Albert Goldfain Yongqun "Oliver" He Werner Ceusters Janna Hastings Stefan Schulz Robert Rovetto Melanie Courtot Randall Dipert BFO 2 Reference: For both terms and relational expressions in BFO, we distinguish between primitive and defined. ‘Entity’ is an example of one such primitive term. Primitive terms in a highest-level ontology such as BFO are terms that are so basic to our understanding of reality that there is no way of defining them in a non-circular fashion. For these, therefore, we can provide only elucidations, supplemented by examples and by axioms. Mauricio Almeida Fabian Neuhaus Bjoern Peters James A. Overton Larry Hunter BFO 2 Reference: BFO’s treatment of continuants and occurrents – as also its treatment of regions, rests on a dichotomy between space and time, and on the view that there are two perspectives on reality – earlier called the ‘SNAP’ and ‘SPAN’ perspectives, both of which are essential to the non-reductionist representation of reality as we understand it from the best available science [30 Mathias Brochhausen David Osumi-Sutherland Pierre Grenon Mark Ressler Jie Zheng Leonard Jacuzzo Chris Mungall Bill Duncan BFO 2 Reference: BFO does not claim to be a complete coverage of all entities. It seeks only to provide coverage of those entities studied by empirical science together with those entities which affect or are involved in human activities such as data processing and planning – coverage that is sufficiently broad to provide assistance to those engaged in building domain ontologies for purposes of data annotation [17 Thomas Bittner Barry Smith Jonathan Bona Ron Rudnicki Alan Ruttenberg Ludger Jansen The http://purl.obolibary.org/obo/bfo/classes-only.owl variant of BFO ("bfo_classes_only.owl") includes only the class hierarchy and annotations from the full OWL version of BFO 2: http://purl.obolibary.org/obo/bfo.owl ("bfo.owl"). There are no object properties or logical axioms that use the object properties in bfo_classes_only.owl. As the logical axioms in the bfo_classes_only.owl variant are limited to subclass and disjoint assertions they are much weaker than the logical axioms in bfo.owl. If you plan to use the relations that define BFO 2, you should import bfo.owl instead of bfo_classes_only.owl. To the extent that the relations are used without importing bfo.owl, be mindful that they should be used in a manner consistent with their use in bfo.owl. Otherwise if your ontology is imported by a another ontology that imports bfo.owl there may be inconsistencies. See the BFO 2 release notes for further information about BFO 2. Please note that the current release of bfo.owl uses temporal relations when the subject or object is a continuant, a major change from BFO 1. This is an early version of BFO version 2 and has not yet been extensively reviewed by the project team members. Please see the project site http://code.google.com/p/bfo/ , the bfo2 owl discussion group http://groups.google.com/group/bfo-owl-devel , the bfo2 discussion group http://groups.google.com/group/bfo-devel, the tracking google doc http://goo.gl/IlrEE, and the current version of the bfo2 reference http://purl.obolibrary.org/obo/bfo/dev/bfo2-reference.docx . This ontology is generated from a specification at http://bfo.googlecode.com/svn/trunk/src/ontology/owl-group/specification/ and with the code that generates the OWL version in http://bfo.googlecode.com/svn/trunk/src/tools/. A very early version of BFO version 2 in CLIF is at http://purl.obolibrary.org/obo/bfo/dev/bfo.clif BFO OWL specification label Really of interest to developers only Relates an entity in the ontology to the name of the variable that is used to represent it in the code that generates the BFO OWL file from the lispy specification. BFO CLIF specification label Person:Alan Ruttenberg Really of interest to developers only Relates an entity in the ontology to the term that is used to represent it in the the CLIF specification of BFO2 editor preferred term example of usage definition editor note term editor alternative term definition source curator note imported from elucidation has associated axiom(nl) has associated axiom(fol) has axiom label entity entity Entity An entity is anything that exists or has existed or will exist. (axiom label in BFO2 Reference: [001-001]) BFO 2 Reference: In all areas of empirical inquiry we encounter general terms of two sorts. First are general terms which refer to universals or types:animaltuberculosissurgical