEjm3+jTETCaCFKgE0JxMDEtGBwhtAezJRpUrU+SRcIgE0VyW4zSrSURTiCIlEaLoMtikjDPbfbIFaUeSVAFAb4sipEgQvg6OMSBCEKUkdZmmQLZOdddonEt4z1LIGHj8ADtGwFSuLiAQ/Fc38DplKkSUUhkSCEhn4DzJkparzKZgpJHhWTuV+dyqIBABbQ0IrF3JAs6Vp2pvePE8kTEENbawkf7QUCJIf1eSQDLivGX2oLIddQyQyMiNMuI1JnzDEoiSsYa59tcnSJwSF/ogiIuG21xCRRDCiKtHiUM4/7FERijETCWAAVQJoRiaqiCipUs9F6/AGtweUk4mmqkQTn0SOINSoEt62Tl8ahjjsP7lQiSgiEoXKA9CEZOh15nwryISnSqSmnyWqRBjeYN+HF85gRYGJgshIQ6Y8ZP+HPDXCXj7z1DKfLYlI4dWS0GEN0xwJKO61vexMLgSQ5IkEzKMX/cQjE+TMZ+EpEiSQkrCTaYVQYWVLAK4nIjFehi5SQM5m1xNarUiE0kWsCjJHeApzfp+FNshsLqGEQyT4Pkv4dikmEjnk5AxHsuBTCrI0PCJBwXoI78HupX6a+0IkAKVBWIOPKbP7stJkab4TXhGqMiJh+hKViEEx6UQCmFNVQh9uhMrEmH0SwICqBNCcTFT5JNrOuzEImWiqSgzjkwBGH+LIKSYlv4Zcn4RDJPQpiYxIFK0DWpIJ8rcJ5GYvx5/0cTm8wb/sSCBvuDRjTYAXxrCkgR36+uD62KFPwqggOSUC+e01txDw0o3Ng9BNJi0lEpDaI2Gm6PaaMMuLwhqpwxrsexbBTLiiK1Ku8KAn7bIdzohEYi86zKyjZHUFCYJMs8cYz0jqhjZSQUA/geoEjsmEsl/+MKEMc3wiQ7CYjLlfs0zSKLxPPaLAt7lJ3QwLUjGRcKcQtxxRmHtM6GsjzGc3rOGl/7oFqWxn3O98iRJRRCRaIJKIEDG8McDh+B/wCMZsDnwSwJBkYsREgvtT2peqc2vjl8g98Fv6JNx9w3MZNsTBZkrAqhIkS/7ZWVUC3rLC2T7NsTwPRbgexWSiSYhDEwjK/uEDheENa7iE8GLUoR/CPvyNTu6RAfeBIVyFA/pXq/NL2WYQOIqE9+vZzqnB1yQgEgQQSYAIKtG/zf1okyh8r0Mc0qts6WVtACb7IjNRKgTTiPOQy1kkpHwSESCc54MVCQ5peN8aj0hAe1XIUohcaCNUKOwi77MoWOgQBb5PeVtVTyQ4Y4ONltYfIUwHKsIafkEq+OoC4N17pUQiP3KViCSiDJOuSswxkdCHHDGZGDORAAYkE3WqhPNAbLPvyFUJ3q+NKlHlkwj3baJKuJ/rQhwBGhMJu0NouITXtqUE4XqnD3UpoTlVIvBKVBEJPidLDkwb2T9200sB5wHgMAfhPNb4gcLmTwVLHrIaEdyO89l96LkPN/eBmf2Atr/3YcIN/T48RUKHN/TPXwVRXhLbgTsDaAqBLlJMATkikXBtiYb/BqQgbE+14ZIVidzXpZ9AdPi+JR0GMGdO7ji45MuSsAxhxkYTIlH62YSVBLSSxRkbZf6IgcIazvetlki0RCQRVdgZiAQwuWRiDsIb9lCDkomm9SVa7FurSgDDhziGDW/oBdm5AKMLcTAJE6IhkfD/+dlHfmkIo2S9DYHkVQnAf1hYVSLwSjQmEk4KqCUSZnz8GT/Dz+bhJZy2gCyc4V5SmGUJfCLBD0lQtp09N05hdMpD60HS90EioE9amsvpqxAutCohcvNtKDOgKaQxUc4CBEskEmj/g3TZQ8nXTPshlH5lAiEop1DAGTPZz5QIgPTsoPZEs4e6M4p+O3x7wnktIRK2zQoiAQFTeMrcR2y6NP6I2rBGToEgP6zhmnU9f0TJd8odrAaIJKIOMbwxxGFH4JeYo/CGPVxbMtEkvFG1L9BelQAGJxN14Y2m5bJ5f/fzsFkcYb8cIgEgP3+EPa7TThjeqFQd+LTLyEaeTNSpEm72RtYXc3zBvzwNeXBSQN3qlh5xYMXBVSmcznMIQ4eA4D1svaJIoeGSG/HGPnuAhoW0yJARfYX19JdEsLUkFMHzS5RN562zNnQhKTuNuIIOXZh4TmLn2tApDTaLw+UUQum/XDhDQabhMv151hguE/OEFR1liQAAp/CUMAQju3eF448oug/LiAT7YEqJBCsPijIiIfR9yv6I2rCGq0AwSXBJhXuNne9jKZFoiUgimmJnUCXmiUgAk6VKAC3JRJPwhm6sfP+auTcGJhNtVYkin4Szfa0qEZ7PICEOt0/O9pWqhGu4dFCnOjDZKNzGtlEW4ghUCQ5vEP8TL8jecL0QvD5FVkvCUSC0PA3HK0F574RrrFSOTdI87MK7wjNoOr+8fZXCKBLQD0+36BSBCYM/0AT43oiglkRovCyrbjkjepCQWSjDEIkup2VYESHzSSRGvXDVCHvtBEE4xsvZPtAx4QwpCSIhWGeFIU85RSIpydgg/7VUkSggbfksDpGFtAR8fwSHrQSqwxpwvsdVYY06ItESkUS0wc5AJIDJViUG6fuAqgQwAJkYxnQJDBbiAMrPsY0q0TC8UdifQUIc/Dl0hLtKBG8zSHijTJUAckShlExUhDhCVaJVeEPxQ6CglgRL3EFRqkyVYBnCJwScIsrSt1ns/CLV6oRKnP24IfvwBLyJuwj+Y5EEKNEP9xS6lgT/6aqWerOyWhJl1S0hYUyUzhM5IBLutm7mRhI8tBNBSEzap1uUyp5tTx876aSQ0CW/iUyjfemnvHJ3yPwvcDM2klzThUQiUyOgyYAz14ZHJESmgAiV90cUhTWY5wiIAuJQ748oJBK8riEiiWiLGN4Y4rDzTCSAocjE2IlEzf5jUSXaEgmn/cL+tAlxhJ+LlAj3/TBEAo4qUWK8NCeTr4bprnbIRKhKVIU3Sn0SyiESTAJKilKFKaC5CbjM8xZu+MN8hP7BzS85Sd6rJcFFqQyxsH3ndgCEKaD2sgU1JJoYLROQIQMqUxrsOfihDYaUCpJ0TUoANrQhBeHFimwO3UkJ9IEkUZD6SQ02jmozo/mlTwASCqZRd2hZZg3xxIe2REIrU+Svo8AfIfR2YVijsiR2GQq+Vx6RaIlIIgbFzqBKTGp4YxhFZS5UibqpdJuEN4DRk4kG04QX+iRq9hlZiCPsQ4ES0YhIAPnwRmX4It8HSzhKU0ZRUD6byYoYmkhwrLy0KJXgX6ymSya0YYecVQsI/1d8tjT7ACYXJUQChkiQ8wsdQJMU0IpHmUUigu+LuWZd9AGR1YlwiQSTB1t+ok0sn1KgD3SkQqdj5gmB1NeR7w3AmysjR8gcQlWERkQimLQLwqgNrE44/ojSsIZRJ2pLYnMn3FAZUEwkgKhEzBl2BiIBRFWi7WGbqBJ1REI3NLAqwf0AashEE1WibRoo7wOMJ8QR9qlEcSg1XJapEsE2pWSizpzJTUDUhzfaEImGRalgfzzrX6wAjCcCGTtwWIJnsrNLzSYS+hc1ZUTCFqViQyCZPSwxILuc7IZ+Cqgb2qhDjkTYY2fnEhIJO/eG0OGMxPS5rrolAJAxeXSSFIkQmZfDzGZKRrLR2TNMiMz5J97oBQ37H4uIhL+NcMyVzh6e+oDKsIYli2W1I4ByIgHkvld2ht0G/74YkUQMixjeGOKw80gkgLkxXjZRJeqIBFBLJgZSJWpIQSGRANqpEkXtVBWq4s9h22WKQ9PwBp9b0f41folCVaLAKyEkdDvmoduaSAD2XEqJhPmlygZMm+JJcPaBH+oQ2TFdeERCucuCB58ZBa8VyrYIiYRuLLFEomwODkaYTZGt8A5v/Q8JUqQmOyMhZf0UQL66ZRGR6Cv92Ot2FLpOKqS+JRIoMh4JspcSXsYG6Y3DybqKEBKJzO/ib4GAOHBowupaJWENzSkqakeUgQlpyfeKWjzPIokYFXYGVWJXJBLA0GSiEZEYdO4Ntw1guBBHHZEo2q7ovm6oSnj9aaJKFHkiaghA4/BGkSrR0i8hvPXOOie8UeSTCMtluw8DQsvqlma8mUhk4QzKzbNhK1yaX55DEQkyDRtpv6iWBJEOCeiniiYSWdpn9qgpK5NdiByR0E9GJhOsSmw3Y5urbtnJk5TUKBHTSYpZe3saRYL05GMgyqJqiXv+2bAUTdbFRahcFCkSPplw1xW8Jz+sAQ6fCXgmy7raEZ4aQVROJFoikohRYtJViUkuTjWKvg9RqGpoIqEbqr93hglxDEMkdKP+fkAjMtEqxOGfjLMd+UTCXV9FJPhYZaQkWF8X4ihUJQyKwxsOkQByqoSd7jlpUd2Sx8OQF70tdN9dw6U0l1d3DkCeSAjnR7BLJOxDk39qmzLZDtXJ9Zc3VZC5olQa2eNGpH7mRFG9h4QUoIyJ0qgQqQlfcHXLKQJSNxzS4Os/a9JAp5I+upCgRIAo+9muq3ByxgZgJykjZNkTfL6kH/L6nGCvTxMiASAXurAqhPFH5MIa5s9eUw5H8T1cVDvCjk0BkYCzb/idaYhIIsaBqEoMeNgFoEoAA5GJVj6JMasSlf0pDFs0MFxy3+pUiYJ9m2dxJNm6ou3aEgl90HJVgsehLsRR65VwSYZfU6Jp5gYKQhtAMZHghwenipqG/cm7eGjNj2dhCYJPJEhk3MElElahcB98dUSCf7nzoewEHcVEogpMEiAB6dSE0BUtMzUCQuV5Q8nXgtNOhSmC1U1STJvjKE5VTYQNa+QyNsicO1EQojGj5dy2bYhE8R7OfcnZGlyEKkGWjVGgRgi4362iY/Eh+OJHJWJhYmcgEsC8qBILgkgArTM5RpYGqhubf1WiiU+C9wNGp0qE65qEJAoNlzWqhDsOjVSJ4FckUBjeKCMSNuxRQCSgikMbAHJlsm0WhxMDt3NnmMyNwlLZRUSC4+oucWhAJLxaEtxfO6lXeyIh4czM6ZStTmDSOKUxURppZYr0SScgpBCGUPTdBr1ZRAHY2hQi0UrEjOyhJ6Qtz038mmg1wmZsKC2xUGKIRGLuEWZg5PzxyYeKhBlMj1iyiFGmQIS+Cd7Pm62WrxcTR0eNMP0oVSMsSYFPJICoRCwYTHp4A8geEHN6yAVGJIDGZMKbbrmy3YZEAhivKjGq8EbDfVvVlgjXuSGJmswNAPnwRrg9n0NRiINRo0rY33vuP3YgUx5GRSRAQJonEjacwUSgwDdRSyTcS4hmREI/y80yak4k7OyaIrHH1pUmnem8uey18AtJJSAkkmxYQyv5wioS+uR9IuEi5fCE0krEdJJih1JQiSEPMAkvMCSCACQCShl/hCESMMstcbDXPVOF+F7h5zrX6LBpuAIloQ9hZ4VtEtawagSnfJImtqHJspJI6EHPiAQQScSCw86iSszpIUdEJIB5UyXq22xAJHRjzVQJoNJ4OVIiUdavYVUJu48zNoMQCcCqEoXhjaL3ZSGOMlUiDG8ERCI0XI6FSDi/fm2xKfvrtIRI2GEfgkhIXt5WkUhyWRPSnoT/mU2SUihI0mmcSfC/iAlEHZFIkZXZFnIKALAo6WHW3KdWiejojvtGS1T6I9yR8wpT8bgb+IQh+2RH0DTnpSzzIQrCGq4akUv5NCoHmyxL4X6vbHpnwx9CBpFEzBV2FlViDv0SIyESuqF5USWatdnAJwE0J6KDVLwclkjoRlvvX5rBUXQubYmEs6wwvFHWptvPWq+E01+XSMBZV0Ek7HGHIBI2nKF/PmduBUscCoiEdAjHMETCbteQSFgZRBMJUZDaGc7GqbsQbOdlbPTBTtKmigSUJhEzySxmRWJKcfedcIY2WrIaoV+NDyLJ+yPsjJ9kyLF+qlvlwQs7eaPHSo65zbif5CgQpvCUnaG1RI0QRFloCk7KZ1jJ0o6JU9ky/P5JkZ1TA0QSMdfYWcgEMCdkYqREAphzVWLOwxvcFtBOlWhDJIDhVIlg30pVYkREAkB7VaLCK1FegAp5klFCJKx3YkAiAQGrkHA4g6tb1hIJvizjJhJO2imlwtaREM49oYlDAikI2y2BUDkyUVQeW7edJxLhnZ8KiVQIKCEAoWcRnZZ9LBLKzufBE4XpGUgFUqUyfwQJv36E649wRqZoRCoVCRI+GSXe1g9rkFEhGqkRzmevkmUTIgFUKxcFiCRivrCzkIlJIhK6sXkhEiMzXOoG9esQxstWRAIYrSpRUVfCa8s1XA5CJLgvQXgDQD2ZaBDeqPJJtCYSBlxCW7DXoCxrg5dwZiLxr2MEBaow90RC5PurMyh1IwoSacrDQrmCUJpUGOLgzIVRVh5bN+QTCddsmUJgRgobzlByBoAOZ6SGPKSUkQf2R5D7SgBpRuH7IwD9cGdFwqoO5mHvjZLTXR600Ghpzsmbxp0HnRWkMjUCvhrBIQprsiwCGy9DAh49EROESScTc6RKjGxKcd3YwiYSwGi9EsMSCWBOVImhiQT3pUHIwqoSZdtUqRIG3PPiSpYtiYRRH/SDwqR9mh+iVUTCyuTGEWh/FxdUt5w3RcJZz414mRMmtCFYkXDaTIT7vsCbFRCJIrNlV6RISWJG9PRDU+4AACyWs8hmFRVQJD0iof8yJQKkkBKMGqGvjyYTPCI1ikQIvnbmvTXFMoHgsIaEro4p+J4tViPKClBVmizZ6yMCItECkUQsFDSNeS9UzCGZWFDhjRY+iZFOK541CtNodVtAYXulRAJoFt7g7celSoREgs+jqZ8hXD92VWJ0RCIzSVYoEnxPqYw4WBXCjEdIJPQKkScSZLZvQyRsqqe7XTMiwUEHUfIzmWfltJ+blMdGZrYEYIpWCUwZyUZBQgmdnbFIzKKHBGkikUJaEqGHTSCb5tz3RwDKbsfny+qE/bPThFcQCXeBnZ8DmZrhhDVIIht0IZwS3OZ6JkJ7TAQPr3AYCTKTJVAY1oAKiERUIiYUk65KAKP7lV95iBGHN4DRkIkJVSVaZ24A41ElyvoUfi/4PJoQCd4vbCNQJYASMlGlSlQRCQNPrSiobllKJABnZk/3WDCmSr/Ak/PDu7JMtlYn+JxFnhSwYjEqRYLKiYQysSCOZhj+Y4aaCo2XRUghC0MbNlUUXOlSYAY9QOojLpazdo4IxZOGGSiSIMoUCU0kjCoBCUHORF2ANVraUTGJKAUj4g+o99651/iWs6oED05gsuT7h8mhMGoEp3wiM1kWhjX4++AQibaIJGIhYtLJxByoEiMlErpB/Tps2exREwlg9KrEsEQCGK8q4fRJ71ZEFBwiwW0XEYlwvwpiURjiqFQl/NPxlQf/WFkKqKtUVBAJIGe2tA/2lHT7wv7gNlkCDpEwZCQsk+1laJQRCfMLtjWRcFhNU0WCiUQaPN1mS4P4FTDXI4VAV6RISGSzfTrTiJPooQ9gWvbQF5lXAkAWyoBvtLSZG279CMpKY9sZP9sSCXe17hwsUbAEQt83mjwMbrL0Klm6pkrA7M/3XTsyEUnEQsbOQCYmiUjoRvXrMDODjotIAKMhE6MkEsDcqxJVPolQNeB+VCgRjUMcDVQJX3kI2m5BJABYVaJqBlDbvspIUEgksl+slFU7rCISFR4JQcikex56wNkme0w2JhJCAX37tB0I7LFIhdQmSpKYEqlRIFiR0ESCRB99wHgksntNQWRhDbi+CL8QFQD0SWQTdZmT4XFoQiSYIFgzrPOakQd3oHSaqT1IW5MlKAuLFYU13PvbPXYDjFd3rsHGjRshhPD+Vq1aZdcTETZu3Ig1a9Zg0aJFeNOb3oQtW7bMY4/nCS2NLgsKYy5URYqs6XLEDQ/e9xb90fnnLfpfN7W433h1OwVtlfZHUfl5lY1T0fZExf0K2yhRJWwbdjtVvNzbJlhuJWMq3UeE+xTt67YdLLeehmA/u9zZXpgnFKsJvD3XfoBylAb7yvuY/pqHj57Nk3TWhru9gm2P32elssnOCCoUzPGQ+Sx4XYrsffiXuu9F8edUP1RFKjS5SQUoFaC+hFICaT9BmkqkSmK2n2C238FsmmBH2sH2tIPt/S5eTPXf1nQav+lP44V0Bi+kM9imprBVTWOred1OXcxSgh4lnokzgULX+COmZQ8zoocZMYsZ0cNiOYvFchaLklksSnqYMX/TSR9TSYqpTopukiJJFJKOQpIoiI6CSEh7FCRpk2VCOjWUXwX0qzTLpP4MAagExuyZvZIU5tXsa1Qnctbrz6ZEtwlhaDXBrBPCLDfZP/xZZp9ZveDtvL8WmHcl4pWvfCX++Z//2X5OkoyRfuELX8CXv/xlXHLJJTj44INx7rnnYsOGDbj//vuxdOnS+eju/GGSVYlJDG9kDQ/W75bEZpdUJcJ+heQi2LeVIpHbJuhHgxBHI1UiDG+EPonC2T6BWo+EkaJdn0RhaMMhMe401G4tCV0gyfVElCgSUljiQ96loUwe53X+ldJtGOLinGWBb6JCkeg4ikQHmA1SP5tAWblev0xxxSsBX5GAViKEzEgoV7UszNjgDA3AedXvVaJDMu755BQJjyM7o2Jm/vRWGeXBvaZa/RE2rOEVTmtgsgyzNaw/woQxCtM8G2LeSUSn0/HUBwYR4Stf+Qo+/elP413vehcA4NJLL8XKlStx+eWX40Mf+tBcd3VhoOUFXlCYxPCGbli/jplMtMreAEZnvByESADtvRJF+xSGOArIRBMiART7JPh90FZhiKNgv8oJvRg2vBEsBsozNwrm2/BDGwBQQyQ8JaKiloQ0oQ7AEAdDJITTUfhEwmcK5qFkQy0lREJlm1viEBCLURGJ1DzodQjCPPylybSAhBISSva8i5E4T/MEhC5SpKKPGcmFsLSpMszYYKMlANisjY6wLbG3o5JIuMNQNILhvwpTKdPwSatAZUZL1Jssw7CWO/IuYZAZ4dWXeYJIxIMPPog1a9ZgenoaRx11FD73uc/hgAMOwKOPPoqnn34axx57rN12enoaxxxzDG688cZSErFjxw7s2LHDfn7++ecBAJ1FXXRFF91F+pT5daIxR1xi5GM2BwWqxkImssZrN+nOdLzXtqWyGxMJF03IRFW7FedV2Z+ycytrr2T77kziveb6Guzn9cl9745D2EbZPlXrnPckC5aHrzbFINvOGtWksx1YYnbaY/mZSZMrVTsPBl7eNQ+yKSn0PtKVr+Ftm8niWYGrQslcZHK63Y+FHsFSufns/Nn1vMz8elaGSOhlmiiRcOaYEGRIpn4yio6C7Esk0KEDYXX8FEp10Fd99KiDRPbRUx10VAc7kg6gpkFyFiR3gMQ0lJwF5A5A9tEXfZDooStSWwlTqC66AFLqAKRDKkqZEtcgPQGYTNGRCh2p0E0UXiRCRwKdBOgTodcB+iBDXFhFEkYFEva6CaPUCKWJn5C8TCs8QgEiMduYdZK3UQDMOpkKG66SqdD7EHSdjRROaMpktxAgyITK0kzWEEpk4TA3FMdKVL/5/2hBrQKyo8U//uM/Ytu2bTj44IPxq1/9Cueeey7uu+8+bNmyBffffz9+53d+B7/85S+xZs0au8+f/umf4vHHH8ePf/zjwjY3btyIz372s7nll19+ORYvXjy2c4mIiIiIiNgZsG3bNpxwwgl47rnnsGzZsspt5/Xn+HHHHWffH3rooVi/fj1e9rKX4dJLL8XrXvc6APlfQHWx47PPPhsf//jH7efnn38e++67Ly465WqrRHzg2+/GRadchd6LAwTdFirG+MO7u6iDD3zr3bjo/zeGMZtkVaKi792ZDv6/v34HLv7QD9Dbnqvr2/5QbZWJhaZKVLVp9unOJDj5S2/GpZ/4CXo7AqNlhSpRqkgAzVWJus8F71urErxfqD6gQKmw28KoC4EiYfbtTkuc8sF1+Na3H8BsT8vY2T7IFAnzR0JYUx8rDnwcX42AY+DLlnFqqV0vnfW8jk2EyFQMvSwzFdpjGPMhElhzIow5USQKMiHIRKHTSZFIhW6SottR6EqF6U4fU0kfU6KP6SS1Zkg2Ri6Ws1gkZjEt+1gsd2BG9DAte+ikHfTuPxtLXn4uRKJV61lK0EOCHaqL7dTFNjWNbaqLF9W0NnGmU9jWn8bWdAovpl1t8ux1MZsm6Pclekq/pv0EKhWgVGo1QglrItWmUvNHIjOkGrNpto5VB3c9edtL97MCpFUf4JhhKdsPZJdrxSFTKVyDLqsSvd6LaIoFpekvWbIEhx56KB588EG8853vBAA8/fTTWL16td3mmWeewcqVK0vbmJ6exvT0dG55/8We96DtvdhH78VebruJxpi9EnrMxkC8JplI6MZLV/W2l4zZgP0ZOZmoJAQDEglgqBBHb3uqiVfRMdz9y4iEXmDepPnzqCMPReSg4r0lE7VEwiUH+TCGt9xpI0ck3OUGvVmFXk9529j9ZJ5I2Ie9E+rIEQcus+ythwmRMCnwiQZ01MEjFuQYOCkhnfjEWQsEkxEEgEx2A2enQD/8dLMCSSLQEQLdFOgCmE0FupCYTiR6lGKWJGZJokcJeipFTyToiQSLRR8kBFIBQBCUVBAAVDKLjiERHQgIkhBJAqgpgGZBahqkeujLPmZlilT2MdtPMSu0/TIRKdDrQokEqq+QIkEf+lUJfS2obwZLCl26GoCANj4KY1bVf/rHsemits8Ef9LJorGkQRmywesKwhpwQxyUEQyQTyRgjg0A/X7zAMWCIhE7duzAvffei6OPPhpr167FqlWrcN111+GII44AAMzOzmLTpk34/Oc/P889XaCYVNPlHGVv6EOMYXwGMYy2KJftHapNFgdQb76syt6oKZetdyvpS1XpbCA/XkUppIUZHM5YB4ZLrz9lpsuidovMl9z3MpNmYLz0MjhCqKAtIDNWAvBLYjepJQGA8zOc1FFb9toQBX0MyvyQgotPFRguTeYG4Iyb/Ww+ZIe2BMiWZK4wXNoVbLYks8DeAgJwMk5ccyIZBkKOY5VLUbt1HPRfX2dVBIZLexnMec2QwCIAPepAUWLn5EiEgiKJGTmbFQwLoKjZ91yk0qSWKpCQQJqdvnvO3mgRbE0Je3jXUOkYUNxsDbLjyt8H8trXl9HcowpeNUs77hK6UqlAlrXREPNKIj7xiU/g7W9/O37rt34LzzzzDM4991w8//zzOPnkkyGEwJlnnonPfe5zOOigg3DQQQfhc5/7HBYvXowTTjhhPru9sDHpqaCTNJGX3zBMw+32G4BMtM7iAOqrXg6QvdGoL21TQnmfqr6FRAIoz97QncvOAxg9mRAVGRz8ytEZme0ngNJS2aUpoFw0KMx8SCl7QLjZG4A/74YyZZCFQx6YKJiHTGnmhkcuELwngETuYedlFDib2oceN2MyEcg4MymBfkiaOTZ0vQt3/gomE+5Mm85U3qQzK/gJ52ZuEBEWAdhBXXQxC1A2uVdX9CFJAgGRaEoeGCnfQkJaVYINl8GVzgaRfFJBIakw0o03xnCKUIXZGgKZAuWkfRK0IZNSyhMJ6PuluQ4xzyTiF7/4Bd73vvfh2Wefxd57743Xve51uOmmm7DffvsBAM466yy8+OKLOO200/D//t//w1FHHYVrr71216sRMQiiKlFzmDGSiUFTQQdQJYAWZGJMqkRtX+pSQoFiZcLdPvfAD8a5TpVw9x0lmahSJcJthMilgdof9znSkFcqbCVLV5WwznrT75oKl25qpVUuILw5N/TBKEv3tGTCPKHcy8IfSfezslS27Sc3ZzI3/LO2WxMI6Ev9K5rIpFEm9p4hO9smoDppluZpljOUUSVS0nUgBAF7ANiqpjCjeoCchSKJrtBhx0SY0p2GSKRCQJl7KyWp2y/QW6TQE4YJQegJ8/RPCRA65dQ9U/twd885yUbLEgWzSDCxckkDX/qQUFiCmd0LNu1TmnvUhFJc/Yf0Av21avG/aF5JxBVXXFG5XgiBjRs3YuPGjXPToZ0NUZVocJgxkIlhK13OBZkYRpUAxkMmyqpWhmTCJRIAisIb3BevH6MgEw3m1shUifxpZkQiIB82jJEdt5xgZOENW1mTf6GamgBc9jj7Vcr9Q2aONOei4+OGDSTk1RTg7fxwh+md+fVLcG8Xp36Fq0Tw5wROJU/tdeAUUD47+1A122fPUqnnq0gk7Kya7np3Cu9EmEvmKBP24a/32KG6AHUBBczIWUiSXmgDBFtDgpEWkAcA3myj2aUmCJEgNfWudGqs1AQidU45F9ogq7bwGFixijQpcikJuQpFWIQqzebWoASG1BiCmeiQlk/99Kc4d0aEj0lWJeaASOhDjZhMDFPuey7IRBNVoqqdcZGJwmMVqBItwhu5fgxDJoZVJew5BW2gWH3I+STstppIZBUrdT/ZJ6EjATXzbhjlQc/y2MAnYQySufAGdx5MGGp8EjzMYE4j7HXS52HGJQmKUhG0R4LIVIlMspAG+yQSnufCIQ/wJ9PizrygptFX/ey8pB/aSITKKl5KQEF6JbT1YjK3A9nPrEaIfmL4m/7MhksItosWEAli8kOQTKR4XBPkSZl9H4yh26Z55SqlLtF0iQTfV5Z4NkQkEbsKJlWVmKPwRna4BUYmBuhHazIxSHijyf51fakyX5bN8FlabbJAlXC2HxmZKAtxVKgSI/VJIFsu+Bc/4M+7IWBpQ+PwhkKlT8INZdjKlGaZ63lwntHgh2KRT8LdxO5YokgQPzjNQ5SYTBjDJfskiARSpeDPuOmUsTaGSx60F032hb0GBURCQiERAlNIoUQvZ7Z0yQO/MmmQgjDL5IpfU1NJkw2XfOruOfeFUR9I+yDg3A5WlXDUB5dMOGNZ6I/gqqXk3BOJuY9URiYmxlgZMQ+IqkTDw42QTIyibPY4yUST8IZuqHx/oJZM1GZy5HYquOZtVImC7YcmE2UhjgpVgktBe+GNAX0SueV8XE7fA8CmS0skUtPdkvCGnsa62ieRvTc9sb9WnWXmhYAsnFHik4DZxo4JOTvbYL/5nLiR+wzWcJkIgJQX3lCGWChyzZZameAH/9Z02i+LbYhEKvqYsjUodXlsCFexQLYcADqAtKSD7HseFSEIvX4CIQh9AR1S4DRQSKAPUMfZwzFYkjGUgkkUj5sxnrr+CA5raIOlmTLcIWMCOr1Wh6200dIjl1KTTh76pogkYldEVCVaHHIXIRNN5uEYZ4gDKCYTZVOF15ku3X0Kxm6kZGIQVSJ37kCj8Ia7XGY/P7n0sQ5NGCJBetIlLZ+XqxJIySEYDmEo8klY4iDy4Q0SGRlyhlUQ14EQ9oHnZxiEr2Yc7EOzJHOD9Ay+SpnZMr3QRlkaqLC3wW/SKaRy2jNJpkJYD0QihCUKLpGQpLRCwSTDTDfOxkqrTghCR2bLhSESQiSmZgWXypbFHgkyPgZHkdGeCFeVEJCGSNgxhpP2aa+LfvWMlmVEQp8UmiKSiF0ZUZVoccgRk4lB+z8kmRi7KsFtAKMnE1XhDe5bnSoR7DMwmSjzS1SpEqMIb7jLlXBMigT2RLDpEihQJZqEN8I00JSPjcLwhn0GF4Q3tBoB54MI3jnnzCsAm7mRzUzqPBDNA5RFCw5vMNFwwxtEKTgNlElEYh6U2/rTSGXf+hwUSZuFAWlmABX9PJFw+qsJgrJeCL1M2XXb026pT4JhiQQZRcIhAwrC1otgEpHzRyQhKQv8EdafQtZoSeyJCYmEydCIxsqI5oiqRMvDjohMDNv/cZovm6oSuqGB22ntlxiFKlHSdmsyUeaXqFIlDEYZ3hD2YeGoEhBAqEowXTCqQGl4IzAzlqaBWkUC5dkb5oWcVTDyfM4nEYICwyWgH6xJ9qvcfZjqIRA6e4N0GigPiU0DNcSim+gLsDWdQr9fXIFXzwJqPBCGSEgzz2ci9PtEEpICVYkVCim0CrFddAt9Ev7xUBLaYLKUKTGuP4LVB5W45bicsbXFp/iaGKLHYSptADHxH2EuH2U3XQNEEhGhEVWJlocdIZkYpv/ur/aWBauGViV0Q/p1BGSieF/Kn9egqgQwOjLRJMTRRpVwUZcGCjhkwrwqFJgxg0qXTUyXKSsOsAQByIc3CAXZG1aRMMvc8EagSBT6JKjgvWu4NHUSPJ+EJRKaYHD2RuqpEcJresqYC15Mu+jLKeOZ0J3jWhIppO+BEH3bfQmFGaG0+dKsT6CQgKwhE9BkI+EQB7pZWAMwhCLRwyYIfThEgk/fEAEioUMXZIyWDnmyJKrMHwGt6uh4F7w/TQrNlZdczAwmFTUqERGDIKoSAxya5l+VYLRUJ0amSujGYBobuK1SMjEqVaJqP0ZdNkfTEEeVKlEX3rD9gk8kgHx4wz4oqDIVNKx02TS8UZUGmgtvlBWngrMMLL3nfRLuemWmvs48EoAlE2aZIJ1ZUBbecLM39GVhJUJ/3tHvoCemcoWpPBgPBOAoEFZKAiBnkRRkYCVCQaakQxn8l1Y/bj0iQZkiYccpMfelCdlYJSIMZ5CzT+iPCNSIIiIB3rwhIomIyGOSycSkEgndkH4dBZkYhyoBzD+ZGFSVCPtUVSnT2b9V9csi1cHtdxGRgA5vtPVJ6FNwx4LsukaVLl0iEWRvkKxOAzVMRsfiC7I3bHhD8ngK76GUSwN1PvHDUAKVpbIFnF/bHIJhI6IVZ7Lsjb4hEADQM21s73chhE8AwkqUiQ5saDJhFAi9nMyF051ZIsMwRuaT4LBG0Z8L7p9iEmQVCBjzpPDSXF0lQpstzf3hEorQH6FlEHNvZETCkjnBYaKoRESMAlUy80LFpHsldGPzokoMXVfCb1C/DkgmSlWSJkSidLuWZKIqzFEX4qgLbzCYGBT5JNxtAp8EYB69rrHSvHokoya8UZS9YdUEJw1UT6WZhQWEMelxeKMwewPuZ/OBdFs+dcg+ecvJeeWhpKDCpaNkWIOhm71BZKtc8jDNdvRBtvc7dgBdNcKFTeMEtAfCEgeVIxI29ZOUF97oihRdkWbkooBAeCCh60iQViU0KdDnSeYkuLqp9ds65+2GNazJlVDtj8g+gUAxxTNixJhALhFVCYMWZKJVXQmgOZkYwntRSG7ahDfC7bhPQPMwRx2ZaKpKjDK8weSD1yv427oeihIiARSoElXhDd1A8/CGq0CE5ALmocUEITRcuggUCc9wyQ9IN7xhtiN+ZZ8E9MO4DwK6QL8voXiOi9wh/Qe9FMZE6RSkColEIsiGP6RN+dQkgsE+iTKQPf8EypAgPg8oWH8EKWe8ZEYUBN96TKzM2GSDWk8kDLMs7WOISCIimoO/7JMS5phHVcLGFodvTL/OYYijlSoBjC7EUVLdcyyqBPcrbLMFmWitSjQJbwyQBgpAkwm7ziUNKAxvZMpZSyJRFt5ASXGq0CfhFDSyHcxG1R7LfMzBKhWu4dKaN3mZACVOuWzblIRKlDZNdoGeSqD6xfecRcf4G1gqklppyJ6/GZGw4Qwnc4MVCcD3SZSBM0j6JnShCYHUKoMy5Em1DGs4Y2On+TbXjaw6IYxyoce0zaSlkUREtMekeSbmSZUYKUZBJsahSgCjDXEAlWRiKCIBNFMl3D5UkIlaVaJpeKMtkXDDG674QFReU8JdDtT7JFrMBgrAZm/o6pfmQVfkk9AdhWUPuVuhIHMjfObazxzKcDfgcc77JPRm0nKtfl8iRV6JsJ4FaCUhcebgZKKwhNNjXSIBQGdxaPOlDWvYMEY4l6cPW6obWnEgLrKlyJ4nkb6OWp3IwhpEyAyWBWENniY8IwfmehuCx6XM7VWN4YyIOcEkkYl59kqMsMHJViV0o/q1Tpko8UoMHN4o27aqTw2yQHKqRBWRcN83MFwCqK4n4fa/hDAA2TOh1ifhEokW5bJ1W1TskzAGyzrDpXMyeSKhF9vxsJkbxGdHGbnwFAlfwCfweQJpP0EfPmEt8iq4HobEJRPShCdcQ6XZhhUIKZXN7qgCF8IisLHSFM2yn6VRIZCFNSRAiTlPViRKwhqA2YfHSTh/0s3UQEzxjJgHTFqIYx6IxFimGh9WlRg1kQBG65doQySA5qoEbwu0IxM1qkRheCP0STQhErxvkSpRdh72KRkaK/3+eD4Jq1QUEwndbLkqUVguG45PoqyeBLLPnkLhD3gxkUD4i5qXmQqXAGyFRvLbyQQM3apKRU6J8Gbj5D+HWCRhZ7kfpo6EVR4gbYEqb7sACnpisLA0t508TAlQIuyMrUVhDZ3dA49EZBkXZH0ndpklkWZUrNeGBxdRiYiYB0RVouaQ5tflQiIT4wpvAKMLcZSQktY+CWB4MlGjSjQKb9QRCT5mm/AG9yPchwkDUOyTqFEk7PKm4Q0ul100rTigf0FLslNS6+dreyLhPeP4AQnHcOnKDuZcPCKRmuuV6tk04RAJLkfNZaqzbIrM86DX63CFNVE62RhaiUiRspfC9bE4CNNJAXgEIlUSnY4AZ6AoJbS6kzhhDYKuVhkWoeJQV0lYw1WWyGTkeDpUsd+0EJFERIwWk6ZKAHNOJkZKJHSj+nUYMrEQVIm6ttqENwqNlDVkoo35cpjwRhFZcNto45PInYPzmYlEmU8iUCryRAJwHivtDJfSUSEwRiJh24BHGgBobpBmy2w7fD1SobUCoSBSiVQAPZOtwWWqi8AeB64hwamf+rNEog9qQh8KM7JXSiQATRzSRFfN7KtEGyuVxFQn1S0orU6IjgIpE7ow3IeU0NdLmhCGuTVtWMNwy8KwhoFQAhBkx5QQwxkR841JUiWAOScTYyESuuE5IxJAS1UCaJ7FUdXOMD4Ju8MIQhzDEgl3+SiIhKtI1FW5bEokRBYSGDRzIyMH4ycS9rP7kCwgEj6J0J9T5+nOE2W5s3FaNUKQzbBITKgjITImSr0sNWqEtHGGciKhSCJNpJ54nCT6JKEg0CdtwUyVgOqoLKyRmPBDYpQIViXKTJZGjSgMa7ilsPmeYbIRwxkRCwKTpEoAwz2EWx9qjEQCGOw8xlHp0mu/ZYijRRutfBJAvSoBFJOJqvBGnU9iHESiqH8FPotBiQTAqsRgmRvc11oiQbDmSxAKyERLIlGhSNhGlH6CktlZCQmkBCH0TJuzQm/akUrPxslzYTB5cBSJBEqbKMHpoJpAuERiyqkXAXvLSKQktRci0eRBGSUiVRJpJ7VhDVIS1FH61ZosdQiJTZZCaQIHV41wMjDcsIY3RgrO1UQsNhWxgDCJRAKYEzIxFp9E1vjCJRJAM1WiyicxCiIB1JOJOiLBbVT4JOaESLivIyQSkCYkMm4iAXhZG94DMBvoQiJhlfmGRMJePiXsliR0WANCIk0zbwTPvCmhZ+Pk9x2Zoiu66IrUeiFsFoaCVh5CIiH8GUOVkEilnvBLQashfUrQUwlmkh5SJW1YQ4c8lPZKJOSbLJVJZZXwZzUtMlkaMuH7IizPsVcz1omIWFiYtPAGMOdkYtKJBNAivAE0UyVGTSSAajLRhkgAjcMb4yQShf2yfcBEEwkANu3QOUmfSNhf1f77UiKhnPZS6IeveU9CmMm+2RMB9ExYwxot0bUkIjRa2v6b86ojEkrqMAaHMlKS6EuJXpJoNYIS9EkiJYGuElAdoT0RncBkyeoDV7I04xxmbLDJUni3irmmyt+uzf/qSCIi5g6TpkoAgz+IWx9mgYU3WhIJYEBVYphql22JBDCYKtEmvDFfRIKoeJtJIBKkqQHIqSNBBK5sWUkkhEsYgsuDAiIBWMLCtSZsrQthCj2JLPWT/RHCZmvo2Tg7smvb8ypaAh6RmBKpJg7mp72ubtk3q3tIhUQqBHoyQY8S9BL9qkmEzMIaSqKvlPZHkIBIdBEqNlkShzaClE937gzPZMmEQejzhiRvGpCoREQsXEwqkQDGTiYWXHijRQqoPcw4TZctiURpP0atSoybSHBfi0iCgUcmiogEgHAm0AVDJJg4eOtMvxwi4Yc3TKu5EEZweezyjEjw5RGsRLDBkFM/RZax0RcZkXCLTtniU47REsgqWuayMETfm8xLCoUu+uiKBDNSKyCsRmglQqLnkAj9KqCURJoKkFEl2GRJbMMg+CmfhFKTpUcUlEMksihPI0QSETH3mEQiAewcqsQchDeAAVWJ+kZbEYnaftRlcADNVIlQLSkyXA5DJNw2aohEo1LZwxAJc1plRIKf2qXTiTv9bEskgFCVMK3ycKIZkeD9hdKkiBvgkSTz67zMaAlkGRtstHRhMz0KiAQjgYKCxJRIoSDREymmZU+rEZRAJcKQiMQLayglTVijyGRprluSfdVDk2UurOH2j2uHEKKxMmICEIlEzWF2jvAGMIAqUd1oOZEA2qsSQD2ZGIUqMS4i4R4bgxEJ3VVRTCQAeBN3Cd2PsjLZEKJ4OvFkdETCZwpGRWAPRbja2Yx3tkoEaSUCabYXCWh/BLJCVKlRI4DstXY6b0Zw63A2BxMNCYWu6GPGhDWUFNZo2aPEkAgnrNFhMiGqTZY29dOcPhsu3bCGGQPPXMn7RBIRMRGYZCIBxPBG00ONmkwMYLjkflT2oW066JBEAjBjMkoiEWZuVBEJhhAonjY8UCoAa2lsXSY71Q97d76NYUIbnkdC6P3tk4+cPx4aqcMXACBM2ELw3CD2N7mWGjJFIsvYYEhTjCqcJrwKSkgoKaHQQxd9a94EtJ9CkdREwoQ1rNEyMamf0MWmvLBGR0KptJHJsjSsAfKlCAJs5coW3/FIIiLmF5OYucGYQ1UCGAOZmMPwBtDgIe4do8YrMQSRAIZQJQB/zMrCG1VEwtnejon7PWgzAygvd18dw2WhQS5swyzLiETWXk6p4CYQVLckMs/gap+EnW9DZkQiUxJqiETR7J8EhxAZHT48Z/PrWyWGOLieCHuZHCIBh0g4s37y0BVBGf2fS1nrB78hA5yFISS6IsGUSO1MnwDMe4EppFBCmy2VDPwRKkG/0ysPaxBAJAFlLq0ze6lrqFSJOzwhCXWGMRorIyYOUZVocKgxhDiGIRLA3KgSVURCN1a8HzA+MlGnShT5JNoYLptO3OWfVI5wVJbKdjM3ePsCIlGuVAxRlEo3YH/xCpvW6ZAKVhj43F3FQdhOZI9+AiAdwuIODcwpBYqEX9o6IBICQN8nEmWlsBkpkwkSuhIl6ToQmkQIqzZ0RR+KpG3ZZm04twiHNRQZfwRXtDSqhBvWUORka5C+LooEJDlhjYBQmJQUfmPn3ookImJyMalEAphsVWLYKpfAeMlEXSrogKpEo36UpncOoEoMY7h0SYlLJIqUiGC7yvBGSCSAQj+Et3wAw2VZ5gaU7osOUWglQacpmrFx60iYTIw80TCPfjvs5mlY9PCEETTASkT2EHXOEpZIdOB4JAC/XJQPnoETANJEmLCEsKpETybWRDkjNJFIhHBm+5RIodAVKWaMyVKZuhHWH8EhjY7U5EGZsAaZa0PQCo7KwhiKTLaGGb78t0EYqcacfSQRERONGN5oeKgxkYk5mHvDO2RTMjFseKNq3yb9qPJLNFElxmG4zJ8EzEnkCEMtkQCqDZcGRQSj0idBlJ2KNA0IfRyCk7mhsqnEkTpEwqoQeQXCVSnclMXsvR+esLvmwhlMNshM6Cly+2pekhEJCtIX3Gm89WcdylCGTKQkTf0HiWnZs6rEFEwdCfNo59LYKQRmZA8pJBZTgp5M0E8S9IwSQaSnEE95Qi4yaZ9ksjUMeSJLHggSGbEIPSN8zjylRiQREZOPSVUl+NfmnB1uxGRiWCIBDEUm6o8xYHiD9wUGJxPDqBJV4Q1n25zhkvepCm/wa5XpErDegmqfhL+skU+CiYob3tCiAqp8ElCmj4lDJAR0dkdqCENitrOkAdyo6WNALswD0IY3SHfElfGNN1JnZyiznUcegGwSL0eRCEIb2bCb6buRkQmbVUG6lDVXorRkgmtDiB4ggdSZWyMRyvNH9GSCxUmilQ2janDaJx9bKWmIhb4u1gMB7Y9AYu5tEoX8M7sH9ElFEhGxc2BSiQQw2WRiFFOLAwOHOOrbHyK8wfsD4yETbVSJUYQ33HbdNtqqEra/aB/ecJYPFN4wmRvWcKkAOwNoqtu2BstAgSglF4TAcAlw8YPME5FtnsEhEn0eB3NNEm7NEAnzQM4IhEMo3KwKM9W3W5GSfRIcouk6BAKAnchLp3/2rNGyLyXSjvCUD1YluC+KlFEkuI+GPBijpQIgi+IyPL6kZwxtikgiIhY2Jjm8AUQyAQxEJurTMRuEN4BmZKKindZkoqkqMUh4g88nDG9knc0UBT5eG1WiKLzBq2xX8+GNcLkWB/LZG8IoE2F4wytMBWcZZ26wKmDCIM5BwOF8YqVECq/Us/VDOOENHmppSIRwTlnYBzH56gRXgDTNEEkok0vZd4gD//WVtPUd9F+CftKzIY4we0OHLnR4Q5pCVAlIF6MyYQ02WurbRNr35IRROHyRkr6AZNqSRFAQpjCW8ImEgKnxAaNEIBabitgJMemqxBx5JbJDjphMDNP/cZovm6gSupHqgw2TzVGYKVFCJoYJb/B+bngDid+eRzZaqhK588IAqgRZ8mHDGyCT0lmsShQVprKGy6rwBlHm4zCdECzFu6me5P5lGU4izaI0/MqnKiGgikIbBB3aABMJXeiJHCUgNTNvEpDNe2HCDz37l3jZGz1KMCN7UKJnClKRuQUUuki1GiEklJzV+7FpM1AkiARmzbkoayw1GRooJhI8VHbeLcpUlyaIJCJicjDJqsQcpoL6hx0RmRhF/4cgE0OpEroR/TouMtE0xDGq8Aafi6umFJGFBnNveKpElenSYGhVIjRdJi61KA9vWJlCFqgSZM6RO2GUCs8kaFQJKbPzFi7BSLLtQKbWgiEJypoveRthFTNNHsg8rwVUIgyBEEg7abEqofQkW70k0aqEV0uir2tJmEJUialqOV1yT/pkIiM0OnSRgGxORjGREKnhcY5SFElExM6NSCYGOOwCJBNAY0LRWJUAmpEJ3djAbbUiE0XkwN1mGFUi7C8vzxkz7U9sHzlVovB0R69KmAeWgACllM/ekMILb1hVgrV2wccU2T7slSDdlqdKmGUcjgAAkZJPInid+wA1v+BtdMQ8oBXBqasgTV0GmIqRun6D6iirSqRc28FRJbKQhiYTnIWxWM5CoY8usunGE0GYwWzu+rkVLdmbkZEIDn0kjt8oIBJMxkw4g6uBqhbMIJKIiMlFDHEMcNgFRCaA1upEo6qXbWYGBZqRiZL2WpOJEakS9phFRKKorgS/HySDo6kq4ZIG076bwSGEKFUlcqZL5fSvTJUIvBJadSAT1hCZL0I6qgQhM1Yq2NoU7IsIXzVLyMICSPRx3SJObFgkQyZA5uGuBDrGBNlVWdlqViUUCfRUYsMbnIXBaaAzomdqSZAmE0J6RCJlfwVJpF2R80lodDJyYVmUSyT4JA0ZM6GlmJ0RsesgqhIDHnoBkglXoag6ZBNVAmhPJnSjA7VXSSaGVSV4+4KS2d45hH6JqiJVQEYGBvFKuPujJsSRQs/B4daVSDm2ILJYvNONwpoScD4LQyb44cchDg7wOyEOweEGo0owiUAKSAUbkuBS0dIQA37lofUMl6xuKNhUVTIShVICoqNAiS5LnSYKqiPQV0qHOFxVwpSy1sbLxNaUSKFnEZ2WhjgImSMSbLR0Uz/1LZUZLRmpIOOZ5PxXQySEngVVCJ1iK5Q516hEROxyiGRiwEOPqJS2m4UyKnWi7pCjJhO6UZhGB2qvUClpqkq429RlcJhtc2mxRX4Jt7ZElfEyQGVdCQBF5Q+bhTgMUUFDVcKtKeERDEeJcEIcWpEQ+RCHUSWkIREyRVYngpUG1/sQeCRCn0QWOjCqhIIzm6aZSbOj9DYmvKErTOqKk1aVMMpEzygJfWlIgZw1HUWOSEyhDyWETf1UiSYnHN7Io2MvGRmWRkLoycMEqxCkbzNT+KspIomI2LkQycQAhx2RKpE1CNPg4G20CHM0nthrjsjEwKpEuE2VKsHbOsdsXTobcFSFvBrhqhLACEIc7nLXeElopUowmdBVLR1VwiUThjy4IQ4OadhiUwGJYMVCJUF4IwnCG07WAwxp0IqEeZ+YOSwUjBJBerZNEkhTAdXJqk3yg5/DG4p0HQgASBNnUB0ioT/q8tjTJjWUfRFFyOb7MERCGLOlEI4SIbLJyRSBOs2IfNZqRMTOhkn3SzDmkFBMMploPRcHYxShjjZkYlTGS94+UG0aV7zk5WUhjhBtQhxMPuzpCfiVLYsIRnNVIjcjaBjiYDKR+CEObbQUjieCIFNClp7JXWoY3lC6z2WqBBLhhzgS0qWplTTGS6NKOHNh9CnJyER4MSQwhX42aZdN/+xr1aITbk6QgoKpylmRSKzokplZoUuOy2isjIjQmGRVgjEP6sTIZwsdBSlqODfHQLOEAqNRJ0ZBJuqMl+7xTbEju22d+bJtiKOp8dIbA/MaKBO5ypah8RLDqRKFZMLxS9gQBxGEqcZowxlOMSkvS4PMcmOczL26mR9kCA2rEgmsOpGFOHQJcQ5xKJVaVYKrTvbZ1xAoC5lPQqArUlvZMkv/NNt2YEmDTx7ci6gJhBISgDSpvQClmqwJhahERER4iGRigMONWJXIGoZpuP2+LUMcwABkAhg+q6OkAFapX6KNKsHHL0rzLNi+turlIMZL1JAJS0acRS5pCEMcqX4WF6kSNqNzADKB0C9hQhySh1jpkIabwZGNsRPecDI7rBKRZOEOq0oklK03nzWpKA9xWFVCSaTKLx6VTeYlsiqXUmduuOmftmS2JEihTA0InRZaBCGAWT5NAVBfaMOlJEN2AOoV7lqISCIidh00deEvZMxxqGOXIxPAaFJE5yrE4fZl0KqXRXNxVIU46vwS9ryQ2782xOGmgzKBKApx8AycVWTCqA9hiIP7zCmewoYzuHBUEN4wRkqrOiS8HE4aqV4vFKASE5YhrYqwAlEU4nBViezYZu4NxyjJ4Q1WJGZEH13RtwSiK1IduiC32iW/Ko9csEeiJ3QhUGXUG6SaQICiEhERUY+oTrQ81JjJxCBoGOIAsoc3MAZ1YtxkosnsoO72QD2ZGGEWx6ApofnJu9AiHbTAL8EEgvsfls/mKpZOnQiZQhsv3awMDmPYzzAGS73cNVuShO+TkMZLwd4QCU1SFOyfF+Ig6NLZBIC0IhGqEYqErgMBV5GYtSEMDm8k0H88zhzyyF0ue9kIPUFIRQIlCaovrXJCnebfy0giInZt7EzqxCSTCd14+30GKKU9NnViQDIxdBYHH9sLc7QsVlUV4gDKszgctE0JLSpIlTde8rJmE3qVls92yEWmRPB7YR/4sKGLvCohkS1n06WXDuqSDumEOCQqsjik45UQ2fEAq0YQOZN1cZjDPLl1CEMXo+KZP/Xy+u+SNMSqLwn9XqJ9uqkJv0xFEhER0R6Trk7MYahj7GSibUXPIcgEMIA6MQyZGGWII6ypEWYllYQ4+LiNQhyj9EuUhThCBaKJ8ZJDHA4PaOSX4FPsk/FE6PayolQhOTOqBJBTK4QsUSUMYRJKkw2bxUHIsjoMqeCwCZFE6hAI4rkwAGf2TqdvHROqIK1ASKGMD0JPz7lY7gCgTZnhk16YrA0hCDvM5zSVUFJnjEQlIiJiGER1osVhxkwm2vZ/iEm+gDGQiVGrEkDxuLhkojCLA3MT4gj8ElSmXFSFOFrPw5H5JWCUglIykWQ+DhhPhFc+m9mICS/oYxqWwm9NeKNUlZBGiWAyQXqs2S+BJAtxKD6OMpN5GXMlujwbpyYT+rL5haSkIEiQ9kDYcex7RGJaOg5J52nPqZ9SEBKpsKPXQU8mSCVBKQV0UjRFJBEREVXYWdSJOSIT+lAjHKtB+9/CL+Edrq06UUcmxq1KeO0F2zUhE1WqhNvHcYQ4irI4gHpVgvsq8lkcOquzor5ESjrMAUMgVOaV8Cpc6l7Xmi5DVcJVI6zh0oyD9Uso6MyNhD8783AQQDCKhPOnL1fx/ZjkQhh9u7wLPd95CmG3kyAkLonod80roS91yETEcEZExIixM5CJSU4PHYRMDKhK2EO2USeakIlRqBJAMzJRV19iGFWClw8a4hhClcgTDFgCUeeXYFWC+yII2URfbjpookmFrXbpqRBOeKNAlXBnDLWkwvx5fgkzD4euFyY4ZmGJBMzsnlYRAUAOieBCUkwGGBzCSIT2SEwJDm3M2qwNDn24xag6QmGHVNiRJkiVhOw2z/GMJCIiog0mmUzsDLUmhglxAEOpE43JxDhVCaA8xBFuA+TJxChUCXf5QCGO/OmXqRJtphr3sjiclNAwxCE41ZFVCWOo1ESEdN6jG94A2ZCEOXlYklGmSuSWw6kpYbpusjiko3Lo2lcCBAUQdGVJAOGjurSQFHQIYwY9y32mRF9nbsg8eeCQSEekSKRCIjuaRHT6pe2HiCQiImIQlP2ynARMOpmYoxoTucM2JRNzqUp4G5ZkcQDVIY6xqBKBGtFGlXCIiH1sF6kS7nImKQWFqnIhDr4fyVRnRDZDKEHkwxuON8ILb0inJyWqBIcxrBqRICNKgSoBwE7wpaDHl6CgKPFUCBGoD9JJ5UyZoUmgixRTom+zNhKhIEl7KBLzmVWJjuyiIxWmZIpZlaAzNYumiCQiImJQTLIqAQz2q36ow42BTAxTRhsYmEwsKFUi13aJ8XKhqxK8rmFdibLlhSEOt1AVt0/Gb8EzhDp1JTwlwg1pCOe9G95wiIGnSnCIxCUZQW0JViUUyFQxF0ad0NIJEYGgp/MuemS7JMJbLeFlbSRm0nCveJgpk90VCl2hsMOQiB0xnBERMYeYdFVikmcNHbb/487mGEaVaFo6GyhI9WxYW6IqHbTtPBy8vKkqEWZwuCgzXaKBKmGXh1kc5nT5/ktNnQgBMzGXee/ODmrljECdsO/1Z2HCEZ73wRCG0hCHm9EBQIIn8GITZUZYyE67BeRCGwjGruObLbXikNppxGcwm4U2nPBGR6aYVh30VIJtMZwRETHHmHQiAUwumZjjqce9Q7chEyMMbxQes0k66IDhDT7uSFUJgzbhDWAAVcLJ4mDjpe2rMj4IZRqQIpsdVAozHJT3SRATHJGRBS/0gYwgSK14eMZLQzIKpxkH6bm8EBAJIaDsPObslXC4jIFLKqQJYUgoJEIrE4nwNrbhjRmZYLvqoq8kut2Y4hkRMfeI4Y0BDzuiWUNH0f8hyMTQRAJorUrkty3of1tVYtBql8AIVAnnXIrCG2bZwKoEKwVAFnJwU0G5THadT8JJA83GDbAzhgaqBKRzPEeVYKHCChZkyANpMuATCb0kM1vqQ4sSk6WuYunWkZjFlKn5za8ArCrRowTTog+VCEzHOhEREfOIkl9cE4F5JBIUSvKDNaRf54FMNFIlxhDeKD5OQ1WiTXgDGFyVsOupAZFoFt4AWqoSTCRSZftiwxmkf9yzcyL0SZAUdltA6DRQbt8jGMiIhlElbBjDvndUCbOp+yr7zJtENZEQ2Wyc2TC5qZ/KvPfrSLhEIhGEhBS6lKJHCVKpy2t3IomIiJhnTDCPmK/wxkgxKjI0QNGqkagSLYgEHzO//YjDG0GbIwlv1BGJqvDGAKqEMGEE/Z7M99RQh1TXl6AkmH/DnchLIptvgw2XVp2A8xl5cmHCHtkVMesDEgGUEwkyRbYgAGWuS08weUAuddMlEa4Bk4mEDm8oQACpYWgpCUwl0RMRERExLOZZlRiJV2JURAJorUrMpU+i9Jhl4Y222RtNiQRQHN4IycYgRKIivAGhZ/HUhMHvS7Y8ICWK9Loge0OkxUSCQNpw6RIJsEqBfKijhFwQkM0DQtxOHpZImFNSQkAK0lN3mwEgoe0aPTMPhhBBDQgzORfPs5HN8KmX8wyg9phmcKdkVCIiIhYGJlmRAOaNSOhDj4hIAPOiSoyNSFTsV5m9MSyRAOp9EuF+btnsURKJovCGSxiA4vCGu4z0eRSlgbYlEtaUqQCSeptceMO9Lt4lCoiE0H8koCcIMymnQphz5PUSoL6AEgKpSNCXejKtRCpbylqrEcqbZyORCgkpWyuiK/pIwOZLhQSEblQiIiIWECY5cwOYfCKhG9o5iUSbYw5LJMJ9gm0bzb8xFiLhh0sEGdlfwVMfLJFwsjME8T1WQCTI+2QIh6k1YfwMTCQsqTBEgitnwhSbEtwX66MIro2g3EKdoQEg1TsIocmKMOEMHQnRaoTi6bwFYUevY0tZd0SKjuyia4hEV6SQQnsg+HAJCDOih67oa2UCuoJlU0QSERExF4hEYv6xkIlEdQPl907R3BltjjmKOhttSN58EgkYH0TRkDGRcMfMpHdasyWJjNSynQLQIoMhCyxKkDk/gWIiEdaTsDme3GdWIgxZgIBWN5SZvlwClBplJRVQfQkhgTSV6MkEnVRhh+wgkQodqQtJdWSKHbKDLvW1idLIOBJajZgRfV10CgqiRThjwv8rRERMECY5a2MeMZKsjayx0bTTsk+lWRS2vRH1q+6YVeWyy7YJ26nY3jumZ4hUxcvDNqj4VdSsL+qvCPuSOw+yakS2DNkyQzhsO/aB7+xHsAZNoZz3vK3Zzm5rthH8XkEfQ5ljO68iWG63JUCkwqwXWt1QAioVUKnURKKfYEeaYEfawWzawQ7VwazqYLvqoqc6HoHQIY0UXaEwI1IskQqLKubmCBFJRERERDOM6gE80KEXIAGbyz6NkoA26XdbIuFt2oBIlLU7KMpIBuArD0Q+uTCw/gibsRH20ycllmSE6xxSYUmHQyx4Gz6GRzDIIRg54sHvhSUWTCo0yTBEQkkoJZCSQKokUiUxqxLMqgQ9laCvJBQEFOkpvwFTbAqELhRmBKELYKaFchZJRERExK6FeSRDlRiDGtEYw45JW0LVhDw0VSMqkFMjio5RstwjCna5Qwbgv7cPdncdBdvZz4ECwuuCP3c/l1jY9UoYNSI7FWXIRKqEJg0koEigTxIpJFKSSB3/hTRmykToSpldIdBpEeLa6T0RzIr76NmB37ZtG3rUQ5+aTzKySyOOWXuUjRlhwr0RGJ83gsgZs7w7XNAox21E59CiT422LJwnu6IFpfSYqdnCMdNh9oL9CvsdmiyDbcJ2cveBcDZ1sw1E4TZZKqSoXyc4E6R4OYTQBkQp8vsIkakLQgB9qcdsdjv6Zr4McNqkFKYWg1kmAKQClAjjUzCvZNbBvEpnXQrt4TC+Bi7nzdtly4VdbyflkmY5f04A6uvy2NQ3nzsE6phlXQL1CdRRQJ+ATgrRTZH2FfqdPvrdHnqzs9jR7WG6O4vtnT5e7PYx3enjxaSPKZmim+iKlUJqs6USEr/ZSma8GxG1nTtQ+4tf/AL77rvvfHcjIiIiIiJiovDkk09in332qdxmpycRSin8+7//O5YuXQohBJ5//nnsu+++ePLJJ7Fs2bL57t5EII5Ze8Qxa484Zu0Rx6w94pjVg4jwwgsvYM2aNZBl6ccGO304Q0pZyKSWLVsWb6CWiGPWHnHM2iOOWXvEMWuPOGbVWL58eaPtorEyIiIiIiIiYiBEEhERERERERExEHY5EjE9PY1zzjkH09PT892ViUEcs/aIY9YecczaI45Ze8QxGy12emNlRERERERExHiwyykREREREREREaNBJBERERERERERAyGSiIiIiIiIiIiBEElERERERERExEDYpUjEhRdeiLVr12JmZgavec1rcMMNN8x3lxYUfv7zn+Ptb3871qxZAyEE/v7v/95bT0TYuHEj1qxZg0WLFuFNb3oTtmzZMj+dXQA477zz8Nu//dtYunQpXvKSl+Cd73wn7r//fm+bOGY+/uqv/gqHHXaYLfSzfv16/OM//qNdH8erHueddx6EEDjzzDPtsjhuPjZu3AghhPe3atUquz6O1+iwy5CIK6+8EmeeeSY+/elP4/bbb8fRRx+N4447Dk888cR8d23BYOvWrTj88MPx1a9+tXD9F77wBXz5y1/GV7/6VWzevBmrVq3Chg0b8MILL8xxTxcGNm3ahI985CO46aabcN1116Hf7+PYY4/F1q1b7TZxzHzss88+OP/883HLLbfglltuwe/93u/h+OOPt//A43hVY/PmzfjGN76Bww47zFsexy2PV77ylXjqqafs31133WXXxfEaIWgXwWtf+1r68Ic/7C17+ctfTp/85CfnqUcLGwDo+9//vv2slKJVq1bR+eefb5dt376dli9fTl//+tfnoYcLD8888wwBoE2bNhFRHLOm2H333elb3/pWHK8avPDCC3TQQQfRddddR8cccwydccYZRBTvsyKcc845dPjhhxeui+M1WuwSSsTs7CxuvfVWHHvssd7yY489FjfeeOM89Wqy8Oijj+Lpp5/2xnB6ehrHHHNMHEOD5557DgCwxx57AIhjVoc0TXHFFVdg69atWL9+fRyvGnzkIx/B2972NrzlLW/xlsdxK8aDDz6INWvWYO3atfiTP/kTPPLIIwDieI0aO/0EXADw7LPPIk1TrFy50lu+cuVKPP300/PUq8kCj1PRGD7++OPz0aUFBSLCxz/+cbzhDW/Af/kv/wVAHLMy3HXXXVi/fj22b9+O3XbbDd///vdxyCGH2H/gcbzyuOKKK3Dbbbdh8+bNuXXxPsvjqKOOwt/8zd/g4IMPxq9+9Suce+65eP3rX48tW7bE8RoxdgkSwRBCeJ+JKLcsohpxDItx+umn484778T//b//N7cujpmPdevW4Y477sB//ud/4qqrrsLJJ5+MTZs22fVxvHw8+eSTOOOMM3DttddiZmamdLs4bhmOO+44+/7QQw/F+vXr8bKXvQyXXnopXve61wGI4zUq7BLhjL322gtJkuRUh2eeeSbHRiOKwc7mOIZ5fPSjH8UPfvAD/OxnP/OmnY9jVoypqSkceOCBOPLII3Heeefh8MMPxwUXXBDHqwS33nornnnmGbzmNa9Bp9NBp9PBpk2b8Bd/8RfodDp2bOK4lWPJkiU49NBD8eCDD8b7bMTYJUjE1NQUXvOa1+C6667zll933XV4/etfP0+9miysXbsWq1at8sZwdnYWmzZt2mXHkIhw+umn4+qrr8ZPf/pTrF271lsfx6wZiAg7duyI41WCN7/5zbjrrrtwxx132L8jjzwSJ554Iu644w4ccMABcdxqsGPHDtx7771YvXp1vM9GjXmzdM4xrrjiCup2u/Ttb3+b7rnnHjrzzDNpyZIl9Nhjj8131xYMXnjhBbr99tvp9ttvJwD05S9/mW6//XZ6/PHHiYjo/PPPp+XLl9PVV19Nd911F73vfe+j1atX0/PPPz/PPZ8fnHrqqbR8+XK6/vrr6amnnrJ/27Zts9vEMfNx9tln089//nN69NFH6c4776RPfepTJKWka6+9lojieDWFm51BFMctxJ/92Z/R9ddfT4888gjddNNN9F//63+lpUuX2v/3cbxGh12GRBARfe1rX6P99tuPpqam6NWvfrVNxYvQ+NnPfkYAcn8nn3wyEenUqHPOOYdWrVpF09PT9MY3vpHuuuuu+e30PKJorADQxRdfbLeJY+bjAx/4gP0O7r333vTmN7/ZEgiiOF5NEZKIOG4+3vve99Lq1aup2+3SmjVr6F3vehdt2bLFro/jNTrEqcAjIiIiIiIiBsIu4YmIiIiIiIiIGD0iiYiIiIiIiIgYCJFERERERERERAyESCIiIiIiIiIiBkIkEREREREREREDIZKIiIiIiIiIiIEQSURERERERETEQIgkIiIiIiIiImIgRBIRETFmbNy4Ea961auGauNNb3oTzjzzTPt5//33x1e+8hX7WQiBv//7vx/qGE3x2GOPQQiBO+64Y6h23v/+9+Od73znSPq0qyG8H0aBT3ziE9hrr71w9dVX45Of/CT+7u/+bqTtR+yciCQiYmLx9NNP44wzzsCBBx6ImZkZrFy5Em94wxvw9a9/Hdu2bZvv7o0Vmzdvxp/+6Z/Odzd2GYyCCC50/PM//zOuueYa/OVf/iV+8pOfYMOGDfPdpYgJQGe+OxARMQgeeeQR/M7v/A5WrFiBz33uczj00EPR7/fxwAMP4KKLLsKaNWvwjne8o3DfXq+Hbrc7xz0eLfbee++xH2N2dhZTU1NjP87OhEm+t1hZ+tnPfja/HYmYKEQlImIicdppp6HT6eCWW27Be97zHrziFa/AoYceine/+9245ppr8Pa3v91uK4TA17/+dRx//PFYsmQJzj33XKRpilNOOQVr167FokWLsG7dOlxwwQXeMYok43e+8514//vfX9m3888/HytXrsTSpUtxyimnYPv27bltLr74YrziFa/AzMwMXv7yl+PCCy9sdf5hOAMAnnrqKRx33HFYtGgR1q5di+9973ve+l/+8pd473vfi9133x177rknjj/+eDz22GN2PYcXzjvvPKxZswYHH3wwAODmm2/GEUccgZmZGRx55JG4/fbbvXabjGWapvj4xz+OFStWYM8998RZZ52FcNoeIsIXvvAFHHDAAVi0aBEOP/zwWkl9dnYWZ511Fl760pdiyZIlOOqoo3D99dfb9ZdccglWrFiBf/iHf8C6deuwePFi/NEf/RG2bt2KSy+9FPvvvz923313fPSjH0WapoXHuOSSS/DZz34W//Zv/wYhBIQQuOSSSwAMfm/xWH/pS1/C6tWrseeee+IjH/kIer2e3ebCCy/EQQcdZFW2P/qjPyodh8suuwxHHnkkli5dilWrVuGEE07AM888422zZcsWvO1tb8OyZcuwdOlSHH300Xj44YcBaGVrw4YN2GuvvbB8+XIcc8wxuO2227z9n3jiCRx//PHYbbfdsGzZMrznPe/Br371q8rrE7ELYH7n/4qIaI9nn32WhBB03nnnNdoeAL3kJS+hb3/72/Twww/TY489RrOzs/SZz3yGbr75ZnrkkUfosssuo8WLF9OVV15p9wtnSiQiOv744+2spkW48soraWpqir75zW/SfffdR5/+9Kdp6dKldPjhh9ttvvGNb9Dq1avpqquuokceeYSuuuoq2mOPPeiSSy4pbTfsy3777Uf/+3//b+8c99xzT/rmN79J999/P/33//7fKUkSuueee4iIaOvWrXTQQQfRBz7wAbrzzjvpnnvuoRNOOIHWrVtHO3bsICKik08+mXbbbTf6b//tv9Hdd99Nd911F/3mN7+hvffem9773vfS3XffTT/84Q/pgAMOIAB0++23ExE1GsvPf/7ztHz5cvq7v/s7uueee+iUU06hpUuX0vHHH2+3+dSnPkUvf/nL6Z/+6Z/o4Ycfposvvpimp6fp+uuvLx2XE044gV7/+tfTz3/+c3rooYfoi1/8Ik1PT9MDDzxAREQXX3wxdbtd2rBhA9122220adMm2nPPPenYY4+l97znPbRlyxb64Q9/SFNTU3TFFVcUHmPbtm30Z3/2Z/TKV74yN937oPfWySefTMuWLaMPf/jDdO+999IPf/hDWrx4MX3jG98gIqLNmzdTkiR0+eWX02OPPUa33XYbXXDBBaX3w7e//W360Y9+RA8//DD9y7/8C73uda+j4447zq7/xS9+QXvssQe9613vos2bN9P9999PF110Ed13331ERPSTn/yEvvOd79A999xjr8/KlSvt1NhKKTriiCPoDW94A91yyy1000030atf/Wo65phjSq9NxK6BSCIiJg433XQTAaCrr77aW77nnnvSkiVLaMmSJXTWWWfZ5QDozDPPrG33tNNOo3e/+9328yAkYv369fThD3/YW3bUUUd5JGLfffelyy+/3Nvmz//8z2n9+vWl7TYhEUXHPfXUU4lIP2TWrVtHSim7fseOHbRo0SL68Y9/TET6wbZy5UpLKoiI/vqv/5r22GMP2rp1q132V3/1Vx6JKEI4lqtXr6bzzz/ffu71erTPPvtYEvGb3/yGZmZm6MYbb/TaOeWUU+h973tf4TEeeughEkLQL3/5S2/5m9/8Zjr77LOJSJMIAPTQQw/Z9R/60Ido8eLF9MILL9hlb33rW+lDH/pQ6fmcc8453jVkDHpvnXzyybTffvtRv9+3y/74j/+Y3vve9xIR0VVXXUXLli2zD/EQRfemi5tvvpkA2HM8++yzae3atTQ7O1vbVyKifr9PS5cupR/+8IdERHTttddSkiT0xBNP2G22bNlCAOjmm29u1GbEzonoiYiYWAghvM8333wzlFI48cQTsWPHDm/dkUcemdv/61//Or71rW/h8ccfx4svvojZ2dmhzXP33nsvPvzhD3vL1q9fb+PMv/71r/Hkk0/ilFNOwQc/+EG7Tb/fx/Lly4c69vr163OfOc5966234qGHHsLSpUu9bbZv324lbQA49NBDPR/Evffei8MPPxyLFy8uPQ5QPZbPPfccnnrqKW+/TqeDI4880oY07rnnHmzfvj1n5pudncURRxxReL633XYbiMiGXRg7duzAnnvuaT8vXrwYL3vZy+znlStXYv/998duu+3mLQvl/6YY9N565StfiSRJ7OfVq1fjrrvuAgBs2LAB++23Hw444AD8/u//Pn7/938ff/iHf+hdBxe33347Nm7ciDvuuAP/8R//AaUUAB2COOSQQ3DHHXfg6KOPLvVrPPPMM/jMZz6Dn/70p/jVr36FNE2xbds2PPHEEwD0fbDvvvti3333tfsccsghWLFiBe6991789m//dvMBi9ipEElExMThwAMPhBAC9913n7f8gAMOAAAsWrQot8+SJUu8z3/7t3+Lj33sY/hf/+t/Yf369Vi6dCm++MUv4l//9V/tNlLKXNzejVkPAv7n/s1vfhNHHXWUt859oIwKTLSUUnjNa16D7373u7ltXJNmOE7h+RehyVjWgcflmmuuwUtf+lJv3fT0dOk+SZLg1ltvzY2dSxDCB6cQonAZ96EtBrm3yvrFfVi6dCluu+02XH/99bj22mvxmc98Bhs3bsTmzZuxYsUKb7+tW7fi2GOPxbHHHovLLrsMe++9N5544gm89a1vxezsLIDi74SL97///fj1r3+Nr3zlK9hvv/0wPT2N9evX2/2JKEfaq5ZH7DqIJCJi4rDnnntiw4YN+OpXv4qPfvSjuX/iTXDDDTfg9a9/PU477TS7zP1FDuiH61NPPWU/p2mKu+++G7/7u79b2u4rXvEK3HTTTTjppJPssptuusm+X7lyJV760pfikUcewYknnti631UoOi7/in/1q1+NK6+8Ei95yUuwbNmyxm0ecsgh+M53voMXX3zRPojc8wHqx3L58uVYvXo1brrpJrzxjW8EoJWXW2+9Fa9+9avtcaanp/HEE0/gmGOOadS3I444Amma4plnnsHRRx/d+JwGwdTUVKnxMkSTe6sJOp0O3vKWt+Atb3kLzjnnHKxYsQI//elP8a53vcvb7r777sOzzz6L888/3yoFt9xyi7fNYYcdhksvvbQ0e+SGG27AhRdeiD/4gz8AADz55JN49tln7fpDDjkETzzxBJ588kl7jHvuuQfPPfccXvGKV7Q+t4idBzE7I2IiceGFF6Lf7+PII4/ElVdeiXvvvRf3338/LrvsMtx33321v+oPPPBA3HLLLfjxj3+MBx54AP/jf/wPbN682dvm937v93DNNdfgmmuuwX333YfTTjsN//mf/1nZ7hlnnIGLLroIF110ER544AGcc8452LJli7fNxo0bcd555+GCCy7AAw88gLvuugsXX3wxvvzlLw80Fozvfe973nFvvvlmnH766QCAE088EXvttReOP/543HDDDXj00UexadMmnHHGGfjFL35R2uYJJ5wAKSVOOeUU3HPPPfjRj36EL33pS942TcbyjDPOwPnnn4/vf//7hWO5dOlSfOITn8DHPvYxXHrppXj44Ydx++2342tf+xouvfTSwr4dfPDBOPHEE3HSSSfh6quvxqOPPorNmzfj85//PH70ox8NOIrF2H///fHoo4/ijjvuwLPPPpsLl7loMh51+Id/+Af8xV/8Be644w48/vjj+Ju/+RsopbBu3brctr/1W7+Fqakp/OVf/iUeeeQR/OAHP8Cf//mfe9ucfvrpeP755/Enf/InuOWWW/Dggw/iO9/5Du6//37b5+985zu499578a//+q848cQTPfXiLW95Cw477DCceOKJuO2223DzzTfjpJNOwjHHHFMYzonYhTCfhoyIiGHw7//+73T66afT2rVrqdvt0m677Uavfe1r6Ytf/KJnBARA3//+9719t2/fTu9///tp+fLltGLFCjr11FPpk5/8pGeem52dpVNPPZX22GMPeslLXkLnnXderbGSiOh//s//SXvttRfttttudPLJJ9NZZ52VM+V997vfpVe96lU0NTVFu+++O73xjW/MGUVdNDFWfu1rX6MNGzbQ9PQ07bfffvR//s//8dp46qmn6KSTTqK99tqLpqen6YADDqAPfvCD9NxzzxGRNvu52RKMf/mXf6HDDz+cpqam6FWvehVdddVVnrGyyVj2ej0644wzaNmyZbRixQr6+Mc/TieddJJ3PKUUXXDBBbRu3Trqdru0995701vf+lbatGlT6bhwJsT+++9P3W6XVq1aRX/4h39Id955JxFpY+Xy5cu9fYpMkmXnzti+fTu9+93vphUrVhAAuvjii+24D3JvFR3vjDPOsNkON9xwAx1zzDG0++6706JFi+iwww6rzBy6/PLLaf/996fp6Wlav349/eAHP8iZX//t3/6Njj32WAJAAOjoo4+mhx9+mIiIbrvtNjryyCNpenqaDjroIPre976Xu8cef/xxesc73kFLliyhpUuX0h//8R/T008/XTpmEbsGBFGDoGdERERExE6B3/zmN/jd3/1d3HjjjRNbGCti4SCGMyIiIiJ2ETz22GN4+umn8etf/xp33333fHcnYidAJBERERERuwguueQSHHLIIVi5cmUuNTYiYhDEcEZERERERETEQIhKRERERERERMRAiCQiIiIiIiIiYiBEEhERERERERExECKJiIiIiIiIiBgIkUREREREREREDIRIIiIiIiIiIiIGQiQREREREREREQMhkoiIiIiIiIiIgfD/B2d9QcFt0DqJAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 800x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Prepara os termos cruzados do somatório\n",
    "zi, zj =  np.meshgrid(zm,zm)\n",
    "\n",
    "dz  =  np.abs(zi - zj)\n",
    "zij = (zi + zj)/2\n",
    "\n",
    "# Fatorando f da função de coerência\n",
    "R0  =  np.exp(-10*(dz/Vm_10)*(zij/10)**(-0.3))\n",
    "\n",
    "# Visualiza autocorrelação espacial\n",
    "plt.figure(4, figsize=(8,6))\n",
    "\n",
    "plt.imshow(R0**fk1, interpolation='bicubic')\n",
    "plt.title('Visualização da correlação para f = {0:4.2f}Hz'.format(fk1))\n",
    "plt.xlabel('Grau de liberdade em translação')\n",
    "plt.ylabel('Grau de liberdade em translação')\n",
