""" .. _ex-perm-test: ================================= Permutation T-test on sensor data ================================= One tests if the signal significantly deviates from 0 during a fixed time window of interest. Here computation is performed on MNE sample dataset between 40 and 60 ms. """ # Authors: Alexandre Gramfort # # License: BSD-3-Clause # Copyright the MNE-Python contributors. # %% import numpy as np import mne from mne import io from mne.datasets import sample from mne.stats import permutation_t_test print(__doc__) # %% # Set parameters data_path = sample.data_path() meg_path = data_path / "MEG" / "sample" raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif" event_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif" event_id = 1 tmin = -0.2 tmax = 0.5 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) # pick MEG Gradiometers picks = mne.pick_types( raw.info, meg="grad", eeg=False, stim=False, eog=True, exclude="bads" ) epochs = mne.Epochs( raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6), ) data = epochs.get_data() times = epochs.times temporal_mask = np.logical_and(0.04 <= times, times <= 0.06) data = np.mean(data[:, :, temporal_mask], axis=2) n_permutations = 50000 T0, p_values, H0 = permutation_t_test(data, n_permutations, n_jobs=None) significant_sensors = picks[p_values <= 0.05] significant_sensors_names = [raw.ch_names[k] for k in significant_sensors] print(f"Number of significant sensors : {len(significant_sensors)}") print(f"Sensors names : {significant_sensors_names}") # %% # View location of significantly active sensors evoked = mne.EvokedArray(-np.log10(p_values)[:, np.newaxis], epochs.info, tmin=0.0) # Extract mask and indices of active sensors in the layout mask = p_values[:, np.newaxis] <= 0.05 evoked.plot_topomap( ch_type="grad", times=[0], scalings=1, time_format=None, cmap="Reds", vlim=(0.0, np.max), units="-log10(p)", cbar_fmt="-%0.1f", mask=mask, size=3, show_names=lambda x: x[4:] + " " * 20, time_unit="s", )