Note
Go to the end to download the full example code.
Decoding sensor space data with generalization across time and conditions#
This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.
# Authors: Jean-Rémi King <jeanremi.king@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator
print(__doc__)
# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads") # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin") # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
"Auditory/Left": 1,
"Auditory/Right": 2,
"Visual/Left": 3,
"Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
raw,
events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=True,
picks=picks,
baseline=None,
preload=True,
reject=dict(mag=5e-12),
decim=decim,
verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)
[Parallel(n_jobs=1)]: Done 17 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 71 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 161 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 287 tasks | elapsed: 0.5s
We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.
clf = make_pipeline(
StandardScaler(),
LogisticRegression(solver="liblinear"), # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)
# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
0%| | Fitting GeneralizingEstimator : 0/35 [00:00<?, ?it/s]
6%|▌ | Fitting GeneralizingEstimator : 2/35 [00:00<00:00, 57.28it/s]
11%|█▏ | Fitting GeneralizingEstimator : 4/35 [00:00<00:00, 58.29it/s]
17%|█▋ | Fitting GeneralizingEstimator : 6/35 [00:00<00:00, 58.66it/s]
26%|██▌ | Fitting GeneralizingEstimator : 9/35 [00:00<00:00, 66.80it/s]
34%|███▍ | Fitting GeneralizingEstimator : 12/35 [00:00<00:00, 71.12it/s]
43%|████▎ | Fitting GeneralizingEstimator : 15/35 [00:00<00:00, 74.48it/s]
51%|█████▏ | Fitting GeneralizingEstimator : 18/35 [00:00<00:00, 76.88it/s]
60%|██████ | Fitting GeneralizingEstimator : 21/35 [00:00<00:00, 78.68it/s]
69%|██████▊ | Fitting GeneralizingEstimator : 24/35 [00:00<00:00, 79.53it/s]
74%|███████▍ | Fitting GeneralizingEstimator : 26/35 [00:00<00:00, 77.06it/s]
83%|████████▎ | Fitting GeneralizingEstimator : 29/35 [00:00<00:00, 78.44it/s]
89%|████████▊ | Fitting GeneralizingEstimator : 31/35 [00:00<00:00, 76.38it/s]
97%|█████████▋| Fitting GeneralizingEstimator : 34/35 [00:00<00:00, 77.68it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00, 77.69it/s]
Score on the epochs where the stimulus was presented to the right.
scores = time_gen.score(
X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
0%| | Scoring GeneralizingEstimator : 0/1225 [00:00<?, ?it/s]
1%| | Scoring GeneralizingEstimator : 12/1225 [00:00<00:03, 338.35it/s]
2%|▏ | Scoring GeneralizingEstimator : 25/1225 [00:00<00:03, 360.71it/s]
3%|▎ | Scoring GeneralizingEstimator : 37/1225 [00:00<00:03, 359.20it/s]
4%|▍ | Scoring GeneralizingEstimator : 50/1225 [00:00<00:03, 366.39it/s]
5%|▌ | Scoring GeneralizingEstimator : 63/1225 [00:00<00:03, 364.35it/s]
6%|▌ | Scoring GeneralizingEstimator : 76/1225 [00:00<00:03, 368.38it/s]
7%|▋ | Scoring GeneralizingEstimator : 89/1225 [00:00<00:03, 371.10it/s]
8%|▊ | Scoring GeneralizingEstimator : 101/1225 [00:00<00:03, 368.81it/s]
9%|▉ | Scoring GeneralizingEstimator : 114/1225 [00:00<00:02, 370.71it/s]
10%|█ | Scoring GeneralizingEstimator : 127/1225 [00:00<00:02, 372.50it/s]
11%|█▏ | Scoring GeneralizingEstimator : 139/1225 [00:00<00:02, 370.49it/s]
12%|█▏ | Scoring GeneralizingEstimator : 152/1225 [00:00<00:02, 371.94it/s]
13%|█▎ | Scoring GeneralizingEstimator : 165/1225 [00:00<00:02, 371.28it/s]
