{ "cells": [ { "cell_type": "markdown", "id": "26e50a28", "metadata": {}, "source": [ "# Introductory tutorial\n", "\n", "This is the introduction to a four part tutorial which demonstrates how to de-duplicate a small dataset using simple settings.\n", "\n", "The aim of the tutorial is to demonstarate core Splink functionality succinctly, rather that comprehensively document all configuration options.\n", "\n", "The four parts are:\n", "\n", "- [1. Exploratory analysis](https://moj-analytical-services.github.io/splink/demos/01_Exploratory_analysis.html)\n", "\n", "- [2. Estimating model parameters](https://moj-analytical-services.github.io/splink/demos/02_Estimating_model_parameters.html)\n", "\n", "- [3. Predicting results](https://moj-analytical-services.github.io/splink/demos/03_Predicting_results.html)\n", "\n", "- [4. Quality assurance](https://moj-analytical-services.github.io/splink/demos/04_Quality_assurance.html)\n", "\n", "\n", "Throughout the tutorial, we use the duckdb backend, which is the recommended option for smaller datasets of up to around 1 million records on a normal laptop.\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "id": "8cb762bf", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 5 }