""" .. _ex-arrowmap: ============================================= Plotting topographic arrowmaps of evoked data ============================================= Load evoked data and plot arrowmaps along with the topomap for selected time points. An arrowmap is based upon the Hosaka-Cohen transformation and represents an estimation of the current flow underneath the MEG sensors. They are a poor man's MNE. See :footcite:`CohenHosaka1976` for details. References ---------- .. footbibliography:: """ # Authors: Sheraz Khan # # License: BSD-3-Clause # Copyright the MNE-Python contributors. # %% import numpy as np import mne from mne import read_evokeds from mne.datasets import sample from mne.datasets.brainstorm import bst_raw from mne.viz import plot_arrowmap print(__doc__) path = sample.data_path() fname = path / "MEG" / "sample" / "sample_audvis-ave.fif" # load evoked data condition = "Left Auditory" evoked = read_evokeds(fname, condition=condition, baseline=(None, 0)) evoked_mag = evoked.copy().pick(picks="mag", exclude="bads") evoked_grad = evoked.copy().pick(picks="grad", exclude="bads") # %% # Plot magnetometer data as an arrowmap along with the topoplot at the time # of the maximum sensor space activity: max_time_idx = np.abs(evoked_mag.data).mean(axis=0).argmax() plot_arrowmap(evoked_mag.data[:, max_time_idx], evoked_mag.info) # Since planar gradiometers takes gradients along latitude and longitude, # they need to be projected to the flatten manifold span by magnetometer # or radial gradiometers before taking the gradients in the 2D Cartesian # coordinate system for visualization on the 2D topoplot. You can use the # ``info_from`` and ``info_to`` parameters to interpolate from # gradiometer data to magnetometer data. # %% # Plot gradiometer data as an arrowmap along with the topoplot at the time # of the maximum sensor space activity: plot_arrowmap( evoked_grad.data[:, max_time_idx], info_from=evoked_grad.info, info_to=evoked_mag.info, ) # %% # Since Vectorview 102 system perform sparse spatial sampling of the magnetic # field, data from the Vectorview (info_from) can be projected to the high # density CTF 272 system (info_to) for visualization # # Plot gradiometer data as an arrowmap along with the topoplot at the time # of the maximum sensor space activity: path = bst_raw.data_path() raw_fname = path / "MEG" / "bst_raw" / "subj001_somatosensory_20111109_01_AUX-f.ds" raw_ctf = mne.io.read_raw_ctf(raw_fname) raw_ctf_info = mne.pick_info( raw_ctf.info, mne.pick_types(raw_ctf.info, meg=True, ref_meg=False) ) plot_arrowmap( evoked_grad.data[:, max_time_idx], info_from=evoked_grad.info, info_to=raw_ctf_info, scale=6e-10, )