    "plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "No loop abaixo, o somatório é substituído por uma operação matricial, bem mais rápida, e o espectro da força modal é calculado para todo o domínio da frequência:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAGMCAYAAABzrGDbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiLElEQVR4nO3dd1QU198G8Ge2sAsISFe6ig1RVEAFC2INWLAbjYXYgmKLaRpT1F8So0k0iWI3GruxJ0ZjMLGgWFDBir2AAiKgVKXO+4dh3xBQAYEB9vmcw9G9O3vnu+wFH2fu3BFEURRBREREVE5kUhdARERE1RvDBhEREZUrhg0iIiIqVwwbREREVK4YNoiIiKhcMWwQERFRuWLYICIionLFsEFERETlimGDiIiIyhXDBlWotWvXQhCEF34dPnxY6hJfKSYmBrNmzUJERITUpaBjx47o2LFjmfb5ySefwM7ODgqFAjVr1izTvquzw4cPl3oM5/9c3L1795Xbbt26FU2aNIGuri4EQUBERARmzZoFQRBKXjSAK1euYNasWcXad0UKDQ3FrFmz8OTJE6lLoTKgkLoA0k5r1qxBo0aNCrU7OTlJUE3JxMTEYPbs2XBwcEDz5s2lLqdM7dmzB19++SVmzpwJHx8fqFQqqUuif3n06BGGDx+ON954A0uWLIFKpUKDBg1eq88rV65g9uzZ6NixIxwcHMqm0DIQGhqK2bNnw9/fn6G3GmDYIEk4OzvDzc1N6jIqREZGBvT09KQuo1guXboEAJg8eTIsLCzKpM+q9P4ru+vXryM7OxvDhg2Dl5eX1OUQFRtPo1CltW3bNrRu3RpGRkbQ09ND3bp1MWrUKM3z+YetN2zYgGnTpqFWrVrQ1dWFl5cXwsPDC/V35swZ9O7dGyYmJlCr1WjRogV++eWXQts9ePAA48aNg62tLXR0dGBlZYUBAwbg4cOHOHz4MNzd3QEAb7/9tub0z6xZswAA/v7+qFGjBi5evIhu3brBwMAAnTt3BgAkJSVhwoQJsLa2ho6ODurWrYuZM2ciMzPzld8LURQxf/582NvbQ61Wo2XLlti/f3+h7Z49e4b33nsPzZs3h5GREUxMTODh4YE9e/a8ch8ODg745JNPAACWlpYF3ldeXh7mz5+PRo0aQaVSwcLCAiNGjMD9+/cL9NGxY0c4Ozvj6NGj8PT0hJ6enuYze/LkCd577z3UrVtX04evry+uXr2qef3s2bPRunVrmJiYwNDQEC1btsTq1atRnPtF5n/vr169iu7du0NfXx+1a9fG119/DQA4efIk2rVrB319fTRo0AA///xzoT4uXboEPz8/GBsbQ61Wo3nz5kVud/XqVbzxxhvQ09ODmZkZAgICkJqaWmi74OBg+Pn5wcbGBmq1Go6OjnjnnXeQkJDwyvdT1Ptr164dAGDw4MEQBOGlp9D+/fn9m4ODA/z9/QE8P30zcOBAAIC3t7dmPK9du7bQtv/239N3JRl3giBg4sSJWL9+PRo3bgw9PT24uLhg7969mm1mzZqFDz74AABQp06dIk+zbt26FR4eHtDX10eNGjXQvXv3In/uqXLgkQ2SRG5uLnJycgq0CYIAuVwOADhx4gQGDx6MwYMHY9asWVCr1bh37x7+/vvvQn19/PHHaNmyJVatWoXk5GTMmjULHTt2RHh4OOrWrQsAOHToEN544w20bt0ay5Ytg5GREbZs2YLBgwcjIyND8wv1wYMHcHd3R3Z2Nj7++GM0a9YMiYmJOHDgAB4/foyWLVtizZo1ePvtt/HJJ5+gR48eAAAbGxtNPVlZWejduzfeeecdTJ8+HTk5OXj27Bm8vb1x69YtzJ49G82aNUNISAjmzp2LiIgI/P777y/9fs2ePRuzZ8/G6NGjMWDAAERHR2Ps2LHIzc1Fw4YNNdtlZmYiKSkJ77//PqytrZGVlYWDBw+iX79+WLNmDUaMGPHCfezatQtBQUFYvXo1/vjjDxgZGWne1/jx47FixQpMnDgRPXv2xN27d/Hpp5/i8OHDOHfuHMzMzDT9xMbGYtiwYfjwww/x1VdfQSaTITU1Fe3atcPdu3fx0UcfoXXr1khLS8PRo0cRGxurOaV29+5dvPPOO7CzswPwPCBMmjQJDx48wGefffbS7xEAZGdno1+/fggICMAHH3yATZs2YcaMGUhJScGOHTvw0UcfwcbGBosWLYK/vz+cnZ3h6uoKALh27Ro8PT1hYWGBH3/8EaamptiwYQP8/f3x8OFDfPjhhwCAhw8fwsvLC0qlEkuWLIGlpSU2btyIiRMnFqrn1q1b8PDwwJgxY2BkZIS7d+9iwYIFaNeuHS5evAilUvnK95Tv008/RatWrRAYGIivvvoK3t7eMDQ0LPbri9KjRw989dVX+PjjjxEUFISWLVsCAOrVq1eifko67n7//XeEhYVhzpw5qFGjBubPn4++ffvi2rVrqFu3LsaMGYOkpCQsWrQIO3fuRO3atQH8/2nWr776Cp988onm5zArKwvffPMN2rdvj9OnT1eJ07FaRySqQGvWrBEBFPkll8s123377bciAPHJkycv7OvQoUMiALFly5ZiXl6epv3u3buiUqkUx4wZo2lr1KiR2KJFCzE7O7tAHz179hRr164t5ubmiqIoiqNGjRKVSqV45cqVF+43LCxMBCCuWbOm0HMjR44UAYg//fRTgfZly5aJAMRffvmlQPu8efNEAOKff/75wv09fvxYVKvVYt++fQu0Hz9+XAQgenl5vfC1OTk5YnZ2tjh69GixRYsWL9wu3+effy4CEB89eqRpi4yMFAGIEyZMKLDtqVOnRADixx9/rGnz8vISAYh//fVXgW3nzJkjAhCDg4NfWUO+3NxcMTs7W5wzZ45oampa4DMuSv73fseOHZq27Oxs0dzcXAQgnjt3TtOemJgoyuVycdq0aZq2N998U1SpVGJUVFSBfn18fEQ9PT3NWPzoo49EQRDEiIiIAtt17dpVBCAeOnSoyPry8vLE7Oxs8d69eyIAcc+ePZrn8n8u7ty589L3mD/mt23bVqA9/3P7NwDi559/XqgPe3t7ceTIkZrH27Zte2Hd/902n5eXV6nHHQDR0tJSTElJ0bTFxcWJMplMnDt3rqbtm2++KfJ7EhUVJSoUCnHSpEkF2lNTU8VatWqJgwYNemFdJB2eRiFJrFu3DmFhYQW+Tp06pXk+/1TFoEGD8Msvv+DBgwcv7Gvo0KEFZuLb29vD09MThw4dAgDcvHkTV69exVtvvQUAyMnJ0Xz5+voiNjYW165dAwDs378f3t7eaNy48Wu9v/79+xd4/Pfff0NfXx8DBgwo0J5/ROWvv/56YV8nTpzAs2fPNPXn8/T0hL29faHtt23bhrZt26JGjRpQKBRQKpVYvXo1IiMjS/Ve8r+P/z2c3qpVKzRu3LhQ7cbGxujUqVOBtv3796NBgwbo0qXLS/f1999/o0uXLjAyMoJcLodSqcRnn32GxMRExMfHv7JWQRDg6+ureaxQKODo6IjatWujRYsWmnYTExNYWFjg3r17BfbduXNn2NraFujT398fGRkZOHHiBIDn348mTZrAxcWlwHZDhw4tVE98fDwCAgJga2ur+SzyP7PSfh6VVUnGnbe3NwwMDDSPLS0tC30eL3LgwAHk5ORgxIgRBX6W1Wo1vLy8qsQVbdqIYYMk0bhxY7i5uRX4yj+cDQAdOnTA7t27Nb9UbGxs4OzsjM2bNxfqq1atWkW2JSYmAnh+2BsA3n//fSiVygJfEyZMAADNOfRHjx4VOCVSGnp6eoUObycmJqJWrVqFLk+0sLCAQqHQ1FqU/Ode9D7/befOnRg0aBCsra2xYcMGnDhxAmFhYRg1ahSePXtWqveTv//8Q9n/ZmVlVaj2orYrzvf19OnT6NatGwBg5cqVOH78OMLCwjBz5kwAwNOnT19Zq56eHtRqdYE2HR0dmJiYFNpWR0enwPckMTHxhe8x//n8P4vzWeTl5aFbt27YuXMnPvzwQ/z11184ffo0Tp48Wez3U1WUdNyZmpoWalOpVMX6nuT/PLu7uxf6ed66dWup5sNQ+eOcDaq0/Pz84Ofnh8zMTJw8eRJz587F0KFD4eDgAA8PD812cXFxhV4bFxen+YWWP59gxowZ6NevX5H7yp/3YG5uXmjSY0kVtd6BqakpTp06BVEUCzwfHx+PnJycAnMeinot8OL3+e/LFTds2IA6depg69atBfZTnEmor9p/bGxsocAQExNTqPai3n9xvq9btmyBUqnE3r17CwSG3bt3l7LykjE1NUVsbGyh9piYGAD/P45MTU1f+Fn826VLl3D+/HmsXbsWI0eO1LTfvHmzLMt+IZVKVeTn/rJg+19qtbrIPhISEgp87uUx7l4kf7/bt28v8sgeVU48skGVnkqlgpeXF+bNmwcAhWacb968ucDVCvfu3UNoaKhmtnzDhg1Rv359nD9/vtDRlPyv/EO6Pj4+OHTokOa0yovqAUr2P9POnTsjLS2t0D+c69at0zz/Im3atIFarcbGjRsLtIeGhhY67CwIAnR0dAr8wo+LiyvW1Sgvkn9KZMOGDQXaw8LCEBkZ+dLa8/n4+OD69etFTvDNJwgCFAqFZpIw8Px7vH79+lJWXjKdO3fG33//rQkX+datWwc9PT20adMGwPNTAJcvX8b58+cLbLdp06YCj/M/g/+uVbJ8+fKyLr1IDg4OuHDhQoG2v//+G2lpaQXaXjaei+rj+vXrhX4+ymPcvaiu7t27Q6FQ4NatWy/8eabKh0c2SBKXLl0qdDUK8HwWvLm5OT777DPcv38fnTt3ho2NDZ48eYIffvgBSqWy0PoC8fHx6Nu3L8aOHYvk5GR8/vnnUKvVmDFjhmab5cuXw8fHB927d4e/vz+sra2RlJSEyMhInDt3Dtu2bQMAzJkzB/v370eHDh3w8ccfo2nTpnjy5An++OMPTJs2DY0aNUK9evWgq6uLjRs3onHjxqhRowasrKw0h9uLMmLECAQFBWHkyJG4e/cumjZtimPHjuGrr76Cr6/vS+cyGBsb4/3338cXX3yBMWPGYODAgYiOjsasWbMKHbrv2bMndu7ciQkTJmiuWvnf//6H2rVr48aNG8X6bP6rYcOGGDduHBYtWgSZTAYfHx/N1Si2trZ49913X9nH1KlTsXXrVvj5+WH69Olo1aoVnj59iiNHjqBnz57w9vZGjx49sGDBAgwdOhTjxo1DYmIivv322wpbWOzzzz/H3r174e3tjc8++wwmJibYuHEjfv/9d8yfPx9GRkaa9/LTTz+hR48e+OKLLzRXo/z7El4AmrEyffp0iKIIExMT/PbbbwgODq6Q9zN8+HB8+umn+Oyzz+Dl5YUrV65g8eLFmveRz9nZGQCwYsUKGBgYQK1Wo06dOjA1NcXw4cMxbNgwTJgwAf3798e9e/cwf/58mJubF+ijPMZd06ZNAQA//PADRo4cCaVSiYYNG8LBwQFz5szBzJkzcfv2bbzxxhswNjbGw4cPcfr0aejr62P27Nml2ieVI4knqJKWednVKADElStXiqIoinv37hV9fHxEa2trUUdHR7SwsBB9fX3FkJAQTV/5M/PXr18vTp48WTQ3NxdVKpXYvn178cyZM4X2ff78eXHQoEGihYWFqFQqxVq1aomdOnUSly1bVmC76OhocdSoUWKtWrVEpVIpWllZiYMGDRIfPnyo2Wbz5s1io0aNRKVSWWDW/8iRI0V9ff0i33tiYqIYEBAg1q5dW1QoFKK9vb04Y8YM8dmzZ6/8vuXl5Ylz584VbW1tRR0dHbFZs2bib7/9VuRVAV9//bXo4OAgqlQqsXHjxuLKlSuLvFqhKEVdjSKKz68MmTdvntigQQNRqVSKZmZm4rBhw8To6OgC23l5eYlNmjQpsu/Hjx+LU6ZMEe3s7EQAokKhEHv06CFevXpVs81PP/0kNmzYUFSpVGLdunXFuXPniqtXry7WlRov+t6/qCZ7e3uxR48eBdouXrwo9urVSzQyMhJ1dHREFxeXIq86unLliti1a1dRrVaLJiYm4ujRo8U9e/YUuqojfzsDAwPR2NhYHDhwoBgVFVXoSpHyuBolMzNT/PDDD0VbW1tRV1dX9PLyEiMiIoq8wuT7778X69SpI8rl8gJXWuXl5Ynz588X69atK6rVatHNzU38+++/X2vcARADAwMLvbei6poxY4ZoZWUlymSyQt/b3bt3i97e3qKhoaGoUqlEe3t7ccCAAeLBgwdf+j0kaQiiWIzVcogqocOHD8Pb2xvbtm0rdJUHVW6HDx/GF198gYMHD0pdChFVAJ5GIaIKExMTgytXriAmJgZ//fUXnjx5wvteEGmBahE2FAqF5ryjm5sbVq1aJXFFRFSU2NhYvPnmm8jIyMBbb73FoEGkJarFaRQzMzNeW01ERFRJ8dJXIiIiKleSh42jR4+iV69esLKygiAIRS7gs2TJEtSpUwdqtRqurq4ICQkp8HxKSgpcXV3Rrl07HDlypIIqJyIiouKQPGykp6fDxcUFixcvLvL5rVu3YurUqZg5cybCw8PRvn17+Pj4ICoqSrPN3bt3cfbsWSxbtgwjRoxASkpKRZVPREREr1Cp5mwIgoBdu3ahT58+mrbWrVujZcuWWLp0qaatcePG6NOnD+bOnVuoDx8fH/zvf/974SpymZmZBZbQzcvLQ1JSEkxNTYtcZpmIiIiKJooiUlNTYWVlBZnsxccvKvXVKFlZWTh79iymT59eoL1bt24IDQ0FADx+/Bh6enpQqVS4f/8+rly5grp1676wz7lz53J1OSIiojIUHR390pstVuqwkZCQgNzcXFhaWhZot7S01Nz0KDIyEu+88w5kMhkEQcAPP/xQ5B0e882YMQPTpk3TPE5OToadnR2uX7/+0tcRVQbZ2dk4dOgQvL29oVQqpS6H6KU4Xqu/1NRU1KlTR3N/qRep1GEj339Pb4j/unOmp6cnLl68WOy+VCpVkfdaMDExKfK2x0SVSXZ2NvT09GBqaspf3lTpcbxWf/mf66umIUg+QfRlzMzMIJfLC926OT4+vtDRjpIKCgqCk5MT3N3dAQBZOXmv1R8REREVrVIf2dDR0YGrqyuCg4PRt29fTXtwcDD8/Pxeq+/AwEAEBgYiJSUFRkZG8Jh3GFbmJrAx0YOtsR5sjHVha6IHW2Nd2JjooZahGnIZJ5ASERGVlORhIy0tDTdv3tQ8vnPnDiIiImBiYgI7OztMmzYNw4cPh5ubGzw8PLBixQpERUUhICCgTOvIE4GY5GeISX6G03eSCj2vlAuwqqlbIIj8+0/zGipezUJERFQEycPGmTNn4O3trXmcP3lz5MiRWLt2LQYPHozExETMmTMHsbGxcHZ2xr59+2Bvb/9a+w0KCkJQUBByc3MBAMFT2iJN0MX9xxm4//gpopMyEP3P3x88forsXBH3EjNwLzGjyP7UShlsjP85EmKsB1uT58EkP4wY6SoZRoiISCtVqnU2pJB/GiUhIeGFE0Rz80TEpTzD/aQMRP8niNxPykBsyjO86rtooFL8c4pGF/amemhqUxMuNkawM9FjCKFiy87Oxr59++Dr68sJd1TpcbxWf/n/hiYnJ8PQ0PCF20l+ZKMqkMsEWNfUhXVNXbQu4vmsnDzEPHn6/IjI4wxEJ2X86+9PkZCWidTMHETGpiAytuDqpjX1lGhmUxPNbYzQzKYmXGxrwtyg8NUyREREVRXDRhnQUcjgYKYPBzP9Ip9/mpWLB0+eB4/oxxm4GZ+G8/eTERmTgicZ2Th6/RGOXn+k2d7KSA0X25r/hA8jNLU2goGa/ysgIqKqSWvDxn/nbJQnXR05HC0M4GhRcNGTrJw8XI1Lwfn7yTgf/QQX7j/Bjfi0fyaqxmH/peeX/AoCUM+8BprZGKG5bU242NREo9oGUCnk5V47ERHR6+KcjWLM2ahIaZk5uHg/GRfuP8H5+09wPjoZD548LbSdUi7AqbYhmtnU1ISQeuY1IOPludUaz4FTVcLxWv1xzkYVVUOlgEc9U3jU+//gk5CWiQv3nyAi+p8QEv0EjzOynx8RuZ+s2c5UXwcdGpjDq4E5OjQwh4m+jhRvgYiIqACGjSrArIYKnRpZolOj56umiqKI+4+fIuKfUy/no5Nx8UEyEtOzsCv8AXaFP4AgAM1saqJjA3N0bGiOZjY1uSgZERFJQmvDRkXO2ShrgiA8X93URA+9XKwAANm5eTh77zEOX3uEw9ficTUuFeejnx8F+eGvGzDWU6LDP8GjfX1zmNXgFS9ERFQxOGejks3ZKCtxyc9w9PojHL4ej5AbCUh9lqN5ThCAptZG6NjAHF4NLdDclkc9qgqeA6eqhOO1+uOcDS1Xy0iNQe62GORui+zcPIRHPcHha/E4cv0RLsek4ML9ZFy4n4wf/76JmnpKtK9vjo4NzNGlsSWM9PhLgYiIyg7DhhZQymVoVccEreqY4MM3GiE+5RmOXH+Ew9cfIeT6IzzJyMZv52Pw2/kYKOUCvBpYoHdzK3RpbAE9HQ4RIiJ6PfyXRAtZGKox0M0WA91skZObh/P3n+DwtUcIvvIQV+NScTDyIQ5GPoSuUo6uTpbo7WKFDg3MoaOQSV06ERFVQVobNqryBNGypJDL4GpvAld7E7zXrSFuPEzFr+djsCciBlFJGfj1fAx+PR8DI10lfJxroXdzK7SuY8o5HkREVGycIFpNJ4i+LlEUcf5+Mn6NiMHeCzGIT83UPGdhoELPZlbo3dwKLjZGvJFcBeKEO6pKOF6rP04QpdciCAKa29ZEc9uamNmjMU7dTsSv52Ow72Is4lMz8dPxO/jp+B3Ym+rBz8UKg9xtYWOsJ3XZRERUCTFs0CvJZQI8Hc3g6WiG2X5NcPR6An49H4ODVx7iXmIGfvz7JhYdugmvBuYY0soOnRtZQCHn/A4iInqOYYNKRKV4Pmm0q5MlMrJyEHzlIX45E43jNxP/WVDsESwNVRjsZsujHUREBIBhg16Dno4Cfs2t4dfcGncS0rElLArbz9zHw5RMzdGOjv8c7ejEox1ERFpLa8MGr0YpW3XM9DHDpzGmdW2APy8/xObTUQi9lYhD1x7h0LVHqGX4fJGxwe62sK6pK3W5RERUgXg1Cq9GKTe3H6VhS1g0tp+9j6T0LACATAA6N7bEmHZ10KqOCa9kKSHO7qeqhOO1+uPVKCS5uuY18LFvY7zXrQEOXH6ITafu4eTtJARfeYjgKw/hbG2IMe3qwrdpbS4YRkRUjfE3PJU7lUKO3i5W2DLOA8HvdsCQVnZQKWS49CAFU7dGoP38v7Hk8E08yciSulQiIioHDBtUoepbGmBuv6YInd4J73VtALMaKjxMycT8P67BY+7f+HT3Jdx+lCZ1mUREVIYYNkgSpjVUmNS5Po5P98a3A13QuLYhnmbnYv3Je+i84AjG/ByG03eSpC6TiIjKAOdskKRUCjkGuNqgf0trnLiViNXH7uCvq/E4GPn8y93BGBO8HdGxgTknkxIRVVFaGzZ46WvlIgj/v0rprUdpWBVyBzvO3kfY3cd4e00YmlgZItDbEd2b1OJN4IiIqhitPY0SGBiIK1euICwsTOpS6D/qmdfA3H5NcfRDb4xpVwe6Sjkux6RgwsZz6LrwCLadiUZ2bp7UZRIRUTFpbdigyq+WkRqf9HRC6PROmNy5PgzVCtx+lI4Ptl9Ax28O4+fQu3iWzSNTRESVHcMGVXrG+jqY1rUBjk/vhOk+jWBWQ4UHT57i818vo8P8QwwdRESVHMMGVRkGaiUCvOrh2Efe+J9fE1gZqRGfmonPf72Mjt8cxvqT95CZw9BBRFTZMGxQlaNWyjHcwwGHPuiI//VxRi1DNeJSnuHT3Zfg/c1hbDoVhawczukgIqosGDaoylIp5Bjexh6HP+iI2b2bwNJQhZjkZ/h410V4f3sYW05HIYcTSYmIJMewQVWeWinHSE8HHPnAG5/3coK5wfM5HdN3XkS3hUex/2IstPx+g0REkmLYoGpDrZTj7bZ1EPKhNz7p0Rgm+jq4nZCO8RvPoc+SUJy4lSh1iUREWolhg6odtVKOMe3r4sgHHTG5c33o6chxPvoJhqw8iZE/ncaVmBSpSyQi0ioMG1RtGaiVmNa1AY584I0RHvZQyAQcuf4IPRaFYOqWcEQnZUhdIhGRVtDasBEUFAQnJye4u7tLXQqVM3MDFeb4OePgNC/0crGCKAK7I2LQ6bvDmP3bZSSmZUpdIhFRtaa1YYPLlWsfBzN9LBrSAr9NbIf29c2QnStizfG78PrmMH786wbSM3OkLpGIqFrS2rBB2qupjRHWj26NDaNbo6m1EdIyc7Ag+Dq8vjmM9Sfu8r4rRERljGGDtFa7+mbYE9gWi4a0gL2pHhLSMvHpnsvouuAI/rwcx8tliYjKCMMGaTWZTEAvFyscnOaF//k1gVkNFe4mZmDc+rN4a9UpRMbyyhUiotfFsEEEQCmXYbiHAw5/0BGB3vWgo5Ah9FYievwYghk7LyKBk0iJiEqNYYPoX2qoFPigeyP8Nc0LPZrVRp4IbD4dBe9vDmP5kVu80RsRUSkwbBAVwdZED0FDW2JbgAeaWhshNTMHc/dfRdcFR/HHJc7nICIqCYYNopdwdzDBnsC2+HagCywMVIhKykDAhrMYsvIkLsckS10eEVGVwLBB9AoymYABrjY49H5HTOrkCJVChpO3k9Bz0TFM33EBj1I5n4OI6GUYNoiKSV+lwHvdGuKv9/5/JdItYdHo9N1hrDl+h7ezJyJ6AYYNohKyMdbDoiEtsGP8P/M5nuVg9m9X0OPHYzh5m3eWJSL6L4YNolJytTfB7sC2+KpvU9TUU+Law1S8ueIkJm8OR1zyM6nLIyKqNKpN2MjIyIC9vT3ef/99qUshLSKXCRja2g6H3uuIt1rbQRCAX88/v8nbsiO3kJXDUytERNUmbHz55Zdo3bq11GWQljLW18GXfZvit4nt0MKuJjKycvH1/qt444ejCLnxSOryiIgkVS3Cxo0bN3D16lX4+vpKXQppOWdrI+wI8MQ3A5rBrIYObj9Kx/DVpxGw/iwePHkqdXlERJKQPGwcPXoUvXr1gpWVFQRBwO7duwtts2TJEtSpUwdqtRqurq4ICQkp8Pz777+PuXPnVlDFRC8nkwkY6GaLv97riLfbOkAuE/DH5Th0+e4IVhy9xbvKEpHWkTxspKenw8XFBYsXLy7y+a1bt2Lq1KmYOXMmwsPD0b59e/j4+CAqKgoAsGfPHjRo0AANGjSoyLKJXslIV4nPezXB75Pbwd3BGE+zc/HVvqvotegYzt5Lkro8IqIKo5C6AB8fH/j4+Lzw+QULFmD06NEYM2YMAOD777/HgQMHsHTpUsydOxcnT57Eli1bsG3bNqSlpSE7OxuGhob47LPPiuwvMzMTmZn/vwhTSsrzu3pmZ2cjOzu7DN8Z0XP1THWx4W037IyIwfwD13E1LhX9l57AYDdrvN+1AWrqKYvdV/4Y5VilqoDjtfor7mcriJXoJg+CIGDXrl3o06cPACArKwt6enrYtm0b+vbtq9luypQpiIiIwJEjRwq8fu3atbh06RK+/fbbF+5j1qxZmD17dqH2TZs2QU9Pr2zeCNELpGUDv96T4dSj5wcVayhE9HHIg5uZCEGQuDgiohLKyMjA0KFDkZycDENDwxduJ/mRjZdJSEhAbm4uLC0tC7RbWloiLi6uVH3OmDED06ZN0zxOSUmBra0tvL29YWpq+lr1EhXHIABhdx/js1+v4OajdGy4KceNXGPM7uWEeub6L31tdnY2goOD0bVrVyiVxT8iQiQFjtfqL//swKtU6rCRT/jPf/lEUSzUBgD+/v6v7EulUkGlUhVqVyqV/GGgCuNZ3wL7pphh1bHb+PGvGzh15zF6BYUiwKseAr0doVbKX/p6jleqSjheq6/ifq6STxB9GTMzM8jl8kJHMeLj4wsd7SipoKAgODk5wd3d/bX6ISotHYUMEzo6IvhdL3g3NEd2rohFf99Et4VHceQ61+YgouqjUocNHR0duLq6Ijg4uEB7cHAwPD09X6vvwMBAXLlyBWFhYa/VD9HrsjXRw0/+7lg2rCVqGaoRlZSBkT+dRuCmc4hP5bLnRFT1SX4aJS0tDTdv3tQ8vnPnDiIiImBiYgI7OztMmzYNw4cPh5ubGzw8PLBixQpERUUhICBAwqqJypYgCHjDuTba1TfHwuDrWHP8Dn6/EIuQ648ws0djDHKzLfLUIRFRVSB52Dhz5gy8vb01j/Mnb44cORJr167F4MGDkZiYiDlz5iA2NhbOzs7Yt28f7O3tX2u/QUFBCAoKQm5u7mv1Q1SWaqgU+LSnE/q2sMaMnRdx8UEyPtpxEbvDYzC3X1NYG+lIXSIRUYlVqktfpZCSkgIjIyMkJCTwahSqVHJy87A29C6+/fManmXnQaWQYXKneqidEolePXw54Y4qvezsbOzbtw++vhyv1VX+v6GvuvS1Us/ZINJmCrkMY9rXxZ9TvdDO0QyZOXn45s8bWHBRjssxxbvcjIioMtDasMGrUaiqsDPVw/rRrfDtQBcY6SpwP11A/+WnMHd/JJ5m8TQgEVV+Whs2eDUKVSWCIGCAqw3+mNwWLUzzkJsnYvmR23jjh6MIvZUgdXlERC+ltWGDqCoyq6GCf4M8LHurOWobqXEvMQNDV57CR9svIDmD958gosqJYYOoCurcyAJ/vtsBIzyeX5W19Uw0uiw8gv0XY6Hlc76JqBLS2rDBORtU1RmolZjj54ztAR6oZ66PR6mZGL/xHN5ZfxYPU7gYGBFVHlobNjhng6oLNwcT7JvSHpM714dSLuDPKw/RdcERbD97n0c5iKhS0NqwQVSdqBRyTOvaAHsntYeLbU2kPMvB+9vO4+21YYhNfip1eUSk5Rg2iKqRhrUMsCPAA9N9GkFHIcPha4/QbcFRbA2L4lEOIpIMwwZRNaOQyxDgVQ/7JrdDc9uaSM3MwUc7LmLET6fx4AmPchBRxdPasMEJolTdOVoYYMd4T3zs2wgqhQwhNxLQfeFRbD7NoxxEVLG0NmxwgihpA7lMwLgO9bBvSnu42hsjLTMHM3ZexPDVp3H/cYbU5RGRltDasEGkTeqZ18Av73jgkx6NoVLIcOzm86McG07eQ14ej3IQUfli2CDSEnKZgDHt6+KPqR3gZm+M9KxcfLL7Et5adQrRSTzKQUTlh2GDSMvUMdPH1nc88FlPJ6iVMpy4nYg3vudcDiIqPwwbRFpILhMwql0d/DGlA9wdnh/lmLHzIt5eG8bVR4mozGlt2ODVKESAg5k+tozzwEzfxv+/LsfCo9gT8YBHOYiozGht2ODVKETPyWUCxnaoi72T2sHZ2hDJT7MxZUsEJm4KR1J6ltTlEVE1oLVhg4gKamBpgF0T2mJK5/qQywT8fjEW3RYexcErD6UujYiqOIYNItJQymV4t2sD7J7QFvUtaiAhLRNj1p3BB9vOI/VZttTlEVEVxbBBRIU0tTHCb5PaYWz7OhAEYNvZ+3jj+xCE3kyQujQiqoIYNoioSGqlHDN7OGHL2DawNdHFgydPMXTVKcz69TKeZuVKXR4RVSEMG0T0Uq3rmuKPKR0wtLUdAGBt6F30+DEEEdFPpC2MiKoMhg0ieiV9lQJf9W2KtW+7w9JQhdsJ6ei/NBQ/HLyBnNw8qcsjokpOa8MG19kgKrmODS3w51Qv9GxWG7l5IhYevI6By0/gXmK61KURUSWmtWGD62wQlY6RnhKLhrTA94Obw0ClQHjUE/j8EIKtYVzunIiKprVhg4hKTxAE9Glhjf1T26NVHRNkZOXiox0X8c76s1wIjIgKYdggolKzMdbD5rFtMN2nEZRyAX9eeYju3x/FoWvxUpdGRJUIwwYRvRa5TECAVz3s+mchsEepmXh7TRg+23OJl8gSEQCGDSIqI87WzxcC8/d0AACsO3EPPReF4NKDZGkLIyLJMWwQUZlRK+WY1bsJ1o1qBQsDFW49SkefoOMIOnQTuXmcPEqkrRg2iKjMdWhgjgNTO+CNJrWQkyfimwPXMGTFSdx/nCF1aUQkAYYNIioXxvo6WDqsJb4Z0Az6OnKcvpsEnx9C8PuFWKlLI6IKxrBBROVGEAQMdLPF/ikd0MKuJlKf5SBw0zl8tP0CMrJypC6PiCoIwwYRlTs7Uz388o4HJno7QhCArWei0fPHY5w8SqQltDZscLlyooqllMvwfveG2DimNWoZqnE7IR19lxzHqpDbyOPkUaJqTWvDBpcrJ5KGZz0z7J/SHt2cLJGdK+KL3yPx9towPErNlLo0IionWhs2iEg6xvo6WD7cFV/0cYZKIcOR64/g88NRHObKo0TVEsMGEUlCEAQMa2OP3ya1Q6NaBkhIy4L/mjD8b+8VZOZw5VGi6oRhg4gk1cDSALsD22Kkhz0AYPWxO+gbFIqb8WkSV0ZEZYVhg4gkp1bKMdvPGatGuMFYT4krsSnotegYb1tPVE0wbBBRpdHFyRJ/TO2Ato6meJr9/Lb1EzeFIzkjW+rSiOg1MGwQUaViaajG+lGtMd2nERQyAb9fjEWPRSEIj3osdWlEVEoMG0RU6cj+uW39jvGesDPRw/3HTzFw2QmsPMo1OYiqIoYNIqq0XGxrYu/kdujRrDZy8kR8uS8SY9adQVJ6ltSlEVEJMGwQUaVmqFZi8ZAW+LKvM3QUMvx9NR6+P4Tg9J0kqUsjomJi2CCiSk8QBLzV2h67J7RFXXN9xKU8w5CVJxF06CZPqxBVAVU+bKSmpsLd3R3NmzdH06ZNsXLlSqlLIqJy4mRliN8mtkO/FtbIzRPxzYFrGLnmNJc6J6rkqnzY0NPTw5EjRxAREYFTp05h7ty5SExMlLosIion+ioFvhvkgvkDmkGtlCHkRgJ8fwxB6M0EqUsjoheo8mFDLpdDT08PAPDs2TPk5uZyESCiak4QBAxys8VvE9uhgWUNPErNxFurT2FB8HXk8rQKUaXz2mEjM/P1Dl8ePXoUvXr1gpWVFQRBwO7duwtts2TJEtSpUwdqtRqurq4ICQkp8PyTJ0/g4uICGxsbfPjhhzAzM3utmoioaqhvaYA9ge3wprstRBH48a8bGLryJB6mPJO6NCL6lxKHjQMHDsDf3x/16tWDUqmEnp4eDAwM4OXlhS+//BIxMTEl6i89PR0uLi5YvHhxkc9v3boVU6dOxcyZMxEeHo727dvDx8cHUVFRmm1q1qyJ8+fP486dO9i0aRMePnxY0rdFRFWUro4cX/dvhh/ebA59HTlO3UmCzw8hvIMsUSUiiMU857B792589NFHSE5Ohq+vL1q1agVra2vo6uoiKSkJly5dQkhICE6cOAF/f3/873//g7m5ecmKEQTs2rULffr00bS1bt0aLVu2xNKlSzVtjRs3Rp8+fTB37txCfYwfPx6dOnXCwIEDi9xHZmZmgaMxKSkpsLW1RWxsLExNTUtUL1FFy87ORnBwMLp27QqlUil1OZXOnYR0TNl6AZFxqQCACV51MblTPchlgsSVaSeO1+ovJSUFZmZmSE5OhqGh4Qu3K3bYaNWqFT799FP06NEDMtmLD4g8ePAAP/zwAywtLfHee++VqOj/ho2srCzo6elh27Zt6Nu3r2a7KVOmICIiAkeOHMHDhw+hq6sLQ0NDpKSkwMPDA5s3b0azZs2K3MesWbMwe/bsQu2bNm3SzP0goqorOw/YdVeG4w+f/56qb5iHEfXzYKgjcWFE1VBGRgaGDh36yrChKG6Hp0+fLtZ21tbWmD9/fnG7famEhATk5ubC0tKyQLulpSXi4uIAAPfv38fo0aMhiiJEUcTEiRNfGDQAYMaMGZg2bZrmcf6RDW9vbx7ZoEqP/1MsHj8Av56Pxae/XsGNFGDRdV18P6gZ3B2MpS5Nq3C8Vn8pKSnF2q7YYSNfdnY2GjZsiL1798LJyanEhZWGIBQ8BCqKoqbN1dUVERERxe5LpVJBpVIValcqlfxhoCqD4/XV+rvZwcXOGOM3nMON+DQMX3MGH3RviHc61C30O4XKF8dr9VXcz7XEE0SVSiUyMzMr5IfVzMwMcrlccxQjX3x8fKGjHSUVFBQEJycnuLu7v1Y/RFR5OVoYYM/Etuj7zyJgX++/irHrzvKW9UQVrFSXvk6aNAnz5s1DTk5OWddTgI6ODlxdXREcHFygPTg4GJ6enq/Vd2BgIK5cuYKwsLDX6oeIKjc9HQUWDHLBV32bQkcuw8HIh+ixKAQX7ydLXRqR1ijxaRQAOHXqFP766y/8+eefaNq0KfT19Qs8v3PnzmL3lZaWhps3b2oe37lzBxERETAxMYGdnR2mTZuG4cOHw83NDR4eHlixYgWioqIQEBBQmtKJSAsJgoChre3QzMYI4zeeRXTSU/RfGorPejnhrdZ2PK1CVM5KFTZq1qyJ/v37l0kBZ86cgbe3t+Zx/uTNkSNHYu3atRg8eDASExMxZ84cxMbGwtnZGfv27YO9vf1r7TcoKAhBQUHIzc19rX6IqOpwtjbC3ont8f728wi+8hCf7L6EsLtJ+KpvU+irSvXrkIiKodiXvlZXKSkpMDIyQkJCAq9GoUovOzsb+/btg6+vLyfcvQZRFLEy5Dbm/XENuXkiHC1qYOlbLVHf0kDq0qoVjtfqL//f0Fdd+lrq5cpzcnJw8OBBLF++HKmpzxfQiYmJQVpaWmm7JCKqEIIgYFyHetg8tg0sDFS4GZ+G3ouPY0/EA6lLI6qWShU27t27h6ZNm8LPzw+BgYF49OgRAGD+/Pl4//33y7RAIqLy0qqOCfZNaY+2jqZ4mp2LKVsi8OnuS8jKyZO6NKJqpVRhY8qUKXBzc8Pjx4+hq6urae/bty/++uuvMiuuPPHSVyICALMaKqwb1RqTOzlCEID1J+9h8IoTiEvmzdyIykqpwsaxY8fwySefQEen4Pq/9vb2ePCgahyG5KWvRJRPLhMwrVtD/DTSHYZqBcKjnqDnohCcvJ0odWlE1UKpwkZeXl6RV3Hcv38fBgacYEVEVZN3Iwv8NqkdGtc2REJaFt5adQqrQm5Dy+fRE722UoWNrl274vvvv9c8FgQBaWlp+Pzzz+Hr61tWtRERVTh7U33sHO+pWXX0i98jMXFzONIzy3cRQ6LqrFRhY+HChThy5AicnJzw7NkzDB06FA4ODnjw4AHmzZtX1jWWC87ZIKIX0dWRY8EgF8zxawKFTMDvF2LRJ+g4bj3i1XZEpVHqdTaePn2KzZs349y5c8jLy0PLli3x1ltvFZgwWhVwnQ2qSrhuQcU7ey8J4zecQ3xqJmqoFPh2oAvecK4ldVlVAsdr9VfcdTZKvWSerq4uRo0ahVGjRpW2CyKiSs/V3gR7J7fDxE3hOH0nCQEbzmJ8x3p4v1tDyGVc5pyoOEp1GsXKygpDhw7FihUrcP369bKuiYioUrEwUGPjmNYY3a4OAGDp4VsY+dNpJKVnSVwZUdVQqrDx3XffwdDQEAsWLECjRo1Qu3ZtvPnmm1i2bBkiIyPLukYiIskp5TJ82tMJPw5pAV2lHMduJqDXomM4H/1E6tKIKr1ShY0hQ4Zg2bJluHr1KmJjY7Fw4UIoFApMmjQJzs7OZV1jueAEUSIqjd4uVtgzsS3qmOnjwZOnGLjsBLacjpK6LKJKrdRzNtLS0nDs2DEcOXIEhw8fRnh4OJo2bQovL6+yrK/cBAYGIjAwUDO5hYiouBpYGmDPxLZ475fnd4+dvvMiLj5Ixue9mkBHUepbThFVW6UKG61bt8aFCxfg7OyMjh074uOPP0b79u1Rs2bNMi6PiKhyMlQrsXyYK5Ycvonvgq9j46koXItLxZJhLWFhoJa6PKJKpVQR/MaNG9DT00PdunVRt25dODo6MmgQkdaRyQRM7FQfq0e6wUCtwJl7j9F70XFEcB4HUQGlChtJSUk4dOgQ2rZti4MHD8LLywu1atXC4MGDsWzZsrKukYioUuvUyBJ7AtvC0aIG4lKeYdDyE9h2JlrqsogqjVKfXGzWrBkmT56MHTt2YP/+/fDx8cHOnTsRGBhYlvUREVUJdc1rYNcET3R1skRWTh4+2H4Bs369jOxc3q6eqFRhIzw8HAsXLoSfnx9MTEzQpk0bXLx4EVOmTMGvv/5a1jWWC16NQkRlzeCfeRxTu9QHAKwNvYthq04hMS1T4sqIpFWq5coVCgVatGgBLy8vdOzYER06dHjpMqWVGZcrp6qEyz9XHX9ejsO7WyOQnpUL65q6WD7cFc7W2nXlG8dr9Veuy5UnJSVV2XBBRFQRujWphd2BbTFu/VncSUhH/6WhmNe/Gfq0sJa6NKIKV6rTKPlB4+zZs9iwYQM2btyIc+fOlWlhRERVXX1LA+wObAvvhubIzMnD1K0R+GLvFeRwHgdpmVId2YiPj8ebb76Jw4cPo2bNmhBFEcnJyfD29saWLVtgbm5e1nUSEVVJRrpKrBrpjoXB17H40E2sOnYHV+NSsWhICxjr60hdHlGFKNWRjUmTJiElJQWXL19GUlISHj9+jEuXLiElJQWTJ08u6xqJiKo0uUzA+90bYslbLaGn8/y+Kr2DjuFKTIrUpRFViFKFjT/++ANLly5F48aNNW1OTk4ICgrC/v37y6w4IqLqxLdpbeyc4Ak7Ez1EJz1F/6Wh+ONSnNRlEZW7UoWNvLy8ImcWK5VK5OXxXCQR0Ys0qmWIXye2Rfv6ZnianYuADWfx4183UIoLA4mqjFKFjU6dOmHKlCmIiYnRtD148ADvvvsuOnfuXGbFlSeus0FEUqmpp4M1/u54u60DAGBB8HVM3BSOp1m50hZGVE5KFTYWL16M1NRUODg4oF69enB0dESdOnWQmpqKRYsWlXWN5SIwMBBXrlxBWFiY1KUQkRZSyGX4vFcTzOvfFEq5gN8vxmLAslDEPHkqdWlEZa5UV6PY2tri3LlzOHjwICIjIyGKIpycnNClS5eyro+IqFob7G6HOmY1MH7DWVyOSUHvxcexfLgrXO2NpS6NqMyUOGxs27YNu3fvRnZ2Nrp06YJJkyaVR11ERFqjVR0T7JnYFmN+PoOrcakYsuIkvurXFANcbaQujahMlOg0yooVKzB48GCcOXMG165dw/jx4zFjxozyqo2ISGvYGOthx3hPdG9iiazcPLy/7Ty+/P0KcvM4cZSqvhKFjUWLFmHmzJm4du0azp8/j9WrV2Px4sXlVRsRkVbRVymw9C1XTO7kCABYGXIHo38OQ8qzbIkrI3o9JQobt2/fxttvv615PHz4cGRmZiIujteJExGVBZlMwLRuDbF4aAuolTIcvvYIfYOO405CutSlEZVaicLG06dPUaNGDc1juVwOlUqFjIyMMi+MiEib9Wxmhe0BnqhtpMatR+noE3Qcx24kSF0WUamUeILoqlWrCgSOnJwcrF27FmZmZpo2LllORPT6nK2NsGdiW7yz/izCo55g5JrT+KRHY/h7OkAQBKnLIyq2EoUNOzs7rFy5skBbrVq1sH79es1jQRAYNoiIyoiFgRqbx7bBx7suYue5B5j92xVcf5iK2b2doaMo1VJJRBWuRGHj7t275VRGxQsKCkJQUBByc7liHxFVbmqlHN8NdEHjWoaYuz8Sm09H405COpYNc0VNPd45lio/rY3FXEGUiKoSQRAwtkNdrB7pjhoqBU7eTkLfJaG4/ShN6tKIXqnYYWPLli3F7jQ6OhrHjx8vVUFERPRi3o0ssH28B6xr6uJOQjr6LglF6E1OHKXKrdhhY+nSpWjUqBHmzZuHyMjIQs8nJydj3759GDp0KFxdXZGUlFSmhRIR0XONahlid2BbtLCrieSn2Rjx02lsOR0ldVlEL1TssHHkyBF8++23+Pvvv+Hs7AxDQ0PUr18fTZs2hY2NDUxNTTF69Gg4ODjg0qVL6NWrV3nWTUSk1cwNVNg8tg16u1ghJ0/E9J0XueIoVVolmiDas2dP9OzZE4mJiTh27Bju3r2Lp0+fwszMDC1atECLFi0gk2ntNBAiogqlVsrxw5vNUc+8BhYevI6VIXdw+1E6fhjSAjVUpbrPJlG5KNVoNDU1hZ+fX1nXQkREJSQIAqZ0qY+65vp4f9t5/HU1HgOWhmK1vzusa+pKXR4RAC2+GoWIqDrp5WKFLePawKyGClfjUuG3+DjCox5LXRYRgFKGDWNjY5iYmBT6MjU1hbW1Nby8vLBmzZqyrpWIiF6ihZ0x9kxsi0a1DJCQlok3V5zEb+djpC6LqHRh47PPPoNMJkOPHj0we/ZszJo1Cz169IBMJkNgYCAaNGiA8ePHF1ptlIiIypd1TV1sH++Jzo0skJmTh0mbw/HDwRsQRU4cJemUas7GsWPH8MUXXyAgIKBA+/Lly/Hnn39ix44daNasGX788UeMHTu2TAolIqLiqaFSYMUIN3y9PxIrQ+5g4cHruJ2Qhnn9m0GtlEtdHmmhUh3ZOHDgALp06VKovXPnzjhw4AAAwNfXF7dv33696oiIqFTkMgEzezhhbr+mUMgE7ImIwdCVJ/EoNVPq0kgLlSpsmJiY4LfffivU/ttvv8HExAQAkJ6eDgMDg9erjoiIXsuQVnZYN6oVDNUKnIt6gj5Bx3EtLlXqskjLlOo0yqefforx48fj0KFDaNWqFQRBwOnTp7Fv3z4sW7YMABAcHAwvL68yLbYo0dHRGD58OOLj46FQKPDpp59i4MCB5b5fIqKqwtPRDLsD22LU2jDcTczAgKWhWDKsJdrXN5e6NNISgljKWUPHjx/H4sWLce3aNYiiiEaNGmHSpEnw9PQs6xpfKjY2Fg8fPkTz5s0RHx+Pli1b4tq1a9DX1y/W61NSUmBkZISEhASYmpqWc7VEryc7Oxv79u2Dr68vlEql1OVQFfM4PQvvrD+L03eToJAJ+LKvMwa725Xb/jheq7/8f0OTk5NhaGj4wu1KvcRc27Zt0bZt29K+vMzUrl0btWvXBgBYWFjAxMQESUlJxQ4bRETawlhfB+vHtMJH2y9gd0QMPtpxEfcSM/B+t4aQyQSpy6NqrNSLeuXm5mLHjh344osv8OWXX2LXrl3Izc0tcT9Hjx5Fr169YGVlBUEQsHv37kLbLFmyBHXq1IFarYarqytCQkKK7OvMmTPIy8uDra1tiesgItIGKoUcCwc3x+TO9QEASw7fwqQt4XiWXfLf30TFVaqwcfPmTTRu3BgjRozAzp07sX37dgwbNgxNmjTBrVu3StRXeno6XFxcsHjx4iKf37p1K6ZOnYqZM2ciPDwc7du3h4+PD6KiCt7hMDExESNGjMCKFStK85aIiLSGIAiY1rUBvhvoAqVcwO8XYjF05UkkpvFKFSofpZqz4evrC1EUsXHjRs3VJ4mJiRg2bBhkMhl+//330hUjCNi1axf69OmjaWvdujVatmyJpUuXatoaN26MPn36YO7cuQCAzMxMdO3aFWPHjsXw4cNfuo/MzExkZv7/D1RKSgpsbW0RGxvLORtU6WVnZyM4OBhdu3blOXAqE6fuJGHCpgikPMuBrbEuVg1vibrmZXMamuO1+ktJSYGZmVn5zNk4cuQITp48qQkawPObs3399ddlOo8jKysLZ8+exfTp0wu0d+vWDaGhoQAAURTh7++PTp06vTJoAMDcuXMxe/bsQu2HDh2Cnp5e2RROVM6Cg4OlLoGqkYmNgOWRckQ/foq+QccwumEuHI3Krn+O1+orIyOjWNuVKmyoVCqkpha+TjstLQ06Ojql6bJICQkJyM3NhaWlZYF2S0tLxMXFAXh+VczWrVvRrFkzzXyP9evXo2nTpkX2OWPGDEybNk3zOP/Ihre3N49sUKXH/ylSeemdlomATRGIiE7GsmtKzO3TBH7NrV6rT47X6i8lJaVY25UqbPTs2RPjxo3D6tWr0apVKwDAqVOnEBAQgN69e5emy5cShIKzpEVR1LS1a9cOeXl5xe5LpVJBpVIValcqlfxhoCqD45XKWi1jJbaM88C0XyKw72Ic3t9xCfeTMzGlc/1Cv4NLiuO1+iru51qqCaI//vgj6tWrBw8PD6jVaqjVanh6esLR0RHff/99aboskpmZGeRyueYoRr74+PhCRztKKigoCE5OTnB3d3+tfoiIqgu1Uo7FQ1riHa+6AIDvD97Ae9vOIyun+P+hIypKqY5s1KxZE3v27MHNmzcRGRkJURTh5OQER0fHMi1OR0cHrq6uCA4ORt++fTXtwcHB8PPze62+AwMDERgYqFmQhIiIAJlMwAyfxrA30ceney5h57kHiHnyFMuHucFIj0cnqHSKHTb+Pc+hKIcPH9b8fcGCBcUuIC0tDTdv3tQ8vnPnDiIiImBiYgI7OztMmzYNw4cPh5ubGzw8PLBixQpERUUVuuMsERGVnaGt7WBjrIsJG8/h5O0k9F16HGv9W8HOlBPpqeSKHTbCw8OLtV1Jz+2dOXMG3t7emsf5oWbkyJFYu3YtBg8ejMTERMyZMwexsbFwdnbGvn37YG9vX6L9/FdQUBCCgoJKtRAZEZE26NDAHNvHe2DUmjDcfpSOPkuOY+UIN7jaG0tdGlUxpb43SnXBe6NQVcJ7TZAUHqY8w+ifw3DpQQp0FDJ8P7g5fJvWfuXrOF6rv+LeG6XUy5UTEZF2sDRU45d3PNClsQWycvIQuOkcVoXclrosqkK0NmzwahQiouLT01Fg+XA3jPSwhygCX/weidm/XUZunlYfHKdi0tqwERgYiCtXriAsLEzqUoiIqgS5TMCs3k3wsW8jAMCa43cxYeNZ3sSNXklrwwYREZWcIAgY16EeFg1pAR25DAcuP8TQlSeRlJ4ldWlUiTFsEBFRifVyscL60a1gqFbgXNQT9F8ainuJ6VKXRZUUwwYREZVK67qm2DnBE9Y1dXEnIR39loQiPOqx1GVRJaS1YYMTRImIXp+jhQF2BXrC2doQielZGLLyJP68HPfqF5JW0dqwwQmiRERlw8JAja3jPNCxoTmeZefhnQ1nse7EXanLokpEa8MGERGVHX2VAqtGuOFNd1uIIvDZnsuYd+A6eGUsAQwbRERURhRyGeb2a4r3uzUAAKw6dhfrbsiQyUtjtZ7Whg3O2SAiKnuCIGBip/pYMMgFCpmA8EQZ3l53Dk8yeGmsNtPasME5G0RE5adfSxusHtESarmIsLuP0X9pKKKTMqQuiySitWGDiIjKl2c9U0xpkgtLQxVuPUpHv6WhuHg/WeqySAIMG0REVG6s9IFt41qjUS0DPErNxOAVJ3DoarzUZVEFY9ggIqJyVdtIjV8CPNDO0QwZWbkYs+4MNp+OkrosqkAMG0REVO4M1Ur85O+Ofi2tkZsnYsbOi/juz2sQRV4bqw20NmzwahQiooqlo5Dhu4EumNzJEQCw6O+b+GjHBeTk5klcGZU3rQ0bvBqFiKjiCYKAad0a4su+zpAJwC9n7mPsujPIyMqRujQqR1obNoiISDpvtbbHsmGuUClkOHTtEYasOInEtEypy6JywrBBRESS6NakFjaNbYOaekqcv5+M/ktDEZXItTiqI4YNIiKSjKu9MbYHPL9N/d3EDPRbepxrcVRDDBtERCQpR4sa2DnBE41rGyIhLQuDV5zAkeuPpC6LyhDDBhERSc7SUI1f3mmDto6myMjKxei1Ydhx9r7UZVEZYdggIqJKwUCtxBr/VvBrboWcPBHvbTuPJYdvci2OakBrwwbX2SAiqnx0FDIsHNQc4zrUBQDM/+MaZv16Gbl5DBxVmdaGDa6zQURUOclkAj72bYxPezoBAH4+cQ8TN53Ds+xciSuj0tLasEFERJXb6HZ1sGhIC+jIZdh/KQ4jVp9Gcka21GVRKTBsEBFRpdXLxQprR7nDQKXA6btJGLAsFDFPnkpdFpUQwwYREVVqnvXM8EuABywNVbgRn4Z+S0JxLS5V6rKoBBg2iIio0mtc2xA7J7SFo0UNxKU8w4BloTh5O1HqsqiYGDaIiKhKsK6pi+0BHnCzN0bqsxyMWH0av1+IlbosKgaGDSIiqjJq6ulgw5jW6N7EElm5eZi4+RzWHr8jdVn0CgwbRERUpaiVcix5yxXD29hDFIFZv13B3P2RyONaHJUWwwYREVU5cpmAOX5N8EH3hgCA5Udu471t55GVkydxZVQUhg0iIqqSBEFAoLcjvh3oAoVMwK7wBxiz7gzSM3OkLo3+Q2vDBpcrJyKqHga42mDlSDfoKuU4ev0Rhq46haT0LKnLon/R2rDB5cqJiKoP74YW2DS2NYz1lDgf/QQDloYiOilD6rLoH1obNoiIqHppYWeMbQGesK6pi9sJ6ei/NBSRsSlSl0Vg2CAiomrE0aIGdoz3RENLA8SnZmLQ8hM4xcW/JMewQURE1UotIzV+eccD7g7PF/8a/tNp/HEpTuqytBrDBhERVTtGekqsH90aXZ0skZWThwkbz2LTqSipy9JaDBtERFQtqZVyLH2rJYa0skWeCHy86yJ+OHgDosjFvyoawwYREVVbCrkMX/VtismdHAEACw9ex6d7LiGXq41WKIYNIiKq1gRBwLRuDTHHrwkEAdhwMgoTN53Ds+xcqUvTGgwbRESkFUZ4OGDxkJbQkcuw/1Ic/NecRsqzbKnL0goMG0REpDV6NKuNtaPcUUOlwMnbSRi8/CTiU55JXVa1x7BBRERaxbOeGbaMawOzGipExqag39JQ3ElIl7qsao1hg4iItI6ztRF2jveEvake7j9+igFLQ3Hh/hOpy6q2qkXY6Nu3L4yNjTFgwACpSyEioirCzlQP2wM84WxtiMT0LLy54iRCbjySuqxqqVqEjcmTJ2PdunVSl0FERFWMuYEKW8Z5oK2jKTKycjFqbRj2RDyQuqxqp1qEDW9vbxgYGEhdBhERVUE1VAr85O+Ons1qIztXxJQtEfjp2B2py6pWJA8bR48eRa9evWBlZQVBELB79+5C2yxZsgR16tSBWq2Gq6srQkJCKr5QIiKqtlQKOX58swX8PR0AAHP2XsG8P65ytdEyInnYSE9Ph4uLCxYvXlzk81u3bsXUqVMxc+ZMhIeHo3379vDx8UFUFNe4JyKisiOTCfi8lxM+fKMhAGDp4Vv4YPsFZOfmSVxZ1aeQugAfHx/4+Pi88PkFCxZg9OjRGDNmDADg+++/x4EDB7B06VLMnTu3xPvLzMxEZmam5nFKSgoAIDs7G9nZXNyFKrf8McqxSlVBVR2vY9vao6ZagU9/vYLtZ+8jIfUZfhzsAl0dudSlVTrF/WwlDxsvk5WVhbNnz2L69OkF2rt164bQ0NBS9Tl37lzMnj27UPuhQ4egp6dXqj6JKlpwcLDUJRAVW1Ucr/oARtUXsPa6DIevJ6D3woMY1ygX+kqpK6tcMjIyirVdpQ4bCQkJyM3NhaWlZYF2S0tLxMXFaR53794d586dQ3p6OmxsbLBr1y64u7sX2eeMGTMwbdo0zeOUlBTY2trC29sbpqam5fNGiMpIdnY2goOD0bVrVyiV/K1HlVtVH6++ALpEPcG4DedwNy0Hq+8ZYc1IV9Q2UktdWqWRf3bgVSp12MgnCEKBx6IoFmg7cOBAsftSqVRQqVQICgpCUFAQcnOf34hHqVRWyR8G0k4cr1SVVOXx2rqeObYHeGLET6dx61E6Bq04jXWjW6GBJa+ABFDsz1XyCaIvY2ZmBrlcXuAoBgDEx8cXOtpRUoGBgbhy5QrCwsJeqx8iIqre6lsaYMd4Tzha1EBcyjMMXHYCZ+8lSV1WlVKpw4aOjg5cXV0Lne8LDg6Gp6enRFUREZG2saqpi+0BHmhpVxPJT7Px1qpT+CvyodRlVRmSh420tDREREQgIiICAHDnzh1ERERoLm2dNm0aVq1ahZ9++gmRkZF49913ERUVhYCAgNfab1BQEJycnF44t4OIiOjfaurpYOOYNujUyALPsvMwbv1ZbDsTLXVZVYLkczbOnDkDb29vzeP8yZsjR47E2rVrMXjwYCQmJmLOnDmIjY2Fs7Mz9u3bB3t7+9fab2BgIAIDA5GSkgIjI6PX6ouIiLSDro4cy4e7YvqOi9hx7j4+2H4BCWlZCPCqW2h+If0/ycNGx44dX7lC24QJEzBhwoQKqoiIiOjFlHIZvh3YDGYGOlh+5Dbm/XEVCWmZmOnbGDIZA0dRJD+NQkREVNUIgoAZPo3xSY/GAIDVx+7g3V8ikJXD1UaLorVhg3M2iIjodY1pXxcLB7tAIROwJyIGY9adQXpmjtRlVTpaGzZ46SsREZWFvi1ssGqkG3SVchy9/ghDV55EYlrmq1+oRbQ2bBAREZWVjg0tsGlsaxjrKXH+fjIGLjuB6KTiLeWtDRg2iIiIykALO2NsC/CEdU1d3E5IR/+loYiMLd5y3tWd1oYNztkgIqKy5mhRAzvGe6KhpQHiUzMxaPkJnL7D1Ua1NmxwzgYREZWHWkZq/PKOB9zsjZH6LAfDVp/Cgctxr35hNaa1YYOIiKi8GOkpsWFMa3RpbImsnDyM33AWW05HSV2WZBg2iIiIyoFaKceyYS0x2M0WeSIwfedFLP77xisXsqyOGDaIiIjKiUIuw9f9m2KityMA4Ns/r2PWr5eRl6ddgUNrwwYniBIRUUUQBAHvd2+IWb2cIAjAzyfuYdKWcGTm5EpdWoXR2rDBCaJERFSR/NvWwQ9vtoBSLuD3C7EYtTYMaVqy2qjWhg0iIqKK1tvFCmv8W0FfR47jNxPx5ooTSNCC1UYZNoiIiCpQu/pm2DyuDUz1dXDpQQoGLA1FVGL1Xm2UYYOIiKiCNbOpie3jPWFjrIu7iRnovywUl2OSpS6r3DBsEBERSaCOmT52jvdEo1oGeJSaiTeXn8SJW4lSl1UutDZs8GoUIiKSmoWhGr8EeKB1HROkZuZg5E+nsf9irNRllTmtDRu8GoWIiCoDQ7USP49qhTea1EJWbh4mbDqHDSfvSV1WmdLasEFERFRZqJVyBL3VEkNa2UEUgU92X8L3B69Xm9VGGTaIiIgqAblMwFd9nTG5c30AwPcHb+DTPZeQWw1WG2XYICIiqiQEQcC0rg3wP78mEARgw8koTNx0Ds+yq/ZqowwbRERElcxwDwcEDW0JHbkM+y/FwX/NaaQ8y5a6rFJj2CAiIqqEfJvWxtq33VFDpcDJ20l4c/lJxKc+k7qsUmHYICIiqqQ8Hc2wZVwbmNVQ4UpsCgYsPYG7CelSl1ViWhs2uM4GERFVBc7WRtgx3gN2JnqISsrAgGWhuPSgaq02qrVhg+tsEBFRVWFvqo8d4z3RxMoQCWlZGLz8BI7fTJC6rGLT2rBBRERUlZgbqLBlXBt41jNFelYu3l4Thr0XYqQuq1gYNoiIiKoIA7USa952h2/T56uNTtocjnUn7kpd1isxbBAREVUhKoUci4a0xPA29hBF4LM9l/Hdn9cq9WqjDBtERERVjFwmYI5fE0zr2gAAsOjvm/h410Xk5OZJXFnRGDaIiIiqIEEQMLlzfXzVtylkArD5dDQmbKycq40ybBAREVVhQ1vbYclbLaGjkOHPKw8x4qfTSH5auVYbZdggIiKq4t5wro11o1rBQKXA6TtJGLz8BB6mVJ7VRhk2iIiIqoE2dU2x9R0PmBuocDUuFf2XhuL2ozSpywLAsEFERFRtOFkZYud4TziY6uH+46cYsOwEzkc/kbos7Q0bXK6ciIiqI1sTPWwf74mm1kZISs/CkJUnEXLjkaQ1aW3Y4HLlRERUXZnVUGHzuDZo52iGjKxcjFobhj0RDySrR2vDBhERUXVWQ6XAT/7u6OVihexcEVO2ROCnY3ckqYVhg4iIqJrSUcjww+Dm8Pd0AADM2XsF8/+4WuGrjTJsEBERVWMymYDPeznhg+4NAQBLDt/CRzsuVOhqowwbRERE1ZwgCAj0dsS8/s9XG/3lzH0EbDiLp1kVs9oowwYREZGWGOxuh+XD3aBSyHAwMh7DV59Cckb5rzbKsEFERKRFujpZYv3o1jBUK3Dm3mMMXB6KuOTyXW2UYYOIiEjLtKpjgl8CPGBpqML1h2novzQUN+PLb7VRhg0iIiIt1KiWIXaM90Rdc308ePIUA5eFIjzqcbnsi2GDiIhIS9kY62F7gCdcbGvicUY2hq48hcPX4st8PwwbREREWsxEXwebxrRGhwbmeJqdizE/n8Gu8Ptluo9qETb27t2Lhg0bon79+li1apXU5RAREVUp+ioFVo1wQ5/mVsjJE/Hu1vNYFXK7zPqv8mEjJycH06ZNw99//41z585h3rx5SEpKkrosIiKiKkVHIcOCQc0xul0dAMAXv0di7r7IMllttMqHjdOnT6NJkyawtraGgYEBfH19ceDAAanLIiIiqnJkMgGf9GiM6T6NAADLj97G+9suIPs1VxuVPGwcPXoUvXr1gpWVFQRBwO7duwtts2TJEtSpUwdqtRqurq4ICQnRPBcTEwNra2vNYxsbGzx4IN2d7YiIiKoyQRAQ4FUP3wxoBrlMwI5z9zFu3RlkZOWUuk/Jw0Z6ejpcXFywePHiIp/funUrpk6dipkzZyI8PBzt27eHj48PoqKiAKDIwzuCIJRrzURERNXdQDdbrBjuCrVShkPXHuGtVafwOD2rVH0pyri2EvPx8YGPj88Ln1+wYAFGjx6NMWPGAAC+//57HDhwAEuXLsXcuXNhbW1d4EjG/fv30bp16xf2l5mZiczMTM3j5ORkAOA8D6oSsrOzkZGRgcTERCiVSqnLIXopjteqr7mFAkv6N8TkrRE4eyMGfgv/xOIhzWFdUxcAkJqaCqDo//gXIFYiAMRdu3ZpHmdmZopyuVzcuXNnge0mT54sdujQQRRFUczOzhYdHR3F+/fviykpKaKjo6OYkJDwwn18/vnnIgB+8Ytf/OIXv/hVRl/R0dEv/fdd8iMbL5OQkIDc3FxYWloWaLe0tERcXBwAQKFQ4LvvvoO3tzfy8vLw4YcfwtTU9IV9zpgxA9OmTdM8fvLkCezt7REVFQUjI6PyeSMVzN3dHWFhYdViv2XRZ2n7KMnrirttcbZ72TYpKSmwtbVFdHQ0DA0Ni1VbZVedxmtZ9FsR47Uk279qO47Xqr3f1+1XFEW4urrCysrqpdtV6rCR779zMERRLNDWu3dv9O7du1h9qVQqqFSqQu1GRkbV5odBLpdL8l7KY79l0Wdp+yjJ64q7bXG2K842hoaGHK+VdL+v229FjNeSbP+q7Theq/Z+y6JfHR0dyGQvnwIq+QTRlzEzM4NcLtccxcgXHx9f6GgH/b/AwMBqs9+y6LO0fZTkdcXdtjjbSfX5SaU6jdey6LcixmtJtn/VdhyvVXu/FfU7VvhnrkSlIAgCdu3ahT59+mjaWrduDVdXVyxZskTT5uTkBD8/P8ydO/e195mSkgIjIyMkJydXm+RN1RfHK1UlHK+UT/LTKGlpabh586bm8Z07dxAREQETExPY2dlh2rRpGD58ONzc3ODh4YEVK1YgKioKAQEBZbJ/lUqFzz//vMhTK0SVDccrVSUcr5RP8iMbhw8fhre3d6H2kSNHYu3atQCeL+o1f/58xMbGwtnZGQsXLkSHDh0quFIiIiIqDcnDBhEREVVvlXqCKBEREVV9DBtERERUrhg2iIiIqFwxbBAREVG5YtgopujoaHTs2BFOTk5o1qwZtm3bJnVJRC/Vt29fGBsbY8CAAVKXQlSkvXv3omHDhqhfvz5WrVoldTlUjng1SjHFxsbi4cOHaN68OeLj49GyZUtcu3YN+vr6UpdGVKRDhw4hLS0NP//8M7Zv3y51OUQF5OTkwMnJCYcOHYKhoSFatmyJU6dOwcTEROrSqBzwyEYx1a5dG82bNwcAWFhYwMTEhLelp0rN29sbBgYGUpdBVKTTp0+jSZMmsLa2hoGBAXx9fXHgwAGpy6JyUm3CxtGjR9GrVy9YWVlBEATs3r270DZLlixBnTp1oFar4erqipCQkFLt68yZM8jLy4Otre1rVk3aqiLHK1F5eN0xHBMTA2tra81jGxsbPHjwoCJKJwlUm7CRnp4OFxcXLF68uMjnt27diqlTp2LmzJkIDw9H+/bt4ePjg6ioKM02rq6ucHZ2LvQVExOj2SYxMREjRozAihUryv09UfVVUeOVqLy87hgu6gz+f+/wTdWIWA0BEHft2lWgrVWrVmJAQECBtkaNGonTp08vdr/Pnj0T27dvL65bt64syiQSRbH8xqsoiuKhQ4fE/v37v26JRC9VmjF8/PhxsU+fPprnJk+eLG7cuLHcayVpVJsjGy+TlZWFs2fPolu3bgXau3XrhtDQ0GL1IYoi/P390alTJwwfPrw8yiQCUDbjlUhKxRnDrVq1wqVLl/DgwQOkpqZi37596N69uxTlUgWQ/K6vFSEhIQG5ubmwtLQs0G5paYm4uLhi9XH8+HFs3boVzZo105ybXL9+PZo2bVrW5ZKWK4vxCgDdu3fHuXPnkJ6eDhsbG+zatQvu7u5lXS5RIcUZwwqFAt999x28vb2Rl5eHDz/8EKamplKUSxVAK8JGvv+eDxRFsdjnCNu1a4e8vLzyKIuoSK8zXgFwZj9J7lVjuHfv3ujdu3dFl0US0IrTKGZmZpDL5YX+VxgfH18oeRNJjeOVqjqOYfovrQgbOjo6cHV1RXBwcIH24OBgeHp6SlQVUdE4Xqmq4xim/6o2p1HS0tJw8+ZNzeM7d+4gIiICJiYmsLOzw7Rp0zB8+HC4ubnBw8MDK1asQFRUFAICAiSsmrQVxytVdRzDVCLSXgxTdg4dOiQCKPQ1cuRIzTZBQUGivb29qKOjI7Zs2VI8cuSIdAWTVuN4paqOY5hKgvdGISIionKlFXM2iIiISDoMG0RERFSuGDaIiIioXDFsEBERUbli2CAiIqJyxbBBRERE5Yphg4iIiMoVwwYRERGVK4YNomqqY8eOmDp1apn326FDB2zatEnzOC4uDl27doW+vj5q1qxZ5vurii5evAgbGxukp6dLXQpRpcCwQUTFtnfvXsTFxeHNN9/UtC1cuBCxsbGIiIjA9evXJayu8mjatClatWqFhQsXSl0KUaXAsEFExfbjjz/i7bffhkz2/786bt26BVdXV9SvXx8WFhZFvi47O7uiSqw03n77bSxduhS5ublSl0IkOYYNIi3w+PFjjBgxAsbGxtDT04OPjw9u3LhRYJuVK1fC1tYWenp66Nu3LxYsWFDgtEhCQgIOHjyI3r17a9ocHBywY8cOrFu3DoIgwN/fHwAgCAKWLVsGPz8/6Ovr44svvgAA/Pbbb3B1dYVarUbdunUxe/Zs5OTkaPq7ceMGOnToALVaDScnJwQHB0MQBOzevRsAcPjwYQiCgCdPnmheExERAUEQcPfuXU1baGgoOnToAF1dXdja2mLy5MkFTmk4ODjgq6++wqhRo2BgYAA7OzusWLGiwPfj/v37ePPNN2FiYgJ9fX24ubnh1KlTuHv3LmQyGc6cOVNg+0WLFsHe3h75t5vq3r07EhMTceTIkeJ9SETVGMMGkRbw9/fHmTNn8Ouvv+LEiRMQRRG+vr6aIw7Hjx9HQEAApkyZgoiICHTt2hVffvllgT6OHTsGPT09NG7cWNMWFhaGN954A4MGDUJsbCx++OEHzXOff/45/Pz8cPHiRYwaNQoHDhzAsGHDMHnyZFy5cgXLly/H2rVrNfvJy8tDv379IJfLcfLkSSxbtgwfffRRid/rxYsX0b17d/Tr1w8XLlzA1q1bcezYMUycOLHAdt999x3c3NwQHh6OCRMmYPz48bh69SqA57dP9/LyQkxMDH799VecP38eH374IfLy8uDg4IAuXbpgzZo1Bfpbs2YN/P39IQgCAEBHRwcuLi4ICQkp8XsgqnakveksEZUXLy8vccqUKeL169dFAOLx48c1zyUkJIi6urriL7/8IoqiKA4ePFjs0aNHgde/9dZbopGRkebxwoULxbp16xbaj5+fX4HbiouiKAIQp06dWqCtffv24ldffVWgbf369WLt2rVFURTFAwcOiHK5XIyOjtY8v3//fhGAuGvXLlEU//+25o8fP9ZsEx4eLgIQ79y5I4qiKA4fPlwcN25cgf2EhISIMplMfPr0qSiKomhvby8OGzZM83xeXp5oYWEhLl26VBRFUVy+fLloYGAgJiYmFnq/oiiKW7duFY2NjcVnz56JoiiKERERoiAImhry9e3bV/T39y+yDyJtwiMbRNVcZGQkFAoFWrdurWkzNTVFw4YNERkZCQC4du0aWrVqVeB1/3389OlTqNXqYu/Xzc2twOOzZ89izpw5qFGjhuZr7NixiI2NRUZGBiIjI2FnZwcbGxvNazw8PIq9v3/vZ+3atQX20717d+Tl5eHOnTua7Zo1a6b5uyAIqFWrFuLj4wE8PzXTokULmJiYFLmPPn36QKFQYNeuXQCAn376Cd7e3nBwcCiwna6uLjIyMkr8HoiqG4XUBRBR+RL/mUNQVHv+If9///1FrzMzM8Pjx4+LvV99ff0Cj/Py8jB79mz069ev0LZqtbrIOv9bU/7E1H9v+9/Jp3l5eXjnnXcwefLkQv3Z2dlp/q5UKgvtKy8vD8DzkPAyOjo6GD58ONasWYN+/fph06ZN+P777wttl5SUhHr16r20LyJtwLBBVM05OTkhJycHp06dgqenJwAgMTER169f18y/aNSoEU6fPl3gdf+dANmiRQvExcXh8ePHMDY2LnEdLVu2xLVr1+Do6PjCOqOiohATEwMrKysAwIkTJwpsY25uDgCIjY3V1BAREVFoP5cvX37hfoqjWbNmWLVqFZKSkl54dGPMmDFwdnbGkiVLkJ2dXWSIunTpEgYMGFDqOoiqC55GIarm6tevDz8/P4wdOxbHjh3D+fPnMWzYMFhbW8PPzw8AMGnSJOzbtw8LFizAjRs3sHz5cuzfv7/AkYUWLVrA3Nwcx48fL1Udn332GdatW4dZs2bh8uXLiIyMxNatW/HJJ58AALp06YKGDRtixIgROH/+PEJCQjBz5swCfTg6OsLW1hazZs3C9evX8fvvv+O7774rsM1HH32EEydOIDAwEBEREbhx4wZ+/fVXTJo0qdi1DhkyBLVq1UKfPn1w/Phx3L59Gzt27CgQfho3bow2bdrgo48+wpAhQwodDbl79y4ePHiALl26lPRbRVTtMGwQaYE1a9bA1dUVPXv2hIeHB0RRxL59+zSnEtq2bYtly5ZhwYIFcHFxwR9//IF33323wBwNuVyOUaNGYePGjaWqoXv37ti7dy+Cg4Ph7u6ONm3aYMGCBbC3twfw/BTJrl27kJmZiVatWmHMmDGFrohRKpXYvHkzrl69ChcXF8ybN09zWW2+Zs2a4ciRI7hx4wbat2+PFi1a4NNPP0Xt2rWLXauOjg7+/PNPWFhYwNfXF02bNsXXX38NuVxeYLvRo0cjKysLo0aNKtTH5s2b0a1bN837I9JmgviiE7pEpNXGjh2Lq1evFrh08+HDh2jSpAnOnj1bYf+ICoKAXbt2oU+fPhWyv5L48ssvsWXLFly8eLFAe2ZmJurXr4/Nmzejbdu2ElVHVHnwyAYRAQC+/fZbnD9/Hjdv3sSiRYvw888/Y+TIkQW2sbS0xOrVqxEVFSVRlZVDWloawsLCsGjRoiInot67dw8zZ85k0CD6B49sEBEAYNCgQTh8+DBSU1NRt25dTJo0CQEBAVKXVSmPbPj7+2Pz5s3o06cPNm3aVOj0ChEVxLBBRERE5YqnUYiIiKhcMWwQERFRuWLYICIionLFsEFERETlimGDiIiIyhXDBhEREZUrhg0iIiIqVwwbREREVK4YNoiIiKhc/R8+a9Udwzrb7wAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 600x400 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Reseta espectro e prepara constantes internas\n",
    "Sfk  =  np.zeros(Nf)   \n",
    "qF   =  2*pk1*Fm/Vm\n",
    "\n",
    "# Prepara operação matricial\n",
    "Rij  =  R0**df;        \n",
    "dRij =  Rij.copy();\n",
    "\n",
    "# Loop sobre o domínio da frequência\n",
    "for k in range(Nf):\n",
    "    Rij   *= dRij\n",
    "    Sfk[k] = np.dot(np.dot(qF,Rij),qF);\n",
    "\n",
    "# Multiplicação final pelo espectro da velocidade\n",
    "Sfk *= SV\n",
    "\n",
    "#Visualiza espectro da força modal\n",
    "plt.figure(5, figsize=(6,4))\n",
    "plt.loglog(f, Sfk)\n",
    "plt.axis([0.01, fp, 1e0, 1e5])\n",
    "plt.title('Espectro da força modal flutuante')\n",
    "plt.xlabel('log(frequency)')\n",
    "plt.ylabel('log(Power)')\n",
    "plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 6 Cálculo da resposta modal média e flutuante <a name=\"section_6\"></a> \n",
    "\n",
    "Uma vez determinada a força modal média, a resposta modal média é facilmente obtida através da rigidez modal com a expressão:\n",
    "\n",
    "$$ \\bar{u}_k = \\frac{\\bar{F}_k}{K_k}$$\n",
    "\n",
    "onde $K_k = \\omega_k^2 M_k$, ou apenas $K_k = \\omega_k^2$ caso a normalização das formas modais pela matriz de massa tenha sido adotada.\n",
    "\n",
    "Já o espectro da resposta modal flutuante deve ser obtido através da admitância mecânica, definida para sistemas com um grau de liberdade como:\n",
    "\n",
    "$$\\lvert H(f) \\rvert ^2 = \\frac{1}{K_k^2 \\left [ \n",
    "                                         \\left ( 1 - \\beta^2 \\right )^2 + \n",
    "                                         \\left ( 2 \\zeta_k \\beta \\right )^2\n",
    "                                         \\right ]}$$\n",
    "\n",
    "onde $\\beta = f \\; / \\; f_k$ é a frequência adimensionalizada e $\\zeta_k$ é o amortecimento modal (razão do crítico). Assim, o espectro da parcela flutuante da resposta modal é dado por:\n",
    "\n",
    "$$ S_{u_k}(f) = \\lvert H(f) \\rvert ^2  S_{f_k}(f) $$\n",
    "\n",
