""" .. _ex-epochs-image: ========================================= Visualize channel over epochs as an image ========================================= This will produce what is sometimes called an event related potential / field (ERP/ERF) image. Two images are produced, one with a good channel and one with a channel that does not show any evoked field. It is also demonstrated how to reorder the epochs using a 1D spectral embedding as described in :footcite:`GramfortEtAl2010`. """ # Authors: Alexandre Gramfort # # License: BSD-3-Clause # Copyright the MNE-Python contributors. # %% import matplotlib.pyplot as plt import numpy as np import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() # %% # Set parameters meg_path = data_path / "MEG" / "sample" raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif" event_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif" event_id, tmin, tmax = 1, -0.2, 0.4 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) # Set up pick list: EEG + MEG - bad channels (modify to your needs) raw.info["bads"] = ["MEG 2443", "EEG 053"] # Create epochs, here for gradiometers + EOG only for simplicity epochs = mne.Epochs( raw, events, event_id, tmin, tmax, proj=True, picks=("grad", "eog"), baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6), ) # %% # Show event-related fields images # and order with spectral reordering # If you don't have scikit-learn installed set order_func to None from sklearn.manifold import spectral_embedding # noqa from sklearn.metrics.pairwise import rbf_kernel # noqa def order_func(times, data): this_data = data[:, (times > 0.0) & (times < 0.350)] this_data /= np.sqrt(np.sum(this_data**2, axis=1))[:, np.newaxis] return np.argsort( spectral_embedding( rbf_kernel(this_data, gamma=1.0), n_components=1, random_state=0 ).ravel() ) good_pick = 97 # channel with a clear evoked response bad_pick = 98 # channel with no evoked response # We'll also plot a sample time onset for each trial plt_times = np.linspace(0, 0.2, len(epochs)) plt.close("all") mne.viz.plot_epochs_image( epochs, [good_pick, bad_pick], sigma=0.5, order=order_func, vmin=-250, vmax=250, overlay_times=plt_times, show=True, ) # %% # References # ---------- # .. footbibliography::