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In this post I shall assume understanding of the concepts described in apter 
(Motion) as well as seions – and – (Veors and Veor algebra) of apter  of
Riard Feynman’s Leures on Physics.

 Motivation
We want to be able to predi the position 𝒔 𝑡( ) as a funion of time of a spacecra
(without engines) around a fixed planet of mass 𝑀. In order to do this, we recall that
the velocity is given by

𝒗 = d 𝒔
d 𝑡

and the acceleration by

𝒂 = d 𝒗
d 𝑡 = dଶ 𝒔

d 𝑡ଶ
.

We assume that the mass of the spacecra is constant and that the planet sits at the
origin of our reference frame. Newton’s law of universal gravitation tells us that the
magnitude (the length) of the acceleration veor will be

𝑎 = 𝐺𝑀
𝑠ଶ ,

where 𝑠 is the length of 𝒔, and that the acceleration will be direed towards the planet,
so that

𝒂 = −𝐺𝑀𝑠ଶ
𝒔
𝑠 .

We don’t really care about the specifics, but we see that this is a funion of 𝒔. We’ll
write it 𝒂 𝒔( ). Puing it all together we could rewrite this as

dଶ 𝒔
d 𝑡ଶ

= 𝒂 𝒔( )

and go ahead and solve this kind of problem, but we don’t like having a second deriva-
tive. Instead we go ba to our first order equations and we write both of them down,

൞
d 𝒔
d 𝑡 = 𝒗
d 𝒗
d 𝑡 = 𝒂 𝒔( )

.

Let us define a veor 𝒚 with  entries instead of ,

𝒚 = 𝒔, 𝒗( ) = 𝑠௫ , 𝑠௬ , 𝑠௭ , 𝑣௫ , 𝑣௬ , 𝑣௭( ).

Similarly, define a funion 𝒇 as follows:

𝒇 𝒚( ) = 𝒗, 𝒂 𝒔( )( ).

Our problem becomes

d 𝒚
d 𝑡 = d 𝒔

d 𝑡 ,
d 𝒗
d 𝑡ቆ ቇ = 𝒗, 𝒂 𝒔( )( ) = 𝒇 𝒚( ).

So we have goen rid of that second derivative, at the cost of making the problem
-dimensional instead of -dimensional.





 Ordinary differential equations
We are interested in computing solutions to equations of the form

d 𝒚
d 𝑡 = 𝒇 𝑡, 𝒚( ).

Su an equation is called an ordinary differential equation (). e funion 𝒇 is
called the right-hand side ().

Recall that if the right-hand side didn’t depend on 𝒚, the answer would be the
integral,

d 𝒚
d 𝑡 = 𝒇 𝑡( ) ⟹ 𝒚 = ඲𝒇 𝑡( ) d 𝑡.

General s are a generalisation of this, so the methods we use to compute their so-
lutions are called integrators.

In the case where the right-hand side doesn’t depend on 𝑡 (but depends on 𝒚), as
was the case in the previous seion, the equation becomes

d 𝒚
d 𝑡 = 𝒇 𝒚( ).

For future reference, we call su a right-hand side autonomous.
In order to compute a particular solution (a particular trajeory of our spacecra),

we need to define some initial conditions (the initial position and velocity of our space-
cra) at 𝑡 = 𝑡଴. We write them as

𝒚 𝑡଴( ) = 𝒚଴.

e  together with the initial conditions form the initial value problem ()

ቐ
d 𝒚
d 𝑡 = 𝒇 𝑡, 𝒚( )

𝒚 𝑡଴( ) = 𝒚଴
.

 Euler’s method
As we want to aually solve the equation using a computer, we can’t compute 𝒚 𝑡( ) for
all values of 𝑡. Instead we approximate 𝒚 𝑡( ) at discrete time steps.

How do we compute the first point 𝒚ଵ, the approximation for 𝒚 𝑡଴ + ∆𝑡( )? By defi-
nition of the derivative, we have

lim∆௧→଴
𝒚 𝑡଴ + ∆𝑡( ) − 𝒚 𝑡଴( )

∆𝑡 = 𝒇 𝑡଴, 𝒚଴( ).

is means that if we take a sufficiently small ∆𝑡, we have

𝒚 𝑡଴ + ∆𝑡( ) − 𝒚 𝑡଴( )
∆𝑡 ≈ 𝒇 𝑡଴, 𝒚଴( ),

where the approximation gets beer as ∆𝑡 gets smaller. Our first method for approx-
mimating the solution is therefore to compute

𝒚ଵ = 𝒚଴ + 𝒇 𝑡଴, 𝒚଴( )∆𝑡.

Note that this is an approximation:

𝒚ଵ ≈ 𝒚 𝑡଴ + ∆𝑡( ).