procedurediseaseSecond, are general terms used to refer to groups of entities which instantiate a given universal but do not correspond to the extension of any subuniversal of that universal because there is nothing intrinsic to the entities in question by virtue of which they – and only they – are counted as belonging to the given group. Examples are: animal purchased by the Emperortuberculosis diagnosed on a Wednesdaysurgical procedure performed on a patient from Stockholmperson identified as candidate for clinical trial #2056-555person who is signatory of Form 656-PPVpainting by Leonardo da VinciSuch terms, which represent what are called ‘specializations’ in [81 Entity doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. For example Werner Ceusters 'portions of reality' include 4 sorts, entities (as BFO construes them), universals, configurations, and relations. It is an open question as to whether entities as construed in BFO will at some point also include these other portions of reality. See, for example, 'How to track absolutely everything' at http://www.referent-tracking.com/_RTU/papers/CeustersICbookRevised.pdf Julius Caesar Verdi’s Requiem the Second World War your body mass index per discussion with Barry Smith Entity doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. For example Werner Ceusters 'portions of reality' include 4 sorts, entities (as BFO construes them), universals, configurations, and relations. It is an open question as to whether entities as construed in BFO will at some point also include these other portions of reality. See, for example, 'How to track absolutely everything' at http://www.referent-tracking.com/_RTU/papers/CeustersICbookRevised.pdf An entity is anything that exists or has existed or will exist. (axiom label in BFO2 Reference: [001-001]) continuant continuant Continuant (forall (x) (if (Continuant x) (Entity x))) // axiom label in BFO2 CLIF: [008-002] (forall (x y) (if (and (Continuant x) (exists (t) (continuantPartOfAt y x t))) (Continuant y))) // axiom label in BFO2 CLIF: [009-002] (forall (x y) (if (and (Continuant x) (exists (t) (hasContinuantPartOfAt y x t))) (Continuant y))) // axiom label in BFO2 CLIF: [126-001] (forall (x) (if (Material Entity x) (exists (t) (and (TemporalRegion t) (existsAt x t))))) // axiom label in BFO2 CLIF: [011-002] A continuant is an entity that persists, endures, or continues to exist through time while maintaining its identity. (axiom label in BFO2 Reference: [008-002]) BFO 2 Reference: Continuant entities are entities which can be sliced to yield parts only along the spatial dimension, yielding for example the parts of your table which we call its legs, its top, its nails. ‘My desk stretches from the window to the door. It has spatial parts, and can be sliced (in space) in two. With respect to time, however, a thing is a continuant.’ [60, p. 240 Continuant doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. For example, in an expansion involving bringing in some of Ceuster's other portions of reality, questions are raised as to whether universals are continuants if b is a continuant and if, for some t, c has_continuant_part b at t, then c is a continuant. (axiom label in BFO2 Reference: [126-001]) if b is a continuant and if, for some t, cis continuant_part of b at t, then c is a continuant. (axiom label in BFO2 Reference: [009-002]) if b is a material entity, then there is some temporal interval (referred to below as a one-dimensional temporal region) during which b exists. (axiom label in BFO2 Reference: [011-002]) (forall (x y) (if (and (Continuant x) (exists (t) (continuantPartOfAt y x t))) (Continuant y))) // axiom label in BFO2 CLIF: [009-002] if b is a material entity, then there is some temporal interval (referred to below as a one-dimensional temporal region) during which b exists. (axiom label in BFO2 Reference: [011-002]) Continuant doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. For example, in an expansion involving bringing in some of Ceuster's other portions of reality, questions are raised as to whether universals are continuants if b is a continuant and if, for some t, cis continuant_part of b at t, then c is a continuant. (axiom label in BFO2 Reference: [009-002]) (forall (x) (if (Material Entity x) (exists (t) (and (TemporalRegion t) (existsAt x t))))) // axiom label in BFO2 CLIF: [011-002] (forall (x) (if (Continuant x) (Entity x))) // axiom label in BFO2 CLIF: [008-002] A continuant is an entity that persists, endures, or