""" .. _ex-vector-mne-solution: ============================================ Plotting the full vector-valued MNE solution ============================================ The source space that is used for the inverse computation defines a set of dipoles, distributed across the cortex. When visualizing a source estimate, it is sometimes useful to show the dipole directions in addition to their estimated magnitude. This can be accomplished by computing a :class:`mne.VectorSourceEstimate` and plotting it with :meth:`stc.plot `, which uses :func:`~mne.viz.plot_vector_source_estimates` under the hood rather than :func:`~mne.viz.plot_source_estimates`. It can also be instructive to visualize the actual dipole/activation locations in 3D space in a glass brain, as opposed to activations imposed on an inflated surface (as typically done in :meth:`mne.SourceEstimate.plot`), as it allows you to get a better sense of the underlying source geometry. """ # Author: Marijn van Vliet # # License: BSD-3-Clause # Copyright the MNE-Python contributors. # %% import numpy as np import mne from mne.datasets import sample from mne.minimum_norm import apply_inverse, read_inverse_operator print(__doc__) data_path = sample.data_path() subjects_dir = data_path / "subjects" smoothing_steps = 7 # Read evoked data meg_path = data_path / "MEG" / "sample" fname_evoked = meg_path / "sample_audvis-ave.fif" evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0)) # Read inverse solution fname_inv = meg_path / "sample_audvis-meg-oct-6-meg-inv.fif" inv = read_inverse_operator(fname_inv) # Apply inverse solution, set pick_ori='vector' to obtain a # :class:`mne.VectorSourceEstimate` object snr = 3.0 lambda2 = 1.0 / snr**2 stc = apply_inverse(evoked, inv, lambda2, "dSPM", pick_ori="vector") # Use peak getter to move visualization to the time point of the peak magnitude _, peak_time = stc.magnitude().get_peak(hemi="lh") # %% # Plot the source estimate: # sphinx_gallery_thumbnail_number = 2 brain = stc.plot( initial_time=peak_time, hemi="lh", subjects_dir=subjects_dir, smoothing_steps=smoothing_steps, ) # You can save a brain movie with: # brain.save_movie(time_dilation=20, tmin=0.05, tmax=0.16, framerate=10, # interpolation='linear', time_viewer=True) # %% # Plot the activation in the direction of maximal power for this data: stc_max, directions = stc.project("pca", src=inv["src"]) # These directions must by design be close to the normals because this # inverse was computed with loose=0.2 print( "Absolute cosine similarity between source normals and directions: " f'{np.abs(np.sum(directions * inv["source_nn"][2::3], axis=-1)).mean()}' ) brain_max = stc_max.plot( initial_time=peak_time, hemi="lh", subjects_dir=subjects_dir, time_label="Max power", smoothing_steps=smoothing_steps, ) # %% # The normal is very similar: brain_normal = stc.project("normal", inv["src"])[0].plot( initial_time=peak_time, hemi="lh", subjects_dir=subjects_dir, time_label="Normal", smoothing_steps=smoothing_steps, ) # %% # You can also do this with a fixed-orientation inverse. It looks a lot like # the result above because the ``loose=0.2`` orientation constraint keeps # sources close to fixed orientation: fname_inv_fixed = meg_path / "sample_audvis-meg-oct-6-meg-fixed-inv.fif" inv_fixed = read_inverse_operator(fname_inv_fixed) stc_fixed = apply_inverse(evoked, inv_fixed, lambda2, "dSPM", pick_ori="vector") brain_fixed = stc_fixed.plot( initial_time=peak_time, hemi="lh", subjects_dir=subjects_dir, smoothing_steps=smoothing_steps, )