For the rest of the solution, we just repeat the same method, yielding

𝒚௡ାଵ = 𝒚௡ + 𝒇 𝑡௡ , 𝒚௡( )∆𝑡.
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Again these are approximations:

𝒚௡ ≈ 𝒚 𝑡଴ + 𝑛∆𝑡( ).

is is called Euler’s method, aer the Swiss mathematician and physicist Leonhard
Euler (–). A good visualisation of this method, as well as a geometric interpre-
tation, can be found in theWikipedia article http://en.wikipedia.org/wiki/Euler_
method.

We want to know two things: how good our approximation is, and how mu we
need to reduce ∆𝑡 in order tomake it beer. In order to do that, we use Taylor’s theorem.

Taylor’s theorem

Recall that if ୢ 𝒚
ୢ ௧ is constant,

𝒚 𝑡଴ + ∆𝑡( ) = 𝒚 𝑡଴( ) + d 𝒚
d 𝑡 𝑡଴( )∆𝑡.

If ୢమ 𝒚
ୢ ௧మ

is constant,

𝒚 𝑡଴ + ∆𝑡( ) = 𝒚 𝑡଴( ) + d 𝒚
d 𝑡 𝑡଴( )∆𝑡 + dଶ 𝒚

d 𝑡ଶ
𝑡଴( )∆𝑡

ଶ

2 .

In general, if we assume the 𝑛th derivative to be constant,

𝒚 𝑡଴ + ∆𝑡( ) = 𝒚 𝑡଴( ) +
௡

෍
௝ୀଵ

d௝ 𝒚
d 𝑡௝

𝑡଴( )∆𝑡
௝

𝑗! ,

where 𝑗! = 1 × 2 × 3 ×⋯ × 𝑗 is the faorial of 𝑗.
Taylor’s theorem roughly states that this is a good approximation, whi gets beer

as 𝑛 gets higher. Formally, if 𝒚 is differentiable 𝑛 times, for sufficiently small ∆𝑡,

𝒚 𝑡଴ + ∆𝑡( ) = 𝒚 𝑡଴( ) +
௡ିଵ

෍
௝ୀଵ

d௝ 𝒚
d 𝑡௝

𝑡଴( )∆𝑡
௝

𝑗! + 𝒪 ∆𝑡௡( ), (.)

where 𝒪 ∆𝑡௡( ) is read “big 𝒪 of ∆𝑡௡”. It is not a specific funion, but stands for “some
funion whose magnitude is bounded by 𝐾∆𝑡௡ for some constant 𝐾 as ∆𝑡 goes to 0”.
is big 𝒪 notation indicates the quality of the approximation: it represents error terms
that vanish at least as fast as ∆𝑡௡.

ere is a version of Taylor’s theorem for multivariate funions¹; the idea is the
same, but stating it in its general form is complicated. Instead let us look at the cases
we will need here.

For a funion 𝒇 𝑡, 𝒚( ), We have the analogue to the 𝑛 = 1 version of Taylor’s theo-
rem:

𝒇 𝑡଴, 𝒚଴ + ∆𝒚( ) = 𝒇 𝑡଴, 𝒚଴( ) + 𝒪 ∆𝒚| |( ) (.)

and the analogue to the 𝑛 = 2 version:

𝒇 𝑡଴, 𝒚଴ + ∆𝒚( ) = 𝒇 𝑡଴, 𝒚଴( ) + d 𝒇
d𝒚 𝑡଴, 𝒚଴( )∆𝒚 + 𝒪 ∆𝒚| |ଶ( ). (.)

Knowing what ୢ 𝒇
ୢ𝒚 𝑡଴, 𝒚଴( ) aually means is not important here, it is just something

that you can multiply a veor with to get another veor.²

¹Funions of a veor.
²It is a linear map, so if you know what a matrix is, you can see it as one.

http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/Euler_method
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Error analysis

Armed with this theorem, we can look ba at Euler’s method. We computed the ap-
proximation for 𝒚 𝑡଴ + ∆𝑡( ) as

𝒚ଵ = 𝒚଴ + 𝒇 𝑡଴, 𝒚଴( )∆𝑡 = 𝒚 𝑡଴( ) + d 𝒚
d 𝑡 𝑡଴( )∆𝑡.

By definition of the derivative, we have seen that as ∆𝑡 approaes 0, 𝒚ଵ will become a
beer approximation for 𝒚 𝑡 + ∆𝑡( ). However, when we reduce the time step, we need
more steps to compute the solution over the same duration. What is the error when
we rea some 𝑡end? ere are obviously ௧endି௧బ

∆௧ steps, so we should multiply the error
on a single step by ௧endି௧బ

∆௧ . is means that the error on a single step needs to vanish³
faster than ∆𝑡.