14%|█▍ | Scoring GeneralizingEstimator : 177/1225 [00:00<00:02, 369.85it/s]
16%|█▌ | Scoring GeneralizingEstimator : 190/1225 [00:00<00:02, 371.26it/s]
17%|█▋ | Scoring GeneralizingEstimator : 203/1225 [00:00<00:02, 372.24it/s]
18%|█▊ | Scoring GeneralizingEstimator : 215/1225 [00:00<00:02, 370.90it/s]
19%|█▊ | Scoring GeneralizingEstimator : 228/1225 [00:00<00:02, 372.15it/s]
20%|█▉ | Scoring GeneralizingEstimator : 241/1225 [00:00<00:02, 371.06it/s]
21%|██ | Scoring GeneralizingEstimator : 254/1225 [00:00<00:02, 372.06it/s]
22%|██▏ | Scoring GeneralizingEstimator : 267/1225 [00:00<00:02, 373.10it/s]
23%|██▎ | Scoring GeneralizingEstimator : 280/1225 [00:00<00:02, 373.74it/s]
24%|██▍ | Scoring GeneralizingEstimator : 292/1225 [00:00<00:02, 372.44it/s]
25%|██▍ | Scoring GeneralizingEstimator : 305/1225 [00:00<00:02, 373.39it/s]
26%|██▌ | Scoring GeneralizingEstimator : 317/1225 [00:00<00:02, 372.18it/s]
27%|██▋ | Scoring GeneralizingEstimator : 330/1225 [00:00<00:02, 373.12it/s]
28%|██▊ | Scoring GeneralizingEstimator : 342/1225 [00:00<00:02, 371.97it/s]
29%|██▉ | Scoring GeneralizingEstimator : 355/1225 [00:00<00:02, 372.59it/s]
30%|███ | Scoring GeneralizingEstimator : 368/1225 [00:00<00:02, 372.72it/s]
31%|███ | Scoring GeneralizingEstimator : 380/1225 [00:01<00:02, 371.66it/s]
32%|███▏ | Scoring GeneralizingEstimator : 393/1225 [00:01<00:02, 372.55it/s]
33%|███▎ | Scoring GeneralizingEstimator : 406/1225 [00:01<00:02, 371.99it/s]
34%|███▍ | Scoring GeneralizingEstimator : 419/1225 [00:01<00:02, 372.85it/s]
35%|███▌ | Scoring GeneralizingEstimator : 431/1225 [00:01<00:02, 371.84it/s]
36%|███▌ | Scoring GeneralizingEstimator : 444/1225 [00:01<00:02, 372.70it/s]
37%|███▋ | Scoring GeneralizingEstimator : 456/1225 [00:01<00:02, 371.71it/s]
38%|███▊ | Scoring GeneralizingEstimator : 469/1225 [00:01<00:02, 372.49it/s]
39%|███▉ | Scoring GeneralizingEstimator : 482/1225 [00:01<00:01, 373.14it/s]
40%|████ | Scoring GeneralizingEstimator : 495/1225 [00:01<00:01, 373.31it/s]
41%|████▏ | Scoring GeneralizingEstimator : 507/1225 [00:01<00:01, 372.30it/s]
42%|████▏ | Scoring GeneralizingEstimator : 520/1225 [00:01<00:01, 373.05it/s]
44%|████▎ | Scoring GeneralizingEstimator : 533/1225 [00:01<00:01, 373.23it/s]
44%|████▍ | Scoring GeneralizingEstimator : 545/1225 [00:01<00:01, 372.27it/s]
46%|████▌ | Scoring GeneralizingEstimator : 558/1225 [00:01<00:01, 372.95it/s]
47%|████▋ | Scoring GeneralizingEstimator : 571/1225 [00:01<00:01, 372.64it/s]
48%|████▊ | Scoring GeneralizingEstimator : 584/1225 [00:01<00:01, 373.33it/s]
49%|████▊ | Scoring GeneralizingEstimator : 596/1225 [00:01<00:01, 372.36it/s]
50%|████▉ | Scoring GeneralizingEstimator : 609/1225 [00:01<00:01, 373.11it/s]
51%|█████ | Scoring GeneralizingEstimator : 621/1225 [00:01<00:01, 372.17it/s]
52%|█████▏ | Scoring GeneralizingEstimator : 634/1225 [00:01<00:01, 372.90it/s]
53%|█████▎ | Scoring GeneralizingEstimator : 648/1225 [00:01<00:01, 373.46it/s]
54%|█████▍ | Scoring GeneralizingEstimator : 660/1225 [00:01<00:01, 372.48it/s]
55%|█████▍ | Scoring GeneralizingEstimator : 673/1225 [00:01<00:01, 373.09it/s]
56%|█████▌ | Scoring GeneralizingEstimator : 685/1225 [00:01<00:01, 372.17it/s]
57%|█████▋ | Scoring GeneralizingEstimator : 698/1225 [00:01<00:01, 372.88it/s]
58%|█████▊ | Scoring GeneralizingEstimator : 710/1225 [00:01<00:01, 371.97it/s]
59%|█████▉ | Scoring GeneralizingEstimator : 723/1225 [00:01<00:01, 372.70it/s]
60%|██████ | Scoring GeneralizingEstimator : 735/1225 [00:01<00:01, 371.79it/s]
