""" .. _ex-cluster-evoked: ======================================================= Permutation F-test on sensor data with 1D cluster level ======================================================= One tests if the evoked response is significantly different between conditions. Multiple comparison problem is addressed with cluster level permutation test. """ # Authors: Alexandre Gramfort # # License: BSD-3-Clause # Copyright the MNE-Python contributors. # %% import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample from mne.stats import permutation_cluster_test print(__doc__) # %% # Set parameters data_path = sample.data_path() meg_path = data_path / "MEG" / "sample" raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif" event_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif" tmin = -0.2 tmax = 0.5 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) channel = "MEG 1332" # include only this channel in analysis include = [channel] # %% # Read epochs for the channel of interest picks = mne.pick_types(raw.info, meg=False, eog=True, include=include, exclude="bads") event_id = 1 reject = dict(grad=4000e-13, eog=150e-6) epochs1 = mne.Epochs( raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject ) condition1 = epochs1.get_data() # as 3D matrix event_id = 2 epochs2 = mne.Epochs( raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject ) condition2 = epochs2.get_data() # as 3D matrix condition1 = condition1[:, 0, :] # take only one channel to get a 2D array condition2 = condition2[:, 0, :] # take only one channel to get a 2D array # %% # Compute statistic threshold = 6.0 T_obs, clusters, cluster_p_values, H0 = permutation_cluster_test( [condition1, condition2], n_permutations=1000, threshold=threshold, tail=1, n_jobs=None, out_type="mask", ) # %% # Plot times = epochs1.times fig, (ax, ax2) = plt.subplots(2, 1, figsize=(8, 4)) ax.set_title("Channel : " + channel) ax.plot( times, condition1.mean(axis=0) - condition2.mean(axis=0), label="ERF Contrast (Event 1 - Event 2)", ) ax.set_ylabel("MEG (T / m)") ax.legend() for i_c, c in enumerate(clusters): c = c[0] if cluster_p_values[i_c] <= 0.05: h = ax2.axvspan(times[c.start], times[c.stop - 1], color="r", alpha=0.3) else: ax2.axvspan(times[c.start], times[c.stop - 1], color=(0.3, 0.3, 0.3), alpha=0.3) hf = plt.plot(times, T_obs, "g") ax2.legend((h,), ("cluster p-value < 0.05",)) ax2.set_xlabel("time (ms)") ax2.set_ylabel("f-values")