In order to compute themagnitude of the error, we’ll use Taylor’s theorem for 𝑛 = 2.
We have, for sufficiently small ∆𝑡,

𝒚 𝑡଴ + ∆𝑡( ) − 𝒚ଵ| | = 𝒚 𝑡଴( ) + d 𝒚
d 𝑡 𝑡଴( )∆𝑡 + 𝒪 ∆𝑡ଶ( ) − 𝒚 𝑡଴( ) − d 𝒚

d 𝑡 𝑡଴( )∆𝑡ቤ ቤ

= 𝒪 ∆𝑡ଶ( )| | ≤ 𝐾∆𝑡ଶ

for some constant 𝐾 whi does not depend on ∆𝑡 (recall that this is the definition of
the big 𝒪 notation). is means that the error on one step behaves as the square of the
time step: it is divided by four when the time step is halved.

It follows that the error in the approximation at 𝑡end should intuitively behave as
௧endି௧బ

∆௧ ∆𝑡ଶ = 𝑡end − 𝑡଴( )∆𝑡, and indeed this is the case. In order to properly show that,
some additional assumptions must be made, the description of whi is beyond the
scope of this introduion.⁴

us, the conclusion about Euler’s method is that when computing the solution
over a fixed duration 𝑡end − 𝑡଴, the error behaves like ∆𝑡, i.e., linearly: halving the time
step will halve the error. We call Euler’s method a first-order method.

We remark that we can rewrite Euler’s method as follows.

𝒌ଵ = 𝒇 𝑡଴, 𝒚଴( );
𝒚ଵ = 𝒚଴ + 𝒌ଵ∆𝑡.

is will be useful in the wider scope of Runge-Kua integrators.
Can we do beer than first-order? In order to answer this question, we note that

the reason why the error in Euler’s method was linear for a fixed duration is that it was
quadratic for a single time step. e reason why it was quadratic for a single time step
is that our approximation mated the first derivative term in the Taylor expansion.
If we could mat higher-order terms in the expansion, we would get a higher-order
method. Specifically, if our approximation mates the Taylor expansion up to and
including the 𝑘th derivative, we’ll get a 𝑘th order method.

 e midpoint method
How dowemat higher derivatives? We don’t knowwhat they are: the first derivative
is given to us by the problem (it’s 𝒇 𝑡, 𝒚 𝑡( )( ) at time 𝑡), the other ones are not. However,
if we look at 𝒈 𝑡( ) = 𝒇 𝑡, 𝒚 𝑡( )( ) as a funion of 𝑡, we have

𝒈 = d 𝒚
d 𝑡

d 𝒈
d 𝑡 = dଶ 𝒚

d 𝑡ଶ
.

³For the advanced reader: uniformly.
⁴For the advanced reader: the solution has to be Lipsi continuous and its second derivative has to be

bounded.
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Of course, we can’t direly compute the derivative of 𝒈, because we don’t even know
what 𝒈 itself looks like: that would entail knowing 𝒚, whi is what we are trying to
compute.

However, let us assume for a moment that we could compute 𝒈 𝑡଴+ ∆௧
ଶቀ ቁ. Using

Taylor’s theorem on 𝒈,

𝒈 𝑡଴ +
∆𝑡
2ቆ ቇ = 𝒈 𝑡଴( ) + d 𝒈

d 𝑡 𝑡଴( )∆𝑡2 + 𝒪 ∆𝑡ଶ( ).

Substituting 𝒈 yields.

𝒈 𝑡଴ +
∆𝑡
2ቆ ቇ = d 𝒚

d 𝑡 𝑡଴( ) + dଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡2 + 𝒪 ∆𝑡ଶ( ).

is looks like the first and second derivative terms in the Taylor expansion of 𝒚. ere-
fore, the following expression would yield a third-order approximation for the step
𝒚 𝑡 + ∆𝑡( ) (and thus a second-order method), if only we could compute it:

𝒚̂ଵ = 𝒚଴ + 𝒈 𝑡଴ +
∆𝑡
2ቆ ቇ∆𝑡 = 𝒚଴ + 𝒇 𝑡଴ +

∆𝑡
2 , 𝒚 𝑡଴ +

∆𝑡
2ቆ ቇቆ ቇ∆𝑡.

Indeed,

𝒚̂ଵ = 𝒚଴ +
d 𝒚
d 𝑡 𝑡଴( )∆𝑡 + dଶ 𝒚

d 𝑡ଶ
𝑡଴( )∆𝑡

ଶ

2 + 𝒪 ∆𝑡ଷ( )

= 𝒚 𝑡 + ∆𝑡( ) + 𝒪 ∆𝑡ଷ( ).

Unfortunately, we can’t compute 𝒈 𝑡଴+ ∆௧
ଶቀ ቁ exaly, because for that we would need to

know 𝒚 𝑡଴+ ∆௧
ଶቀ ቁ. Instead, we try using a second-order approximation for it, obtained

using one step of Euler’s method, namely

𝒚଴ + 𝒇 𝑡଴, 𝒚଴( )∆𝑡2 = 𝒚 𝑡଴ +
∆𝑡
2ቆ ቇ + 𝒪 ∆𝑡ଶ( ).