    "Abaixo estão demonstrados estes cálculos para a torre do exemplo de aplicação.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/QAAAGNCAYAAAC/lzpCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqJklEQVR4nOzdd1hT59sH8G8SQsLeIBvcIqCIE7WIq8VZ7bDLVWtrpfWnaFtt39pqB52WDrStHdYOa62jtbW1tOJeiOCoEwUZskE2ISTn/QOTioACBg7j+7kuLsjJyTl3kkPOufM8z/1IBEEQQERERERERERtilTsAIiIiIiIiIio8ZjQExEREREREbVBTOiJiIiIiIiI2iAm9ERERERERERtEBN6IiIiIiIiojaICT0RERERERFRG8SEnoiIiIiIiKgNYkJPRERERERE1AYxoSciIiIiIiJqg5jQE1Gr8NNPP0EikWDx4sVih9KuPP3005BIJNi+fbvYoRARERGRgTGhp2axbt06SCSSOn+WLFkidnhYsmQJzM3N8eCDDyItLQ19+/bF3r17m32/ycnJkEgkWLduXbPvq6G8vLwwa9Ysg25TIpHg1Vdf1d8+c+YMXn31VSQnJ9e5fnZ2Np599lmsXbsW69evx4EDBwwaT11GjBiBESNGNPt+xPTPP/9g69at+PTTTzFv3jzk5+c3eVut8dglovbjVtcNEokEu3fvFjvE27p69SpeffVVJCQkiB1KhzjHGcoPP/yAyMhIscMwuN27dzf5f0f3/1jfdRu1LkZiB0Dt29dff42ePXvWWObi4iJSNNXKy8vx4YcfYtOmTdiyZQu6d++OoKAgBAUFiRpXe3Lo0CG4ubnpb585cwYrVqzAiBEj4OXlVWv9efPmYd68eXjiiSfg7OyMxx9/HPHx8TA1NW22GFevXt1s224NiouLMXfuXHz//fcYNWoULl++jGeffRbff/99k7bn7OyMQ4cOoUuXLgaOlIjoP3VdNwCAj4+PCNE0ztWrV7FixQp4eXmhb9++YodDDfTDDz/g9OnTWLhwodihEDUJE3pqVr6+vujfv7/YYdRgYmICtVoNALj33nuxfv16kSNqfwYPHtyo9bds2aL/e/z48Rg/fryhQ6qlLVwc3gkLCwtcvnxZf/vtt9++o+0pFIpGv69ERI3VGq8bmktZWVmzfnHd3Np6/ETtBbvck2hu7patc3MXcF23n5iYGDz99NOwt7eHnZ0dpk6diqtXr9Z6/A8//IAhQ4bA3Nwc5ubm6Nu3L7788kv9/dHR0Zg8eTLc3NygVCrRtWtXPPXUU8jNza21rf3792PUqFGwsLCAqakpgoKC8Pvvvzfo+V29ehUPPvggLCwsYGVlhWnTpiEzM7POdY8dO4ZJkybB1tYWSqUSAQEB+Omnnxq0nxUrVmDQoEGwtbWFpaUl+vXrhy+//BKCINRYT61W4/nnn0enTp1gamqKYcOG4ejRo7W2p3u9d+3ahblz58LOzg6WlpaYMWMGSktLkZmZiQcffBDW1tZwdnbGkiVL9F+Q6Nz43q5btw4PPPAAACAkJETffVLXdbuh78err74KiUSCf//9Fw8//DCsrKzg5OSExx9/HIWFhTXW1Wq1+Pjjj9G3b1+YmJjA2toagwcPxq+//qpfp67uiA19Lesya9YsmJub49y5c7j77rthZmYGZ2dnvPXWWwCAw4cPY9iwYTAzM0P37t3xzTff1NpGZmYmnnrqKbi5ucHY2Bje3t5YsWIFqqqqaqynUqmwcuVK9OrVC0qlEnZ2dggJCcHBgwf160RFReGuu+6Co6MjzMzM4Ofnh3feeafWezVixAj4+voiNjYWw4cPh6mpKTp37oy33noLWq1Wv159Xe7PnTuHhx9+GE5OTlAoFPDw8MCMGTOgUqkAADk5OZg/fz58fHxgbm4OR0dHjBw5Evv27bvta0pEVJdNmzZh0KBBsLKy0n9mPf744/r7dV2Nv/vuO4SHh6NTp04wMTFBcHAw4uPja22voefg9PR0PPnkk3B3d4exsTFcXFxw//33IysrC7t378aAAQMAALNnz9af63TnQt054tSpUxg7diwsLCwwatQoAEB+fj7mz58PV1dXGBsbo3PnznjppZf0n6O3IggC3nnnHXh6ekKpVKJfv374448/aq1XUVGBxYsXo2/fvrCysoKtrS2GDBmCX375pUGvue5csXfvXgQFBcHU1FT/mhcVFWHJkiXw9vaGsbExXF1dsXDhQpSWltbYhqHft19//RVDhgyBqakpLCwsMGbMGBw6dKjGOjk5Ofr3TKFQwMHBAUOHDsXff/+tf16///47rly5UmOIh47Y1wWnT5/G5MmTYWNjA6VSib59+9a53rlz53DPPffA1NQU9vb2mDdvHoqLi2ut15hrYGo72EJPzUqj0dRKRoyMmnbYPfHEExg/fjx++OEHpKam4rnnnsNjjz2GXbt26ddZvnw5XnvtNUydOhWLFy+GlZUVTp8+jStXrujXuXTpEoYMGYInnngCVlZWSE5OxqpVqzBs2DCcOnUKcrkcALBnzx6MGTMG/v7++PLLL6FQKLB69WpMnDgRGzZswLRp0+qNtby8HKNHj8bVq1cRERGB7t274/fff6/zMTExMbjnnnswaNAgfPrpp7CyssKPP/6IadOmoays7Lbj25OTk/HUU0/Bw8MDQPUJ4tlnn0V6ejqWL1+uX2/u3LlYv349lixZgjFjxuD06dOYOnVqnR/4utd76tSp+PHHHxEfH48XX3wRVVVVOH/+PKZOnYonn3wSf//9N95++224uLggPDy8zu2MHz8eb775Jl588UVERUWhX79+AKDvut3Q90Pnvvvuw7Rp0zBnzhycOnUKy5YtAwB89dVX+nVmzZqF7777DnPmzMHKlSthbGyM48eP33YsWENfy/qo1WpMnToV8+bNw3PPPYcffvgBy5YtQ1FRETZv3owXXngBbm5u+PjjjzFr1iz4+voiMDAQQHUyP3DgQEilUixfvhxdunTBoUOH8PrrryM5ORlff/01AKCqqgqhoaHYt28fFi5ciJEjR6KqqgqHDx9GSkqKfujIpUuX8Mgjj+gvsE6cOIE33ngD586dq/Fa6fb96KOPYvHixXjllVewdetWLFu2DC4uLpgxY0a9z/fEiRMYNmwY7O3tsXLlSnTr1g0ZGRn49ddfUVlZCYVCoR+3/8orr6BTp04oKSnB1q1bMWLECPzzzz8c40lENdR13SCRSCCTyQBUD+maNm0apk2bhldffRVKpRJXrlypcS2g8+KLL6Jfv3744osvUFhYiFdffRUjRoxAfHw8OnfuDKDh5+D09HQMGDAAarUaL774Ivz9/ZGXl4edO3eioKAA/fr1w9dff43Zs2fj//7v//Q9zW4cflZZWYlJkybhqaeewtKlS1FVVYWKigqEhITg0qVLWLFiBfz9/bFv3z5EREQgISHhto0IK1aswIoVKzBnzhzcf//9SE1Nxdy5c6HRaNCjRw/9eiqVCvn5+ViyZAlcXV1RWVmJv//+G1OnTsXXX399y896nYyMDDz22GN4/vnn8eabb0IqlaKsrAzBwcFIS0vTvy7//vsvli9fjlOnTuHvv/+GRCIx+Pv2ww8/4NFHH8XYsWOxYcMGqFQqvPPOO/pzy7BhwwAA06dPx/Hjx/HGG2+ge/fuuHbtGo4fP468vDwA1cPvnnzySVy6dAlbt26tFYuY1wXnz59HUFAQHB0d8dFHH8HOzg7fffcdZs2ahaysLDz//PMAgKysLAQHB0Mul2P16tVwcnLC999/j2eeeaZWPI295qI2QiBqBl9//bUAoM4ftVotCIIgABBeeeWVWo/19PQUZs6cWWtb8+fPr7HeO++8IwAQMjIyBEEQhMuXLwsymUx49NFHGxynVqsV1Gq1cOXKFQGA8Msvv+jvGzx4sODo6CgUFxfrl1VVVQm+vr6Cm5uboNVq693umjVram1PEARh7ty5AgDh66+/1i/r2bOnEBAQoH9ddCZMmCA4OzsLGo2mwc9Ho9EIarVaWLlypWBnZ6eP8ezZswIAYdGiRTXW//777wUAdb7ezz77bI117733XgGAsGrVqhrL+/btK/Tr16/Gspvf202bNgkAhJiYmFvGf6v345VXXhEACO+8806Nx8yfP19QKpX657p3714BgPDSSy/dcl/BwcFCcHBwvffX91rWZ+bMmQIAYfPmzfplarVacHBwEAAIx48f1y/Py8sTZDKZEB4erl/21FNPCebm5sKVK1dqbPe9994TAAj//vuvIAiCsH79egGAsHbt2lvGU9dzWb9+vSCTyYT8/Hz9fcHBwQIA4ciRIzUe4+PjI9x9993620lJSbWO3ZEjRwrW1tZCdnZ2g2OpqqoS1Gq1MGrUKGHKlCkNfhwRtW+3um6QyWT69XSfideuXat3WzExMQIAoV+/fjU+u5OTkwW5XC488cQT+mUNPQc//vjjglwuF86cOVPvfmNjY2t9TurozhFfffVVjeWffvqpAED46aefaix/++23BQDCX3/9Ve/+CgoKBKVSWeuz9MCBAwKAW57jdJ/Fc+bMEQICAupdT0d3rvjnn39qLI+IiBCkUqkQGxtbY/nPP/8sABB27NghCIJh3zeNRiO4uLgIfn5+Na6RiouLBUdHRyEoKEi/zNzcXFi4cOEtn9v48eMFT0/PW78AQstfFzz00EOCQqEQUlJSamw3NDRUMDU11b+WL7zwgiCRSISEhIQa640ZM+aW1163uubS/T8mJSXd8jlS68Au99Ss1q9fj9jY2Bo/TW2hnzRpUo3b/v7+AKBvfY+OjoZGo0FYWNgtt5OdnY158+bB3d0dRkZGkMvl8PT0BACcPXsWAFBaWoojR47g/vvvh7m5uf6xMpkM06dPR1paGs6fP1/vPmJiYmBhYVEr5kceeaTG7cTERJw7dw6PPvoogOrWV93PuHHjkJGRccv9AMCuXbswevRoWFlZQSaTQS6XY/ny5cjLy0N2drY+HgD6/eg8+OCD9b4fEyZMqHG7V69eAFBrfHuvXr1q9IBorIa8Hzeq6zioqKjQP1ddV8PbHQd1achreSsSiQTjxo3T3zYyMkLXrl3h7OyMgIAA/XJbW1s4OjrWeN1+++03hISEwMXFpcZxEBoaCqC6x4ju+SmVyhrdFOsSHx+PSZMmwc7OTv9cZsyYAY1GgwsXLtRYt1OnThg4cGCNZf7+/rd8X8vKyrBnzx48+OCDcHBwuGUsn376Kfr16welUql/j//55586318i6tjqum44cuSI/n5dt/YHH3wQP/30E9LT0+vd1iOPPFKj+7SnpyeCgoL058TGnIP/+OMPhISE6M+FTXXffffVuL1r1y6YmZnh/vvvr7Fc1zPgn3/+qXdbhw4dQkVFRa1ze1BQkP48eqNNmzZh6NChMDc3138Wf/nllw3+LLaxscHIkSNrLPvtt9/g6+uLvn371nj97r777hoV1g35vp0/fx5Xr17F9OnTIZX+l8qYm5vjvvvuw+HDh1FWVgYAGDhwINatW4fXX38dhw8frjXs7HbEvC7YtWsXRo0aBXd39xrbnDVrFsrKyvTDC2JiYtC7d2/06dOnxno3X3MCjb/moraBCT01q169eqF///41fprKzs6uxm2FQgGguns7UD1OCqjZve1mWq0WY8eOxZYtW/D888/jn3/+wdGjR3H48OEa2yooKIAgCHB2dq61DV2Vfl13rbrk5eXBycmp1vJOnTrVuJ2VlQWgeho9uVxe42f+/PkAcMtxTUePHsXYsWMBAGvXrsWBAwcQGxuLl156qcbz0cV68/6NjIxqva46tra2NW4bGxvXu7yioqLeGG+loe/HjRpyHMhkslrP9XYa+lreiqmpKZRKZY1lxsbGtV4z3fIbX7esrCxs37691nHQu3dvAP8dBzk5OXBxcalxEXOzlJQUDB8+HOnp6fjwww+xb98+xMbGIioqqs7nUtcxoFAobvmcCwoKoNFobvn/BgCrVq3C008/jUGDBmHz5s04fPgwYmNjcc899zToNSWijqWu6wZdF2QAuOuuu7Bt2zZUVVVhxowZcHNzg6+vLzZs2FBrW3WdBzp16qQ/JzbmHJyTk3Pbz7vbMTU1haWlZY1leXl56NSpU40EFgAcHR1hZGR022sN3XO62c3LtmzZggcffBCurq747rvvcOjQIcTGxuLxxx9v8Dm8rmuirKwsnDx5stbrZ2FhAUEQ9K+fId833e/6rtG0Wi0KCgoAABs3bsTMmTPxxRdfYMiQIbC1tcWMGTPqrWl0I7GvC/Ly8hp0Hao7hm5287KmXHNR28Ax9CQahUJRZ8GXW528bkXXSpiWllbr20yd06dP48SJE1i3bh1mzpypX56YmFhjPRsbG0ilUmRkZNTahq4Qn729fb2x2NnZ1Vlw7uYTiG4by5Ytw9SpU+vc1o1j4G72448/Qi6X47fffqtxwti2bVuteHT7d3V11S+vqqpq8uttCA19PxrDwcEBGo0GmZmZdZ4I69PQ17K52Nvbw9/fH2+88Uad9+tO4A4ODti/fz+0Wm29Sf22bdtQWlqKLVu21GilMeTcyLa2tpDJZEhLS7vlet999x1GjBiBNWvW1FheX+0GIqLbmTx5MiZPngyVSoXDhw8jIiICjzzyCLy8vDBkyBD9enUlbZmZmfpzYmPOwQ4ODrf9vLudm5N2oPr8fOTIEQiCUOP+7OxsVFVV3fZaA6j/ed44Tex3330Hb29vbNy4scZ+GlJ471bx29vbw8TEpFZtlhvv1zHU+6b7Xd81mlQqhY2NjX7/kZGRiIyMREpKCn799VcsXboU2dnZ+PPPP2/5fMW+LrCzs2vQdaidnV29r9mNmuOai1oHttCTaLy8vHDy5Mkay3bt2oWSkpImbW/s2LGQyWS1Eocb6U5GulZdnc8++6zGbTMzMwwaNAhbtmyp8Y2lVqvFd999Bzc3N3Tv3r3e/YSEhKC4uLhGVXWguojLjXr06IFu3brhxIkTtVokdD8WFha3fD5GRkb6YkFA9Tes3377bY31dIXHbp6D/KeffqpVfKg53NyKrtPQ96MxdF3Ub3Uc1KWhr2VzmTBhAk6fPo0uXbrUeRzoEvrQ0FBUVFTUqjZ/o7peV0EQsHbtWoPFq6s8vGnTplv2IpFIJLXe35MnT9aqRExE1FgKhQLBwcH6aTlvroS+YcOGGtXIr1y5goMHD+rPiY05B4eGhiImJuaWw+DqO9fdyqhRo1BSUlIrSdRNqaurhF+XwYMHQ6lU1jq3Hzx4sNaQKYlEAmNj4xpJeWZmZoOr3NdnwoQJuHTpEuzs7Op8/W78UkHHEO+bq6srfvjhhxrrlZaWYvPmzfrK9zfz8PDAM888gzFjxuD48eM14qnrPRP7umDUqFHYtWtXrRmd1q9fD1NTU/1UsiEhIfj3339x4sSJGuvdfM3ZHNdc1DqwhZ5EM336dLz88stYvnw5goODcebMGXzyySewsrJq0va8vLzw4osv4rXXXkN5ebl+arMzZ84gNzcXK1asQM+ePdGlSxcsXboUgiDA1tYW27dvR3R0dK3tRUREYMyYMQgJCcGSJUtgbGyM1atX4/Tp09iwYUOd31TrzJgxAx988AFmzJiBN954A926dcOOHTuwc+fOWut+9tlnCA0Nxd13341Zs2bB1dUV+fn5OHv2LI4fP45NmzbVu5/x48dj1apVeOSRR/Dkk08iLy8P7733Xq0P6169euGxxx5DZGQk5HI5Ro8ejdOnT+O9996r1f2vOfj6+gIAPv/8c1hYWECpVMLb27tR70dDDR8+HNOnT8frr7+OrKwsTJgwAQqFAvHx8TA1NcWzzz5b5+Ma+lo2l5UrVyI6OhpBQUFYsGABevTogYqKCiQnJ2PHjh349NNP4ebmhocffhhff/015s2bh/PnzyMkJARarRZHjhxBr1698NBDD2HMmDEwNjbGww8/jOeffx4VFRVYs2aNvguioegq4w4aNAhLly5F165dkZWVhV9//RWfffYZLCwsMGHCBLz22mt45ZVXEBwcjPPnz2PlypXw9vZukS+TiKhtOX36dJ2fDV26dIGDgwOWL1+OtLQ0jBo1Cm5ubrh27Ro+/PBDyOVyBAcH13hMdnY2pkyZgrlz56KwsBCvvPIKlEqlfnYUoOHn4JUrV+KPP/7AXXfdhRdffBF+fn64du0a/vzzT4SHh+vPZyYmJvj+++/Rq1cvmJubw8XFRf+FbF1mzJiBqKgozJw5E8nJyfDz88P+/fvx5ptvYty4cRg9enS9j7WxscGSJUvw+uuv44knnsADDzyA1NRUvPrqq7W6W0+YMAFbtmzB/Pnz9dXwX3vtNTg7O+PixYsNem/qsnDhQmzevBl33XUXFi1aBH9/f2i1WqSkpOCvv/7C4sWLMWjQIIO+b1KpFO+88w4effRRTJgwAU899RRUKhXeffddXLt2TT8tXGFhIUJCQvDII4+gZ8+esLCwQGxsLP78888aPTL8/PywZcsWrFmzBoGBgZBKpejfv7/o1wWvvPKKvr7O8uXLYWtri++//x6///473nnnHf318sKFC/HVV19h/PjxeP311/VV7s+dO1dje81xzUWthFjV+Kh901XHvLnq6Y1UKpXw/PPPC+7u7oKJiYkQHBwsJCQk1Fvl/uZt6aqh3ly9c/369cKAAQP01XEDAgJqVJw9c+aMMGbMGMHCwkKwsbERHnjgASElJaXOqvv79u0TRo4cKZiZmQkmJibC4MGDhe3btzfoNUhLSxPuu+8+wdzcXLCwsBDuu+8+4eDBg3VWwD1x4oTw4IMPCo6OjoJcLhc6deokjBw5Uvj0009vu5+vvvpK6NGjh6BQKITOnTsLERERwpdfflmrOqlKpRIWL14sODo6CkqlUhg8eLBw6NChBr/euirzOTk5NZbPnDlTMDMzq7GsrtcyMjJS8Pb2FmQyWY3XoKHvR337r6sSq0ajET744APB19dXMDY2FqysrIQhQ4bUeO/qqnLf0NeyLnW9Drr99O7du9ZyT09PYfz48TWW5eTkCAsWLBC8vb0FuVwu2NraCoGBgcJLL70klJSU6NcrLy8Xli9fLnTr1k0wNjYW7OzshJEjRwoHDx7Ur7N9+3ahT58+glKpFFxdXYXnnntO+OOPP2r9z9QX38yZM2tU/a2ryr0gVL9/DzzwgGBnZycYGxsLHh4ewqxZs4SKigpBEKqPuyVLlgiurq6CUqkU+vXrJ2zbtq3W9omoY7tVlXvcMLPHb7/9JoSGhgqurq6CsbGx4OjoKIwbN07Yt2+fflu664Nvv/1WWLBggeDg4CAoFAph+PDhwrFjx2rtu6Hn4NTUVOHxxx8XOnXqJMjlcsHFxUV48MEHhaysLP06GzZsEHr27CnI5fIa57H6zhGCUF3hfN68eYKzs7NgZGQkeHp6CsuWLdN/jt6KVqsVIiIiBHd3d8HY2Fjw9/cXtm/fXuc57q233hK8vLwEhUIh9OrVS1i7dq3+3Ho79Z0rBEEQSkpKhP/7v/8TevTooT/n+vn5CYsWLRIyMzMFQWie923btm3CoEGDBKVSKZiZmQmjRo0SDhw4oL+/oqJCmDdvnuDv7y9YWloKJiYmQo8ePYRXXnlFKC0t1a+Xn58v3H///YK1tbUgkUhqvB5iXxecOnVKmDhxomBlZSUYGxsLffr0qXMWBd21lFKpFGxtbYU5c+YIv/zyS61zfkOvuVjlvm2RCMINfVWI2pHKykoMHDgQmzZtQrdu3cQOh4iIiFrA7t27ERISgk2bNtWqHk+tF983oqbhGHpql/78808cOnQIarUav//+u9jhEBERERERGVy7T+hTU1MxYsQI+Pj4wN/f/5bjkan9ePPNNzFmzBgIgqAvkkZERERERNSetPsu9xkZGcjKykLfvn2RnZ2Nfv364fz58zAzMxM7NCIiIiIiIqIma/dV7p2dnfVzUTs6OsLW1hb5+flM6ImIiIiIiKhNa/Vd7vfu3YuJEyfCxcUFEomk1jydALB69Wp4e3tDqVQiMDAQ+/btq3Nbx44dg1arhbu7ezNHTURERERERNS8Wn1CX1paij59+uCTTz6p8/6NGzdi4cKFeOmllxAfH4/hw4cjNDQUKSkpNdbLy8vDjBkz8Pnnn7dE2ERERERERETNqk2NoZdIJNi6dSvuvfde/bJBgwahX79+WLNmjX5Zr169cO+99yIiIgIAoFKpMGbMGMydOxfTp0+/5T5UKhVUKpX+tlarRX5+Puzs7CCRSAz7hIiIiJpAEAQUFxfDxcUFUmmr/26+1dNqtbh69SosLCx4riciolahoef6Nj2GvrKyEnFxcVi6dGmN5WPHjsXBgwcBVL8Qs2bNwsiRI2+bzANAREQEVqxY0SzxEhERGVJqairc3NzEDqPNu3r1KofjERFRq3S7c32bTuhzc3Oh0Wjg5ORUY7mTkxMyMzMBAAcOHMDGjRvh7++vH3//7bffws/Pr85tLlu2DOHh4frbhYWF8PDwwIULF2Bra9s8T4ToOrVajZiYGISEhEAul4sdDnUAPObapuLiYnh7e8PCwkLsUNoF3euYlJTEcz21CLVajb/++gtjx47lZy81Ox5vbVNRURHc3d1ve65v0wm9zs3d4wRB0C8bNmwYtFptg7elUCigUCgQFRWFqKgoaDQaAICtrS3s7OwMFzRRHdRqNUxNTWFnZ8cPXGoRPObaJt17xe7hhqF7HS0sLGBpaSlyNNQR6D57LS0t+dlLzY7HW9t2u3N9mx54Z29vD5lMpm+N18nOzq7Vat9YYWFhOHPmDGJjY+9oO0RERERERETNoU0n9MbGxggMDER0dHSN5dHR0QgKCrqjbUdFRcHHxwcDBgy4o+0QERERERERNYdW3+W+pKQEiYmJ+ttJSUlISEiAra0tPDw8EB4ejunTp6N///4YMmQIPv/8c6SkpGDevHl3tN+wsDCEhYWhqKgIVlZWd/o0iIiIiIiIiAyq1Sf0x44dQ0hIiP62rmDdzJkzsW7dOkybNg15eXlYuXIlMjIy4Ovrix07dsDT0/OO9nvzGHoiIiIiIiKi1qTVJ/QjRoyAIAi3XGf+/PmYP3++QffLFnoiIiIiIiJqzdr0GHoiIiIiIiKijooJfT1YFI+IiIiIiIhaMyb09eC0dURERERERNSaMaEnIiIiIiIiaoOY0NeDXe6JiIiIiIioNWNCXw92uSciIiIiIqLWjAk9ERERERERURvEhL4e7HJPRERERERErRkT+nqwyz0RERERERG1ZkzoiYiIiIiIiNogJvREREREREREbRATeiIiIiIiIqI2iAl9PVgUj4iIiIiIiFozJvT1YFE8IiIiIiIias2Y0BMREVG7UFZWBk9PTyxZskTsUIiIiFoEE3oiIiJqF9544w0MGjRI7DCIiIhaDBN6IiIiavMuXryIc+fOYdy4cWKHQkRE1GKY0BMREZGo9u7di4kTJ8LFxQUSiQTbtm2rtc7q1avh7e0NpVKJwMBA7Nu3r8b9S5YsQURERAtFTERE1DowoSciIiJRlZaWok+fPvjkk0/qvH/jxo1YuHAhXnrpJcTHx2P48OEIDQ1FSkoKAOCXX35B9+7d0b1795YMm4iISHRGYgfQWkVFRSEqKgoajUbsUIiIiNq10NBQhIaG1nv/qlWrMGfOHDzxxBMAgMjISOzcuRNr1qxBREQEDh8+jB9//BGbNm1CSUkJ1Go1LC0tsXz58jq3p1KpoFKp9LeLiooAAGq1Gmq12oDPjKhuuuOMxxu1BB5vbVND3y8m9PUICwtDWFgYioqKYGVlJXY4REREHVJlZSXi4uKwdOnSGsvHjh2LgwcPAgAiIiL03e3XrVuH06dP15vM69ZfsWJFreUxMTEwNTU1YPREtxYdHS12CNSB8HhrW8rKyhq0HhN6IiIiarVyc3Oh0Wjg5ORUY7mTkxMyMzObtM1ly5YhPDxcf7uoqAju7u4ICQmBnZ3dHcVL1BBqtRrR0dEYM2YM5HK52OFQO8fjrW3S9R67HSb0RERE1OpJJJIatwVBqLUMAGbNmnXbbSkUCigUilrL5XI5L3apRfGYo5bE461taeh7xaJ4RERE1GrZ29tDJpPVao3Pzs6u1WpPRETU0TChJyIiolbL2NgYgYGBtcZ+RkdHIygoSKSoiIiIWocOkdBPmTIFNjY2uP/++8UOhYiIiG5SUlKChIQEJCQkAACSkpKQkJCgn5YuPDwcX3zxBb766iucPXsWixYtQkpKCubNmydi1EREROLrEGPoFyxYgMcffxzffPON2KEQERHRTY4dO4aQkBD9bV3BupkzZ2LdunWYNm0a8vLysHLlSmRkZMDX1xc7duyAp6enWCETERG1Ch0ioQ8JCcHu3bvFDoOIqAZBEKAVAJm0dmEvoo5kxIgREAThluvMnz8f8+fPb6GIiIiI2oZW3+V+7969mDhxIlxcXCCRSLBt27Za66xevRre3t5QKpUIDAzEvn37Wj5QIqJGmvHVUYxetQeqKo3YoRARERFRG9TqE/rS0lL06dMHn3zySZ33b9y4EQsXLsRLL72E+Ph4DB8+HKGhofpxd0RErZFGK2DfxVwk5ZYiIeWa2OEQERERURvU6rvch4aGIjQ0tN77V61ahTlz5uCJJ54AAERGRmLnzp1Ys2YNIiIiGr0/lUoFlUqlv11UVAQAUKvVUKvVjd4eUWPojjEea+1fccV/73GZSrzPFx5zbRPfLyIiIgLaQEJ/K5WVlYiLi8PSpUtrLB87diwOHjzYpG1GRERgxYoVtZbHxMTA1NS0Sdskaqybp2ei9idfBeg+gvcdOoqiC7ceP9zceMy1LWVlZWKHQERERK1Am07oc3NzodFo4OTkVGO5k5MTMjMz9bfvvvtuHD9+HKWlpXBzc8PWrVsxYMCAOre5bNkyhIeHY+3atVi7di00Gg0SExMREhICOzu7Zn0+RGq1GtHR0RgzZgzkcrnY4VAzOp9ZDBw/BADw7umHcQPcRImDx1zbpOs9RkRERB1bm07odSSSmhWiBUGosWznzp0N3pZCoYBCocDixYuxePFiFBUVwcrKCnK5nBe71GJ4vLV/5TfUwSusqBL9/eYx17bwvSIiIiKgDRTFuxV7e3vIZLIarfEAkJ2dXavVvrGioqLg4+NTb0s+EdGduHEMfX4px0MTERERUeO16YTe2NgYgYGBtcZ+RkdHIygo6I62HRYWhjNnziA2NvaOtkNEVJfiiir93wVllSJGQkRERERtVavvcl9SUoLExET97aSkJCQkJMDW1hYeHh4IDw/H9OnT0b9/fwwZMgSff/45UlJSMG/ePBGjJiK6taIbEvoSVdUt1iQiIiIiqlurT+iPHTuGkJAQ/e3w8HAAwMyZM7Fu3TpMmzYNeXl5WLlyJTIyMuDr64sdO3bA09PzjvYbFRWFqKgoaDSa269MRNRIJTck9GWVTOiJiIiIqPFafUI/YsQICMKtp3OaP38+5s+fb9D9hoWFISwsTF8Uj4jIkEpUN8xDX8kvDomIiIio8dr0GPrmxKJ4RNScSlX/JfHlTOiJiIiIqAmY0NeDRfGIqDndmMSzhZ6IiKh92hqfhnsi9+JKXqnYoVA7xYSeiEgEZeobE3qOoSciImqPFm08gXOZxXjl13/FDoXaKSb09WCXeyJqTuWVNxbFYws9ERFRe5ZZWCF2CNROMaGvB7vcE1FzujGJL1drblv8k4iIiNquKi3P89Q8mNATEYngxoReEIAKtVbEaIiIiMjQbvyyvkrD8zw1Dyb0REQiuLmyfSnH0RMREbUrRRX/ndsrq5jQU/NgQl8PjqEnouZUpq6ZwHPqOiIiovYlv7RS/3dxBb+4p+bBhL4eHENPRM2pTFUzgWdhPCIiovYlv1Sl/7uksgpajqOnZsCEnohIBDcn8Jy6joiIqH0pKv/v3C4I1Uk9kaExoSciamFarYDy6/PQ25kZA2ALPRERUXtTVKGucZvd7qk5MKEnImphFVX/Je925kzoiYiI2qOicvUtbxMZAhP6erAoHhE1l9Lr4+clEsDOTAGAXe6JiIjam6KbWuTZQk/NgQl9PVgUj4iaS4mq+oRuZmwEM4UMAFvoiYiI2pvaXe7ZQk+Gx4SeiKiFlVz/ht5cYQRTYyMATOiJiIjamxuL4gFsoafmwYSeiKiFFauqv6E3VxrB1Li6hb6cXe6JiIjaFbbQU0tgQk9E1MJ0Y+jNFUYwMWaXeyIiovZI1yIvk0oA1B5TT2QITOiJiFpYia6FXmEEM3a5JyIiapd0Ve1drU0AsMs9NQ8m9ERELezGMfT/tdDzJE9ERNSeXCurBAB42JoCqN0Fn8gQmNDXg9PWEVFzKb5e5f7GMfRsoSciImpf8kuvJ/R21Qk9W+ipORiJHUBrFRYWhrCwMBQVFcHKykrscIioHSlV3Vjlngk9UWtx7+pDsLW1gaXSCFYmcliayGGplF//2+iGv+WwVBrp7zc2YvsIEdVUpdHqx8zrWuhZFI+aAxN6IqIWdmOXewulvMYyIhLPlfxypJZKGv04E7kMlibXvwRQVif8Vjcl/bovBWxMjeFkqYSTpVI/5IaI2p/C8v+Sd3cbttBT82FCT0TUwnQndHNldYsfUPPET0Ti+HJGP0gU5igsV6OoQo2i8qob/q7+XVhepf9b979crtagXK1BVpGqUfuzVBqhk5VSn+B3slTCyVJR/ff15fbmCn2FbCJqOwquj5+3MpHD2rT6XM8WemoOTOiJiFrYtevJu/X1VjyACT1Ra9DPwxp2dnYNXl+jFVBSUXU90f8v6b/5i4Dqv6u/CMgrrURmYQXK1ZrqZRUluJBVUu8+pBLAwUJxPdlX1kj2nSwV8LA1hau1CYxk7PZP1JoUlFWf121M5bBQVqdcbKGn5tAhEvrffvsNixcvhlarxQsvvIAnnnhC7JCIqAPTJe/WpkzoidoymVQCK1M5rEzlcG/E4wRBQLGqClmFFcgqUiGzqAJZ138yCyuQVaxCVmEFckpU0GgFZBWprrf+F9a5PSOpBG42JvC0M4OXnSm87M3gZWcGTztTuNmYcow/kQh0BfGsTY31w+uY0FNzaPcJfVVVFcLDwxETEwNLS0v069cPU6dOha2trdihEVEHpZvGxvKGFvpytQaVVVpeeBN1ABKJpHqsvVKObk4W9a6n0QrIK9El/Nd/F15P/K8n/yn5ZVBVaZGcV4bkvDLsuWkbUgngamOiT/C97KqTfS97U3jYmvEzh6iZ5JZUD8GxN1foz/UlqiqoNVrI2aOGDKjdJ/RHjx5F79694erqCgAYN24cdu7ciYcffljkyIiooyosr/6G3trEGObK/z6GiyrUsDdXiBUWEbUyMqkEjpZKOFoq611HqxWQXaxCcl4pknNLkZxXhit5//0uq9QgNb8cqfnl2Hex5mONpBJ425uheycL9HSyQPdOFujhZAF3W1OO2ye6Q9nXa2o4WipgbSKHVAJoBaCgtPKW/9NEjdXqE/q9e/fi3XffRVxcHDIyMrB161bce++9NdZZvXo13n33XWRkZKB3796IjIzE8OHDAQBXr17VJ/MA4ObmhvT09JZ8CkREeoIgoLD8eqEcUzlkUgkslEYorqgec8uEnogaQyqVoJNV9bj6wZ1rjv8XBAE5xarrrfelNRL95NwylKiqcDG7BBezS/A7MvSPU8ql6O5kge5O1Ql+904W6NnJAo4WCkgkTPSJGiK7+HpCb6GAVCqBrZkCuSUq5JSomNCTQbX6hL60tBR9+vTB7Nmzcd9999W6f+PGjVi4cCFWr16NoUOH4rPPPkNoaCjOnDkDDw8PCIJQ6zE8GRGRWMrVGqg11Z9L1te74FmZyPUJPRGRoUgk/7XwD/SuOdRQEARkFFbgfFYxLmQW43xWMc5nFuNidgkq1FqcTCvEybSaY/atTeXwdbGCr6sV/K7/uNua8LqKqA45xRUAAEeL6uTd3twYuSUq5JVUihkWtUOtPqEPDQ1FaGhovfevWrUKc+bM0Re6i4yMxM6dO7FmzRpERETA1dW1Rot8WloaBg0aVO/2VCoVVKr/pp0pKioCAKjVaqjVvNim5qU7xnistV+5RdUneCOpBHKJFmq1GhaK6o/igpKKFn/vecy1TXy/6E5JJBK4WJvAxdoEIT0c9cs1WgFX8kpx/nqSfyGrGOcyi5GcW4prZWrsT8zF/sRc/fqWSiN9gq/77WlnyiSfOrwbW+gBwM7cGACQV9q46S2JbqfVJ/S3UllZibi4OCxdurTG8rFjx+LgwYMAgIEDB+L06dNIT0+HpaUlduzYgeXLl9e7zYiICKxYsaLW8piYGJiamhr2CRDVIzo6WuwQqJmklwKAEZQyLf744w8AQFWZFIAUew7FouRi7V5FLYHHXNtSVlYmdgjUTsmkEnR2MEdnB3OE+jnrl1eoNbiYVYJT6YU4lV6I0+mFOJ9ZjKKKKhy8lIeDl/L061oojdDHzRoBHtU/fd1tYGtmLMbTIRJN1vUv8B0tryf0ZtW/2UJPhtamE/rc3FxoNBo4OTnVWO7k5ITMzEwAgJGREd5//32EhIRAq9Xi+eefv+Ucs8uWLUN4eLj+dlFREdzd3RESEtKouWmJmkKtViM6OhpjxoyBXC4XOxxqBvsT84CTcXCxscC4cUEAgN8LE3DxTDY69+iNcYM8WjQeHnNtk673GFVLTU3F9OnTkZ2dDSMjI7z88st44IEHxA6rXVHKZfBzs4Kfm5V+WWWVFheyinH6hiT/bGYxiiuqarXke9mZIsDDpjrJd7dBT2cLVvqmdquySqtvoXexNgEAfY2cXCb0ZGBtOqHXublblyAINZZNmjQJkyZNatC2FAoFFAoFoqKiEBUVBY1GAwCQy+W82KUWw+Ot/SpSVX+m2Jkr9O+xtWl1y1VJpVa0953HXNvC96omIyMjREZGom/fvsjOzka/fv0wbtw4mJmZiR1au2ZsJIXv9a72D11fptZocT6zGCfSriE+5RriUwpwKadUP63e1vjqYZAKIyn6ultjkLctBnrbIcDDGmaKdnFZSoSMwnIIQnWBSbvrvVP0Xe5L2OWeDKtNf3La29tDJpPpW+N1srOza7XaN1ZYWBjCwsJQVFQEKyur2z+AiKgBdF3tdCd2APr5aYsqqkSJiaitc3Z2hrNzdfdwR0dH2NraIj8/nwm9COSy/5L8Rwd5AgAKy9RISKtO7nVJflFFFY4k5eNIUj6ARMikEvi6WlUn+F62GOBlCytTfnFFbVN6QTmA6tZ5XSOjvX4MPVvoybDadEJvbGyMwMBAREdHY8qUKfrl0dHRmDx58h1t++YWeiIiQ9AVw7Ezq53QF5ax0Bl1THc6Re2Njh07Bq1WC3d39xaKnm7HylSO4O4OCO7uAADQagVczi1BbHIBjibl48jlPFwtrMCJ1Gs4kXoNn++9DIkE6OFkgYHettU/Xrac6ovajLTrCb2bzX/1t3Rj6HPZQk8G1uoT+pKSEiQmJupvJyUlISEhAba2tvDw8EB4eDimT5+O/v37Y8iQIfj888+RkpKCefPm3dF+2UJPRM0hv1TXQv/ffPP6hJ7T1lEHdadT1Ork5eVhxowZ+OKLL1oyfGokqVSCro4W6OpogYcHVr9/aQVlOJqUX/2TnI/LOaU4l1ldYX/9oSsAAG97Mwz0qk7wB3W2rZEsEbUmyXmlAAB3GxP9sv+63LOFngyr1Sf0x44dQ0hIiP62rmDdzJkzsW7dOkybNg15eXlYuXIlMjIy4Ovrix07dsDT0/OO9ssWeiJqDrpiODdWfLZkQk8d3J1OUQtUTzs7ZcoULFu2DEFBQbfcH6eobX2czOWY6OeEiX7VQyZzS1SITS5A7JVriE0uwPmsYiTlliIptxQbj6UCADxsTRDUxQ5BnW0xyNu2TVXS55Sh7dvFrGIAgLedif49tlJWF4HMLVGhsrKyRad25PHWNjX0/Wr1Cf2IESMgCLeexmn+/PmYP3++QffLFnoiag4516ve2t/QQq+7CM3nuDqiWhoyRa0gCJg1axZGjhyJ6dOn33abnKK27egvAfp7A2XuwOViCS4VVf+klgAp+eVIyU/Dj7FpkECAqxnQ3VJAdysBnS0FKGRiR397nDK0fTqRJAMgQX7SGewo+BcAUKkBACOoqrTYvP0PmIqQhfF4a1saOkVtq0/oiYjak+zr89J2svpvLKguuc/huDqiWhoyRe2BAwewceNG+Pv7Y9u2bQCAb7/9Fn5+fnVuk1PUtn3FFVU4mpyPg5fycehyHi5mlyKtFEgrlWBXBiCXSdDX3RpBnW0R1MUOfq6WrWqaPE4Z2n5VVmkRfuQfAAIenhCCTjfUfnjzdAwKytTwHTgcPTtZtFhMPN7apoZOUcuEvh7sck9EhqbVCvp5aZ0s/2uhd7Co/rugrBJqjbZVXXQStRa3mqJ22LBh0Gq1Dd6Wboram3H6xrbDVi7HPX6uuMfPFUD1l6UHL+XhQGIuDiTm4mphRXWX/eQCfLjrEswVRgjqYoe7rhfnc7dtHT0xeMy1P0n5xdBoBZgrjOBma17js8vVxgQFZWpkFavh597y7zuPt7aloe8VE/p6sMs9ERlaflklqrQCJBLA4YYu9zamxpBKAK1Q3e3eiZWcifSac4paaj8cLZW4N8AV9wa4QhAEJOeV4UBiLg5eysXBS3m4VqbGX2ey8NeZLABAZwcz3NXNAcE9HDDY2w4mxm2gfz61CYnZJQCAro7mtb6IdLEywen0IqRfKxcjNGqnmNATEbWQrOvd7e3NFTC6oRVeJpXAzlyBnGIVcopVTOiJbtCcU9RS+ySRSOBtbwZvezM8NtgTWq2A01cLsfdCDvZcyMHxlGu4nFOKyzmlWHcwGcZGUgzyttVPrVdXIkbUUBez/kvob+Z6veo9E3oyJCb09WCXeyIytMzC6oT+xu72Ova6hJ7j6KkDEmuKWuoYpFIJ/N2s4e9mjWdGdkNRhRoHE3Ox50IO9l7IRfq1cuy7mIt9F3Px+u9n4WylRHB3B9zV3QFDu9rrpxYlaojTVwsBAD2cao+Rd7VmQk+Gx4S+HuxyT0SGlppfXa3Uzbr22E0HCwXOZgC5xUzoqeMRa4pa6pgslXLc4+uMe3ydIQgCLuWUYM+F6gT/yOU8ZBRW4MfYVPwYmwqZVIIAd2uE9HRESA9H9HK2YOs91UsQBMSnXAMABHhY17rfTddCX8CEngyHCT0RUQtJu34C153Qb2RvXj11HVvoqSMSa4paIolEgq6OFujqaIE5w7xRodbgSFI+9pzPwd6LOUjMLsGxKwU4dqUA7+48D2crJUJ6OmJkD0cM7WrPsfdUQ1pBOXJLVJDLJPB1rd0g6MIWemoGTOjrwS73RGRoqQXVLfR1VVfWVbrPLeZc9EREYlHKZfqx9ACQVlCGPRdyEHMuG/sTc5FRWIEfjqTghyMpMDaSYkhnO4zqVd1631oq55N4jqcUAAB8XKyglNf+skfX5T6nWIUKtabOdYgaiwl9PdjlnogMLTW/+ht5d9vaLfQOnIueiKjVcbMxxaODPPHoIE9UqDU4dDkPMeeysetcNtIKyrHneqE94F90czTHyF7VrfeBnjY1ip9Sx3D8SnVC36+O7vYAYGtmDHOFEUpUVUjNL0O3OsbZEzUWE3oiohaib6G3qb+FPqe4okVjIiKihlHKZQjpUd0av2KSgIvZJdh1PbmPu1KAi9kluJhdgs/2XIal0gjBPRwxsqcDgrs7wtbMWOzwqQUcScoHAAR62tR5v24GhlPphbiUU8qEngyCCT0RUQsoLFOjuKIKQHWLz80cLaqnqssuYgs9EVFrJ5FI0N3JAt2dLDAvuAsKy9TYc7G6a37M+WxcK1Nj+4mr2H7iKqQSoK+7NUb1ctIX1qP25+q1cpzLLIZUAgztYl/vep0dqhP6y7klLRgdtWdM6ImIWoCudd7eXFFnEaUbp7IRBIFVlImI2hArUzkm9XHBpD4u0GgFJKQWYNe5bPxzNhvnMotxPOUajqdc0xfWG9HdHhbFEoxUayCXc1q89mD3+RwAQICHDWxu0SOjs331/PSXc0pbJC5q/5jQ14NF8YjIkPRT1tVR4R4AOlkpIZEAqiot8korYW9ee656IiJq/WRSCQI9bRHoaYvn7u6Jq9fKEXM+G7vOZuPAperCehti0wDIsD4iBsO62mNkTyeM7OmITlZKscOnJoo5nw0ACOnhcMv1OjuYAQAu57CFngyDCX09WBSPiAzpyvWE3qOeKsjGRlI4WiiQVaTC1WvlTOiJiNoJF2uTmoX1LuUh+kwGdiSk4lqlFn+fzcbfZ6uTQV9XS4zs6YRRPR3h52oFqZS9tdqCElUV9l2sbqEf0cPxluvqE/pcttCTYTChJyJqAReyigEAXR3N613HxdoEWUUqpBeUw9/NuoUiIyKilqKUyxDS0xHDuthgoDQZnfsNx97EPPxzLhsJqddwOr0Ip9OL8NE/F+FgocDIHo4Y2csRw7raw0zBy/bW6s/TmahQa9HZ3gy9XSxvua6uy/21MjVyS1T8Ap/uGD8ZiIhawMWs6q513Z1undDHp1xD+rXylgqLiIhEIpEAvZwt4O9hi2dGdkNOsQq7z1dXzd97IQc5xSpsPJaKjcdSYSyTYnAXO4zu5YiRPR3rLK5K4tkanwYAmBLgetsaOCbGMnjZmSI5rwxnM4owvNutu+gT3Q4TeiKiZqbVCkjMrk7obzVFjdsNhfGIiKhjcbBQ4IH+7nigvztUVRrEJhXg77NZ+OdcFlLzy7H3Qg72XsjB8l/+RQ8nC4zq5YhRvRzR190GMnbNF01qfhkOXsoDANwb4Nqgx/R2sUJyXhn+vcqEnu4cE3oiomaWVlCOcrUGxjIpPOsZQw9Ut9AD1VPfEBFRx6UwkmFYN3sM62aPVyb64FJOCf45W101/9iVfJzPKsb5rGKs3n0JNqZyhPRwxKheThje3R6WSlbNb0lfHUiCIADDu9nD/Rbn+Bv5uFji91MZOHO1qJmjo46ACT0RUTO7mF09fr6zgxmMZNJ613NlCz0REd1EIpGgq6MFujpa4KngLrhWVok9F3Lw99ls7DmfjYIyNbbEp2NLfDqMpBIM9LbFyJ6OGN3LCV72ZmKH364VlqvxU2wqAGDu8M4NfpzP9XH2/14tbJa4qGNhQl8PTltHRIZyQT9+vv7u9gDgYVf9zf6V3DLORU9ERHWyNjXG5L6umNzXFWqNFnFXque8//tsFi7nlOLgpTwcvJSH138/i84OZhjV0xEjezqhv5cN5Lf4Upka78t9l1FaqUEPJwsM72bf4MfpCuddzi1FWWUVTI2ZklHTNenoUalUOHr0KJKTk1FWVgYHBwcEBATA29vb0PGJhtPWEZGhnM2o7lJ3q4J4QPWUdhIJUKyq4lz0RER0W3KZFIM722FwZzu8OK4XknJLsetcNnady8KRy/m4nFOKyzlJWLsvCZZKIwT3cMSono4Y0cMB1qbGYoffpmUXV2DtviQAwKIx3Rr1JbyjhRL25grklqhwLrMY/TxsmitM6gAaldAfPHgQH3/8MbZt24bKykpYW1vDxMQE+fn5UKlU6Ny5M5588knMmzcPFha3bokiIuooTqZdA4DbTkWnlMvgYmWC9GvlSM4tZUJPRESN4m1vhjnDvDFnmDeKKtTYdyEX/5zLwu7zOcgvrcT2E1ex/cRVSCVAf09bjOxVneB3dTRnr7BGevuP8yhXa9DX3Rp39+7U6Mf3drHEngs5+PdqERN6uiMNTugnT56M2NhYPPLII9i5cyf69+8PU9P/Cj9cvnwZ+/btw4YNG7Bq1SqsX78eY8aMaZagiYjaimtllUjOKwMA+LvdvrePl70p0q+VIym3FP29bJs7PCIiaqcslXKM93fGeH9naLQCElIL8M/Z6mnxzmUW42hyPo4m5+OtP87Bw9YUI3tWV80f6G0LhZFM7PBbtb0XcrD5eBokEuDlCT5N+jJEl9CfSrsGwNPgMVLH0eCEfuzYsdi0aROMjevuntO5c2d07twZM2fOxL///ourV68aLEgiorbqZFp1wRtPO9MGdW/0sjPDgcQ8JOeVNndoRETUQcikEgR62iLQ0xbP39MTqflliDlfXTX/0KU8pOSXYd3BZKw7mAwzYxnu6u6AkT0dEdLTkb3FbpJbosLzP58EAMwc4oVAz6a1ruta5eOuFBgsNuqYGpzQh4WFNXijvXv3Ru/evZsUEBFRe6Lrbt/nNt3tdbyvVyROzi1rpoiIiKijc7c1xYwhXpgxxAulqirsT8zFrrPZ2HU+GznFKvxxOhN/nM6ERAL0dbfGqJ6OuKu7A3xdrCDtwHPeqzVa/O/HeGQWVaCzgxmeu7tHk7el+yLgUk4pCkorYWPGmgbUNE0uqXjt2jX8/PPPuHTpEp577jnY2tri+PHjcHJygqurqyFjvGNTpkzB7t27MWrUKPz8889ih0NEHciJ6y30DeluD1S30APApZySZouJiIhIx0xhhLt7d8LdvTtBqxVw+mph9Zz357JwOr0I8SnXEJ9yDe/9dQE2pnIEdbXH8K72GNbNHm42DZt3vT0QBAFLN5/CgcQ8mMhl+PSxQJgpml6d3sbMGF0czHAppxRxVwow2sfJgNFSR9Kko/DkyZMYPXo0rKyskJycjLlz58LW1hZbt27FlStXsH79ekPHeUcWLFiAxx9/HN98843YoRBRB6LVCjiWnA8ACGhgwRvd1HaXc0pRpdHect56IiIiQ5JKJfB3s4a/mzUWjemOzMIKxJyvHnd/6FIeCsrU+P1kBn4/mQEA6GxvhmHd7DGsqz2GdLGDhVIu8jNoHhqtgP/bdhqbj6dBJpXg44cDbjsVbUMM8LLFpZxSxF7JZ0JPTdakhD48PByzZs3CO++8U6OafWhoKB555BGDBWcoISEh2L17t9hhEFEHcyG7GAVlapgayxrcQu9mYwJTYxnKKjVIzitFV0fOGEJEROLoZKXEwwM98PBAD6g1WpxIvYZ9F3OxPzEXCanXcDm3FJdzS7H+0BXIpBIEuFtjWDd7BHWxRx93q3ZRXK+oQo0lP53AX2eyIJEAb9/nb7DkO9DTBj/GpiIumePoqema1PQTGxuLp556qtZyV1dXZGZmNmpbe/fuxcSJE+Hi4gKJRIJt27bVWmf16tXw9vaGUqlEYGAg9u3b15SwiYha1KFLeQCA/l62kDewpV0qlaDb9W/9z2UWN1tsREREjSGXSdHfyxaLxnTH5qeDEL98DD6bHojpgz3hbW8GjVbAsSsFiPz7Ih787BD8Xv0L0z47hFV/ncf+i7koq6wS+yk02un0Qkz8eD/+OpMFY5kUHz8cgPsD3Qy2fd1sNifTClGh1hhsu9SxNKmFXqlUoqioqNby8+fPw8HBoVHbKi0tRZ8+fTB79mzcd999te7fuHEjFi5ciNWrV2Po0KH47LPPEBoaijNnzsDDwwMAEBgYCJVKVeuxf/31F1xcXBoVDxGRoRy+XJ3QD+7cuOnnejpZ4ETqNZzPLMYE/+aIjIiI6M5YKuX6sfcAkFZQhv0Xc7EvMRdHLucjt0SFI0n5OJKUDyARRlIJ/NysMNDbFgM8bdHXw7rVVtAvLFdj1V/n8e3hK9AKgKu1CVY/2g993K0Nuh8vO1M4WSqQVaTCseQCDOtmb9DtU8fQpIR+8uTJWLlyJX766ScAgEQiQUpKCpYuXVpnUn4roaGhCA0Nrff+VatWYc6cOXjiiScAAJGRkdi5cyfWrFmDiIgIAEBcXFxTnkadVCpVjS8HdF9cqNVqqNVqg+2HqC66Y4zHWtun0Qo4crl6/PwAD6tGvaddHauLDJ3LKGr2Y4HHXNvE94uIWhs3G1M8NNADDw30gCAISMotxZGkfBxNyseRy3m4WlihL7D3GS5ff4wJ+rhbo6+bNfq4W8PX1RKmxk0vNHensosq8PXBZHx36AqKVdU9Cib4O+O1yb7NUoVeIpFgWFcHbD6ehv2JuUzoqUma9B/z3nvvYdy4cXB0dER5eTmCg4ORmZmJIUOG4I033jBYcJWVlYiLi8PSpUtrLB87diwOHjxosP3cKCIiAitWrKi1PCYmBqamHaeSJ4krOjpa7BDoDiUVA9fKjWAiE5B68iCunmr4Y68VSgDIEH85Czt27Gi2GG/EY65tKSvjtIZE1HpJJBJ0djBHZwdzPDywukdtWkEZjlzOx5GkPMSnXENiTgnSCsqRVlCuL7InlVTP9tKjkwV6dLJAz04W6NHJEh62ppA103R5OcUq7LuYg18SrmJ/Yi40WgEA0N3JHK9M7I2hXZs3yR7ezf56Qp8DoGez7ovapyYl9JaWlti/fz927dqF48ePQ6vVol+/fhg9erRBg8vNzYVGo4GTU83CE05OTo0aq3/33Xfj+PHjKC0thZubG7Zu3YoBAwbUue6yZcsQHh6OtWvXYu3atdBoNEhMTERISAjs7Ozu6PkQ3Y5arUZ0dDTGjBkDubx9VortKN6PvgggCaN8nDFxfOP6zQ8qrUTUmd3Iq5RgxOixzdpawWOubapr2BsRUWvmZmMKt0BT3Hd9DHpRhRqn0wqRkHYNJ1Kv4URqITKLKvSF9v44/d+1vrGRFG42JvCwNdX/uNmYwN5cATtzBWzNjGGpNIJEUnfSLwgCrpWpkVVcgczCClzKKcW5jCKcSLuGC1k1p4kN9LTBU3d1xuheTpA205cINwrqWp1f/Hu1CPmllbDlfPTUSHd0lThy5EiMHDnSULHU6+Z/TkEQ6v2HrcvOnTsbvK5CoYBCocDixYuxePFiFBUVwcrKCnK5nBe71GJ4vLV9MedzAQBjendq9HvZyVoOe3Nj5JZUIilfhb7uJs0RYg085toWvldE1NZZKqvntA+6oQU8u7gC5zOLcT6zGOeu/76QVQxVlRaXc0pxOae03u3JpBIojKRQymVQGEkhAaCq0qKySouKKg3UGqHex/o4W2K0jxMm93VBFwdzQz7N23K0UKJnJwucyyzGgcRcTOzD+l/UOE1K6BcsWICuXbtiwYIFNZZ/8sknSExMRGRkpCFig729PWQyWa3W+Ozs7Fqt9oYWFRWFqKgoaDSsOElEjZOaX4bzWcWQSSUI7t64QqE6vZwtse9iLk6nF6KvgYvwEBERtUaOFko4WigxvNt/506NVsDVa+VIzS9Dyg0/aQXlyC+tRF6JCqWVGmi0AsoqNSirrP/a3cZUDidLJdxtTdHL2RI+zpYY6G0reqv4Xd0dcC6zGLvOZTOhp0ZrUkK/efNm/Prrr7WWBwUF4a233jJYQm9sbIzAwEBER0djypQp+uXR0dGYPHmyQfZRn7CwMISFhelb6ImIGur3U9VjAQd42cDatGkXCX3drbHvYi5OpF7DY4M9DRkeUZOoVCooFK2zIjURtV8yqQTutqZwtzVFUD3rVKg1uFamhqpKA1WVFiq1FlpBgEIuhcKousXe1swYSrmsRWNvqNG9nPD53svYdS4bao22wVPdEgFNTOjz8vLqTHItLS2Rm5vbqG2VlJQgMTFRfzspKQkJCQmwtbWFh4cHwsPDMX36dPTv3x9DhgzB559/jpSUFMybN68poRMRNbvtJ64CACb1cW3yNvzdrAEAJ9KuGSAiosbbuXMnNmzYgH379iElJQVarRampqbo168fxo4di9mzZ3NqWCJqFZRyGTpZtc5kvSECPW1ga2aM/NJKxCbnI6gLq91TwzXp65+uXbvizz//rLX8jz/+QOfOnRu1rWPHjiEgIAABAQEAgPDwcAQEBGD58uUAgGnTpiEyMhIrV65E3759sXfvXuzYsQOens3bYhUVFQUfH596i+cREdXlUk4J/r1aBCOpBKG+nZq8nT5u1V+aXswuQcn1qXOIWsK2bdvQo0cPzJw5E1KpFM899xy2bNmCnTt34ssvv0RwcDD+/vtvdO7cGfPmzUNOTo7YIRMRtWkyqQQjezoCAKLPZIkcDbU1TWqhDw8PxzPPPIOcnBx9Ubx//vkH77//fqO7248YMQKCUH+RCgCYP38+5s+f35RQm4xd7omoKbYeTwcADOtmf0dz1jpaKuFipcTVwgqcTi/E4M6cZYNaxptvvon33nsP48ePh1Ra+3v/Bx98EACQnp6ODz/8EOvXr8fixYtbOkwionZljI8Tfo5LQ/SZLCyf4NOoAuDUsTUpoX/88cehUqnwxhtv4LXXXgMAeHl5Yc2aNZgxY4ZBAxQLi+IRUWNVabT46VgqAOCBQPc73p6/mzWuFmbiROo1JvTUYo4ePdqg9VxdXfHOO+80czRERB3D8G72UBhJkVZQjrMZxfBxsRQ7JGojmlxx4emnn0ZaWhqysrJQVFSEy5cvt5tkHqhuoT9z5gxiY2PFDoWI2ohd57KRXayCnZkxxvjc+Uwcfa5Xt+c4ehKDWq1G586dcebMGbFDISJq90yNjfTV/X8/dVXkaKgtueMSig4ODjA3b9n5GomIWqNvD18BANzf3w3GRndeobafhzUAIDa54LZDk4gMTS6XQ6VSsdsnEVELmdS3utDoLwlXed6nBmvSFWdWVhamT58OFxcXGBkZQSaT1fhpD1gUj4ga49+rhdh3MRdSCfDoQMMU7ezjbg1jIylyilVIyi01yDaJGuPZZ5/F22+/jaoqFmYkImpuY3o5wdRYhrSCchxPKRA7HGojmjSGftasWUhJScHLL78MZ2fndvntPYviEVFjfLbnMgBgvL8LPOxMDbJNpVyGvu7WOJqUj6NJ+ejswN5Q1LKOHDmCf/75B3/99Rf8/PxgZmZW4/4tW7aIFBkRUftjYizD3b07YWt8On5JuIpAT1uxQ6I2oEkJ/f79+7Fv3z707dvXwOEQEbU9qfll+O1k9Xi3p+5q3NSdtzPI21af0D800MOg2ya6HWtra9x3331ih0FE1GFM7uuCrfHp+P1kBl6e4AO57M6H8FH71qSE3t3dneM6iIiu+3TPJWiF6gq1vq6G7dEz0Lv62/kjSfkG3S5RQ3z99ddih0BE1KEM7WoPOzNj5JVWYn9iLkJ6OIodErVyTfrKJzIyEkuXLkVycrKBw2k9OIaeiBriUk4JfoytnqrumZCuBt9+oKcNjKQSpF8rR2p+mcG3T3Q7VVVV+Pvvv/HZZ5+huLgYAHD16lWUlJSIHBkRUfsjl0kx3t8ZALDleLrI0VBb0KSEftq0adi9eze6dOkCCwsL2Nra1vhpDzhtHRE1xFt/nINGK2B0L0cMaoa54k2NjRBwvdr93os5Bt8+0a1cuXIFfn5+mDx5MsLCwpCTU30MvvPOO1iyZInI0RERtU8PBLoDAHaezkR+aaXI0VBr16Qu95GRkQYOg4io7TlyOQ/RZ7Igk0qwNLRns+3nrm4OiE0uwN4LOXh0kGEq6BM1xP/+9z/0798fJ06cgJ3df19YTZkyBU888YSIkRERtV9+blbwdbXE6fQibDmehieGG7Y+D7UvTUroZ86caeg4iIjalMoqLV759V8AwMMD3dHV0aLZ9nVXdwe8H30BBxLzoNZoWSCHWsz+/ftx4MABGBsb11ju6emJ9PTW1RX0t99+w+LFi6HVavHCCy/wCwciatMeHuiBl7aexoajKZgzzLtdzipGhnHHV4Xl5eUoKiqq8UNE1N6t2X0J5zKLYWtmjEWjuzfrvvxcrWBrZowSVRXiU641676IbqTVaqHRaGotT0tLg4VF832J1VhVVVUIDw/Hrl27cPz4cbz99tvIz2chSSJquyb1cYGJXIZLOaU4doVz0lP9mpTQl5aW4plnnoGjoyPMzc1hY2NT46c9YFE8IqrPhaxifBJzEQDwykQf2JkrmnV/UqkEw7raAwD2XuA4emo5Y8aMqTHMTiKRoKSkBK+88grGjRsnXmA3OXr0KHr37g1XV1dYWFhg3Lhx2Llzp9hhERE1mYVSjkl9XAAAPxxJETkaas2alNA///zz2LVrF1avXg2FQoEvvvgCK1asgIuLC9avX2/oGEXBonhEVJcKtQbhPyVArakuhKc72Ta3u7o7AAD2MKGnFvTBBx9gz5498PHxQUVFBR555BF4eXkhPT0db7/9tsH2s3fvXkycOBEuLi6QSCTYtm1brXVWr14Nb29vKJVKBAYGYt++ffr7rl69CldXV/1tNze3VjckgIiosR4Z5AEA+P1kBrKLK0SOhlqrJiX027dvx+rVq3H//ffDyMgIw4cPx//93//hzTffxPfff2/oGImIWo3Xfz+D0+lFsDGV4/V7/VpsTNtd3atb6E+lFyKriCd1ahkuLi5ISEjAkiVL8NRTTyEgIABvvfUW4uPj4ehouLmRS0tL0adPH3zyySd13r9x40YsXLgQL730EuLj4zF8+HCEhoYiJaW61UoQhFqP4XhTImrr+rhbo5+HNSo1Wnx/mK30VLcmFcXLz8+Ht7c3AMDS0lI/Tm3YsGF4+umnDRcdEVEr8ktCOr67fkL9YFpfdLJStti+HS2UCPCwRnzKNfx1JgvTB7PaPbUMExMTPP7443j88cebbR+hoaEIDQ2t9/5Vq1Zhzpw5+kJ3kZGR2LlzJ9asWYOIiAi4urrWaJFPS0vDoEGD6t2eSqWCSqXS39bV/1Gr1VCr1Xf6dIhuS3ec8Xij25k52APHU67hu8NXMHeoBxRyWaO3weOtbWro+9WkhL5z585ITk6Gp6cnfHx88NNPP2HgwIHYvn07rK2tm7JJIqJWLSH1Gl7YfBIA8ExIV4zoYbjWyYa6u3en6oT+30wm9NQiXFxcMGLECP1P9+7NWwCyLpWVlYiLi8PSpUtrLB87diwOHjwIABg4cCBOnz6N9PR0WFpaYseOHVi+fHm924yIiMCKFStqLY+JiYGpqalhnwDRLURHR4sdArVyGgGwNpYhr7QSb37/FwY51u6R1FA83tqWsrKyBq3XpIR+9uzZOHHiBIKDg7Fs2TKMHz8eH3/8MaqqqrBq1aqmbJKIqNVKySvDnHWxqFBrEdzdAQtHdxMljrt7d8Jbf5zDoUt5KCxTw8pULkoc1HG8//772LNnD1atWoV58+bByckJwcHBGDFiBIKDg9GrV69mjyE3NxcajQZOTk41ljs5OSEzMxMAYGRkhPfffx8hISHQarV4/vnnYWdnV+82ly1bhvDwcP3toqIiuLu7IyQk5JaPIzIUtVqN6OhojBkzBnI5P8vp1jIsk/DuXxdxvNQar4YObvSQIh5vbVNDZ49rUkK/aNEi/d8hISE4d+4cjh07hi5duqBPnz5N2SQRUauUXVyBWV8fRV5pJXq7WCLq0X4wEmkeeG97M3R3MseFrBLsOp+FKQFuosRBHcfDDz+Mhx9+GACQlZWFmJgY/Pbbb3j22WfrndKuudx8ASsIQo1lkyZNwqRJkxq0LYVCAYWi9uwUcrmcF7vUonjMUUM8OtgLn8RcxrnMYhxLKULQ9ZlvGovHW9vS0PeqSVel69evrzH2zMPDA1OnTkWvXr3aTZV7TltHRNnFFXj488O4nFsKV2sTfDVrAMwVTfoe1GDu7t0JAPDn6UxR46COo6SkBH/++SciIyPx4Ycf4ueff4afnx8WLFjQIvu3t7eHTCbTt8brZGdn12q1JyJqj6xNjfFA/+ov8aN2J4ocDbU2TUroZ8+ejcLCwlrLi4uLMXv27DsOqjXgtHVEHVtmYXUyfymnFC5WSvwwdxCcLFuuCF59Qn2dAQAx53NQWM7iNtS8Bg0aBAcHB7z88suoqqrCiy++iMzMTBw/fhwffPBBi8RgbGyMwMDAWmM/o6OjERQU1CIxEBGJ7cm7OsNIKsGBxDzEpxSIHQ61Ik1K6G/u5qaTlpYGKyurOw6KiEhM5zKLMGX1AX0yv+HJwfC0MxM7LABAL2cLdHcyR2WVFn+ezhA7HGrnLl68CFNTU3Tu3BmdO3dG165dm6X4bUlJCRISEpCQkAAASEpKQkJCgn5auvDwcHzxxRf46quvcPbsWSxatAgpKSmYN2+ewWMhImqN3GxMcW+AKwAgKuaSyNFQa9KovqMBAQGQSCSQSCQYNWoUjIz+e7hGo0FSUhLuuecegwdJRNRS9lzIwTPfH0exqgpdHc3x9awBcLdtPVWvJRIJJvd1xbs7z2Nb/FVMG+AhdkjUjuXn5+PkyZPYvXs3/v77b7zyyiuQSqUIDg5GSEiIwRLqY8eOISQkRH9bV7Bu5syZWLduHaZNm4a8vDysXLkSGRkZ8PX1xY4dO+DpydkeiKjjeHpEF2w+noa/z2bhXGYRenayFDskagUaldDfe++9AICEhATcfffdMDc3199nbGwMLy8v3HfffQYNkIioJWi0Aj7edREf/nMRggAM8rbF59P7t8pK8pP7uuDdnedxOCkPmYUV6GQl/lAAar/8/f3h7++PBQsWIC4uDp988gm+++47/PzzzwZL6EeMGAFBuPVUTPPnz8f8+fMNsj8ioraoi4M5xvk54/eTGYiKuYSPHw4QOyRqBRqV0L/yyisAAC8vL0ybNg1KZeu/iExNTcX06dORnZ0NIyMjvPzyy3jggQfEDouIWpGsogos2XQC+y7mAgAeHuiOVyf1hsJIJnJkdXOzMcUALxvEJhfg1xPpePKuLmKHRO1UfHw8du/ejd27d2Pfvn0oLi5Gnz598L///a9GizoREbWMsBFd8fvJDPx+8ioWju6GLg7mt38QtWtNKtc8c+ZMQ8fRbIyMjBAZGYm+ffsiOzsb/fr1w7hx42Bm1jrGwxKReARBwC8JV/HKr/+isFwNpVyKN+71w32BrX86uMl9XRGbXIAtx9Mxd3jnRs9JS9QQAwYMQEBAAIKDgzF37lzcddddsLRkF08iIrH4uFhidC8n/H02Cx9EX8Anj/QTOyQSWYMTeltbW1y4cAH29vawsbG55cVjfn6+QYIzBGdnZzg7V1eFdnR0hK2tLfLz85nQE3VwV/JKsXL7GfxzLhsA4OdqhVUP9kE3JwuRI2uYCf7OWLn9DM5lFuNUeiH83azFDonaofz8fCbwREStzOKx3fHPuSz8djIDT48oRG8XFiXvyBqc0H/wwQewsKi+0I2MjDRYAHv37sW7776LuLg4ZGRkYOvWrfqx+jqrV6/Gu+++i4yMDPTu3RuRkZEYPnx4o/d17NgxaLVauLu7Gyh6ImprSlRV+HzPJXy69zIqq7QwkkqwYFQ3PD2iC+SyJk38IQprU2OE+nXCLwlX8cORFCb01Cx0yXxcXBzOnj0LiUSCXr16oV8/tggREYmll7MlJvi7YPuJq1j11wV8OWuA2CGRiBqc0N/Yzd6QXe5LS0vRp08fzJ49u86Cehs3bsTChQuxevVqDB06FJ999hlCQ0Nx5swZeHhUV3cODAyESqWq9di//voLLi4uAIC8vDzMmDEDX3zxhcFiJ6K2o0KtwbeHrmDNnkvIL60EAAzrao9XJ/VGV8e2Of7skYEe+CXhKn49cRUvje8FC2XrK+BHbVt2djYeeugh7N69G9bW1hAEAYWFhQgJCcGPP/4IBwcHsUMkIuqQFo3uhh2nMvDPuWwcTylAPw8bsUMikTRpDL1OdnY2srOzodVqayz39/dv8DZCQ0MRGhpa7/2rVq3CnDlz8MQTTwCo7h2wc+dOrFmzBhEREQCqWw5uRaVSYcqUKVi2bBmCgoJuu+6NXw4UFRUBANRqNdRqdYOeE1FT6Y4xHmuGU6qqws/H0/H5vmRkF1f/b3vammLxmK64p7cTJBJJm329A9ws0NneDJdzS7ElLhWPDGx87yMec21TS71fzz77LIqKivDvv/+iV69eAIAzZ85g5syZWLBgATZs2NAicRARUU2dHcxxXz9X/HQsDe/tPI8f5g4WOyQSSZMS+ri4OMycORNnz56tNc2MRCKBRqMxSHCVlZWIi4vD0qVLaywfO3YsDh482KBtCIKAWbNmYeTIkZg+ffpt14+IiMCKFStqLY+JiYGpaeuZi5rat+joaLFDaPPyVcDeDCkOZ0tQrqmu+WFjLOAedy0GOBRBSDmOP1JEDtIA/M0kuJwrw+f/nIFVzik0tTYej7m2paysrEX28+eff+Lvv//WJ/MA4OPjg6ioKIwdO7ZFYiAiorotGNUNW+PTcfBSHvZdzMHwbuw11RE1KaGfPXs2unfvji+//BJOTk7NVl05NzcXGo0GTk5ONZY7OTkhMzOzQds4cOAANm7cCH9/f2zbtg0A8O2338LPz6/O9ZctW4bw8HD97aKiIri7uyMkJAR2dnZNeyJEDaRWqxEdHY0xY8ZALmf36caqrNJiz4VcbE24in/OZUN7/ftGLztTzAryxP39XKEwajvj5BtiSFkldry7F+llWrj1GYo+bo0rjMNjrm3S9R5rblqtts7jQi6X1+qdR0RELcvNxhSPDfbE1weS8cbvZ/H7AnvIpJz1pqNpUkKflJSELVu2oGvXroaOp043f2EgCEKDv0QYNmxYoy46FAoFFAoFoqKiEBUVpe9tIJfLebFLLYbHW8NptQJOpF3Dtvh0/HriKgrK/uuKPLybPR4f6o3g7g6QttMTnKOVHOP9nLE1Ph0/HE1Df2/7Jm2Hx1zb0lLv1ciRI/G///0PGzZs0NekSU9Px6JFizBq1KgWiYGIiOq3YGQ3bI5Lw7nMYmyOS8ODA1j8u6NpUlPVqFGjcOLECUPHUou9vT1kMlmt1vjs7OxarfaGFhYWhjNnziA2NrZZ90NEjVdZpcW+izl4edtpBL21C1NWH8Q3h66goEwNRwsFnrqrM6IX3YVv5wxCSE/HdpvM68wK8gIA/HriKrKKKsQNhtqVTz75BMXFxfDy8kKXLl3QtWtXeHt7o7i4GB9//LHY4RERdXg2ZsZYMKobAOC9v86jVFUlckTU0prUQv/FF19g5syZOH36NHx9fWu1FEyaNMkgwRkbGyMwMBDR0dGYMmWKfnl0dDQmT55skH3U5+YWeiISjyAIuJRTggOJeTiQmItDl/JQfMMJy8xYhpG9nHBfP1cM62oPozY0/Zwh9HG3xgAvG8QmF2D9oWQ8d3dPsUOidsLd3R3Hjx/H33//ra+b4+Pjg9GjR4sdGhERXTd9iCfWH7qClPwyfLb3MsLHdBc7JGpBTUroDx48iP379+OPP/6odV9ji+KVlJQgMTFRfzspKQkJCQmwtbWFh4cHwsPDMX36dPTv3x9DhgzB559/jpSUFMybN68poTdYWFgYwsLCUFRUBCurxo1JJaI7o9ZocT6zGMdTCnD8SgEOXc5DVlHNqSntzY0xxscJY306IairHRRGMpGibR3mDOuM2OQ4fH8kBc+EdIOJccd+PejObdq0Cdu2bYNarcbo0aPx7LPPih0SERHVQWEkw9LQnpj//XF8vvcSHhnogU5WSrHDohbSpIR+wYIFmD59Ol5++eU77vp+7NgxhISE6G/rCtLNnDkT69atw7Rp05CXl4eVK1ciIyMDvr6+2LFjBzw9Pe9ov7fDFnqilqHWaHEppwRnM4pwNqMYCSnXcDL9GirUNWtfGBtJMcDLBkFd7DG0qz38XK1Y+OUGY3yc4GFripT8Mmw+nobHBjfvZyS1b59//jnmzZuHbt26QalUYvPmzUhKStJPF0tERK1LqG8n9Pe0wbErBXjvr/N474E+YodELUQi3DzvXANYWFggISEBXbp0aY6YWhVdC31ubi6r3FOzU6vV2LFjB8aNG9fuCpRVqDVIzitFUk4pkvJKcSm7FGczipCYXYJKTe3ClZZKIwR42CDAwxoDvGwR6GkDpZytzrfy9YEkrNh+Bt72Zvg7PLhBX3i052OuPdOdmwoLC2FpaWnw7fv5+eHee+/Fa6+9BgBYt24dnn32WRQXFxt8X60Bz/XU0vjZS80hIfUa7o06AIkE2PJ0EAI8bADweGurGnqub1IL/dSpUxETE9MhEnoiapgqjRbZxSpkFJbj6rUKZBSW40pemT6Jv1pYf7E2C4URejpboJezJXxdrdDPwwad7c3afTE7Q3uwvzs+/OciknJLseNUBib2cRE7JGqjLl++jNmzZ+tvT58+HU8++SQyMzPRqVMnESMjIqL69HW3xn393LD5eBqW//IvtoUNZW/GDqBJCX337t2xbNky7N+/H35+frW+6VmwYIFBghMTu9wTVatQa5BbokJeSSXySyuRW6LS/75aWIGMa+XIKKxAdrEKGu2tO/xYKo3g7WCOzvZm8LY3Q49OFvBxtoSbjUmDp6Kk+pkpjPD4UG+sir6AT3YlYryfM78UoSYpLy+Hubm5/rZMJoNCoUBZWZmIURER0e0sDe2Jv85k4lR6IX6MTcGjgzgEr71rcpV7c3Nz7NmzB3v27Klxn0QiaRcJPYviUXuh1QqoqNKgpKIKRRVqFFVUoahcjWLd7fIqFFeoUVRxfVm5GgVlauSVVifxZZUN/1LLSCqBk6USLtZKOFuZwM3GBJ0dzOFtbwpve3PYmMqZuDezmUFeWLv3Ms5nFSP6bBbu7s3WVGoa3blep6qqCuvWrYO9vb1+WXs43xMRtScOFgosHtMdr24/g3d3nkeorzMsjHnt1Z41KaFPSkoydBxE7ZYgCNBoBVRpq3+rNVpUVmmhqtKi8vrfumVlqkqcKZDA+Gw2NJCgsqp6uW493e/ySg3Krv9UqDUoq6y64e/qn3K1BuXXf98pY5kUdubG1T9miuu/jdHJygQuVko4W1f/tjdXsEVYZFYmcswI8kRUzCV8sisRY32c+CUKNZqHhwfWrl1bY1mnTp3w7bff6m+3ly/wiYjam8cGe+LH2FScyyzGuzvPYeXEXmKHRM2oSQl9R3Bzl/ufjqXC3LJmMaD6OhffqsxgfTUIb9VRub7t1b//Rtc5vHXM9ezp1o+pfz8ChOrfggCtAGiF/24L+O+2to51Bf36tdcFBGi11Y/RrVv9ON261/dxfbu3W1erFVCl1dZIxnU/VfrfWmg0AjQ3Ju2aG9a/vrxxZMC5hEY+5vakEsBCKYeliREsFNW/LZXy/5Yp5bBUVi+zMpXD3lwBO7PqJN5cYcSksA2ZM6wzvtqfjFPphdh9IQchPRzFDonamOTkZLFDICKiJjKSSfHavb544NND+DE2FfcHsKZOe9bghF43nVxDrFq1qknBtCY3d7mP+PMipApTscOidkIqqZ6GzVgmrfFbLpOgvLQE9rbWUBjJYGwkhcJICvlN65kay2Ail8HE2Kj67+u3dX+bGhvVuK37m0l5x2BrZozHBntg7b4kREZfwIjuDnzviYiIOpABXraY2s8VW46n49XfzuJxd7EjoubS4IQ+Pj6+xu24uDhoNBr06NEDAHDhwgXIZDIEBgYaNsJWYlRPeyjNak4XUN/1sQT13tGYxfVegNe/fvNuv/7469lOPetLJdWPkUqrHy2VAFKJBJLrv6vX0d2ujlOie8wN60ok1Xtu3LrVf0sl1QFKb1oXuscAMJJJIJNKYCSVQCqRXL8thZH0huXXf1ffluqXy25YR3+fTAKZRAK5TAIjmbTO1+a/aUUGcVoRuiNPBXfB90dScCKtEDv/zcQ9vs5ih0RtxI8//oiHHnqoQeumpqYiJSUFQ4cObeaoiIiosZaF9kL0v1k4lV6E/XIJJogdEDWLBif0MTEx+r9XrVoFCwsLfPPNN7CxqZ7fsKCgALNnz8bw4cMNH6UIbu5y/979/pyblojaDHtzBeYM88bHuxLx3l8XMManE6euoQZZs2YNXn31VcyePRuTJk1Cr141x14WFhbiwIED+O677/D333/jyy+/FClSIiK6FQcLBZ4P7YmXt53GbylS/K+wAh72bDBqb+puJryN999/HxEREfpkHgBsbGzw+uuv4/333zdYcGIKCwvDmTNnEBsbK3YoRERNMveuzrA2lSMxuwRbjqeJHQ61EXv27MF7772HXbt2wdfXF5aWlujWrRv8/Pzg5uYGOzs7zJkzB15eXjh9+jQmTpwodshERFSPRwd6oJ+HNVRaCV7dfrZJtbaodWtSUbyioiJkZWWhd+/eNZZnZ2ejuLi4nkcREVFLslTKMX9EF7y54xwi/76ISX1doDCSiR0WtQETJkzAhAkTkJeXh/379yM5ORnl5eWwt7dHQEAAAgICIJU2qU2AiIhakFQqweuTfTDxkwPYdT4Hf5zOxDg/DsNrT5qU0E+ZMgWzZ8/G+++/j8GDBwMADh8+jOeeew5Tp041aIBERNR0M4Z44av9yUi/Vo7vDqdgzjBvsUOiNsTOzg6TJ08WOwwiIroD3RzNMdpVwM40CV759V8M7WIPK1N2vW8vmvT1+qefforx48fjscceg6enJzw9PfHoo48iNDQUq1evNnSMRETUREq5DP8b3Q0A8NE/F1FQWilyRERERNTSxrpq0dneFDnFKrz151mxwyEDalJCb2pqitWrVyMvLw/x8fE4fvw48vPzsXr1aigUCkPHKIqoqCj4+PhgwIABYodCRHRHHgh0Q89OFigsV+PDfy6KHQ61ITY2NrC1ta31Y2dnB1dXVwQHB+Prr78WO0wiIroNIynw+uTq4dIbjqbiyOU8kSMiQ7mjAXBmZmbw9/dHnz59cOXKFSxevBiurq6Gik1ULIpHRO2FkUyK5RN8AADfHr6CxGzWOqGGWb58OaRSKcaPH48VK1bg1Vdfxfjx4yGVShEWFobu3bvj6aefxtq1a8UOlYiIbmOAlw0eHugBAHhh80mUV2pEjogMoUlj6HVKSkrw448/4ssvv0RsbCwGDx6MpUuXGio2IiIykKCu9hjj44ToM1l4/fezWDd7oNghURuwf/9+vP7665g3b16N5Z999hn++usvbN68Gf7+/vjoo48wd+5ckaIkIqKGWhraEzHnspGcV4Z3d57H8ok+YodEd6hJLfT79+/HrFmz4OzsjI8++gixsbHYs2cP9u/fj0WLFhk6RiIiMoAXx/WCXCbB7vM5iDmfLXY41Abs3LkTo0ePrrV81KhR2LlzJwBg3LhxuHz5ckuHRkRETWBlIkfEfX4AgK8PJuFoUr7IEdGdalRC/84776Bnz5546KGH4ODggP379+PkyZOQSCQ15qQnIqLWx9veDLOCvAAAr/12BqoqdrWjW7O1tcX27dtrLd++fTtsbW0BAKWlpbCwsGjp0IiIqIlCejjiwf5uEATg+Z9PoKyySuyQ6A40qsv9iy++iBdeeAErV66ETMa5jImI2ppnR3XD1viruJxTirV7L+Op4V5ih0St2Msvv4ynn34aMTExGDhwICQSCY4ePYodO3bg008/BQBER0cjODhY5EiJiKgx/m+CD/ZdzEVyXhne+fM8Xp3UW+yQqIka1UK/cuVKbNq0Cd7e3njhhRdw+vTp5oqLiIiagaVSjpcn9AIAfLwrESn5ZSJHRK3Z3LlzsWfPHpiZmWHLli34+eefYWpqij179mDOnDkAgMWLF2Pjxo0iR0pERI1hqZTjrfv8AQDrDiaz6n0b1qiE/sUXX8SFCxfw7bffIjMzE4MHD0afPn0gCAIKCgqaK0ZRcNo6ImqvJvVxwdCudlBVabHyt3MQBLEjotZs6NCh2LBhA44fP474+Hhs2LABQUFBYodFRER3KLi7Ax4a4A4AeO7nk+x630Y1qShecHAwvvnmG2RkZODpp59GYGAggoODERQUhFWrVhk6RlFw2joiaq8kEglWTvaFsUyKPRdzcSJfInZI1IppNBps3rwZr7/+Ot544w1s3boVGg3rLxARtQcvje8FFyslUvLL8PYf58QOh5rgjuaht7CwwLx583DkyBHEx8dj4MCBeOuttwwVGxERNZMuDuZ4KrgzAGBLshQlKn4rT7UlJiaiV69emDFjhr7L/WOPPYbevXvj0qVLYodHRER3yEIpx9v3V3e9/+bQFey9kCNyRNRYd5TQ38jPzw+RkZFIT0831CaJiKgZhYV0hbuNCQorJVj1d6LY4VArtGDBAnTp0gWpqan6LvcpKSnw9vbGggULxA6PiIgMYHg3B8wY4gkAWLLpBApKK0WOiBqjwQn9jz/+2KD15HI5UlNTceDAgSYHRUREzU8pl2HFpOoCed8dSUFsMueipZr27NmDd955Rz9FHQDY2dnhrbfewp49e0SMjIiIDGlZaC90cTBDdrEKL249BYEFdtqMBif0a9asQc+ePfH222/j7Nmzte4vLCzEjh078MgjjyAwMBD5+bwwJCJq7YZ3tccgBy0EAXjh55OoUHNsNP1HoVCguLi41vKSkhIYGxuLEBERETUHE2MZPnwoAEZSCf44nYnNx9nruq1ocEK/Z88evPfee9i1axd8fX1haWmJbt26wc/PD25ubrCzs8OcOXPg5eWF06dPY+LEic0Zd4MVFxdjwIAB6Nu3L/z8/LB27VqxQyIialXu9dLC0UKBy7ml+CD6gtjhUCsyYcIEPPnkkzhy5AgEQYAgCDh8+DDmzZuHSZMmiR0eEREZkK+rFRaN6Q4AeOWX00jJ49S2bYFRY1aeMGECJkyYgLy8POzfvx/JyckoLy+Hvb09AgICEBAQAKnUYMPyDUI3X66pqSnKysrg6+uLqVOnws7OTuzQiIhaBVMjYOWkXpj3fQLW7ruMe3w7IcDDRuywqBX46KOPMHPmTAwZMgRyuRwAoFarMXnyZERGRoobHBERGdy84C7YfT4bsckFCP8pARufGgKZlLPhtGaNSuh17OzsMHnyZEPH0ixkMhlMTU0BABUVFdBoNBwTQkR0k1E9HXFvXxdsS7iK538+id8WDIPCSCZ2WCQya2tr/PLLL0hMTMTZs2chCAJ8fHzQtWtXsUMjIqJmIJNKsOrBvgj9cB+OXSnAp3suISyEn/mtWZMSekPau3cv3n33XcTFxSEjIwNbt27FvffeW2Od1atX491330VGRgZ69+6NyMhIDB8+vMH7uHbtGoKDg3Hx4kW8++67sLe3N/CzICJq+16Z2Bv7E3NxMbsEH/1zEc/d3VPskEgE4eHht7x/9+7d+r9XrVrVzNE0TGpqKqZPn47s7GwYGRnh5ZdfxgMPPCB2WEREbZK7rSlWTOqNxZtO4IPoCxjezR7+btZih0X1aFJCb2NjA4mkdtcLiUQCpVKJrl27YtasWZg9e/Ztt1VaWoo+ffpg9uzZuO+++2rdv3HjRixcuBCrV6/G0KFD8dlnnyE0NBRnzpyBh4cHACAwMBAqlarWY//66y+4uLjA2toaJ06cQFZWFqZOnYr7778fTk5OTXjmRETtl42ZMV6/1xfzvjuONbsvYWRPRwR62t7+gdSuxMfHN2i9uq4DxGJkZITIyEj07dsX2dnZ6NevH8aNGwczMzOxQyMiapOm9nPFP+eysONUJhb+mIDfFgyDqbHobcFUhya9K8uXL8cbb7yB0NBQDBw4EIIgIDY2Fn/++SfCwsKQlJSEp59+GlVVVZg7d+4ttxUaGorQ0NB671+1ahXmzJmDJ554AgAQGRmJnTt3Ys2aNYiIiAAAxMXFNShuJycn+Pv7Y+/evfV+c69SqWp8OVBUVASgesygWq1u0H6Imkp3jPFYo5Zy8zE3qoc9pvR1xtaEDPzvxwRsDxsCcwVP4K1Nc35GxMTENNu2m4uzszOcnZ0BAI6OjrC1tUV+fj4TeiKiJpJIJHjjXj/EXSnA5dxSvPrrv3jn/j5ih0V1aNJV2v79+/H6669j3rx5NZZ/9tln+Ouvv7B582b4+/vjo48+um1CfyuVlZWIi4vD0qVLaywfO3YsDh482KBtZGVlwcTEBJaWligqKsLevXvx9NNP17t+REQEVqxYUWt5TEyMfiw+UXOLjo4WOwTqYG485gbJgT0KGdIKyjHvs7/xSFetiJFRXcrK2lbl4ZYYXqdz7NgxaLVauLu7Gyh6IqKOycbMGB9M64tHvziCn46lYVg3B0zq4yJ2WHSTJiX0O3fuxNtvv11r+ahRo7B48WIAwLhx42ol4o2Vm5sLjUZTq3u8k5MTMjMzG7SNtLQ0zJkzRz/dzjPPPAN/f/9611+2bBnCw8Oxdu1arF27FhqNBomJiQgJCWFlfGp2arUa0dHRGDNmjL6iNFFzqu+Y8/AvwKNfxeJIjhTTRwXg7t4cptSa6HqPtRUtMbwOAPLy8jBjxgx88cUXzfuEiIg6iKAu9ngmpCs+3pWIF7ecQl83a3jYsZGzNWlSQm9ra4vt27dj0aJFNZZv374dtrbV4y1LS0thYWFx5xGi9jg9QRAaPHYvMDAQCQkJDd6XQqGAQqHA4sWLsXjxYhQVFcHKygpyuZwJFrUYHm/U0m4+5oK6OWJecBes2X0JL/96BgM728PRUilihHSjtvb50BLD61QqFaZMmYJly5YhKCjotutyeB2JiUPsqCXd6fE2/y4vHEzMRVzKNTyzIQ4b5gyEsVHrmqq8PWro+9WkhP7ll1/G008/jZiYGAwcOBASiQRHjx7Fjh078OmnnwKo7r4ZHBzclM3r2dvbQyaT1WqNz87ObvaidlFRUYiKioJGo2nW/RARtVaLRnfH3gs5+PdqEZ77+STWzR7QqgqhUftgiOF1giBg1qxZGDlyJKZPn37b9Tm8jloLDrGjlnQnx9sEe+BMugwn04rw7Nq/MNmTw/GaW0OH1zUpoZ87dy58fHzwySefYMuWLRAEAT179sSePXv034rrut7fCWNjYwQGBiI6OhpTpkzRL4+OjsbkyZPvePu3EhYWhrCwMH0LPRFRR2NsJEXktL6Y8PF+7LmQgy/3J+GJ4Z3FDovaGUMMrztw4AA2btwIf39/bNu2DQDw7bffws/Pr871dcPrdIqKiuDu7s7hddRiOMSOWpKhjjeH7ll45scT2HVVisdG98fwbpwKvDk1dHhdk0sXDx06FEOHDm3qw/VKSkqQmJiov52UlISEhATY2trCw8MD4eHhmD59Ovr3748hQ4bg888/R0pKSq2CfEREZHjdnCzwfxN88PK203j7z3Po72WLvu7WYodF7dCdDK8bNmwYtNqGtxbphtfdjMOdqKXxmKOWdKfH24S+bjicXIDvDqfg+S2nseN/w+FoweF4zaWh71WTE3qNRoNt27bh7NmzkEgk8PHxwaRJkyCTyRq1nWPHjiEkJER/W/eN+cyZM7Fu3TpMmzYNeXl5WLlyJTIyMuDr64sdO3bA09OzqaE3CLvcExFVe2yQBw5dysWOU5l4dsNx/PbscFiZ8AKUDEPM4XVERNQ4/zfeB8eSC3AusxiLfzqBb2YPhFTK4XhialI1g8TERPTq1QszZszAli1b8PPPP+Oxxx5D7969cenSpUZta8SIEfoK9Df+rFu3Tr/O/PnzkZycDJVKhbi4ONx1111NCbtRwsLCcObMGcTGxjb7voiIWjOJRIKIqf5wtzVBan45lm05CUEQxA6L2okbh9fdKDo6+rbF7YiIqGUp5TJ8/HAAlHIp9l3Mxef7LosdUofXpIR+wYIF6NKlC1JTU3H8+HHEx8cjJSUF3t7eWLBggaFjFEVUVBR8fHwwYMAAsUMhIhKdlYkcnzzcD3KZBDtOZeK7Iylih0RtSElJCRISEvSzzuiG16WkVB9H4eHh+OKLL/DVV1/h7NmzWLRoEYfXERG1Ut2cLPDKxN4AgPd2nkfclQKRI+rYmpTQ79mzB++8845+ijoAsLOzw1tvvYU9e/YYLDgxsYWeiKimPu7WeOGengCA1347g3+vFoocEbUVx44dQ0BAAAICAgBUJ/ABAQFYvnw5AGDatGmIjIzEypUr0bdvX+zdu7dFhtcREVHTPDTAHRP8nVGlFfDMD8eRX1opdkgdVpMSeoVCgeLi4lrLS0pKYGxsfMdBERFR6zRnmDdG9XREZZUWz/wQjxJVldghURvQWofXERFR01QPx/ODt70ZMgorEP5TArRaDscTQ5MS+gkTJuDJJ5/EkSNH9Cflw4cPY968eZg0aZKhYxQFu9wTEdUmkUjw3gN94GylRFJuKZ7bdILj6YmIiDogC6UcUY/0g8JIit3nc/Dp3sbVUiPDaFJC/9FHH6FLly4YMmQIlEollEolgoKC0LVrV0RGRho4RHGwyz0RUd1szIzxySPV4+n/OJ2JtSyIQ0RE1CH5uFhi5eT/xtMfvpwnckQdT5MSemtra/zyyy+4cOECfv75Z2zatAkXLlzA1q1bYW1tbeAQiYiotQn0tMHyCT4AgLf+OIeDl3JFjoiIiIjE8GB/d0zt5wqtACzYEI+cYpXYIXUoDZ6HXjc/fH12796t/3vVqlVNDoiIiNqGxwZ7Ij71GrYcT8ezP8TjtwXD4GxlInZYRERE1IIkEglev9cXp9IKcTG7BAs3xmP944Mg4/z0LaLBCX18fHyD1pNI2scbFxUVhaioKGg0GrFDISJqlSQSCd641w9nM4pxNqMIT393HBufGgyFkUzs0IiIiKgFmRobYfWj/TDpkwM4kJiHj/65iEVjuosdVofQ4IQ+JiamOeNodcLCwhAWFoaioiJYWVmJHQ4RUatkYizDp4/1w8SP9yMh9Rpe/+0sXrvXV+ywiIiIqIV1c7LAm1N9sWjjCXy06yL6e9lgeDcHscNq95o0hp6IiEjH084MHz5UPb/4t4evYHNcmsgRERERkRimBLjh4YHuEARg4Y8JyCqqEDukdo8JPRER3bGQno7436huAIAXt57CidRr4gZEREREonhlYm/0crZEXmklnv0hHlUardghtWtM6ImIyCD+N6obRvV0hKpKiye/PYZsfitPRETU4SjlMqx+tB/MFUY4mpyPd3eeFzukdo0JfT2ioqLg4+ODAQMGiB0KEVGbIJVKEPlQX3R1NEdWkQpPfhuHCjULixIREXU03vZmeOd+fwDAZ3sv449TGSJH1H4xoa9HWFgYzpw5g9jYWLFDISJqMyyUcnwxoz+sTORISL2GF7ecgiAIYodFRERELWycnzOevKszAGDJphNIzC4ROaL2iQk9EREZlJe9GVY/2g8yqQRb4tPxxb4ksUMiIiIiETx/dw8M7myL0koN5n0XhxJVldghtTtM6ImIyOCGdrXHy+N7AQAi/jiLmPPZIkdERERELc1IJsXHD/eDk6UCidkleOHnk+y5Z2BM6ImIqFnMDPLCQwPcoRWABT/Es6sdERFRB+RgocDqR/vBSCrB76cy8OV+9twzJCb0RETULCQSCVZO9sUALxsUq6owd/0xFJapxQ6LiIiIWligpy1enuADAIj44xyOXM4TOaL2gwk9ERE1G2MjKdY8FggXKyWScksx77s4VFZxPloiIqKOZsYQT9zb1wUarYCwH+KRxeltDYIJfT04bR0RkWHYmyvwxcwBMDOW4dDlPLy0lZXviYiIOhqJRII3p/qhZycL5JaoMP/74/yS3wCY0NeD09YRERmOj4slPnmkH6QSYFNcGlbvviR2SERERNTCTI2N8OljgbBQGiHuSgHe3HFW7JDaPCb0RETUIkJ6OuLVSb0BAO/uPI/fTl4VOSIiIiJqaV72Zlj1YF8AwLqDyfglIV3cgNo4JvRERNRiZgzxwuyhXgCA8J9O4HhKgbgBERERUYsb4+OEsJAuAIClm0/hXGaRyBG1XUzoiYioRf3feB+M7uWIyiot5n5zDKn5ZWKHRERERC0sfEwPDOtqj3K1BvO+jUNhOWfCaYoOk9CXlZXB09MTS5YsETsUIqIOTSaV4MOHAtDbxRJ5pZWYvS6WJ3EiIqIORiaV4KOHA+BqbYLkvDIs2pgArZZFcxurwyT0b7zxBgYNGiR2GEREBMBMYYQvZw5AJ0slErNLMP/7OKg1rHRLRETUkdiaGePTxwKhMJJi17lsfPD3BbFDanM6REJ/8eJFnDt3DuPGjRM7FCIiuq6TlRJfzuoPU2MZDiTmYdkWTmdHRETU0fi5WSFiqh8A4ONdifjzdIbIEbUtoif0e/fuxcSJE+Hi4gKJRIJt27bVWmf16tXw9vaGUqlEYGAg9u3b16h9LFmyBBEREQaKmIiIDKW3ixWiHukHmVSCn+PSsCqa38wTERF1NFP7uemL5i7+6QQuZhWLG1AbInpCX1paij59+uCTTz6p8/6NGzdi4cKFeOmllxAfH4/hw4cjNDQUKSkp+nUCAwPh6+tb6+fq1av45Zdf0L17d3Tv3r2lnhIRETVCSE9HvHGvL4Dqb+a/P3JF5IiIiIiopb04rhcGd7ZFaaUGT7JIXoMZiR1AaGgoQkND671/1apVmDNnDp544gkAQGRkJHbu3Ik1a9boW93j4uLqffzhw4fx448/YtOmTSgpKYFarYalpSWWL19e5/oqlQoqlUp/u6ioegoFtVoNtZoHFTUv3THGY41aSms55u4LcEZ6QSk+jrmMl7edhp2pEUb1dBQ1ptZM7PeLiIjI0OQyKaIe6YdJnxxAUm4pFv4Yjy9mDoBMKhE7tFZN9IT+ViorKxEXF4elS5fWWD527FgcPHiwQduIiIjQJ/7r1q3D6dOn603mdeuvWLGi1vKYmBiYmpo2InqipouOjhY7BOpgWsMx10UABjtKcThbimc3xOMZHw28LMSOqnUqK+NUf0RE1P7YmSvw2fRA3LfmIGLO5+CD6AtYcncPscNq1Vp1Qp+bmwuNRgMnJ6cay52cnJCZmdks+1y2bBnCw8P1t4uKiuDu7o6QkBDY2dk1yz6JdNRqNaKjozFmzBjI5XKxw6EOoLUdc2M1Wjz9QwL2XMjFussm2Dh3ILztzcQOq9XR9R4jIiJqb3xdrfDWfX5YtPEEPolJhK+rJe7xdRY7rFarVSf0OhJJzW4WgiDUWtYQs2bNuu06CoUCCoUCUVFRiIqKgkajAQDI5fJWcbFLHQOPN2ppreWYk8uB1Y8G4uG1h3EyrRBzvj2OLU8PhYOFQuzQWpXW8F4RERE1lykBbjiVVoSvDiRh8U8n0MXBHN2c2G2vLqIXxbsVe3t7yGSyWq3x2dnZtVrtDS0sLAxnzpxBbGxss+6HiIhqMlMY4atZA+Bha4rU/HI8vi4WpaoqscMiIiKiFvTiuJ4Y0tmORfJuo1Un9MbGxggMDKw1tjM6OhpBQUHNuu+oqCj4+PhgwIABzbofIiKqzd5cgW8eHwhbM2OcSi9E2A/HodZoxQ6LiIiIWoiRTIpPHgmAq7WJvkieRiuIHVarI3pCX1JSgoSEBCQkJAAAkpKSkJCQoJ+WLjw8HF988QW++uornD17FosWLUJKSgrmzZvXrHGxhZ6ISFze9mb4cmZ/KOVS7D6fg6WbT0EQeCInIiLqKHRF8hRGUn2RPKpJ9IT+2LFjCAgIQEBAAIDqBD4gIEBfiX7atGmIjIzEypUr0bdvX+zduxc7duyAp6dns8bFFnoiIvEFeNgg6pF+kEkl2Hw8DRF/nBM7JCIiImpBvq5WePs+fwDAJzGJ+PN0hsgRtS6iJ/QjRoyAIAi1ftatW6dfZ/78+UhOToZKpUJcXBzuuuuuZo+LLfRERK3DqF5OeGuqHwDg872X8emeSyJHRERERC3p3gBXzBnmDQAI/+kELmQVixxR6yF6Qk9ERHQ7D/R3x4vjegIA3vrjHH6KTRU5IiIiImpJy0J7IqiLHcoqNZi7/hiulVWKHVKrwIS+HuxyT0TUujx5Vxc8FdwZALB0y0ns/DfzNo8gIiKi9qK6SF4/uFqb4EpeGZ75IR5VLJjLhL4+7HJPRNT6LL2nJx7s7watADy7IR6HLuWJHRIRERG1EFszY6yd0R8mchn2J+bizR2srcOEnoiI2gyJRII3p/hhjI8TKqu0mLv+GE6nF4odFhEREbUQHxdLrHqwDwDgqwNJ2HSsYw/DY0JfD3a5JyJqnYxkUnz8cAAGetuiRFWFWV8fRVJuqdhhERERUQsJ9XPG/0Z1AwC8tPU04q4UiByReJjQ14Nd7omIWi+lXIYvZvaHj7MlcksqMf3LI8gqqhA7LCIiImoh/xvVDXf3dkKlRounvo1DRmG52CGJggk9ERG1SZZKOb55fCA87UyRVlCOGV8eRWGZWuywiIiIqAVIpRKserAvenayQG6JCk+uj0OFWiN2WC2OCX092OWeiKj1c7BQ4NvHB8HBQoHzWcV4/JtYlFd2vJM5VSsrK4OnpyeWLFkidihERNQCzBRGWDujP2xM5TiVXogXNp+EIAhih9WimNDXg13uiYjaBg87U6x/fCAslEaIu1KAp76Lg6qKSX1H9MYbb2DQoEFih0FERC3I3dYUUY/2g0wqwS8JV/HZ3stih9SimNATEVGb18vZEutmD4CJXIa9F3Kw8McEzk3bwVy8eBHnzp3DuHHjxA6FiIhaWFAXe7w60QcA8Paf57DrXJbIEbWc/2/vzsOaOtP+gX9PEhZBRBFFUQT3iihLAJUWKvMqDraK2k6tVZS6VKqjVbqoP7vpr9V2ZkRbBdcq6quWbthlbC19X1TcJSWuqDiFogJSEGVTQHLePxzTSQENkOSQ5Pu5rlw1J895njvlgTv3WZ6woCciIoug9HTBpqlK2Mpl+P5cIRZ9eRYajXVddtdaHTp0CGPGjIG7uzsEQcDevXvrtUlMTETPnj1hb28PpVKJ9PT0Jo3x2muvYeXKlQaKmIiIzM2UoZ6YFNwDogi8skeNK0XlUodkEizoiYjIYoT27YSPJ/lDLhPw5c/XsPy7C1Z3L11rVFlZCV9fX6xbt67B15OTk7FgwQIsXboUmZmZCA0NRWRkJPLy8rRtlEolfHx86j3y8/Px9ddfo1+/fujXr5+p3hIREbUygiBg2diBCPZyQXn1PczaobKKxXIVUgfQWiUkJCAhIQF1dbwPk4jInPzZpwv+8ZfBWJh8GklHc9HWToHXRvWXOiyrFhkZicjIyEZfj4+Px4wZMzBz5kwAwJo1a7B//36sX79ee9ZdpVI1uv/x48fx6aef4vPPP0dFRQVqa2vRrl07vP322w22r66uRnV1tfZ5WVkZAKC2tha1tZb/4Y+k92Cecb6RKVjTfBMAfDxxECZsOIGc4krM3a3C5in+UMjN7zy2vj8vFvSNmDt3LubOnYuysjI4OztLHQ4RETXBeP/uqKiuw1t7z2Fd2hW0tVcg9sneUodFDaipqYFKpcLixYt1tkdERODo0aN69bFy5Upt4Z+UlIRz5841Wsw/aL9s2bJ629PS0uDg4NCE6IlaJjU1VeoQyIpY03yb7AmsOSfH4SsleHnjjxjvZX7r6lRVVenVjgU9ERFZpOihnqi4ew8f/nARH3x/EW3tFJgy1FPqsOgPiouLUVdXBzc3N53tbm5uKCwsNMqYS5YsQVxcnPZ5WVkZPDw8EB4ejo4dOxplTKL/VFtbi9TUVIwcORI2NjZSh0MWzlrnm8eAQsxPPoMDBTKMHjYY4/3dpQ6pSR5cPfYoLOiJiMhivTy8Nyqqa5GQ9i+89fU5ONrJMd6/u9RhUQMEQdB5LopivW36iImJeWQbOzs72NnZ1dtuY2NjVR92SXqcc2RK1jbfxvp7IPu3Kqz93yt48+sL6NOlHQJ6dJA6LL3p+7Myv5sJiIiImuC1iP6YNswTogi89vkZ/HjeOGd9qXlcXV0hl8vrnY0vKiqqd9aeiIioKRaO6IeR3m6oqdNg9k4VCm/flTokg2NBT0REFk0QBLwzZiCeCeiOOo2Iv+7OxOHsYqnDon+ztbWFUqmsd29namoqQkJCJIqKiIgsgUwmYPVEP/Rza4vfyqsxe2cG7tZa1qLnLOiJiMjiyWQCPnxmECJ9uqCmToNZOzKg+vWm1GFZjYqKCqjVaqjVagBATk4O1Gq19mvp4uLisGXLFmzduhVZWVlYuHAh8vLyEBsbK2HURERkCdraKbB5aiDaO9jg9LXbeOOLMxb1lbYs6BuRkJAAb29vBAUFSR0KEREZgEIuw5rn/RDWrxPu1NYhZtspnLt+W+qwrEJGRgb8/f3h7+8P4H4B7+/vr12JfuLEiVizZg2WL18OPz8/HDp0CPv27YOnJxcxJCKilvPs6IjEyQFQyAR8czofCWlXpA7JYFjQN2Lu3Lm4cOECTp06JXUoRERkIHYKOTZOUSLYywXld+8h+pMTuHyjXOqwLN7w4cMhimK9R1JSkrbNnDlzkJubi+rqaqhUKoSFhUkXMBERWZyQ3q5YFjUQAPCPHy/jh3MFEkdkGCzoiYjIqrSxleOTmED4dndGaVUtXth8Ar/8ViF1WERERGRkk4d4IibECwCwMPm0RVypx4KeiIisjpO9DbZPD8aAru1QXFGNFzafQF5JldRhERERkZG9+dQAhPZ1xZ3aOszakYGicvNe+Z4FPRERWaX2Drb47xnB6Nu5LQrL7uKFLceRf+uO1GERERGRESnkMqybFIBero4ouH0XL+1QmfXK9yzoiYjIanVsa4dds4agp6sjrpXewQubj6OozLyP1BMREdHDOTvYYMu0QLSzV0B99RaWfHXWbFe+t4qCXqFQwM/PD35+fpg5c6bU4RARUSvS2ckeu2YOQfcObZBbUoUXtpxAcUW11GERERGREfXq1BaJk5WQywSkZF7H+oP/kjqkZrGKgr59+/ba77/dsmWL1OEQEVEr496+DfbMGoquzva4UlSBKVtO4FZVjdRhERERkRE90dcV747xBgD8ff8l/Hi+UOKIms4qCnoiIqJH8XBxwO5ZQ9HJyQ4XC8sxdetJlN2tlTosIiIiMqLoYV6IHuoJUQQWJKtxIb9M6pCaRPKC/tChQxgzZgzc3d0hCAL27t1br01iYiJ69uwJe3t7KJVKpKenN2mMsrIyKJVKPPHEEzh48KCBIiciIkvT09URu2cOgYujLc5cu40Xt51CZfU9qcMiIiIiI3p7jDce79MRVTX3V77/rdx8br2TvKCvrKyEr68v1q1b1+DrycnJWLBgAZYuXYrMzEyEhoYiMjISeXl52jZKpRI+Pj71Hvn5+QCA3NxcqFQqbNiwAVOnTkVZmXkddSEiItPp6+aEnTOC0c5eAdWvpZix/RTu1Jjv6rdERET0cDZyGRJfUKKnqyOu37qD2P9WofqeeeR+hdQBREZGIjIystHX4+PjMWPGDO1idmvWrMH+/fuxfv16rFy5EgCgUqkeOoa7uzsAwMfHB97e3rh8+TICAwMbbFtdXY3q6t+PyDwo/mtra1Fby0svybgezDHONTIVzrmG9evkgG3TlJialIHjv9zErB2nsOEFP9jZyKUODQB/XkRERIb2YOX78QlHoPq1FEu+OotVf/GFIAhSh/ZQkhf0D1NTUwOVSoXFixfrbI+IiMDRo0f16qO0tBQODg6ws7PDtWvXcOHCBfTq1avR9itXrsSyZcvqbU9LS4ODg0PT3gBRM6WmpkodAlkZzrmGzewDrM+S4/CVEjy/NhUv9tNAIfm1bUBVVZXUIRAREVmc3p3aImFyAGK2ncJXP19HfzcnzH6yt9RhPVSrLuiLi4tRV1cHNzc3ne1ubm4oLNRvBcKsrCzMnj0bMpkMgiDgo48+gouLS6PtlyxZgri4OGzevBmbN29GXV0drly5gvDwcHTs2LFF74foUWpra5GamoqRI0fCxsZG6nDICnDOPVrgLzcxc+fPOFcKpFZ0xeq/DIJCLm1Vz1vHiIiIjCO0bye89dQAvPvtBXzww0X07tQWI7zdHr2jRFp1Qf/AHy9zEEVR70sfQkJCcPbsWb3HsrOzg52dHV599VW8+uqrKCsrg7OzM2xsbPhhl0yG841MjXOucaH93bAxWomXdqjww/kbsLeRY9VzfpDLpLsEjz8rIiIi45kW4oXLRRXYfSIPr3yaiS/nhOCxLu2kDqtBreDCwca5urpCLpfXOxtfVFRU76y9oSUkJMDb2xtBQUFGHYeIiFq/4f07I2FyABQyAXvV+Vj05RloNKLUYREREZERCIKAZWMHYlivjqisqcPM7RkoqWidK9+36oLe1tYWSqWy3r2dqampCAkJMerYc+fOxYULF3Dq1CmjjkNEROZhpLcbPp7kD7lMwBeqa1jy1VkW9URERBbKRi5D4uQAeHZ0wLXS1rvyveQFfUVFBdRqNdRqNQAgJycHarVa+7V0cXFx2LJlC7Zu3YqsrCwsXLgQeXl5iI2NlTBqIiKyRqMHdcXqiX6QCUByxlUs3XuORT0REZGF6uBoi0+mBcLJToFTuaV4M+UcRLF15X3J76HPyMhAeHi49nlcXBwAYNq0aUhKSsLEiRNRUlKC5cuXo6CgAD4+Pti3bx88PT2NGldCQgISEhJQV9f6jsIQEZF0xvq6Q6MRsfAzNfaczINCJmB51MBW/7U2RERE1HR9Ojth7Qv+mJ50Cp+rrqF/FyfMDG38W9NMTfIz9MOHD4coivUeSUlJ2jZz5sxBbm4uqquroVKpEBYWZvS4eMk9ERE1Zpx/N/z9WV8IArDz+K9Y9u2FVnfEnoiIiAxjeP/OePMpbwDAin1Z+N+LNySO6HeSF/StFRfFIyKih3lW2R0fThgMAEg6mov3/pnFop6IiMhCvfi4FyYFe0AjAvN2Z+JiYev4ClkW9I3gGXoiInqU54I8sHLCIADAJ4dz8MH3F1nUExERWaD7K9/7aFe+n5GUgd/KpV/5ngU9ERFRC0wK7oH3xvkAADYe+gV/33+JRT0REZEFslXIsH5KAHq6OuL6rTt4aWcG7tZKu+YaC/pG8JJ7IiLS15Shnlg2diAAIPHAv7D6p2yJIyIiIiJjaO9wf+V75zY2yMy7hde/OCPpgXwW9I3gJfdERNQU00K88NbT9xfM+fh/svERi3oiIiKL1KtTW6yfEgCFTMC3p/Px0f9Il/NZ0BMRERnIjCd6YunoAQCA1T9dRkLaFYkjIiIiImMI6e2qveVuzU/Z+Fp9XZI4WNATEREZ0KywXlj058cAAH/ffwkbDv5L4oiIiIjIGJ4P7oGXwu5/J/3rX5zBz3mlJo+BBX0jeA89ERE118vDe+O1iH4AgA++v4gt6b9IHBEREREZw6I/P4YRA9xQc0+Dl3Zk4FpplUnHZ0HfCN5DT0RELfHXP/XFghF9AQDv/TML247kSBwRERERGZpcJuCj5/3g3bUdiitqMCMpA+V3a002Pgt6IiIiI3nlv/pi3p/6AACWfXsBO47lShsQERERGZyjnQKfxASis5MdLt0ox7w9mbhXpzHJ2CzoiYiIjEQQBMSN7IeXh/cGALz99XnsOvGrxFERERGRoXV1boMt0wJhbyPDgUu/4f19WSYZlwU9ERGREQmCgDdG9dcumrM05Rw+PZkncVRERERkaIO7t0f8c34AgG1HcrHzuPEP4rOgbwQXxSMiIkMRBAFLIh/D9Md7AgCWpJzFZxlXJY6KiIiIDG30oK54fVR/AMC735xHevZvRh2PBX0juCgeEREZkiAIeOvpAYgJ8YIoAou+PIPPWdQTERFZnDnDe2OCfzfUaUTM2fUzrhSVG20sFvREREQmIggC3hnjjanDPCGKwBss6omIiCyOIAhY+cwgBHp2QPnde5ielIGblTVGGYsFPRERkQkJgoBlYwfqFPVfqK5JHRYREREZkJ1Cjo3RSni4tEHezSrE7lSh+l6dwcdhQU9ERGRiD4r66KH3i/rXvzjNop6IiMjCdGxrh63TguBkp8DJ3Jv4f1+dgyiKBh2DBT0REZEEBEHA8qiBmDK0h7ao/5JFPRERkUXp6+aEdZMDIJcJ+PLna1h/8F8G7Z8FPRERkUQEQcD/j/LRFvWvsagnIiKyOE/264R3x3gDAP72wyV8f7bAYH2zoG8Ev7aOiIhMQRAELB/rg8lDfi/qv/qZRT0REZEliR7mhZgQLwDAws/UOHPtlkH6ZUHfCH5tHRERmYpMdv9M/YOi/tXPTyMlk0U9ERGRJXnzqQEY3r8T7tZqMHN7Bgpu32lxnyzoiYiIWoEHRf0LD4r6z1jUExERWRKFXIa1k/zRz60tisqrMSMpA5XV91rUJwt6IiKiVkImE/BelA8mBfeA5t9F/d7M61KHRURERAbiZG+DT6YFoaOjLS4UlGFBshoaTfNXvmdBT0RE1IrIZALeH/d7UR/3mRpfq1nUExERWQoPFwdsmqqErUKG1As38OEPF5vdl1UU9Dk5OQgPD4e3tzcGDRqEyspKqUMiIiJq1O9FvQc0IrAwmUX9ozDXExGROVF6uuDvzw4GAGw89Av2nMxrVj8KQwbVWsXExOC9995DaGgobt68CTs7O6lDIiIieqj7Rf0giCLw6amrWJisBgBE+XWTNrBWirmeiIjMTZRfN+QUV2LNT9l4a+85eHRwwBN9XZvUh8WfoT9//jxsbGwQGhoKAHBxcYFCYRXHMYiIyMzJZAJWjB+E54N4pv5hmOuJiMhcvfJffRHl5457GhEv71Ih+0Z5k/aXvKA/dOgQxowZA3d3dwiCgL1799Zrk5iYiJ49e8Le3h5KpRLp6el695+dnY22bdti7NixCAgIwIoVKwwYPRERkXE1VNTvO1sgdVhNwlxPRETUMEEQ8OEzgxHo2QHld+9h+vZTKK6o1nt/yQv6yspK+Pr6Yt26dQ2+npycjAULFmDp0qXIzMxEaGgoIiMjkZf3+z0GSqUSPj4+9R75+fmora1Feno6EhIScOzYMaSmpiI1NdVUb4+IiKjFHhT1EwPvF/WLvzwjdUhNwlxPRETUOHsbOTZGK9HDxQFXb97BSzsycLe2Tq99Jb8eLTIyEpGRkY2+Hh8fjxkzZmDmzJkAgDVr1mD//v1Yv349Vq5cCQBQqVSN7t+9e3cEBQXBw8MDADB69Gio1WqMHDmywfbV1dWorv79iMjt27cBADdv3mzaGyNqhtraWlRVVaGkpAQ2NjZSh0NWgHPOvLz2pDuqKsqQcrIYACCKzf+aG1NirifSxb+9ZEqcb+YjPqo3piVlICM7H6/vup+bHpXrJS/oH6ampgYqlQqLFy/W2R4REYGjR4/q1UdQUBBu3LiB0tJSODs749ChQ5g9e3aj7VeuXIlly5bV296vX7+mBU9ERGRk5eXlcHZ2ljqMFmGuJyIiqm/Hv//7qFzfqgv64uJi1NXVwc3NTWe7m5sbCgsL9epDoVBgxYoVCAsLgyiKiIiIwNNPP91o+yVLliAuLk77/NatW/D09EReXp5ZfmgKCgrCqVOnzHK8lvTVnH313Uefdo9q09jrZWVl8PDwwNWrV9GuXbtHB90KmXLOGXosU865prTnnGuctf6NE0URSqUS7u7uBolFSsz1LWetvwfN2d+QuV6fdvzb2/rG4udLzjdTj9fc/vTN9a26oH9AEASd56Io1tv2MI+61O8/2dnZNfhVN87Ozmb5CyCXy00atyHHa0lfzdlX3330afeoNo96vV27dmY53wDTzjlDj2XKOdeU9pxzjbPWv3EAYGtrC5lM8qVwDIa5vvms+ffAWH97DdWOf3tb31j8fMn5ZurxWtKfPrm+VX8ScHV1hVwur3eEvqioqN6RfGrY3LlzzXa8lvTVnH313Uefdo9qY+qfiymZ8r0ZeixTzrmmtOeca5y1/o0zxP6tBXN9y/H3wPDtDdXOUn5P/4i53vD7MNc3zpz/xrW0P332FcRWtKKOIAhISUnBuHHjtNuGDBkCpVKJxMRE7TZvb29ERUVpF8oxprKyMjg7O+P27dtmeUSLzAvnG5ka5xyZGnM9EeccmRbnm2WT/JL7iooKXLlyRfs8JycHarUaLi4u6NGjB+Li4hAdHY3AwEAMGzYMmzZtQl5eHmJjY00Sn52dHd55550GL80jMjTONzI1zjkyBeZ6Il2cc2RKnG+WTfIz9AcOHEB4eHi97dOmTUNSUhIAIDExEX/7299QUFAAHx8frF69GmFhYSaOlIiIiJqDuZ6IiMg4JC/oiYiIiIiIiKjpWvWieERERERERETUMBb0RERERERERGaIBT0RERERERGRGWJBT0RERERERGSGWNAbyNWrVzF8+HB4e3tj8ODB+Pzzz6UOiazA+PHj0aFDBzz77LNSh0IW6LvvvkP//v3Rt29fbNmyRepwiCTHXE9SYK4nY2O+N29c5d5ACgoKcOPGDfj5+aGoqAgBAQG4dOkSHB0dpQ6NLFhaWhoqKiqwfft2fPHFF1KHQxbk3r178Pb2RlpaGtq1a4eAgACcOHECLi4uUodGJBnmepICcz0ZE/O9+eMZegPp2rUr/Pz8AACdO3eGi4sLbt68KW1QZPHCw8Ph5OQkdRhkgU6ePImBAweiW7ducHJywujRo7F//36pwyKSFHM9SYG5noyJ+d78WU1Bf+jQIYwZMwbu7u4QBAF79+6t1yYxMRE9e/aEvb09lEol0tPTmzVWRkYGNBoNPDw8Whg1mTNTzjmiP2rp/MvPz0e3bt20z7t3747r16+bInSiZmOuJ1NjriepMd+T1RT0lZWV8PX1xbp16xp8PTk5GQsWLMDSpUuRmZmJ0NBQREZGIi8vT9tGqVTCx8en3iM/P1/bpqSkBFOnTsWmTZuM/p6odTPVnCNqSEvnX0N3YwmCYNSYiVqKuZ5MjbmepMZ8TxCtEAAxJSVFZ1twcLAYGxurs+2xxx4TFy9erHe/d+/eFUNDQ8UdO3YYIkyyIMaac6IoimlpaeIzzzzT0hDJgjVn/h05ckQcN26c9rX58+eLu3btMnqsRIbCXE+mxlxPUmO+t05Wc4b+YWpqaqBSqRAREaGzPSIiAkePHtWrD1EUERMTgz/96U+Ijo42RphkQQwx54iaS5/5FxwcjHPnzuH69esoLy/Hvn37MGrUKCnCJTII5noyNeZ6khrzvXVQSB1Aa1BcXIy6ujq4ubnpbHdzc0NhYaFefRw5cgTJyckYPHiw9t6VnTt3YtCgQYYOlyyAIeYcAIwaNQo///wzKisr0b17d6SkpCAoKMjQ4ZKF0Wf+KRQKrFq1CuHh4dBoNHjjjTfQsWNHKcIlMgjmejI15nqSGvO9dWBB/x/+eL+IKIp630PyxBNPQKPRGCMssmAtmXMAuAoptcij5t/YsWMxduxYU4dFZFTM9WRqzPUkNeZ7y8ZL7gG4urpCLpfXO1paVFRU74gWkSFwzpGUOP/IGnHek6lxzpHUOAetAwt6ALa2tlAqlUhNTdXZnpqaipCQEImiIkvGOUdS4vwja8R5T6bGOUdS4xy0DlZzyX1FRQWuXLmifZ6TkwO1Wg0XFxf06NEDcXFxiI6ORmBgIIYNG4ZNmzYhLy8PsbGxEkZN5oxzjqTE+UfWiPOeTI1zjqTGOUhW87V1aWlpIoB6j2nTpmnbJCQkiJ6enqKtra0YEBAgHjx4ULqAyexxzpGUOP/IGnHek6lxzpHUOAdJEEVRNMWBAyIiIiIiIiIyHN5DT0RERERERGSGWNATERERERERmSEW9ERERERERERmiAU9ERERERERkRliQU9ERERERERkhljQExEREREREZkhFvREREREREREZogFPREREREREZEZYkFP1MoNHz4cCxYsMHi/YWFh2L17t8H7tURnz55F9+7dUVlZKXUoRERkoZjvpcd8T+aIBT2RFfruu+9QWFiI559/XrvNy8sLgiDoPLp37y5hlK3HoEGDEBwcjNWrV0sdChERkd6Y75uG+Z7MEQt6Iiv08ccf48UXX4RMpvsnYPny5SgoKNA+MjMzG9y/trbWFGG2Ki+++CLWr1+Puro6qUMhIiLSC/N90zHfk7lhQU9kRkpLSzF16lR06NABDg4OiIyMRHZ2tk6bzZs3w8PDAw4ODhg/fjzi4+PRvn177evFxcX46aefMHbs2Hr9Ozk5oUuXLtpHp06dAACCIGDDhg2IioqCo6Mj3nvvPQDAt99+C6VSCXt7e/Tq1QvLli3DvXv3tP1lZ2cjLCwM9vb28Pb2RmpqKgRBwN69ewEABw4cgCAIuHXrlnYftVoNQRCQm5ur3Xb06FGEhYWhTZs28PDwwPz583Uuh/Py8sKKFSswffp0ODk5oUePHti0aZPOe7t27Rqef/55uLi4wNHREYGBgThx4gRyc3Mhk8mQkZGh037t2rXw9PSEKIoAgFGjRqGkpAQHDx58xE+JiIioZZjvme+J9MWCnsiMxMTEICMjA9988w2OHTsGURQxevRo7RH0I0eOIDY2Fq+88grUajVGjhyJ999/X6ePw4cPw8HBAQMGDGjS2O+88w6ioqJw9uxZTJ8+Hfv378eUKVMwf/58XLhwARs3bkRSUpJ2PI1GgwkTJkAul+P48ePYsGEDFi1a1OT3fPbsWYwaNQoTJkzAmTNnkJycjMOHD+Ovf/2rTrtVq1YhMDAQmZmZmDNnDl5++WVcvHgRAFBRUYEnn3wS+fn5+Oabb3D69Gm88cYb0Gg08PLywogRI7Bt2zad/rZt24aYmBgIggAAsLW1ha+vL9LT05v8HoiIiJqC+Z75nkhvIhG1ak8++aT4yiuviJcvXxYBiEeOHNG+VlxcLLZp00b87LPPRFEUxYkTJ4pPPfWUzv6TJ08WnZ2dtc9Xr14t9urVq944np6eoq2trejo6Kh9fPTRR6IoiiIAccGCBTrtQ0NDxRUrVuhs27lzp9i1a1dRFEVx//79olwuF69evap9/fvvvxcBiCkpKaIoimJaWpoIQCwtLdW2yczMFAGIOTk5oiiKYnR0tPjSSy/pjJOeni7KZDLxzp072tinTJmifV2j0YidO3cW169fL4qiKG7cuFF0cnISS0pK6r1vURTF5ORksUOHDuLdu3dFURRFtVotCoKgjeGB8ePHizExMQ32QURE1BLM98z3RM3BM/REZiIrKwsKhQJDhgzRbuvYsSP69++PrKwsAMClS5cQHByss98fn9+5cwf29vYNjvH6669DrVZrH1OnTtW+FhgYqNNWpVJh+fLlaNu2rfYxa9YsFBQUoKqqCllZWejRo4fOQjvDhg1r8vtWqVRISkrSGWfUqFHQaDTIycnRths8eLD234IgoEuXLigqKgJw/7I+f39/uLi4NDjGuHHjoFAokJKSAgDYunUrwsPD4eXlpdOuTZs2qKqqavJ7ICIi0hfzPfM9UVMopA6AiPQj/vveroa2P7hM7D//3dh+rq6uKC0tbbAvV1dX9OnTp8HXHB0ddZ5rNBosW7YMEyZMqNfW3t6+wXj/GNuDRXr+s+0fF+DRaDSYPXs25s+fX6+/Hj16aP9tY2NTbyyNRgPgfmJ+GFtbW0RHR2Pbtm2YMGECdu/ejTVr1tRrd/PmTfTu3fuhfREREbUE8z3zPVFTsKAnMhPe3t64d+8eTpw4gZCQEABASUkJLl++rL0/7rHHHsPJkyd19vvj4i/+/v4oLCxEaWkpOnTo0Ox4AgICcOnSpUY/EHh7eyMvLw/5+flwd3cHABw7dkynzYNFeAoKCrSxqNXqeuOcP3++0XH0MXjwYGzZsgU3b95s9Kj9zJkz4ePjg8TERNTW1jb4weXcuXN49tlnmx0HERHRozDfM98TNQUvuScyE3379kVUVBRmzZqFw4cP4/Tp05gyZQq6deuGqKgoAMC8efOwb98+xMfHIzs7Gxs3bsT333+vc6Tc398fnTp1wpEjR1oUz9tvv40dO3bg3Xffxfnz55GVlYXk5GS8+eabAIARI0agf//+mDp1Kk6fPo309HQsXbpUp48+ffrAw8MD7777Li5fvox//vOfWLVqlU6bRYsW4dixY5g7dy7UajWys7PxzTffYN68eXrHOmnSJHTp0gXjxo3DkSNH8Msvv+DLL7/U+cAxYMAADB06FIsWLcKkSZPqHeXPzc3F9evXMWLEiKb+ryIiItIb8z3zPVFTsKAnMiPbtm2DUqnE008/jWHDhkEURezbt097+dnjjz+ODRs2ID4+Hr6+vvjhhx+wcOFCnXvo5HI5pk+fjl27drUollGjRuG7775DamoqgoKCMHToUMTHx8PT0xPA/cvrUlJSUF1djeDgYMycObPeCrw2NjbYs2cPLl68CF9fX3z44Yfar8h5YPDgwTh48CCys7MRGhoKf39/vPXWW+jatavesdra2uLHH39E586dMXr0aAwaNAgffPAB5HK5TrsZM2agpqYG06dPr9fHnj17EBERoX1/RERExsJ8z3xPpC9BbOxGHSKyCLNmzcLFixd1vn7lxo0bGDhwIFQqlckTliAISElJwbhx40w6rj7ef/99fPrppzh79qzO9urqavTt2xd79uzB448/LlF0REREjWO+1x/zPVkSnqEnsjD/+Mc/cPr0aVy5cgVr167F9u3bMW3aNJ02bm5u+OSTT5CXlydRlK1LRUUFTp06hbVr1za4GM+vv/6KpUuXMrkTEVGrwXzfdMz3ZIl4hp7Iwjz33HM4cOAAysvL0atXL8ybNw+xsbFSh6XVGo/Yx8TEYM+ePRg3bhx2795d79I8IiKi1ob5vumY78kSsaAnIiIiIiIiMkO85J6IiIiIiIjIDLGgJyIiIiIiIjJDLOiJiIiIiIiIzBALeiIiIiIiIiIzxIKeiIiIiIiIyAyxoCciIiIiIiIyQyzoiYiIiIiIiMwQC3oiIiIiIiIiM8SCnoiIiIiIiMgM/R8WR46BsYA3owAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1200x400 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "zk  =  0.01        # amortecimento modal\n",
    "bt  =  f/fk1       # frequência adimensionalizada\n",
    "Kk  =  wk1*wk1     # rigidez modal (massa modal unitária)\n",
    "umk =  Fmk/Kk      # resposta modal média\n",
    "\n",
    "# Determina admitância mecânica e calcula resposta\n",
    "Hf2 =  1/(Kk*Kk*((1 - bt**2)**2 + (2*zk*bt)**2))\n",
    "Suk =  Hf2*Sfk\n",
    "\n",
    "# Visualiza no domínio da frequência\n",
    "\n",
    "plt.figure(6, figsize=(12,4))\n",
    "\n",
    "plt.subplot(1,2,1)\n",
    "plt.loglog(f, Hf2)\n",
    "plt.axis([0.01, fp, 1e-6, 1e2])\n",
    "plt.title('Função de admitância mecânica')\n",
    "plt.xlabel('log(Frequency)')\n",
    "plt.ylabel('log(Admitance)')\n",
    "plt.grid(True)\n",
    "\n",
    "plt.subplot(1,2,2)\n",
    "plt.loglog(f, Suk)\n",
    "plt.axis([0.01, fp, 1e-6, 1e5])\n",
    "plt.title('Espectro da resposta modal')\n",
    "plt.xlabel('log(Frequency)')\n",
    "plt.ylabel('log(Power)')\n",
    "plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 7 Cálculo das amplitudes de deslocamento <a name=\"section_7\"></a> \n",
    "\n",
    "Até este ponto tem-se a média da resposta modal e o espectro da sua parcela flutuante. O deslocamento real médio é obtido do produto:\n",
    "\n",
    "$$\\vec{u}_{\\rm med} =  \\sum_{k = 1}^n  \\;  \\bar{u}_k  \\; \\vec \\phi_k$$\n",
    "\n",
    "Para a torre do exemplo tem-se:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Máximo deslocamento médio: 0.522m\n"
     ]
    }
   ],
   "source": [
    "um = umk*pk1\n",
    "\n",
    "print('Máximo deslocamento médio: {0:5.3f}m'.format(np.max(np.abs(um))))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Observa-se que o resultado acima é aproximado, já que apenas um modo de vibração foi retido. O resultado mais preciso deve ser obtido diretamente com a matriz de rigidez global e o vetor de forças médias:\n",
    "\n",
    "$${\\bf K} \\vec{u}_{\\rm med} = \\vec{F}_{\\rm med}$$\n",
    "\n",
    "que no exemplo dado resulta em:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Máximo deslocamento médio: 0.505m\n"
     ]
    }
   ],
   "source": [
    "# Preenchendo com zeros os momentos nos g.d.l. de rotação\n",
    "FmG = np.vstack((Fm, np.zeros(Fm.shape))).T.reshape(2*NS)\n",
    "\n",
    "# Resolvendo o sistema\n",
    "um  = np.linalg.solve(KG, FmG)[0:-1:2]\n",
    "\n",
    "print('Máximo deslocamento médio: {0:5.3f}m'.format(np.max(np.abs(um))))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Ou seja, a consideração de apenas 1 modo de vibração é bastante precisa para o exemplo, com um erro da ordem de 3%.\n",
    "\n",
    "Para a parcela flutuante da resposta em deslocamento, como a análise foi conduzida no domínio da frequência, resultados no domínio do tempo só pode ser obtidos em termos estatísticos. A abordagem da NBR-6123 consiste em se adotar um fator de pico da resposta modal $g_k = 4$, aplicado sobre o desvio padrão da resposta flutuante.\n",
    "No entanto, já que o espectro da resposta está disponível, é possível obter-se uma estimativa mais precisa deste fator de pico utilizando-se a fórmula de Davenport:\n",
    "\n",
    "$$g_k = \\sqrt{2 \\ln (\\nu_k T)} + \\frac{0.5772}{\\sqrt{2 \\ln (\\nu_k T)}}$$\n",
    "\n",
    "onde $T$ é o tempo de observação, adotado como 600s na NBR-6123, e $\\nu_k$ é a taxa de cruzamento do nível zero para o positivo (_zero upcrossing rate_), calculada a partir do espectro como:\n",
    "\n",
    "$$ \\nu_k = \\sqrt{\\frac{\\int_0^\\infty{f^2 S_{u_k}(f) \\; df}}\n",
    "                    {\\int_0^\\infty{    S_{u_k}(f) \\; df}}} $$\n",
    "\n",
    "Observe-se que o denominador dentro da raiz é a variância da resposta modal. \n",
    "\n",
    "Aplicando-se as expressões acima ao exemplo de cálculo tem-se:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " rms for modal response: 7.28m \n",
      " Zero upcrossing nu_k:   0.50Hz\n",
      " Peak factor g_k:        3.55  \n"
     ]
    }
   ],
   "source": [
    "suk2 = np.trapz(    Suk, dx=df)\n",
    "suk4 = np.trapz(f*f*Suk, dx=df)\n",
    "\n",
    "suk  = np.sqrt(suk2)\n",
    "nuk  = np.sqrt(suk4/suk2)\n",
    "lnu  = np.sqrt(2*np.log(600*nuk))\n",
    "gpk  = lnu + 0.5772/lnu\n",
    "\n",
    "print(' rms for modal response: {0:4.2f}m '.format(suk))\n",
    "print(' Zero upcrossing nu_k:   {0:4.2f}Hz'.format(nuk))\n",
    "print(' Peak factor g_k:        {0:4.2f}  '.format(gpk))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notes-se que a taxa de _upcrossing_ geralmente resulta em um valor próximo à frequência fundamental, enquanto o fator de pico obtido do espectro permite uma pequena economia em relação ao valor genérico adotado na norma.\n",
    "\n",
    "Estes resultados permitem, finalmente, a determinação das amplitudes de resposta fazendo-se:\n",
    "\n",
    "\n",
    "$$\\vec{u}_{\\rm max} =  \\vec{u}_{\\rm med} + \\sum_{k = 1}^n  g_k \\, \\sigma_{u_k}  \\; \\vec \\phi_k$$\n",
    "\n",
    "O cálculo destes deslocamentos para o exemplo da torre está apresentado abaixo:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Deslocamento r.m.s.:        0.28m\n",
      "Máximo deslocamento total:  1.26m\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAIhCAYAAACc4rq6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6VElEQVR4nO3dd1gUxxsH8O/RO4hSFVCxi5jYsffeW6KxEEtMjBpirDG/iCbRWGLUGDWJvWvsPaIR7Iq9d7EjFgSlc8zvjw2nSJFyd3vl+3mee9jb2519h+O815nZGYUQQoCIiIhIJiZyB0BERETGjckIERERyYrJCBEREcmKyQgRERHJiskIERERyYrJCBEREcmKyQgRERHJiskIERERyYrJCBEREcmKyQjptNmzZ0OhUMDPz0/uUBAREQGFQoElS5ao9i1ZsgQKhQIRERGqfatWrcLMmTM1EkNgYCCKFy+ukbLzqnjx4ggMDNTr64SGhkKhUCA0NFQj5euz+Ph4BAcH83dDWsFkhHTaokWLAACXLl3C8ePHZY4mszZt2uDo0aPw8PBQ7dNkMkKkLfHx8ZgwYQKTEdIKJiOks06ePIlz586hTZs2AICFCxfKHFFmLi4uqFWrFiwtLeUOhYhIbzEZIZ2Vnnz8/PPPqF27NtasWYP4+PgMx6R3nUybNg1TpkxB8eLFYW1tjYYNG+L69etISUnBmDFj4OnpCUdHR3Tq1AlRUVEZyihevDjatm2LTZs2wd/fH1ZWVihZsiRmz5793hjf7aZp2LAhduzYgbt370KhUKgeQPZdAll1/6SXXbZsWVhaWqJ8+fJYtmxZljEkJyfjxx9/RLly5WBpaQkXFxd8+umnePr0aYbj/v33XzRs2BCFCxeGtbU1vL290aVLl0y/03elpKRg1KhRcHd3h42NDerWrYsTJ05keWxkZCQGDRqEYsWKwcLCAiVKlMCECROQmpqa4zU0dZ158+ahcuXKsLOzg729PcqVK4dvv/32vbFs3boVAQEBsLGxgb29PZo1a4ajR49mOu7q1avo0aMH3NzcYGlpCW9vb/Tp0wdJSUkAgKdPn2Lw4MGoUKEC7Ozs4OrqisaNG+PgwYMZylHH3zEArF27FgEBAbC1tYWdnR1atGiBM2fOZDgmMDAQdnZ2uHnzJlq3bg07Ozt4eXnhm2++UcUdEREBFxcXAMCECRNUf8dvd5cdOnQITZo0gb29PWxsbFC7dm3s2LEjw7Xi4+MxYsQIlChRAlZWVnB2dka1atWwevXq974HZGQEkQ6Kj48Xjo6Oonr16kIIIRYsWCAAiCVLlmQ47s6dOwKA8PHxEe3atRPbt28XK1asEG5ubqJMmTKid+/eol+/fmLXrl1i/vz5ws7OTrRr1y5DGT4+PqJo0aLC29tbLFq0SOzcuVN88sknAoCYNm1apmstXrxYtW/x4sUCgLhz544QQohLly6JOnXqCHd3d3H06FHVQwgh9u/fLwCI/fv3Z1mHrMrt0KGD2LZtm1ixYoUoVaqU8PLyEj4+PqrjlEqlaNmypbC1tRUTJkwQISEhYsGCBaJo0aKiQoUKIj4+XnUNKysr0axZM7F582YRGhoqVq5cKXr37i2io6NzfC/69u0rFAqFGDlypNizZ4+YMWOGKFq0qHBwcBB9+/ZVHff48WNVfH/88YfYu3ev+OGHH4SlpaUIDAzM8RqauM7q1asFADF06FCxZ88esXfvXjF//nwxbNgw1TFZvScrV64UAETz5s3F5s2bxdq1a0XVqlWFhYWFOHjwoOq4s2fPCjs7O1G8eHExf/58sW/fPrFixQrRvXt3ERsbK4QQ4urVq+KLL74Qa9asEaGhoWL79u2if//+wsTEJMM11fF3/NNPPwmFQiH69esntm/fLjZu3CgCAgKEra2tuHTpUobfs4WFhShfvryYPn262Lt3r/j++++FQqEQEyZMEEIIkZiYKHbv3i0AiP79+6v+jm/evCmEECI0NFSYm5uLqlWrirVr14rNmzeL5s2bC4VCIdasWaO61qBBg4SNjY2YMWOG2L9/v9i+fbv4+eefxW+//fbevwcyLkxGSCctW7ZMABDz588XQgjx6tUrYWdnJ+rVq5fhuPR/xCtXriyUSqVq/8yZMwUA0b59+wzHBwUFCQAiJiZGtc/Hx0coFApx9uzZDMc2a9ZMODg4iLi4uAzXyikZEUKINm3aZEgY0uU2GVEqlcLT01NUqVJFpKWlqY6LiIgQ5ubmGcpO/8LdsGFDhjLDw8MFADF37lwhhBDr168XADLV8X2uXLkiAIivv/46w/70L+y3k4RBgwYJOzs7cffu3QzHTp8+XQDI8IWojesMGTJEODk55Vi/d9+T9N99pUqVMvw9vXr1Sri6uoratWur9jVu3Fg4OTmJqKioHK/xttTUVJGSkiKaNGkiOnXqpNpf0L/je/fuCTMzMzF06NAMx7169Uq4u7uL7t27q/b17dtXABDr1q3LcGzr1q1F2bJlVc+fPn0qAIjx48dnqketWrWEq6urePXqVYa6+fn5iWLFiqn+bv38/ETHjh1z++shI8ZuGtJJCxcuhLW1NT7++GMAgJ2dHbp164aDBw/ixo0bmY5v3bo1TEze/DmXL18eAFTjTd7df+/evQz7K1asiMqVK2fY17NnT8TGxuL06dMFr1AeXLt2DY8ePULPnj1VXTwA4OPjg9q1a2c4dvv27XByckK7du2QmpqqenzwwQdwd3dXdQl98MEHsLCwwGeffYalS5fi9u3buYpl//79AIBPPvkkw/7u3bvDzMwsUyyNGjWCp6dnhlhatWoFAAgLC9PqdWrUqIGXL1+iR48e2LJlC549e/be+qb/7nv37p3h78nOzg5dunTBsWPHEB8fj/j4eISFhaF79+6q7ozszJ8/H1WqVIGVlRXMzMxgbm6Offv24cqVK5mOze/f8T///IPU1FT06dMnw+/EysoKDRo0yNQ1qFAo0K5duwz7/P39cffu3ff8hoC4uDgcP34cXbt2hZ2dnWq/qakpevfujQcPHuDatWsApPdg165dGDNmDEJDQ5GQkPDe8sk4MRkhnXPz5k0cOHAAbdq0gRACL1++xMuXL9G1a1cAb+6weZuzs3OG5xYWFjnuT0xMzLDf3d09U5np+54/f57PmuRP+vVyiindkydP8PLlS1hYWMDc3DzDIzIyUvUF7Ovri71798LV1RVffvklfH194evri1mzZuUrFjMzMxQuXDhTLNu2bcsUR8WKFQEgx2RAE9fp3bs3Fi1ahLt376JLly5wdXVFzZo1ERIS8t443r47Kp2npyfS0tIQHR2N6OhoKJVKFCtWLNuyAGDGjBn44osvULNmTWzYsAHHjh1DeHg4WrZsmeUXc37/jp88eQIAqF69eqbfy9q1azP97m1sbGBlZZVhn6WlZabPRVaio6MhhMj2dwS8+T3Onj0bo0ePxubNm9GoUSM4OzujY8eOWf6Hgoyb2fsPIdKuRYsWQQiB9evXY/369ZleX7p0KX788UeYmpqq7ZqRkZHZ7nv3yzC/0v/xTx8kmO7dL4r06+UUU7oiRYqgcOHC2L17d5bXtLe3V23Xq1cP9erVg1KpxMmTJ/Hbb78hKCgIbm5uqhaod70dS9GiRVX7U1NTMyVpRYoUgb+/P3766acsy0r/otLmdT799FN8+umniIuLw4EDBzB+/Hi0bdsW169fh4+PT7ZxPH78ONNrjx49gomJCQoVKgSFQgFTU1M8ePAg2zoBwIoVK9CwYUPMmzcvw/5Xr17leF5eFSlSBACwfv36LOulToUKFYKJiUm2v6O347G1tcWECRMwYcIEPHnyRNVK0q5dO1y9elWjcZJ+YTJCOkWpVGLp0qXw9fXFggULMr2+fft2/PLLL9i1axfatm2rtuteunQJ586dy9BVs2rVKtjb26NKlSp5KsvS0jLL//WmT1Z2/vx5tGjRQrV/69atGY4rW7YsPDw8sHr1agwfPlzVVXP37l0cOXIkw5dt27ZtsWbNGiiVStSsWTNX8ZmamqJmzZooV64cVq5cidOnT2ebjDRs2BAAsHLlSlStWlW1f926dZnuXGnbti127twJX19fFCpUKFexaOs6tra2aNWqFZKTk9GxY0dcunQpyy/tsmXLomjRoli1ahVGjBih+t3HxcVhw4YNqjtsAKBBgwb4+++/8dNPP6m+fN+lUCgy3fZ9/vx5HD16FF5eXrmKPTdatGgBMzMz3Lp1C126dFFLmelxv/u3bGtri5o1a2Ljxo2YPn06rK2tAQBpaWlYsWIFihUrhjJlymQqz83NDYGBgTh37hxmzpyJ+Ph41e+SiMkI6ZRdu3bh0aNHmDJliuoL6m1+fn6YM2cOFi5cqNZkxNPTE+3bt0dwcDA8PDywYsUKhISEYMqUKXn+B7NSpUrYuHEj5s2bh6pVq8LExATVqlWDu7s7mjZtismTJ6NQoULw8fHBvn37sHHjxgznm5iY4IcffsCAAQPQqVMnDBw4EC9fvkRwcHCmboyPP/4YK1euROvWrfHVV1+hRo0aMDc3x4MHD7B//3506NABnTp1wvz58/Hvv/+iTZs28Pb2RmJioqq7q2nTptnWpXz58ujVqxdmzpwJc3NzNG3aFBcvXsT06dPh4OCQ4diJEyciJCQEtWvXxrBhw1C2bFkkJiYiIiICO3fuxPz587Pt1tDEdQYOHAhra2vUqVMHHh4eiIyMxOTJk+Ho6Ijq1atnGYeJiQmmTp2KTz75BG3btsWgQYOQlJSEadOm4eXLl/j5559Vx86YMQN169ZFzZo1MWbMGJQqVQpPnjzB1q1b8ccff8De3h5t27bFDz/8gPHjx6NBgwa4du0aJk6ciBIlSuTqdufcKl68OCZOnIhx48bh9u3baNmyJQoVKoQnT57gxIkTqhaKvLC3t4ePjw+2bNmCJk2awNnZGUWKFEHx4sUxefJkNGvWDI0aNcKIESNgYWGBuXPn4uLFi1i9erUqiatZsybatm0Lf39/FCpUCFeuXMHy5cszJHVEAHhrL+mWjh07CgsLixzvUPj444+FmZmZiIyMVN2F8PYtuEK8uUvi77//zrA//e6X8PBw1T4fHx/Rpk0bsX79elGxYkVhYWEhihcvLmbMmJHh3NzeTfPixQvRtWtX4eTkJBQKhXj7Y/b48WPRtWtX4ezsLBwdHUWvXr3EyZMnM5UrhHQ7c+nSpYWFhYUoU6aMWLRokejbt2+mO3VSUlLE9OnTReXKlYWVlZWws7MT5cqVE4MGDRI3btwQQghx9OhR0alTJ+Hj4yMsLS1F4cKFRYMGDcTWrVuz/T2nS0pKEt98841wdXUVVlZWolatWuLo0aPCx8cnw10uQkh3YAwbNkyUKFFCmJubC2dnZ1G1alUxbtw48fr1a61eZ+nSpaJRo0bCzc1NWFhYCE9PT9G9e3dx/vx5VTnZ3eG0efNmUbNmTWFlZSVsbW1FkyZNxOHDhzPFfPnyZdGtWzdRuHBhYWFhIby9vUVgYKBITExU1WnEiBGiaNGiwsrKSlSpUkVs3rw50/uojr/j9LgbNWokHBwchKWlpfDx8RFdu3YVe/fuVR3Tt29fYWtrm6ku48ePF+9+Jezdu1d8+OGHwtLSMtNdTQcPHhSNGzcWtra2wtraWtSqVUts27Ytw/ljxowR1apVE4UKFRKWlpaiZMmS4uuvvxbPnj3LdH0ybgohhJAlCyLSEcWLF4efnx+2b98udyhEREaJd9MQERGRrJiMEBERkazYTUNERESykrVlJDg4OMNiYgqFIsPdAkIIBAcHw9PTU7Vo1KVLl2SMmIiIiNRN9m6aihUr4vHjx6rHhQsXVK9NnToVM2bMwJw5cxAeHg53d3c0a9ZM7RMGERERkXxkT0bMzMzg7u6ueqSv8yCEwMyZMzFu3Dh07twZfn5+WLp0KeLj47Fq1SqZoyYiIiJ1kX3Ssxs3bsDT0xOWlpaoWbMmJk2ahJIlS+LOnTuIjIxE8+bNVcdaWlqiQYMGOHLkCAYNGpRleUlJSRmm205LS8OLFy9QuHDhDIuOERERUc6EEHj16hU8PT0zLOKobrImIzVr1sSyZctQpkwZPHnyBD/++CNq166NS5cuqdbgcHNzy3COm5tbjitLTp48Oc8zDRIREVH27t+//96FIQtCp+6miYuLg6+vL0aNGoVatWqhTp06ePToUYbVIQcOHIj79+9nuzDYuy0jMTEx8Pb2xvXr1zOtfGlIUlJSsH//fjRq1Ajm5uZyh6MxrKfhMZa6sp6GxVjq+eLFC5QpUwYvX76Eo6Ojxq4jezfN22xtbVGpUiXcuHEDHTt2BCCt4vl2MhIVFZWpteRtlpaWmRamAqQluNW1+qouSklJgY2NDQoXLmzQHwzW0/AYS13T6+nsXBgKhTkMtarG9n4aej3TaXqYg+wDWN+WlJSEK1euwMPDAyVKlIC7uztCQkJUrycnJyMsLAy1a9eWMUqSW5pIkzsEonxRKoFhw0zQo4e0TUQSWZORESNGICwsDHfu3MHx48fRtWtXxMbGom/fvlAoFAgKCsKkSZOwadMmXLx4EYGBgbCxsUHPnj3lDFu/DBsG9OgBnDwpdyRq8/2t79FvWz/ci7kndyhEuZaQAEydWgN//GGKjRuBgwfljohId8jaTfPgwQP06NEDz549g4uLC2rVqoVjx47Bx8cHADBq1CgkJCRg8ODBiI6ORs2aNbFnzx7Y29vLGbb+EAL4+28gMhL4/HO5o1GLi1EXcfH1RVy7dA3Tm0+XOxyiXHn2DGjXzhTHj3vA0lJgxQoFGjaUOyoi3SFrMrJmzZocX1coFAgODkZwcLB2AjI0QgCrVwNhYUDNmnJHoxZ+rn6YWnoqbHxt4GaX/dghIl1x+zbQqhVw/boJ7OySsXWrCRo10qnhekSy4yfCkJmYAA0bwtD+C1bGtgxaV2ktdxhE73XqFNC6NRAVBXh7C4wceRB169aXOywinaNTA1iJiAzFrl1AgwZSIlK5MnDgQCq8vF7LHRaRTmIyYqiEAGbPBsLDDWLYfmpaKuouqovJhycjQZkgdzhEOVq8GGjXDoiLA5o2BQ4cADw95Y6KSHcxGTFUN28CX30F1K0LJCfLHU2B7bi+A4fvH8bsE7NhqjCVOxyiLAkBTJwI9Osn/R+gd29gxw7AwUHuyIh0G8eMGKqkJKB9e2nb2lreWNSgZamWWNZxGV4lvoJFpIXc4RBlkpoKDB4M/PWX9HzsWOCnnwAuiUX0fkxGDJWfH7Bli9xRqI2lmSV6V+6NlJQU7Ny5U+5wiDKIiwM++khqBTExAebMAb74Qu6oiPQHkxEiogKIigLatJHmFbS2lu6m79BB7qiI9AvHjBiiuDjpYQBik2LRamUr/H3pb04DTzrn5k2gdm0pESlcGNi3j4kIUX4wGTFEa9YATk5SB7aeW3p2KXbf3I3xoeOhADvfSXccPw4EBAC3bgElSgBHjkjPiSjv2E1jiM6dk0bTFSokdyQF1rl8Z0TFRaFM4TIaXzWSKLe2bZPGiCQkAFWrSmNFclhMnIjeg8mIIZo1C/j6a8BC/+86KepQFD80/kHuMIhU/vhDanRMSwNatpSWf7KzkzsqIv3GbhpDpFBI7cZFi8odCZHBEAL43/+kNSfT0oBPPwW2bmUiQqQOTEZIJ0W8jMDArQNxLvKc3KEQISVFSj5+/FF6/v33wMKFgLm5vHERGQp20xgYk4kTgeho4LPPAH9/ucPJt3nh87DgzAJExEQgpHeI3OGQEXv1CujWDfjnH8DUFJg3Dxg4UO6oiAwLkxEDY7JiBRARIS2MocfJSMdyHRERE4He/r3lDoWMWGSkNIfI6dOAjQ2wbp30nIjUi8mIIRECyilTYHbokDT5gR4L8ApAgBfvkyT5XLsmDVCNiABcXIDt24EaNeSOisgwMRkxJAoFRKdOQPfuckdCpNeOHgXatgVevAB8fYHdu4FSpeSOishwcQAr6ZRTj05h2uFpeB7/XO5QyEht3gw0biwlItWrS5OZMREh0iwmIwak6IED0nSQQsgdSr7NODYDo/aOwui9o+UOhYzQvHlAly5AYqI0NmT/fsDVVe6oiAwfkxFDcf8+qs2YAbOKFaXh/3qqhW8LfOD+Ab6oxiVPSXuEAMaNezOZ2cCBUguJra3ckREZB44ZMRQvXuB5+fIoVKgQFA4OckeTb30q90Fv/96c+p20JiUFGDAAWLZMej5hgjS5Gf8EibSHLSOGonJlHJo8Gcp//5U7kgJjIkLa8uqVNFB12TJpDpEFC6QJzfgnSKRdbBkxNCb6mV8euHsALxNfok3pNjA1MZU7HDICkZFA69bAmTPSHCJ//y09JyLt089vLsooJQVQKuWOokC+3/89OqzpgGlHpskdChmBa9eAgAApEXFxAUJDmYgQyYnJiCFYvx5m7u6ouGiR3JHkizJNiVrFasHN1g29/HvJHQ4ZuK1bpTkBIyKkW3aPHpVu4SUi+TAZMQQHDkAREwOhp100piam+Lnpz3gw/AGKORSTOxwyUHFxwKBBQIcO0hwiNWpIc4j4+sodGRHp57cXZfT770g9dAgRLVrIHUmBmJlwCBNpxokTwIcfAn/+KQ1OHTECOHBA6qIhIvkxGTEEJiYQNWog3sND7kjyRAiB//37P1x5ekXuUMhApaYCP/4odcvcuAEUKwbs3QtMmwZYWsodHRGlYzJCstl1cxd+PPgjqv9VHTGJMXKHQwbm9m2gQQNpzhClUlqy6fx5aap3ItItbBfXZ0JItwDUrAkMGSJ3NHnmW8gXncp1QinnUnC0cpQ7HDIQQkjzhgwdKs0j4uAA/P478MknnD+ESFcxGdFnp09Ly4kePAgMHy53NHlWtkhZbPxoI9JEmtyhkIF4/hz4/HNg/Xrped26wPLlQPHisoZFRO/BZESf+foCixcDUVGAtbXc0eSbiYK9hVRwhw4BH30EPHoEmJkBEycCo0ZJM6sSkW5jMqLPnJyAwEBpOyVFzkjyZPv17bgYdRH9P+wPF1vezkAFt3Ej0LMnkJQElCkDrFwJVKsmd1RElFtMRkjrJh+ajCP3jyBZmYzvG3wvdzik537/XRofIoQ0h8jKlVxtl0jfMBnRVxcvAlevAvXrA66uckeTa0IIDKwyUPWTKL+EAL77Dpg0SXo+aBAwZ47URUNE+oWd9fpq+XKgWzdg7Fi5I8kThUKBwA8CcaT/EXjY69e8KKQ7UlKAfv3eJCITJwLz5jERIdJX/OjqKw8PoFIloGFDuSMh0qrXr6U5Q3btkgan/vEH0L+/3FERUUEwGdFXQUHSQwi5I8m1LVe3QCmUaF+2Pad+p3xJSpLGhfz7r3QD2d9/A23ayB0VERUUu2n0nR7N4vTz4Z/RZV0XLDi9QO5QSA8plUCvXlIiYmcn/WQiQmQY+N9TfZSSApibyx1FnqSJNNT1qovHrx6jY7mOcodDekYIYNgwaTIzCwtg82agVi25oyIidWHLiD4aOFBa8WvVKrkjyTUThQmmNZ+GO1/dgbudu9zhkJ754Qdg7lypIXD5cqBJE7kjIiJ1YjKij06fBh4+BOzt5Y4kzxR61K1EumH+fGD8eGn7t9+kwatEZFjYTaOPjhwBzpwB/P3ljiRXIl9H4kXCC1RwqSB3KKRnNmwABg+Wtv/3P+DLL+WNh4g0gy0j+sjODqhXD3DUj5Vu/zr1FyrOrYgvtn8hdyikR/btk6Z4FwL47DNgwgS5IyIiTWEyQhr3MvElzE3MUbNYTblDIT2xdy/Qti2QnAx06vRmvAgRGSZ20+ibGTOA1FRpeVIfH7mjyZVfWvyCMXXHwNaCC4bQ++3ZI80lkpgItG4tjdPmyrtEho3JiL6ZORO4f19aklRPkhEAXJ2XcmX3bqBjR2lys3btpEnNLC3ljoqINI3JiD5RKqXlSY8eBapXlzua90pISUCSMglOVk5yh0J6YNcuBbp1k7pmOnQA1q2T5hQhIsPHMSP6xNQUGDkS2LhRL27rXXdpHdynu2N0yGi5QyEdFx7uhm7dTFVjRJiIEBkXJiOkMQfuHkCSMgmOVvpx1w/JY9s2BaZMqYHkZAW6dgXWrmUiQmRs2E2jT86cAcqUAWz1YyDogvYL8EX1L+Dl4CV3KKSjNm8GPv7YFKmpCnTtmoZVq0z0baUDIlIDtozoi+RkICBAmlvk3j25o8kVhUKBap7V4GbnJncopIM2bgS6dQNSUhSoV+8Bli1TMhEhMlJMRvTFgweAiwtQqBDgpdstDco0JVLTUuUOg3TY0qXStO6pqcDHH6chKOg0zNhOS2S0mIzoi5IlpRaRy5d1fvan7de3o+SskphzYo7coZAOmjYNCAyUbg7r2xdYvFgJU1Mhd1hEJCMmI/pEoZBaR3TcigsrcD/2Ph7EPpA7FNIhaWnSzWCjRknPR4wAFi3ihGZExAGspAErOq1Ax7IdUde7rtyhkI5ISQEGDACWLZOeT50qJSaA1EJCRMaNLSP64MIFoFKlN/+l1HGWZpb4xP8T+DjpzwyxpDlxcdKsqsuWSa0gS5a8SUSIiAC2jOiHsDDg4kXAw0PuSHIkhIBCx8ezkHa9eAG0aQMcOwZYW0vTu7dpI3dURKRrmIzog48/lhIRHZ91dfHZxVh2bhlG1xmNVqVbyR0OyezBA6BFC2nMdaFCwPbtQO3ackdFRLqI3TT6oEgRoEsXoHlzuSPJ0R+n/kDY3TBciLogdygksytXpMTj8mWgaFHg4EEmIkSUPbaMkNps6L4Bf536C/0+7Cd3KCSj48eB1q2lLpqyZYE9ewBvb7mjIiJdxmRE1x04ANy4ATRtCvjo9oDQYg7FMKHRBLnDIBn98w/QuTMQHw/UqAHs2CE17BER5YTdNLpu0SLpnsg//pA7EqIcrVkDtGsnJSItWgD79jERIaLcYTKi6z78EKhXD2jcWO5IsjUvfB4Gbh2Ii1EX5Q6FZDJ3LtCzpzSfyMcfA1u3AnZ2ckdFRPqC3TS67quvpIeOShNp+PXYr7jx4gaqF60OP1c/uUMiLRICmDgRCA6Wnn/5JTB7NmDC/+YQUR7wnwwqEAUUWNB+AfpW7ouelXrKHQ5pUVoaMGzYm0Rk/Hjgt9+YiBBR3rFlRJc9egS4uen04h0KhQL1feqjvk99uUMhLUpOlha7W71aev7bb8CQIbKGRER6jP+H0WUtWwKFC0uTNBDpiLg4oEMHKRExMwNWrWIiQkQFw5YRXRUfD9y7B8TEAGXKyB1NluaFz8Pr5Nf49MNPUcSGt00YgxcvgLZtgaNHpendN26UcmYiooJgMqKrbGyAZ8+kKSzd3OSOJpMUZQp+PPgjHr16BC9HL3zs97HcIZGGPXok3bJ78aI0vfuOHUBAgNxREZEhYDeNLjMzA/z95Y4iSwICExtORHPf5uhcvrPc4ZCGnT8P1KnzZr3GAweYiBCR+jAZoXyxMLVA/yr98U+vf2BhaiF3OKQhQgDz50uzqUZEAKVKAYcPA368g5uI1IjJiC56+FD6b+fkydK3AZEMYmKAjz4CvvgCSEoC2rSRxoqUKCF3ZERkaJiM6KIdO4Bjx6RpLBUKuaPJIE2kodfGXth2bRsEEyWDFR4uTf77999Sb+H06dKfI6d3JyJN4ABWXdS+vZSEODnJHUkm6y+vx8oLK7Ht+jbcDboLJysnuUMiNRICmDkTGD1amtq9eHFpzZmaNeWOjIgMGZMRXeTuDgwcKHcUWWpcojFG1xkNZ2tnJiIG5vlz4NNPgW3bpOddugALFuhkTkxEBobJCOVJEZsi+Lnpz3KHQWp26BDQowfw4AFgYQH8+qs0VkTHegmJyEBxzIiuWbkS2LQJeP1a7kjICAghjZNu2FBKREqXBo4fBwYPZiJCRNrDZETXfP890LkzEBoqdyQZ/H3pb/TZ1Ac3X9yUOxRSE6USGDQI+PZbafuTT4BTp4APPpA7MiIyNkxGdElKijTFZeXKQIMGckeTwe/hv2P5+eVYcX6F3KGQGqSkAL16AX/9Ja2yO28esHw5YG8vd2REZIw4ZkSXmJsDc+fKHUWWJjScgD9P/4kBVQbIHQoVUEIC0L07sH279Ce3ciXQrZvcURGRMdOZlpHJkydDoVAgKChItU8IgeDgYHh6esLa2hoNGzbEpUuX5AvSiDUo3gArO69EMYdicodCBfDqlTR52fbtgJUVsGULExEikp9OJCPh4eH4888/4f/OOixTp07FjBkzMGfOHISHh8Pd3R3NmjXDq1evZIpUwx4/5oyrpDEvXgDNmgH790vdMbt3A61ayR0VEZEOJCOvX7/GJ598gr/++guFChVS7RdCYObMmRg3bhw6d+4MPz8/LF26FPHx8Vi1apWMEWvIq1dAsWKAt7c0D7eO2H59O6YfmY5n8c/kDoUK4PVroEkT6U4ZZ2dg3z6dG5ZEREZM9jEjX375Jdq0aYOmTZvixx9/VO2/c+cOIiMj0bx5c9U+S0tLNGjQAEeOHMGgQYOyLC8pKQlJSUmq57GxsQCAlJQUpKSkaKgWBae4eBGmQgBCINXGRhphmAfpdVN3Hf889Se2Xd+GmIQYfF//e7WWnR+aqqeuUWc9hQD69TPF2bMmcHUV2L07FX5+ef4T0xi+p4aF9TQs2qqfrMnImjVrcPr0aYSHh2d6LTIyEgDg5uaWYb+bmxvu3r2bbZmTJ0/GhAkTMu3fv38/bGxsChixZpmuXg2rFy8Qt3NnvssICQlRY0RA0fiiqGRXCc5RzthZgLjUTd311FXqqOeWLb74+28/mJqm4euvD+PevRe4d08NwakZ31PDwnoahvj4eK1cR7Zk5P79+/jqq6+wZ88eWFlZZXuc4p2Zl4QQmfa9bezYsRg+fLjqeWxsLLy8vNCoUSMULly44IHrqJSUFISEhKBZs2YwNzdXW7mt0VptZamDpuqpa9RVz9BQBZYtMwUAzJgh8MUXtdQVotrwPTUsrKdhef78uVauI1sycurUKURFRaFq1aqqfUqlEgcOHMCcOXNw7do1AFILiYeHh+qYqKioTK0lb7O0tISlpWWm/ebm5gb9B5OO9TQsBann/fvSRGZKJdCnDzB0qCkUClM1R6g+fE8NC+tpGLRVN9kGsDZp0gQXLlzA2bNnVY9q1arhk08+wdmzZ1GyZEm4u7tnaAJLTk5GWFgYateuLVfYmiEE0L8/8NNPwH9jXOQmhMC+2/uQlJr0/oNJ5yQmSgvdPX0qzag6fz6ndyci3SVby4i9vT38/Pwy7LO1tUXhwoVV+4OCgjBp0iSULl0apUuXxqRJk2BjY4OePXvKEbLmREYCixZJU2G+1cUkp7ORZ9F0eVO427njwdcPYGqiu/+jpsyGDgXCw6U7ZzZuBKyt5Y6IiCh7st9Nk5NRo0YhISEBgwcPRnR0NGrWrIk9e/bA3tDmrDY3B6ZMAaKidOZb40HsA7jbuaNWsVpMRPTM3LnAggVSS8jq1UCJEnJHRESUM51KRkLfWRxOoVAgODgYwcHBssSjNUWKAKNGyR1FBu3KtsPDMg8Rk6g7c57Q+/35J/Dll9L2jz8Cb90ZT0Sks2Sf9Ix0l4nCBIWsC73/QNIJc+ZIq/ACwLBhwNix8sZDRJRbTEbkJgQQGipNkakjHsQ+kDsEyqMZM6RxIgAwYgQwcyYHrBKR/mAyIrdbt4BGjQA3N52YEjMmMQZlfiuD6n9Vx/N47dxfTgUzeTLwzTfS9rhxwNSpTESISL/o1JgRo/TokbQeTbFi0kBWmR1/eBypaalISEmAs7Wz3OFQDoQAJk4E0odUTZgAfC//jP1ERHnGZERu9esDd+/qTDdNc9/meDj8Ie7H3s9xpluSlxDAd98BkyZJzydPBsaMkTcmIqL8YjKiK+zs5I5AxcXWBS62LnKHQdkQQrr5avp06fkvv+jM9DRERPnCZIRUklKTYGmWeSp90h1CAEFBwOzZ0vPffgOGDJE1JCKiAuMAVjnt2wdUqgSMHy93JIhPiYf3TG/03NATLxNfyh0OZSEtDRg8WEpEFArgjz+YiBCRYWDLiJwOHwYuXgT8/eWOBLtv7kZUXBSOPzwOB0sHucOhd6SlAZ99BixcKCUiixYBgYFyR0VEpB5MRuT0+edSy4irq9yRoFO5Tjg58CSexj+FiYINZrpEqQQGDACWLJGWL1q2TFqNl4jIUDAZkZOrK9Cpk9xRAJCm3q/qWVXuMOgdSiXQrx+wYgVgagqsXAl89JHcURERqReTESIdpVQqEBhoirVrATMzadG7rl3ljoqISP3YHi+XgwelpVVv35Y1jGRlMqr9WQ3j949HXHKcrLHQGykpwC+/VMXatSYwMwPWrWMiQkSGi8mIXJYsAQYOBP76S9Ywtl3bhlOPT+Gv03/xtl4dkZwMfPKJKY4cKQpzc4ENG3SmN4+ISCPYTSOXDz4AGjYEGjSQNYw2ZdpgdZfVSExNhJkJ/xzklpwMdO8ObNliAjMzJf7+W6B9e74vRGTY+K+cXIYOfbPMqoyszKzwsd/HcodBAJKSpK6Y7dsBS0uB0aNPoHXranKHRUSkcUxGiHRAYqLUFbN7N2BlBWzcqERycpTcYRERaQXHjMjh2TPpnk0ZKdOU+Hj9x1hxfgWSlcmyxmLs4uOB9u2lRMTaGtixA2jaVMgdFhGR1jAZkUOPHkChQsDWrbKFEHI7BGsvrcWwXcOQJtJki8PYxcUBbdsCISGArS2wcyfQuLHcURERaRe7abRNCODKFeDVK8DHR7YwKrtVxsSGE2FmYgYrMyvZ4jBmr15JiciBA9Kizbt2AXXryh0VEZH2MRnRNoUCuHtXWpPGz0+2MDzsPfC/Bv+T7frGLjYWaNUKOHIEcHCQumgCAuSOiohIHkxG5GBqClSuLHcUJJOXL4GWLYHjxwEnJ2DPHqB6dbmjIiKSD8eMGBkhBMbsHYMTD09ACA6S1LYXL4BmzaRExNkZ2LePiQgREZMRbevTB/j2WyBKnts2w+6GYcrhKWiyrAniU+JlicFYPX8ONGkCnDwJFCkC/PsvUKWK3FEREcmP3TTa9OwZsHy5tD1ypCwhuNi4oJd/LxS2LgxbC1tZYjBGUVFA06bAhQvSYs379sk6ZIiISKcwGdEmCwtpLZpbt6Rbe2VQ0bUilndaLsu1jVVkpNQicvky4O4utYiULy93VEREuoPJiDY5OAADBsgdBWnR06dvEhFPTykRKVtW7qiIiHQLx4wYkcVnFuPJ6ydyh2E0nj+XumYuXwaKFgXCwpiIEBFlhcmItqSlSTOuRkbKcvmzkWfRb2s/+M72RVxynCwxGJOXL4HmzYHz5wE3N6lFpFQpuaMiItJN7KbRlqtXgQ4dABsbICYGMNPurz4+JR41i9aEl6MXB65qWGysNI/I6dPSXTP79gFlysgdFRGR7mIyoi3R0UDFitKtFFpORACgtldtHBtwDEmpSVq/tjGJiwPatJHmESlUCNi7V3rbiYgoe0xGtKVOHWkK+NRUWcOwNLOU9fqGLCFBWn330CHA0VFa/I4T7RIRvR/HjGibDK0iJx6eQIoyRevXNSaJiUCnTtLYEDs7aa2ZqlXljoqISD8wGdEGGaddf/L6CWovrA2vX73wIuGFbHEYsuRkoFs34J9/pCFBO3cCtWrJHRURkf5gMqINhw8DxYsDQ4Zo/dJXn11FYZvCKO5UHM7Wzlq/vqFLTgZ69AC2bwesrIBt24B69eSOiohIv3DMiDYcOQLcvQs8fKj1Szco3gAPvn6Ax68fa/3ahu7ZM6BzZ+DgQWly3c2bgcaN5Y6KiEj/MBnRhqFDpQEEVlayXN7c1Bzejt6yXNtQXb4MtG0L3LkjTaz799/SvCJERJR37KbRBmtraU7wOnW0dkkhBM5GntXa9YzJrl1AQICUiJQsCRw9ykSEiKggmIwYqH/v/IsP//gQrVe2hpBxAK0hEQKYNUtqEYmNBerXl+YTqVBB7siIiPQbkxFNW7EC+OUX4PZtrV72QtQFmJuYw7eQLxQKhVavbYhSUoDPPweCgqSZ/fv1k+YRKVJE7siIiPQfx4xo2ty5Uju+k5PUpq8lQbWC0LVCV5iZ8C0uqBcvgK5dgf37AYUCmDYNGD5c2iYiooLjN5Wm9eghzQvetKnWL13MoZjWr2lobt4EWrcGbtyQJjNbvVrqpiEiIvVhMqJpQ4dKDy2JTYqFqdIUTlZOWrumoXrwQBp3fO8e4O0tzSHi7y93VEREhodjRgzMwrML4T7dHeP3j5c7FL327BnQrJmUiJQpIw1UZSJCRKQZTEY06do1ID5eq5cMfxSOJGUS3O3ctXpdQxIbC7RqBVy9ChQrJg1Udeevk4hIY5iMaFLjxtKMWKdOae2SKzuuxJlBZ9CjUg+tXdOQJCYCHToAJ09Kd8qEhEhdNEREpDkcM6IpL19K94AKAZQrp7XLKhQKfOD+gdauZ0hSU4GPPgJCQwF7e2nlXS2+dURERovJiKY4OQGPHgFRUYCtrdzRUC789BOwdStgaSkNVq1aVe6IiIiMA7tpNEmhANzctHKpGy9uYOjVoRi9b7RWrmdozp8HfvxR2l64EGjQQN54iIiMCZMRAxEaEYr7ifdx6rH2xqcYitRUaUbV1FSgY0egZ0+5IyIiMi7sptGUESOAmBjgq68APz+NX65r+a64d/UeateorfFrGZrp06Uxxk5O0oS5nFmViEi72DKiKX//DSxYIN0nqgWFrAshwCkArUq10sr1DMWVK0BwsLQ9cybg4SFnNERExoktI5oyebI0z0j58nJHQtlQKoH+/YGkJGlekT595I6IiMg4MRnRFC0OPNh9czfuRt+FWTLfzryYPVtaw9DeHvjjD3bPEBHJhd00BmDOiTn4fOfnOBB9QO5Q9MaJE8C4cdL29OmAl5e88RARGTP+V1oTzp0DTE2lGbPMNP8rbu7bHA9iH6CqAyfGyI3r14E2bYCEBGlF3oED5Y6IiMi4sWVEE777DqhUCZg3TyuXG1ZzGML7h8PH2kcr19NnT54ALVtKC+FVrQqsXcvuGSIiuTEZ0QRra2kgQpUqckdCb3n1SmoJuXMHKFkS2LEDsLOTOyoiImI3jSasWyetS6NhT14/waWnl9DAh9OFvk9yMtC1K3D6tLQA3u7dWpscl4iI3oMtI5piYiI9NGjZuWVosqwJuv3dTaPX0XdCAAMGAHv2ADY2UotI6dJyR0VEROmYjOix1LRUOFk5oYVvC7lD0WnffgssXy6NKV6/HqhRQ+6IiIjobUxG1O3TT4HGjYEDmr/Ndmy9sYj8JhJ9P+ir8WvpqzlzgJ9/lrYXLJAmNyMiIt3CZETd9u+XHloYMwIAlmaWsDKz0sq19M369cCwYdL2jz8CgYGyhkNERNngAFZ127JFWnWtqubm/BBC4OGrhyjmUExj19B3+/cDvXpJ40U+/1zqqiEiIt3ElhF1q1xZWo/e3l5jlzh07xC8fvVC21VtIYTQ2HX01bFjQLt20pozHTtKXTWcS4SISHcxGdFDxx8ehwIKuNm6QcFv2QzOnpXGhcTFAU2bAqtXSwNXiYhId7GbRp2WL5daRBo2BJycNHaZEbVHoHvF7lCmKTV2DX109SrQvDnw8iVQpw6weTNgxeE0REQ6j8mIuggBjBwpzTd++DBQu7ZGL+ft6K3R8vXN7dtAkybA06fSxLc7dgC2tnJHRUREucFuGnVJSgLatgU++AD48EONXSZZmayxsvXVw4dSl8yjR0CFCsA//wCOjnJHRUREucVkRF2srKSJLM6ckdam0YBbL27BbbobBu8YjDShnVuHdV1UlJSI3LkD+PoCe/dK070TEZH+YDKiR9ZfXo+XiS9xK/oWTBR866KjpTEiV68CXl7Avn2Ah4fcURERUV5xzIi6xMRovG9gZJ2RqFG0Bic5A/D6tbQC77lz0oJ3+/YBPj5yR0VERPnBZEQd0tIAb28pGTl0SNrWABOFCRqVaKSRsvWJUgn06WOKY8cAZ2cgJIQL3xER6TMmI+rw4AEQGwskJrKfQAuWL6+A7dtNYGkp3TVTqZLcERERUUFw4IE6eHtL3TRHjwLm5movXpmmRPPlzTHl0BTEJcepvXx9snSpAps3S80gixcDtWrJHBARERUYkxF1cXCQJrjQgAN3DyDkdgimHpkKC1MLjVxDHxw4AAweLE2nOm6cEj16yBwQERGpBbtp9EBl98r4o+0fiE+Jh7mp+lte9MGtW0DnzkBKigJ16jzE//7nCoDzvBMRGQImI+oQFAQULQoMGAAUKqT24p2tnfFZ1c/UXq6+iImRFr57/hyoWjUNw4adgYlJC7nDIiIiNWE3TUHFxACzZgGjRklTwpNapaYCH30EXLki5XsbNyphack1eYiIDAlbRgoqLQ346Sfg7l3pPlM1W3h6IQrbFEbLUi2Nbn4RIYBhw6Tp3W1sgG3bpJuVzpyROzIiIlInJiMFVagQ8O23Gik6MTUR3+z5BjFJMdjbey+alGyikevoqvHjgXnzAIUCWLFCWvInJUXuqIiISN3YTaPDElIS8FnVz1CzaE2jm+zs11+BH36QtufOBTp1kjceIiLSHFmTkXnz5sHf3x8ODg5wcHBAQEAAdu3apXpdCIHg4GB4enrC2toaDRs2xKVLl2SMOAunTwPx8RopupB1IUxtNhXHBhwzqrVoliwBhg+Xtn/6Cfj8c1nDISIiDZP1G65YsWL4+eefcfLkSZw8eRKNGzdGhw4dVAnH1KlTMWPGDMyZMwfh4eFwd3dHs2bN8OrVKznDfiM2FqhWTZpjJDpa7mgMwubNQP/+0vY33wBjx8oaDhERaYGsyUi7du3QunVrlClTBmXKlMFPP/0EOzs7HDt2DEIIzJw5E+PGjUPnzp3h5+eHpUuXIj4+HqtWrZIz7Dfu3gVcXYFixdR+S29YRBguRelYK5CG/fuvdOdMWhrQrx8wbZo0XoSIiAybzgxgVSqV+PvvvxEXF4eAgADcuXMHkZGRaN68ueoYS0tLNGjQAEeOHMGgQYOyLCcpKQlJSUmq57GxsQCAlJQUpKh79GO5csC9e9LtvWosWwiBL3Z8gSvPrmB1p9XoUr7Le89Jr5va66glJ08q0KGDKZKTFejQIQ1z5iiRmpr5OH2vZ24ZSz0B46kr62lYjK2emiZ7MnLhwgUEBAQgMTERdnZ22LRpEypUqIAjR44AANzc3DIc7+bmhrt372Zb3uTJkzFhwoRM+/fv3w8bGxv1Bq8hcco42CbbwsbEBmk307Dzzs5cnxsSEqLByDTj6VMrjBjREK9fm8Hf/yk++eQY9uxJy/EcfaxnfhhLPQHjqSvraVgMvZ7xGhoT+S7Zk5GyZcvi7NmzePnyJTZs2IC+ffsiLCxM9brinXZ6IUSmfW8bO3YshqePfoTUMuLl5YVGjRqhcOHC6q+AhnRDNySlJsHSzDJXx6ekpCAkJATNmjWDuQYW69OUxESgcWNTxMSYwN9fYP9+J9jbt8z2eH2tZ14ZSz0B46kr62lYjKWez58/18p1ZE9GLCwsUKpUKQBAtWrVEB4ejlmzZmH06NEAgMjISHh4eKiOj4qKytRa8jZLS0tYWmb+Ajc3N1fvH0xSEtC4MVChAjB7NmBtrb6y/5OfeNVeTw0bPBg4eVKaL27zZgWcnXMXu77VM7+MpZ6A8dSV9TQshl5PbdVN5+4XFUIgKSkJJUqUgLu7e4YmsOTkZISFhaF27doyRvifq1eBI0eA9esBK/XNjBqTGIPXya/VVp4u+/NPYMECwMQEWL0aKFFC7oiIiEgOsraMfPvtt2jVqhW8vLzw6tUrrFmzBqGhodi9ezcUCgWCgoIwadIklC5dGqVLl8akSZNgY2ODnj17yhm2xNsbWLNGGryqxls+5pyYgx8P/ohx9cbhu/rfqa1cXXPsGDBkiLT900/AW+OUiYjIyMiajDx58gS9e/fG48eP4ejoCH9/f+zevRvNmjUDAIwaNQoJCQkYPHgwoqOjUbNmTezZswf29vZyhi0pVEi6D1XNwh+FIzE1ER52Hu8/WE89eQJ06SLdgNSlC/BfjxwRERkpWZORhQsX5vi6QqFAcHAwgoODtROQDtj00SZciLoAb0dvuUPRmK+/Bh49kobbLF7MuUSIiIyd7ANY9daePYCLi/SNmsWA2fxSKBTwd/NXW3m6JixMGh+iUADLlwO60MhFRETy0rkBrHpBCGnltipVpEnPKFdSU4GhQ6XtQYOkXx8RERGTkfx4/RqoVAlwc5MGsqpJzw098fXur/Ew9qHaytQl8+YBFy5It/H++KPc0RARka5gN01+2NtLt4OoUXRCNNZcXAMBgTF1x6i1bF0QFQX873/S9qRJgB7NP0dERBrGZERHWJhaYGXnlbjy7Arc7LKf1E1fjR0r3QVdpQowYIDc0RARkS5hMqIjbC1s0aNSD7nD0IgTJ4BFi6Tt334DTE3ljYeIiHQLx4zkx9ixQIMGwJYtckei85KSgM8/l7b79AF0YfJcIiLSLUxG8uPgQeDAASAuTi3FPYt/hgWnFyDydaRaytMlo0YBZ85Ig1anTJE7GiIi0kXspsmPuXOB8+eB+vXVUty2a9swcNtAVPWoipOfnVRLmbpg40ZpDUEAWLoUcHeXNx4iItJNTEbyw99feqiJg6UDqntWR9sybdVWptzu3AH69ZO2R44E2hpO1YiISM2YjOiALhW6oEuFLhBCyB2KWiQnS8v2xMQAAQHSQnhERETZYTKSV+HhwP37QLVqap3wDJCmgjcEo0dLv6ZChaSFjc3N5Y6IiIh0GQew5tXixdJSs/PmqaW429G3oUxTqqUsXbB5MzBzprS9dKna8zUiIjJATEbyytsbqF4d+PDDAheVJtJQZ1EdePzigUtRl9QQnLwiIoBPP5W2v/kGaNdO1nCIiEhPsJsmr8aMkR5qEPEyAompiVCmKVHKuZRaypRL+jiRly+BWrWAyZPljoiIiPQFkxEZlSxUElEjonDt+TVYmlnKHU6BjBolzbTKcSJERJRX7KbJi7Q0tRdpbmoOP1c/tZerTX/+CcyaJW0vWQL4+MgaDhER6RkmI3kxaxZQtKha7lVNE+pPbOSwdy8weLC0/cMPQPv28sZDRET6h8lIXpw9Czx6BCgLfvfL6JDRqLOoDv65+U/B45LJ1atA167Sr6NXL2DcOLkjIiIifcQxI3kxZw4waBDg4VGgYoQQWHd5He7F3ENCaoKagtOuZ8+ANm2kic3q1AEWLAAMZJoUIiLSMiYjeWFvr5ZlZxUKBY72P4q/L/2NVqVaqSEw7UpKAjp1Am7fBkqWBDZtAiz1e/wtERHJiMmITDztPfFVra/kDiPPhAAGDgQOHQIcHYHt2wEXF7mjIiIifcYxI7l14AAwZYp0/6oRmzQJWL4cMDUF1q8HypeXOyIiItJ3eU5Grl27huDgYDRp0gS+vr7w8PCAv78/+vbti1WrViEpKUkTccpv0yZpsrPVqwtUzL7b+/Dplk9x4O4BNQWmPdu2Ad99J23//jvQtKm88RARkWHIdTJy5swZNGvWDJUrV8aBAwdQvXp1BAUF4YcffkCvXr0ghMC4cePg6emJKVOmGF5SUq0a0KMH0KhRgYpZf3k9lpxdgjUX16gpMO2IigL695e2hw6VxvESERGpQ67HjHTs2BEjR47E2rVr4ezsnO1xR48exa+//opffvkF3377rVqC1AmffCI9CqhHpR4wNzVH5/Kd1RCUdgghJR9PnwJ+fsC0aXJHREREhiTXyciNGzdgYWHx3uMCAgIQEBCA5OTkAgVmqOr71Ed9n/pyh5Eny5ZJq/Gam0vjRXjnDBERqVOuu2lyk4gU5HidlpgIxMfLHYUs7t4Fhg2TtidMAD74QNZwiIjIAOX71t4TJ04gNDQUUVFRSHtnzZYZM2YUODCdsn070K0b0KGD1ESQTxuvbEQl10ooXbi0+mLToLQ04NNPgdhYaXqVUaPkjoiIiAxRvpKRSZMm4bvvvkPZsmXh5uYGxVtTbyoMcRrO27eln46O+S7idfJr9NjQA8nKZFwfcl0vEpLffgP27wdsbIClS6XbeYmIiNQtX8nIrFmzsGjRIgQGBqo5HB01cqTURFCAO4Si4qJQ17suHsY+RCnnUmoMTjOuX5fuZAaA6dOBUrofMhER6al8JSMmJiaoU6eOumPRXQpFgacZLVmoJPb12QdlmlLnW4+USqBfP2moTNOmwOefyx0REREZsnzNwPr111/j999/V3csRsHURPf7OmbPBg4flpbi4QJ4RESkaflqGRkxYgTatGkDX19fVKhQAebm5hle37hxo1qC0wkvX0r9FWXLAkFB+fpmTkhJgKmJKSxMdf8Oo+vXgfTpYaZPB3x85I2HiIgMX75aRoYOHYr9+/ejTJkyKFy4MBwdHTM8DMq1a8AffwC//JLvJoJl55ah8NTC+Hafbk8C9273zMCBckdERETGIF8tI8uWLcOGDRvQpk0bdceje1xcgHHjpBm/8unw/cN4nfwaNuY2agxM/dg9Q0REcshXMuLs7AxfX191x6KbSpYEfvyxQEUs6bgEX9f6Gi62BRsEq0m3bkk5F8DuGSIi0q58ddMEBwdj/PjxiDfSWUnzykRhgg89PkQxh2Jyh5IlIYDPPgMSEoAmTdg9Q0RE2pWvlpHZs2fj1q1bcHNzQ/HixTMNYD19+rRagtMJERGAh4dBL8iyaBHw77+AtTXw55/sniEiIu3KVzLSsWNHNYeho4SQFmOJjQUuXwbKlctzEZ9t+wxFbIrgy+pfoqhDUfXHWECPHwPffCNt//CD1CtFRESkTflKRsaPH6/uOHRTbKx0i4kQ+RpEEZMYg0VnFkEplBhUdZAGAiy4IUOAmBigWjXgq6/kjoaIiIxRvhfKex8hhM7PNPpejo5SQvL0qdSHkUdmJmZY2H4hzj05Bx8n3RsRunGj9DAzAxYulH4SERFpW64HsJYvXx6rVq1CcnJyjsfduHEDX3zxBaZMmVLg4HSCQgG4uubrVFsLW/T9oC9mtNC9VYxjY4Evv5S2R48G/P3ljYeIiIxXrv8v/Pvvv2P06NH48ssv0bx5c1SrVg2enp6wsrJCdHQ0Ll++jEOHDuHy5csYMmQIBg8erMm4qYBmzgQiI4HSpYHvvpM7GiIiMma5TkYaN26M8PBwHDlyBGvXrsWqVasQERGBhIQEFClSBB9++CH69OmDXr16wcnJSYMha9HcucClS0CPHkDdunk6NT4lHrtv7kbNojV1buBqdDQw47/Gmh9+AKys5I2HiIiMW55HCdSuXRu1a9fWRCy6Z/t2YNcuoEqVPCcjJx+dRJd1XVDUvigeDH+goQDz55dfpEGrfn5At25yR0NERMaOQxZz0q+flIjUqJHnUxNSEuDv5o9yRfJ+O7AmPXsGzJolbU+YAJjka9o7IiIi9WEykpOuXaVHPrQo1QItSrVAmkhTc1AFM20a8Po18OGHQKdOckdDRESUz+ngKfdMFLrzK37yBJgzR9qeOJEzrRIRkW7QnW9KXRMXB9y8CSQm5vlUIYQGAiq4n38G4uOBmjUBY1hwmYiI9AOTkewcOiTd91q9ep5P3Xx1M7x+9cKokFEaCCx/7t4F5s2TttkqQkREuiRfyUjjxo0xYcKETPujo6PRuHHjAgelE2JiABsbwNs7z6ceuHsAD2If4HXyaw0Elj9BQUBSEtCgAdCsmdzREBERvZGvAayhoaG4cOECzpw5g5UrV8LW1hYAkJycjLCwMLUGKJvu3aX7XuPj83zq5KaT0aFcBxSxKaKBwPJu505g82bA1FQaM8JWESIi0iX57qbZu3cvIiMjUatWLURERKgxJB2iUAD/JVp5YWVmhYbFG8LP1U8DQeVNYiIwbJi0HRQkzS1CRESkS/KdjHh4eCAsLAz+/v6oXr06QkND1RgWqcuUKcCtW4CnJ2Asiy0TEZF+yVcykr4ar6WlJVauXImvvvoKLVu2xNy5c9UanKy6dweGDgVevMjTafPC52Hq4am4E31HQ4Hl3q1bwOTJ0vavvwL29vLGQ0RElJV8jRl599bV7777DuXLl0ffvn3VEpTsoqOBv/+Wtn/+OU+nzj4xG1efXUWZwmVQolAJDQSXO0JI3TNJSUDTppz2nYiIdFe+kpE7d+7AxcUlw74uXbqgXLlyOHnypFoCk5W5OfDXX8Djx3kaM5Im0jCo6iD8e+dfNPBpoMEA32/rVmngqrk5B60SEZFuy1cy4uPjk+X+ihUromLFigUKSCfY2QEDBuT5NBOFCYJqBSGoVpD6Y8qD+Hjgq6+k7REjgLJlZQ2HiIgoR5z0zABNnChNcubtDYwbJ3c0REREOWMykpVz56TRn0plrk9JE2nYfn07ElISNBjY+/37rwJTp0rbs2bl685kIiIirWIykpUvvgBKlQLWr8/1KScenkC71e3gO9tXtpV6X760RGCgKYSQepk6dpQlDCIiojzJ15gRg2dhAVhZAXkY/xIVFwVvR2/U9qoty0q9aWnAr79WQWSkAhUrSq0iRERE+oDJSFZCQ6UumjzcgtK+bHu0K9MOr5JfaS6uHEybZoJz51xhbS2wbp0CNjayhEFERJRn7KbJjqkpYJK3X49CoYCDpYOGAsreoUNAcLAU6+zZSlSooPUQiIiI8o3JiBrEJsXKdu3nz4EePQClUoEGDe6jTx/x/pOIiIh0CJORdwUHA23aALt25fqUJsuaoOLcijj5SLsTvgkBfPop8OABULq0wOefn+fkZkREpHeYjLzr4EFp6tKnT3N1eHRCNE49OoXLTy/Dy8FLw8FltHUrsG2bNN525cpUWFunavX6RERE6sABrO+aOBH4+GOgXr1cHV7IuhCejXqGM4/PwM3OTcPBvZGSAowaJW2PGAF88AHw6JHWLk9ERKQ2TEbeVaeO9MgDZ2tnNCnZREMBZe2vv4Dr1wEXF2D0aK1emoiISK3YTaOHYmKA8eOl7eBgwEH7N/AQERGpDZORt0VGAiEhwJ07uTo8LjkOvTb2wvyT86FMy/3U8QU1ZQrw7Jm0AN7AgVq7LBERkUYwGXnb/v1A8+ZAYGCuDj/x8ARWXliJnw7+BFMTU83G9p+nT4GZM6XtqVMBc3OtXJaIiEhjOGbkbWZmQPnyQLlyuTrcy9EL4xuMh6WppYYDe2P2bCAhAahWDWjXTmuXJSIi0hgmI2/r1k165FIp51IIbhisuXjeERsLzJkjbY8dm6fZ6omIiHQWu2n0yJ9/Ai9fSmNFuCIvEREZCiYj+RSfEo/Tj08jWZmsleslJQEzZkjbo0fnedkcIiIincWvtLe1aQO0agXcvPneQ4/eP4qqf1aF/zx/LQQGLF8OPH4MFC0KfPKJVi5JRESkFRwzkk4IYN8+qQnC9P13xjxPeI5CVoXg76b5ZCQ5GZg8Wdr+5htp+nciIiJDwWQknRDSYi/37knND+/RvWJ3dK3QVSsr9i5cCNy+Dbi5cV4RIiIyPExG0pmYSHOM5OUUhQmcrJw0E89/4uOl5XIA4LvvADs7jV6OiIhI62QdMzJ58mRUr14d9vb2cHV1RceOHXHt2rUMxwghEBwcDE9PT1hbW6Nhw4a4dOmSTBFr3+zZ0sSwxYsDn30mdzRERETqJ2syEhYWhi+//BLHjh1DSEgIUlNT0bx5c8TFxamOmTp1KmbMmIE5c+YgPDwc7u7uaNasGV69eqXeYC5dAvbuBR4+fO+hqy6sQp1FdTD/5Hz1xvCO6Ghp6ncA+OEHjhUhIiLDJGsysnv3bgQGBqJixYqoXLkyFi9ejHv37uHUqVMApFaRmTNnYty4cejcuTP8/PywdOlSxMfHY9WqVeoNZtEioFmzN/fP5mD/nf04cv8I7kTnbg2b/JoyRZpXxM8P6NFDo5ciIiKSjU6NGYmJiQEAODs7AwDu3LmDyMhINH9rLIelpSUaNGiAI0eOYNCgQZnKSEpKQlJSkup5bKw0wDQlJQUpKSnZXtvE0REm5csjzdcXaTkcBwCjAkahdrHa8HP1y7HMgnj4EJg1ywyAAhMnpiItTSAtLfvj0+PQVDy6gvU0PMZSV9bTsBhbPTVNIYQQWrnSewgh0KFDB0RHR+PgwYMAgCNHjqBOnTp4+PAhPD09Vcd+9tlnuHv3Lv75559M5QQHB2PChAmZ9q9atQo2Njaaq4CaLVpUEVu3lkK5cs8xefIhTv1ORERaFx8fj549eyImJgYODg4au47OtIwMGTIE58+fx6FDhzK9pnjnm1gIkWlfurFjx2L48OGq57GxsfDy8kKjRo1QuHBh9QatIa9fA336SG/NlCmOaNWq9XvPSUlJQUhICJo1awZzA17Kl/U0PMZSV9bTsBhLPZ8/f66V6+hEMjJ06FBs3boVBw4cQLFixVT73d3dAQCRkZHw8PBQ7Y+KioKbm1uWZVlaWsLSMvMquubm5mr5gzl6/yjux95HQLEAeDl6Fbi8rKxeLS2KV7o00LatWZ6mfldXPXUd62l4jKWurKdhMfR6aqtusg5gFUJgyJAh2LhxI/7991+UKFEiw+slSpSAu7s7QkJCVPuSk5MRFhaG2rVrqy+Qly+BypWBli0BpTLHQxecXoCP1n+Ev07/pb7rvyUtTbqdFwCGDuUaNEREZPhkbRn58ssvsWrVKmzZsgX29vaIjIwEADg6OsLa2hoKhQJBQUGYNGkSSpcujdKlS2PSpEmwsbFBz5491RfI48fA+fPA/fvvnQq+lHMp1ChaA9U9q6vv+m8JCQGuXQPs7YG+fTVyCSIiIp0iazIyb948AEDDhg0z7F+8eDECAwMBAKNGjUJCQgIGDx6M6Oho1KxZE3v27IG9vb36AilWDNi9G3hrfpPsjK03FmPrjVXftd+R3irSrx+gwbFCREREOkPWZCQ3N/IoFAoEBwcjODhYc4HY2wMtWmiu/Fy6fh3YuRNQKIAhQ+SOhoiISDs4IiEPUpSavd96zhzpZ5s2QKlSGr0UERGRzmAyAgAnT0qDNR4/zvGw0XtHw326O+aGz1V7CM+fA4sXS9vDhqm9eCIiIp3FZASQpoBv3ly6pzYHpx6fwpO4J7CzUP/SuTNmSPOLfPAB0LSp2osnIiLSWToxz4jsPD2BihUBX98cD9v9yW6ciTyDMoXLqPXyL14Av/0mbX//PTjbKhERGRUmIwAwfbr0eA9rc2vU9lLj/Cb/+fVX4NUrwN8f6NBB7cUTERHpNHbTyCw6+s3tvN9/z0nOiIjI+LBlJJdmH5+N18mv8VHFj+DrnHN3Tl7MnClN/e7nB3TqpLZiiYiI9Ab/H37+PFCpEtCrV46HzQ2fi3H/jsO159fUdumXL4FZs6RttooQEZGxYstIRARw8SJgZZXtIUIIfFHtCxx9cBQ1itZQ26VnzQJiYqSxs126qK1YIiIivcJkpE4d4J9/clyTRqFQ4KtaX+ErfKW2y8bESF00APC//7FVhIiIjBeTkcKFpTlGtOz336VumvLlga5dtX55IiIincH/j+fCxaiLiE2KVVt5iYlv7qAZO/a9CwUTEREZNCYje/ZIU8G/eJHtIS1WtIDjz44IfxiulkuuWAE8eSItFvzxx2opkoiISG8xGRk+XOqmOXUqy5djk2JhZmIGE4UJyruUL/Dl0tLezK/29deAuXmBiyQiItJrHDNSoYI0/7qXV5YvO1g64G7QXbxIeKGWNWm2bQOuXQMcHYGBAwtcHBERkd5jMrJuXa4Oc7Z2Vsvlpk2Tfn7+OWBvr5YiiYiI9Bq7abTo6FHg8GGpa2bYMLmjISIi0g1MRt6j2fJm6LelH568flLgstJbRXr3lhYKJiIiImNPRrZvl6aCHz48y5cjX0di7+29WHJ2CWwtbAt0qevXgc2bpe0RIwpUFBERkUEx7jEjt29LU8GXK5flyw6WDtj80WbceXmnwINXp08HhADatpUmOiMiIiKJcScj3bpJmYGjY5Yv25jboEO5DgW+zOPHwNKl0vbo0QUujoiIyKAYdzLi4SE9NGzmTCA5GahdG6hbV+OXIyIi0ivGPWYkB0IILDm7BGcjz0KZpsx3OTExwPz50vaYMWoKjoiIyIAYd8vIxo2AnZ3UZGGXcUzI/dj7+HTLpzAzMcOrsa9gapK/BWTmzQNiY6W51dq0UUfQREREhsW4k5FPP5UyhatXgbJlM7wUmxSLxiUaI02kwcrMKl/FJyZKXTSANFbEhO1QREREmRhvMpKSAgQEAI8eZTnph5+rH/b12VegSyxdKi2I5+UF9OhRoKKIiIgMlvEmI+bmwO7dGiteqXwzydk333BBPCIiouyw4yALQggIIQpUxrZtwK1bgLMzMGCAmgIjIiIyQExGsnA/9j4cf3ZEo6WN8p2UzJ0r/Rw4ELAt2OStREREBs14k5GFCwE/P+CHHzK9dC7yHF4lv8Lz+OdQKBR5LvrGDSAkBFAogEGD1BEsERGR4TLeMSO3bwOXLgFRUZlealmqJS58cQGxSbH5KvqPP/4rpyVQokRBgiQiIjJ8xpuMfP450LAh4O6e6SVzU3P4ufrlq9iEBGDRIml78OACxEdERGQkjDcZ8fKSHmq2bh0QHQ34+ACtWqm9eCIiIoNjvGNGshGXHIdx+8Zh3aV1SBNpeT5/3jzp52efAab5m7SViIjIqBhvy8i6dYC9PVC/fobbXS49vYRJhybB1dYV3St2z1ORZ88Cx49Lc4r076/meImIiAyU8SYjfftK87Xfvp1hlKmtuS0GfDgAdhZ2OZyctZUrpZ8dOgBubuoKlIiIyLAZZzKSkgLUqwc8ewYUKZLhpYquFfFX+7/yXGRaGrB2rbTNqd+JiIhyzziTEXNzYM8etRZ59Chw/77U88OBq0RERLnHAazviEmMydd5a9ZIPzt1Aqyt1RgQERGRgWMy8pbUtFS4THOByzQXRL6OzP15qdJ4WAD4+GMNBUdERGSgjDMZ2bpVmgo+KCjD7vsx95GSloLXya/hauua6+JCQ6WJXJ2dgaZN1RsqERGRoTPOMSP37klTwZcrl2F3iUIl8Hrsa9yLuQcTRe7ztPQumq5dpeEoRERElHvGmYx06SIlIk5OmV6ytbBFeZfyuS4qORnYsEHaZhcNERFR3hlnMuLhIT3UYOtW4OVLqbj69dVSJBERkVExzmQkG+P2jYONuQ0+/fBTeNp75uqcv/6bkiQwkNO/ExER5YdxJiO7d0uzlNWsCRQuDABIE2mYeXwm4lPi0aVCl1wlIxERQEiItM3p34mIiPLHOJORb74BLl8G9u0DGjcGACQrkxHcIBgXn15EKedSuSpm0SJACKBJE8DXV5MBExERGS7jTEb8/QErK6BoUdUuKzMrjKwzMtdFpKZKyQgADByo7gCJiIiMh3EmI6tXF7iI3buBhw+lXp6OHQseEhERkbEyzknPsnD9+fU8TQWfPnC1Tx/A0lJDQRERERkBJiP/ab+6PZymOCE0IvS9xz56BOzYIW2zi4aIiKhgjC8ZOXgQqFgxw+0vKcoUxKXEAQDKFi773iKWLQOUSqBOHaB87udHIyIioiwY35iRhw+lO2lc36w9Y25qjvtf30dMYgwcLB3eW0T6kJPAQA3FSEREZESMLxlp0gTYuxewts70kqOV43tPv3oVOH8eMDMDOnfWRIBERETGxfiSERcXKSHJp7VrpZ/Nm0ur9BIREVHBGN+YkSz8EPYDAjcH4uj9ozkeJ8SbZOSjj7QQGBERkREwvmTk4EFg+3bplpj/bL2+FUvPLcXj149zPPXiReDKFcDCAujQQdOBEhERGQfjS0Z++glo1+7NojIA/lf/f/ih0Q+o5lktx1PTW0VatQIc3z+8hIiIiHLB+MaMlCkDPHsGeHmpdrUv2x7ty7bP8TR20RAREWmG8SUjs2fn67Tz54GbN6Ulbdq1U3NMRERERsz4umnecSf6Ds48PoNXSa9yPG7zZulnixaAnZ3m4yIiIjIWRp+M/HnqT1T5swrG7hub43Fbtkg/uSgeERGRehlXMhIdDfj5AfXqSfO5A1AoFHCxcUEp51LZnnb3LnDmDGBiArRtq61giYiIjINxjRl5/hy4dEnqZzE1BQBMajIJk5pMQppIy/a0rVuln3XqAEWKaCNQIiIi42FcyYiHhzQVfGJippdMFNk3EqWPF2EXDRERkfoZVzJia5vnqeCjo4GwMGmbE50RERGpn3GNGXnHyUcnUX9xfYzdm/3g1R07pOElFSsCvr5aDI6IiMhIGFfLyPXr0sPXFyhfHpeiLuHgvYOwMLXI9pRt26SfbBUhIiLSDONqGVm/XpqxbPp0AECjEo2wqvMqfF3r6ywPT0kB/vlH2uZdNERERJphXC0jRYoAVasCpaTbeL0dveFdyTvbw48cAWJipNNq1NBWkERERMbFuJKRzz6THrm0Y4f0s1Ur1Z3AREREpGbG1U3zju3Xt+Nc5DmkpqVm+Xp6MtKmjRaDIiIiMjLG1TLylrjkOLRbLa14Fz06Gk5WThlej4gALl+WWkRatNB+fERERMbCuFpGPvpImgr+5ElEJ0ajRtEaKOVcKlMiArxpFalTB3DK/DIRERGpiXG1jJw8Cdy+DSQno5hDMRwfcDzbQ9lFQ0REpB3GlYwsWiStT1O+fI6HJScDoaHSduvWmg+LiIjImBlXMtKgQa4OCw8HEhIAFxdp5lUiIiLSHOMaM/KWoN1BaLCkAXbd2JXptfRWkYYNAYVCq2EREREZHeNJRhISgJ07gcOHAQAnHp7AgbsHEJ8Sn+nQt5MRIiIi0izj6aZ59EgajWpvD8TGYlbLWbj54iYCvAIyHJacrMpXmIwQERFpgfEkI0JIU8FbWwMAqhetjupFq2c67O3xIu8Z50pERERqIGs3zYEDB9CuXTt4enpCoVBg8+bNGV4XQiA4OBienp6wtrZGw4YNcenSpfxdrFQp6dbegwdzPCy9i6ZBA44XISIi0gZZk5G4uDhUrlwZc+bMyfL1qVOnYsaMGZgzZw7Cw8Ph7u6OZs2a4dWrVwW67qNXj7Dl6hZcisqc2HC8CBERkXbJ2k3TqlUrtGrVKsvXhBCYOXMmxo0bh86dOwMAli5dCjc3N6xatQqDBg3K93XDIsLQc2NP1Pepj7DAMNX+pCSOFyEiItI2nR0zcufOHURGRqJ58+aqfZaWlmjQoAGOHDmSbTKSlJSEpKQk1fPY2FgAQNq6dUhbuRKidWuYty+Dah7V4O/ij5SUFNWxoaEKJCSYwd1doHTpVLz1ks5Lr0eKPgWdD6yn4TGWurKehsXY6qlpOpuMREZGAgDc3Nwy7Hdzc8Pdu3ezPW/y5MmYMGFCpv0R+/fD5fBhRNjYwLxiRXzn9h2QCuzcuVN1zOLFFQGUQoUK97Fr1xn1VETLQkJC5A5BK1hPw2MsdWU9DYuh1zM+PvP0F5qgs8lIOsU7o0iFEJn2vW3s2LEYPny46nlsbCy8vLzg/dVXSO3SBcW8vFC0eua7aADg22+lX0e/fp5o3dpDDdFrT0pKCkJCQtCsWTOYm5vLHY7GsJ6Gx1jqynoaFmOp5/Pnz7VyHZ1NRtzd3QFILSQeHm8Sg6ioqEytJW+ztLSEpaVlpv1m5crBrE6dbM+7fx+4fBkwMQFatTKDvv5tmZubG/QHIx3raXiMpa6sp2Ex9Hpqq246OwNriRIl4O7unqEJLDk5GWFhYahdu3a+y01NS0Wp2aXQaGkjxCTGqPbv3i39rFkTcHbOd/FERESUR7K2jLx+/Ro3b95UPb9z5w7Onj0LZ2dneHt7IygoCJMmTULp0qVRunRpTJo0CTY2NujZs2eer6U4dQqwtcX9Yna4FX0LD2IfwN7SXvX6rv+WqMnm5h4iIiLSEFmTkZMnT6JRo0aq5+ljPfr27YslS5Zg1KhRSEhIwODBgxEdHY2aNWtiz549sLe3z67IbJmMGgWcOwePrRtxuN9hRMVFwUQhNQylpAB790rHtWxZ8HoRERFR7smajDRs2BBCiGxfVygUCA4ORnBwcMEv5u4OxMXByq0oanvVyPDSsWPAq1dAkSLSjPFERESkPTo7gFXdlCtXAoULZ/naoUPSz4YNpQGsREREpD1Gk4ykC40IRUxiDKp6VkUxh2IAgKNHpdcCAnI4kYiIiDTC6NoBph+Zjo5rO2LXDWnEqhBMRoiIiORkNC0jpm3bAs7OKDe0LJ4WfYpSzqUAALduAc+eARYWQJUqMgdJRERkhIwmGTE5dgwwM8P07duBt2ZwPXZM+lmlCpDFXGlERESkYUaTjKQuWCBlG+9MJc8uGiIiInkZTTIiOnbM8m6a48eln7VqaTceIiIikhjVANZzkedQ+rfS6LimIwAgNRW4dEl6jeNFiIiI5GE0LSOKEyfw2Pohbr64CTsLOwDAzZtAYiJgawuULClzgEREREbKaJIRs9atUathLRxYcgCK/8aNnD8vvVapEic7IyIikovRJCOiRAk4uRdHPZ96qn3nzkk//f1lCoqIiIiMJxlJDQ/PNIA1vWWEyQgRke5RKpVISUmRO4wspaSkwMzMDImJiVAqlXKHk2/m5uYwNTWVOwzjSUYAaSr46IRoVPOsBi9HLyYjREQ6SAiByMhIvHz5Uu5QsiWEgLu7O+7fv6/q+tdXTk5OcHd3l7UeRpWMTD8yHTtu7MBf7f5C15IDcO+etL9SJXnjIiKiN9ITEVdXV9jY2Ojkl31aWhpev34NOzs7mOjpoEMhBOLj4xEVFQUA8PDwkC0Wo0lGTHv0QPlWpnherBZKOJXAhQvSfm9vwMlJ1tCIiOg/SqVSlYgUzmaldV2QlpaG5ORkWFlZ6W0yAgDW1tYAgKioKLi6usrWZaO/v8E8MgkJwbSnH+Jo/6NoUrKJavBq5cryxkVERG+kjxGxsbGRORLjkf67lnN8jtG0jKTOnAnUrq16zvEiRES6Sxe7ZgyVLvyujSYZEb16ZbibJj0ZYcsIERGRvIymm+Z+7H2Uml0KjZc2hlIJ1ZgRtowQERHJy2haRp5eOI5b0beQkpaC27eB+HjA2hooVUruyIiIiIyb0SQjFbt+jkMLfkRSvQCcOyXt8/MDdGCuFyIiMkDJycmwsLCQOwy9YDTdNLaORVDHowYal2jMwatERPomLk56CPFmX3KytC8pKetj09Le7EtJkfYlJubu2Hxo2LAhhgwZguHDh6NIkSJo1qxZhteLFy+OH3/8EX369IGdnR18fHywZcsWPH36FB06dICdnR0qVaqEkydP5nid4OBgeHt7w9LSEp6enhg2bFi+4tUlRpOMpF69Cvz3h5E+XoSTnRER6Qk7O+nx7NmbfdOmSfuGDMl4rKurtD99ZksA+P13aV///hmPLV5c2n/lypt9S5bkO8ylS5fCzMwMhw8fxh9//JHp9V9//RV16tTBmTNn0KZNG/Tu3Rt9+vRBr169cPr0aZQqVQp9+vSBeDvpesv69evx66+/4o8//sCNGzewefNmVDKALzOj6aY5/fg0XkW9gr+bP65dkwaKVKggc1BERGRQSpUqhalTp2b7euvWrTFo0CAAwPfff4958+ahevXq6NatGwBg9OjRCAgIwJMnT+Du7p7p/Hv37sHd3R1NmzaFubk5vL29UaNGDc1URouMpmVk2YVl6LKuC1afW4ebN6V9ZcrIGxMREeXS69fSo0iRN/tGjpT2zZmT8dioKGm/t/ebfV9+Ke1buDDjsRER0v7y5d/sCwzMd5jVqlXL8XX/t8YHuLm5AUCGlo30felTtL+rW7duSEhIQMmSJTFw4EBs2rQJqamp+Y5XVxhNMlJi32nUdqsOh8RKSEkBLC0BLy+5oyIiolyxtZUeb0/QZWEh7bO0zPrYt6dpNzeX9llZ5e7YfIdpm+Pr5m+VnT7ZWFb70t4ew/IWLy8vXLt2Db///jusra0xePBg1K9fX2dXN84to0lGRiy8jMNtN6IM2gEASpfO+LdHRESkD6ytrdG+fXvMnj0boaGhOHr0KC6kD4bUU0bzdaz86SegUCFcvy49ZxcNERFpUrly5bBp06YClfHw4UOUK1cOJ06cAAAsWbIECxcuxMWLF3H79m0sX74c1tbW8PHxUUfIsjGaZCRt0CDA1laVjJQtK288RERk2K5du4aYmJgClZGSkoJr164hPj4eAODk5IS//voLderUgb+/P/bt24dt27bp9ArHuWE0d9PUXVIXDo4OsLpyAIAlW0aIiEitQkNDMzx/9/bciIiITOe8e0zx4sUz7Hv3eceOHdGxY8cCx6prjCYZufrsKvAaKHZDGijEZISIiEg3GE03za4NVljbfjsePJCqzGSEiIhINxhNy0hAkituiTYAABeXjLeqExERkXyMpmUk9fRpXL4sbb89tw0RERHJy2iSka3XtyI0PBIAp4EnIiLSJUaTjPTb2g87j94FwJYRIiIiXWI0yUgNhReSI0sCYMsIERGRLjGaZGTbwdJ4+cgFAFtGiIiIdInRJCM3mg6CUgk4OACennJHQ0RElNHZs2cxbdo0g1iFN6+MJhm5V6YpAMDXN+Oij0RERHKLjo5G165dUb58eZiZ5TzrRsOGDREUFKR6Xrx4ccycOVOzAWqY0cwzMmrTLAAT4OUldyRERERvCCEQGBiIUaNGoW3btnk+Pzw8HLa2thqITHuMJhl58EAJAExGiIhIpygUCmzZsiXf57u4uKgxGnkYTTdNvWfVAADFiskcCBER5VlcchzikuMyLBqXrExGXHIcklKTsjw2TaSp9qUoUxCXHIfE1MRcHZsfDRs2xNChQxEUFIRChQrBzc0Nf/75J+Li4vDpp5/C3t4evr6+2LVrl+qcy5cvo3Xr1rCzs4Obmxt69+6NZ8+evYkvLg59+vSBnZ0dPDw88Msvv2S67rvdNPfu3UOHDh1gZ2cHBwcHdO/eHU+ePMlXnbTFaJIRxElNIkxGiIj0j91kO9hNtsOz+Ddf1NMOT4PdZDsM2Tkkw7Gu011hN9kO92Luqfb9Hv477Cbbof/W/hmOLT6rOOwm2+HK0yuqfUvOLsl3nEuXLkWRIkVw4sQJDB06FF988QW6deuG2rVr4/Tp02jRogV69+6N+Ph4PH78GA0aNMAHH3yAkydPYvfu3Xjy5Am6d++uKm/kyJHYv38/Nm3ahD179iA0NBSnTp3K9vpCCHTs2BEvXrxAWFgYQkJCcOvWLXz00Uf5rpM2GE03zUOrUgCYjBARkeZUrlwZ3333HQBg7Nix+Pnnn1GkSBEMHDgQAPD9999j3rx5OH/+PHbu3IkqVapg0qRJqvMXLVoELy8vXL9+HZ6enli4cCGWLVuGZs2aAZCSnWI5fJHt3bsX58+fx507d+D137iE5cuXo2LFiggPD0f16tU1VfUCMZpk5MkzqdnN1VXmQIiIKM9ej30NALAxt1HtG1lnJIJqBcHMJONXWdSIKACAtbm1at+X1b/EwCoDYWpimuHYiK8iMh0b+EFgvuP09/dXbZuamqJw4cKoVKmSap+bm5sUY1QUTp06hf3798POzi5TObdu3UJCQgKSk5MREBCg2u/s7IyyZctme/0rV67Ay8tLlYgAQIUKFeDk5IQrV64wGZFbXKxU1cKFZQ6EiIjyzNYi890iFqYWsDC1yNWx5qbmMDc1z/Wx+WVunvFchUKRYZ/iv7kl0tLSkJaWhnbt2mHKlCmZyvHw8MCNGzfyfH0hhOoaudmvK4xnzMh/VXV2ljkMIiIiAFWqVMGlS5dQvHhxlCpVKsPD1tYWpUqVgrm5OY4dO6Y6Jzo6GtevX8+2zAoVKuDevXu4f/++at/ly5cRExOD8jo8/bgRJSPS7Kvm+U94iYiI1ObLL7/Eixcv0KNHD5w4cQK3b9/Gnj170K9fPyiVStjZ2aF///4YOXIk9u3bh4sXLyIwMBAmJtl/dTdt2hT+/v745JNPcPr0aZw4cQJ9+vRBgwYNUK1aNS3WLm+MKhlhFw0REekKT09PHD58GEqlEi1atICfnx+++uorODo6qhKOadOmoX79+mjfvj2aNm2KunXromrVqtmWqVAosHnzZhQqVAj169dH06ZNUbJkSaxdu1Zb1coXoxkzAjAZISIizQkNDc20LyIiItO+t+dKKV26NDZu3JhtmXZ2dli+fDmWL1+u2jdy5Mgcr+Ht7V2gSdTkwJYRIiIikhWTESIiIpKVUSUjRYrIHQERERG9y6iSEbaMEBER6R4mI0RERCQro0pG2E1DRESke4wqGWHLCBERke5hMkJERESyMqpkhN00REREuseokhG2jBARkSEIDAxEx44d5Q5DbYwmGTEzE7CxkTsKIiIyVA0bNkRQUJDGzzFERpOMWNomyR0CERERZcFokhFzqwS5QyAiojwSAoiLk+fx1np27xUYGIiwsDDMmjULCoUCCoUCERERCAsLQ40aNWBpaQkPDw+MGTMGqampOZ6jVCrRv39/lChRAtbW1ihbtixmzZqlod+wbjCaVXsLW+Xhr4qIiHRCfDxgZyfPtV+/Bmxtc3fsrFmzcP36dfj5+WHixIkAAKVSidatWyMwMBDLli3D1atXMXDgQFhZWSE4ODjLc1xcXJCWloZixYph3bp1KFKkCI4cOYLPPvsMHh4e6N69u6aqKyujSUaK2JnKHQIRERkoR0dHWFhYwMbGBu7u7gCAcePGwcvLC3PmzIFCoUC5cuXw6NEjjB49Gt9//32W5wCAqakpJkyYoHpeokQJHDlyBOvWrWMyou/s3WVKrYmIKN9sbKQWCrmuXRBXrlxBQEAAFAqFal+dOnXw+vVrPHjwAN7e3tmeO3/+fCxYsAB3795FQkICkpOT8cEHHxQsIB1mNMmIhU2K3CEQEVEeKRS57yrRNUKIDIlI+j4Amfa/bd26dfj666/xyy+/ICAgAPb29pg2bRqOHz+u0XjlZDTJyGvFIwCucodBREQGysLCAkqlUvW8QoUK2LBhQ4ak5MiRI7C3t0fRokWzPAcADh48iNq1a2Pw4MGqfbdu3dJCDeRjNHfTOFiyZYSIiDSnePHiOH78OCIiIvDs2TMMHjwY9+/fx9ChQ3H16lVs2bIF48ePx/Dhw2FiYpLlOWlpaShVqhROnjyJf/75B9evX8f//vc/hIeHy1w7zTKaZKS8nZPcIRARkQEbMWIETE1NUaFCBbi4uCAlJQU7d+7EiRMnULlyZXz++efo378/vvvuu2zPuXfvHj7//HN07twZH330EWrWrInnz59naCUxREbTTWNT2FLuEIiIyICVKVMGR48ezbCvePHiOHHiRJ7OAYDFixdj8eLFGfZNnjxZtb1kyZKCBatjjKZlxMbFXu4QiIiIKAtGk4y8xhO5QyAiIqIsGE0yojDndPBERES6yGiSkWLZ39JNREREMjKaZMTdUU9nzSEiMkIiL6vUUYHowu/aaJIRa89CcodARETvYW5uDgCIj4+XORLjkf67Tv/dy8Fobu1VmKfJHQIREb2HqakpnJycEBUVBQCwsbHJcep0uaSlpSE5ORmJiYmqCcz0jRAC8fHxiIqKgpOTE0xN5VtQ1miSkRjlcwBucodBRETvkb6CbXpCoouEEEhISIC1tbVOJkt54eTklGHVYDkYTTJiqUySOwQiIsoFhUIBDw8PuLq6IiVFN5fySElJwYEDB1C/fn1ZuzcKytzcXNYWkXRGk4x4mHPSMyIifWJqaqoTX5RZMTU1RWpqKqysrPQ6GdEVetHRNXfuXJQoUQJWVlaoWrUqDh48mOcyzGz4x0JERKSLdD4ZWbt2LYKCgjBu3DicOXMG9erVQ6tWrXDv3r08lWPuZKehCImIiKggdD4ZmTFjBvr3748BAwagfPnymDlzJry8vDBv3rw8lePioqEAiYiIqEB0esxIcnIyTp06hTFjxmTY37x5cxw5ciTLc5KSkpCU9GawakxMDAAgOvoF9HzAc45SUlIQHx+P58+fG3T/JetpeIylrqynYTGWer548QKA5idG0+lk5NmzZ1AqlXBzy3hLrpubGyIjI7M8Z/LkyZgwYUKm/WXKlNFIjERERIbu+fPncHR01Fj5Op2MpHv3Hm4hRLb3dY8dOxbDhw9XPX/58iV8fHxw7949jf4i5RYbGwsvLy/cv38fDg4OcoejMayn4TGWurKehsVY6hkTEwNvb284Oztr9Do6nYwUKVIEpqammVpBoqKiMrWWpLO0tISlpWWm/Y6Ojgb9B5POwcGB9TQgxlJPwHjqynoaFmOpp6ZnmdXpAawWFhaoWrUqQkJCMuwPCQlB7dq1ZYqKiIiI1EmnW0YAYPjw4ejduzeqVauGgIAA/Pnnn7h37x4+//xzuUMjIiIiNdD5ZOSjjz7C8+fPMXHiRDx+/Bh+fn7YuXMnfHx8cnW+paUlxo8fn2XXjSFhPQ2LsdQTMJ66sp6GhfVUL4XQ9P06RERERDnQ6TEjREREZPiYjBAREZGsmIwQERGRrJiMEBERkaz0LhmZO3cuSpQoASsrK1StWhUHDx7M8fiwsDBUrVoVVlZWKFmyJObPn5/pmA0bNqBChQqwtLREhQoVsGnTJk2Fnyd5qevGjRvRrFkzuLi4wMHBAQEBAfjnn38yHLNkyRIoFIpMj8TERE1XJUd5qWdoaGiWdbh69WqG43TxPc1LPQMDA7OsZ8WKFVXH6OL7eeDAAbRr1w6enp5QKBTYvHnze8/Rx89oXuupr5/PvNZTXz+fea2nvn4+J0+ejOrVq8Pe3h6urq7o2LEjrl279t7ztPEZ1atkZO3atQgKCsK4ceNw5swZ1KtXD61atcK9e/eyPP7OnTto3bo16tWrhzNnzuDbb7/FsGHDsGHDBtUxR48exUcffYTevXvj3Llz6N27N7p3747jx49rq1pZymtdDxw4gGbNmmHnzp04deoUGjVqhHbt2uHMmTMZjnNwcMDjx48zPKysrLRRpSzltZ7prl27lqEOpUuXVr2mi+9pXus5a9asDPW7f/8+nJ2d0a1btwzH6dr7GRcXh8qVK2POnDm5Ol5fP6N5rae+fj7zWs90+vb5zGs99fXzGRYWhi+//BLHjh1DSEgIUlNT0bx5c8TFxWV7jtY+o0KP1KhRQ3z++ecZ9pUrV06MGTMmy+NHjRolypUrl2HfoEGDRK1atVTPu3fvLlq2bJnhmBYtWoiPP/5YTVHnT17rmpUKFSqICRMmqJ4vXrxYODo6qitEtchrPffv3y8AiOjo6GzL1MX3tKDv56ZNm4RCoRARERGqfbr4fr4NgNi0aVOOx+jzZzRdbuqZFX34fL4tN/XU18/n2/Lzfurj51MIIaKiogQAERYWlu0x2vqM6k3LSHJyMk6dOoXmzZtn2N+8eXMcOXIky3OOHj2a6fgWLVrg5MmTSElJyfGY7MrUhvzU9V1paWl49epVpsWNXr9+DR8fHxQrVgxt27bN9D8zbSpIPT/88EN4eHigSZMm2L9/f4bXdO09Vcf7uXDhQjRt2jTTZH+69H7mh75+RgtKHz6fBaFPn0910NfPZ0xMDADkuAietj6jepOMPHv2DEqlMtMCeW5ubpkW0ksXGRmZ5fGpqal49uxZjsdkV6Y25Keu7/rll18QFxeH7t27q/aVK1cOS5YswdatW7F69WpYWVmhTp06uHHjhlrjz6381NPDwwN//vknNmzYgI0bN6Js2bJo0qQJDhw4oDpG197Tgr6fjx8/xq5duzBgwIAM+3Xt/cwPff2MFpQ+fD7zQx8/nwWlr59PIQSGDx+OunXrws/PL9vjtPUZ1fnp4N+lUCgyPBdCZNr3vuPf3Z/XMrUlv3GtXr0awcHB2LJlC1xdXVX7a9WqhVq1aqme16lTB1WqVMFvv/2G2bNnqy/wPMpLPcuWLYuyZcuqngcEBOD+/fuYPn066tevn68ytSW/MS1ZsgROTk7o2LFjhv26+n7mlT5/RvND3z6feaHPn8/80tfP55AhQ3D+/HkcOnTovcdq4zOqNy0jRYoUgampaaZMKyoqKlNGls7d3T3L483MzFC4cOEcj8muTG3IT13TrV27Fv3798e6devQtGnTHI81MTFB9erVZcvUC1LPt9WqVStDHXTtPS1IPYUQWLRoEXr37g0LC4scj5X7/cwPff2M5pc+fT7VRdc/nwWhr5/PoUOHYuvWrdi/fz+KFSuW47Ha+ozqTTJiYWGBqlWrIiQkJMP+kJAQ1K5dO8tzAgICMh2/Z88eVKtWDebm5jkek12Z2pCfugLS/7gCAwOxatUqtGnT5r3XEULg7Nmz8PDwKHDM+ZHfer7rzJkzGeqga+9pQeoZFhaGmzdvon///u+9jtzvZ37o62c0P/Tt86kuuv75LAh9+3wKITBkyBBs3LgR//77L0qUKPHec7T2Gc31UFcdsGbNGmFubi4WLlwoLl++LIKCgoStra1qBPOYMWNE7969Vcffvn1b2NjYiK+//lpcvnxZLFy4UJibm4v169erjjl8+LAwNTUVP//8s7hy5Yr4+eefhZmZmTh27JjW6/e2vNZ11apVwszMTPz+++/i8ePHqsfLly9VxwQHB4vdu3eLW7duiTNnzohPP/1UmJmZiePHj2u9funyWs9ff/1VbNq0SVy/fl1cvHhRjBkzRgAQGzZsUB2ji+9pXuuZrlevXqJmzZpZlqmL7+erV6/EmTNnxJkzZwQAMWPGDHHmzBlx9+5dIYThfEbzWk99/XzmtZ76+vnMaz3T6dvn84svvhCOjo4iNDQ0w99hfHy86hi5PqN6lYwIIcTvv/8ufHx8hIWFhahSpUqGW5L69u0rGjRokOH40NBQ8eGHHwoLCwtRvHhxMW/evExl/v3336Js2bLC3NxclCtXLsMHR055qWuDBg0EgEyPvn37qo4JCgoS3t7ewsLCQri4uIjmzZuLI0eOaLFGWctLPadMmSJ8fX2FlZWVKFSokKhbt67YsWNHpjJ18T3N69/uy5cvhbW1tfjzzz+zLE8X38/0Wzuz+zs0lM9oXuupr5/PvNZTXz+f+fm71cfPZ1Z1BCAWL16sOkauz6jivwCJiIiIZKE3Y0aIiIjIMDEZISIiIlkxGSEiIiJZMRkhIiIiWTEZISIiIlkxGSEiIiJZMRkhIiIiWTEZISIiIlkxGSEirUtOTkapUqVw+PDhApUzYsQIDBs2TE1REZFcOAMrEWndnDlzsGnTJuzbt69A5URFRcHX1xfnz5/P1aJfRKSb2DJCRFr322+/YcCAAQUux9XVFc2bN8f8+fPVEBURyYXJCBHlW/HixTFz5swM+z744AMEBwdne87p06dx8+ZNtGnTRrUvIiICCoUC69atQ7169WBtbY3q1avj+vXrCA8PR7Vq1WBnZ4eWLVvi6dOnGcpr3749Vq9erc5qEZGWMRkhIq06cOAAypQpAwcHh0yvjR8/Ht999x1Onz4NMzMz9OjRA6NGjcKsWbNw8OBB3Lp1C99//32Gc2rUqIH79+/j7t272qoCEamZmdwBEJFxiYiIgKenZ5avjRgxAi1atAAAfPXVV+jRowf27duHOnXqAAD69++PJUuWZDinaNGiqnJ9fHw0FzgRaQxbRohIqxISEmBlZZXla/7+/qptNzc3AEClSpUy7IuKispwjrW1NQAgPj5e3aESkZYwGSGifDMxMcG7N+SlpKTkeE6RIkUQHR2d5Wvm5uaqbYVCkeW+tLS0DOe8ePECAODi4pL7wIlIpzAZIaJ8c3FxwePHj1XPY2NjcefOnRzP+fDDD3H16tVMSUx+Xbx4Eebm5qhYsaJayiMi7WMyQkT51rhxYyxfvhwHDx7ExYsX0bdvX5iamuZ4TqNGjRAXF4dLly6pJYaDBw+q7sAhIv3EZISI8m3s2LGoX78+2rZti9atW6Njx47w9fXN8ZzChQujc+fOWLlypVpiWL16NQYOHKiWsohIHpyBlYi07sKFC2jatClu3rwJe3v7fJezY8cOjBw5EufPn4eZGW8OJNJXbBkhIq2rVKkSpk6dioiIiAKVExcXh8WLFzMRIdJzbBkhIiIiWbFlhIiIiGTFZISIiIhkxWSEiIiIZMVkhIiIiGTFZISIiIhkxWSEiIiIZMVkhIiIiGTFZISIiIhkxWSEiIiIZPV/ROTwdMMMES4AAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 600x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "us = suk*pk1      # vetor de deslocamentos rms\n",
    "up = gpk*us       # vetor de deslocamentos de pico\n",
    "ut = us + up      # vetor de deslocamentos totais\n",
    "\n",
    "print('Deslocamento r.m.s.:       {0:5.2f}m'.format(np.max(us)))\n",
    "print('Máximo deslocamento total: {0:5.2f}m'.format(np.max(np.abs(ut))))\n",
    "\n",
    "# Visualiza perfis\n",
    "plt.figure(7, figsize=(6,6))\n",
    "\n",
    "plt.plot(us, zm, 'r:')\n",
    "plt.plot(um, zm, 'g:')\n",
    "plt.plot(ut, zm, 'b')\n",
    "plt.axis([0, 2, 0, H])\n",
    "plt.title('Amplitudes de deslocamentos')\n",
    "plt.legend(('r.m.s','médio','total'), loc=4)\n",
    "plt.xlabel('u (m)')\n",
    "plt.ylabel('z (m)')\n",
    "plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 8 Cálculo comparativo da resposta sem amplificação dinâmica <a name=\"section_8\"></a> \n",
    "\n",
    "Para fins de comparação, é interessante fazer o cálculo das amplitudes de deslocamento com a abordagem puramente estática, utilizando-se a velocidade de rajada ${\\bar{V}_{T{\\rm{, topo}}}}$ média sobre $T_{\\rm{gust}}$ anteriormente calculada.\n",
    "\n",
    "Para o exemplo dado o cálculo é apresentado abaixo.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Máximo deslocamento estático: 0.92m\n"
     ]
    }
   ],
   "source": [
    "# Força média sobre T_gust\n",
    "FmT  = 0.613*(VmT**2)*CA\n",
    "\n",
    "# Preenchendo com zeros os momentos nos g.d.l. de rotação\n",
    "FTG  = np.vstack((FmT, np.zeros(FmT.shape))).T.reshape(2*NS)\n",
    "\n",
    "# Resolvendo o sistema e retendo-se apenas a translação\n",
    "umT  = np.linalg.solve(KG, FTG)[0:-1:2]\n",
    "\n",
    "print('Máximo deslocamento estático: {0:4.2f}m'.format(np.max(np.abs(umT))))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Observa-se, portanto, que a amplificação dinâmica (ressonância) produziu um acréscimo de 25% sobre o deslocamento obtido do cálculo puramente estático."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 9 Forças estáticas equivalentes <a name=\"section_9\"></a> \n",
    "\n",
    "Forças estáticas equivalentes consistem em um vetor de cargas que, estaticamente aplicado, produz uma amplitude de deslocamento equivalente ao pico da resposta dinâmica. Em outras palavras, é um conjunto de forças fictícias que produz uma resposta estrutural real, e consequentemente um estado de tensões e deformações que poderá de fato ocorrer na estrutura. A determinação das forças estáticas equivalentes facilita a consideração dos efeitos dinâmicos no dimensionamento da estrutura.\n",
    "Seu cálculo é feito a partir do vetor de deslocamentos de pico:\n",
    "\n",
    "$$\\vec{F}_{\\rm eq} = {\\bf K} \\vec{u}_{\\rm max} $$\n",
    "\n",
    "Alternativamente, pode-se substituir a matriz de rigidez nesta equação fazendo-se uso da expressão do problema de autovalores-autovetores:\n",
    "\n",
    "$${\\bf K} \\vec \\phi_k = \\omega_k^2 {\\bf M} \\vec \\phi_k$$\n",
    "\n",
    "Assim, a contribuição do $k$-ésimo modo ao vetor de forças resulta:\n",
    "\n",
    "$$\\vec{F}_{{\\rm eq,}k} = \\omega_k^2 u_{k, \\rm max} {\\bf M} \\vec \\phi_k $$\n",
    "\n",
    "Caso seja necessária a consideração de mais de um modo de vibração no cálculo dos deslocamentos, surge o problema da combinação de respostas modais. Uma possível solução é o uso do critério de _combinação quadrática completa_ (CQC), normalmente utilizado em análise sísmica. Contudo, para o caso de torres esbeltas, a determinação das forças equivalentes utilizado-se apenas um modo apresenta, geralmente, uma precisão satisfatória.\n",
    "\n",
    "Abaixo está demonstrado o cálculo das forças estáticas equivalentes para a torre do exemplo, comparando-se a solução com matriz de rigidez ou considerando-se apenas o primeiro modo:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Máximo deslocamento original:             1.26m\n",
      "Máximo deslocamento equivalente (matriz): 1.26m\n",
      "Máximo deslocamento equivalente (modo 1): 1.51m\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAK8CAYAAACJNR4BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdmUlEQVR4nOzdeXhU9dn/8c/MZGaSIRBkQEjAhdJorIjV2ioEWbQkWhes8rRV64PaxVZta60NWG2N1lLEPta2UumGy69FffrUWqm1gRqFErFgtbJZsXWpEKkgkEiAzExyfn8Mk2aSyT6Tc873vF/X5eWVkyHzvbPM575nzpyvz7IsSwAAAAAAYND57V4AAAAAAABexVAOAAAAAIBNGMoBAAAAALAJQzkAAAAAADZhKAcAAAAAwCYM5QAAAAAA2IShHAAAAAAAmzCUAwAAAABgE4ZyAAAAAABswlAOAAAAoJOLLrpIJ5xwghoaGuxeCmA0hvJBcv/998vn82X874YbbrB7ecZ45pln5PP59Mwzz+TsPlI/yzfeeCNn9yFJCxYs0GOPPZbT++jOP//5T4XDYa1du3bQ77u+vl7V1dX629/+1qd/d/nll+voo4/OyZpSjj76aF1++eU5vY9s3Fdfvhc+n0/V1dX9up9smjFjhiZOnNjj7Y4++mj5fD594Qtf6PS51GPA//3f/7Ud+8UvfqGxY8eqqakpq+uFd5Dhg4MMz55sZPjdd9+tdevW6cknn1RRUVEWV5c7g9EHdGWwfrecoLq6Wj6fL6f3kSnPM0l93/Pz8/Xmm292+nzH3iIej2vChAm6++67s73kAWEoH2T33Xef1q5dm/bfl7/8ZbuXZYyTTz5Za9eu1cknn2z3UgbM7kC/4YYbNGvWLE2ePHnQ77u+vl633nprn4fyb37zm/rtb3+bm0XZ4Le//a2++c1v9uvfmva9yOQXv/iFXnnllR5vN3fuXA0ZMkSLFi0ahFXBZGR4bpHh2TPQDH/uuef0ne98R08++aTGjRuX5dXljp3Zd84552jt2rUqLi625f69rrm5WTfffHOPtwsGg/rWt76l2267Te++++4grKx38uxegNdMnDhRp5xySta/7v79+xWJRLL+dd1m2LBhOu200+xehuu9/PLLeuyxx/THP/7R7qX0Sur3f8KECXYvJSsOHDiggoICnXTSSf3+GqZ8L7oyefJkbdmyRd/4xjf0m9/8ptvb5uXl6aqrrtK3v/1tzZs3j8dK9BsZnltkeHZkI8NPO+007dy5M4uryi0n9AGjRo3SqFGjerwdf++5cdZZZ2nZsmW64YYbdOKJJ3Z724svvljXX3+9fvKTn+gb3/jGIK2we7xS7jCPP/64Jk+erEgkoqFDh2rWrFmdTj1KnTLywgsvaM6cOTrssMPaHoRaW1v1ox/9SB/84AdVUFCg4cOH67TTTtPjjz/e9u8feeQRVVRUqLi4WAUFBTruuOM0f/78Tqd2vvbaa/rUpz6lkpIShcNhjR49WmeeeWavXr18/vnndf7552vEiBHKz8/XSSedpP/93//tdLvnnntO5eXlys/PV0lJiW688Ub97Gc/63T6T1en13Y8vbfjqW933323fD6f/vGPf3T6t/PmzVMoFNKuXbskSStXrtTs2bM1btw45efn6/3vf7+uuuqqts/35E9/+pPOPPNMDRs2TJFIROXl5XrqqafSbpP62W3evFkXX3yxioqKNHr0aF155ZVp79fy+XxqamrSAw880HaK5IwZM9o+v2PHDl111VUaN26cQqGQxo8fr1tvvVWJRCLt/u69916deOKJKiws1NChQ1VWVtarB597771XY8aM0axZs9KOp04BWrt2raZMmaKCggIdffTRuu+++yRJTzzxhE4++WRFIhGdcMIJnRqCf/zjH7riiitUWlqqSCSisWPH6rzzztPGjRvbbvPMM8/owx/+sCTpiiuuaKs/9fO//PLLVVhYqI0bN6qiokJDhw7VmWee2fa59qetpb7fmf7r6bTweDyuqqoqjRkzRpFIRFOnTtW6desy3ra3P49Mjj76aJ177rl69NFHddJJJyk/P1+33npr2+c6rnPz5s2qqKhQJBLRqFGjdM011+iJJ57odMpnplP4Ghsb9bnPfU7RaFSFhYU666yztHXr1ozrevXVV3XJJZfo8MMPVzgc1nHHHafFixen3WbGjBldfn/vv//+Hmvvjd/+9reKRCL67Gc/m/b9HDFihObPn69HH31Uzz33XI9f59JLL1VjY6MefvjhrKwLyIQMJ8NT9Toxw1988UWde+65bY/rJSUlOuecc7Rt27a22xw8eFA33nijxo8fr1AopLFjx+qaa67R3r17e/V97M3fQCapn/0vf/lLXX/99RozZowKCgo0ffp0vfjii2m37UsfICV/Htdee63uu+8+HXvssSooKNApp5yi5557TpZl6c4779T48eNVWFioM844I+PvW29+PzKdvp7qm1avXq0pU6YoEonoyiuvlCT961//0qc//em0nP2f//kftba29vj9SvUOv//973XSSSe1PRb8/ve/b1vLcccdpyFDhugjH/mInn/++U5fo7c/qyeeeEIf/OAHFQ6HNX78eH3ve9/LuKaB/u70RmNjoyorKzV69OhOPVlVVZWi0ajmzZvX49cJhUL65Cc/qZ/+9KeyLCtr6xsIXikfZC0tLZ0edPPykj+GZcuW6dJLL1VFRYUeeughNTc3a9GiRZoxY4aeeuopTZ06Ne3fXXjhhfrUpz6lL3zhC21hfPnll+uXv/ylPvOZz+i2225TKBTSCy+8kPYA8eqrr+pjH/uYrrvuOg0ZMkR///vfdccdd2jdunWqra1tu93HPvYxtbS0aNGiRTryyCO1a9cuPfvssz3+cT399NM666yzdOqpp2rJkiUqKirSww8/rE9+8pPav39/WwBv2bJFZ555po4++mjdf//9ikQi+vGPf6xly5b187vb2ac//WnNmzdP999/v26//fa24y0tLfrlL3+p8847TyNHjpSUfP/V5MmT9dnPflZFRUV64403dNddd2nq1KnauHGjgsFgl/fzy1/+Uv/93/+t2bNn64EHHlAwGNRPfvITVVZWqqampi0sUi666CJ98pOf1Gc+8xlt3LhRN954oyRp6dKlkqS1a9fqjDPO0MyZM9tOXx42bJikZJh/5CMfkd/v17e+9S1NmDBBa9eu1e2336433nijbUB++OGHdfXVV+tLX/qSvve978nv9+sf//iHtmzZ0uP37YknntC0adPk93d+3m7Hjh264oorVFVVpXHjxulHP/qRrrzySr311lv6v//7P33jG99QUVGRbrvtNl1wwQV67bXXVFJSIil5Wno0GtXChQs1atQo7d69Ww888IBOPfVUvfjiizr22GN18skn67777tMVV1yhm2++Weecc44kpZ0+F4vFdP755+uqq67S/Pnzuxx+P/vZz+qss85KO/boo4/qzjvv1PHHH9/t9+Bzn/ucHnzwwbZTADdt2qQLL7xQ7733XqfvR29+Ht154YUX9PLLL+vmm2/W+PHjNWTIkIy3e/vttzV9+nQNGTJE9957rw4//HA99NBDuvbaa3u8D8uydMEFF+jZZ5/Vt771LX34wx9WXV2dzj777E633bJli6ZMmaIjjzxS//M//6MxY8aopqZGX/7yl7Vr1y7dcsstkqQf//jHamxsTPu33/zmN/X000/r2GOP7XFNPfn+97+vr3/966qurs54StpXvvIV3XPPPaqqqtLq1au7/VpjxoxRWVmZnnjiibaGCOgrMpwMl9yZ4U1NTZo1a5bGjx+vxYsXa/To0dqxY4eefvrptlxL5cRTTz2lG2+8Uaeffro2bNigW265pe3tGuFwuMv77evfQCbf+MY3dPLJJ+vnP/+5GhoaVF1drRkzZujFF1/U+973vrbb9bYPSPn973+vF198UQsXLpTP59O8efN0zjnnaO7cuXrttdd0zz33qKGhQddff70uuugi/e1vf2t7z3Rffz86evvtt/XpT39aVVVVWrBggfx+v3bu3KkpU6YoFovp29/+to4++mj9/ve/1w033KB//vOf+vGPf9zj9+qll17SjTfeqJtuuklFRUW69dZbdeGFF+rGG2/UU089pQULFrTVeu655+r1119XQUGBpN7/rJ566inNnj1bkydP1sMPP9z2mPLvf/87bS0D/d3pjW3btuljH/uYYrGY1q5dm/b7IElDhw7VzTffrK985Suqra3VGWec0e3XmzFjhu69915t2rRJJ5xwwoDWlhUWBsV9991nScr4Xzwet1paWqySkhLrhBNOsFpaWtr+3XvvvWcdfvjh1pQpU9qO3XLLLZYk61vf+lbafaxevdqSZN100029Xldra6sVj8etVatWWZKsl156ybIsy9q1a5clybr77rv7XGtZWZl10kknWfF4PO34ueeeaxUXF7fV98lPftIqKCiwduzY0XabRCJhlZWVWZKs119/ve24JOuWW27pdF9HHXWUNXfu3LaPn376aUuS9fTTT7cdu/DCC61x48alfV//8Ic/WJKs5cuXZ6wh9X158803LUnW7373u7bPpX6WqfU1NTVZI0aMsM4777y0r9HS0mKdeOKJ1kc+8pG2Y6mf3aJFi9Jue/XVV1v5+flWa2tr27EhQ4ak1ZZy1VVXWYWFhdabb76Zdvx73/ueJcnavHmzZVmWde2111rDhw/PWF93/v3vf1uSrIULF3b63PTp0y1J1vPPP9927N1337UCgYBVUFBgbd++ve343/72N0uS9cMf/rDL+0okElYsFrNKS0utr371q23H169fb0my7rvvvk7/Zu7cuZYka+nSpRk/d9RRR3V5f3/+85+t/Px869JLL037Xnf08ssvW5LS1mRZlvWrX/3KkpT2c+ntz6MrRx11lBUIBKxXXnkl4+fa39fXv/51y+fzdfqalZWVnX7vO34vnnzySUuS9YMf/CDt337nO9/p9PdVWVlpjRs3zmpoaEi77bXXXmvl5+dbu3fvzljLnXfeaUmyfvrTn3Zbc1emT59uHX/88VZLS4t17bXXWqFQyPrlL3/Z6XZHHXWUdc4551iWZVk/+9nP0v6WU48Bv/71rzv9u0svvdQaPXp0v9YGbyPDyXDLcneGP//885Yk67HHHuvy3/7xj3/MWN8jjzzS42N7X/4GMkn97E8++eS07+Mbb7xhBYNB67Of/Wzbsb72AZKsMWPGWPv27Ws79thjj1mSrA9+8INp93f33XdbkqwNGzZYltW334+Ov1uW9Z++6amnnkr79/Pnz7ckWX/5y1/Sjn/xi1+0fD5fxp6gvaOOOsoqKCiwtm3b1nYs1XcVFxdbTU1NnWp9/PHH29be25/VqaeeapWUlFgHDhxoO9bY2GiNGDHCaj9GDuR3pyvt8/zFF1+0SkpKrNNPP9169913026X+r6vX7/eam5utt73vvdZp5xyStvPNdVbdPTqq69akqx77723z2vLBU5fH2QPPvig1q9fn/ZfXl6eXnnlFdXX1+uyyy5Le2azsLBQF110kZ577jnt378/7WtddNFFaR8/+eSTkqRrrrmm2zW89tpruuSSSzRmzBgFAgEFg0FNnz5dUvJ9SFLy1NAJEybozjvv1F133aUXX3yxV6fT/OMf/9Df//53XXrppZKkRCLR9t/HPvYxvf32220XZnr66ad15plnavTo0W3/PhAI6JOf/GSP99MXV1xxhbZt26Y//elPbcfuu+8+jRkzJu1VwnfeeUdf+MIXdMQRRygvL0/BYFBHHXWUpP98XzJ59tlntXv3bs2dOzet3tbWVp111llav359p9MKzz///LSPJ02apIMHD+qdd97psZ7f//73mjlzpkpKStLuL1XLqlWrJEkf+chHtHfvXl188cX63e9+1+tT+Orr6yVJhx9+eMbPFxcX60Mf+lDbxyNGjNDhhx+uD37wg22viEvScccdJ0lpV8JMJBJasGCBPvCBDygUCikvL0+hUEivvvpqt9/jTDr+/vfk5Zdf1vnnn68pU6Zo6dKl3V419Omnn5aktt/jlE984hNtr4ql9Pbn0Z1JkybpmGOO6fF2q1at0sSJE/WBD3wg7fjFF1/c47/tqqZLLrkk7eODBw/qqaee0sc//nFFIpFOf8MHDx7MeLr4Qw89pKqqKt1888363Oc+1+N6unLw4EFdcMEF+tWvfqUVK1Z0Wm9HV1xxhT7wgQ9o/vz5PT5GHX744XrnnXd69bYCIBMynAyX3Jnh73//+3XYYYdp3rx5WrJkScZX3FNnWnR829R//dd/aciQIZ1O126vP38DmVxyySVp+XzUUUdpypQpbRnWXl/6gJkzZ6adhZbqUc4+++y0++vYu/Tn96Ojww47rNOrtrW1tfrABz6gj3zkI2nHL7/8clmWlXbWS1c++MEPauzYsZ3WPmPGjLT3rHesqbc/q6amJq1fv14XXnih8vPz2243dOhQnXfeeZ3qSa2/vd787vSkpqZGp59+uqZNm6aVK1dqxIgRXd42FArp9ttv1/PPP5/xLTftpf5Gtm/f3u+1ZROnrw+y4447LuNFYlJX/8t0xcaSkhK1trZqz549aX9kHW+7c+dOBQIBjRkzpsv737dvn04//XTl5+fr9ttv1zHHHKNIJKK33npLF154oQ4cOCAp+f6bp556SrfddpsWLVqkr33taxoxYoQuvfRSfec739HQoUMzfv3U6Sw33HBDl9vEpILl3XffzbjW7tbfH2effbaKi4t13333qaKiQnv27NHjjz+ur3zlKwoEApKS7+OrqKhQfX29vvnNb+qEE07QkCFD1NraqtNOO63t+5JJquY5c+Z0eZvdu3enhUE0Gk37fOqUnu7up/39LV++vMtT8VLf38suu0yJREI/+9nPdNFFF6m1tVUf/vCHdfvtt3d6n1l7qTW0fwBuL9ODYSgU6nQ8FApJSg5ZKddff70WL16sefPmafr06TrssMPk9/v12c9+tle1p0QikbZTAXujvr5eZ511lsaNG6dHH320bW1dSf09dvxdzMvL6/Sz6+3Pozu9vVLru+++q/Hjx3c63r4p7u7fZlp/xxrfffddJRIJ/ehHP9KPfvSjjF+rY01PP/20Lr/8cv33f/+3vv3tb/e4lu688847euutt/TRj35UU6ZM6fH2gUBACxYs0AUXXKAHHngg4/cnJT8/X5Zl6eDBgyosLBzQOuFNZDgZLrkzw4uKirRq1Sp95zvf0Te+8Q3t2bNHxcXF+tznPqebb75ZwWCwLSc6XqzM5/NpzJgx3V6puj9/A5l09Tv10ksvpR3rax/QVY/SU+/Sn9+PjjJ9T959992MW7elXtzozVXB+1tTb39WlmWptbW1V3/nA/nd6cljjz2mAwcO6Itf/GKvToH/1Kc+pe9973u66aabdOGFF3Z5u9TfSF/6z1xiKHeI1AP822+/3elz9fX18vv9Ouyww9KOd3ylb9SoUWppadGOHTu6bPJra2tVX1+vZ555pu2ZdUkZ32N21FFH6Re/+IUkaevWrfrf//1fVVdXKxaLacmSJRm/fuq9XTfeeGOXfwip95pGo1Ht2LGj0+czHQuHw2pubu50vDd/5IFAQJdddpl++MMfau/evVq2bJmam5t1xRVXtN1m06ZNeumll3T//fdr7ty5bcczXeyjo1TNP/rRj7q8amxvhqbeGjlypCZNmqTvfOc7GT/f/tXqK664QldccYWampq0evVq3XLLLTr33HO1devWtlcQMn19KRky2ZZ6X9aCBQvSju/atUvDhw/v9dfpy96YjY2N+tjHPqbW1lb94Q9/6NVeq6m/xx07dqQ9C51IJDr9zvXl59GV3tYTjUY7vY8rtc7e/NvU+ts3lB3/7WGHHdb2N9PVK3btB98NGzboggsu0PTp0/Wzn/2sV3V058gjj9Rdd92lj3/847rwwgv161//ussniFJmz56t8vJy3XLLLfrpT3/a5e12796tcDjMQI6sI8P/gwzv+f7syvATTjhBDz/8sCzL0oYNG3T//ffrtttuU0FBgebPn9+WEzt37kwbrizL0o4dO9ouwppJf/4GMunqd6rjEyG53iM7JRu/H5nWGo1Gu/xetb/fXOjtz8qyLPl8vl79nQ/kd6cn3//+9/XII4/o7LPP1m9/+1tVVFR0e3ufz6c77rhDs2bN6rEnkHL7ve4LTl93iGOPPVZjx47VsmXL0q4C2NTUpN/85jdtV0fsTurUp3vvvbfL26QeGDo+0/STn/yk2699zDHH6Oabb9YJJ5ygF154ods6SktL9dJLL+mUU07J+F/qGfqZM2fqqaeeShsyWlpa9Mgjj3T6ukcffbQ2bNiQdqy2tlb79u3rdt0pV1xxhQ4ePKiHHnpI999/vyZPnqyysrK2z/f3+yJJ5eXlGj58uLZs2dJlzT29MptJOBzO+Ozdueeeq02bNmnChAkZ7yvTEDhkyBCdffbZuummmxSLxbR58+Yu7/eoo45SQUGB/vnPf/Z5zT3x+XydvsdPPPFEp1OH+vKqQ3disZg+/vGP64033ujTXqupq+T+6le/Sjv+v//7v51Ofe7Pz6O/pk+frk2bNnU67bA3VxSfOXOmpM41dbwoUyQS0cyZM/Xiiy9q0qRJGWtKBfq//vUvnX322Xrf+96n3/zmN91eSKkvKioqVFNTo9WrV+vcc8/t8dRASbrjjjv01ltv6Yc//GGXt3nttdc6nfoPZAMZnkSG/4eTM9zn8+nEE0/U97//fQ0fPrztdyJ1wbJf/vKXabf/zW9+o6ampm4vaJaNvwEp+Vao9v/+zTff1LPPPpt29frBlKvfjzPPPFNbtmzp9Pf44IMPyufztWV2LvT2Z5W6cvujjz6adtbje++9p+XLl3eqR+rf705P8vPz9eijj+rcc8/V+eefr9/97nc9/puPfvSjmjVrlm677bYuH2dee+01SXJMX8Ar5Q7h9/u1aNEiXXrppTr33HN11VVXqbm5WXfeeaf27t2rhQsX9vg1Tj/9dF122WW6/fbb9e9//1vnnnuuwuGwXnzxRUUiEX3pS1/SlClTdNhhh+kLX/iCbrnlFgWDQf3qV7/qdFrQhg0bdO211+q//uu/VFpaqlAopNraWm3YsEHz58/vdh0/+clPdPbZZ6uyslKXX365xo4dq927d+vll1/WCy+8oF//+teSpJtvvlmPP/64zjjjDH3rW99SJBLR4sWLMzbgl112mb75zW/qW9/6lqZPn64tW7bonnvu6dWrnpJUVlamyZMn67vf/a7eeuutTs+clZWVacKECZo/f74sy9KIESO0fPlyrVy5ssevXVhYqB/96EeaO3eudu/erTlz5ujwww/Xzp079dJLL2nnzp3dNlldOeGEE/TMM89o+fLlKi4u1tChQ3Xsscfqtttu08qVKzVlyhR9+ctf1rHHHquDBw/qjTfe0B/+8ActWbJE48aN0+c+9zkVFBSovLxcxcXF2rFjh7773e+qqKio22csQ6GQJk+e3Kttpvrq3HPP1f3336+ysjJNmjRJf/3rX3XnnXd2GpYnTJiggoIC/epXv9Jxxx2nwsJClZSU9HnA/epXv6ra2lotWLBA+/btS6tp1KhRXe5netxxx+nTn/607r77bgWDQX30ox/Vpk2b9L3vfa/T6XK9/Xlkw3XXXaelS5fq7LPP1m233abRo0dr2bJl+vvf/y5JGa+Wn1JRUaFp06apqqpKTU1NOuWUU1RXV6f/9//+X6fb/uAHP9DUqVN1+umn64tf/KKOPvpovffee/rHP/6h5cuXt7137Oyzz9bevXt1zz33dGoSJ0yY0PZseeoUvfZXkO7J1KlT9dRTT+mss85SRUVFj2c5lJeXa/bs2V2GdWtrq9atW6fPfOYzvV4D0FtkOBnekdMy/Pe//71+/OMf64ILLtD73vc+WZalRx99VHv37m07HX7WrFmqrKzUvHnz1NjYqPLy8rYraJ900km67LLLurzfbPwNSMm3MH384x/X5z73OTU0NOiWW25Rfn5+2xXuB1uufj+++tWv6sEHH9Q555yj2267TUcddZSeeOIJ/fjHP9YXv/jFXl1npr/68rP69re/rbPOOkuzZs3S1772NbW0tOiOO+7QkCFD0s7G6Mvvzv33368rrrhC9913X4/b06YEg0E99NBD+uxnP6s5c+bowQcf7PF6OnfccYc+9KEP6Z133sm4485zzz2nQCCgadOm9WoNOWfDxeU8qf2VAbvz2GOPWaeeeqqVn59vDRkyxDrzzDOturq6tNukrv65c+fOTv++paXF+v73v29NnDix7cqwkydPTrtC6bPPPmtNnjzZikQi1qhRo6zPfvaz1gsvvJB2tet///vf1uWXX26VlZVZQ4YMsQoLC61JkyZZ3//+961EItFjvS+99JL1iU98wjr88MOtYDBojRkzxjrjjDOsJUuWpN2urq7OOu2006xwOGyNGTPG+vrXv2799Kc/7XT1yubmZquqqso64ogjrIKCAmv69OnW3/72t15duTUl9XULCgo6XVXasixry5Yt1qxZs6yhQ4dahx12mPVf//Vf1r/+9a9OV43NdHVNy7KsVatWWeecc441YsQIKxgMWmPHjrXOOeectKtAd/Wzy/Q1//a3v1nl5eVWJBKxJFnTp09v+9zOnTutL3/5y9b48eOtYDBojRgxwvrQhz5k3XTTTW1XF33ggQesmTNnWqNHj7ZCoZBVUlJifeITn2i7omh3fvGLX1iBQMCqr69PO97VFSzbXw27PUnWNddc0/bxnj17rM985jPW4YcfbkUiEWvq1KnWn//8Z2v69Olp9VmWZT300ENWWVmZFQwG034Gc+fOtYYMGZJx3R2vupq66mmm/zJdFbe95uZm62tf+5p1+OGHW/n5+dZpp51mrV27ttPvnGX17ufRla6+d6nPdbyvTZs2WR/96Eet/Px8a8SIEdZnPvMZ64EHHki78nKm74VlWdbevXutK6+80ho+fLgViUSsWbNmWX//+98zXhn59ddft6688kpr7NixVjAYtEaNGmVNmTLFuv3229tu09X3tv1jiWVZ1siRI63TTjut2++DZWX+/dq0aZM1ZswY6+STT277u+nqe7ZlyxYrEAhkvPr6U089ZUmy/vrXv/a4DqAjMpwMtyx3Z/jf//536+KLL7YmTJhgFRQUWEVFRdZHPvIR6/7770/7twcOHLDmzZtnHXXUUVYwGLSKi4utL37xi9aePXt6vF/L6t3fQCapn/3/+3//z/ryl79sjRo1ygqHw9bpp5+etuOLZfWtD7Cszr2IZSUzTpJ15513ZlxHxwzpze9HV1dfz9Q3WZZlvfnmm9Yll1xiRaNRKxgMWscee6x15513pl0RvSu97bu6q7W3P6vHH3/cmjRpkhUKhawjjzzSWrhwYdvfQnu9/d350Y9+ZEmy/vjHP3ZbY6afRWtrq/XlL3/Z8vv91s9+9jPLsrp/fL7kkkssSRl/Bqeffnqnq+rbyWdZDtkxHVm3e/duTZkyRc8++2y3Vyp0mtQzaK+//nrGi2Ag9w4ePKgjjzxSX/va1zRv3jy7l4MefP7zn9dDDz2kd999t1+n0eXSli1bdPzxx+v3v/99257zdrjsssv02muvqa6uzrY1AH1BhqO/3JjhzzzzjGbOnKlf//rX3V5UDe73iU98Qq+//rrWr19v2xr++c9/qrS0VDU1Nd1eOHEw8Z5yQz322GN68cUXtWfPHq1evdru5cBl8vPzdeutt+quu+7q1ft5MXhuu+02/fznP1dtba0ef/xxff7zn9fPf/5zffWrX3XcQC4lr8w+efJkWwfyf/7zn3rkkUd0xx132LYGoC/IcAwEGQ6nsixLzzzzTJcXOhwst99+u84880zHDOQS7yk31le+8hXt2LFDJ554osrLy+1eDlzo85//vPbu3avXXntNJ5xwgt3LwSHBYFB33nmntm3bpkQiodLSUt111136yle+YvfSMrrmmmt63Hc51/71r3/pnnvu0dSpU21dB9BbZDgGigyHE/l8Pr3zzju2riGRSGjChAm2XaegK5y+DgAAAACATWw9fb26ulo+ny/tv/ab0VuWperqapWUlKigoEAzZszodhsIAADgLGQ9AADds/095ccff7zefvvttv82btzY9rlFixbprrvu0j333KP169drzJgxmjVrlt577z0bVwwAAPqCrAcAoGu2D+V5eXkaM2ZM23+pfW0ty9Ldd9+tm266SRdeeKEmTpyoBx54QPv379