continues to exist through time while maintaining its identity. (axiom label in BFO2 Reference: [008-002]) if b is a continuant and if, for some t, c has_continuant_part b at t, then c is a continuant. (axiom label in BFO2 Reference: [126-001]) (forall (x y) (if (and (Continuant x) (exists (t) (hasContinuantPartOfAt y x t))) (Continuant y))) // axiom label in BFO2 CLIF: [126-001] occurrent (forall (x) (iff (Occurrent x) (and (Entity x) (exists (y) (temporalPartOf y x))))) // axiom label in BFO2 CLIF: [079-001] BFO 2 Reference: every occurrent that is not a temporal or spatiotemporal region is s-dependent on some independent continuant that is not a spatial region Simons uses different terminology for relations of occurrents to regions: Denote the spatio-temporal location of a given occurrent e by 'spn[e]' and call this region its span. We may say an occurrent is at its span, in any larger region, and covers any smaller region. Now suppose we have fixed a frame of reference so that we can speak not merely of spatio-temporal but also of spatial regions (places) and temporal regions (times). The spread of an occurrent, (relative to a frame of reference) is the space it exactly occupies, and its spell is likewise the time it exactly occupies. We write 'spr[e]' and `spl[e]' respectively for the spread and spell of e, omitting mention of the frame. (forall (x) (if (Occurrent x) (exists (r) (and (SpatioTemporalRegion r) (occupiesSpatioTemporalRegion x r))))) // axiom label in BFO2 CLIF: [108-001] An occurrent is an entity that unfolds itself in time or it is the instantaneous boundary of such an entity (for example a beginning or an ending) or it is a temporal or spatiotemporal region which such an entity occupies_temporal_region or occupies_spatiotemporal_region. (axiom label in BFO2 Reference: [077-002]) BFO 2 Reference: s-dependence obtains between every process and its participants in the sense that, as a matter of necessity, this process could not have existed unless these or those participants existed also. A process may have a succession of participants at different phases of its unfolding. Thus there may be different players on the field at different times during the course of a football game; but the process which is the entire game s-depends_on all of these players nonetheless. Some temporal parts of this process will s-depend_on on only some of the players. Occurrent Occurrent doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. An example would be the sum of a process and the process boundary of another process. b is an occurrent entity iff b is an entity that has temporal parts. (axiom label in BFO2 Reference: [079-001]) occurrent Every occurrent occupies_spatiotemporal_region some spatiotemporal region. (axiom label in BFO2 Reference: [108-001]) per discussion with Barry Smith Occurrent doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. An example would be the sum of a process and the process boundary of another process. An occurrent is an entity that unfolds itself in time or it is the instantaneous boundary of such an entity (for example a beginning or an ending) or it is a temporal or spatiotemporal region which such an entity occupies_temporal_region or occupies_spatiotemporal_region. (axiom label in BFO2 Reference: [077-002]) Simons uses different terminology for relations of occurrents to regions: Denote the spatio-temporal location of a given occurrent e by 'spn[e]' and call this region its span. We may say an occurrent is at its span, in any larger region, and covers any smaller region. Now suppose we have fixed a frame of reference so that we can speak not merely of spatio-temporal but also of spatial regions (places) and temporal regions (times). The spread of an occurrent, (relative to a frame of reference) is the space it exactly occupies, and its spell is likewise the time it exactly occupies. We write 'spr[e]' and `spl[e]' respectively for the spread and spell of e, omitting mention of the frame. (forall (x) (iff (Occurrent x) (and (Entity x) (exists (y) (temporalPartOf y x))))) // axiom label in BFO2 CLIF: [079-001] Every occurrent occupies_spatiotemporal_region some spatiotemporal region. (axiom label in BFO2 Reference: [108-001]) b is an occurrent entity iff b is an entity that has temporal parts. (axiom label in BFO2 Reference: [079-001]) (forall (x) (if (Occurrent x) (exists (r) (and (SpatioTemporalRegion r) (occupiesSpatioTemporalRegion x r))))) // axiom label in BFO2 CLIF: [108-001] independent continuant IndependentContinuant (forall (x t) (if (and (IndependentContinuant x) (existsAt x t)) (exists (y) (and (Entity y) (specificallyDependsOnAt y x t))))) // axiom label in BFO2 CLIF: [018-002] (forall (x t) (if (IndependentContinuant x) (exists (r) (and (SpatialRegion r) (locatedInAt x r t))))) // axiom label in BFO2 CLIF: [134-001] ic (iff (IndependentContinuant a) (and (Continuant a) (not (exists (b t) (specificallyDependsOnAt a b t))))) // axiom label in BFO2 CLIF: [017-002] For any independent continuant b and any time t there is some spatial region r such that b is located_in r at t. (axiom label in BFO2 Reference: [134-001]) For every independent continuant b and time t during the region of time spanned by its life, there are entities which s-depends_on b during t. (axiom label in BFO2 Reference: [018-002]) a chair a heart a leg a molecule a spatial region an atom an orchestra. an organism b is an independent continuant = Def. b is a continuant which is such that there is no c and no t such that b s-depends_on c at t. (axiom label in BFO2 Reference: [017-002]) the bottom right portion of a human torso the interior of your mouth For every independent continuant b and time t during the region of time spanned by its life, there are entities which s-depends_on b during t. (axiom label in BFO2 Reference: [018-002]) For any independent continuant b and any time t there is some spatial region r such that b is located_in r at t. (axiom label in BFO2 Reference: [134-001]) (iff (IndependentContinuant a) (and (Continuant a) (not (exists (b t) (specificallyDependsOnAt a b t))))) // axiom label in BFO2 CLIF: [017-002] (forall (x t) (if (and (IndependentContinuant x) (existsAt x t)) (exists (y) (and (Entity y) (specificallyDependsOnAt y x t))))) // axiom label in BFO2 CLIF: [018-002] (forall (x t) (if (IndependentContinuant x) (exists (r) (and (SpatialRegion r) (locatedInAt x r t))))) // axiom label in BFO2 CLIF: [134-001] b is an independent continuant = Def. b is a continuant which is such that there is no c and no t such that b s-depends_on c at t. (axiom label in BFO2 Reference: [017-002]) process Process (iff (Process a) (and (Occurrent a) (exists (b) (properTemporalPartOf b a)) (exists (c t) (and (MaterialEntity c) (specificallyDependsOnAt a c t))))) // axiom label in BFO2 CLIF: [083-003] BFO 2 Reference: The realm of occurrents is less pervasively marked by the presence of natural units than is the case in the realm of independent continuants. Thus there is here no counterpart of ‘object’. In BFO 1.0 ‘process’ served as such a counterpart. In BFO 2.0 ‘process’ is, rather, the occurrent counterpart of ‘material entity’. Those natural – as contrasted with engineered, which here means: deliberately executed – units which do exist in the realm of occurrents are typically either parasitic on the existence of natural units on the continuant side, or they are fiat in nature. Thus we can count lives; we can count football games; we can count chemical reactions performed in experiments or in chemical manufacturing. We cannot count the processes taking place, for instance, in an episode of insect mating behavior.Even where natural units are identifiable, for example cycles in a cyclical process such as the beating of a heart or an organism’s sleep/wake cycle, the processes in question form a sequence with no discontinuities (temporal gaps) of the sort that we find for instance where billiard balls or zebrafish or planets are separated by clear spatial gaps. Lives of organisms are process units, but they too unfold in a continuous series from other, prior processes such as fertilization, and they unfold in turn in continuous series of post-life processes such as post-mortem decay. Clear examples of boundaries of processes are almost always of the fiat sort (midnight, a time of death as declared in an operating theater or on a death certificate, the initiation of a state of war) a process of cell-division, \ a beating of the heart a process of meiosis a process of sleeping p is a process = Def. p is an occurrent that has temporal proper parts and for some time t, p s-depends_on some material entity at t. (axiom label in BFO2 Reference: [083-003]) process the course of a disease the flight of a bird the life of an organism your process of aging. (iff (Process a) (and (Occurrent a) (exists (b) (properTemporalPartOf b a)) (exists (c t) (and (MaterialEntity c) (specificallyDependsOnAt a c t))))) // axiom label in