We use it to get an approximation 𝒚ଵ of 𝒚̂ଵ.

𝒚 𝑡଴ + ∆𝑡( ) ≈ 𝒚̂ଵ ≈ 𝒚ଵ = 𝒚଴ + 𝒇 𝑡଴ +
∆𝑡
2 , 𝒚଴ +

∆𝑡
2 𝒇 𝑡଴, 𝒚଴( )ቆ ቇ∆𝑡

In order to show that 𝒚ଵ is a third-order approximation for 𝒚 𝑡 + ∆𝑡( ), we show that
it is a third-order approximation for 𝒚̂ଵ. In order to do that, we use our error bound on
the step of Euler’s method and compute the multivariate first-order Taylor expansion
of 𝒇 in its second argument (⁇),

𝒇 𝑡଴ +
∆𝑡
2 , 𝒚଴ +

∆𝑡
2 𝒇 𝑡଴, 𝒚଴( )ቆ ቇ = 𝒇 𝑡଴ +

∆𝑡
2 , 𝒚 𝑡଴ +

∆𝑡
2ቆ ቇ + 𝒪 ∆𝑡ଶ( )ቆ ቇ

= 𝒇 𝑡଴ +
∆𝑡
2 , 𝒚 𝑡଴ +

∆𝑡
2ቆ ቇቆ ቇ + 𝒪 ∆𝑡ଶ( ).

Substituting yields

𝒚ଵ = 𝒚଴ + 𝒇 𝑡଴ +
∆𝑡
2 , 𝒚଴ +

∆𝑡
2 𝒇 𝑡଴, 𝒚଴( )ቆ ቇ∆𝑡

= 𝒚଴ + 𝒇 𝑡଴ +
∆𝑡
2 , 𝒚 𝑡଴ +

∆𝑡
2ቆ ቇቆ ቇ∆𝑡 + 𝒪 ∆𝑡ଷ( )

= 𝒚̂ଵ + 𝒪 ∆𝑡ଷ( )
= 𝒚 𝑡 + ∆𝑡( ) + 𝒪 ∆𝑡ଷ( ).

e method is third-order on a single step, so it is a second order method. e idea
here was to say that the derivative at 𝑡଴ is not a good enough approximation for the





behaviour between 𝑡଴ and 𝑡଴ + ∆𝑡, and to compute the derivative halfway through
𝒈 𝑡଴+ ∆௧

ଶቀ ቁ instead. In order to do that, we had to use a lower-order method (our Euler
half-step).

A good visualisation of this method, as well as a geometric interpretation, can be
found on the Wikipedia article http://en.wikipedia.org/wiki/Midpoint_method.

Again we remark that we can rewrite the midpoint method as follows.

𝒌ଵ = 𝒇 𝑡଴, 𝒚଴( );

𝒌ଶ = 𝒇 𝑡଴, 𝒚଴ + 𝒌ଵ
∆𝑡
2ቆ ቇ;

𝒚ଵ = 𝒚଴ + 𝒌ଶ∆𝑡.

is will be useful in the wider scope of Runge-Kua integrators.

 Heun’s method
Before we move on to the description of general Runge-Kua methods, let us look at
another take on second-order methods.

Instead of approximating the behaviour between 𝑡଴ and 𝑡଴ + ∆𝑡 by the derivative
halfway through, what if we averaged the derivatives at the end and at the beginning?

𝒚̂ଵ = 𝒚଴ +
𝒈 𝑡଴( ) + 𝒈 𝑡଴ + ∆𝑡( )

2 ∆𝑡.

Let us compute the error:

𝒚̂ଵ = 𝒚଴ +
ୢ 𝒚
ୢ ௧ 𝑡଴( ) + ୢ 𝒚

ୢ ௧ 𝑡଴( ) + ୢమ 𝒚
ୢ ௧మ

𝑡଴( )∆𝑡 + 𝒪 ∆𝑡ଶ( )
2 ∆𝑡

= 𝒚଴ +
d 𝒚
d 𝑡 𝑡଴( )∆𝑡 + dଶ 𝒚

d 𝑡ଶ
𝑡଴( )∆𝑡

ଶ

2 + 𝒪 ∆𝑡ଷ( ) = 𝒚 𝑡଴ + ∆𝑡( ) + 𝒪 ∆𝑡ଷ( ).

is is indeed a third-order approximation for the step, so this would give us a second-
order method. As in the midpoint method, we can’t aually compute 𝒈 𝑡଴ + ∆𝑡( ). In-
stead we approximate it using Euler’s method, so that our step becomes:

𝒚̂ଵ ≈ 𝒚ଵ = 𝒚଴ +
𝒇 𝑡଴, 𝒚଴( ) + 𝒇 𝑡଴ + ∆𝑡, 𝒚଴ + 𝒇 𝑡଴, 𝒚଴( )∆𝑡( )

2 ∆𝑡.