eyZctsXjUAAOgtsh4AgK7ZfqG3V199VSUlJQqHwzr11FO1YMECve9979Prr7+uHTt2qKKiou224XBY06dP17PPPqurrroq49drbm5Wc3Nz28etra3avXu3otGofD5fzusBAKAnlmXpvffeU0lJifx+258fzzmyHgDgNX3JeluH8lNPPVUPPvigjjnmGP373//W7bffrilTpmjz5s3asWOHJGn06NFp/2b06NF68803u/ya3/3ud3XrrbfmdN0AAGTDW2+9pXHjxtm9jJwi6wEAXtabrHfU1debmpo0YcIEVVVV6bTTTlN5ebnq6+tVXFzcdpvPfe5zeuutt/THP/4x49fo+Ox5Q0ODjjzySG3dulUjRozIeQ2DLR6P6+mnn9bMmTMVDAbtXk5OmF4j9eVGc6JVoYBvUF4142fofoNd43vvvafx48dr7969Kioqyvn9OQlZ3z+m/x1Sn/uZXmMu6xvMnqUrpv/8JGdnve2nr7c3ZMgQnXDCCXr11Vd1wQUXSJJ27NiRFtTvvPNOp2fU2wuHwwqHw52OjxgxQtFoNOtrtls8HlckElE0GjX6D8jkGqkv++r3HtD5965RyfACfa3iWE0rHZnToONn6H6DXWPqPrx4qjVZ3z+m/x1Sn/uZXmOu6hvsnqUrpv/8JGdnvaPeyNbc3KyXX35ZxcXFGj9+vMaMGaOVK1e2fT4Wi2nVqlWaMmWKjasE4HS7m2LatS+mjdsbNHfpOs1eXKdVW3fKQScGAZ5F1gPAf9CzQLL5lfIbbrhB5513no488ki98847uv3229XY2Ki5c+fK5/Ppuuuu04IFC1RaWqrS0lItWLBAkUhEl1xySZ/va38soYJYIgdV2CseT6i5JVlf0DLzFRfTa6S+7DsYb5EkpfJs06GgmzSuyNZnoQEvIuuzg6xwN9Prk8yvMVf10bNAsnko37Ztmy6++GLt2rVLo0aN0mmnnabnnntORx11lCSpqqpKBw4c0NVXX609e/bo1FNP1YoVKzR06NA+31f5otXyhyPZLsEh8lS1rtbuReSY6TVSXy61Zgi6qsoyTS0daduaAK8g67OJrHA30+uTzK8x9/XRs3iTrUP5ww8/3O3nfT6fqqurVV1dPTgLAmC0VNBt2Nag6uWb9afrp9u7IMADyHoA6Dt6Fm9x1IXecqmuapqRF3+Jx+OqqVmhysoKoy/KYHKN1Jd9W+obNWfJ2k7H/b5kyKWedQZgFlOzXiIr3M70+iTza8xVffQskDw0lEdCeYqEzCs37rMUDiTrCwbNq08yv0bqy778YCDt41SwTRzL+7MAk5ma9RJZ4Xam1yeZX2Ou6qNngeShoRyA9/h8yQunEGwAAMDJ6Fm8jaEcgHGihSGNKgyreHg+wQYAAByLngUSQzkAAxUXFWjN/JkKBfwEGwAAcCx6FkgM5QAMFc4L9HwjAAAAm9GzwG/3AgAgl5oTLbIsy+5lAAAAdIuexbsYygEYq37vAZUvrNXsxXVatXUnQQcAAByJnsXbGMoBGGt3U0y79sW0cXuD5i5dR9ABAABHomfxNs+8p3x/LKGCWMLuZWRdPJ5Qc0uyvqBl5sUhTK+R+nLnYLxFUnKLEUnadCjoJo1juxHARKZmvURWuJ3p9Unm15jr+uhZvM0zQ3n5otXyhyN2LyNH8lS1rtbuReSY6TVS32BozRB0VZVlmlo60t6FAcgKs7Necspjae5Qn/uZXuPg1UfP4i2cvg7Ac1JBt2Fbg6qXb7Z3MQAAAF2gZ/EGz7xSXlc1TdFo1O5lZF08HldNzQpVVlYoGAzavZycML1G6sudLfWNmrNkbafjfl8y5FLPOgMwg6lZL5EVbmd6fZL5Nea6PnoWb/PMUB4J5SkSMq/cuM9SOJCsLxg0rz7J/BqpL3fyg+n7fqaCbeJY3p8FmMjUrJfICrczvT7J/BpzXR89i7eZ9xcDAB34fMkLpxBsAADAyehZvImhHICxooUhjSoMq3h4PsEGAAAci57F2xjKARiruKhAa+bPVCjgJ9gAAIBj0bN4G0M5AKOF8wI93wgAAMBm9CzexZZoAAAAAADYhKEcgPGaEy2yLMvuZQAAAPSIvsV7GMoBGK1+7wGVL6zV7MV1WrV1JyEHAAAci77FmxjKARhtd1NMu/bFtHF7g+YuXUfIAQAAx6Jv8SbPXOhtfyyhgljC7mVkXTyeUHNLsr6gZeaVGk2vkfpy62C8RVJyz09J2nQo5CaNY/9PwDSmZr1k/2NprlGf+5le42DVR9/iTZ4ZyssXrZY/HLF7GTmSp6p1tXYvIsdMr5H6BktrhpCrqizT1NKR9i4MwICZnfWSkx5Lc4P63M/0Gge/PvoWb+D0dQCelAq5DdsaVL18s72LAQAA6AZ9i9k880p5XdU0RaNRu5eRdfF4XDU1K1RZWaFgMGj3cnLC9BqpL7e21DdqzpK1nY77fcmASz3jDMD9TM16yf7H0lyjPvczvcbBqo++xZs8M5RHQnmKhMwrN+6zFA4k6wsGzatPMr9G6sut/GAg7eNUqE0cy3uzANOYmvWS/Y+luUZ97md6jYNVH32LN5n3FwMAGfh8yYumEGoAAMDp6Fu8haEcgNGihSGNKgyreHg+oQYAAByNvsWbGMoBGK24qEBr5s9UKOAn1AAAgKPRt3gTQzkA44XzAj3fCAAAwAHoW7yHLdEAGK850SLLsuxeBgAAQI/oW7yHoRyA0er3HlD5wlrNXlynVVt3EnIAAMCx6Fu8iaEcgNF2N8W0a19MG7c3aO7SdYQcAABwLPoWb/LMe8r3xxIqiCXsXkbWxeMJNbck6wtaZl4MwvQaqS+3DsZbJCW3FZGkTYdCbtI4thgBTGNq1kv2P5bmGvW5n+k1DlZ99C3e5JmhvHzRavnDEbuXkSN5qlpXa/cicsz0GqlvsLRmCLmqyjJNLR1p78IADJjZWS856bE0N6jP/UyvcfDro2/xBk5fB+BJqZDbsK1B1cs327sYAACAbtC3mM0zr5TXVU1TNBq1exlZF4/HVVOzQpWVFQoGg3YvJydMr5H6cmtLfaPmLFnb6bjflwy41DPOANzP1KyX7H8szTXqcz/Taxys+uhbvMkzQ3kklKdIyLxy4z5L4UCyvmDQvPok82ukvtzKD6bv9ZkKtYljeW8WYBpTs16y/7E016jP/UyvcbDqo2/xJvP+YgAgA58vedEUQg0AADgdfYu3MJQDMFq0MKRRhWEVD88n1AAAgKPRt3gTQznQS82JFoUCfh4YXaa4qEBr5s/kZwcAcCT6C7RH3+JNXH0d6IX6vQdUvrBWsxfXadXWnbJSm0fCFcJ5AYINAOA49BfIhL7FexjKgV7Y3RTTrn0xbTy0RyThCQAABor+AoDkodPX98cSKogl7F5G1sXjCTW3JOsLWmY+o+aEGg/GWyQlL7ghSZsOheekcVx8AwCcwtSsl5yRhbnk1froLwBIHhrKyxetlj8csXsZOZKnqnW1di8ix5xVY2uG8KyqLNPU0pH2LgwAPMzsrJecloXZR330F4A3cfo6MACp8NywrUHVyzfbuxgAAGAE+gvAWzzzSnld1TRFo1G7l5F18XhcNTUrVFlZoWAwaPdycsIJNW6pb9ScJWs7Hff7ksGZeiYbAGAfU7NeckYW5pJX66O/ACB5aCiPhPIUCZlXbtxnKRxI1hcMmlef5IwaA/7093OlwnLiWN7zBQBOYWrWS87Iwlzyan35wUDa7egvAG8y71EPyLL6vQd0xX3r044RlgAAYKB2vtec9vHxJcN0Q2UZ/QXgMbynHOjB7qaY9h6It308fuQQXT/rGAITAAAMSMc2wif6CsCLPPNKuanbpJi+hYhkf42p7UpS3ny3SZfft57tSgDAYUzNesn+LMw1r9ZXGE5vxTfVsyUa4EWeGcrN3ibF9C1EJCfVyHYlAOBMZme95KQszA3qo8cAvInT14F+YrsSAACQC/QYgLd45pVyU7dJMX0LEcn+GtmuBADcwdSsl+zPwlzzan30GAAkDw3lpm6TYvoWIpL9NbJdCQC4g6lZL9mfhbnm1froMQBIHhrKgYHy+STL40HZnGhRKOD3XN0AAOQSPUbf0ZPAJAzlQA+ihSGNKgyreHi+p4Oyfu8BnX/PGpUML/D09wEAgGyhx+gfehKYhqEc6EFxUYHWzJ/p+WdjdzfFtGtfTO82xdiuBQCALKDH6B96EpjGM0O5qXuXmr6vp+ScGg+0tvR8o35wSn09Se3XbmXYroUgBOAEpma95J6s6C+v15erHmMwDebPkJ4EpvHMUG723qWm7+spmV+j++pjL1UATmN21ktuzIq+oT73s6dGehK4HfuUAxgQ9lIFAABOQE8Ct/LMK+Wm7l1q+r6ekvk1uqU+9lIF4HSmZr3knqzoL+pzv8GskZ4EpvHMUG7q3qWm7+spmV+jW+pjL1UATmdq1kvuyYr+oj73G8wa6UlgGjMfFQDkDHupAgAAJ6AngSkYygH0CnupAgAAJ6AngWkYygH0CnupAgAAJ6AngWkYygH0Wjgv0PONAAAAcoyeBCZhSzQArtacaJFlWXYvAwAAoFv0LOgKQzkA16rfe0DlC2s1e3GdVm3dSdABAABHomdBdxjKAbjW7qaYdu2LaeP2Bs1duo6gAwAAjkTPgu545j3l+2MJFcQSdi8j6+LxhJpbkvUFLTMvdGF6jdTXfwfjLZKS26FI0qZDQTdpHFujAF5katZLZIXbmV6fZH6NA62PngXd8cxQXr5otfzhiN3LyJE8Va2rtXsROWZ6jdSXDa0Zgq6qskxTS0fm/L4B2M/srJfICrczvT7J/BqzVx89C9rj9HUAxkkF3YZtDapevtnexQAAAHSBngWSh14pr6uapmg0avcysi4ej6umZoUqKysUDAbtXk5OmF4j9fXflvpGzVmyttNxvy8ZcqlnnQF4g6lZL5EVbmd6fZL5NQ60PnoWdMczQ3kklKdIyLxy4z5L4UCyvmDQvPok82ukvv7LD6bvUZoKtoljeX8W4EWmZr1EVrid6fVJ5tc40ProWdAd8/5iAHiOz5e8cArBBgAAnIyeBZkwlANwrWhhSKMKwyoenk+wAQAAx6JnQXcYygG4VnFRgdbMn6lQwE+wAQAAx6JnQXcYygG4Wjgv0PONAAAAbEbPgq6wJRoAV2pOtMiyLLuXAQAAkBG9CnqLoRyA69TvPaDyhbWavbhOq7buJPAAAICj0KugLxjKAbjO7qaYdu2LaeP2Bs1duo7AAwAAjkKvgr7wzHvK98cSKogl7F5G1sXjCTW3JOsLWmZeNML0Gqmv7w7GWyQltxSRpE2HAm/SOLYXAbzM1KyXyAq3M70+yfwa+1ofvQr6wjNDefmi1fKHI3YvI0fyVLWu1u5F5JjpNVLfQLRmCLyqyjJNLR2Zs/sE4DxmZ71EVrid6fVJ5tfY//roVdAdTl8HYIxU4G3Y1qDq5ZvtXQwAAEAH9CrIxDOvlNdVTVM0GrV7GVkXj8dVU7NClZUVCgaDdi8nJ0yvkfr6bkt9o+YsWdvpuN+XDLvUs88AvMXUrJfICrczvT7J/Br7Wh+9CvrCM0N5JJSnSMi8cuM+S+FAsr5g0Lz6JPNrpL6+yw+m7/OZCriJY3mfFuBlpma9RFa4nen1SebX2Nf66FXQF+b9xQDwDJ8veQEVAg4AADgRvQp6g6EcgOtEC0MaVRhW8fB8Ag4AADgOvQr6gqEcgOsUFxVozfyZCgX8BBwAAHAcehX0BUM5AFcK5wV6vhEAAIBN6FXQW2yJBsAVmhMtsizL7mUAAAB0iX4F/cFQDsDx6vceUPnCWs1eXKdVW3cSdgAAwHHoV9BfDOUAHG93U0y79sW0cXuD5i5dR9gBAADHoV9Bf3nmPeX7YwkVxBJ2LyPr4vGEmluS9QUtMy8iYXqN1Nezg/EWScktRSRp06GwmzSO7UUA/IepWS+RFW5nen2S+TX2pj76FfSXZ4by8kWr5Q9H7F5GjuSpal2t3YvIMdNrpL6+aM0QdlWVZZpaOjJr9wHAfczOeomscDvT65PMr7Fv9dGvoLc4fR2Aa6XCbsO2BlUv32zvYgAAADKgX0FPPPNKeV3VNEWjUbuXkXXxeFw1NStUWVmhYDBo93JywvQaqa9nW+obNWfJ2k7H/b5k0KWeeQbgbaZmvURWuJ3p9Unm19ib+uhX0F+eGcojoTxFQuaVG/dZCgeS9QWD5tUnmV8j9fUsP5i+z2cq3CaO5T1aAP7D1KyXyAq3M70+yfwae1Mf/Qr6y7y/GADG8vmSF08h3AAAgFPRr6CvGMoBOF60MKRRhWEVD88n3AAAgCPRr6C/GMqBQ5oTLQoF/Dx4OlBxUYHWzJ/JzwcA4Cqp3gLeQL+C/mIoByTV7z2g8+9Zo5LhBTyz6VDhvEDPNwIAwCHa9xbXnTGhbe9qmI1+Bf3BUA5I2t0U0659Mb3bFGvbR5LhHAAA9Ff73uLKB1/QEUMCGnbMLs08bgy9BYA0nhnK98cSKogl7F5G1sXjCTW3JOsLWmY+wA9GjQfjLZLU9iz2pu0NDOcA4DKmZr1kft6bWF/H3mJbk3Tlgy/QWwDoxDNDefmi1fKHI3YvI0fyVLWu1u5F5Njg1tiaYTivqizT1NKRg7YGAEDfmJ31kvl5b3Z9lpIDOL0FgI648gTQjdRwvmFbg6qXb7Z3MQAAwPXoLQB05JlXyuuqpikajdq9jKyLx+OqqVmhysoKBYNBu5eTE4NR45b6Rs1ZsrbTcb8vGZ6pZ7MBAM5latZL5ue9ifXRWwDoLc8M5ZFQniIh88qN+yyFA8n6gkHz6pMGp8b8YPqVMlOBOXEs7/sCALcwNesl8/PexPo69hY+WbLko7cA0IkZj3rAAMVbWiVJPl/ygiwEJgAA6K/mRIusQ1d4S/UW44ZIt150MldfB9AJQzk8r37vAX3mgfXK8/t0xIgC3XLe8Zp+zCgCEwAA9Flqf/JRQ8Mqyg/qyGiBvnrm+9W4dZ1O58l+ABk45kJv3/3ud+Xz+XTddde1HbMsS9XV1SopKVFBQYFmzJihzZu5IAaya3dTTLub4mqxLL2+a7/uWrlVq1/d1fYMNwAge8h7mC61P/nfd7ynhoNx+cQQDqB7jnilfP369frpT3+qSZMmpR1ftGiR7rrrLt1///065phjdPvtt2vWrFl65ZVXNHTo0D7dh6l7l5q4r2dHua6RPcoBYHDkOu9NzXrJ/Lw3qb5OfUV9g6588AUdMSSgYcfs4vR1AJ3YPpTv27dPl156qX72s5/p9ttvbztuWZbuvvtu3XTTTbrwwgslSQ888IBGjx6tZcuW6aqrrurT/Zi9d6nZ+3omDV6N7FEOANk3GHlvdtZL5ue9mfWl+optTdKVD75AXwGgE9uH8muuuUbnnHOOPvrRj6aF9Ouvv64dO3aooqKi7Vg4HNb06dP17LPPdhnSzc3Nam5ubvu4sbExd4uH0drvI3rL45v0xy+X5+R+4vF42v9NY3p9kvk1ml6fNPg1mvy97Eo2856shxtZh05jz3VfYRfTs4L63M/JWW/rUP7www/rhRde0Pr16zt9bseOHZKk0aNHpx0fPXq03nzzzS6/5ne/+13deuutnY7f9qGEIhEzT2nDwGxrkn64ufOfQmrrkiOGWKoc2ag//OEPOV3HypUrc/r17WZ6fZL5NZpenzR4Ne7fv39Q7scpsp33ZD2czCl9hV1Mzwrqcz8nZr1tQ/lbb72lr3zlK1qxYoXy8/O7vF3H99xYltXt+3BuvPFGXX/99W0fNzY26ogjjtBZH52paDQ68IU7TDwe18qVKzVr1iwFg0G7l5MTua5xc32jfrj5ubaP2+9R/tUz36+p74/m9L1fpv8MTa9PMr9G0+uTBr9GL72ym4u891rWS+b/HZpUX1d9xbgh0jdnT9KMstFGvqfcpJ9hJtTnfk7OetuG8r/+9a9655139KEPfajtWEtLi1avXq177rlHr7zyiqTkM+jFxcVtt3nnnXc6PZveXjgcVjgc7nQ8GAwa+wsmmV+flLsa8/KSfwZ271Fu+s/Q9Pok82s0vT5p8Go0/fvYXi7y3qtZL5lfown1Zeorrjtjghq3rtPM48a4vr6emPAz7A71uZ8Ts962ofzMM8/Uxo0b045dccUVKisr07x58/S+971PY8aM0cqVK3XSSSdJkmKxmFatWqU77rjDjiXDUNHCkEYVhlU8PJ+rredYc6JFoYCf7y/gIeQ9vCZTX5FIJPSHV+1eGbpCfwK72TaUDx06VBMnTkw7NmTIEEWj0bbj1113nRYsWKDS0lKVlpZqwYIFikQiuuSSS+xYMgxVXFSgNfNn8mCcY283HNSFS55TyfACnvwAPIS8h9fQV7hL/d4DOv+eNfQnsJXtV1/vTlVVlQ4cOKCrr75ae/bs0amnnqoVK1b0eY9yoCfhvIDdSzDe7qaYdu2L6d2mGPvAA0hD3sM09BXuQX8CJ3DUUP7MM8+kfezz+VRdXa3q6uoBf+39sYQKYuZdkTUeT6i5JVlf0DLzgcP0Gr1S38F4i6Tk++uk9H3gCT/AW3KV96ZmveSdrKA+93JrjfQncAJHDeW5VL5otfzhiN3LyJE8Va2rtXsROWZ6jebXp3XpWyG1Zgi/qsoyTS0dacP6AJjA7KyXvJAV1Od27q+xq/7k1KOL7F0YjOa3ewEAvC0Vfhu2Nah6+WZ7FwMAACD6Ewwuz7xSXlc1zci9S+PxuGpqVqiyssLY7QtMr9Er9R05abI+9fP1nT6f2r819Uw0APSXqVkveScrqM+93FrjlvpGzVmyttNx+hMMJs8M5ZFQniIh88qN+yyFA8n6gkHz6pPMr9Er9eUH0y96kwo7u/aFB2AeU7Ne8k5WUJ97ubXG3vYn8XjcphXCC9zzFwPACD5f8mIqDOMAAMAp6E9gJ4ZyAINixJCQRhWGVTw8n7ADAACOEC2kP4H9GMoBDIrionytmT9ToYCfsAMAAI5QXFRAfwLbMZQDGDThvEDPNwIAABhE9CewG1uiAci5RKtkWZbdywAAAGjTnGihP4EjMJQDyKm3Gw6q+oWALvrJX7Rq607CDwAA2K5+7wGVL6zV7MV19CewHUM5gJza3RTTe3GfNtU3au7SdYQfAACw3e6mmHbti2nj9gb6E9jOM+8p3x9LqCCWsHsZWRePJ9TckqwvaJl5cQrTazS9voPxFknJbUYkadOh8Js0ji1HAGSXqVkvmZ8V1Od+bquR/gRO4pmhvHzRavnDEbuXkSN5qlpXa/cicsz0Gk2v7z9aM4RfVWWZppaOtHdhAFzP7KyXzM8K6nM/99ZIfwI7cfo6AFukwm/DtgZVL99s72IAAABEfwJ7eOaV8rqqaYpGo3YvI+vi8bhqalaosrJCwWDQ7uXkhOk1ml7fhn/t1qd+vr7Tcb8vGXypZ6IBYKBMzXrJ/KygPvdzW41b6hs1Z8naTsfpT2AHzwzlkVCeIiHzyo37LIUDyfqCQfPqk8yv0fT68oPpe3+mwm7iWN6zBSC7TM16yfysoD73c1uN9CdwEuf/xQAwgs+XvJgKYQcAAJyC/gROwFAOIKdGDAlpaNDS0YcX6YbKMsIOAADYLloY0qjCsIqH5zOMw3YM5QByqrgoX9Unt+i8c05VKBSyezkAAAAqLirQmvkzFQr4GcZhO4ZyADmX5xeBBwAAHCWcF+j5RsAgYEs0AAAAAABswlAOIGuaEy2yLMvuZQAAAEiiN4E7MJQDyIr6vQdUvrBWsxfXadXWnQQgAACwFb0J3IKhHEBW7G6Kade+mDZub9DcpesIQAAAYCt6E7iFZy70tj+WUEEsYfcysi4eT6i5JVlf0DLzQlqm12hKfQfjLZKSe31K0qZDAXjC2GEqH+bT2QQggBwzNeslc7KiK9Tnfk6ssaveZNI49iSHs3hmKC9ftFr+cMTuZeRInqrW1dq9iBwzvUbz6ms9FICb6xu1cXtAdT/5i+addZymlo60d2EAjGV21ksmZkU66nM/Z9fYmmE4r6osozeB7Th9HUBOpQJw4/ZGVS/fbO9iAACA56V6kw3bGuhN4AieeaW8rmqaotGo3cvIung8rpqaFaqsrFAwGLR7OTlheo2m1LelvlFzlqztdNzvS4bfCWOHad5Zx9mwMgBeYWrWS+ZkRVeoz/2cWGNPvUnqlXLAbp4ZyiOhPEVC5pUb91kKB5L1BYPm1SeZX6Mp9eUHA2kfpwLv+JJhKh+2R9dffKpCoZBNqwPgBaZmvWROVnSF+tzPiTV21ZtMHMt7yuEszviLAWAMny95QZVU4E0+ukhPPvkkoQcAAGzRsTdhGIfTMJQDyIpoYUijCsMqHp6fFnjxeNzupQEAAA/qqjcBnIahHEBWFBcVaM38mQoF/AQeAACwHb0J3IKhHEDWhPMCPd8IAABgkNCbwA3YEg1Am+ZEiyzLsnsZAADAo+hF4EUM5QAkSfV7D6h8Ya1mL67Tqq07CUQAADCo6EXgVQzlACRJu5ti2rUvpo3bGzR36ToCEQAADCp6EXiVZ95Tvj+WUEEsYfcysi4eT6i5JVlf0DLzAham1+iU+g7GWyQltwyRpE2HAnHSOLYPAeAOpma95JysyBXqc79s1EgvAq/yzFBevmi1/OGI3cvIkTxVrau1exE5ZnqNzquvNUMgVlWWaWrpSHsXBgBdMDvrJSdmRXZRn/tlt0Z6EXgFp68D6FYqEDdsa1D18s32LgYAAHgOvQhM55lXyuuqpikajdq9jKyLx+OqqVmhysoKBYNBu5eTE6bX6JT6ttQ3as6StZ2O+33JMEw9Ow0ATmVq1kvOyYpcoT73y0aN9CLwKs8M5ZFQniIh88qN+yyFA8n6gkHz6pPMr9Ep9eUH0/fxTAXgxLG8jwuAO5ia9ZJzsiJXqM/9slEjvQi8ysxHBQD95vMlL7BCAAIAADvQi8BrGMoBSJKihSGNKgyreHg+AQgAAAYdvQi8iqEcgCSpuKhAa+bPVCjgJwABAMCgoxeBV3H1dcCDmhMtslKbgLYTzgsQggAAIKe66kMkehF4E0M54DH1ew+ofGGtZi+u06qtO7sMRQAAgGyjDwE6YygHPGZ3U0y79sW0cXuD5i5dRygCAIBBQx8CdOaZ95TvjyVUEEvYvYysi8cTam5J1he0zDzVx/QaB7u+g/EWScmrmkrSpkOhOGkcVzgF4G6mZr1EFrqd6fVJva+RPgTozDNDefmi1fKHI3YvI0fyVLWu1u5F5JjpNdpXX2uGUKyqLNPU0pG2rAcA+svsrJfIQrczvT6pPzXShwCcvg7gkFQobtjWoOrlm+1dDAAA8BT6EHiZZ14pr6uapmg0avcysi4ej6umZoUqKysUDAbtXk5OmF7jYNe3pb5Rc5as7XTc70sGYuoZagBwG1OzXiIL3c70+qTe10gfAnTmmaE8EspTJGReuXGfpXAgWV8waF59kvk1DnZ9+cFA2sepEJw4lvdyAXA3U7NeIgvdzvT6pN7XSB8CdGbmowKAHvl8yYusEIIAAGCw0YcA/8FQDnhMtDCkUYVhFQ/PJwQBAMCgog8BOmMoh2M1J1oUCnAtwmwrLirQmvkzFQr4CUEAgJFSPQQ55zz0IUBnDOVwpPq9B3T+PWtUMrxA150xoW0vS2RHOC/Q840AAHCh9j0Er8Q6E30IkI6hHI60uymmXftiercppisffEFHDAlo2DG7NPO4MQQrAADoUvseIrXvNcM5ACfzzFC+P5ZQQSxh9zKyLh5PqLklWV/QMidoDsZbJKntFfJtTdKVD75AsAIAumRq1kvm5n1KNuvr2ENs2t7AcA7A0TwzlJcvWi1/OGL3MnIkT1Xrau1eRE5ZSoZn+2CtqizT1NKRNq8MAOAUZme9ZH7e56a+1gzDOT0EACfhKlpwlVSwbtjWoOrlm+1dDAAAcA16CABO5ZlXyuuqpikajdq9jKyLx+OqqVmhysoKBYNBu5eTNVvqGzVnydpOx/2+ZKimnuUGACDF1KyXzM37lGzWRw8BwG08M5RHQnmKhMwrN+6zFA4k6wsG3V9faguT/GD6VTl9smTJp4ljeT8YACAzU7NeMi/vO8pGfV31EKlhnB4CgFOZ96gO12q/hclFJ4+TJPl8yQu1jBsi3XrRyVx9HQAAdNJdD8EwDsDpGMrhGO23MNmwrUF5fp+OGFGgm88+Vu+9ul6nE6YAACCDrnqIW847XtOPGUX/AMDRPDOUm7pNiklbpHTcwqTVsvT6rv26u/afKh/m08dSnwAAIANTs14yK+8zGWh9XfUQd63cKp/Px6vkABzNM0O52dukmLlFSuoqqZvrG7Vxe0B1P/mL5p11HFuYAAAyMjvrJVPz/j+yVx/boAFwE7ZEg+OlgnXj9ka2MAEAAL3GNmgA3MAzr5Sbuk2KSVuk9LSFyQljh2neWcfZsDIAgBuYmvWSWXmfyUDrYxs0AG7mmaHc1G1STNoipastTI4vGabyYXt0/cWnKhQK2bQ6AIDTmZr1kll5n8lA62MbNABuZt6jOlyv4xYmk48u0pNPPkmYAgCAbrENGgA3YiiHY0QLQxpVGFbx8Py0II3H43YvzbWaEy0KBfw0JAAAo3XVQ8A+9CBA7zGUwzGKiwq0Zv5MHsCzpH7vAZ1/zxqVDC+gQQEAGI0ewlnoQYC+4errcJRwXoAH7SzZ3RTTrn0xbTy0HczsxXVatXWnLPZ7BwAYiB7COehBgL7xzCvl+2MJFcQSdi8j6+LxhJpbkvUFLTODyPQac1XfwXiLpOR766T0vVp51hqAiUzNeoksdDvT65PSa6QHAfrGM0N5+aLV8ocjdi8jR/JUta7W7kXkmOk15r6+1gzBWFVZpqmlI3N6vwAwWMzOeoksdDvT65O6qpEeBOgep68DHpMKxg3bGlS9fLO9iwEAAJ5BDwJk5plXyuuqpikajdq9jKyLx+OqqVmhysoKBYNBu5eTE6bXmKv6ttQ3as6StZ2Op/ZuTT1LDQCmMDXrJbLQ7UyvT0qv8dWdB+hBgD7wzFAeCeUpEjKv3LjPUjiQrC8YNK8+yfwac1VffjCQ9nEqCNm7FYCpTM16iSx0O9Prk9JrpAcB+sbMRwUAbXy+5IVWCEIAADCY6EGA3mEoBwwVLQxpVGFYxcPzCUIAADBo6EGAvmEoBwxVXFSgNfNnKhTwE4QAAGDQ0IMAfcNQDhgsnBfo+UYAAABZRg8C9B5bogEAAAAAYBOGcsDlmhMtsizL7mUAAAAPof8AsoehHHCx+r0HVL6wVrMX12nV1p2EIwAAyDn6DyC7eE854GK7m2LatS+md5timrt0nSaNY8sRAACQW5n6j+vOmCBmc6B/PDOU748lVBBL2L2MrIvHE2puSdYXtMwcwkyvcSD1HYy3SFJbCG7a3sBwDsCzTM16iSx0O9Pqy9R/XPngCzpiSEDDjtmlmceNof8A+sAzQ3n5otXyhyN2LyNH8lS1rtbuReSY6TVmp77WDMN5VWWZppaOHPDXBgCnMzvrJbLQ7cytL9V/bGuSrnzwBfoPoI94TzlgoFQ4btjWoOrlm+1dDAAA8ARLyVfH6T+AvvHMK+V1VdMUjUbtXkbWxeNx1dSsUGVlhYLBoN3LyQnTaxxIfVvqGzVnydpOx/2+5GCeeqYaALzA1KyXyEK3M62+rvoPnyxZ8tF/AH3kmaE8EspTJGReuXGfpXAgWV8waF59kvk1DqS+/GAg7ePUMD5xLO8pB+A9pma9RBa6nWn1ddV/jBsi3XrRybynHOgj9z8qAJDPl7zYCsM4AAAYLO37j+vOmKDGret0Oj0I0GcM5YCLRQtDGlUYVvHwfIZxAAAwKDL1H4lEQn941e6VAe7EUA64WHFRgdbMn6lQwM8wDgAABgX9B5BdXH0d6EFzokVWaiNOBwrnBQhEAABcxun9RU/oP4DsYSgHulG/94DKF9Zq9uI6rdq609XhCQAAnIH+AkB7DOVAN3Y3xbRrX0wbtzdo7tJ1hCcAABgw+gsA7XnmPeX7YwkVxBJ2LyPr4vGEmluS9QUtM08hsrPGg/EWSckri0rSpkPhOWkcVzkHAKcxNesl8/Pea/XRXwBozzNDefmi1fKHI3YvI0fyVLWu1u5F5JgzamzNEJ5VlWWaWjrS3oUBAAzPeskpWZg73q2P/gLwNk5fB/ohFZ4btjWoevlmexcDAACMQH8BeJNnXimvq5qmaDRq9zKyLh6Pq6ZmhSorKxQMBu1eTk7YWeOW+kbNWbK203G/LxmcqWeyAQD2MzXrJfPz3mv10V8AaM8zQ3kklKdIyLxy4z5L4UCyvmDQvPoke2vMDwbSPk6F5cSxvOcLAJzG1KyXzM97r9VHfwGgPfMe9YAc8PmSF2MhLAEAQLbQXwCQGMqBbkULQxpVGFbx8HzCEgAAZAX9BYD2GMqBdpoTLQoF/G3BWFxUoDXzZ6YdAwAA6K3mRIt8HfYfp78A0B5DOXBI/d4DOv+eNSoZXpD2rHU4L9DzPwYAAOgg1VsUF+WrfJhPZ7cbzukvAKSwJRpwyO6mmHbti2njoT1CZy+u06qtO2V1eHYbAACgN1K9xab6Ri15OaCLfvIXegsAnXjmlfL9sYQKYgm7l5F18XhCzS3J+oKWmac/DVaNB+MtkpIXXJGkTYeG80njuPgKALiBqVkvmZ/3ptbXsbfYXN9IbwGgE88M5eWLVssfjti9jBzJU9W6WrsXkWODX2NrhuG8qrJMU0tHDuo6AAC9Y3bWS+bnven10VsAyIzT14EepAJ0w7YGVS/fbO9iAACA69FbAGjPM6+U11VNUzQatXsZWRePx1VTs0KVlRUKBoN2LycnBqvGLfWNmrNkbafjfl8yPFPPZgMAnMnUrJfMz3tT66O3ANAbnhnKI6E8RULmlRv3WQoHkvUFg+bVJw1ejfnB9KugpgJz4lje9wUAbmBq1kvm572p9dFbAOgNW09fv/feezVp0iQNGzZMw4YN0+TJk/Xkk0+2fd6yLFVXV6ukpEQFBQWaMWOGNm/mFB/kViobJ44t0gNXfkS/u6Zc048ZRWgCQD+Q9cB/eovjS4bRWwDoxNahfNy4cVq4cKGef/55Pf/88zrjjDM0e/bstjBetGiR7rrrLt1zzz1av369xowZo1mzZum9996zc9kYgOZEi2O3AYkWhjSqMKwTGMYBIGvIemSDk/uH7qR6i4klw/SF41r0m6tOpbcA0Imt5wedd955aR9/5zvf0b333qvnnntOH/jAB3T33Xfrpptu0oUXXihJeuCBBzR69GgtW7ZMV111lR1LxgDU7z2g8+9Zo5LhBY48Zau4qEBr5s9UKOB31LoAwM3IegyU0/uH7qR6C19ri5588knXrBvA4HLMm3ZaWlr061//Wk1NTZo8ebJef/117dixQxUVFW23CYfDmj59up599tkug7q5uVnNzc1tHzc2NkpKXkAkHo/ntggbpGpyQ23vNOzXrn0xvdsU09yl63TC2GH66pnv19T3R7sNqcGs0S8pkWjN+f2056afYX+YXp9kfo2m1ycNfo0mfy+7Q9b3n+l/h93V19/+wSn8kuKJhCRzf36St39HTWB6fZKzs95n2Xwu0MaNGzV58mQdPHhQhYWFWrZsmT72sY/p2WefVXl5ubZv366SkpK223/+85/Xm2++qZqamoxfr7q6Wrfeemun4/f9v2WKREzeu9T5tjVJP9z8n+eBfLJkyacjhlg658hWlRVZckG2AsCA7d+/X5dccokaGho0bNgwu5eTc2Q9BoL+AYAb9SXrbX+l/Nhjj9Xf/vY37d27V7/5zW80d+5crVq1qu3zHZ8BtSyr22dFb7zxRl1//fVtHzc2NuqII47Qt/6aJ3/Y9nLRjqXkz3H7fp+WvBzQCWOH6WuzSlU+IX07m3g8rpUrV2rWrFlGbZOSQn3uZ3qNptcnDX6NqVd2vYKsRzb1tn9wEh5H3Y/63M/JWW97coVCIb3//e+XJJ1yyilav369fvCDH2jevHmSpB07dqi4uLjt9u+8845Gjx7d5dcLh8MKh8O5XTSyqvXQuRobtzfq9j+8oj9dPz3j7YLBoLEPEhL1mcD0Gk2vTxq8Gk3/PnZE1iMXets/OAmPo+5Hfe7nxKy3fSjvyLIsNTc3a/z48RozZoxWrlypk046SZIUi8W0atUq3XHHHX3+unVV0xSNOvcZ1P6Kx+OqqVmhysoKx/8Bbalv1JwlazsdT+3ZOWlckaoqy2xYGQBgMJH1feemvO+P7uqjfwBgOluH8m984xs6++yzdcQRR+i9997Tww8/rGeeeUZ//OMf5fP5dN1112nBggUqLS1VaWmpFixYoEgkoksuuaTP9xUJ5SkSctxzEAMW91kKB5L1BYPOrK850aJQwK/8YCDteCpMJ44tct3VVAEAvUPWZ4cb8n4g2tfX6vOl7YRC/wDAdLY+qv/73//WZZddprfffltFRUWaNGmS/vjHP2rWrFmSpKqqKh04cEBXX3219uzZo1NPPVUrVqzQ0KFD7Vw2+qD9NiYXnTxOkuTzSRZhCgCeQNajL95uOKgLlzyXtv1ZCv0DAFPZOpT/4he/6PbzPp9P1dXVqq6uHpwFIet2N8XatjHZsK1BeX6fjhhRoFvOO17TjxlFmAKA4ch69EX7vmHu0nWaNK5IV5QfrZFDQio5zH37lANAb5h3/lMX9scSKogl7F5G1sXjCTW3JOsLWs4LqIPxFknJZ7YlqdWy9Pqu/bpr5Vb5fD6CFQCQNaZmveT8vB+oVH0d+4ZN2xv01Ude0gljh+n6WcfQNwAwkmeG8vJFq+UPm7p3aZ6q1tXavYheaW0XsqlnwKsqyzS13elpAAD0h9lZL7kp7/snT1q3Pu1Iqm/YXN+oy+9bT98AwEh+uxcAb0qF7IZtDapevtnexQAAAEejbwBgMs+8Um7qNilO3yKFbUwAAIPF1KyXnJ/3A5Wq78hJk/Wpn6/v9Hn6BgAm88xQbuo2KU7fIoVtTAAAg8XUrJecn/cDlaqPvgGAF5n3qA5HYhsTAADQW/QNALyEoRw5FS0MaVRhWMXD8wlVAADQrRFD6BsAeA9DOXKquKhAa+bPVCjgNzpUmxMtxtcIAECuFRfle6Jv6Cv6DMBsXH0dORfOCxgdIvV7D6h8Ya1mL67Tqq07ZaU2VwUAAH1met/QV/QZgPkYyoEB2t0U0659MW08tPc6oQkAALKFPgMwn2dOX98fS6gglrB7GVkXjyfU3JKsL2iZ+ayy02s8GG+RlLwgjSRtOhSak8ZxcRoAGEymZr3k/CwcKOrrGn0GYD7PDOXli1bLH47YvYwcyVPVulq7F5Fj7qmxNUNoVlWWaWrpSHsXBgCGMzvrJTdlYf9QX2/QZwDm4fR1IEdSoblhW4Oql2+2dzEAAMAo9BmAOTzzSnld1TRFo1G7l5F18XhcNTUrVFlZoWAwaPdycsLpNW6pb9ScJWs7Hff7koGZegYbAJBbpma95PwsHCjq6xp9BmA+zwzlkVCeIiHzyo37LIUDyfqCQfPqk5xfY34wkPZxKiQnjuW9XgAwmEzNesn5WThQ1Nc1+gzAfOY96gE28fmSF2EhJAEAQLbRZwDmYigHBihaGNKowrCKh+cTkgAAIKvoMwDzMZQDA1RcVKA182cqFPATkgAAIKvoMwDzMZQDWRDOC/R8IwAAgH6gzwDMxpZoAAAAAADYhKEc6IXmRIssy7J7GQAAwDD0GAAYyoEe1O89oPKFtZq9uE6rtu4kOAEAQFbQYwCQGMqBHu1uimnXvpg2bm/Q3KXrCE4AAJAV9BgAJA9d6G1/LKGCWMLuZWRdPJ5Qc0uyvqBl5hU57a7xYLxFUnJvUEnadCg4J41jn1AAcBJTs16yPwtzzav10WMAkDw0lJcvWi1/OGL3MnIkT1Xrau1eRI45p8bWDMFZVVmmqaUj7V0YAHic2VkvOSkLc4P66DEAb+L0daCfUsG5YVuDqpdvtncxAADAGPQYgLd45pXyuqppikajdi8j6+LxuGpqVqiyskLBYNDu5eSE3TVuqW/UnCVrOx33+5KhmXoWGwBgL1OzXrI/C3PNq/XRYwCQPDSUR0J5ioTMKzfusxQOJOsLBs2rT7K/xvxgIO3jVFBOHMv7vQDASUzNesn+LMw1r9ZHjwFA8tBQDgyUz5e8EAtBCQAAsokeA/A2hnKgB9HCkEYVhlU8PJ+gBAAAWUOPAUBiKEeONCdaFAr4jQiW4qICrZk/05h6AABwmuZEq7y4NTc9BgCJoRw5UL/3gM6/Z41KhhcY86xvOC/Q840AAECf1e89oPN+tEYRBTTsmF2aedwY1/cNfUGPAYAt0ZB1u5ti2rUvpo2H9ticvbhOq7bulOXFp8ABAEC3djfF9G5TTNuapCsffIG+AYDneOaV8v2xhApiCbuXkXXxeELNLcn6gpYznlU+GG+RpLbT0DYdGs4njePiJQCA3DE16yVn5n22tPUNStZF3wDAazwzlJcvWi1/OGL3MnIkT1Xrau1eRJdaMwznVZVlmlo60t6FAQCMYnbWS07P+2yhbwDgNZy+jkGTCtkN2xpUvXyzvYsBAACORt8AwCs880p5XdU0RaNRu5eRdfF4XDU1K1RZWaFgMGj3ciRJW+obNWfJ2k7H/b5kwKae8QYAIJtMzXrJmXmfLfQNALzOM0N5JJSnSMi8cuM+S+FAsr5g0Bn15QfTryKaCtWJY3lvGAAgd0zNesmZeZ8t9A0AvM6sR3U4is+XvNgboQoAAHrikyVLPvoGAJ7Tp6H8lVde0UMPPaQ///nPeuONN7R//36NGjVKJ510kiorK3XRRRcpHA7naq1wuOZEi0IBv6KFIY0qDKt4eD6hCgAuRN4j11I9g8/nU7QwpJGFIRVYzbr1opM9t085APTqQm8vvviiZs2apRNPPFGrV6/Whz/8YV133XX69re/rU9/+tOyLEs33XSTSkpKdMcdd6i5uTnX64bD1O89oPKFtZq9uE5b/71Pf543Q7+7plzTjxlFsAKAS5D3GAzte4ZVW3dqzLB8PfO1afraCS06nSfyAXhQr14pv+CCC/T1r39djzzyiEaMGNHl7dauXavvf//7+p//+R994xvfyNoi4Xy7m2LatS+md5ti7C0KAC5F3mMwZOoZrjtjgt3LAgDb9Goof/XVVxUKhXq83eTJkzV58mTFYrEBLyzb9scSKogl7F5G1sXjCTW3JOsLWvYNvwfjLZKS7yGX0vcWZTgHAHdwe96bmvWSc/I+GzL1DFc++IKOGBLQsGN2cfo6AM/p1VDem4AeyO0HQ/mi1fKHI3YvI0fyVLWu1u5FpGnNMJxXVZZpaulIexcGAOiS2/Pe7KyXnJj32ZDqGbY1SVc++AI9AwDP6dfV19etW6dnnnlG77zzjlpbW9M+d9ddd2VlYTBDKmg3bGtQ9fLN+tP10+1dEACg18h7DCZLyVfH6RkAeE2fh/IFCxbo5ptv1rHHHqvRo0ennV7k5FON6qqmKRqN2r2MrIvH46qpWaHKygoFg0Hb1rGlvlFzlqztdDy112jqWW8AgDu4Me9NzXrJOXmfDV31DKkt0egZAHhNn4fyH/zgB1q6dKkuv/zyHCwndyKhPEVC5m3LHvdZCgeS9QWD9tWXHwykfZwaxtlrFADcyY15b2rWS87J+2zoqmcYN0RsiQbAk/r8qO73+1VeXp6LtcAAPl/ywi3dDePt9yYFADgTeY9ca98zXHfGBDVuXdftlmj0DwBM1at9ytv76le/qsWLF+diLXCxaGFIowrDOmFskR648iNd7lHecW9SK3XpVQCAo5D3yJVMPUNyGO/639A/ADBZn18pv+GGG3TOOedowoQJ+sAHPtDpfU2PPvpo1hYH9yguKtCa+TN7fAab/cwBwB3Ie+RKb3uG9ugfAJisz0P5l770JT399NOaOXOmotGoax4ITd271Gn7lh5oben28+xnDgDu4Ma8NzXrJeflfTa07xl6qo/+AYDJ+jyUP/jgg/rNb36jc845JxfryRmz9y51776l7GcOAM7kxrw3O+slN+d97/S+PvoHACbp83vKR4wYoQkTJuRiLfCwjvuZAwDsRd7DDegfAJigz6+UV1dX65ZbbtF9992nSMQ9z0abunep2/YtZT9zAHAHN+a9qVkvuS/v+6qn+ugfAJisz0P5D3/4Q/3zn//U6NGjdfTRR3d64HzhhReytrhsMnXvUrftW8p+5gDgDm7Me1OzXnJf3vdVT/XRPwAwWZ8f1S+44IIcLANe05v9zAEA9iHv4UT0DwBM1Oeh/JZbbsnFOuARqb1Ji4fn9ximzYkWhQJ9vuwBACALyHs4SV/6B+k/PQQDOwA3yMn5T5Zl8SCIjHq7N2n93gM6/541KhleoOvOmNC2BQoAwDnIewyWvuxt3r6H4NV0AG7Qq5chjzvuOC1btkyxWKzb27366qv64he/qDvuuCMri4OZwnmBHsNxd1NMu/bFtHF7g6588AX9z8aA/vzqLllM5wCQM+Q9nKw3/YOU3kPMXbpOsxfXadXWnfQQAByrV6+UL168WPPmzdM111yjiooKnXLKKSopKVF+fr727NmjLVu2aM2aNdqyZYuuvfZaXX311bled5/tjyVUEEvYvYysi8cTam5J1he0zHkW+GC8RZLaXiHf1iRd+eALmjSO95ABQK64Pe9NzXrJ3LxPyWZ9HXuI9nuZ00MAcKJeDeVnnHGG1q9fr2effVaPPPKIli1bpjfeeEMHDhzQyJEjddJJJ+m///u/9elPf1rDhw/P8ZL7p3zRavnD7tjSpe/yVLWu1u5F5JSlZHi2D9aqyjJNLR1p88oAwBxuz3uzs14yP+9zU19rhuGcHgKAk/TpPeVTpkzRlClTcrUWoEepYN2wrUHVyzfrT9dPt3dBAGAg8h4moocA4FTmbXTZhbqqaYpGo3YvI+vi8bhqalaosrKi0x6ybralvlFzlqztdDy1L2nqWW4AAFJMzXrJ3LxPyWZ99BAA3MYzQ3kklKdIyLxy4z5L4UCyvmDQnPryg4G0j32yZMnHvqQAgC6ZmvWSuXmfks36OvYQqWGcHgKAU5n3qA6j+HzJC7WMGyLdetHJmnncGIIUAAD0KNVDMIwDcDqGcjhStDCkUYVhFQ/P13VnTFDj1nU6nTAFAAA9aN9DMIwDcAOGcjhScVGB1syfqVDAr0QioT+8aveKetacaFEo4Cf4AQCwUfsewqRMps8AzOXv6z8444wzdOutt3Y6vmfPHp1xxhlZWRQgSeG8gGuCp37vAZUvrNXsxXVatXWnrNTmqADgUuQ93MxNPURv0GcAZuvzUP7MM8/onnvu0QUXXKCmpqa247FYTKtWrcrq4gC32N0U0659MW08tAcqoQnA7ch7wDnoMwCz9ev09T/96U+66qqrdNppp2n58uU6+uijs7ys7NsfS6gglrB7GVkXjyfU3JKsL2iZ84xwe26o8WC8RVLygjKStOlQaE4ax8VlALiX2/Le1KyX3JGFA0F93aPPAMzWr6G8uLhYq1at0pVXXqkPf/jD+vWvf63jjjsu22vLqvJFq+UPR+xeRo7kqWpdrd2LyDF31diaITSrKss0tXSkvQsDgD5wW96bnfWS27Kw76ivt+gzALP0+fT11LNw4XBYv/rVr/SVr3xFZ511ln784x9nfXGA26VCc8O2BlUv32zvYgCgD8h7wPnoMwAz9PmV8o7vXbn55pt13HHHae7cuVlbVC7UVU1TNBq1exlZF4/HVVOzQpWVFQoGg3YvJyfcUOOW+kbNWbK203G/LxmYqWewAcAt3Jj3pma95I4sHAjq6x59BmC2Pg/lr7/+ukaNGpV27KKLLlJZWZmef/75rC0s2yKhPEVC5u0AF/dZCgeS9QWD5tUnuaPG/GAg7eNUSE4cy3u9ALiTG/Pe1KyX3JGFA0F93aPPAMzW50eFo446KuPx448/Xscff/yAFwS4mc+XvAgLIQnA7ch7wHnoMwAzmfdUJGCDaGFIowrDKh6eT0gCAICsos8AzMZQDmRBcVGB1syfqVDAT0gCAICsos8AzMZQDmRJOC/Q840AAAD6gT4DMFeft0QDvKY50dLpKsQAAAADQX8BIIWhHOhG/d4DKl9Yq9mL67Rq607CEwAADBj9BYD2GMqBbuxuimnXvpg2bm/Q3KXrCE8AADBg9BcA2vPMe8r3xxIqiCXsXkbWxeMJNbck6wtaZl74w84aD8ZbJCW3H5GkTYfCc9I4tiIBAKcxNesl8/Pea/XRXwBozzNDefmi1fKHI3YvI0fyVLWu1u5F5JgzamzNEJ5VlWWaWjrS3oUBAAzPeskpWZg73q2P/gLwNk5fB/ohFZ4btjWoevlmexcDAACMQH8BeJNnXimvq5qmaDRq9zKyLh6Pq6ZmhSorKxQMBu1eTk7YWeOW+kbNWbK203G/LxmcqWeyAQD2MzXrJfPz3mv10V8AaM8zQ3kklKdIyLxy4z5L4UCyvmDQvPoke2vMD6bvCZoKy4ljec8XADiNqVkvmZ/3XquP/gJAe+Y96gE54PMlL8ZCWAIAgGyhvwAgMZQD3YoWhjSqMKzi4fmEJQAAyAr6CwDtMZRDktScaFEo4CcQOiguKtCa+TP53gAAPI0+IbvoLwC0x9XXofq9B1S+sFazF9dp1dadslKbZkKSFM4LEJgAAM+iT8gN+gsAKQzl0O6mmHbti2njob0xCV0AAJBCnwAAueWZ09f3xxIqiCXsXkbWxeMJNbck6wta/Xu29WC8RVLyQiOStOlQ6E4ax0VHAADuYWrWS9nJ+/6iTwCA3PLMUF6+aLX84Yjdy8iRPFWtq83aV2vNELpVlWWaWjoya/cBAEC2mZ31Urbzvr/oEwAguzh9HV1Khe6GbQ2qXr7Z3sUAAABHoU8AgOzwzCvldVXTFI1G7V5G1sXjcdXUrFBlZYWCwWC/vsaW+kbNWbK203G/Lxm4qWfAAQBwMlOzXspO3vcXfQIA5JZnhvJIKE+RkHnlxn2WwoFkfcFg3+trTrQonJd+wkQqZCeO5b1iAAD3MDXrpYHnfX/RJwBA7pmZXOiV+r0HdP49a3RYJJR2nJAFAAD0CQAwOBjKPSy1xcm7+2KSpIJgQNfMnKCrZ0yQ38/lBgAA8DL6BAAYHJ4Zyk3dJmUgW6S0bXFy6OPmRIu+t2KrVmz5N8+AAwBcx9Ssl+zZEo0+AQAGh2eGcrO3ScnOFilscQIAcDOzs16ye0s0+gQAyA3OPUInbHECAAC6Qp8AANnlmVfKTd0mZSBbpLDFCQDAJKZmvWTPlmj0CQAwODwzlJu6TcpAtkjJDwbSPmaLEwCAm5ma9ZI9W6LRJwDA4DAzudAnPp9kZSFkmxMtCgX8BDQAAAbJVp/QEX0DACQxlHtYtDCkUYVhFQ/PH3DIpvYyLRlewLPnAAAYIJt9Qkcd+4bJRxdl5esCgBsxlHtYcVGB1syfmZVnqdv2Mm2KtV2RleEcAAD3ymaf0FHHvuGEscNUPsynsy2r538MAIbxzFBu6t6l2di39EBry4DX0baXaYbtUhjOAQCDwdSsl+zZpzwlG31CRx37hs31jdq4PaC6n/xFN1SW0TcA8BTPDOVm711q776lmbCXKQBgsJmd9ZIT8z5bWtsN5/QNALyGfcqRU+xlCgAAeou+AYAXeeaVclP3LrVj39JM2MsUAGA3U7Neck7eZwt9AwD8h2eGclP3LrVj39JM2MsUAGA3U7Neck7eZ0tXfcPxJcN4TzkAz3H/ozocJVd7mQIAAPOk+objS4apfNgeXX/xqQqFQnYvCwAGla3vKf/ud7+rD3/4wxo6dKgOP/xwXXDBBXrllVfSbmNZlqqrq1VSUqKCggLNmDFDmzfzHiO7NCdaZGXYriS1l+kJY4v0wJUf0e+uKdf0Y0YxkAOAx5H13tRVv5DSsW/4zVWn6rjhFn0DAE+ydShftWqVrrnmGj333HNauXKlEomEKioq1NTU1HabRYsW6a677tI999yj9evXa8yYMZo1a5bee+89G1fuTfV7D6h8Ya1mL67Tqq0708I2tZcpwzgAoD2y3nu66xdS6BsA4D9sPX39j3/8Y9rH9913nw4//HD99a9/1bRp02RZlu6++27ddNNNuvDCCyVJDzzwgEaPHq1ly5bpqquusmPZnrW7KaZd+2J6tymWcQ/ycF6g5y8CAPAUst57euoXUugbACDJUe8pb2hokCSNGDFCkvT6669rx44dqqioaLtNOBzW9OnT9eyzz2YM6ubmZjU3N7d93NjYmPx/00Hl5R/I5fJtEY8n1NwiNTQdVDCYyOl97TuQ/L5aHfYgP2HsMH31zPdr6vujOXmmOx6Pp/3fNNTnfqbXaHp90uDXaPL3sidkff8MZt4PVH/6BdMfZ0yvTzK/RupzPydnvc/q7g0/g8iyLM2ePVt79uzRn//8Z0nSs88+q/Lycm3fvl0lJSVtt/385z+vN998UzU1NZ2+TnV1tW699dZOx4+47n/lD0dyV4CH+WTJkk9HDLF03pGtOna4I36lAMCx9u/fr0suuUQNDQ0aNmyY3csZNGS9t9EvAPCSvmS9Y14pv/baa7VhwwatWbOm0+c6PptqWV1fCOTGG2/U9ddf3/ZxY2OjjjjiiOwuFmksJX8WbzX5VLNrmL56SXlWv348HtfKlSs1a9YsI/Zm7Yj63M/0Gk2vTxr8GlOv7HoNWe9t3fULpj/OmF6fZH6N1Od+Ts56RwzlX/rSl/T4449r9erVGjduXNvxMWPGSJJ27Nih4uLituPvvPOORo8enfFrhcNhhcPhTsfrqqYpGo1meeX2i8fjqqlZocrKipz/cm2pb9ScJWs7HU/tLTppXJGqKstyto5gMGjsg4REfSYwvUbT65MGr0bTv4+ZkPUDM5h5P1AD6RdMf5wxvT7J/Bqpz/2cmPW2DuWWZelLX/qSfvvb3+qZZ57R+PHj0z4/fvx4jRkzRitXrtRJJ50kSYrFYlq1apXuuOOOPt1XJJSnSMgRz0FkVdxnKRxI1hcM5ra+/GD6BVlS4cqe5ACArpD12TGYeT9Q9AsA0De2Pqpfc801WrZsmX73u99p6NCh2rFjhySpqKhIBQUF8vl8uu6667RgwQKVlpaqtLRUCxYsUCQS0SWXXGLn0j3N50tevIVwBQD0hKz3LvoFAOgdW4fye++9V5I0Y8aMtOP33XefLr/8cklSVVWVDhw4oKuvvlp79uzRqaeeqhUrVmjo0KGDvFpEC0MaVRhW8fB8whUA0CtkvffQLwBA39h++npPfD6fqqurVV1dnfsFoVvFRQVaM3+mQgE/4QoA6BWy3nvoFwCgb/x2LwDuEs4L5DRgmxMtvWrgAACAc+W6X+iI/gGAmzGUwzHq9x5Q+cJazV5cp1VbdxKuAACgR/QPANyOoRyOsbsppl37Ytq4vUFzl64jXAEAQI/oHwC4nbP31Mii/bGECmIJu5eRdfF4Qs0tyfqClrvft3Uw3iIpeaVWSdp0KFxPGDtM5cN8OptwBQB0w9Ssl8zK+0wGUl9X/cOkcVz1HYA7eGYoL1+0Wv5wxO5l5EieqtbV2r2IrGs9FK6b6xu1cXtAdT/5i+addZymlo60d2EAAEcyO+slU/P+P7JTX2uG4byqsoz+AYBjcfo6HC8Vrhu3N6p6+WZ7FwMAAFwh1T9s2NZA/wDA0TzzSnld1TRFo1G7l5F18XhcNTUrVFlZoWAwaPdyBmRLfaPmLFnb6bjflwzWE8YO07yzjrNhZQAANzA16yWz8j6TgdTXU/+QeqUcAJzKM0N5JJSnSMi8cuM+S+FAsr5g0N315QcDaR+nwvT4kmEqH7ZH1198qkKhkE2rAwA4nalZL5mV95kMpL6u+oeJY3lPOQB3MO9RHa7n8yUv1pIK08lHF+nJJ58kUAEAQJc69g8M4wDcgqEcjhEtDGlUYVjFw/PTwjQej9u9NAAA4FBd9Q8A4BYM5XCM4qICrZk/U6GAnzAFAAC9Qv8AwO0YyuEo4bxAzzcCAABoh/4BgJuxJRqyrjnRIsuy7F4GAABwAfoGAF7HK+XIqvq9B3T+PWtUMryA93UBAIBupfqG4qJ8lQ/z6WyGcwAexCvlyKrdTTHt2hfTxu0Nmrt0nWYvrtOqrTt5BhwAAHSS6hs21TdqycsBXfSTv9A3APAcz7xSvj+WUEEsYfcysi4eT6i5JVlf0LL/FemD8RZJyS1JJGnToeF80ji2JwEA5JapWS85L++zpWPfsLm+kb4BgOd4ZigvX7Ra/nDE7mXkSJ6q1tXavYiMWjMM51WVZZpaOtLehQEAjGN21ktOzvtsoW8A4EWcvo5BkQrZDdsaVL18s72LAQAAjkbfAMBLPPNKeV3VNEWjUbuXkXXxeFw1NStUWVmhYDBo93K0pb5Rc5as7XTc70sGbOoZbwAAss3UrJecl/fZQt8AAB4ayiOhPEVC5pUb91kKB5L1BYP215cfTN8nNBWqE8fy3jAAQG6ZmvWS8/I+W+gbAMBDQzkGl8+XvGgLoQoAAHqS6huOLxmmGyrL6BsAeApDObIqWhjSqMKwiofnM4wDAIBupfqGMUVhlQ/bo+svPlWhUMjuZQHAoGIoR1YVFxVozfyZCgX8DOMAAKBbqb7B19qiJ598kt4BgCdx9XVkXTgvQKgCAIBeoW8A4HUM5eiz5kSLLMuyexkAAMDB6BcAoHcYytEn9XsPqHxhrWYvrtOqrTsJWwAA0An9AgD0HkM5+mR3U0y79sW0cXuD5i5dR9gCAIBO6BcAoPc8c6G3/bGECmIJu5eRdfF4Qs0tyfqCVu7fj3Uw3iIpuW2JJG06FLaTxrH1GQDAXqZmvTT4eT9Q9AsA0HueGcrLF62WPxyxexk5kqeqdbW23HNrhrCtqizT1NKRtqwHAOBdZme9ZGfeDxT9AgB0jdPXkRWpsN2wrUHVyzfbuxgAAOBI9AsA0JlnXimvq5qmaDRq9zKyLh6Pq6ZmhSorKxQMBnN+f1vqGzVnydpOx/2+ZNCmnvkGAGCwmZr10uDn/UDRLwBA73lmKI+E8hQJmVdu3GcpHEjWFwzmvr78YCDt41S4ThzLe8QAAPYyNeulwc/7gaJfAIDec/6jOhzJ50tevIVwBQAAXaFfAICeMZSjT6KFIY0qDKt4eD7hCgAAMqJfAIDeYyg3XHOiRaGAP2tBWFxUoDXzZ2b1awIAgMGX7R6hPfoFAOg9rr5usPq9B1S+sFazF9dp1dadslKbhQ5QOC9AwAIA4GK56hHao18AgN5hKDfY7qaYdu2LaeOhPUFzGbwAAMA96BEAwDk8c/r6/lhCBbGE3cvIung8oeaWZH1BK/3Z6IPxFknJC6xI0qZDwTtpHBdbAQCYx9Ssl7rP+/6gRwAA5/DMUF6+aLX84Yjdy8iRPFWtq+3xVq0ZgreqskxTS0fmeH0AAOSe2Vkv9Tbv+4MeAQDsw+nrHpQK3g3bGlS9fLO9iwEAAI5BjwAAg88zr5TXVU1TNBq1exlZF4/HVVOzQpWVFQoGg2mf21LfqDlL1nb6N35fMnRTz4IDAGACU7Ne6j7v+4MeAQCcwzNDeSSUp0jIvHLjPkvhQLK+YDC9vvxgIO3jVNBOHMv7xQAA5jE166Xu874/6BEAwDnMTC6k8fmSF3IhaAEAQHv0CABgP4Zyg0ULQxpVGFbx8HyCFgAAtKFHAADnYCg3QKJVGfcVLS4q0Jr5MxUK+AlaAAA8pDnR0m3+0yMAgHNw9XWXe7vhoKpfCOiin/xFq7bu7DSch/MChC0AAB5Sv/eAyhfWavbiuoy9QQo9AgA4A0O5y+1uium9uE+b6hs1d+m6HgMYAACYbXdTTLv2xbTx0J7j9AYA4GyeOX19fyyhgljC7mVk3cF4i6TkRVokadOhAJ40jgu2AAC8xdSsl6R4PKHmlmSNQav7XKc3AAB38cxQXr5otfzhiN3LyLnWDAFcVVmmqaUj7V0YAAA5Zn7W56lqXW2f/xW9AQA4G6evGyoVwBu2Nah6+WZ7FwMAAGxHbwAAzuSZV8rrqqYpGo3avYys2/Cv3frUz9d3Ou73JcM39Ww4AACmMzXrJSkej6umZoUqKysUDAa7ve2W+kbNWbK203F6AwBwJs8M5ZFQniIh88rNDwbSPk4F7sSxvG8MAOAtpma9JMV9lsKBZI3BYPc10hsAgLuYmVwe5PMlL+hC4AIAAIneAADcgqHc5UYMCWlo0NLRhxfphsoyAhcAAI+LFoY0qjCs4uH5DOMA4AIM5S5XXJSv6pNbdN45pyoUCtm9HAAAYLPiogKtmT9ToYCfYRwAXICrrxsgz68eQ7c50SIrtWEpAAAwWjgv0KuBnP4AAOzHUO4B9XsPqHxhrWYvrtOqrTsJXwAAQH8AAA7BUO4Bu5ti2rUvpo3bGzR36TrCFwAA0B8AgEN45j3l+2MJFcQSdi8j6+LxhJpbkvUFrcynqR2Mt0hKXoFVkjYdCt9J47gaKwDAHKZmvdS7vO8r+gMAcAbPDOXli1bLH47YvYwcyVPVutpe37o1Q/hWVZZpaunIHK0PAIDcMzvrpb7mfV/RHwCAPTh93cNS4bthW4Oql2+2dzEAAMAR6A8AYHB55pXyuqppikajdi8j6+LxuGpqVqiyskLBYDDjbbbUN2rOkrWdjvt9yeBNPRMOAICbmZr1Uu/yvq/oDwDAGTwzlEdCeYqEzCs37rMUDiTrCwYz15cfDKR9nArbiWN5zxgAwBymZr3Uu7zvK/oDAHAGM5MLGfl8yYu5ELYAACCF/gAA7MVQ7gHRwpBGFYZVPDyfsAUAAJLoDwDAKRjKPaC4qEBr5s9UKOAnbAEAgCT6AwBwCoZyjwjnBXq+EQAA8BT6AwCwH1uiOVxzokWWZdm9DAAAYLNEq+gJAMBADOUOVr/3gMoX1mr24jqt2rqTIAYAwKPebjio6hcCuugnf6EnAADDMJQ72O6mmHbti2nj9gbNXbqO4RwAAI/a3RTTe3GfNtU30hMAgGE8857y/bGECmIJu5fRJwfjLZKS25RI0qZDw/mkcf/ZsgQAACS5Met7qzc9ARdrAwB38sxQXr5otfzhiN3LGJDWDEF8/Uffb++iAABwCBOyvrcy9QRVlWWayhP2AOA6nL7uQqkg3rCtQd9+4u/2LgYAANimfU9QvXyzvYsBAPSLZ14pr6uapmg0avcy+mRLfaPmLFnb6bjflwzh1CvlDa/8xYbVAQDgLG7M+t7a8K/d+tTP13c63r4nqKoss2FlAICB8sxQHgnlKRJyV7n5wfS9Q1PBO3Hsf94/lkgk9IdXbFogAAAO4sas763e9AS8pxwA3MnM5DKMz5e8sAvBCwCAt9ETAIB5GModLFoY0qjCsIqH5xO8AAB42IghIQ0NWjr68CLdUFlGTwAABmEod4jmRItCAX9awBYXFWjN/JmdjgMAADNl6gckqbgoX9Unt+i8c05VKBSyaXUAgFzg6usOUL/3gMoX1mr24jqt2rpTVmoTUknhvAADOQAAHtBdPyBJeX7REwCAgRjKHWB3U0y79sW08dBeo12FMQAAMBf9AAB4k2dOX98fS6gglrB7GRkdjLdISl64RZI2HQrjSeO4iAsAAL3l5Kzvje76gevOmCBmcwAwk2eG8vJFq+UPR+xeRq+0ZgjjqsoyTS0dae/CAABwMDdlfW+07weufPAFHTEkoOFl72pG2Rh7FwYAyCpOX3ewVBhv2Nag6uWb7V0MAACwRaofeKvJp28/8Xd7FwMAyDrPvFJeVzVN0WjU7mVktKW+UXOWrO103O9LBnHqlXIAANA1J2d9b/TUDxwxxNI3z6EfAADTeGYoj4TyFAk5s9z8YCDt41T4ThzLe8oBAOgtJ2d9b3TXD1x3xgQ1bl2n8gnufdIBAJCZe5PLQD5f8uIuDOMAAHhXpn4gkUjoD6/avTIAQC4wlDtAtDCkUYVhFQ/PZxgHAMCj6AcAwJsYym3SnGhRKOCXz+dTcVGB1syf2fYxAAAwX/teQBL9AAB4FFdft0H93gMqX1ir2YvrtGrrTlmWpXBegAAGAMAjMvUCkugHAMCDGMptsLsppl37Ytp4aB/yjoEMAADMRi8AAEjxzOnr+2MJFcQSdi9DknQw3iIpeREXSdp0KJAnjeMCbwAA9JeTsr4n9AIAgBTPDOXli1bLH47YvYyMWjMEclVlmaaWjrR3YQAAuIiTs74n9AIA4F2cvu4gqUDesK1B1cs327sYAAAw6OgFAMB7PPNKeV3VNEWjUbuXIUnaUt+oOUvWdjru9yXDOPXsOAAA6D0nZX1P6AUAACmeGcojoTxFQs4oNz8YSPs4FcATx/I+MgAA+stJWd8TegEAQIo7kstQPl/yAi8EMAAA3kQvAABgKLdBtDCkUYVhFQ/PJ4ABAPAgegEAQApDuQ2Kiwq0Zv5MhQJ+AhgAAA+iFwAApHD19RxrTrTISm1C2k44L0AIAwDgAfQCAIDuMJTnUP3eAypfWKvZi+u0auvOjIEMAADMRS8AAOgJQ3kO7W6Kade+mDZub9DcpesIZAAAPIZeAADQE8+8p3x/LKGCWGJQ7/NgvEVS8qqqkrTpUCBPGscVVgEAyDY7sr4n9AIAgJ54ZigvX7Ra/nDE1jW0ZgjkqsoyTS0daeu6AAAwgROyvif0AgCAjjh93QapQN6wrUHVyzfbuxgAADDo6AUAACmeeaW8rmqaotHooN7nlvpGzVmyttNxvy8ZxqlnxwEAwMDZkfU9oRcAAPTEM0N5JJSnSGhwy80PBtI+TgXwxLG8jwwAgGyzI+t7Qi8AAOiJs5LLUD5f8gIvBDAAAN5ELwAA6ApDeQ5FC0MaVRhW8fB8AhgAAA+iFwAA9IShPIeKiwq0Zv5MhQJ+AhgAAA+iFwAA9IShPMfCeYGebwQAAIxFLwAA6A5bouVYc6JFlmXZvQwAAGATegEAQHcYynOofu8BlS+s1ezFdVq1dSeBDACAx9ALAAB6wlCeQ7ubYtq1L6aN2xs0d+k6AhkAAI+hFwAA9MTWoXz16tU677zzVFJSIp/Pp8ceeyzt85Zlqbq6WiUlJSooKNCMGTO0efPmft3X/lhi0P87GG85VEdyDZsIZACAx5ie9fQCAICBsvVCb01NTTrxxBN1xRVX6KKLLur0+UWLFumuu+7S/fffr2OOOUa33367Zs2apVdeeUVDhw7t032VL1otfziSraX3S2uHQJ40rkhVlWWaWjrS1nUBAJArXsv6ntALAAA6svWV8rPPPlu33367Lrzwwk6fsyxLd999t2666SZdeOGFmjhxoh544AHt379fy5Yts2G12ZMK5A3bGlS9vH+vBgAA4AZezfqe0AsAAFIcuyXa66+/rh07dqiioqLtWDgc1vTp0/Xss8/qqquuyvjvmpub1dzc3PZxY2OjJGnVV6doRHREbhfdwctvv6dP/Xx9p+N+XzKMTxg7TF+bVap4PN7v+0j924F8DaczvUbqcz/TazS9PmnwazT5e9kXJmR9T7LVC5j+d0h97md6jdTnfk7OescO5Tt27JAkjR49Ou346NGj9eabb3b577773e/q1ltv7XT8ubrVikQG95S2t/ZJ7b/FPlmy5NPYiKVzjmxVWdFuNbzyF/3hlYHf18qVKwf+RRzO9Bqpz/1Mr9H0+qTBq3H//v2Dcj9OZ0LW9yTbvYDpf4fU536m10h97ufErHfsUJ7i8/nSPrYsq9Ox9m688UZdf/31bR83NjbqiCOO0MyZMxWNRnO2zkw21zfqexufk8+XvMDLxLFF+uqZ79fU90e7raEv4vG4Vq5cqVmzZikYDGblazqN6TVSn/uZXqPp9UmDX2PqlV0kuTnre5KtXsD0v0Pqcz/Ta6Q+93Ny1jt2KB8zZoyk5LPoxcXFbcffeeedTs+otxcOhxUOhzsdDwaDg/4LNnp4RKMKwyoenq+vVRyraaUjszaMd2RHfYPN9Bqpz/1Mr9H0+qTBq9H072NvmZD1Pcl2L+DEGrOJ+tzP9Bqpz/2cmPWOHcrHjx+vMWPGaOXKlTrppJMkSbFYTKtWrdIdd9wx6OtpTrQoFPD3KUiLiwq0Zv7MPv87AAC8wGlZn0l/8r89egEAQE9sHcr37dunf/zjH20fv/766/rb3/6mESNG6Mgjj9R1112nBQsWqLS0VKWlpVqwYIEikYguueSSQV1n/d4DOv+eNSoZXtDnZ7nDeYEcrw4AAOdyS9ZnMpD8b49eAADQHVuH8ueff14zZ85s+zj1/rC5c+fq/vvvV1VVlQ4cOKCrr75ae/bs0amnnqoVK1b0ed/SgdrdFNOufTG92xRr21M016ejAwBgArdkfSbkPwBgMNg6lM+YMUOWZXX5eZ/Pp+rqalVXVw/4vvbHEiqIJfr1bw/GWyQlL9AiSZu2NxDOAAD0gluyPhPyHwAwGBz7nvJsK1+0Wv5wdrZJac0QzlWVZZpaOjIrXx8AAPRdNrM+E/IfAJALfrsX4GapcN6wrUHVyzfbuxgAADAoyH8AQDZ55pXyuqpp/d67dEt9o+YsWdvpuN+XDObUM+UAAMA+A8n6TMh/AMBg8MxQHgnlKRLqX7n5wfSrpqbCeOJY3lMGAIBTDCTrMyH/AQCDwTNDeTb4fMmLvRDGAAB4B/kPAMglhvJuNCdaFAr4FS0MaVRhWMXD8wljAAAMlsp+n89H/gMABgVDeRfq9x7Q+fesUcnwAn2t4lj9ed4MhfMChDEAAIbqmP3TSkdqzfyZbUM6AAC5wNXXu7C7KaZd+2LaeGjbk0/85DmtfnVXt3utAgAA9+qY/bMX1+m513bbvSwAgOE880r5/lhCBbFEr29/MN4iKfkeMil9T1JOYQMAwHn6mvUdkf0AADt4ZigvX7Ra/nCk3/++NUNAV1WWaWrpyCytEAAADMRAs74jsh8AMBg4fb2PUgG9YVuDqpdvtncxAAAg58h+AEAueeaV8rqqaYpGo72+/Zb6Rs1ZsrbT8dQepalnywEAgDP0Nes7IvsBAHbwzFAeCeUpEup9ufnBQNrHqUBmj1IAAJypr1nfEdkPALCDZ4by/vL5khd8IZABAPAGsh8AMJgYyrsQLQxpVGFYxcPzCWQAADyA7AcA2IGhvAvFRQVaM3+mLMtSOC9AKAMAYDiyHwBgB66+3o1398U09Y6nNXtxnVZt3SkrtXEpAAAwEtkPABhsDOXd2N0U0659MW08tD8pAQ0AgNnIfgDAYPPM6ev7YwkVxBJ9+jcH4y2Skhd7kaRNhwJ60jgu/AIAgNP0J+s7IvsBAIPNM0N5+aLV8ocjA/oarRkCuqqyTFNLR2ZhhQAAYCCykfUdkf0AgFzj9PV+SAX0hm0Nql6+2d7FAACAnCP7AQC54plXyuuqpikajfbp32ypb9ScJWs7Hff7kuGcerYcAADYrz9Z3xHZDwAYbJ4ZyiOhPEVCfSs3PxhI+zgVyBPH8r4yAACcpj9Z3xHZDwAYbJ4ZygfC50te8IVABgDAG8h+AMBgYSjvRrQwpFGFYRUPzyeQAQDwALIfADDYGMq7UVxUoDXzZyoU8BPIAAB4ANkPABhsDOU9COcFer4RAAAwBtkPABhMbInWQXOiRZZl2b0MAAAwCMh9AIDdGMrbqd97QOULazV7cZ1Wbd1JSAMAYDByHwDgBAzl7exuimnXvpg2bm/Q3KXrCGkAAAxG7gMAnMAz7ynfH0uoIJbo9jYH4y2SklugSNKmQyE9aRzboQAA4HS9yfr2yH0AgBN4ZigvX7Ra/nCkT/+mNUNIV1WWaWrpyBysEAAADER/sr49ch8AYAdOX++FVEhv2Nag6uWb7V0MAADIKXIfADCYPPNKeV3VNEWj0W5vs6W+UXOWrO103O9LBnTqGXMAAOA8vcn69sh9AIATeGYoj4TyFAl1X25+MH1f0lQoTxzLe8sAAHC63mR9e+Q+AMAJPDOU94XPl7zoC6EMAID5yH0AgJ0YytuJFoY0qjCs4uH5hDIAAIYj9wEATsBQ3k5xUYHWzJ+pUMBPKAMAYDhyHwDgBFx9/ZDmRIssy1I4L0AwAwBgsFTmSyL3AQC2YyiXVL/3gMoX1mr24jqt2rqzLagBAIBZyHwAgNMwlEva3RTTrn0xbdzeoLlL1xHUAAAYiswHADiNZ95Tvj+WUEEskfFzB+MtkpJXXpWkTYeCetI4rsIKAIBbdJf1KWQ+AMBpPDOUly9aLX840qvbtmYI6qrKMk0tHZnDFQIAgIHoS9ankPkAALtx+no3UkG9YVuDqpdvtncxAAAgZ8h8AIBdPPNKeV3VNEWj0Yyf21LfqDlL1nY67vclQzr1rDkAAHCu7rI+hcwHADiNZ4bySChPkVDmcvODgbSPU8E8cSzvLwMAwC26y/oUMh8A4DSeGcp7w+dLXviFYAYAwGxkPgDAKRjKJUULQxpVGFbx8HyCGQAAg5H5AACn8dRQ3pxoUSjg7xS+xUUFWjN/ZsbPAQAAd+kq7yUyHwDgPJ65+vqOxoMqX1ir2YvrtGrrTlmpDUoPCecFCGcAAFyufu+BbvNeIvMBAM7imaF8T1Ncu/bFtPHQPqTdhTUAAHCn3U0x8h4A4CqeGcqb4y2Skhd1kaRNhDUAAEbZH0voIHkPAHAZz7yn/IoHX5A/HGn7uLVDWKf2JZ1aOtKmFQIAgIEoX7Q6Lesl8h4A4HyeeaW8K6mw3rCtQdXLN9u7GAAAkBPkPQDAqTwzlN/33ydnPO4/dJ2XSeOKVH3e8YO4IgAAkE11VdP0f1+YnPFz5D0AwKk8c/p6OBhI+9jvSz5rPnFsEfuUAgBggEgoT/mt5D0AwF08M5SnLuzi8yUv/kI4AwBgluZEK3kPAHAdzwzlt/7+ZRXlB3VktEA3VJYRzgAAGOZjP6xT8eEjyHsAgKt4Zih/dWeTfKGIfIr0fGMAAOA6u/fH1bDjPVmWyHsAgGt45kJvbfuV1rNfKQAApiLvAQBu45mhPKXjfqWzF9dpzau77F0UAADIKvIeAOAWnhvKU9ivFAAA85H3AACn88x7yjtKbZEyaVyRqirL7F4OAADIAfIeAOB0nhvK2a8UAADzkfcAALfwzFCeymHCGQAAc7E/OQDAbTwzlB83ZqhuvOBDhDMAAIaKDgnqiDEM4wAAd/HMUP7LK0/R0OGH2b0MAACQI098qVzFh49UrKXV7qUAANBrnrn6+r/fa1b5wlr2KwUAwFDhPL/ebjhI3gMAXMUzQ/meprh27YtpY7v9SglrAADMsrspRt4DAFzFM0N5c7xFUvLiL5K0ibAGAMAo+2MJHSTvAQAu45n3lF/x4AvyhyNtH7d2COvU/qVTS0fatEIAADAQ5YtWp2W9RN4DAJzPM6+UdyUV1hu2Nah6+WZ7FwMAAHKCvAcAOJVnhvL7/vvkjMf9h3ZLmTSuSNXnHT+IKwIAANlUVzVN//eFyRk/R94DAJzKM6evh4OBtI/9vuSz5hPHsp8pAAAmiITylN9K3gMA3MUzQ3mKz5e8+AvhDACAuch7AIBbeGYoP2xIUKMKwyoenk84AwBgqGhhiLwHALiKZ4byMcPytWb+TIUCfsIZAABDFRcVkPcAAFfxzFAuSeG8QM83AgAArkbeAwDcxDNXX7csy+4lAACAHGpOtJL3AADX8cxQ/umlz2vV1p2ENQAAhvrYD+s0e3EdeQ8AcBXPDOUv73hPc5euI6wBADDU7v1xbdzeQN4DAFzFM0N5KpM3EdYAABiLvAcAuI1nhvKU1gxhvebVXfYuCgAAZBV5DwBwC88N5SmpsN6wrUHVyzfbuxgAAJAT5D0AwOk8tSVae35fMqgnjStSVWWZ3csBAAA5QN4DAJzOc0N5Kpwnji3S1yqO1bTSkfL5fHYvCwAAZBF5DwBwC88M5akcJpwBADCXz5e82Bt5DwBwC88M5ceNGaobL/gQ4QwAgKGiQ4I6YgzDOADAXTwzlP/yylM0cuRIu5cBAABy5Ikvlav4cIZxAIC7eObq6wQ0AABmC+f5yXsAgOt4ZigHAAAAAMBpPDOUW5Zl9xIAAEAOPfvPd8l7AIDreGYo//TS57Vq607CGgAAQ13z0EuavbiOvAcAuIpnhvK/73hPc5euI6wBADDYpu0N5D0AwFU8M5S3Hsrk9mG95tVd9i4KAABkFXkPAHAbzwzlKamw3rCtQdXLN9u7GAAAkBPkPQDALTyzT3mK35cM6knjilRVWWb3cgAAQA6Q9wAAt/DMUO4/tG3pxLFF+lrFsZpWOpK9TAEAMExqGCfvAQBu4ZmhvGzMUN14wYcIZwAADMYwDgBwG88M5b+88hSNHDnS7mUAAIAcWXzxiTr3w6UM4wAAV/HMhd4IaAAAzDZlQpS8BwC4jmeGcgAAAAAAnMYzQ7llWXYvAQAA5NCz/3yXvAcAuI5nhvJPL31eq7buJKwBADDUNQ+9pNmL68h7AICreGYo//uO9zR36TrNXlynNa/usns5AAAgBzZtbyDvAQCu4pmhvPXQE+YbtjWoevlmexcDAABygrwHALiNZ7ZE8x+6GOukcUWqqiyzdzEAACAn/L7kYE7eAwDcwjNDedmYobrxgg9pWulItksBAMBQE8cW6WsVx5L3AADX8MxQ/ssrT9HIkSPtXgYAAMiRxRefqHM/XMowDgBwFc+8pxwAAJht8vtGMJADAFzHM0M5W6IBAGA2sh4A4EaeGcrZEg0AALOR9QAAN3LFUP7jH/9Y48ePV35+vj70oQ/pz3/+c5+/BlukAADgbAPNe7IeAOBGjh/KH3nkEV133XW66aab9OKLL+r000/X2WefrX/96199+jrtt0SrPu/4HKwUAAD0VzbynqwHALiR44fyu+66S5/5zP9v785joyzbPY7/SqcLVNtEgVIoKaBAISqFNpWWUwnIJgo5JgKJhO1AtPEVAgimgFpRw6JCCKsxQTwmZREUjmERGiNLRaNthmCocWERG0FsEayUtb3fP97T6jDT0mfamXmeme8nmcR55p7p9cvwXJf3TDszXTNmzFCfPn20atUqde3aVRs2bLD0OOmd7tb//k+2/u9fg/RfPfkUdgAA7KQ15j2zHgDgRLb+SrQbN26orKxMBQUFHsdHjBiho0eP+rzP9evXdf369Ybrly9fliSt/u8euvfeNrp48WLgCg6BmzdvqqamRlVVVYqJiQl1OQER7hnJ53zhnjHc80nBz1hdXS1JfCDZ/7M67yNt1kvhfx6Sz/nCPSP5nM/Os97Wm/LKykrV1tYqOTnZ43hycrLOnz/v8z5Lly7V4sWLvY737t07IDUCAOCv6upqJSUlhbqMkLM675n1AACnaM6st/WmvN7t3zlqjGn0e0gXLFiguXPnNly/dOmS0tLSdPbs2bD8H58///xTXbt21S+//KLExMRQlxMQ4Z6RfM4X7hnDPZ8U/IzGGFVXV6tz584B/1lO0tx5H2mzXgr/85B8zhfuGcnnfHae9bbelLdv317R0dFer5JfuHDB69X0enFxcYqLi/M6npSUFLb/wCQpMTExrPNJ4Z+RfM4X7hnDPZ8U3Izhunn0h9V5H6mzXgr/85B8zhfuGcnnfHac9bb+oLfY2FhlZmaquLjY43hxcbFyc3NDVBUAAGhNzHsAQCSz9TvlkjR37lxNmjRJWVlZysnJ0bvvvquzZ88qPz8/1KUBAIBWwrwHAEQq22/KJ0yYoKqqKr322ms6d+6cHnjgAe3du1dpaWnNun9cXJwKCwt9/ppbOAj3fFL4ZySf84V7xnDPJ0VGRrtrybyPhOcv3DOSz/nCPSP5nM/OGaMM38cCAAAAAEBI2PpvygEAAAAACGdsygEAAAAACBE25QAAAAAAhAibcgAAAAAAQiQsNuXr169X9+7dFR8fr8zMTB05cqTJ9YcOHVJmZqbi4+PVo0cPvfPOO0Gq1D9W8n388ccaPny4OnTooMTEROXk5Gj//v1BrNY/Vp/Del988YVcLpcyMjICW2ALWc13/fp1LVq0SGlpaYqLi9N9992n9957L0jVWmc1X1FRkfr166d27dopJSVF06ZNU1VVVZCqtebw4cMaM2aMOnfurKioKO3ateuO93Faj7Ga0Wl9xp/nsJ5TekwkYNb/zWnnYD1mvSenzXqJeX87J/UZZn3j7NBjHL8p37Ztm2bPnq1FixbJ7XYrLy9Pjz32mM6ePetz/enTpzV69Gjl5eXJ7XZr4cKFmjVrlj766KMgV948VvMdPnxYw4cP1969e1VWVqYhQ4ZozJgxcrvdQa68+axmrHf58mVNnjxZjz76aJAq9Y8/+caPH6/PPvtMGzdu1Pfff68tW7YoPT09iFU3n9V8JSUlmjx5sqZPn64TJ05o+/bt+uabbzRjxowgV948V65cUb9+/bR27dpmrXdaj5GsZ3Ran7Gar55TekwkYNZ7cto5KDHrfXHSrJeY97dzWp9h1vtmmx5jHC47O9vk5+d7HEtPTzcFBQU+17/44osmPT3d49izzz5rBg4cGLAaW8JqPl/69u1rFi9e3NqltRp/M06YMMG89NJLprCw0PTr1y+AFbaM1Xz79u0zSUlJpqqqKhjltZjVfG+99Zbp0aOHx7HVq1eb1NTUgNXYWiSZnTt3NrnGaT3mds3J6Ivd+0w9K/mc0mMiAbP+zux+DjLrPTlt1hvDvL+d0/rMPzHr/2aXHuPod8pv3LihsrIyjRgxwuP4iBEjdPToUZ/3+fLLL73Wjxw5UqWlpbp582bAavWHP/luV1dXp+rqat1zzz2BKLHF/M24adMmnTx5UoWFhYEusUX8yffJJ58oKytLb775prp06aJevXpp3rx5unr1ajBKtsSffLm5uaqoqNDevXtljNFvv/2mHTt26PHHHw9GyQHnpB7TWuzeZ/zhlB4TCZj1d2b3c5BZ781Js15i3vvipD7TGuzeZ/xhpx7jCnUBLVFZWana2lolJyd7HE9OTtb58+d93uf8+fM+19+6dUuVlZVKSUkJWL1W+ZPvditWrNCVK1c0fvz4QJTYYv5k/PHHH1VQUKAjR47I5bL3P2F/8p06dUolJSWKj4/Xzp07VVlZqeeee04XL1603d+a+ZMvNzdXRUVFmjBhgq5du6Zbt25p7NixWrNmTTBKDjgn9ZjWYvc+Y5WTekwkYNbfmd3PQWa9NyfNeol574uT+kxrsHufscpuPcbR75TXi4qK8rhujPE6dqf1vo7bhdV89bZs2aJXX31V27ZtU8eOHQNVXqtobsba2lo9/fTTWrx4sXr16hWs8lrMynNYV1enqKgoFRUVKTs7W6NHj9bKlSv1/vvv2/YVdCv5ysvLNWvWLL3yyisqKyvTp59+qtOnTys/Pz8YpQaF03pMSzipzzSHU3tMJGDW++akc5BZ/zcnznqJeX87p/UZfzmpzzSHHXtM6F8WaIH27dsrOjra6xW6CxcueL1yVa9Tp04+17tcLt17770Bq9Uf/uSrt23bNk2fPl3bt2/XsGHDAllmi1jNWF1drdLSUrndbj3//POS/jPYjDFyuVw6cOCAhg4dGpTam8Of5zAlJUVdunRRUlJSw7E+ffrIGKOKigr17NkzoDVb4U++pUuXatCgQZo/f74k6aGHHlJCQoLy8vL0xhtvOP6VZSf1mJZySp+xwmk9JhIw6xvnlHOQWe/NSbNeYt774qQ+0xJO6TNW2LHHOPqd8tjYWGVmZqq4uNjjeHFxsXJzc33eJycnx2v9gQMHlJWVpZiYmIDV6g9/8kn/eTVr6tSp2rx5s+3/bsdqxsTERH377bc6duxYwyU/P1+9e/fWsWPH9PDDDwer9Gbx5zkcNGiQfv31V/31118Nx3744Qe1adNGqampAa3XKn/y1dTUqE0bz9YTHR0t6e9XmJ3MST2mJZzUZ6xwWo+JBMx635x0DjLrvTlp1kvMe1+c1Gf85aQ+Y4Ute0zwPlMuMLZu3WpiYmLMxo0bTXl5uZk9e7ZJSEgwZ86cMcYYU1BQYCZNmtSw/tSpU6Zdu3Zmzpw5pry83GzcuNHExMSYHTt2hCpCk6zm27x5s3G5XGbdunXm3LlzDZdLly6FKsIdWc14u1B/WuKdWM1XXV1tUlNTzVNPPWVOnDhhDh06ZHr27GlmzJgRqghNsppv06ZNxuVymfXr15uTJ0+akpISk5WVZbKzs0MVoUnV1dXG7XYbt9ttJJmVK1cat9ttfv75Z2OM83uMMdYzOq3PWM13O7v3mEjArHf2OWgMs97ps94Y5r3T+wyz3t49xvGbcmOMWbdunUlLSzOxsbFmwIAB5tChQw23TZkyxQwePNhj/cGDB03//v1NbGys6datm9mwYUOQK7bGSr7BgwcbSV6XKVOmBL9wC6w+h/8U6pOoOazm++6778ywYcNM27ZtTWpqqpk7d66pqakJctXNZzXf6tWrTd++fU3btm1NSkqKmThxoqmoqAhy1c3z+eefN3lOhUOPsZrRaX3Gn+fwn5zQYyIBs35ww3WnnYP1mPWDPdY7bdYbw7x3cp9h1tu7x0QZEwa/PwIAAAAAgAM5+m/KAQAAAABwMjblAAAAAACECJtyAAAAAABChE05AAAAAAAhwqYcAAAAAIAQYVMOAAAAAECIsCkHAAAAACBE2JQDAAAAABAibMoB+DRp0iQtWbKk4Xq3bt20atWqFj/u7t271b9/f9XV1bX4sQAAgP+Y9YA9sCkHwtzUqVMVFRXldfnpp58avc/x48e1Z88ezZw50/LPWbZsmcfxXbt2KSoqquH6E088oaioKG3evNl6GAAA4IVZDzgbm3IgAowaNUrnzp3zuHTv3r3R9WvXrtW4ceN09913W/o58fHxWr58uf74448m102bNk1r1qyx9NgAAKBxzHrAudiUAxEgLi5OnTp18rhER0f7XFtXV6ft27dr7NixTT7mpk2blJSUpOLi4oZjw4YNU6dOnbR06dIm7zt27Fh9/fXXOnXqlPUwAADAC7MecC425QA8HD9+XJcuXVJWVlaja95++23NmzdP+/fv1/DhwxuOR0dHa8mSJVqzZo0qKioavX9aWpo6duyoI0eOtGrtAADgzpj1gL2wKQciwO7du3XXXXc1XMaNG9fo2jNnzig6OlodO3b0efuCBQu0cuVKHTx4UAMHDvS6/cknn1RGRoYKCwubrKlLly46c+aMpRwAAMA3Zj3gXK5QFwAg8IYMGaINGzY0XE9ISGh07dWrVxUXF+fxgS31VqxYoStXrqi0tFQ9evRo9DGWL1+uoUOH6oUXXmh0Tdu2bVVTU9PMBAAAoCnMesC5eKcciAAJCQm6//77Gy4pKSmNrm3fvr1qamp048YNr9vy8vJUW1urDz/8sMmf98gjj2jkyJFauHBho2suXryoDh06ND8EAABoFLMecC7eKQfgISMjQ5JUXl7e8N/1srOzNXPmTI0cOVLR0dGaP39+o4+zbNkyZWRkqFevXl63Xbt2TSdPnlT//v1bs3QAANAMzHrAXtiUA/DQoUMHDRgwQCUlJV6DWpJycnK0b98+jRo1Si6XS3PmzPH5OA8++KAmTpzo8+tQvvrqK8XFxSknJ6e1ywcAAHfArAfshV9fB+DlmWeeUVFRUaO3Dxo0SHv27NHLL7+s1atXN7ru9ddflzHG6/iWLVs0ceJEtWvXrlXqBQAA1jDrAfuIMr7OIgAR7dq1a+rdu7e2bt3a6q9w//7770pPT1dpaam6d+/eqo8NAACah1kP2AfvlAPwEh8frw8++ECVlZWt/tinT5/W+vXrGdIAAIQQsx6wD94pBwAAAAAgRHinHAAAAACAEGFTDgAAAABAiLApBwAAAAAgRNiUAwAAAAAQImzKAQAAAAAIETblAAAAAACECJtyAAAAAABChE05AAAAAAAhwqYcAAAAAIAQ+TetSbjsvDgoVgAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1200x800 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "usG  =  suk*Phi[:,0]      # vetor de deslocamentos rms (todos os g.d.l.)\n",