61%|██████ | Scoring GeneralizingEstimator : 748/1225 [00:02<00:01, 372.50it/s]
62%|██████▏ | Scoring GeneralizingEstimator : 761/1225 [00:02<00:01, 372.53it/s]
63%|██████▎ | Scoring GeneralizingEstimator : 773/1225 [00:02<00:01, 371.67it/s]
64%|██████▍ | Scoring GeneralizingEstimator : 786/1225 [00:02<00:01, 372.16it/s]
65%|██████▌ | Scoring GeneralizingEstimator : 799/1225 [00:02<00:01, 372.85it/s]
66%|██████▌ | Scoring GeneralizingEstimator : 811/1225 [00:02<00:01, 371.72it/s]
67%|██████▋ | Scoring GeneralizingEstimator : 824/1225 [00:02<00:01, 372.45it/s]
68%|██████▊ | Scoring GeneralizingEstimator : 837/1225 [00:02<00:01, 372.05it/s]
69%|██████▉ | Scoring GeneralizingEstimator : 850/1225 [00:02<00:01, 372.71it/s]
70%|███████ | Scoring GeneralizingEstimator : 862/1225 [00:02<00:00, 371.83it/s]
71%|███████▏ | Scoring GeneralizingEstimator : 875/1225 [00:02<00:00, 372.54it/s]
72%|███████▏ | Scoring GeneralizingEstimator : 887/1225 [00:02<00:00, 371.72it/s]
73%|███████▎ | Scoring GeneralizingEstimator : 899/1225 [00:02<00:00, 370.91it/s]
74%|███████▍ | Scoring GeneralizingEstimator : 912/1225 [00:02<00:00, 371.24it/s]
76%|███████▌ | Scoring GeneralizingEstimator : 925/1225 [00:02<00:00, 371.99it/s]
77%|███████▋ | Scoring GeneralizingEstimator : 938/1225 [00:02<00:00, 371.87it/s]
78%|███████▊ | Scoring GeneralizingEstimator : 951/1225 [00:02<00:00, 372.38it/s]
79%|███████▊ | Scoring GeneralizingEstimator : 963/1225 [00:02<00:00, 371.50it/s]
80%|███████▉ | Scoring GeneralizingEstimator : 976/1225 [00:02<00:00, 372.22it/s]
81%|████████ | Scoring GeneralizingEstimator : 988/1225 [00:02<00:00, 371.39it/s]
82%|████████▏ | Scoring GeneralizingEstimator : 1001/1225 [00:02<00:00, 372.08it/s]
83%|████████▎ | Scoring GeneralizingEstimator : 1014/1225 [00:02<00:00, 372.41it/s]
84%|████████▍ | Scoring GeneralizingEstimator : 1026/1225 [00:02<00:00, 371.56it/s]
85%|████████▍ | Scoring GeneralizingEstimator : 1039/1225 [00:02<00:00, 371.08it/s]
86%|████████▌ | Scoring GeneralizingEstimator : 1052/1225 [00:02<00:00, 371.75it/s]
87%|████████▋ | Scoring GeneralizingEstimator : 1065/1225 [00:02<00:00, 372.45it/s]
88%|████████▊ | Scoring GeneralizingEstimator : 1077/1225 [00:02<00:00, 371.64it/s]
89%|████████▉ | Scoring GeneralizingEstimator : 1090/1225 [00:02<00:00, 372.24it/s]
90%|█████████ | Scoring GeneralizingEstimator : 1103/1225 [00:02<00:00, 372.86it/s]
91%|█████████ | Scoring GeneralizingEstimator : 1115/1225 [00:02<00:00, 372.01it/s]
92%|█████████▏| Scoring GeneralizingEstimator : 1128/1225 [00:03<00:00, 371.80it/s]
93%|█████████▎| Scoring GeneralizingEstimator : 1140/1225 [00:03<00:00, 370.98it/s]
94%|█████████▍| Scoring GeneralizingEstimator : 1153/1225 [00:03<00:00, 371.73it/s]
95%|█████████▌| Scoring GeneralizingEstimator : 1166/1225 [00:03<00:00, 372.28it/s]
96%|█████████▌| Scoring GeneralizingEstimator : 1178/1225 [00:03<00:00, 371.48it/s]
97%|█████████▋| Scoring GeneralizingEstimator : 1191/1225 [00:03<00:00, 372.18it/s]
98%|█████████▊| Scoring GeneralizingEstimator : 1204/1225 [00:03<00:00, 372.03it/s]
99%|█████████▉| Scoring GeneralizingEstimator : 1217/1225 [00:03<00:00, 372.71it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 372.79it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 372.18it/s]
Plot
fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
scores,
vmin=0,
vmax=1.0,
cmap="RdBu_r",
origin="lower",
extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
References#
Total running time of the script: (0 minutes 6.524 seconds)