We leave eing that the approximation 𝒚̂ଵ ≈ 𝒚ଵ is indeed third-order as an exer-
cise to the reader. is method is called Heun’s method, aer German mathematician
Karl Heun (–). A good visualisation of this method, as well as a geometric in-
terpretation, can be found on theWikipedia article http://en.wikipedia.org/wiki/
Heun's_method#Description.

It looks like Heun’s method is slower than the midpoint method, as there are three
evaluations of 𝒇. However, two of those are with the same arguments, so we can rewrite
things as follows:

𝒌ଵ = 𝒇 𝑡଴, 𝒚଴( ) is our approximation for 𝒈 𝑡଴( );
𝒌ଶ = 𝒇 𝑡଴ + ∆𝑡, 𝒚଴ + 𝒌ଵ∆𝑡( ) is our approximation for 𝒈 𝑡଴ + ∆𝑡( );

𝒚ଵ = 𝒚଴ +
𝒌ଵ + 𝒌ଶ

2 ∆𝑡 is our approximation for 𝒚 𝑡 + ∆𝑡( ).

is process can be generalised, yielding so-called Runge-Kua methods.

 Runge-Kutta methods
In a Runge-Kua method,⁵ we compute the step 𝒚ଵ ≈ 𝒚 𝑡଴ + ∆𝑡( ) as a linear approxi-
mation

𝒚ଵ = 𝒚଴ + 𝝀∆𝑡.
⁵Named aer German mathematicians Carl David Tolmé Runge (–) and Martin Wilhelm Kua

(–).

http://en.wikipedia.org/wiki/Midpoint_method
http://en.wikipedia.org/wiki/Heun's_method#Description
http://en.wikipedia.org/wiki/Heun's_method#Description
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e idea is that we want to use a weighted average (with weights 𝑏௜) of the derivative
𝒈 of 𝒚 at 𝑠 points between 𝑡଴ and 𝑡଴ + ∆𝑡 as our approximation 𝝀,

𝒚̂ଵ = 𝒚଴ + 𝑏ଵ𝒈 𝑡଴( ) + 𝑏ଶ𝒈 𝑡଴ + 𝑐ଶ∆𝑡( ) + ⋯ + 𝑏௦𝒈 𝑡଴ + 𝑐௦∆𝑡( )( )∆𝑡,

but we cannot do that because we do not know how to compute 𝒈; we only know
how to compute 𝒇. Instead we compute increments 𝒌௜ whi approximate the deriva-
tive, 𝒌௜ ≈ 𝒈 𝑡଴ + 𝑐௜∆𝑡( ), and we take a weighted average of these as our overall linear
approximation:

𝝀 = 𝑏ଵ𝒌ଵ + 𝑏ଶ𝒌ଶ +⋯+ 𝑏௦𝒌௦,
𝒚ଵ = 𝒚଴ + 𝑏ଵ𝒌ଵ + 𝑏ଶ𝒌ଶ +⋯+ 𝑏௦𝒌௦( )∆𝑡.

In order to compute ea increment, we can use the previous ones to constru an
approximation that has high enough order.

Surprisingly, we will see that the approximation

𝑏ଵ𝒌ଵ + 𝑏ଶ𝒌ଶ +⋯+ 𝑏௦𝒌௦ ≈ 𝑏ଵ𝒈 𝑡଴( ) + 𝑏ଶ𝒈 𝑡଴ + 𝑐ଶ∆𝑡( ) + ⋯ + 𝑏௦𝒈 𝑡଴ + 𝑐௦∆𝑡( )

is generally beer than the individual approximations 𝒌௜ ≈ 𝒈 𝑡଴ + 𝑐௜∆𝑡( ).

Definition
ARunge-Kuamethod is defined by itsweights 𝒃 = 𝑏ଵ, … , 𝑏௦( ), its nodes 𝒄 = 𝑐ଵ, … , 𝑐௦( )
and its Runge-Kua matrix

𝑨 = ቌ
𝑎ଵଵ ⋯ 𝑎ଵ௦
⋮ ⋱ ⋮
𝑎௦ଵ ⋯ 𝑎௦௦

ቍ .

It is typically wrien as a Butcher tableau:

𝑐ଵ 𝑎ଵଵ ⋯ 𝑎ଵ௦
⋮ ⋮ ⋱ ⋮
𝑐௦ 𝑎௦ଵ ⋯ 𝑎௦௦

𝑏ଵ ⋯ 𝑏௦

Wewill only consider explicit Runge-Kuamethods, i.e., those where 𝑨 is strily lower
triangular, so that the Buter tableau is as follows (blank spaces in 𝑨 are zeros).

