""" .. _ex-linear-patterns: =============================================================== Linear classifier on sensor data with plot patterns and filters =============================================================== Here decoding, a.k.a MVPA or supervised machine learning, is applied to M/EEG data in sensor space. Fit a linear classifier with the LinearModel object providing topographical patterns which are more neurophysiologically interpretable :footcite:`HaufeEtAl2014` than the classifier filters (weight vectors). The patterns explain how the MEG and EEG data were generated from the discriminant neural sources which are extracted by the filters. Note patterns/filters in MEG data are more similar than EEG data because the noise is less spatially correlated in MEG than EEG. """ # Authors: Alexandre Gramfort # Romain Trachel # Jean-RĂ©mi King # # License: BSD-3-Clause # Copyright the MNE-Python contributors. # %% from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler import mne from mne import EvokedArray, io from mne.datasets import sample # import a linear classifier from mne.decoding from mne.decoding import LinearModel, Vectorizer, get_coef print(__doc__) data_path = sample.data_path() sample_path = data_path / "MEG" / "sample" # %% # Set parameters raw_fname = sample_path / "sample_audvis_filt-0-40_raw.fif" event_fname = sample_path / "sample_audvis_filt-0-40_raw-eve.fif" tmin, tmax = -0.1, 0.4 event_id = dict(aud_l=1, vis_l=3) # Setup for reading the raw data raw = io.read_raw_fif(raw_fname, preload=True) raw.filter(0.5, 25, fir_design="firwin") events = mne.read_events(event_fname) # Read epochs epochs = mne.Epochs( raw, events, event_id, tmin, tmax, proj=True, decim=2, baseline=None, preload=True ) del raw labels = epochs.events[:, -1] # get MEG data meg_epochs = epochs.copy().pick(picks="meg", exclude="bads") meg_data = meg_epochs.get_data(copy=False).reshape(len(labels), -1) # %% # Decoding in sensor space using a LogisticRegression classifier # -------------------------------------------------------------- clf = LogisticRegression(solver="liblinear") # liblinear is faster than lbfgs scaler = StandardScaler() # create a linear model with LogisticRegression model = LinearModel(clf) # fit the classifier on MEG data X = scaler.fit_transform(meg_data) model.fit(X, labels) # Extract and plot spatial filters and spatial patterns for name, coef in (("patterns", model.patterns_), ("filters", model.filters_)): # We fitted the linear model onto Z-scored data. To make the filters # interpretable, we must reverse this normalization step coef = scaler.inverse_transform([coef])[0] # The data was vectorized to fit a single model across all time points and # all channels. We thus reshape it: coef = coef.reshape(len(meg_epochs.ch_names), -1) # Plot evoked = EvokedArray(coef, meg_epochs.info, tmin=epochs.tmin) fig = evoked.plot_topomap() fig.suptitle(f"MEG {name}") # %% # Let's do the same on EEG data using a scikit-learn pipeline X = epochs.pick(picks="eeg", exclude="bads") y = epochs.events[:, 2] # Define a unique pipeline to sequentially: clf = make_pipeline( Vectorizer(), # 1) vectorize across time and channels StandardScaler(), # 2) normalize features across trials LinearModel( # 3) fits a logistic regression LogisticRegression(solver="liblinear") ), ) clf.fit(X, y) # Extract and plot patterns and filters for name in ("patterns_", "filters_"): # The `inverse_transform` parameter will call this method on any estimator # contained in the pipeline, in reverse order. coef = get_coef(clf, name, inverse_transform=True) evoked = EvokedArray(coef, epochs.info, tmin=epochs.tmin) fig = evoked.plot_topomap() fig.suptitle(f"EEG {name[:-1]}") # %% # References # ---------- # .. footbibliography::