    "upG  =  gpk*usG           # vetor de deslocamentos de pico\n",
    "utG  =  usG + upG         # vetor de deslocamentos totais\n",
    "\n",
    "print('Máximo deslocamento original:             {0:4.2f}m'.format(np.max(np.abs(utG))))\n",
    "\n",
    "# Solução com a matriz de rigidez global, verifica resultado\n",
    "Feq1 =  np.dot(KG,utG)\n",
    "ueq1  = np.linalg.solve(KG, Feq1)[0:-1:2]\n",
    "\n",
    "print('Máximo deslocamento equivalente (matriz): {0:4.2f}m'.format(np.max(np.abs(ueq1))))\n",
    "\n",
    "# Solução retendo só o primeiro modo de vibração\n",
    "Feq2 =  wk1*wk1*(umk + gpk*suk)*np.dot(MG,Phi[:,0])\n",
    "ueq2  = np.linalg.solve(KG, Feq2)[0:-1:2]\n",
    "\n",
    "print('Máximo deslocamento equivalente (modo 1): {0:4.2f}m'.format(np.max(np.abs(ueq2))))\n",
    "\n",
    "# Retem só os graus de liberdade de translação\n",
    "Feq1 = Feq1[0:-1:2]\n",
    "Feq2 = Feq2[0:-1:2]\n",
    "\n",
    "# Visualiza perfis\n",
    "plt.figure(8, figsize=(12,8))\n",
    "\n",
    "plt.subplot(1,2,1)\n",
    "plt.errorbar(Feq1/1000, zm, xerr=[Feq1/1000, 0*Feq1], fmt='>')\n",
    "plt.axis([0, 1.5, 0, H])\n",
    "plt.title('Forças equivalentes (matriz de rigidez, kN)')\n",
    "plt.xlabel('F (kN)')\n",
    "plt.ylabel('z (m)')\n",
    "plt.grid(True)\n",
    "\n",
    "plt.subplot(1,2,2)\n",
    "plt.errorbar(Feq2/1000, zm, xerr=[Feq2/1000, 0*Feq2], fmt='>')\n",
    "plt.axis([0, 1.5, 0, H])\n",
    "plt.title('Forças equivalentes (só o primeiro modo, kN)')\n",
    "plt.xlabel('F (kN)')\n",
    "plt.ylabel('z (m)')\n",
    "plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "O corte e o momento total na base resultam portanto:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Máximo cortante na base:     25kN \n",
      "Máximo fletor na base:      841kNm\n"
     ]
    }
   ],
   "source": [
    "Qmax = np.sum(   Feq1)\n",
    "Mmax = np.sum(zm*Feq1)\n",
    "\n",
    "print('Máximo cortante na base: {0:6.0f}kN '.format(Qmax/1000))\n",
    "print('Máximo fletor na base:   {0:6.0f}kNm'.format(Mmax/1000))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "E finalmente, para fins de comparação, o mesmo cálculo usando as forças obtidas sem a consideração de ressonâncias, ou seja, com a velocidade média de rajada $\\bar{V}_{T{\\rm{, topo}}}$:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Máximo cortante na base:     38kN \n",
      "Máximo fletor na base:      807kNm\n"
     ]
    }
   ],
   "source": [
    "Qmax = np.sum(   FmT)\n",
    "Mmax = np.sum(zm*FmT)\n",
    "\n",
    "print('Máximo cortante na base: {0:6.0f}kN '.format(Qmax/1000))\n",
    "print('Máximo fletor na base:   {0:6.0f}kNm'.format(Mmax/1000))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Os diagramas de cortante e fletor podem ser calculados como:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIhCAYAAADtv4ENAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKt0lEQVR4nOzdZ1RUVxcG4PfSQUApKtixxi72jr23GFs0KmrsGnuLUbFEo8bee0k0llgSS+yK3WDsXRNbYq9Yqef7sT9QFBV0hjvlfdZyMTMMM5sLcu6+55y9NaWUAhERERERERGZBRu9AyAiIiIiIiKihGMiT0RERERERGRGmMgTERERERERmREm8kRERERERERmhIk8ERERERERkRlhIk9ERERERERkRpjIExEREREREZkRJvJEREREREREZoSJPBEREREREZEZYSJP8Vq4cCE0TYv95+TkBB8fH5QvXx6jRo3CnTt33vqaoKAgaJqmQ7SWYdeuXdA0Dbt27TLYax49ehQBAQFInjw5NE3DxIkTDfbalmLkyJFYu3ZtkrzXxo0bERQUZLTXHzZsGHLlyoXo6GgAwJUrV6BpGn788cf3fl3M756maThw4MBbnw8MDISrq2ucx8qWLYvu3bsbLHYi+ngcs5OeMcZsazZ9+nQsXLjQ4K8bHh6ODh06wNfXF7a2tihQoAAAIFOmTAgMDPyo10zK84bX/f3333B0dIwzTpcrVw558uT54NdmypQJmqahQ4cOb30u5nf5119/NVisFy5cgIODA44cOWKw16S3MZGn91qwYAEOHDiArVu3Ytq0aShQoABGjx6NnDlzYtu2bXGe+/XXX8ebBJB+WrdujZs3b2LZsmU4cOAAmjRpondIJiepE/mhQ4ca5bVv3LiBMWPGYNiwYbCx+fg/7X379k3Q84YPH47p06fj/PnzH/1eRGRYHLPJXBkrkZ8xYwZmzZqFgQMHYu/evfjpp58++TX1SuR79+6NypUro0SJEh/9GvPmzUuScTt79uxo1qwZevToYfT3smZM5Om98uTJg+LFi6NMmTL44osvMGHCBJw4cQLJkiVD/fr1cfv27djnpkuXDsWLF0/yGKOiohAWFpbk72sOTp06hUqVKqF69eooXrw4fHx8Pun1IiIiEBkZaaDo9PXixQu9QzCoSZMmIUWKFKhfv/5Hv0a1atWwd+9erFu37oPPDQgIQI4cOTBu3LiPfj8iMiyO2URxnTp1Cs7OzujSpQtKlCiBvHnz6h1SvD50fnX27FmsXbsWXbt2/ej3KFGiBJIlS4Zvv/32o18jMbp06YLdu3dj//79SfJ+1oiJPCVahgwZMG7cODx58gSzZs2KfTy+ZXrLly9HlSpV4OvrC2dnZ+TMmRP9+/fHs2fP3nrdOXPmIHv27HB0dESuXLmwdOlSBAYGIlOmTLHPiVkqPGbMGIwYMQJ+fn5wdHTEzp078fLlS/Tq1QsFChRA8uTJ4enpiRIlSuC333576700TUOXLl2wYMEC5MiRA87OzihcuDAOHjwIpRTGjh0LPz8/uLq6okKFCrh06VKcr9+6dSvq1q2LdOnSwcnJCVmzZkX79u1x7969BB3Dc+fOoVq1anBxcYG3tzc6dOiAJ0+exPvcbdu2oWLFinB3d4eLiwtKlSqF7du3v/f1Y5ZZRkZGYsaMGbHLLWOcOnUKdevWhYeHB5ycnFCgQAEsWrQozmvELLX66aef0KtXL6RNmxaOjo6xx2LTpk2oWLEikidPDhcXF+TMmROjRo2K/frDhw+jSZMmyJQpE5ydnZEpUyZ8+eWXuHr1aoKOUVhYGIYNG4acOXPCyckJXl5eKF++fJwB4eXLlxgwYAD8/Pzg4OCAtGnTonPnznj06FGc18qUKRNq1aqF1atXw9/fH05OThg6dCg0TcOzZ8+waNGi2GNUrlw5AMDdu3fRqVMn5MqVC66urkiVKhUqVKiAPXv2xHnt15evjx8/Pvb3pkSJEjh48GDs8wIDAzFt2jQAiLME9sqVKwAApRSmT5+OAgUKwNnZGR4eHmjQoAH++eefDx6r8PBwzJs3D02bNv3gbHxERARatmwJV1dXrF+/Ps7nAgMDkStXLgwYMABRUVEffN/mzZtj6dKl7/zdJSL9ccw2/TEbeDXmLl26FP369YOvry9cXV1Ru3Zt3L59G0+ePEG7du3g7e0Nb29vtGrVCk+fPo3zGokdE9evXw9/f//Yn3XMmLBw4ULkzJkTyZIlQ9GiRXH48OG34j18+DDq1KkDT09PODk5wd/fHytWrIjznJhzkZ07d6Jjx47w9vaGl5cX6tevjxs3bsSJ5/Tp0wgODo4dG1//Pbp27Rq++uorpEqVCo6OjsiZMyfGjRsXu43sXTRNw9y5c/HixYvY133frH9oaCh69+4d5/h17949zu//+84bAMOcX8VnxowZ8PHxQeXKld/7PQPAmjVr4OLigq+//jrOxQFPT0/0798fq1evjnN+Ep+Yvw8nTpxAw4YNY/+P9uzZE5GRkTh//jyqVasGNzc3ZMqUCWPGjHnrNQoVKoScOXNi5syZH4yZPpIiiseCBQsUABUSEhLv558+fapsbW1VxYoVYx8bMmSIevNXavjw4WrChAlqw4YNateuXWrmzJnKz89PlS9fPs7zZs2apQCoL774Qq1fv14tWbJEZc+eXWXMmFFlzJgx9nmXL19WAFTatGlV+fLl1a+//qq2bNmiLl++rB49eqQCAwPVTz/9pHbs2KE2bdqkevfurWxsbNSiRYvivB8AlTFjRlWyZEm1evVqtWbNGpU9e3bl6empevTooerWrRsbR+rUqVW+fPlUdHR07NfPmDFDjRo1Sv3+++8qODhYLVq0SOXPn1/lyJFDhYeHv/fY3rp1S6VKlUqlTZtWLViwQG3cuFE1a9ZMZciQQQFQO3fujH3uTz/9pDRNU/Xq1VOrV69W69atU7Vq1VK2trZq27Zt73yPO3fuqAMHDigAqkGDBurAgQPqwIEDSimlzp07p9zc3FSWLFnU4sWL1YYNG9SXX36pAKjRo0fHvsbOnTtjj3WDBg3U77//rtavX6/u37+v5s6dqzRNU+XKlVNLly5V27ZtU9OnT1edOnWK/fqVK1eqwYMHqzVr1qjg4GC1bNkyFRAQoFKmTKnu3r373mMUERGhypcvr+zs7FTv3r3Vxo0b1e+//66+/fZb9csvvyillIqOjlZVq1ZVdnZ2atCgQWrLli3qxx9/VMmSJVP+/v7q5cuXsa+XMWNG5evrqzJnzqzmz5+vdu7cqf7880914MAB5ezsrGrUqBF7jE6fPh17nDp27KiWLVumdu3apdavX6/atGmjbGxs4vyMYn4nM2XKpKpVq6bWrl2r1q5dq/Lmzas8PDzUo0ePlFJKXbp0STVo0EABiH2vAwcOxMbZtm1bZW9vr3r16qU2bdqkli5dqj777DOVOnVqdevWrfcer927dysAauPGjXEej4lt7NixSimlHj58qMqXL698fHzU4cOH3/pZr1y5Uv32228KgJo3b17s51u2bKmSJUv21vseOnRIAVC///77e+MjIuPimG3eY7ZSr/4OZ8yYUQUGBqpNmzapmTNnKldXV1W+fHlVuXJl1bt3b7VlyxY1evRoZWtrq7p27Rr79YkdE9OlS6fy5MmjfvnlF7Vx40ZVrFgxZW9vrwYPHqxKlSoV5zinTp1aPX/+PPbrd+zYoRwcHFSZMmXU8uXL1aZNm1RgYKACoBYsWBD7vJjfy8yZM6uuXbuqzZs3q7lz5yoPD484v1NHjhxRmTNnVv7+/rFj45EjR5RScj6TNm1alTJlSjVz5ky1adMm1aVLFwVAdezY8b3H9MCBA6pGjRrK2dk59nXv3LkTewxatmwZ+9xnz56pAgUKKG9vbzV+/Hi1bds2NWnSJJU8eXJVoUKF2N+nD503fOr51btkzpxZNWrU6K3HAwICVO7cuWPvjx8/Xtna2qrhw4fHeV7GjBlVzZo11fPnz1XatGlVmTJl3opn5cqVsY/F/H3IkSOHGj58uNq6davq27evAqC6dOmiPvvsMzV58mS1detW1apVKwVArVq16q34OnbsqLy9veP8fyTDYSJP8frQSYFSSqVOnVrlzJkz9n58JwWvi46OVhERESo4OFgBUMePH1dKKRUVFaV8fHxUsWLF4jz/6tWryt7ePt6TgixZsnxw8I2MjFQRERGqTZs2yt/fP87nACgfHx/19OnT2MfWrl2rAKgCBQrE+YMzceJEBUCdOHHivd/X1atXFQD122+/vTeufv36KU3T1LFjx+I8Xrly5TgnBc+ePVOenp6qdu3acZ4XFRWl8ufPr4oWLfre94n5Pjt37hznsSZNmihHR0d17dq1OI9Xr15dubi4xCaeMX/Yy5YtG+d5T548Ue7u7qp06dKJ+sMcGRmpnj59qpIlS6YmTZr03ucuXrxYAVBz5sx553M2bdqkAKgxY8bEeXz58uUKgJo9e3bsYxkzZlS2trbq/Pnzb71OsmTJ4gzm74s/IiJCVaxYUX3++eexj8f8TubNm1dFRkbGPv7nn38qALEXHpRSqnPnzvH+H4m56DJu3Lg4j1+/fl05Ozurvn37vje20aNHKwBvJfyvJ/KXL19WuXLlUrly5VJXrlyJ87w3B/HSpUurdOnSqRcvXiil3p3Ih4eHK03TVL9+/d4bHxEZF8ds8x+zY/4Ov/n13bt3VwDUN998E+fxevXqKU9Pz9j7iR0TnZ2d1b///hv72LFjxxQA5evrq549exb7eMxxfv2C7Weffab8/f1VREREnPeqVauW8vX1VVFRUUqpV7+Xr1/kV0qpMWPGKADq5s2bsY/lzp1bBQQEvHVc+vfvrwCoQ4cOxXm8Y8eOStO0eMf1171r/HozkR81apSysbF56//Qr7/++taF8nedN3zq+dW73L59WwFQP/zww1ufi0nko6KiVJcuXZSDg4P6+eef4/1+a9asqZRSas6cOQqAWrduXZx44kvk3zwvKVCggAKgVq9eHftYRESESpkypapfv/5b7xvzXmfPnk3Q90qJw6X19NGUUh98zj///IOmTZvCx8cHtra2sLe3R0BAAADZ7wMA58+fx61bt9CoUaM4X5shQwaUKlUq3tetU6cO7O3t33p85cqVKFWqFFxdXWFnZwd7e3vMmzcv9r1eV758eSRLliz2fs6cOQEA1atXj7PcMObx15eE37lzBx06dED69Olj3ydjxoxxvq932blzJ3Lnzo38+fPHebxp06Zx7u/fvx8PHjxAy5YtERkZGfsvOjoa1apVQ0hISLzLHT9kx44dqFixItKnTx/n8cDAQDx//vyt4kdffPHFW3GFhoaiU6dO7614/PTpU/Tr1w9Zs2aFnZ0d7Ozs4OrqimfPnn3wGP3xxx9wcnJC69at3/t9xMT9uoYNGyJZsmRvLWXMly8fsmfP/t73fdPMmTNRsGBBODk5xf6ct2/fHm/8NWvWhK2tbZz3A5CgrQTr16+Hpmn46quv4vysfXx8kD9//g9WRb5x4wY0TYO3t3e8nz9y5AiKFy+O1KlTY9++fbG/q+8yevRo/Pvvv5g0adJ7n2dvb48UKVLgv//+e+/ziEh/HLPNY8yuVatWnPsx30/NmjXfevzBgwexy+sTOyYWKFAAadOmfet9ypUrBxcXl7cejzmely5dwrlz59CsWTMAiPO91qhRAzdv3nyrmFqdOnXi3E/M+Lhjxw7kypULRYsWjfN4YGAglFKx3/enWr9+PfLkyYMCBQrE+Z6qVq2a4O4En3p+9S4x2xBSpUoV7+dfvnyJevXqYcmSJdiyZUvsz+ZdWrVqhVy5cqF///4f3J4Q3++jpmmoXr167GN2dnbImjVrvD/PmJh5nmAcdnoHQObp2bNnuH///nuLhjx9+hRlypSBk5MTRowYgezZs8PFxQXXr19H/fr1Y4uN3b9/HwCQOnXqt14jderUuHz58luP+/r6vvXY6tWr0ahRIzRs2BB9+vSBj48P7OzsMGPGDMyfP/+t53t6esa57+Dg8N7HX758CQCIjo5GlSpVcOPGDQwaNAh58+ZFsmTJEB0djeLFi3+wiNr9+/fh5+f31uNvFqKLKUrUoEGDd77WgwcP4pzYJMT9+/fjPX5p0qSJ/fzr3nzu3bt3AUihpPdp2rQptm/fjkGDBqFIkSJwd3eHpmmoUaPGB4/R3bt3kSZNmvfu975//z7s7OyQMmXKOI9rmgYfH58Pfh8fMn78ePTq1QsdOnTA8OHD4e3tDVtbWwwaNCjeEz8vL6849x0dHQEkrKje7du3oZSK9/8AAGTOnPm9X//ixQvY29vHuZDwuq1bt+LevXsYP348UqRI8cF4SpYsiXr16uGHH35Au3bt3vtcJycniyscSGRpOGabz5j9Md+nq6trosfEjz2eMd9n79690bt373i/hzdrD3zK+Hj//v04++VjvOuc5WPdvn0bly5diveCE/D29xSfTz2/epeY4+Tk5BTv5+/cuYPr16+jUqVKKFmy5Adfz9bWFiNHjkS9evWwaNGieH+/Y8T3++Di4vJWLA4ODggNDX3r62Oex/ME42AiTx9lw4YNiIqKilPg4007duzAjRs3sGvXrtgr+gDeKroS8wf+9Wq6MW7duhXva8c3E/zzzz/Dz88Py5cvj/N5Q1fHPXXqFI4fP46FCxeiZcuWsY+/r0jJ67y8vOL9vt58LGZ2dcqUKe+sLPyuxO9D73/z5s23Ho+54vvmrO6bxzrmJOHff/9953s8fvwY69evx5AhQ9C/f//Yx8PCwvDgwYMPxpgyZUrs3bsX0dHR70zmvby8EBkZibt378Y5cVFK4datWyhSpMh7v48P+fnnn1GuXDnMmDEjzuPGKOzm7e0NTdOwZ8+e2BOc18X32JtfHx4ejmfPnsV7ktinTx/8/fffaNGiBSIjI9GiRYsPxjRq1CjkyZMHI0eOfO/zHj58+M6VAERkGjhmm++YnVCJHRM/Vsz3OWDAgHd2ScmRI4dB3gtI/DnLx/L29oazs3O8F5ES+j6fen71vtgAvPP8KUOGDBg/fjw+//xz1K9fHytXrnxn0h+jbt26KFWqFIYMGYLZs2cnKI6PERMzzxOMg0vrKdGuXbuG3r17I3ny5Gjfvv07nxfzB+rNJOT1qrmA/MH38fF5q9rptWvXEtWyQtM0ODg4xPnDeOvWrXgr4H6KhH5f71K+fHmcPn0ax48fj/P40qVL49wvVaoUUqRIgTNnzqBw4cLx/ou5Up4YFStWjD1he93ixYvh4uLywXZEJUuWRPLkyTFz5sx3LtXUNA1KqbeO0dy5cxNUDb169ep4+fLle6vLVqxYEYCcDL5u1apVePbsWeznP8TR0THeK8Wapr0V/4kTJz6p7/K7ZiFq1aoFpRT++++/eH/OH2qX89lnnwEA/v7773g/b2Njg1mzZqFbt24IDAx86+LEu16zdevWmDJlCq5duxbvc27cuIGXL18iV65cH3w9ItIHx2zzHrMTylBj4ofkyJED2bJlw/Hjx9/5fbq5uSX6dd81FlesWBFnzpzBkSNH4jy+ePFiaJqG8uXLf/T38rpatWrh77//hpeXV7zf0+urAt4X66ecX71LxowZ4ezs/M4xHgCqVKmCzZs3Y/fu3ahVq1aCtnGMHj0a169fx+TJkz8qroT4559/YGNjY9CLO/QKZ+TpvU6dOhW7T+jOnTvYs2cPFixYAFtbW6xZs+atJVyvK1myJDw8PNChQwcMGTIE9vb2WLJkyVuDoY2NDYYOHYr27dujQYMGaN26NR49eoShQ4fC19f3g+20YsS0F+vUqRMaNGiA69evY/jw4fD19cXFixc/6Ti87rPPPkOWLFnQv39/KKXg6emJdevWYevWrQn6+u7du2P+/PmoWbMmRowYgdSpU2PJkiU4d+5cnOe5urpiypQpaNmyJR48eIAGDRogVapUuHv3Lo4fP467d+8mKCF705AhQ7B+/XqUL18egwcPhqenJ5YsWYINGzZgzJgxSJ48+Xu/3tXVFePGjcPXX3+NSpUqoW3btkidOjUuXbqE48ePY+rUqXB3d0fZsmUxduxYeHt7I1OmTAgODsa8efMStLT7yy+/xIIFC9ChQwecP38e5cuXR3R0NA4dOoScOXOiSZMmqFy5MqpWrYp+/fohNDQUpUqVwokTJzBkyBD4+/ujefPmCToeefPmxa5du7Bu3Tr4+vrCzc0NOXLkQK1atTB8+HAMGTIEAQEBOH/+PIYNGwY/P7/39nr90HsBMnhWr14dtra2yJcvH0qVKoV27dqhVatWOHz4MMqWLYtkyZLh5s2b2Lt3L/LmzYuOHTu+83VjZtkOHjwYu/cwPuPGjYObmxs6deqEp0+fok+fPu+NNygoCEuWLMHOnTvjnemPaV9jqBMpIvo0HLPfZu5jdkIZakxMiFmzZqF69eqoWrUqAgMDkTZtWjx48ABnz57FkSNHsHLlykS/Zt68ebFs2TIsX74cmTNnhpOTE/LmzYsePXpg8eLFqFmzJoYNG4aMGTNiw4YNmD59Ojp27Jjo2jfv0r17d6xatQply5ZFjx49kC9fPkRHR+PatWvYsmULevXqhWLFisXGGt95w6eeX72Lg4PDWy1t41O6dGls374d1apVQ5UqVbBx48b3vmepUqVQt25dg188e93BgwdRoEABeHh4GO09rJpORfbIxMVUGo355+DgoFKlSqUCAgLUyJEjY9t3vC6+Crj79+9XJUqUUC4uLiplypTq66+/VkeOHHmrRYlSSs2ePVtlzZpVOTg4qOzZs6v58+erunXrxqle+2Y7rTf98MMPKlOmTMrR0VHlzJlTzZkzJ964EE8193e9dnzVPM+cOaMqV66s3NzclIeHh2rYsKG6du2aAqCGDBnyzuP65tc7OTkpT09P1aZNm9i2X6+3slFKqeDgYFWzZk3l6emp7O3tVdq0aVXNmjXjxPMu8X2fSil18uRJVbt2bZU8eXLl4OCg8ufP/9bPI77v+3UbN25UAQEBytbWVgFQuXLlitNe5d9//1VffPGF8vDwUG5ubqpatWrq1KlTb1WKfZcXL16owYMHq2zZsikHBwfl5eWlKlSooPbv3x/nOf369VMZM2ZU9vb2ytfXV3Xs2FE9fPgwzmu9Xq31TceOHVOlSpVSLi4uCkBs1dywsDDVu3dvlTZtWuXk5KQKFiyo1q5dq1q2bBlvVeb4fiff/H0ICwtTX3/9tUqZMqXSNE0BUJcvX479/Pz581WxYsVUsmTJlLOzs8qSJYtq0aJFnFZx71KmTBlVo0aNOI+9K7axY8cqAGrw4MFKqff/rL/99lsFIN6qv82bN1d58+b9YGxEZFwcs18x1zH7XX+H39WRIOY4vd7O9VPHxMQc5+PHj6tGjRqpVKlSKXt7e+Xj46MqVKigZs6c+cHYY77X14/dlStXVJUqVZSbm1tsG74YV69eVU2bNlVeXl7K3t5e5ciRQ40dOza2Ov77JLRqvVLSpvG7775TOXLkUA4ODip58uQqb968qkePHnG6wrzrvEEpw5xfxWfevHnK1tZW3bhxI87jb7afU0qpU6dOKR8fH1WwYMHY3493/czPnDkTex4XX9X6N9sFv+t4xhfHkydPlIuLy1uV78lwNKUSUMaUSAePHj1C9uzZUa9ePaPu36FPV6FCBQwdOhRlypTROxSrtWrVKjRu3BhXr16NU4nYWEJDQ5EmTRpMmDABbdu2Nfr7EZFp45hNZDwvX75EhgwZ0KtXL/Tr10/vcBJk3rx56NatG65fv84ZeSPhHnkyCbdu3ULXrl2xevVqBAcHY/HixShfvjyePHmCbt266R0evcOuXbuwZ88eKKWwatUqvcOxavXr10eRIkUwatSoJHm/CRMmIEOGDGjVqlWSvB8RmQ6O2URJy8nJCUOHDsX48eM/qvVwUouMjMTo0aMxYMAAJvFGxD3yZBIcHR1x5coVdOrUCQ8ePIgtCjJz5kzkzp1b7/DoHebOnYuVK1fC19cXw4YN0zscq6ZpGubMmYPff//9vdX+DcXd3R0LFy6EnR2HESJrwzGbKOm1a9cOjx49wj///PPBIrh6u379Or766iv06tVL71AsGpfWExEREREREZkRXZfWBwUFQdO0OP98fHxiP6+UQlBQENKkSQNnZ2eUK1cOp0+f1jFiIiIiSgyO9URERIan+x753Llz4+bNm7H/Tp48Gfu5MWPGYPz48Zg6dSpCQkLg4+ODypUr48mTJzpGTERERInBsZ6IiMiwdE/k7ezs4OPjE/svpsepUgoTJ07EwIEDUb9+feTJkweLFi3C8+fPsXTpUp2jJiIiooTiWE9ERGRYulcpunjxItKkSQNHR0cUK1YMI0eORObMmXH58mXcunULVapUiX2uo6MjAgICsH//frRv3z7e1wsLC0NYWFjs/ejoaDx48ABeXl7QNM3o3w8REdGHKKXw5MkTpEmTxuiFCU0Bx3oiIrI2xh7rdU3kixUrhsWLFyN79uy4ffs2RowYgZIlS+L06dO4desWACB16tRxviZ16tS4evXqO19z1KhRGDp0qFHjJiIiMoTr168jXbp0eodhVBzriYjImhlrrDepqvXPnj1DlixZ0LdvXxQvXhylSpXCjRs34OvrG/uctm3b4vr169i0aVO8r/HmVfrHjx8jQ4YMuHDhAjw9PY3+PViDiIgI7Ny5E+XLl4e9vb3e4Zg9Hk/D4zE1LB5Pw3vw4AGyZ8+OR48eIXny5HqHk6Q41psH/r83LB5Pw+MxNSweT8Mz9liv+9L61yVLlgx58+bFxYsXUa9ePQDArVu34gzud+7ceevK/escHR3h6Oj41uOenp7w8vKK81hkJPDBFshRUYCtbYK/B2sQEREBFxcXeHl58T+6AfB4Gh6PqWHxeBqPNS4DT+qxnj4O/98bFo+n4fGYGhaPp/EYa6w3qY15YWFhOHv2LHx9feHn5wcfHx9s3bo19vPh4eEIDg5GyZIlP/m9rlwBSpYEFi58z5MOHgRy5wbeMSNAREREiWPMsT7kl78NGSoREZHJ0jWR7927N4KDg3H58mUcOnQIDRo0QGhoKFq2bAlN09C9e3eMHDkSa9aswalTpxAYGAgXFxc0bdr0k997+XIgJATo1Ak4deodTxoxAjh/HqheHahXD7h8+ZPfl4iIyJok5Vh/9c/bRvgOiIiITI+uS+v//fdffPnll7h37x5SpkyJ4sWL4+DBg8iYMSMAoG/fvnjx4gU6deqEhw8folixYtiyZQvc3Nw++b379AF27AC2bAEaNpSk3tX1jSctXQoMHQpMngz89pvMzPfvD/TrBzg7f3IMREREli4px/qH/zw2dPhEREQmSddEftmyZe/9vKZpCAoKQlBQkMHf28YG+PlnoEAB4Nw5oGNHYPFiIM4WBnd3YNw4oE0boGtXyfyHDgUWLQImTADq1n3jC4iIDEcphcjISERFRekaR0REBOzs7PDy5UvdYzEXtra2sLOzs8o98G9KyrH+4X/PP/k1iIiSEsd686X3WG9Sxe6SWsqUwLJlQPnyktQHBABffx3PE3PlArZtA1atAnr2lA32n38OVK0KTJoE5MiR1KETkYULDw/HzZs38fy5/omJUgo+Pj64fv06E9NEcHFxga+vLxwcHPQOxWo8uMOTTyIyHxzrzZ+eY71VJ/IAUKaMbIUfMEAm3YsWBfLli+eJmgY0aCD75UeNAsaOBTZvBvLmBXr0AAYNimdtPhFR4kVHR+Py5cuwtbVFmjRp4ODgoOugGh0djadPn8LV1RU2NiZVI9UkKaUQHh6Ou3fv4vLly8iWLRuPWxJ5+NwBePQISJFC71CIiN6LY715M4Wx3uoTeQDo2xfYswfYuFH2yx8+DLxza16yZJL5BwYC3bsDGzYAY8bIlP6PPwJNmnC5PRF9kvDwcERHRyN9+vRwcXHROxxER0cjPDwcTk5OHNwTyNnZGfb29rh69WrssSPjewBP4MwZaUtDRGTCONabP73Hev6UIPvlFy0C0qUDLlwA2rUDlPrAF2XNCqxfD6xbB2TODNy4ATRtCpQrB5w8mRRhE5GF40Bq3vjzS3oP4AmcPq13GERECcaxwrzp+fPjb87/eXtLSzo7O9k3P2tWAr+wVi05aRg+XCrZ794N+PsD3brJ8j4iIiJKEg/hwUSeiIisAhP515QsKdvfAVk1f/RoAr/QyQn47jspf9+gARAVJS3rsmcH5s8HoqONFTIRkVV4/vw5hg0bhmvXrukdCpkwzsgTEZk3jvcJx0T+Db16AbVrA2FhwBdfAA8eJOKLM2QAVq4Etm4FPvsMuHtXWteVKCGN6omIrFC5cuXQvXt3AECmTJkwceLERL/GwIEDceDAAbRt29YgMV25cgWapuHYsWMGeT0yDU/hjrBjZxOwP46IiAyN433SYiL/Bk2T/fJ+fsDly8BXX33EhHqlSsDx41L8zs0N+PNPoFgx6W13545R4iYiMgchISFo165dor7m0KFDOHnyJDZs2ICMGTNi4cKFnxxH+vTpcfPmTeTJk+eTX4tMy3/3HGSFHBER6YbjvfExkY+HhwewerWsmP/jD2Do0I94EQcHmd4/fx5o0UJmB+bNk+X2kycDkZEGj5uIyNSlTJky0dV5ixUrhm3btsHGxgazZ89GYGDgJ8dha2sLHx8f2NmxeYuluY70wM6deodBRGTVON4bHxP5dyhQAJg9W24PGyYF6j+Kr69M8e/bJ0XwHj+WQnj+/sCuXQaKlogsnlLAs2f6/EvEMuVnz56hRYsWcHV1ha+vL8aNGxfn828utdM0DXPnzsXnn38OFxcXZMuWDb///nvs56OiotCmTRv4+fnB2dkZOXLkwKRJk+K8ZmBgIOrVq4eRI0ciderUSJEiBYYOHYrIyEj06dMHnp6eSJcuHebPnx/7NfEttTt9+jRq1qwJd3d3uLm5oUyZMvj7778BSFueYcOGIV26dHB0dESBAgWwadOmBB8XSjrXkZ7jKxGZJzMZ6wGO96aAifx7NG8OdO4st7/6Crh06RNerGRJ2Sc/cybg6QmcOgWULy995//91yDxEpEFe/4ccHXV59/z5wkOs0+fPti5cyfWrFmDLVu2YNeuXfjrr7/e+zVDhw5Fo0aNcOLECdSoUQPNmjXDg/8XKImOjka6dOmwYsUKnDlzBoMHD8a3336LFStWxHmNHTt24MaNG9i9ezfGjx+PoKAg1KpVCx4eHjh06BA6dOiADh064Pr16/HG8N9//6Fs2bJwcnLCjh078Ndff6F169aI/P/qqUmTJmHcuHH48ccfceLECVStWhV16tTBxYsXE3xsKGnEJvLcJ09E5sZMxnqA471JUBbu8ePHCoC6d+/eR319WJhSJUsqBSiVN69ST58aIKj795Xq1EkpGxt5YRcXpUaOVOrlSwO8uPGFh4ertWvXqvDwcL1DsQg8noZn7sf0xYsX6syZM+rFixevHnz6VP5e6PAvKjRUPXz4UEVFRb037idPnigHBwe1bNmy2Mfu37+vnJ2dVbdu3ZRSSmXMmFFNmDAh9vMA1Hfffffat/lUaZqm/vjjj3e+T6dOndQXX3wRe79ly5YqY8aMceLLkSOHKlOmTOz9yMhIlSxZMvXLL78opZS6fPmyAqCOHj2qlFJqwIABys/P752/M2nSpFHff/99nMeKFCmiOnXq9M444/05/t+9e/cUAPX48eN3fj0lXMxYDzxWHW1nye/uyZN6h2XWzP3vqKnh8TQ8cz+m5jrWK8Xx/nV6jvWWt1nAwBwcpBB9wYLAyZNAu3bAzz9LUbyP5ukJTJsGtG0LdO0K7N0LfPuttKqbOBGoWdNQ4RORpXBxAZ4+1ee9nZyAJ08++LS///4b4eHhKFGiROxjnp6eyJEjx3u/Ll++fLG3kyVLBjc3N9x5rTDozJkzMXfuXFy9ehUvXrxAeHg4ChQoEOc1cufODRubV4vMUqdOHaewja2tLby8vOK87uuOHTuGMmXKwN7e/q3PhYaG4saNGyhVqlScx0uVKoXjx4+/93ujpHfdIy9wDzIrb4HFjYjIgpnBWA9wvDcVTOQTIE0aYMUKoEIFYOlSKUD/zTcGeOECBYDdu+VF+/SRtfu1akkiP3EikDWrAd6EiCyCpgHJkunz3gls3aE+cinzm4OppmmI/v97rlixAj169MC4ceNQokQJuLm5YezYsTh06NAHX+N9r/smZ2fnD8apvXEFVyn11mOkv+t2meXGzp1Aly76BkNElBhmMNYDHO9NBffIJ1DZstJNDpBi9Hv3GuiFNQ1o1kyq2/ftC9jbAxs2ALlzyyz9s2cGeiMiIuPKmjUr7O3tcfDgwdjHHj58iAsXLnz0a+7ZswclS5ZEp06d4O/vj6xZs8YWpDGkfPnyYc+ePYiIiHjrc+7u7kiTJg32vvGHf//+/ciZM6fBY6FPc/25p9wIDv6I/rFERPQhHO9NAxP5ROjWTWrTRUYCDRoYuEadmxswerSs369aFQgPB0aNAj77DFi+nEV7iMjkubq6ok2bNujTpw+2b9+OU6dOITAwMM4SuMTKmjUrDh8+jM2bN+PChQsYNGgQQkJCDBi16NKlC0JDQ9GkSRMcPnwYFy9exE8//YTz588DkKI+o0ePxvLly3H+/Hn0798fx44dQ7du3QweC32aB6H2eOaSErh/HzDBpZBEROaO471pYCKfCJoGzJ0L5MsH3L4N1KsHvHhh4DfJkUOa169dC/j5ydWCJk1kXf/JkwZ+MyIiwxo7dizKli2LOnXqoFKlSihdujQKFSr00a/XoUMH1K9fH40bN0axYsVw//59dOrUyYARCy8vL+zYsQNPnz5FQEAAChUqhDlz5sQu1/vmm2/Qq1cv9OrVC3nz5sWmTZvw+++/I1u2bAaPhT6eh4dc9L5UrJk8sGqVjtEQEVkujvf609THbnIwE6GhoUiePDnu3bsHLy8vg7zm5ctAkSJysb9pUwMUv3uXFy+AsWNlZv7lS8DWFujUCRg6FPDwMMIbJkxERAQ2btyIGjVqxFsoghKHx9PwzP2Yvnz5EpcvX4afnx+cnJz0DgfR0dEIDQ2Fu7v7J11ttzbv+znev38f3t7eePz4Mdzd3XWK0HLEjPVFijxESEgKLP9mLxpNLgNkyyZb10xwb6OpM/e/o6aGx9PwzP2Ycqy3DHqO9fwpfQQ/P+DXXwE7O6lTN3askd7I2RkYPBg4dw744gsgKgqYMgXInl2WBnDvHxERUayYGrHnXItIBeaLF7m8noiILBIT+Y9UrhwwaZLc7t8f2LjRiG+WMaNcOdi2DciZE7h3T1rXFS8OvFHJkYiIyFplzSqLDM9fcQRq1JAHly/XMSIiIiLjYCL/CTp2lL7ySgFffgmcPWvkN6xYUWYWxo8H3N2BkBBJ5lu3lk37REREVixbNknkz50D0LixPLhiBQvGEhGRxWEi/wk0TVa6lykDhIYCdesCDx8a+U3t7YEePWTPX2CgPLZggSy3nzgRiKeVAhERkTWInZE/D6gaNWWL2j//AH/9pXNkREREhsVE/hM5OMiq9wwZZCvel1/KVnaj8/GRBP7AAaBQIbmS0KMH4O8P7NiRBAEQERGZFj8/qV/z7Bnw36NkQK1a8okVK/QNjIiIyMCYyBtAqlTAb78BLi7A5s1Av35J+OYx++Rnzwa8vYHTp2UJfsOGwLVrSRgIERGRvuztgcyZ5fb58+DyeiIislhM5A2kQAFg4UK5PW5cEl/8t7WV4ncXLgBdugA2NrJM4LPPgMWLkzAQIiIifeXIIR/PnQNQvTqQLBlw9SqLwxIRkUVhIm9ADRsCAwbI7a5dk2C//Js8PGTT/tGjQNmy0oe+ZUugZ08gMjKJgyEiIkp6uXLJx9OnIUvl6taVBxYt0i0mIiIiQ2Mib2BBQdIh7s4d4NtvdQoiXz5g505g0CC5P2GCzEo8eKBTQEREn+758+cYPnw4rl69qncoZMLy5pWPJ0/+/4HWreXj0qXA8+e6xERERAnH8T5hmMgbmIMDMGOG3J41Czh4UKdAbGyAYcOAlStlRmLbNqBIkf9PURARmZ+uXbvixo0byJgx4wefGxQUhAIFChg/KDI5+fLJxxMn/r8tvnx5qYIXGgqsWqVrbERE9GEc7xOGibwRBATIinalgA4ddF7V3qCBVLbPlEla8BQvDqxdq2NARERvu3LlCjRNw7Fjx+L9/C+//ILbt29j6tSpb31O0zSsfePvWu/evbF9+3YjREqmLkcOKXoXGvr/mq82NkCrVvLJefN0jY2IyNpxvDccJvJGMnasbFk/fly2resqXz4gJERmJZ4+BT7/XGbro6N1DoyIKGG+/PJLrF+/Hra2tgl6vqurK7y8vIwcFZkiBwep9QrIrDwAIDAQ0DQgOBi4dEmv0IiI6AM43iccE3kjSZkSGDNGbg8aBFy/rm888PaW3nhdu8r9IUOkOt/Tp/rGRUQJopT0xtbjX2K6dimlMGbMGGTOnBnOzs7Inz8/fv31VwDAw4cP0axZM6RMmRLOzs7Ili0bFixYAADw8/MDAPj7+0PTNJQrVw4AEBISgsqVK8Pb2xvJkydHQEAAjhw5Evt+mTJlAgB8/vnn0DQt9n58S+3mz5+P3Llzw9HREb6+vujSpUvs565du4a6devC1dUV7u7uaNSoEW7fvp2InxCZkpjl9bH75NOnB6pWldv//50jIjI15jLWS6wc7/Vmp3cAlqx1a2lJt2+f5M9r1siEgG7s7YHJk4H8+YGOHYHVq4GLF4GffpLHiMhkPX8OuLrq896hoQl/7nfffYfVq1djxowZyJYtG3bv3o2vvvoKKVOmxMqVK3HmzBn88ccf8Pb2xqVLl/DixQsAwJ9//omiRYti27ZtyJ07NxwcHP7/3qFo0aIFJk+eDKUUxo4dixo1auDixYtwc3NDSEgIUqVKhQULFqBatWrvvII/Y8YM9OzZEz/88AOqV6+Ox48fY9++fQDkZKRevXpIliwZgoODERkZiU6dOqFx48bYtWvXJx070ke+fMCSJa/NyANAmzbApk0yMA8dCtjxFIiITIu5jPUAx3tTwFHMiGxsgJkzAX9/4LffgJEjgYED9Y4KcjKTMydQv75MVxQsCHTuLMvtU6TQOzoiMlPPnj3D+PHjsWPHDpQoUQIAkDlzZuzduxezZs3C06dP4e/vj8KFCwN4dXUdAFKmTAkA8PLygo+PT+zjFStWjPMec+fORYoUKRAcHIxatWrFfl2KFCnifN2bRowYgV69eqFbt26xjxUpUgQAsG3bNpw4cQKXL19G+vTpAQA//fQTcufOjZCQkNjnkfmImZE/evS1B+vUkdVpN24A69bJNjMiIko0jvemgYm8keXJI3vkO3YEvvsOyJwZ+PJLvaMCULIkcOSI9JhfvlyCXLYMGD1aKvXZcNcFkSlxcdFvJ4yTE/DkyYefd+bMGbx8+RKVK1eO83h4eDj8/f0RFBSEL774AkeOHEGVKlVQr149lCxZ8r2vef/+fYwYMQK7du3CnTt3EBUVhefPn+PatWsJjv/OnTu4cePGWycJMc6ePYv06dPHDuoAkCtXLqRIkQJnz541u4Gd5Po0AFy4ILNM7u6QzfPt2slV9YkTmcgTkckxh7Ee4HhvKpjIJ4EOHaS2zrhxUm8nfXqgdGm9owKQJo0k723bytr/s2dlP8CcOcDUqa/OhIhId5oGJEumz3sntC5m9P+fuGHDBqRNmzbO5xwdHZE+fXpcvXoVGzZswLZt21CxYkV07twZP/744ztfs1WrVrh//z4mTZqEjBkzwtHREXnz5kV4eHiC43d2dn7v55VS0OLZ9/Sux8n0pUoFZMggVeuPHAH+vwUT6NRJCtjs3g0cOwZYacsiIjJN5jDWy3M53psCTrsmkTFj5OJ/eDhQr56JFc2tWFFOaMaOlY05Bw4AhQvLCc+DB3pHR0RmIleuXHB0dMS1a9eQNWvWOP9irn6nTJkSgYGB+PnnnzFx4kTMnj0bAGL3yEVFRcV5zZ07d6Jjx44oW7YsMmbMiLCwMNy7dy/Oc+zt7d/6ute5ubkhU6ZM72xPkytXLly7dg3XX6tKeubMGTx+/Bg5c+ZM/IEgk/D/FZ04fPi1B9OmlbasADBpUpLHRERkCTjemwbOyCcRGxvg559lViAkBKhRQ/Jlk+mW4OAA9O4t6/779AF++QWYMQNYuRIYNUp68CawDQQRWSc3Nzf07t0bPXr0QHR0NEqXLo3Q0FDs378frq6u+Pvvv1GoUCHkzp0bYWFhWL9+fezAmSpVKjg7O2PTpk1Ily4dnJyckDx5cmTJkgWLFi1CoUKF8PjxY/Tu3futK+4xg3apUqXg6OgIDw+Pt2ILCgpChw4dkCpVKlSvXh1PnjzBvn370LVrV1SqVAn58uVDs2bNMHHixNjiNwEBAbH7+8j8FC4sNV3jJPIA0K2brEZbulS2k6VKpUt8RETmiuO9aeCMfBJycQF+/x3ImFGKxVepAty/r3dUb0ibVk5udu4EcucG7t2Tpfd58sheevaeJ6L3GD58OAYPHoxRo0YhZ86cqFq1KtatWwc/Pz84ODhgwIAByJcvH8qWLQtbW1ssW7YMAGBnZ4fJkydj1qxZSJMmDerWrQsAWLBgAR49egR/f3+0aNEC3bt3R6o3Eq9x48Zh69atSJ8+Pfz9/eONq2XLlpg4cSKmT5+O3Llzo1atWrh48SIAQNM0rF27Fh4eHihbtiwqVaqEzJkzY/ny5UY8UmRsMedkf/75xieKFweKFpUlclOmJHlcRESWgOO9/jSlEts10LyEhoYiefLkuHfvHrxMZPr7zBkgIEBy5Lx5gW3bTHRCICJCTnJGjAAePpTH8uRB5KBB2GBvjxq1asHe3l7fGC1AREQENm7ciBo1avB4Goi5H9OXL1/i8uXL8PPzg5OTk97hIDo6GqGhoXB3d4cNC2Em2Pt+jvfv34e3tzceP34Md3d3nSK0HPGN9Y8fAx4e0hv5v/+kLEysVatkib2bG3DlCuDpqUvcpszc/46aGh5PwzP3Y8qx3jLoOdbzp6SDXLmA4GDAx0e6vwUESDcck2NvL1Xtr1yR1nTJkwOnTsGucWME9OoFbf16OUMiIiIyMcmTv6plt2fPG5/8/HPpUffkCTB+fFKHRkRE9MmYyOskVy4pmpsuHXDuHFC2rFTXNUnu7sCgQcDly8CgQVBubkhx+TLs6tcHihUDNm1iQk9ERCanTBn5uHv3G5+wsQGCguT2pEkmuM+NiIjo/ZjI6yhbNjm5yJQJ+PtvSeb/+UfvqN7DwwMYNgyRFy7gwhdfQLm4SOW+6tWBUqVkjwATeiIiMhFly8rHt2bkAWkhU6CANG0eNy4JoyIiIvp0TOR15ucnyXy2bMDVq3LScf683lF9gJcXzjZvjsgLF4BevQAnJynBX7mylOV/a+qDiIgo6ZUuLR9Pnoynm6qmvZqVnzxZCtcQERGZCSbyJiB9etkznyuXFOQJCJCCeCYvVSrgxx9lGcE33wCOjpLEBwQAlSoBR4/qHSGRWbPwWqQWjz8//aVODeTIIbf37YvnCXXqAAULAs+eAWPGJGlsREQAxwpzp+fPj4m8ifD1BXbtAvLnB27fBipWBC5c0DuqBPL1lT2Gly4BHTtKkbzt24FChaT/vElW8iMyXTHVd58/f65zJPQpYn5+5lhN2ZLELK/fvj2eT2oaMHSo3J48WWrBEBElAY71lkHPsd4uyd+R3illSjnRqFABOHFCPu7eDWTOrHdkCZQuHTB9OtC3LzBwoPSjX7gQWLFCHuvdG0iWTO8oiUyera0tUqRIgTt37gAAXFxcoGmabvFER0cjPDwcL1++ZEuaBFBK4fnz57hz5w5SpEgBW1tbvUOyalWrAnPmAH/8AUycGM8TataUAXfHDtkutnp1UodIRFaIY715M4Wxnom8ifHyArZula3mZ8/KuUVwMJAxo96RJUKmTMCSJbLcvmdPYP9+2Yc4ezbw/fdAixZSMZiI3snHxwcAYgd4PSml8OLFCzg7O+t6kmFuUqRIEftzJP1UqgTY2ckqt3/+iefiuKbJbHz+/MCaNTIIV66sS6xEZF041ps/Pcd6JvImKFUqmZkPCAAuXnw1M582rd6RJVKxYsDevcCqVTIjf/myLLWfPFkqBJcvr3eERCZL0zT4+voiVapUiIiI0DWWiIgI7N69G2XLluUy8QSyt7fnTLyJSJ4cKFlSxtE//gA6d47nSblzA126yDaxbt2A48dlmxgRkRFxrDdveo/1TORNlK+vrPKLaUkXMzNvdpM7mgY0aADUrg1MmQIMHy5F8CpUAOrWleJC2bPrHSWRybK1tdU9IbS1tUVkZCScnJw4uJNZql5dEvlNm96RyAOycmzJElkON20a0L17EkZIRNaMYz19DK5vNmHp0kkynyGDLAmsVAm4e1fvqD6So6Pskb90Sc6ibG2B336TWZBu3YD79/WOkIiILFT16vJxxw7g5ct3PClFCmDUKLk9ZAhgAktdiYiI3oWJvInLlElOPNKkAU6flm17b/XCNScpUwJTp0pT31q1gMhIWWqfNSswYQIQHq53hEREZGHy5ZOVbs+fA3v2vOeJrVpJx5XQUODbb5MsPiIiosRiIm8GsmSRZD51atm2V7Uq8Pix3lF9opw5gXXrpKhQvnzAo0dSGC93bik2xJ6aRERkIJoGVKsmt//44z1PtLWVi8sAMH8+EBJi9NiIiIg+BhN5M5EjhxTA8/YGDh+WbjkW0XayUiXgyBFg7lwpAHDpElC/vqyD/PtvvaMjIiILEbO8fsOGD1wrLlkSaN5cntSpk6wcIyIiMjFM5M1I7tzAtm2yjW/fPqkhZxEr0W1tgTZtpET/d9/JfvrNm+UbHj4cCAvTO0IiIjJzVasCDg5Sc+b06Q88efRoGWwPHwbGjk2K8IiIiBKFibyZyZ8fWL8ecHaW5YGBgUB0tN5RGYirqyTuJ0/KTH1YGDB4sHzTO3boHR0REZkxd3dJ5gHg118/8GRfX2lFB0g1+1OnjBkaERFRojGRN0OlSgGrVwN2dsAvvwBdu1rYlvJs2YAtW+SbS50aOH8eqFhRljrevq13dEREZKYaNJCPK1cm4MnNm0tR1vBwKYLHJfZERGRCmMibqWrVgJ9+kgI+06dLpxyLomlAkybAuXPSrk7TgJ9/Bj77DJg1y4KWIRARUVKpUwewtwfOnJF/76VpMt5wiT0REZkgJvJmrEkTYNo0uT18ODBxoq7hGEeKFNKu7tAhwN9fqtt36CDLEo4f1zs6IiIyIylSAFWqyO0EzcqnScMl9kREZJKYyJu5jh0liQeAHj2AxYv1jcdoihQB/vxTTqjc3ICDB6XXb69ewJMnekdHRERmomFD+ZigRB7gEnsiIjJJTOQtwMCBQPfucrt1a+D333UNx3js7IBvvgHOnpUzsagoYPx4IFcu9p4nIqIEiVlef/q0DCcf9OYS+zFjjB0iERHRBzGRtwCaBowbB7RsKblto0bArl16R2VEadMCK1YAGzcCfn7Av/9K7/k6dYArV/SOjoiITJiHhzRGARJQvT4Gl9gTEZGJYSJvIWxsgLlzJZcNC5OPISF6R2Vk1avLlMrAgTK9sn69zM6PGQNEROgdHRERmaiY5fUrViTii2KW2EdEyJXzsDCjxEZERJQQTOQtiJ0dsHw5UK6cbBuvWhU4cULvqIzM2RkYMUIK35UrB7x4AfTrJ/vnDxzQOzoiIjJB9eoBDg4ysX70aAK/KGaJvacncOSIjDVEREQ6YSJvYZycZI988eLAw4dA5crSwc3i5cwJ7NgBLFoEeHkBJ09KZftOnaTSPRER0f95eAB168rtBQsS8YVp0gALF8rtSZOAtWsNHBkREVHCMJG3QG5uwB9/AAUKAHfuyF7Ay5f1jioJaBrQooVcuQgMlOJ3M2ZIkr9iBYvhERFRrFat5OOSJYlcJV+7tnRMiXkR1mYhIiIdMJG3UClSAFu2yJbx//4DKlSQmnBWwdtbplh27gRy5ABu3QIaNwZq1rSSKxpERPQhVarIBPuDB8C6dYn84lGjgGLFZMVX48bSmo6IiCgJMZG3YClTAtu2AVmzyoRBxYrA7dt6R5WEypWTvfNDh8pmyD/+AHLnZjE8IiKCra0s4gISubwekAKry5bJVfM//wQGDDB0eERERO/FRN7C+foC27cDGTIAFy7Invn79/WOKgk5OgKDB0vVv/LlWQyPiIhixSyv37QJuHEjkV+cKdOr/fLjx3/EtD4REdHHYyJvBTJkkGTe11dqwFWrBjx+rHdUSSxHDjkILIZHRET/lz07ULIkEB0N/PTTR7xA3bpA9+5yu2VL4No1Q4ZHRET0TkzkrUTWrLLM3tsbOHxYtos/e6Z3VEns9WJ4rVqxGB4REcXOyi9Y8JHDwOjRQJEi0iqmcWNu3SIioiTBRN6K5MolBfBSpAD27ZM+upGRekelA29vYP78t4vh1a4tJ2JERGQ1GjUCnJ2B8+eBgwc/4gUcHIDly4HkyeUFvv3W4DESERG9iYm8lfH3l72Arq4yQx8UpHdEOnqzGN6GDbLG8p9/9I6MiIiSiLs70LCh3J4z5yNfxM/vVcW8H38EVq40SGxERETvwkTeChUrBsydK7dHjpSJaasVUwwvJARIl06W3Rcv/pHTMkREZI7at5ePy5Z9wsKszz8HeveW261aAadOGSQ2IiKi+DCRt1KNGwNt2sh+wK++Au7d0zsineXLBxw6JEsW7t6VCve//qp3VERElARKlADy5pXGJosXf8ILjRolvV6fPZPEnsVUiYjISJjIW7FJk4DPPpOWOzG136xamjTA7t2yV/7lS1lrOXYsDwwRkYXTNKBjR7k9c+Yn/Nm3s5Np/QwZgEuXgObNpSQ+ERGRgTGRt2LJksn5hqMjsH49MGWK3hGZAFdXYM0aoGtXud+3L9ChA6sQExFZuGbNZFw8dw4IDv6EF/L2BlavfjW4DhtmsBiJiIhiMJG3cvnzS10eAOjTBzh6VN94TIKtLTB5sixZsLEBZs8GatUCHj/WOzIiIjISd3fZagbIrPwnKVQImDVLbg8dCqxb94kvSEREFBcTeULnzkCdOkB4ONCkCfD0qd4RmYhvvgHWrgVcXKRvX+nSwJUrekdFRERG0qGDfFy9Grh9+xNfrGVLGWABuUJw4cInviAREdErTOQJmiZt1dOmlfOMunWB58/1jspE1K4t++Z9fKQCcZ48sgeBex6JiCxOgQLSuCQi4hNa0b1u/Hi5CBwaKoMri98REZGBMJEnAICXF7BqlWwR37FD8lcm8/9XqJBUtC9dWioRf/MNUKYMcPas3pEREZGBdekiH6dPl5Vqn8TBQXrKp08vm+8bNQIiIz85RiIiIibyFKtYMWDzZibz8cqQQaofTZsmB2j/fpm6GT7cAGd6RERkKho2BHx9gZs3JQf/ZD4+wO+/SyW9rVuBbt0M8KJERGTtTCaRHzVqFDRNQ/fu3WMfU0ohKCgIadKkgbOzM8qVK4fTp0/rF6QVKFkybjJfqxaT+Vg2NkCnTsCZM0DNmpLADx4MFC4MhIToHR0RkVkw9fHeweHV1vaJEw3UgbRAAWDJEtnLNn26XBQmIiL6BCaRyIeEhGD27NnIly9fnMfHjBmD8ePHY+rUqQgJCYGPjw8qV66MJ0+e6BSpdYhJ5t3cgJ07mcy/JX16qUC8dKm0GTp5UjZV9uolS++JiChe5jLet2sHODkBhw/LAiyDqFsX+OEHud2tmxRRJSIi+ki6J/JPnz5Fs2bNMGfOHHh4eMQ+rpTCxIkTMXDgQNSvXx958uTBokWL8Pz5cyxdulTHiK1DyZLApk2vkvkqVQxQwdeSaBrw5ZeyT75ZMyl+N348kDs3sHgxEBWld4RERCbFnMb7lClftaIbP96AL9ynDxAYKGNEw4ZyIZiIiOgj2OkdQOfOnVGzZk1UqlQJI0aMiH388uXLuHXrFqpUqRL7mKOjIwICArB//360b98+3tcLCwtDWFhY7P3Q0FAAQEREBCIiIoz0XVimIkWADRs01Kpli337NBQsqLB8eRQKFpTjyOMJIHlyYMECaI0bw7ZzZ2hXrwItW0KNGoWooUOh6tWTpP89Yo4jj6fh8JgaFo+n4VnjsTTkeJ8UY33nzsDcufZYs0bhxIlI5MxpkJcFpkyB7aVLsNm7F6pqVUQGBwOZMhnoxQ2H/+8Ni8fT8HhMDYvH0/CMfSx1TeSXLVuGI0eOICSe/cW3bt0CAKROnTrO46lTp8bVq1ff+ZqjRo3C0KFD33p8586dcHFx+cSIrdPIka744Yei+PdfN5Qvb4M2bS6iWjVg69ateodmUmx//BF+Gzci2+rVcDh3DnaNG+Nh1qw426wZ7hYo8MGEnsfT8HhMDYvH03CeW9l+JUOP90k11hcrVhSHDvnim29uoUePIwZ7XfsOHVD62jW4X7uGsHLlsGfkSISnSGGw1zck/r83LB5Pw+MxNSweT8Mx9livWyJ//fp1dOvWDVu2bIGTk9M7n6e9kfwopd567HUDBgxAz549Y++HhoYiffr0KF++PLy8vD49cCv15ZfA119HY80aG8yalR8XL3pgxQpvuLvb6x2aafn8c+DHHxE1cSJsJk2Cx6VLKDl0KKLLlkX08OFQJUq89SURERHYunUrKleuDHt7Hk9D4DE1LB5Pw7t//77eISQZY4z3STXW+/hICZQ9e9JhxgwfZM1qsJcGSpeGCgiA69WrqDZpEiK3bgXc3Q34Bp+G/+8Ni8fT8HhMDYvH0/CMPdbrlsj/9ddfuHPnDgoVKhT7WFRUFHbv3o2pU6fi/PnzAORKva+vb+xz7ty589ZV+9c5OjrC0dHxrcft7e35S/kJPD2lz/zYscCAAQo7dmRA5coKq1drprgiUF/e3sCIEVLMaNQoYPp02OzeDZuAAKl2//33QP78b30Zf0cNj8fUsHg8DceajqMxxvukGuuLFQNq1AA2btTw44/2mDfPYC8NZMwoBe9Kl4Z29CjsGzUCNm4E4vm+9MT/94bF42l4PKaGxeNpOMY+jroVu6tYsSJOnjyJY8eOxf4rXLgwmjVrhmPHjiFz5szw8fGJs7wjPDwcwcHBKFmypF5hWzVNA/r2BTZujIK7exiOHtVQqJC0xaV4pEwpVZIuXgTatgVsbYENG6QN0ZdfAhcu6B0hEZHRmft4/9138nHxYuA9O/s+TvbswB9/vOr5+tVXLJZKREQJolsi7+bmhjx58sT5lyxZMnh5eSFPnjyxPWZHjhyJNWvW4NSpUwgMDISLiwuaNm2qV9gEoEIFhXHjglGoUDQePACqVZOOOgbptWuJ0qcHZs+WCvdNmshjy5YBuXJJgn/9ur7xEREZkbmP9yVKABUrApGRwOjRRniDQoWAtWulgf2vv0qVPQ6oRET0Abq3n3ufvn37onv37ujUqRMKFy6M//77D1u2bIGbm5veoVm9lClfYOfOKLRpI53XBgwAGjQAXrzQOzITli0b8MsvwLFjQK1aMusydy7scuZEroULASsrfkVEFMPUx/tBg+TjvHnAf/8Z4Q0qVgR+/lmWvs2a9eoNiYiI3sGkEvldu3Zh4sSJsfc1TUNQUBBu3ryJly9fIjg4GHny5NEvQIrDyQmYO1cmmx0cgNWrZQv4kyd6R2bi8ucH1q0D9u0DAgKghYcj29q1sCtcWB4jIrJw5jbeBwQAZcsC4eHA8OFGepOGDYFp0+T2998b8Y2IiMgSmFQiT+apbVvZJ+/mBuzcCVSpAjx8qHdUZqBkSWDnTkSuXo0Xnp7QLl0CypQBevXi7DwRkYn5/nv5OHcu8P/6fIbXsSMwZozcHjwYGDnSSG9ERETmjok8GUTZssD27YCHB3DwIFChAnD3rt5RmQFNg6pVCzsnT0Z0ixayL3L8eCmIx9l5IiKTUbo0UKeO7IoaONCIb9Snj3Q8AeSNjLIxn4iIzB0TeTKYIkWAXbuAVKlkG3jZskbaS2iBIlxdETV3LrB+PZAmjVS65+w8EZFJGTkSsLGRdqwHDxrxjfr3f7W0vn9/4McfjfhmRERkjpjIk0Hlywfs2QOkSwecOye56OXLekdlRmrWBE6dAgIDOTtPRGRicueWP88A0K+fkYvLf/cdEBQkt/v0ASZMMOKbERGRuWEiTwaXPbsk81mySBJfpowk9ZRAHh7AggVvz8737MnZeSIinQUFSbHX3bulBbxRDRnyqoJ9z57ApElGfkMiIjIXTOTJKDJlkpOcXLlkeX3ZssDx43pHZWbenJ2fMIGz80REOkufHvjmG7ndv7/smTeqoUOBb7+V2927A1OnGvkNiYjIHDCRJ6NJkwYIDgYKFpTCd+XKAYcO6R2VmYmZnd+wgbPzREQmon9/IEUK4ORJYMkSI7+ZpgEjRshafgDo2hWYMcPIb0pERKaOiTwZlbc3sGOHdFp79AioVEkK4lEi1agBnD799uz8/v16R0ZEZHU8PF5Nkg8aBLx8aeQ31DSpZN+7t9zv1AmYNcvIb0pERKaMiTwZXfLkwJYtQMWKwNOnQLVqwLp1ekdlhlKkiH92fsAAIDxc7+iIiKxKly5S2PXaNalLanSaJj3me/SQ+x06sAAeEZEVYyJPSSJZMqndVrcuEBYGfP55EixHtFQxs/MtWgDR0cAPPwBFi8oaTyIiShLOzq9avI8YIQm90WkaMG6cVLEHZJtVUJCRy+cTEZEpYiJPScbJCfj1V6B5cykO9NVXwLRpekdlplKkABYtkmbG3t5SSbBwYWDs2CSovERERADw5ZeyMOrFi1er3o1O0+QKwogRcn/oUKBXLybzRERWhok8JSk7O2DhQqnVA8jSxBEjeP7x0erXl5n42rVleX3fvlJV8J9/9I6MiMjiaZoUkbexAVauBLZvT8I3HjgQmDxZ7k+YALRtywu5RERWhIk8JTkbG2mFO3iw3B80SGYymMx/JB8f4LffgHnzAFdXYO9eIH9+YO5cHlQiIiPLlw/o3Fluf/MNEBGRhG/etavUTrGxkTGgaVPWTCEishJM5EkXmiarAWPq9IwfD3z9NScTPpqmAa1bAydOyDrPp09ldqZOHeDWLb2jIyKyaEOHyi6nM2d0aPMeGAisWAHY28vHzz+Xtf5ERGTRmMiTrrp3B+bPl8mE+fOBxo2lGB59JD8/YOdO2Svv4CAVBvPkkb30RERkFB4eUncUAIYM0eH66RdfSDsYZ2dg40agenUgNDSJgyAioqTERJ5016qV7C10cJB8s3Zt4NkzvaMyY7a2slfhr7+k1/z9+0CDBlLl/tEjvaMjIrJIrVoBRYoAT54A/frpEEDVqsDmzYC7OxAcLD1f79/XIRAiIkoKTOTJJNSvL+3RkyUDtm4FKlcGHj7UOyozlycPcOgQ8O23suThp59kM2eSVWMiIrIeNjbSiUXTgMWLgf37dQiiTBlZleXtDRw+DAQEADdv6hAIEREZGxN5MhmVKgHbtskSxQMHeP5hEA4OwPffSwG8rFmB69flQPfrl8QVmYiILF+RIkCbNnK7Y0ed/swWLAjs3g2kSQOcPg2ULAmcP69DIEREZExM5MmkFC8uKwJ9fKSrWpkywOXLekdlAUqUAI4dA9q3l/tjxgClSwN//61rWERElmbkSMDLS2qPjhmjUxA5c766gHvliiTzuiwRICIiY2EiTyYnb15g3z6p2/b335Jvnj6td1QWIFkyYOZMYPVqWfbw55+Avz+wZInekRERWYyUKaXFKgAMGwacO6dTIH5+krwXKwY8eCB75tes0SkYIiIyNCbyZJIyZ5bJhDx5gBs3gLJlJe8kA/j8c5mdL1NGqjJ99RXQsqXcJiKiT9a0qRSODw+XTqDR0ToFkjIlsGOHVJF9+VKq20+bplMwRERkSEzkyWSlSSPL7F+fTNixQ++oLESGDHIwg4KkQtPixUChQlLpnoiIPommyQIoV1e5KD1zpo7BuLjISqz27QGlgC5dgP79dby6QEREhsBEnkyap6cUwKtUCXj6VGY41q7VOyoLYWcnDY+Dg4H06YGLF2Uv/fjxPMEjIvpEGTIAo0bJ7X79gGvXdAzGzg6YMQMYMULujx4tLUnDw3UMioiIPgUTeTJ5rq7A+vXSoi48XFYGLlqkd1QWpHRpWWpfv76UWO7VC6hZE7h9W+/IiIjMWqdOUmfu6VOpYq+UjsFoGjBwILBggST2S5YANWoAjx/rGBQREX0sJvJkFhwdgeXLgVatZLI4MPBVMSEyAE9P4NdfZf2nkxOwaROQPz+wZYvekRERmS0bG2DuXOkEunEj8MsvekcEGUDXr5er5Nu3SxGaGzf0joqIiBKJiTyZDTs7OSHq0UPud+8uK8N1neGwJJomeygPH5Yqg7dvA1WrAn37cvklEdFHypkTGDRIbnfrBty7p288AORve0yv1xMnpPfrmTN6R0VERInARJ7Mio0NMG7cq21+w4YBHToAkZH6xmVRcueWFgGdOsn9sWOBUqWAS5f0jYuIyEz17SutVe/dkz+tJnEBumBB4MABIEcO4Pp12QPAVVhERGaDiTyZnZhtftOny+3Zs6Wj2rNnekdmQZydpUXRmjWy7P7wYfacJyL6SA4Or7amr1xpQn9KM2UC9u2TWimPH8ue+alT9Y6KiIgSgIk8ma2OHaWjjpOTbPcrXx64c0fvqCxMvXrA8eOyh/LpU/acJyL6SIUKyXYwAOjcGbh6Vd94Ynl5SXuYli2BqCiga1cJkEvdiIhMGhN5Mmv16kk7dC8vICREuqddvKh3VBYmXTo5yMOGveo5X7Age84TESVS//4yToWGvsqbTYKjoywZGD1alrpNnw7b2rVh//Sp3pEREdE7MJEns1eiBLB/P5A5M/DPP3L/4EG9o7IwtrZSrSmm5/ylS3Kgx41jz3kiogSyswN++kkKxgcHA+PH6x3RazRNNvOvXg0kSwab7dtRpl8/Xh0nIjJRTOTJImTPLjV7ihQB7t+XZfa//aZ3VBaodGlZav/FF9Jzvndv9pwnIkqELFmAiRPl9sCB8ifVpNSrB+zdC5U+Pdz++w92pUsDO3fqHRUREb2BiTxZjFSp5FyjZk3g5Uugfn2p10YG5uEh1ZpmzWLPeSKij9C6teTLERFAs2YyZpmUAgUQuW8fHmTPDu3hQ6BKFWDOHL2jIiKi1zCRJ4uSLBmwdi3Qtq2s+O7SRfYkcvW3gWka0K4de84TEX2EmI4rqVMDp08D336rd0Tx8PHBvuHDEd24sRS+a9cO6NnThDb2ExFZNybyZHHs7GSyOKbX/OjRQPPmMvNBBvaunvMmU46ZiMg0pUwJzJsntydMALZv1zee+EQ7OiJq8WIpdgpIoHXqSLU+IiLSFRN5skgxveYXLpTEfulS6aijlN6RWaCYnvOrV8uy+8OHpUjB9et6R0ZEZNJq1gQ6dJDbLVoAd+/qG0+8NE2KnS5fLtupNm4EihdnETwiIp0xkSeL1rKlbOfWNJmljykwREbw+efAsWNA1qzA5ctAhQrAf//pHRURkUn78Ufgs8+AGzeAVq1M+IJzo0bAnj1A2rTA2bNA0aLA5s16R0VEZLWYyJPFq1dPuqQBQK9ewO+/6xqOZcuQQXrO+/lJi7qKFYFbt/SOiojIZCVLJpPdjo7Ahg3ApEl6R/QehQvLqqsSJYBHj4AaNWSANdmrD0RElouJPFmF7t2B9u3lXOPLL4EjR/SOyIKlTy/JfPr0wPnzksyb5HpRIiLTkC/fq57yffua+Bjl4yMtYtq0kUqyvXvLvoAXL/SOjIjIqjCRJ6ugacCUKUDlysDz50Dt2lz1bVSZMsmJXpo0wJkzQKVKwP37ekdFRGSyOnaUHUoREUCTJsCTJ3pH9B6OjtKObsoUwNYW+PlnoGxZ4N9/9Y6MiMhqMJEnq2FvD6xYAeTKJXsRa9cGnj7VOyoLliWLzMz7+AAnTshVlIcP9Y6KiMgkaRowd64sZrp4UdqnmjRNkyC3bgW8vGTJfeHCwP79ekdGRGQVmMiTVUmRAli/Xtr+HD0KNG3KtnRGlSOH9FSKOeBVq3JmnojoHTw9gSVLABsbYPFi4Kef9I4oAcqXB0JCgLx5gdu35X5MXz0iIjIaJvJkdfz8gN9+k5WB69YB1atLzR4ykly5JJn38pKTvUKFgL/+0jsqIiKTVKYMMGSI3O7YUQrEmzw/P5mJ/+ILIDwc+Ppr6asXFqZ3ZEREFouJPFmlEiWANWukWvD27UDp0sDVq3pHZcHy5gV27ZLl9levAqVKccaGiOgdBg6UOqHPnklubBbbwFxdZf/aiBGver6WK8eCNERERsJEnqxW9erSEtfXFzh9GiheXLb4kZHkySMHuHZtmaX5+mv59/Kl3pEREZkUW1tg6VKpF3r2rExum0WHNxsbuQqxcSPg4QEcPAgULAgEB+sdGRGRxWEiT1bN3x84dEgmjG/dAgICZNk9GUmKFMDatcD338uMzbx5shziyhWdAyMiMi2pUkl/eVtb2Tc/e7beESVCtWpy4TZ/fuDOHVleMGmSmVyNICIyD0zkyeqlTw/s3St12J4/l/Y/EyfyfMNobGyAb78FNm+WffN//SX75jdu1DsyIiKTUro0MGqU3P7mGzMrL5I5s+ybb9oUiIoCuncHvvpK9gsQEdEnYyJPBMDdXQrftWsnCXyPHkCNGsD163pHZsEqVwaOHJF2RQ8eADVrykne7dt6R0ZEZDJ69wbq1pUacvXrywS32XBxkR7zkya92i9QtChw5ozekRERmT0m8kT/Z28PzJwJTJggFe03bQJy5wbmzOHsvNFkyCDLIbp1k5n6JUukZd2MGTKDQ0Rk5TQNWLgQyJYNuHbtVWF4s6Fpspxgxw4pSnPmDFCkiPTXIyKij8ZEnug1miar/44eleJ3T57ILH2VKtzGbTSOjrKX4dAhWWL/+DHQqZO0FjhyRO/oiIh0lyIF8PvvQPLkcu2zUyczvMBctqwMrpUqyT62li2BNm3kNhERJRoTeaJ45MwpJ0vjxgFOTsC2bVJ0fdo0IDpa7+gsVOHCksxPnSp7HUJCZNamWzcgNFTv6IiIdPXZZ8Avv8jipXnzgClT9I7oI6ROLcvdhg6VK+fz5wPFigHnzukdGRGR2WEiT/QOtrZAz57AiRNAmTJSn6dLF6BCBeDvv/WOzkLZ2gKdO8tJXZMmctVk8mQ5g12xwgynoIiIDKd6dWDMGLndowewdau+8XwUW1tg8GC5Qp46NXDqlFzIXbJE78iIiMwKE3miD8iWDdi1S/JJFxdph5svn9Tu4ey8kfj6ytTTli1A1qzAzZtA48ZyFsurKERkxXr2BAIDZfxp1Ai4eFHviD5ShQrAsWPy8dkzKXbarh3w4oXekRERmQUm8kQJYGMDdO0KnDwJlC8vW/q6d5ctfxcu6B2dBatcWQ76kCGAg4O0rMudGxg+HAgL0zs6IqIkp2lSmLVECeDRI6BOHSktYpZ8fOSC7ZAh8o3NmSNL7c+f1zsyIiKTx0SeKBEyZ5bVgDNmAK6uwL59gL8/sGqV3pFZMCcnIChIEvpKlSSBHzxYGiz/95/e0RERJTlHR2D1aiBdOtmJ1LAhEBGhd1QfydZW/sZv3QqkSiV/6wsVklL93E5FRPROTOSJEsnGBujQATh9WlYEPn8ONGggtXu41N6IsmeXmZulSwEvL+Dw4VcF8oiIrIyPD/Dbb7Lla+tWoG1bM897K1aUpfbly8tS+1atgC+/lGUHRET0FibyRB8pQwZZ6d29u9wPCpJt3M+e6RmVhdM0ObH7809pI3DrFhAQwH7ERGSVChYEVq6USe1Fi2SFulnz9ZWrEqNGAXZ2wPLlQP780kaGiIjiYCJP9Ans7IAJE6QVkL098OuvUuH+2jW9I7NwmTMD+/cD9erJUvuWLYFevYDISL0jIyJKUjVqyHYvQMqHzJmjbzyfzNYW6N9f9q5lySIDakCAXC3n33giolhM5IkMoHVrYMcOIGVK4OhRaX++f7/eUVk4NzcpTjBokNwfPx6oVYvLMInI6rRt++pPYceOwIYN+sZjEEWLyoDaooXsWxs6VBL6K1f0joyIyCQwkScykNKlgZAQWQV4545s81u4UO+oLJyNDTBsmPSYd3aWvQ6seExEVmjoUGlLFxUlbekOH9Y7IgNwc5M9A0uWAO7ucoU8f35g2TK9IyMi0h0TeSIDyphRtvLVrw+Eh0utnl695MSKjKhhQ1mGmT49cOEC7EqXRqq//tI7KiKiJKNpwOzZQJUqUoS1Zk3gn3/0jspAmjaVQnjFiwOhoVIrpVUr4MkTvSMjItINE3kiA3N1leJDgwfLfa74TiL+/jIFVaoUtMePUfz772EzfryZl3EmIkq4mFotBQrIyrBq1YB79/SOykD8/IA9e2QPgY2NLHkrWFCWwhERWSEm8kRGYGMjyxxjVnxv2iQTCRcv6h2ZhUuVCtixA9GtW0OLjoZt//5SCO/lS70jIyJKEm5uwMaN0lnl4kWgTh3gxQu9ozIQOzvZTrVzp6zAunQJKFkSGD2a/V+JyOowkScyooYNZal9unSybbtoUSA4WO+oLJyDA6JmzMCJtm2hbG2Bn36SggUPHugdGRFRkvD1lQvIKVIABw7ISnSLKvhetixw/DjQoIF8Y/37A5UqsWUMEVkVJvJERhaz8q94cVleX6WKLL0nI9I0XK5ZE1EbNgAeHsDBg5LM376td2REREkiZ07g998BR0fgt9+Ar7+2sElrDw9Z9jZvHuDiIrP0