0
𝑐ଶ 𝑎ଶଵ
𝑐ଷ 𝑎ଷଵ 𝑎ଷଶ
⋮ ⋮ ⋮ ⋱
𝑐௦ 𝑎௦ଵ 𝑎௦ଶ ⋯ 𝑎௦,௦ିଵ

𝑏ଵ 𝑏ଶ ⋯ 𝑏௦ିଵ 𝑏௦

e step is computed using the weighted sum of the increments as a linear approxima-
tion,

𝒚ଵ = 𝒚଴ + 𝑏ଵ𝒌ଵ + 𝑏ଶ𝒌ଶ +⋯+ 𝑏௦𝒌௦( )∆𝑡,

where the increments are computed in 𝑠 stages as follows:⁶

𝒌ଵ = 𝒇 𝑡଴, 𝑦଴( )
𝒌ଶ = 𝒇 𝑡଴ + 𝑐ଶ∆𝑡, 𝑦଴ + 𝑎ଶଵ𝒌ଵ∆𝑡( )
𝒌ଷ = 𝒇 𝑡଴ + 𝑐ଷ∆𝑡, 𝑦଴ + 𝑎ଷଵ𝒌ଵ + 𝑎ଷଶ𝒌ଶ( )∆𝑡( )

⋮
𝒌௜ = 𝒇 𝑡଴ + 𝑐௜∆𝑡, 𝑦଴ + 𝑎௜ଵ𝒌ଵ + 𝑎௜ଶ𝒌ଶ +⋯+ 𝑎௜,௜ିଵ𝒌௜ିଵ( )∆𝑡( )

⋮
𝒌௦ = 𝒇 𝑡଴ + 𝑐௦∆𝑡, 𝑦଴ + 𝑎௦ଵ𝒌ଵ + 𝑎௦ଶ𝒌ଶ +⋯+ 𝑎௦,௦ିଵ𝒌௦ିଵ( )∆𝑡( ).

⁶Caveat leor : 𝒌೔ is oen defined as ∆௧𝒇 ௧బ ା ௖೔∆௧, ௬బ ା ∆௧ ௔೔భ𝒌భ ା ௔೔మ𝒌మ ା⋯ା ௔೔,೔షభ𝒌೔షభ( )( ). In this
case it is an approximation of the increment using the derivative at ௧బ ା ௖೔∆௧ rather than an approximation
of the derivative itself.





Recall that 𝒌௜ is an approximation for 𝒈 𝑡଴ + 𝑐௜∆𝑡( ), the derivative of 𝒚 at 𝑡଴ + 𝑐௜∆𝑡, so
that the

𝑦଴ + 𝑎௜ଵ𝒌ଵ + 𝑎௜ଶ𝒌ଶ +⋯+ 𝑎௜,௜ିଵ𝒌௜ିଵ( )∆𝑡

are themselves linear approximations obtained by weighted averages of approximated
derivatives.

Note that ea 𝒌௜ only depends on the 𝒌௝ for 𝑗 < 𝑖, so that they can be computed in
order.⁷

Note that all of the methods described above were Runge-Kua methods. We invite
the reader to e that the 𝒌௜ described in the relevant seions correspond to the
following tableaux: Euler’s method has Buter tableau

0
1 ,

e midpoint method is described by

0
ଵ
ଶ

ଵ
ଶ
0 1

and Heun’s method by
0
1 1

ଵ
ଶ

ଵ
ଶ

.

An example: Kutta’s third-order method

We will now consider the Runge-Kua method given by the following Buter tableau.

0
ଵ
ଶ

ଵ
ଶ

1 −1 2
ଵ
଺

ଶ
ଷ

ଵ
଺

We have

𝒚ଵ = 𝒚଴ +
𝒌ଵ
6 + 2𝒌ଶ

3 + 𝒌ଷ
6ቆ ቇ∆𝑡.

is is an approximation for

𝒚̂ଵ = 𝒚଴ +
𝒈 𝑡଴( )
6 +

2𝒈 𝑡଴+ ∆௧
ଶቀ ቁ

3 + 𝒈 𝑡଴ + ∆𝑡( )
6൭ ൱∆𝑡

Let us look at the order of 𝒚̂ଵ as an approximation of 𝒚 𝑡଴ + ∆𝑡( ).

