""" .. _ex-fdr-evoked: ======================================= FDR correction on T-test on sensor data ======================================= One tests if the evoked response significantly deviates from 0. Multiple comparison problem is addressed with False Discovery Rate (FDR) correction. """ # Authors: Alexandre Gramfort # # License: BSD-3-Clause # Copyright the MNE-Python contributors. # %% import matplotlib.pyplot as plt import numpy as np from scipy import stats import mne from mne import io from mne.datasets import sample from mne.stats import bonferroni_correction, fdr_correction print(__doc__) # %% # Set parameters data_path = sample.data_path() meg_path = data_path / "MEG" / "sample" raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif" event_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif" event_id, tmin, tmax = 1, -0.2, 0.5 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname)[:30] channel = "MEG 1332" # include only this channel in analysis include = [channel] # %% # Read epochs for the channel of interest picks = mne.pick_types(raw.info, meg=False, eog=True, include=include, exclude="bads") event_id = 1 reject = dict(grad=4000e-13, eog=150e-6) epochs = mne.Epochs( raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject ) X = epochs.get_data() # as 3D matrix X = X[:, 0, :] # take only one channel to get a 2D array # %% # Compute statistic T, pval = stats.ttest_1samp(X, 0) alpha = 0.05 n_samples, n_tests = X.shape threshold_uncorrected = stats.t.ppf(1.0 - alpha, n_samples - 1) reject_bonferroni, pval_bonferroni = bonferroni_correction(pval, alpha=alpha) threshold_bonferroni = stats.t.ppf(1.0 - alpha / n_tests, n_samples - 1) reject_fdr, pval_fdr = fdr_correction(pval, alpha=alpha, method="indep") threshold_fdr = np.min(np.abs(T)[reject_fdr]) # %% # Plot times = 1e3 * epochs.times plt.close("all") plt.plot(times, T, "k", label="T-stat") xmin, xmax = plt.xlim() plt.hlines( threshold_uncorrected, xmin, xmax, linestyle="--", colors="k", label="p=0.05 (uncorrected)", linewidth=2, ) plt.hlines( threshold_bonferroni, xmin, xmax, linestyle="--", colors="r", label="p=0.05 (Bonferroni)", linewidth=2, ) plt.hlines( threshold_fdr, xmin, xmax, linestyle="--", colors="b", label="p=0.05 (FDR)", linewidth=2, ) plt.legend() plt.xlabel("Time (ms)") plt.ylabel("T-stat") plt.show()