+fIBP//MLVVEZBWYyBMlAR8faU/3+edSBK9xY2DKFL2jsnyqQgVg9275AZw4IbM4nLEhIitRpozkura2Uvy9Rw8Ly3E1Tfq/HjsmHUsePwaaN5dBlquwiMjCMZEnSiLOzjIT36mTnEh98w3Qr5+FzZCYojx5pEBSxozAhQtyZnvpkt5REREliTp1XrVCnTxZ6rdYnGzZZB/bsGFy1WLlSvnbv3mz3pERERkNE3miJGRrC0ydCnz/vdwfMwZo3doWERGavoFZuqxZJZnPnl1m5MuUAU6d0jsqIqIk8dVXr1aBDR0KTJqkbzxGYWcnFe0PHABy5ABu3pSy/V27Sj8+IiILw0SeKIlpGvDtt8CCBZLYL11qg++/L852uMaWPr0ss8+XD7h1CwgIkHZ1RERWoEsXYPhwud29+6tZeotTpAhw5Ih8w4BcPS9YkH/vicjiMJEn0klgILBuHeDionDsWCpUqmSHW7f0jsrCpU4tBZGKFZP9kxUqyEw9EZEVGDgQ6NlTbrdpA6xZo288RuPiIksQNm8G0qSRtjElSsiVDIsq309E1oyJPJGOqlcHtm2LQvLkYTh6VEPJkuw1b3SensDWrUC5csCTJ0DVqtxHSURWQdOAH3+U+nDR0UCTJsC2bXpHZURVqgAnT0ov2MhIYPBgoHRpDrREZBGYyBPprHBhhR9+2IPMmRUuXwZKlpRuaWREbm7Axo1AzZrAixdA7drAqlV6R0VEZHSaBsyeDXzxhXRRqVdPtpVbLE9PYPlyaUuXPDlw6BBQoAAwc6aFlfAnImvDRJ7IBPj6PkNwcCQKFwbu3ZPt23Pm6B2VhXN2BlavBho1AiIiZMZm2jS9oyIiMjpbW2DJEpmwfvZMasKFhOgdlRFpGtCsmczOV6ggxe86dpQVWdev6x0dEdFHYSJPZCJitm/H9Jpv1w5o2xZ4+VLvyCyYgwOwdCnQvr3MzHTpAvTvz56ARGTxHB3lWmaZMkBoqCT1R47oHZWRpU8vW6smTgScnOR2njzA/PmcnScis8NEnsiEuLrKCu+RI2UCYe5coGxZThgYla0tMGPGq56Ao0cDzZsDYWH6xkVEZGTJkgEbNgClSgGPHgGVKgHHjukdlZHZ2ADdugHHj0sBvNBQqfxXqxZw44be0RERJRgTeSITo2nAgAHApk2ytS8kRDrn7Nypd2QWLKYn4KJF0ot46VKpRPjokd6REREZVUzJkBIlgIcPJZk/cULvqJJA9uzStWTMGFmesHEjkDu37KXn7DwRmQEm8kQmqkoV4K+/AH9/2TdfqZJUG+b5hRG1aCEnc25ucuWkTBkuhyAii+fuDvzxB1C0KHD/PlCxInDqlN5RJQFbW6BPH9lTUKSIXLxt3lz2uN2+rXd0RETvxUSeyIRlygTs2yf5ZXS0nG80aQI8fap3ZBascmVg927A11fOZEuUkAJJREQWLHly6cRZqJBcPK5a1Q7Xr7vpHVbSyJUL2L9ftljZ2wO//Saz88uX6x0ZEdE7MZEnMnHOzsDChVJQ3c4OWLECKF4cuHBB78gsWIEC0gMwZ07gv/+k7/COHXpHRURkVClSAFu2yEqwu3c1DBpUEufO6R1VErGzky1Whw/LGHD/vlw5b9QIuHtX7+iIiN7CRJ7IDGga0KkTEBwsE8WnT8sqwO3b9Y7MgmXIIMshypaVYkjVqsksDRGRBfP0lGLu+fIpPHrkhKpV7awnmQeAfPmAP/8EhgyR5H7lSpmdX7lS78iIiOJgIk9kRkqWlH3zpUpJblmjhszQk5F4eMha04YNpdd848asOkhEFs/LC9i0KRIZMz7GzZsaAgKsZM98DHt7ICgIOHRI2tPdvSsz8w0acO88EZkMJvJEZsbXV2biGzSQfvNNmgBTp+odlQVzcpIq9vXqSUu6OnWklQARkQXz9gaGD9+P/PkV7twBypWzgtZ0bypYUJbaDxoks/OrVsl++iVLWHmWiHSnayI/Y8YM5MuXD+7u7nB3d0eJEiXwxx9/xH5eKYWgoCCkSZMGzs7OKFeuHE6fPq1jxESmwdERWLZMltsrBXTtKucZPK8wEjs74JdfgAoVpNJg9erAmTN6R0VkFjjWmy9393Bs3hyJwoVly3iFCpLXWhVHR2DYMLmAW6AA8OAB8NVXQN267DtPRLrSNZFPly4dfvjhBxw+fBiHDx9GhQoVULdu3dgBfMyYMRg/fjymTp2KkJAQ+Pj4oHLlynjy5ImeYROZBFtbmYkfNkzujxgBtGsHREbqG5fFcnIC1q591Z+pShXgyhW9oyIyeRzrzZunJ7Bt26s+8xUrSi1Qq1OggOydHz5clt6vWyez8wsW8Co6EelC10S+du3aqFGjBrJnz47s2bPj+++/h6urKw4ePAilFCZOnIiBAweifv36yJMnDxYtWoTnz59j6dKleoZNZDI0TWbiZ88GbGyAuXNlyf2LF3pHZqHc3KTPfK5cUs2+cmXg1i29oyIyaRzrzV9Ma7oyZaQ+S+XKwJ49ekelA3t74LvvpO984cLA48dA69aySuvaNb2jIyIrY6d3ADGioqKwcuVKPHv2DCVKlMDly5dx69YtVKlSJfY5jo6OCAgIwP79+9G+fft4XycsLAxhYWGx90NDQwEAERERiIiIMO43YSVijiOPp2EY4ngGBgIeHhq++soWv/2moXLlaKxeHQUPDwMFaWaM+jvq7g5s2AC78uWhXboEVaUKIrdtgyUfbP6fNzxrPZYc683Hm//vnZyA338H6te3xc6dNqhWTWHNmiiUL2+Fs9E5cgC7d8Nm4kTYDB0KbfNmqDx5EP3DD4hu00aurL+Bf0cNj8fUsHg8Dc/Yx1JTSt/1QCdPnkSJEiXw8uVLuLq6YunSpahRowb279+PUqVK4b///kOaNGlin9+uXTtcvXoVmzdvjvf1goKCMHTo0LceX7p0KVxcXIz2fRCZgtOnvfD998Xw/Lk9fH2fol+/EGTKFKp3WBYp2c2bKD1gAJwePcKjLFmwf8gQRLi76x0WmYnnz5+jadOmePz4Mdyt4PeGY73lCAuzwahRxXDsWCo4OEShb98QFC5svZXcXf/9F/5TpsDz/HkAwN08eXC8c2c88/XVOTIi0puxx3rdE/nw8HBcu3YNjx49wqpVqzB37lwEBwfj0aNHKFWqFG7cuAHf1/4Ytm3bFtevX8emTZvifb34rtKnT58eN2/ehJeXl9G/H2sQERGBrVu3onLlyrC3t9c7HLNn6ON58iRQv74drl7V4OysMHVqFJo3t64ZkyT7HT15EnZVq0K7dw8qd25EbtoEpE5tvPfTCf/PG979+/fh6+trNYk8x3rz877/9y9fAl9+aYsNG2xgZ6cwf34UmjSxrnEmjqgo2EydCpshQ6A9fw7l5ITowYMR3b27FEsF/44aA4+pYfF4Gp6xx3rdl9Y7ODgga9asAIDChQsjJCQEkyZNQr9+/QAAt27dijO437lzB6nfc6Ls6OgIR0fHtx63t7fnL6WB8ZgalqGOZ8GC0mv+q6+ATZs0tGljh0OHgEmTZGmkNTH672jBgkBwMFCpErTTp2FfsaL0BkyXznjvqSP+nzccazuOHOvNV3zH1N4eWLNGtnUtXaqhZUs7vHghBVetkr090Ls3UL8+0L49tG3bYPvtt7D99Vdg3jwplBf7VP6OGhqPqWHxeBqOsY+jyfWRV0ohLCwMfn5+8PHxwdatW2M/Fx4ejuDgYJQsWVLHCIlMn5cXsGEDMHSoFMSbPRsoXZpF1o0iVy5g924gQwbgwgWpBvXPP3pHRWTSONabP3t74KefgI4dpWh7+/bA2LF6R6WzzJmBLVuA+fOBFCleFcUbMIBVaInI4HRN5L/99lvs2bMHV65cwcmTJzFw4EDs2rULzZo1g6Zp6N69O0aOHIk1a9bg1KlTCAwMhIuLC5o2bapn2ERmwcYGGDwY+OMPaR/0118ygfxa+2YylKxZpYRz1qxytaRsWeDcOb2jIjIJHOstl40NMG2a5KkA0LcvMHCglXdj0zSgVSvg7FlpIxMVBfzwA+wKFYLX/1suEhEZgq5L62/fvo3mzZvj5s2bSJ48OfLly4dNmzahcuXKAIC+ffvixYsX6NSpEx4+fIhixYphy5YtcHNz0zNsIrNStapMCjRsCISEADVrAt9+K23r4lmZSh8rQwaZma9UCThzBggIADZtAvz99Y6MSFcc6y2bpgEjR0qLuv795fajR8DkyYCtrd7R6cjHB1i5Eli7FujUCdqlSyg9cCCirlwBxoyRGXsiok+g64z8vHnzcOXKFYSFheHOnTvYtm1b7MAOAJqmISgoCDdv3sTLly8RHByMPHny6BgxkXnKmFEmjGOWQH7/PZA/P7Bjh96RWRhfX9kz7+8P3LkDlCoFsBc2WTmO9dahXz9g5kxJ7KdPBxo35mpyAEC9esCZM4j6+msAgO2cOUDOnMCKFVa+dIGIPpXJ7ZEnIuNwdJSTq+XLZaLg/HmgYkUpinfbejsHGZ63t1whqV5dzmKbNQN69QIiI/WOjIjIqNq3B5YtAxwcgFWrgMqVgfv39Y7KBKRIgejp07F3+HCobNmAW7fkSkfNmsDly3pHR0Rmiok8kZVp1Ei2b3fpIjMnS5YAOXJIkh8VpXd0FiJFCmDdOtksCgDjxwNVqgB37+oaFhGRsTVqJPXeUqQA9u2ThUnMVcX9vHkReeQIEBQkVzv++APInRsYPRqIiNA7PCIyM0zkiaxQ8uTAlCnAn38ChQoBjx8DnTsDJUpIUTwyAFtbYMQImZZydQV27pSDzQNMRBYuIADYuxdIn15Wf3FseY2jIzBkCHDiBFCunKzc6t9fxocDB/SOjojMCBN5IitWuDBw6BAwdSrg7i7F8IoWBb75RpJ7MoD69eUgZ88OXL8u01MLF+odFRGRUeXODRw8KPVYbt+W5J5dU16TI4dsw1q0SHrGnjwp40PHjlItkIjoA5jIE1k5W1uZjT93DvjySyA6Wmbrc+aU/fSsxWMAuXLJ8ofatYGwMGlN1KULEB6ud2REREaTJs2rZh7PnsmfwHnz9I7KhGga0KKFDMCtWsmAO3Mm8NlnHICJ6IOYyBMRACm4vnQpsHUrkC0bcPMm0KSJtK+7eFHv6CxA8uTShigoSO5PmybVBm/d0jMqIiKjcncHNmyQfDUqCvj6a1lZzhz1Nd7ewPz5sgUrRw5ZwtCkiRRN/ecfvaMjIhPFRJ6I4qhUSbbuDR0qW/m2bgXy5gVmzOCJ1yezsZEz2N9/l7PbvXtlLwMrQRGRBXNwkB1FMfU/hw0DWraUBUr0mnLlgOPH5QA5OgKbN8sehe+/58EiorcwkSeitzg5AYMHA6dOSfugsDCgUyepRsytewZQu7YUJIjZN1+hgnwkIrJQmib1P2fOlC1dP/0kf/ru3NE7MhPj6AgMGiRX1CtUAF6+BL77DsiXT66sExH9HxN5InqnrFllQmDcOMDeHvj1V8DfX7Z70yfKnl2WUWbNCly5IidsN2/qHRURkVG1by9F75InB/bvB4oUkZyV3pA9O7Btm+x58/EBLlyQNqaNGgH//qt3dERkApjIE9F7aRrQs6esAvfzk5yzVClJ7qOj9Y7OzKVJI1WLM2UCLl2SPfOcniIiC1e5slS0z5oVuHYNKFlSdhzRGzRNqtCeOwd06ybbs1aulGJ4P/7I3vNEVo6JPBElSNGiwNGjQMOGQGQk0Ls3UKcOcO+e3pGZufTpJZlPlw44e1aKFNy/r3dURERG9dln0pmzQgWpaF+vHjBmDGuxxCt5cmDiRODIEbnq8ewZ0KePLJHbvVvv6IhIJ0zkiSjBkieXjjgzZ8o2vg0bgAIFgD179I7MzPn5Adu3y/LJkyelVQCLERCRhfP0BDZtAjp0kAS+Xz8gMJB13d4pf34ZcOfPl0r3p08DAQFA8+bsgEJkhZjIE1GiaJrscTx0SLrk/PefFNodMUJaC9FHyp5dknlvb+Cvv6Tt0JMnekdFRGRU9vbA9OnAlCmycnzxYu4yei8bG+k5f/68DMaaBvz8swzIU6dyICayIkzkieij5M8PHD4sLYSio6XIbtWqnBT4JLlySXEjDw/ZQFqzpiyhJCKyYJoGdOnyqgjevn2ynYtF8N7D01OWxx06BBQqBISGAl27SvXAgwf1jo6IkgATeSL6aK6u0ht44ULAxUUmlPPnZ4ecT5I/P7Bli/SZ37MHqFsXePFC76iIiIyuSpVXRfCuXpXCquvW6R2ViStSRJL56dOBFCmkmE2JEkDbtqy3QmThmMgT0Sdr2VJWg+fLJ8shq1YFhg1j0aKPVriwbBxNlkyujjRqxBYBRGQVYorglS8PPH0q1zJHj+Z48l62tkDHjrLcPjBQHps7V7ZszZ7N5fZEFoqJPBEZxGefyUxKTNGiIUNkQiAyUu/IzFSJEsDGjYCzM7B+PTBqlN4RERElCU9PYPPmV+NJ//5AkybcafRBqVIBCxbIaq68eYEHD2QfffHicnWEiCwKE3kiMhhnZ2DGDNm2Z2MDzJsnsyk8+fpIZcvKckkAGDyYbYaIyGrEFMGbPh2wswNWrJDrm//8o3dkZqB0aWlVN2mSbNM6fFiS+TZtWEWQyIIwkScig2vfHlizRhL7jRtliSTPHT5SYCDQooUsrf/yS+DuXb0jIiJKEpomK8Z37gRSp5bunIULsw5LgtjZAd98A1y48Gq5/fz5stx+yhQulyOyAEzkicgo6tQBduwAvLyAkBCgZEng0iW9ozJT06bJ3oUbN6RfMPfLE5EVKV1aJpWLFgUePgSqVQPGjuW++QRJnVqW2+/fDxQsCDx+LAl+wYJc5UVk5pjIE5HRFC8u5w5+fsDff0sy/+efekdlhlxdgZUrZYnD5s3AmDF6R0RElKTSpQOCg6WFenQ00Lcv0LQpt24lWIkSMgDPmCEtTk+eBAICgK++kovERGR2mMgTkVFlz/5qIuDuXVlmv2GD3lGZoTx5ZDkkAHz3HbB3r77xEBElMScnqb0ydaqsHF+2TFrUXb6sd2RmwtZWKgheuCB74DQNWLIEyJED+PFHIDxc7wiJKBGYyBOR0fn4ALt2SVu658+lAN68eXpHZYZat5bZk6goKeF8757eERERJSlNAzp3ls6cqVIBx4/Lvvlt2/SOzIx4e0tV2j//BIoVkz5/ffoA+fPzQBKZkUQl8ufPn0dQUBAqVqyILFmywNfXF/ny5UPLli2xdOlShIWFGStOIjJzbm7AunXScz4qCvj6a6B7d+DlS70jMyOaJssic+QA/vtPit9FROgdFVkgjvdk6sqWlX3zhQtLl7WqVdlvPtEKF5Ylc/PnAylTAufOAZUrA198AVy5ond0RPQBCUrkjx49isqVKyN//vzYvXs3ihQpgu7du2P48OH46quvoJTCwIEDkSZNGowePZoDPBHFy95eau4MHCj3J02SyYDTp/WNy6y4ukofJhcXmTlp355nrmQwHO/JnKRPLy3TAwNl33z//sDnnwOPHukdmRmxsZHCAxcuSBE8Gxtg9WogZ05gyBBZRkdEJskuIU+qV68e+vTpg+XLl8PT0/Odzztw4AAmTJiAcePG4dtvvzVYkERkOTQNGDFC6u60agWcOCGTAj/+CHTqJJ+nD8iXD1i+XPYoLFgAZMwoJ1xEn4jjPZkbJyeZUC5eXPLQ336TMWXVKlkpTgmUIoVcXf/6a6BbN+n5N2yYjDFjxwKNGnGAJjIxCUrkL168CAcHhw8+r0SJEihRogTCWSyDiD6gZk1J4lu1AjZtArp0kY8xK/zoA2rVAqZPl8JFQUEyNdW6td5RkZnjeE/mSNNkcVKhQkCDBtIlpXhx2YkU00KdEihvXilAsGoV0KsXcO2a1GSZPh2YPJlXR4hMSIKW1idkUP+U5xORdfLxkQr2EycCDg7A+vVyDrF5s96RmYn27YGY2dB27Xjg6JNxvCdzVrgw8Ndf0mf+5Uu5UNyuHWuxJJqmyRWRs2flQrGTk/ScL1hQls7dv693hESEBM7Iv+nPP//Erl27cOfOHURHR8f53Pjx4w0SGBFZBxsbWcVXvrzUbjtzRk7CevQARo0CHB31jtDEjRgBXL8O/PSTnHjt3g34++sdFVkIjvdkbry85ALx99/LjqM5cyS5//VXwM9P7+jMjIuLHMTAQKlqv3KlLHNYtkzGnnbtpA8gEeki0e3nRo4cieLFi2PBggU4fPgwjh49Gvvv2LFjRgiRiKxBvnxSgbhzZ7k/YYIUwjtzRt+4TJ6mAXPnAhUrSguhGjXYVJkMguM9mSsbG2DQINmu5eUFHDkiy+7Xr9c7MjOVMaMUWd25U5bNPXwog3XBgvIYEeki0ZfRJk2ahPnz5yOQm46IyMCcnYGpU2VGvlUr6Q9cqJDU2encmXV23snBQfYzlikDnDwJVKgABAcDGTLoHRmZMY73ZO6qVJEkvmFDaZleu7Zs+x45Uv5sUiKVKycHdNYsuVISM958/rkM1Fmy6B0hkVVJ9Iy8jY0NSpUqZYxYiIgASB23kydf7XPs2lUeu31b78hMWPLkMv2ULZv0/y1fHvj3X72jIjPG8Z4sQYYMsuOoWze5P26c9KBnm/SPZGcnV9YvXpSPtrbAmjVArlxAv35AaKjeERJZjUQn8j169MC0adOMEQsRUSwfH2DjRimS6+got/Pm5dLI90qTBtixA8icGfjnH0nmb9zQOyoyUxzvyVI4OkpR1TVrpMvaoUNSSmTNGr0jM2NeXrKE7vhxWfoQHg6MGSMXk+fOBaKi9I6QyOIlOpHv3bs3zp8/jyxZsqB27dqoX79+nH9ERIaiaTIbf/iw7KG/e1eWRnbsCDx/rnd0JipdOtmzmCkTcOmSLHu8dUvvqMgMcbwnS1OvHnDsmLSme/QIqF9fes+HhekcmDnLnVtWg61fD2TPDty5A7RtKy0EgoP1jo7IoiU6ke/atSt27tyJ7Nmzw8vLC8mTJ4/zj4jI0PLkkf2NPXvK/ZkzpcbOkSP6xmWyMmSQZD59euD8eUnm79zROyoyMxzvyRJlzChL7fv0kftTpgAlS8p1T/pImgbUrCl74saPl61ex47JnvoGDViAlchIEl3sbvHixVi1ahVq1qxpjHiIiOLl6Ch7G6tVA1q2lPy0eHFg+HCgd2/ZpkevyZRJkvmAAOkFXLGi3Pf21jsyMhMc78lS2dvLKvCAABlPjhyRi8Nz5gCNG+sdnRlzcJDesc2bA4MHS1G8VauAdevkSvy33wJubnpHSWQxEj0j7+npiSysSklEOqlcWS76168PREQA/ftLjnr1qt6RmaAsWWTPvK8vcOqUzI5wzzwlEMd7snQ1a8rEcenSwJMnQJMmQJs20smTPoG3NzB9uuyfr1RJ9s//8AOQNSswezYQGal3hEQWIdGJfFBQEIYMGYLn3KBKRDrx8gJ+/RWYNw9Ilky24eXLByxZAiild3QmJnt2SebTpAFOn5YWdf/8o3dUZAY43pM1iCkrMnCgrBCfP19m5//6S+/ILECePMCWLcDvv0sRvDt3gPbtpdLgli16R0dk9hKdyE+ePBl//PEHUqdOjbx586JgwYJx/hERJQVNA1q3lgv+xYtLx5uvvgKaNgUePtQ7OhPz2WfA3r2vqtmXLi1JPdF7cLwna2FnB4wYIdc806WTzmolSsjy++hovaMzc5omVWpPnZLWAR4ecrtqVaB6dY5FRJ8g0Xvk69WrZ4QwiIg+TpYswJ49wMiRwLBhwLJlwN69dmjXzhs1augdnQnx85NkvkoVOYkqW1YqDRcpondkZKI43pO1KVdOLg63bQusXi1t0bdsARYvlkVN9AkcHIBu3WT//IgR0rpu0yY5wG3bAkOHAqlT6x0lkVlJdCI/ZMgQY8RBRPTR7Oykrk7VqjIrf+mShsGDS+HhwyiMGiWF8giyVz44GKhRQxopV6ggSx7Ll9c7MjJBHO/JGnl6vtq61a0bsH27bN2aNw+oW1fv6CyAp6dUtu/USa6UrF4tRfGWLpVieN27A05OekdJZBYSvbQ+IRQ3qRKRDooVA44eBb7+OgoAMGGCLYoWleJ49H+ensC2bZLEP30qSxvXrdM7KjJTHO/JEmka8PXXUs3e3x+4f1960HfsCLBkhIFkzSoV7YODgUKFpNrggAFAjhzAL7+w4A1RAiQokc+ZMyeWLl2K8PDw9z7v4sWL6NixI0aPHm2Q4IiIEsvVFZg+PRrffnsQKVMqnDgBFC4sq/Z4AvZ/rq7Ahg0yvRQWBnz+OTB3rt5RkQngeE/0So4cwIED0uIUAGbOlPHk8GF947IoZcsCf/4J/PSTFCi4dk2K3RQvLkk+Eb1TghL5adOmYcKECUidOjUaN26MsWPHYsmSJVi1ahXmzp2Lnj17omjRovD390fy5MnRqVMnY8dNRPReRYvexpEjkahVSzrfBAUBOXMCK1fyQj8AWbr4669AixZAVJTsUezWjW2BrBzHe6K4HB2BsWNlK7ePD3D2rOSYQUHSApUMwMZG9sWdPy/755Mlk+S+XDkplMeCeETxSlAiX6FCBYSEhGDDhg3w8fHB0qVL0aVLFzRr1gxBQUG4ePEiWrRogX///Rc//PAD3N3djR03EdEHpU4tW8BXrAAyZJAL/Y0ayZbwEyf0js4E2NkBCxdKlUAAmDxZ9s+z7L/V4nhPFL/KlaVOaKNGcu1z6FCpbH/mjN6RWRAXF+kDeOmS7GOwtQXWr5ciBW3bAjdu6B0hkUlJVLG7kiVLomTJksaKhYjI4DQNaNgQqFlTZlV++EFW6/n7SzvbYcMAb2+9o9SRpgGDBgG5c0s14a1bgaJF5QpIzpx6R0c64XhP9DYvL2D5ctmN1KmT9JovWFAmkXv0kLyTDMDHB5g+XVaJDRgArFkj27+WLAF69gT69gV4EZHIOMXuiIhMjYsLMGSIrNxr1Eh6A8+YAWTPDkyZwhXlqF8f2L8fyJhRZkOKFwc2btQ7KiIik9OkiczO16ghZUb69JFV4H//rXdkFiZHDqlqv28fULIk8OIF8P330nd2yhTZN0dkxZjIE5FVyZBBZlR27QLy55dV5N98IzP0O3boHZ3O8ueXfYllygChoUCtWsCPP7KoABHRG9KkkVXfc+ZI/dC9e+VP6MyZ/JNpcCVLygFes0aS+3v3gG++gV3+/Eizdy8POFktJvJEZJUCAmRZ5IwZslzy1CmgYkXgiy+Ay5f1jk5HqVJJe7q2beXkqE8f2LZuDRvOfBARxRHTpu7kSRlTnj2Trd3VqwP//ad3dBZG06QH4KlTcrUkdWpof/+NIj/+CNvSpVnhnqwSE3kislq2tkCHDsCFC0DXrnJ/9WrZGj5okJyUWSUHB2DWLCl+Z2sLmyVLUOq774CbN/WOjIjI5GTKJCu6Jk6UhiCbNwN58gA//8zJYoOzs5MCN5cuIWrQIEQ6OcEmJIQV7skqMZEnIqvn6Sk567FjMisfFibFi3LntuLl9pomVzc2bYLy8IDnhQuwK1MGuHJF78iIiEyOjY3UZjt6VOqFPnok9UPr1WOxdaNwdUX0oEHYNnMmotq3j1vhvlUraVNDZOESnchXqFABQ4cOfevxhw8fokKFCgYJiohID3nySNH21aul5tvVq5LYd+lixbPzlSohct8+PE2TBtq1a3JAuGbUKnC8J0q8zz6T2mzDhwP29tIAJFcuYP58jbPzRhCWIgWip0yRmfj69aWS7cKFQLZsUuH+7l29QyQymkQn8rt27cLUqVNRr149PHvtzDY8PBzB3J9CRGZO06S10KlTsuweAKZNkyJGe/fqG5tusmbFvuHDoTJnBv75R5L527f1joqMjOM90cexswO++w44ckRm5x8/Bjp0sMPgwSXxzz96R2ehcuQAVq0CDh6UZfbh4cCECVLhftgw4MkTvSMkMriPWlq/bds23Lp1C8WLF8cVLrMkIgvk6iqF8LZsAdKnl7ZCZcvKBf4XL/SOLum99PJC5KZNcjDOnwcqVwYePNA7LDIyjvdEHy9PHunqOW4c4OyscPJkSvj722HCBCAqSu/oLFSxYrInbvNmaUfz5In0ns2SRfbQhYXpHSGRwXxUIu/r64vg4GDky5cPRYoUwa5duwwcFhGRaahcWSoSt24tRYsmTJBzg0OH9I5MB5kyAdu3Az4+clCqVJGpJrJYHO+JPo2trVwAPnIkEnnz3sWLFxp69gRKlZKVX2QEmibj0+HD0m82WzZZYt+tm8zcL17MKylkERKdyGuaBgBwdHTEkiVL0K1bN1SrVg3Tp083eHBERKYgeXJg3jxgwwbpHXz+vLS1HTDACi/uZ8smyby3t/Tvq1EDePpU76jICDjeExmOrPDej5kzI+HuLheDCxYEhg6VVeBkBDY2QKNGsn9+1izA11eK37RsKfvlfv+dbQXIrCU6kVdv/MJ/9913WLJkCcaNG2ewoIiITFGNGjKD0ry51NP54QegUCHJZ61KrlxSFTBFClk3WqeOde43sHAc74kMS9OA1q0VzpyRTmkREUBQkIwjISF6R2fB7O2Bdu2AS5eA0aNl7Dp9GqhbV5ZG7N6td4REHyXRifzly5eRMmXKOI998cUXOHToEObPn2+wwIiITJGHh6zKW7sWSJVKzgWKFQMGD7ayWZUCBWQPopsbsHOnVAu2uuUJlo3jPZFxpE0L/PYbsGwZkDKlXCAuXhzo3Rt4/lzv6CyYiwvQt68UbR0wAHB2Bg4cAAIC5Er9sWN6R0iUKIlO5DNmzBi73O51uXPnRsuWLQ0SFBGRqatbV5L4xo1lq93w4ZLQHz+ud2RJqGhR2W/g7Axs2gQ0aSJTTGQRON4TGY+myfhx5gzQrJms8ho3Ttqg79ypd3QWzsMDGDlSqth27ChtBv74QwrgNG0qM/dEZuCjit0REZFsE1+2DFixAvDykov5RYoAVrWFuEwZ2Wfo6CjLFNq21TsiIiKz4e0N/PwzsH49kC6d5JYVKshK8IcP9Y7Owvn6yoB99qxciAaAX34BcuaUBP/GDX3jI/oAJvJERJ+oYUOZnf/8c5mQ7txZ2tZaTQ2dSpWAX3+V8syLFsmaUSIiSrCaNWUc6dBB7s+ZI/nk8uVWNJboJWtWSeCPHAGqVQMiI4GZM6VCYd++wP37ekdIFC8m8kREBpA6NbBqlVQgBqRtbbduslzSKtSqJRs8AaBTJ7alIyJKJHd3YMYMqb322WfA7dsyUVyrlhRbJyPz95cl9rt2SWualy+BsWOBzJll/9yTJ3pHSBQHE3kiIgPRNCl6N2WK3J8yRSrcW8228SFDZAbjxg0pJERERIlWpoxs1QoKAhwcgI0bpVnIhAkyWUxGFhAA7N0r+x3y5wdCQ2Vwz5xZfggvX+odIREAJvJERAbXpQuwZInUz1m6FKhXz0oqETs7y3pQQKaV9u7VNx4iIjPl6CjXRo8dk8T++XOgZ0+pbn/0qN7RWQFNk/0OR45IMZxs2YB79+SHkC2bjHVWc5WeTBUTeSIiI2jaVLaKOzvLbErVqsCjR3pHlQTKlwfatJHbbdty5oKI6BPkzCkrvWfPBpInB/76S4qq9u4NPHumd3RWwMbmVXuBuXOlIuG//0o1wty5Jcm3mj10ZGqYyBMRGUmNGsCWLXLytXevrNa7dUvvqJLA2LGAjw9w7hzw/fd6R0NEZNZsbOS66Llzr1qejhsneeQff+gdnZWws5OL1BcvyvJ6b2+5/eWXsrd+/XpWJaQkx0SeiMiISpeWwkWpUwMnTsj9Eyf0jsrIPDyAqVPl9g8/AMeP6xsPEZEF8PGRCeD164EMGaQAXo0akktaxUViU+DkBHTvDvzzjxTAc3eXQb12baBUKWDnTr0jJCvCRJ6IyMjy5QP27QP8/KRHcKFCUjcnLEzvyIyofn0pDhAZCdSty7NMIiIDiWlV16OHzNYvWyZV7qdNk9l6SgJubsB33wGXL0uLOmdn4MABoEIFacl68KDeEZIVYCJPRJQEsmSRMT4mtx0+HChY0ILHek2T/YTZssm0UZ06VlLxj4jI+FxdgfHjgT//BAoXlo6fXbpIMbwjR/SOzop4egKjRwOXLgGdOwP29sD27UCJEjJLf+yY3hGSBWMiT0SURFKnBlavBlasAFKlkto5JUvKrIpFFi3y8pJKf15eQEgI0KwZp4uIiAyoUCG5IDx1qqzyPnxYiuF16yZd0yiJpEkjP4QLF4DWrQFbW9kD4e8PNGoEnD2rd4RkgZjIExElIU0DGjaUJL5FC6mNM3EikDevXMS3OFmzSvl+R0dg7VoptUxERAZjayuTwefOyX756Ghg8mRZbr9iBWuwJalMmYB582SQ//JLGfRXrgTy5AFatpS99UQGwkSeiEgHXl7AokUyYZ0+vWyzq1RJKhM/eKB3dAZWqpR8s4BctZgyRddwiIgska8vsHQpsHWr7Gq6eVOq3FerJgXWKQllzy4/jOPHZU9ddDSweDGQIwfQoYO0sCP6REzkiYh0VL26FC3q3Fnuz50rk9hTpgAREfrGZlCNGwOjRsntbt2A5cv1jYeIyEJVqiSF1IOCZDHUli0yITxwoIVu4zJlefMCa9ZIMYOqVaVIzqxZUjjnm2/kagvRR2IiT0SkMzc32Vq3e7eM+Q8fyviePz+webPe0RlQv35Ax46yzrN5cwv75oiITIeTEzBkCHDypOSP4eHAyJGy3H7lSi63T3JFigCbNslAX7as/ECmTAEyZwZ69QLu3NE7QjJDTOSJiExEmTJSbXjGDMDbW2rjVKsmrYbOn9c7OgPQNDlxadxYlhvUrw/s3693VEREFitbNuCPP6RESaZMsqK7USOZtT9zRu/orFCZMsCuXcC2bVLZ/uVLaT/g5wf07w/cu6d3hGRGmMgTEZkQOzvZPnfxItCzp9zfuFGWRfboIbP1Zs3WVvYJVqsm7ehq1pQ1oEREZBSaBtStK4n7kCGy3H7HDln11asXq9snOU0DKlYE9u2TqyxFish4OHq0JPSDBlnAYE9JgYk8EZEJSpECGDdO9s/Xri3b6iZOlNmV6dPlvtlycAB+/VV67z16JOs+//5b76iIiCyas7Psmz9zRhL7yEiZDM6RA/jpJy63T3KaJhe1Dx0C1q2TVnVPnwIjRkhCP2wY8Pix3lGSCWMiT0RkwrJnB37/XbaT58oF3L8vhfH8/c28XV2yZNJjN29e4NYtoEoVFv0hIkoCmTPLUvuNG+Xi8K1b0g61TBng6FG9o7NCmgbUqgX89RewerUswXv8WJZP+PlJcYMnT/SOkkwQE3kiIjNQpYp0sZk6FfD0BE6dkj2OrVqZcbs6Dw+5QpE5s/TWrVdPCgAREZHRVa8uxfBGjgRcXGSld6FCQLt2rL2mC00DPv9cBvvly6Uy4cOH0m7Azw/44QeZsSf6PybyRERmws5OZuMvXQK6dJExf+FCmalfvVrv6D6Sr6/0RvLwkPY8ffvqHRERkdVwdAQGDADOnZMieEoBc+bITP2PP/Laqi5sbOSHceoU8PPP8sO4f19+UH5+wJgxTOgJABN5IiKz4+Ehxd/37QNy5gRu3wa++AJo0ECWSJqdLFmkAB4ATJoErFqlbzxERFYmfXqZBN69GyhYUArg9ekD5M4t27u4f14HtrZAs2ZS1GDxYiBrVqlq36+fJPRjxwLPnukdJelI10R+1KhRKFKkCNzc3JAqVSrUq1cP59/osaSUQlBQENKkSQNnZ2eUK1cOp0+f1iliIiLTUaKE7Gf87juZrV+1SmbnFy0yw5OuWrVezca3bi3LDsgicKwnMh9lygAhIcC8eUDq1PKnuG5d2d516pTe0VkpOzugeXPpSbtwoVz8vndPxkw/P1k68fy53lGSDnRN5IODg9G5c2ccPHgQW7duRWRkJKpUqYJnr11dGjNmDMaPH4+pU6ciJCQEPj4+qFy5Mp6w6AMRERwdgeHD5cSrYEHZThcYKHsfr17VO7pEGjECKF1apoIaNpT+umT2ONYTmRcbG7meeuGCTP46OEjb8wIFZFvX/ft6R2il7OyAli1lH8SCBVJf5u5dWTrh5yctCJjQWxVdE/lNmzYhMDAQuXPnRv78+bFgwQJcu3YNf/31FwC5Qj9x4kQMHDgQ9evXR548ebBo0SI8f/4cS5cu1TN0IiKTUqCAdLD54QdJ7jdvlsK306YB0dF6R5dA9vbAsmWAtzdw7BjQvbveEZEBcKwnMk/u7jKmnDkjNdiiomRMyZYNmDwZiIjQO0IrZWcnV+zPnQPmz5ck/s4doFcvSe4nTABevNA7SkoCdnoH8LrH/++V6OnpCQC4fPkybt26hSpVqsQ+x9HREQEBAdi/fz/at2//1muEhYUhLCws9n5oaCgAICIiAhH8i2MQMceRx9MweDwNz5qPac+eskq9fXtb7Ntngy5dgF9+ica0aVHIlevjXjNJj2eqVNAWLYJtrVrQZs1CZIkSUE2bGv99k5g1/m7G4FhvHqz576gxmPPxzJBB9s/v2qWhVy9bnDypoVs3YMYMhTFjolC1qoKmJX1c5nxMDearr4DGjaEtWQLbkSOhXbkC9OwJNWYMonv3RnTbtoCzc4JeisfT8Ix9LDWlTGMnpVIKdevWxcOHD7Fnzx4AwP79+1GqVCn8999/SJMmTexz27Vrh6tXr2Lz5s1vvU5QUBCGDh361uNLly6Fi8v/2rvzOJvL/o/j7zPHLLaxRDPWmZElmhJjL0sLklL86laWOxRZb6K6i7otdVtaJIlKEsKkO2khTLedFKIoRMiSSXYNs5j5/v647hmmmWGG75nvOWdez8djHmc/85lrvjPX+Xyv6/pcRTz3AwCAF0lLkxYvjtTMmTcoMbGQAgIs3Xnnr3r44R0qVSrp8m/gsBpz5+r6Dz/U+aAgrRk7VqeqVHE6JFudPXtWnTp10qlTpxQaGup0OPmGvh7wbamp0ldfRWj27Jo6fTpYknTTTX+oW7cfVaXKKYejK9hc58+r0vLlqjFvnor88YckKbFkSe2+/37tu+supYaEOBxhwePpvt5rEvl+/fpp4cKFWrNmjSpWrCjpQuf+22+/qVy5chnP7dmzpw4cOKDFixdneZ/sztJXqlRJhw8f1jXXXOP5H6QASElJUVxcnFq2bKnAwECnw/F5tKf9aNML9u+Xhgxx69NPzUqqokUtDRmSpieeSFPRorl7D0faMzVV7vvuU8DSpbIqVdL5tWul8PD8+d754NixYypXrlyBS+Tp630H/0ft5W/tefKkNGZMgN58M0DJyS65XJY6dbI0cmSqKlfOnxj8rU1tk5ws16xZco8bZ0boJVllyyrtiSeU1ru3VKxYti+jPe3n6b7eK6bWDxgwQJ999plWrVqV0bFLUvj/PrTFx8dn6tyPHDmisLCwbN8rODhYwcHBWe4PDAzkoLQZbWov2tN+tKkpbrtggbRmjfTkk9I337g0apRbU6e6NWqU1L272eEmN/K1PQMDzVzORo3k2rlTgR07SsuXmwIAfqAgHpf09b6JNrWXv7Rn2bKmttqAAdKwYdLcuS7Nnu3Sf/4ToIEDzZbnJUvmTyz+0qa2CQyUeveWHn1UmjVL+ve/5dqzR+6hQ+V+9VWzlr5fP1MEIduX05528XQ7OlrszrIs9e/fX/Pnz9eyZcsUFRWV6fGoqCiFh4crLi4u477k5GStXLlSTZo0ye9wAcBn3Xqr9PXXJjeuUkU6fFjq2dMUyfvySy/drq5kSenzz83l119LvXp5aaC4FPp6wH9FRUlz5pidU1q0kJKSpJdeMluev/66lJzsdIQFWGCg2X5g506zbV3VqmbLgaFDpchIs1PMKZZD+DJHE/l+/frpgw8+0Jw5c1S8eHHFx8crPj5e5/5XadHlcmnQoEEaPXq0PvnkE23btk3dunVTkSJF1MkPix8BgCe5XNLf/mYqEI8fL5UqZfYFvvtus0fwli1OR5iNatWkefPMtIGZM6VXX3U6IuQRfT3g/+rVk5YtM+dea9Y0+eKgQeb6vHmcg3VU+rZ127dLH3wg1ahh9qp9/nkpIkIaMcLchs9xNJGfMmWKTp06pRYtWqhcuXIZXx9++GHGc55++mkNGjRIffv2Vb169XTo0CEtXbpUxYsXdzByAPBdwcHSE09Iv/xiZtil7xFct67p6w8ccDrCv2jZ0mynI0lPPy0tWuRsPMgT+nqgYHC5zK4pP/wgvfOOKWuyZ4/UsaPUuLFZ4gUHFSokde4s/fijNHeuVKuWGZEfOVKKjFTA8OEK/N8OIPANjk+tz+6rW7duGc9xuVwaMWKEDh8+rMTERK1cuVLR0dHOBQ0AfqJUKemVV8xWtA89ZEZMZs6Uqlc3M++8qj/v39+sBbAs6eGHzbQC+AT6eqBgKVTI/LvetcsM9hYtKn3zjdS0qXT//WamNxzkdptOf+tWM10iOlo6fVruMWPUqlcvBTz3nHT0qNNRIhccTeQBAM6LijIn57/9VmrWTEpMlMaMMYXy3nzTbDfkOJdLmjTJBHj6tNSunZm7CQDwSsWKScOHS7t3S48/bvLHTz+VbrhB6ttX+v13pyMs4AICpAcflL7/Xvr4Y1k33aRCiYlyv/SSWUP/9NP8krwciTwAQJJUv760YoWpcl+jhjkh37+/1LSpW/v2ecEWaUFB0n/+Yz5g/PKL1KeP0xEBAC4jPFx66y0zANyunTk5PGWKKbw6bJjZyg4OCgiQOnTQ+Q0b9M3QoUqrW1dKSJBeftmc6R80SDp0yOkokQ0SeQBABpdLuu8+84HrjTfM7jQbNwZoyJDmev75ACUmOhxg2bImmXe7pY8+kj77zOGAAAC5UbOmGZFfsUJq2FA6e1YaPdok9OPGmdtwkMul+AYNlPr119IXX0gNGkjnzpntB6pUMSfP/7cvPbwDiTwAIIvAQDMav327dP/9aUpNDdC4cW7Vri2tXOlwcDExpkqfZOZnetVifgDApTRvbnYUXbDATLM/cUJ65hmzO9qUKVJKitMRFnAul9S2rbR+vbR0qVnSlpxsplVUq2a2tNu1y+koIRJ5AMAllC8vzZuXqn/+81uVK2fp55/NXsG9ejk8HXL4cLOI/9AhU5kPAOAz0md/ff+9KbIaGSkdPmzOzV5/vTR7tpSW5nSUBZzLZXaNWbnSfLVsKZ0/L02fbn5J6RXw4RgSeQDAZTVufFjff39ejz9ubk+daqZJzp/vUEBFikhvv22uT54srV3rUCAAgCvldktdu5pK9m+8IYWFmS3runSRbr7ZzPBmD3ov0KyZGZ3/+muzx2BamjRnjql4/3//J23e7HSEBRKJPAAgV0qWNDPrVq40xfDi403/3b69Q3Vw7rhD6t7dfMrr2VNKSnIgCADA1QoKMsu5fvlF+ve/pRIlTK2We++Vbr3VC5Z0wWjUSPr8c+m778wHAMmc0a9b1yT433zjbHwFDIk8ACBPmjWTtmyRnnvO7Be8YIFUq5ZJ8vN9KuQrr0jXXmsW848Zk8/fHABgp6JFzWqpPXukf/5TKlxYWrfOLOm66y6TP8IL1KljCs9u2yZ16mQq3y9caBL9li2lVaucjrBAIJEHAORZSIj0wgvmQ1XDhqbeXJ8+pojRjh35GEjp0mY+pmTKH7NeDwB8XunS0tixZg/6Pn3MSeMlS0yt044dpZ9/djpCSDLVCmfPNh1/9+7mF/XVV+bDQPp0fNZGeAyJPADgit14o1me/vrrZiRlzRqpdm2T5OfbTPcHHzTzL1NSpMceM5sUAwB8XvnypgzKjh1m4NflkubNM7PAevd2648/QpwOEZKpZv/ee6aafZ8+Zq3E6tVS69YXpuOT0NuORB4AcFXcbukf/5B++km6+26zS82//mUS+mXL8iEAl8t80ite3GyXM3VqPnxTAEB+ue46M/C7ZYtZip2aKr33XoD69LlTAwcGOFOnBVlFRpr+eM8eadAgszbi22+ldu1M9cLYWE6224hEHgBgi8qVTYXhOXNM5eGdO009ui5dTGE8j6pYUXrxRXN96FDp6FEPf0MAQH676SYzuLtmjdS8eZrOn3dryhS3rrtOGjjQbGEHL1ChgvTaa9LevabYQbFi0g8/SA8/bLa8ee89c9YfV4VEHgBgG5fL9NM7dpgKxC6XGUWpUUOaNMnDJ+L79jWf8k6cYG95APBjt9wixcWl6oUX1urWW9OUlCRNnChVqSINHiz9/rvTEUKSOas/dqy0f780cqQpfrBrl/Too1LVqqbGzblzTkfps0jkAQC2K1nS9M8bNkj16plieAMGSA0amPs8olAhc7ZAkt5910znAwD4rRtvPKr//jdVcXFS48ZSYqIZCI6Kkp5+WvrjD6cjhCSpVCmz5u7XX81uM+Hh0oEDZl1eZKQ0bpz5oIA8IZEHAHhMTIxZtj55stkXOL3Kfd++ZuDcdk2bSl27mqI6/fqxFg8A/JzLJd15pym8unixOWF87pz08ssmoX/2WenYMaejhCQzxX7IEDPlfvJkKSJCOnJEeuYZc/1f/2JpXB6QyAMAPMrtNkVsd+68kGNPmSJdf700a5YHCtm+9JIUGipt3ChNm2bzmwMAvJHLZYqkr19v6rXExEgJCWZmd2Sk9PzzHjqBjLwLCTEfDHbtkmbMMB8ITp40W95ERppk/7ffnI7S65HIAwDyRViYNHOmtHy5qXVz5Ij0979Lt91mKt7bJjxcGjXKXGcoBgAKFJdLatvWLOP69FOzg8qff5p6qJGR0ogRJmeEFwgMNB8Etm2TPvpIqlPHnH0ZP95Mp+jTx4zeI1sk8gCAfNWihdlCaOxYszPNypXmg9Yzz5j+2xb9+plN7o8fp/AdABRALpfZ9ey776SPP5aio80y7JEjTY74wgssy/Yabrf0wAPSpk3SokWmmmFysvTWW2aP+r//Xdq+3ekovQ6JPAAg3wUFmR1ptm83H7TOnze1bmrVkhYutOEbXFz4bupUD1bYAwB4s4AAqUMH6fvvpXnzTD9z8qRZjh0VJY0eTULvNVwuqU0bafVqacUKqVUrU+tm1izphhuk//s/k+xDEok8AMBBERFm6uOnn5rr+/dL99xj1tIfP36Vb96smdS5s1mE/+yztsQLAPBNAQHSgw+a7cznzjXboh4/Lg0bZvqfkSNZQ+81XC6peXNpyRKzA83995u+fP58sxVO69Ym0be9yI5vIZEHADiuXTvpxx+lJ580H7Y++MCMmsyff5Vv/OKLZnT+v/81JY0BAAWa2y099JDpc2bNulBnbcQIs4b+uecoreJV6teXPvlE2rpV6tLF/AKXLjUFdm65Rfr88wKb0JPIAwC8QtGiZrugdetMEv/772YW3d/+ZgrjXZHISKlbN3N95EibIgUA+Dq32+SF27ZJsbEX1tD/+9+m6/jnP6+i74H9oqPNmZddu0wRvOBg6euvzUhA7drSnDlmnV4BQiIPAPAqDRua4kTDhpkPWh99ZBL7uXOv8KT70KFmVD4uznT6AAD8j9stdexo1tB//LF0882myv1LL5mEfvBg6fBhp6NEhqgoswf9vn3S00+bvem3bjVL6WrUkN5+W0pMdDrKfEEiDwDwOsHBZlb8hg3mRPuxY1KnTlL79lewtWxUlKl4K13Ylg4AgIukF8X77jvps8/MjO5z56TXXjPdyIAB0sGDTkeJDOHhpkru/v1mC4IyZaQ9e6TevaUqVaRXXpHOnHE6So8ikQcAeK06dUwyP2qU2W72009N4dr338/j6Hz68P7ixaZwDgAA2XC5pHvvlb75RvryS6lxYykpyWyEct11Jk/ct8/pKJGhVClT2GDfPmnCBKliRTOF4qmnTBXDESP8tugBiTwAwKsFBkrPP29GSerVM0WJunc3O9Ts35/LN6lSxZTCl1grDwC4LJdLuusuUyf1q69MEfXkZDNzu1o16dFHpd27nY4SGYoWlQYOlH75RZo2Tape3WxDMHKkSegHD5YOHXI6SluRyAMAfEJ0tFniPm6cmXq/ZIm5b8oUKS0tF2+QPiq/aBH7ygMAcsXlku64w+x2tnKldOedpqbae++ZJdl//7u0fbvTUSJDUJDUo4f000/SvHlmal9CwoU1Ej17moJ5foBEHgDgMwoVMrVtvv9eatLELH/r21dq1EjauPEyL65a1RTDkcx6OgAA8qBZM1M3dd06MyssLc0UUr/hBrPLymX7IeQft1t68EFp0yazrK5ZMyklRXr3XbPnYMeOZqqfDyORBwD4nBo1pFWrpIkTpdBQM8DeoIHZkeb48Uu8cNgwU9Ho88+lLVvyK1wAgB9p3NhM7vr2W+m++0zNlvnzTYG8Vq3M6H0B3drc+7hcUuvWZjrFmjVS27bmDMy8eVJMjHls+XKf/IWRyAMAfJLbbaoI79hh9gK2LOmtt0ySP316DtPtq1c3Z+Els1kwAABXqH59acECsxd9ly6mX4qLk267zcwa+/zzXC79Qv645Rbpiy+kH34wM/TcbmnpUun2283ZmQULfOoXRiIPAPBp5cqZqY0rVpjpjUePmuVxTZvmMOg+dKi5/Phjs4YOAICrcMMNph/atcvMDAsOltavl9q1M1uozplj1tXDS9x4o/TBB+YX1q+fFBJitilo394U35kxw0zD93Ik8gAAv9C8ubR5s9k6tlgxs4YxJkb6xz+kU6cuemJ0tNks2LKk0aMdixcA4F+ioqTJk81OaP/8p1S8uBmt79zZzBZ7+20pMdHpKJEhKsrsK7hvnznJX6KEqVzYrZvZa/D1102hPC9FIg8A8BuBgdKQIWa6fceOZobcG2+YD1CzZl20BG7YMHM5d67fVK8FAHiH8HBp7Fjp119NbdUyZaQ9e8we9FFR5oTzmTNOR4kMYWFmud3+/WZrnPBw6cABadAgs3XdqFGXKcDjDBJ5AIDfqVBBio01axVr1JB+/91sEdSihRkdUd26FwrejBnjdLgAAD9UqpT03HNmwHfCBKliRSk+XnrqKZMfDh8uHTvmdJTIEBpqtsbZu9dMn7juOvMLGj5cqlzZ7EV/8KDTUWYgkQcA+K077zRb1Y0eLRUubCrd33yz9Pjj0qFeI82TZs0yn7IAAPCAokWlgQOlX36Rpk0zdVdPnDADvZUrmyVge/c6HSUyhIRIvXqZ6X2xseaDQ/pe9FWqmEI827c7HSWJPADAvwUHS88+a/rj9u2l1FTpnXekqh1j9M+IWB0/X5xReQCAxwUFmRzwp5/M7md16khnz5olYFWrmiVh7EXvRQoVurDf/OLFphhPSorZGqdWLen++6Wvv3YsPBJ5AECBULmy2ed39WqzA01iovTSrx1VRXs05t2ySthxwOkQAQAFgNstPfigtGmTWQLWqtWFrc3r1zfb1y1a5FM7ofm39L3oV6wwifv995v7P/3U7DPYrJm0cGG+70VPIg8AKFBuvdUk8198YXagOaWSGpr2oqrGhGrKFJ/YcQYA4AdcLrMEbMkSs11qly5mEHjFClPG5cYbzeBvUpLTkSJDo0bSJ5+YqfU9epgqu6tXS/fcI910k1mul08fJEjkAQAFjstlPiRt2SJ98NwORWmP4s+WUN++Us2appg9IyEAgPxSu7bJAffsMbuvFC9upuD36GEq3Y8bJ5086XSUyHD99abgwd690pNPmn1vt20zlXWrVpUmTvT41nUk8gCAAisgQOr8wvXa0exxTVI/hRU+rV9+kTp1MoXtv/wy32fKAQAKsEqVzPZ06TuhlS8vHT4sPfOMeWzIEPMYvESFCtLLL5vt6kaPlq691vyCBg5UoZtv9ui3JpEHABR4QSOHqZ8ma/f5SL341CmFhppq93ffbWrbrF3rdIQAgIKkZMkLO6FNny7dcIP055/S+PFmV7QuXUw/BS9RsqSprLtvnzRlinTddXKdOOHRb0kiDwBAixZSs2YqlnJCw849pz17zEy5kBCz9O3WW6V27aStW50OFABQkAQFSd26mf5n0SJTCO/8eWn2bLMrWqtWpmAes8e8ROHCUu/e0s6dOj91qke/FYk8AACSNHy4uZw6Vdck/aaXX5Z27ZJ69jQVhj//3Kxh7N5d+uMPZ0MFABQsLpfUpo20bJm0YYPZFS0g4ELV+zp1pBkzKIznNdxuWe3be/RbkMgDACCZYY5bbjGfgqZPlyRVrGj2nP/xR7NVkGVJ779vCuLNmsUICAAg/9WrJ8XGSrt3S//4h1SkiJlm362bFBkpvfiidPSo01HC00jkAQCQzHDHY4+Z6x98kClLr1HD7O/79ddmO6Bjx0xh2tatTYVhAADyW1SU9PrrF+qslS8vxcdLzz9vCuP16mUq38M/kcgDAJCuQwezMH7HDum777I83KiRtGmT+cAUHGymNEZHm4K15887EC8AoMArXdrUWdu715yHjomREhOlqVNNkby77jJ71TOLzL+QyAMAkC40VLrvPnN99uxsnxIYaD4wbd0q3X67dO6cqSxcv75J8gEAcEJQkNS5s1lDv2qV1L69mWy2ZIlJ5qOjTXJ/7pzTkcIOJPIAAFysc2dzOXfuJYfZq1WTvvpKeu89qVQpacsWqUEDs8dvQkL+hAoAwF+5XFLTptL8+WYd/cCBUrFiZpp9r15S5crSv/5lpuHDd5HIAwBwsdatpWuuMZ9wli275FNdLlPFfvt26eGHpbQ0s8dvdLQZAQEAwElVqkgTJkgHD0qvvipFRJhCeC+8YK5368Z+9L6KRB4AgIsFBZl9fSSz2DAXwsKkOXOkhQvNSMe+fWYaY+fO0pEjngsVAIDcKFFCGjzYjNB/9JHUuLGUnGy2rDP70bv17bdhSktzOlLkFok8AAB/1aWLuZw/P0/z5O++22xV98QTZn/fOXPMVnUzZlBkCADgvEKFpAcekNatk9avN+et3W5pxYoAjR7dSNHRhfTmm9KffzodKS6HRB4AgL9q1MjMR0xIkD79NE8vLVbMTK9fv16qXVs6ftxMXbz1VlOACAAAb9CwodmPfs8eafDgVBUpkqLdu13q31+qWNGM4P/yi9NRIick8gAA/JXLJXXqZK7PnXtFb1G/vkncx42TihY1ox8NGpik/vBh+0IFAOBqVK4sjR2bpmnTlmjChFRVrSqdOiW99pop7NqundlulZll3oVEHgCA7Dz8sLlcssQMq1+BwECzNd3OnVLXrua+GTOkhg0L2RQkAAD2KFw4VX37pmnnTmnRIlPrxbKkzz+XWrUye9JPnsy0e29BIg8AQHZq1ZJuuklKSZE+/viq3qpCBWnmTDPdvlEj6exZl01BAgBgr4AAqU0b6csvpR07pAEDzLKx7dulfv2Ydu8tSOQBAMjJVU6v/6uGDaW1a6UpU3Lenx4AAG9Ro4Y0caJ06JC5rFYt87T7e++Vli5l2r0TSOQBAMjJQw+ZyxUrpN9+s+UtAwKkBx/kEw8AwHeEhpqR+R07zEh9mzYmef/iC6l1azOJjWn3+YtEHgCAnERESE2amE8r8+Y5HQ0AAI4KCDBr5xctMvVf/vEPqXhxk+D362eWkj3xhNmvHp5FIg8AwKWkF72zaXo9AAD+oHp16fXXpYMHzbT76tWl06elCRPM9XvukRYvltLSnI7UP5HIAwBwKQ8+aIYgvv1W2rfP6WgAAPAq6dPut2/PPO1+4UJzvVo16ZVXpGPHnI7Uv5DIAwBwKWFhUrNm5vqCBY6GAgCAt/rrtPuBA6USJaQ9e6SnnjLT7rt1kzZscDpS/0AiDwDA5dx/v7kkkQcA4LKqVzdT7A8dkqZOlW6+WUpKkmbMkBo0kOrXl6ZPl86edTpS30UiDwDA5dx3n7lcvVo6etTZWAAA8BFFi0qPPSZ995309ddS165SUJC0caPUo4fZk37IEGnXLqcj9T0k8gAAXE5kpBlOSEsze+0AAIBcc7mkRo2kmTNNcbxx40zXeuKENH68GcG/6y7ps8+k1FSno/UNJPIAAORG+vT6Tz5xNAwAAHxZ2bLS00+bLeq++EK6+26T6C9ZYibAVakijR4t/f6705F6NxJ5AAByo317c7l0qZSQ4GwsAAD4OLdbatvWVLffvdsk99dcI+3fLw0bJlWqJHXqJK1ZY6rgIzMSeQAAcuPGG6WoKCkx0STzAADAFlWqmOn2Bw+a6fcNG0opKdLcuVLTplLt2tLkydKpU05H6j1I5AEAyA2X60LRu4ULnY0FAAA/FBJiCuKtX28K4j36qFS4sLR1q9Svn1S+vCmet2EDo/Qk8gAA5FarVuYyLo5PEAAAeFBMjPTuu2YLuwkTpJo1zXZ106aZLezq1pXeeks6c8bpSJ1BIg8AQG41ayYFBpoFfL/84nQ0AAD4vVKlpIEDpR9/lFatkjp3loKDpS1bpD59pHLlpF69pE2bnI40f5HIAwCQW0WLSk2amOtxcc7GAgBAAeJymfXyH3xgRunHj5dq1DD1Z6dOlerVM19Tp0p//ul0tJ5HIg8AQF7ceae5/OorZ+MAAKCAuuYa6YknpO3bpRUrpIcfloKCzKh8r15mlL53b2nzZqcj9RwSeQAA8qJlS3O5bJmUmupsLAAAFGAul9S8uTRnjhmlf+UVqXp1MyL/9ttmHX2DBmZdvb/tHEsiDwBAXsTESCVKSCdPFrwFeQAAeKkyZaQhQ6QdO8y59o4dTVmbDRtMpfty5aS+faXvv3c6UnuQyAMAkBeFCkm33Waus04eAACv4nKZbjo21ozSv/SSVLWqqW4/ZYp0881So0amIr4vV7wnkQcAIK/S18kvX+5sHAAAIEdly0pPPSXt3GlK2zz4oDkf/803Us+eZpS+Rw9p3Trf21WWRB4AgLxq0cJcrlsnJSc7GgoAALi0gADpjjukefOkgwfNKH316mbd/PTp0i23SLVqmTX2R444HW3ukMgDAJBXtWqZxXjnzpnFdwAAwCeEhZlR+h07pNWrpW7dpCJFzO2nnpIqVJD+7/+kRYu8u6YtiTwAAHmVXiZXklaudDYWAACQZy6XdOutZkT+8GHpnXdMhfvz56X586W2baWICOm556Q9e5yONisSeQAArgSJPAAAfiE01KyZ/+YbaetWadAgqXRpUyzv3/+WrrvOTM2fM0dKTHQ6WoNEHgCAK5GeyK9dK6WkOBsLAACwRXS09Npr0m+/SR9+KLVqZUbvly2TOnc2BfIGDJC2bHE2TkcT+VWrVunee+9V+fLl5XK5tGDBgkyPW5alESNGqHz58ipcuLBatGihH3/80ZlgAQC4WHS0OV2fkMB+8pdAXw8A8EXBwdLf/iYtWSLt3SuNGCFVriydPClNmiTVqSPFxEiTJ5v78pujiXxCQoJq166tSZMmZfv4Sy+9pPHjx2vSpEnasGGDwsPD1bJlS53x5Q3/AAD+ISBAatbMXGd6fY7o6wEAvi4iQho+3KyVX7LEJPiBgdJ330n9+plR+q5dpRUrpLS0/InJ0US+TZs2evHFF9WhQ4csj1mWpQkTJmjYsGHq0KGDoqOjNWPGDJ09e1Zz5sxxIFoAAP4ifXr9qlXOxuHF6OsBAP7C7TZT7T/80Ey9f+01M0EvMVH64APpttukatWkUaOk/fs9G0shz779ldu7d6/i4+PVqlWrjPuCg4PVvHlzrVu3To8//ni2r0tKSlJSUlLG7dOnT0uSUlJSlMIaRluktyPtaQ/a0360qb1oz5y56tRRIUnW1q06n4f2oS0N+nrvxd+9vWhP+9Gm9qI9865ECTMa37evtGGDS9OnB2jePJf27HFp+HBp+HDPptpem8jHx8dLksLCwjLdHxYWpl9//TXH140ZM0YjR47Mcv/y5ctVpEgRe4Ms4OLi4pwOwa/QnvajTe1Fe2YVeOaM7pbkOnBASz7+WKmFC+fqdWfPnvVsYD6Cvt778XdvL9rTfrSpvWjPK3fvvVLLlm6tX19O//1vZW3dGuzR7+e1iXw6l8uV6bZlWVnuu9izzz6rwYMHZ9w+ffq0KlWqpNtuu03XXHONx+IsSFJSUhQXF6eWLVsqMDDQ6XB8Hu1pP9rUXrTnpVlDhsh15IjuioyUFROTq9ccO3bMw1H5Fvp678Pfvb1oT/vRpvaiPe2TvpJsy5bjatDAc9/HaxP58PBwSeZsfbly5TLuP3LkSJYz9xcLDg5WcHDWsx+BgYEclDajTe1Fe9qPNrUX7ZmDmjWlI0dUaNcuqVGjXL2EdjTo670fbWov2tN+tKm9aE/7VKni2VTba/eRj4qKUnh4eKbpHcnJyVq5cqWaNGniYGQAAFykZk1zuX27s3H4IPp6AACujKMj8n/++ad2796dcXvv3r3asmWLSpcurcqVK2vQoEEaPXq0qlWrpmrVqmn06NEqUqSIOnXq5GDUAABchET+kujrAQCwn6OJ/MaNG3Xbbbdl3E5f7/bII4/o/fff19NPP61z586pb9++OnHihBo2bKilS5eqePHiToUMAEBmJPKXRF8PAID9HE3kW7RoIcuycnzc5XJpxIgRGjFiRP4FBQBAXqQn8rt3S8nJUlCQs/F4Gfp6AADs57Vr5AEA8AkVKkjFi0upqSaZBwAA8DASeQAArobLdWFU/qefnI0FAAAUCCTyAABcrVq1zCXr5AEAQD4gkQcA4GqlJ/KMyAMAgHxAIg8AwNViaj0AAMhHJPIAAFyt9BH5nTtN0TsAAAAPIpEHAOBqRURIISFSUpK0d6/T0QAAAD9HIg8AwNVyu6Vq1cz1nTudjQUAAPg9EnkAAOxQo4a5/PlnZ+MAAAB+j0QeAAA7pCfyjMgDAAAPI5EHAMAO1aubSxJ5AADgYSTyAADYgan1AAAgn5DIAwBgh/QR+d9+k86ccTYWAADg10jkAQCwQ6lSUtmy5jqj8gAAwINI5AEAsEvVquaSveQBAIAHkcgDAGCXihXN5aFDzsYBAAD8Gok8AAB2SU/kDx50Ng4AAODXSOQBALBLhQrmkhF5AADgQSTyAADYhRF5AACQD0jkAQCwCyPyAAAgH5DIAwBgl4uL3VmWs7EAAAC/RSIPAIBdypc3l0lJ0rFjzsYCAAD8Fok8AAB2CQqSypY115leDwAAPIREHgAAO4WHm8sjR5yNAwAA+C0SeQAA7HTtteaSRB4AAHgIiTwAAHYikQcAAB5GIg8AgJ1I5AEAgIeRyAMAYCcSeQAA4GEk8gAA2IlEHgAAeBiJPAAAdiKRBwAAHkYiDwCAndL3kf/jD2fjAAAAfotEHgAAO5HIAwAADyORBwDATsWKmcuEBMmynI0FAAD4JRJ5AADslJ7IW5Z07pyzsQAAAL9EIg8AgJ2KFLlwPSHBuTgAAIDfIpEHAMBOAQEXknkSeQAA4AEk8gAA2K1oUXP555/OxgEAAPwSiTwAAHZLT+QZkQcAAB5AIg8AgN3SC94xIg8AADyARB4AALsxIg8AADyIRB4AALuRyAMAAA8ikQcAwG5MrQcAAB5EIg8AgN0YkQcAAB5EIg8AgN3Yfg4AAHgQiTwAAHZjaj0AAPAgEnkAAOyWnsgztR4AAHgAiTwAAHZjaj0AAPAgEnkAAOzGiDwAAPAgEnkAAOzGGnkAAOBBJPIAANiNRB4AAHgQiTwAAHYjkQcAAB5EIg8AgN3SE/kzZ5yNAwAA+CUSeQAA7Fa4sLlMTHQ2DgAA4JdI5AEAsFtwsLlMSnI2DgAA4JdI5AEAsFtQkLlMTnY2DgAA4JdI5AEAsBuJPAAA8CASeQAA7MbUegAA4EEk8gAA2C19RD4tTUpNdTYWAADgd0jkAQCwW/qIvMT0egAAYDsSeQAA7JY+Ii8xvR4AANiORB4AALsFBl64TiIPAABsRiIPAIDdXC6pUCFz/fx5Z2MBAAB+h0QeAABPcLvNJcXuAACAzUjkAQDwBBJ5AADgISTyAAB4Aok8AADwEBJ5AAA8IT2RZ408AACwGYk8AACewIg8AADwEBJ5AAA8gUQeAAB4CIk8AACeQCIPAAA8hEQeAABPIJEHAAAeQiIPAIAnBPyvi01LczYOAADgd0jkAQDwBJfLXFqWs3EAAAC/QyIPAIAnkMgDAAAPIZEHAMAT0hN5AAAAm5HIAwDgSYzIAwAAm5HIAwDgCUytBwAAHkIiDwCAJzC1HgAAeAiJPAAAnsSIPAAAsBmJPAAAnsCIPAAA8BASeQAAAAAAfAiJPAAAAAAAPoREHgAAT2BqPQAA8BCfSOQnT56sqKgohYSEKCYmRqtXr3Y6JAAAYDP6ewAAcsfrE/kPP/xQgwYN0rBhw7R582Y1bdpUbdq00f79+50ODQCAnAUEmFF5qtbnCv09AAC55/WJ/Pjx4/Xoo4/qscceU82aNTVhwgRVqlRJU6ZMcTo0AABytmOHlJYm3Xqr05H4BPp7AAByr5DTAVxKcnKyNm3apGeeeSbT/a1atdK6deuyfU1SUpKSkpIybp86dUqSdPz4cc8FWsCkpKTo7NmzOnbsmAIDA50Ox+fRnvajTe1Fe9ovvU+yGK2XlPf+nr7e8/i7txftaT/a1F60p/083dd7dSJ/9OhRpaamKiwsLNP9YWFhio+Pz/Y1Y8aM0ciRI7PcX716dY/ECADAlTp27JhKlCjhdBiOy2t/T18PAPAVnurrvTqRT+f6S+Vfy7Ky3Jfu2Wef1eDBgzNunzx5UhEREdq/fz8flmxy+vRpVapUSQcOHFBoaKjT4fg82tN+tKm9aE/7nTp1SpUrV1bp0qWdDsWr5La/p6/3PP7u7UV72o82tRftaT9P9/VenciXKVNGbrc7y9n4I0eOZDlrny44OFjBwcFZ7i9RogQHpc1CQ0NpUxvRnvajTe1Fe9ovIMDrS9Xki7z29/T1+Ye/e3vRnvajTe1Fe9rPU329V3+CCAoKUkxMjOLi4jLdHxcXpyZNmjgUFQAAsBP9PQAAeePVI/KSNHjwYHXt2lX16tVT48aN9c4772j//v3q3bu306EBAACb0N8DAJB7Xp/Id+zYUceOHdOoUaN0+PBhRUdHa9GiRYqIiMjV64ODgzV8+PBsp+DhytCm9qI97Ueb2ov2tB9tmtXV9Pe0p/1oU3vRnvajTe1Fe9rP023qstj7BgAAAAAAn+HVa+QBAAAAAEBmJPIAAAAAAPgQEnkAAAAAAHwIiTwAAAAAAD7ErxP5yZMnKyoqSiEhIYqJidHq1audDslnjRgxQi6XK9NXeHi402H5lFWrVunee+9V+fLl5XK5tGDBgkyPW5alESNGqHz58ipcuLBatGihH3/80ZlgfcDl2rNbt25ZjtlGjRo5E6wPGDNmjOrXr6/ixYvr2muv1f3336+dO3dmeg7HaN7kpk05Tu1Bf587dvRDSUlJGjBggMqUKaOiRYuqXbt2OnjwYD7+FN7Drv+btOkFU6ZM0U033aTQ0FCFhoaqcePG+vLLLzMepz2vzpgxY+RyuTRo0KCM+2jTvLlcTpSf7em3ifyHH36oQYMGadiwYdq8ebOaNm2qNm3aaP/+/U6H5rNuuOEGHT58OONr69atTofkUxISElS7dm1NmjQp28dfeukljR8/XpMmTdKGDRsUHh6uli1b6syZM/kcqW+4XHtK0l133ZXpmF20aFE+RuhbVq5cqX79+mn9+vWKi4vT+fPn1apVKyUkJGQ8h2M0b3LTphLH6dWiv889O/qhQYMG6ZNPPlFsbKzWrFmjP//8U/fcc49SU1Pz68fwGnb936RNL6hYsaLGjh2rjRs3auPGjbr99tt13333ZSRCtOeV27Bhg9555x3ddNNNme6nTfPuUjlRvran5acaNGhg9e7dO9N9119/vfXMM884FJFvGz58uFW7dm2nw/AbkqxPPvkk43ZaWpoVHh5ujR07NuO+xMREq0SJEtZbb73lQIS+5a/taVmW9cgjj1j33XefI/H4gyNHjliSrJUrV1qWxTFqh7+2qWVxnNqB/v7KXEk/dPLkSSswMNCKjY3NeM6hQ4esgIAAa/HixfkWu7e6kv+btOnllSpVynr33Xdpz6tw5swZq1q1alZcXJzVvHlza+DAgZZlcYxeiUvlRPndnn45Ip+cnKxNmzapVatWme5v1aqV1q1b51BUvm/Xrl0qX768oqKi9NBDD2nPnj1Oh+Q39u7dq/j4+EzHbHBwsJo3b84xexVWrFiha6+9VtWrV1fPnj115MgRp0PyGadOnZIklS5dWhLHqB3+2qbpOE6vHP29fXLzN75p0yalpKRkek758uUVHR1Ne+vK/m/SpjlLTU1VbGysEhIS1LhxY9rzKvTr109t27bVnXfemel+2vTK5JQT5Xd7+mUif/ToUaWmpiosLCzT/WFhYYqPj3coKt/WsGFDzZw5U0uWLNHUqVMVHx+vJk2a6NixY06H5hfSj0uOWfu0adNGs2fP1rJly/Tqq69qw4YNuv3225WUlOR0aF7PsiwNHjxYt956q6KjoyVxjF6t7NpU4ji9WvT39snN33h8fLyCgoJUqlSpHJ9TUF3p/03aNKutW7eqWLFiCg4OVu/evfXJJ5+oVq1atOcVio2N1XfffacxY8ZkeYw2zbtL5UT53Z6FruLn8HoulyvTbcuystyH3GnTpk3G9RtvvFGNGzfWddddpxkzZmjw4MEORuZfOGbt07Fjx4zr0dHRqlevniIiIrRw4UJ16NDBwci8X//+/fXDDz9ozZo1WR7jGL0yObUpx6k9OC7tcyVtSXvb/3+zILdpjRo1tGXLFp08eVIff/yxHnnkEa1cuTLjcdoz9w4cOKCBAwdq6dKlCgkJyfF5tGnuXSonSi9Wm1/t6Zcj8mXKlJHb7c5yVuPIkSNZzpDgyhQtWlQ33nijdu3a5XQofiG92iXHrOeUK1dOERERHLOXMWDAAH322Wdavny5KlasmHE/x+iVy6lNs8Nxmjf09/bJzd94eHi4kpOTdeLEiRyfUxBdzf9N2jSroKAgVa1aVfXq1dOYMWNUu3Ztvf7667TnFdi0aZOOHDmimJgYFSpUSIUKFdLKlSs1ceJEFSpUKKNNaNMrd3FOlN/HqF8m8kFBQYqJiVFcXFym++Pi4tSkSROHovIvSUlJ2r59u8qVK+d0KH4hKipK4eHhmY7Z5ORkrVy5kmPWJseOHdOBAwc4ZnNgWZb69++v+fPna9myZYqKisr0OMdo3l2uTbPDcZo39Pf2yc3feExMjAIDAzM95/Dhw9q2bVuBbG87/m/SppdnWZaSkpJozytwxx13aOvWrdqyZUvGV7169dS5c2dt2bJFVapUoU2v0sU5Ub4fo3kqjedDYmNjrcDAQGvatGnWTz/9ZA0aNMgqWrSotW/fPqdD80lDhgyxVqxYYe3Zs8dav369dc8991jFixenPfPgzJkz1ubNm63Nmzdbkqzx48dbmzdvtn799VfLsixr7NixVokSJaz58+dbW7dutR5++GGrXLly1unTpx2O3Dtdqj3PnDljDRkyxFq3bp21d+9ea/ny5Vbjxo2tChUq0J456NOnj1WiRAlrxYoV1uHDhzO+zp49m/EcjtG8uVybcpzag/4+9+zoh3r37m1VrFjR+uqrr6zvvvvOuv32263atWtb58+fd+rHcoxd/zdp0wueffZZa9WqVdbevXutH374wRo6dKgVEBBgLV261LIs2tMOF1ettyzaNK8ulxPlZ3v6bSJvWZb15ptvWhEREVZQUJBVt27dTFv+IG86duxolStXzgoMDLTKly9vdejQwfrxxx+dDsunLF++3JKU5euRRx6xLMtsWTF8+HArPDzcCg4Otpo1a2Zt3brV2aC92KXa8+zZs1arVq2ssmXLWoGBgVblypWtRx55xNq/f7/TYXut7NpSkjV9+vSM53CM5s3l2pTj1D7097ljRz907tw5q3///lbp0qWtwoULW/fcc0+BPWbt+r9Jm17Qo0ePjL/lsmXLWnfccUdGEm9ZtKcd/prI06Z5c7mcKD/b02VZlpW3MXwAAAAAAOAUv1wjDwAAAACAvyKRBwAAAADAh5DIAwAAAADgQ0jkAQAAAADwISTyAAAAAAD4EBJ5AAAAAAB8CIk8AAAAAAA+hEQeAAAAAAAfQiIPIEfNmjXTnDlzMm67XC4tWLDgqt930qRJateu3VW/DwAAyJ2uXbtq9OjRGbcjIyM1YcIEx+KpX7++5s+f79j3B3wdiTzgxw4cOKBHH31U5cuXV1BQkCIiIjRw4EAdO3bssq/94osvFB8fr4ceeijX369FixZyuVyKjY3NdP+ECRMUGRmZcbtnz57asGGD1qxZk+v3BgCgIOrWrZtcLpd69+6d5bG+ffvK5XKpW7dul3yPH374QQsXLtSAAQPy/H3Hjh2b6f4FCxbI5XLl+n1y8vzzz+uZZ55RWlraVb8XUBCRyAN+as+ePapXr55+/vlnzZ07V7t379Zbb72l//73v2rcuLGOHz9+yddPnDhR3bt3V0BA3v5NhISE6LnnnlNKSkqOzwkODlanTp30xhtv5Om9AQAoiCpVqqTY2FidO3cu477ExETNnTtXlStXvuzrJ02apAcffFDFixfP0/cNCQnRuHHjdOLEiTzHfDlt27bVqVOntGTJEtvfGygISOQBP9WvXz8FBQVp6dKlat68uSpXrqw2bdroq6++0qFDhzRs2LAcX3v06FF99dVXl53+PmrUKIWFhWnLli0Z9z388MM6deqUpk6desnXtmvXTgsWLMj0oQQAAGRVt25dVa5cOdNU9Pnz56tSpUqqU6fOJV+blpamjz766LJ9+vTp01WiRAnFxcVl3HfnnXcqPDxcY8aMyfF177//vkqWLKkvvvhCNWrUUJEiRfTAAw8oISFBM2bMUGRkpEqVKqUBAwYoNTU143Vut1t333235s6de7kfH0A2SOQBP3T8+HEtWbJEffv2VeHChTM9Fh4ers6dO+vDDz+UZVnZvn7NmjUqUqSIatasme3jlmVp4MCBmjZtmtasWaObb74547HQ0FANHTpUo0aNUkJCQo4x1qtXTykpKfr222/z/gMCAFDAdO/eXdOnT8+4/d5776lHjx6Xfd0PP/ygkydPql69ejk+55VXXtGTTz6pJUuWqGXLlhn3u91ujR49Wm+88YYOHjyY4+vPnj2riRMnKjY2VosXL9aKFSvUoUMHLVq0SIsWLdKsWbP0zjvv6D//+U+m1zVo0ECrV6++7M8AICsSecAP7dq1S5Zl5ZiI16xZUydOnNAff/yR7eP79u1TWFhYttPqz58/r7///e9aunSp1q5dq2rVqmV5Tt++fRUSEqLx48fnGGPRokVVsmRJ7du3L3c/FAAABVjXrl21Zs0a7du3T7/++qvWrl2rLl26XPZ1+/btk9vt1rXXXpvt488++6zGjx+vFStWqFGjRlkeb9++vW6++WYNHz48x++RkpKiKVOmqE6dOmrWrJkeeOABrVmzRtOmTVOtWrV0zz336LbbbtPy5cszva5ChQrav38/6+SBK1DI6QAA5L/0kfigoKBsHz937pxCQkKyfeyJJ55QcHCw1q9frzJlymT7nODgYI0aNUr9+/dXnz59coyjcOHCOnv2bB6jBwCg4ClTpozatm2rGTNmyLIstW3bNsd++GLnzp1TcHBwtgXqXn31VSUkJGjjxo2qUqVKju8xbtw43X777RoyZEi2jxcpUkTXXXddxu2wsDBFRkaqWLFime47cuRIptcVLlxYaWlpSkpKyjKDEMClMSIP+KGqVavK5XLpp59+yvbxHTt2qGzZsipZsmS2j5cpUybHwjYtW7bUoUOHLlucpkuXLoqMjNSLL76Y43OOHz+usmXLXvJ9AACA0aNHD73//vuaMWNGrqbVS6ZPP3v2rJKTk7M81rRpU6WmpmrevHmXfI9mzZqpdevWGjp0aLaPBwYGZrrtcrmyve+vI+/Hjx9XkSJFSOKBK0AiD/iha665Ri1bttTkyZOzFJOLj4/X7NmzL7lVTZ06dRQfH59tMt+uXTvNmTNHjz32WJZt5i4WEBCgMWPGaMqUKdlOn//ll1+UmJh42SI9AADAuOuuu5ScnKzk5GS1bt06V69Jr2OT3cn9Bg0aaPHixRo9erRefvnlS77P2LFj9fnnn2vdunV5jjsn27ZtU926dW17P6AgIZEH/NSkSZOUlJSk1q1ba9WqVTpw4IAWL16sli1bqnr16vrXv/6V42vr1KmjsmXLau3atdk+3r59e82aNUvdu3fPUrjmYm3btlXDhg319ttvZ3ls9erVqlKlSqapeAAAIGdut1vbt2/X9u3b5Xa7c/WasmXLqm7dulqzZk22jzdu3FhffvmlRo0apddeey3H97nxxhvVuXNnW7eOXb16tVq1amXb+wEFCYk84KeqVaumDRs2qEqVKvrb3/6miIgItWnTRtWrV9fatWszrVv7K7fbrR49emj27Nk5PueBBx7QjBkz1LVr10zb4fzVuHHjlJiYmOX+uXPnqmfPnnn7oQAAKOBCQ0MVGhqap9f06tXrkn36LbfcooULF+r555/XxIkTc3zeCy+8kOOON3l16NAhrVu3Tt27d7fl/YCCxmXZ9dcIwOsNHz5c48eP19KlS9W4ceNLPvf333/XDTfcoE2bNikiIsLWOLZt26Y77rhDP//8s0qUKGHrewMAgMwSExNVo0YNxcbGXrb/zy9PPfWUTp06pXfeecfpUACfRNV6oAAZOXKkIiMj9c0336hhw4bZbi+XLiwsTNOmTdP+/fttT+R/++03zZw5kyQeAIB8EBISopkzZ+ro0aNOh5Lh2muv1ZNPPul0GIDPYkQeAAAAAAAfwhp5AAAAAAB8CIk8AAAAAAA+hEQeAAAAAAAfQiIPAAAAAIAPIZEHAAAAAMCHkMgDAAAAAOBDSOQBAAAAAPAhJPIAAAAAAPgQEnkAAAAAAHzI/wNZj+fwJM2q9AAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1200x600 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Cortante é a integral da carga aplicada\n",
    "Qeq1 = Feq1.cumsum()\n",
    "QmT  = FmT.cumsum()\n",
    "\n",
    "# Momento fletor é a integral do cortante\n",
    "zdif = np.hstack((0, -np.diff(zm)))\n",
    "Meq1 = np.cumsum(Qeq1*zdif)\n",
    "MmT  = np.cumsum(QmT *zdif)\n",
    "\n",
    "# Visualiza diagramas\n",
    "plt.figure(8, figsize=(12,6))\n",
    "\n",
    "plt.subplot(1,2,1)\n",
    "plt.plot(Qeq1/1000, zm, 'r')\n",
    "plt.plot(QmT/1000,  zm, 'b')\n",
    "plt.axis([0, 25, 0, H])\n",
    "plt.title('Diagrama de força cortante (kN)')\n",
    "plt.legend(('dinâmico','estático'), loc=1)\n",
    "plt.xlabel('Q (kN)')\n",
    "plt.ylabel('z (m)')\n",
    "plt.grid(True)\n",
    "\n",
    "plt.subplot(1,2,2)\n",
    "plt.plot(Meq1/1000, zm, 'r')\n",
    "plt.plot(MmT/1000,  zm, 'b')\n",
    "plt.axis([0, 500, 0, H])\n",
    "plt.title('Diagrama de momento fletor (kNm)')\n",
    "plt.legend(('dinâmico','estático'), loc=1)\n",
    "plt.xlabel('M (kNm)')\n",
    "plt.ylabel('z (m)')\n",
    "plt.grid(True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Conclui-se que para esta torre em particular a análise dinâmica não é muito importante, acrescendo em pouco os esforços devido a efeitos ressonantes.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 10 Referências <a name=\"section_10\"></a> \n",
    "\n",
    "\n",
    "1. **Clough, R.W. and Penzien, J.**, _Dynamics of Structures_, 2nd ed.; McGraw-Hill, E.U.A., 1993.\n",
    "2. **Blessmann, J.**, _O Vento na Engenharia Estrutural_; Editora da Universidade, UFRGS, Porto Alegre, 1995.\n",
    "3. **Blessmann, J.**, _Introdução ao Estudo das Ações Dinâmicas do Vento_; Editora da Universidade, UFRGS, Porto Alegre, 1988.\n",
    "4. **NBR-6123**, _Forças Devidas ao Vento em Edificações_; Associação Brasileira de Normas Técnicas, ABNT, Rio de Janeiro, 1988.\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}