𝒚̂ଵ = 𝒚଴ +
𝒈 𝑡଴( )
6 +

2𝒈 𝑡଴+ ∆௧
ଶቀ ቁ

3 + 𝒈 𝑡଴ + ∆𝑡( )
6൭ ൱∆𝑡

= 𝒚଴ +
1
6
d 𝒚
d 𝑡 𝑡଴( )∆𝑡

+ 2
3

d 𝒚
d 𝑡 𝑡଴( ) + dଶ 𝒚

d 𝑡ଶ
𝑡଴( )∆𝑡2 + dଷ 𝒚

d 𝑡ଷ
𝑡଴( )∆𝑡

ଶ

8ቆ ቇ∆𝑡

+ 1
6

d 𝒚
d 𝑡 𝑡଴( ) + dଶ 𝒚

d 𝑡ଶ
𝑡଴( )∆𝑡 + dଷ 𝒚

d 𝑡ଷ
𝑡଴( )∆𝑡

ଶ

2ቆ ቇ∆𝑡

+ 𝒪 ∆𝑡ଷ( )∆𝑡

= 𝒚଴ +
d 𝒚
d 𝑡 𝑡଴( )∆𝑡 + dଶ 𝒚

d 𝑡ଶ
𝑡଴( )∆𝑡

ଶ

2 + dଷ 𝒚
d 𝑡ଷ

𝑡଴( )∆𝑡
ଷ

6 + 𝒪 ∆𝑡ସ( )

= 𝒚 𝑡଴ + ∆𝑡( ) + 𝒪 ∆𝑡ସ( ),

⁷is is why we call the method explicity. In an implicit method, ea ௞೔ can depend on all the ௞ೕ, so
that you need to solve a system of algebraic equations in order to compute them.
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so it looks like this could be a third-order method (𝒚̂ଵ ≈ 𝒚 𝑡଴ + ∆𝑡( ) is a fourth-order
approximation).

In order for that to work however, we need 𝒚ଵ ≈ 𝒚̂ଵ to be fourth-order, in other
words, we need the difference between

𝒈 𝑡଴( )
6 +

2𝒈 𝑡଴+ ∆௧
ଶቀ ቁ

3 + 𝒈 𝑡଴ + ∆𝑡( )
6

and

𝒌ଵ
6 + 2𝒌ଶ

3 + 𝒌ଷ
6

to be 𝒪 ∆𝑡ଷ( ).
We have 𝒌ଵ = 𝒈 𝑡଴( ). If we compute 𝒌ଶ, we see that it is only a second-order

approximation for 𝒈 𝑡଴+ ∆௧
ଶቀ ቁ, e fourth line follows from (⁇),

the fih by taking the Taylor
expansion of ୢ 𝒇

ୢ𝒚 𝑡, 𝒚 𝑡( )( ) as a
funion of 𝑡.𝒌ଶ = 𝒇 𝑡଴ +

∆𝑡
2 , 𝒚଴ + 𝒌ଵ

∆𝑡
2ቆ ቇ

= 𝒇 𝑡଴ +
∆𝑡
2 , 𝒚଴ +

d 𝒚
d 𝑡 𝑡଴( )∆𝑡2ቆ ቇ

= 𝒇 𝑡଴ +
∆𝑡
2 , 𝒚 𝑡଴ +

∆𝑡
2ቆ ቇ − dଶ 𝒚

d 𝑡ଶ
𝑡଴( )∆𝑡

ଶ

8 + 𝒪 ∆𝑡ଷ( )ቆ ቇ

= 𝒇 𝑡଴ +
∆𝑡
2 , 𝒚 𝑡଴ +

∆𝑡
2ቆ ቇቆ ቇ − d 𝒇

d𝒚 𝑡଴ +
∆𝑡
2 , 𝒚 𝑡଴ +

∆𝑡
2ቆ ቇቆ ቇd

ଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡
ଶ

8 + 𝒪 ∆𝑡ଷ( )

= 𝒇 𝑡଴ +
∆𝑡
2 , 𝒚 𝑡଴ +

dଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡2ቆ ቇቆ ቇ − d 𝒇
d𝒚 𝑡଴, 𝒚 𝑡଴( )( )d

ଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡
ଶ

8 + 𝒪 ∆𝑡ଷ( )

= 𝒈 𝑡଴ +
∆𝑡
2ቆ ቇ − d 𝒇

d𝒚 𝑡଴, 𝒚 𝑡଴( )( )d
ଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡
ଶ

8 + 𝒪 ∆𝑡ଷ( ),

so in order for the method to be third-order, we need this second-order term to be
cancelled by the error in 𝒌ଷ. We can compute this error,

𝒌ଷ = 𝒇 𝑡଴ + ∆𝑡, 𝒚଴ − 𝒌ଵ∆𝑡 + 2𝒌ଶ∆𝑡( )

= 𝒇 𝑡଴ + ∆𝑡, 𝒚଴ −
d 𝒚
d 𝑡 𝑡଴( )∆𝑡 + 2𝒇 𝑡଴ +

∆𝑡
2 , 𝒚 𝑡଴ +

∆𝑡
2ቆ ቇቆ ቇ∆𝑡 + 𝒪 ∆𝑡ଷ( )ቆ ቇ

= 𝒇 𝑡଴ + ∆𝑡, 𝒚଴ −
d 𝒚
d 𝑡 𝑡଴( )∆𝑡 + 2d 𝒚d 𝑡 𝑡଴ +

∆𝑡
2ቆ ቇ∆𝑡 + 𝒪 ∆𝑡ଷ( )ቆ ቇ

= 𝒇 𝑡଴ + ∆𝑡, 𝒚଴ −
d 𝒚
d 𝑡 𝑡଴( )∆𝑡 + 2d 𝒚d 𝑡 𝑡଴( )∆𝑡 + dଶ 𝒚

d 𝑡ଶ
𝑡଴( )∆𝑡ଶ + 𝒪 ∆𝑡ଷ( )ቆ ቇ

= 𝒇 𝑡଴ + ∆𝑡, 𝒚 𝑡଴ + ∆𝑡( ) + dଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡
ଶ

2 + 𝒪 ∆𝑡ଷ( )ቆ ቇ

= 𝒇 𝑡଴ + ∆𝑡, 𝒚 𝑡଴ + ∆𝑡( )( ) + d 𝒇
d𝒚 𝑡଴, 𝒚 𝑡଴( )( )d

ଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡
ଶ

2 + 𝒪 ∆𝑡ଷ( )

= 𝒈 𝑡଴ + ∆𝑡( ) + d 𝒇
d𝒚 𝑡଴, 𝒚 𝑡଴( )( )d

ଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡
ଶ

2 + 𝒪 ∆𝑡ଷ( ),

and indeed the second-order error term from 𝒌ଷ cancels with the one from 𝒌ଶ in the
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weighted average, so that for the whole step we get:

𝒚ଵ = 𝒚଴ +
𝒌ଵ
6 + 2𝒌ଶ

3 + 𝒌ଷ
6ቆ ቇ∆𝑡

= 𝒚଴ + ቆ𝒈 𝑡଴( )
6

+
2𝒈 𝑡଴+ ∆௧

ଶቀ ቁ
3 − 2

3
d 𝒇
d𝒚 𝑡଴, 𝒚 𝑡଴( )( )d

ଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡
ଶ

8

+ 𝒈 𝑡଴ + ∆𝑡( )
6 + 1

6
d 𝒇
d𝒚 𝑡଴, 𝒚 𝑡଴( )( )d

ଶ 𝒚
d 𝑡ଶ

𝑡଴( )∆𝑡
ଶ

2

+ 𝒪 ∆𝑡ଷ( )ቇ∆𝑡

= 𝒚଴ + ∆𝑡 𝒈 𝑡଴( )
6 +

2𝒈 𝑡଴+ ∆௧
ଶቀ ቁ

3 + 𝒈 𝑡଴ + ∆𝑡( )
6൭ ൱ + 𝒪 ∆𝑡ସ( )

= 𝒚̂ଵ + 𝒪 ∆𝑡ସ( )
= 𝒚 𝑡଴ + ∆𝑡( ) + 𝒪 ∆𝑡ସ( ).

e error on the step is fourth-order and thus the is accurate to the third order.

Closing remarks

Fiddling with Taylor’s theorem in order to find a high-order method by trying to make
low-order terms cancel out is hard and involves a lot of guesswork. is is where
the Runge-Kua formulation shines: one can e the order of the method by seeing
whether the coefficients 𝑨, 𝒃, 𝒄 satisfy the corresponding order conditions.

A method has order 1 if and only if it satisfies

௦

෍
௜ୀଵ

𝑏௜ = 1.

It has order 2 if and only if, in addition to the above equation, it satisfies

௦

෍
௜ୀଵ

𝑏௜𝑐௜ =
1
2 .

It has order 3 if and only if, in addition to satisfying the above two equations, it satisfies

⎧
⎪⎪

⎨
⎪⎪
⎩

௦

෍
௜ୀଵ

𝑏௜𝑐ଶ௜ =
1
3

௦

෍
௜ୀଵ

௦

෍
௝ୀଵ

𝑏௜𝑎௜௝𝑐௝ =
1
6

.

It has order 4 if and only if, in addition to satisfying the above four equations, it satisfies

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

௦

෍
௜ୀଵ

𝑏௜𝑐ଷ௜ =
1
4

௦

෍
௜ୀଵ

௦

෍
௝ୀଵ

𝑏௜𝑐௜𝑎௜௝𝑐௝ =
1
8

௦

෍
௜ୀଵ

௦

෍
௝ୀଵ

𝑏௜𝑎௜௝𝑐ଶ௝ =
1
12

௦

෍
௜ୀଵ

௦

෍
௝ୀଵ

௦

෍
௞ୀଵ

𝑏௜𝑎௜௝𝑎௝௞𝑐௞ =
1
24

.
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e number of order conditions explodes with increasing order, and they are not easy
to solve. ere are cases where only numerical values are known for the coefficients.

We leave the following as an exercise to the reader: araerise all explicit second-
order methods with two stages (𝑠 = 2). Che your result by computing Taylor expan-
sions.
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