BFO2 CLIF: [083-003] p is a process = Def. p is an occurrent that has temporal proper parts and for some time t, p s-depends_on some material entity at t. (axiom label in BFO2 Reference: [083-003]) disposition (forall (x) (if (Disposition x) (and (RealizableEntity x) (exists (y) (and (MaterialEntity y) (bearerOfAt x y t)))))) // axiom label in BFO2 CLIF: [062-002] Disposition (forall (x t) (if (and (RealizableEntity x) (existsAt x t)) (exists (y) (and (MaterialEntity y) (specificallyDepends x y t))))) // axiom label in BFO2 CLIF: [063-002] BFO 2 Reference: Dispositions exist along a strength continuum. Weaker forms of disposition are realized in only a fraction of triggering cases. These forms occur in a significant number of cases of a similar type. disposition If b is a realizable entity then for all t at which b exists, b s-depends_on some material entity at t. (axiom label in BFO2 Reference: [063-002]) an atom of element X has the disposition to decay to an atom of element Y b is a disposition means: b is a realizable entity & b’s bearer is some material entity & b is such that if it ceases to exist, then its bearer is physically changed, & b’s realization occurs when and because this bearer is in some special physical circumstances, & this realization occurs in virtue of the bearer’s physical make-up. (axiom label in BFO2 Reference: [062-002]) certain people have a predisposition to colon cancer children are innately disposed to categorize objects in certain ways. the cell wall is disposed to filter chemicals in endocytosis and exocytosis (forall (x t) (if (and (RealizableEntity x) (existsAt x t)) (exists (y) (and (MaterialEntity y) (specificallyDepends x y t))))) // axiom label in BFO2 CLIF: [063-002] b is a disposition means: b is a realizable entity & b’s bearer is some material entity & b is such that if it ceases to exist, then its bearer is physically changed, & b’s realization occurs when and because this bearer is in some special physical circumstances, & this realization occurs in virtue of the bearer’s physical make-up. (axiom label in BFO2 Reference: [062-002]) (forall (x) (if (Disposition x) (and (RealizableEntity x) (exists (y) (and (MaterialEntity y) (bearerOfAt x y t)))))) // axiom label in BFO2 CLIF: [062-002] If b is a realizable entity then for all t at which b exists, b s-depends_on some material entity at t. (axiom label in BFO2 Reference: [063-002]) realizable entity (forall (x) (if (RealizableEntity x) (and (SpecificallyDependentContinuant x) (exists (y) (and (IndependentContinuant y) (not (SpatialRegion y)) (inheresIn x y)))))) // axiom label in BFO2 CLIF: [058-002] (forall (x t) (if (RealizableEntity x) (exists (y) (and (IndependentContinuant y) (not (SpatialRegion y)) (bearerOfAt y x t))))) // axiom label in BFO2 CLIF: [060-002] All realizable dependent continuants have independent continuants that are not spatial regions as their bearers. (axiom label in BFO2 Reference: [060-002]) RealizableEntity To say that b is a realizable entity is to say that b is a specifically dependent continuant that inheres in some independent continuant which is not a spatial region and is of a type instances of which are realized in processes of a correlated type. (axiom label in BFO2 Reference: [058-002]) realizable the disposition of this piece of metal to conduct electricity. the disposition of your blood to coagulate the function of your reproductive organs the role of being a doctor the role of this boundary to delineate where Utah and Colorado meet All realizable dependent continuants have independent continuants that are not spatial regions as their bearers. (axiom label in BFO2 Reference: [060-002]) (forall (x t) (if (RealizableEntity x) (exists (y) (and (IndependentContinuant y) (not (SpatialRegion y)) (bearerOfAt y x t))))) // axiom label in BFO2 CLIF: [060-002] (forall (x) (if (RealizableEntity x) (and (SpecificallyDependentContinuant x) (exists (y) (and (IndependentContinuant y) (not (SpatialRegion y)) (inheresIn x y)))))) // axiom label in BFO2 CLIF: [058-002] To say that b is a realizable entity is to say that b is a specifically dependent continuant that inheres in some independent continuant which is not a spatial region and is of a type instances of which are realized in processes of a correlated type. (axiom label in BFO2 Reference: [058-002]) quality (forall (x) (if (Quality x) (SpecificallyDependentContinuant x))) // axiom label in BFO2 CLIF: [055-001] quality Quality (forall (x) (if (exists (t) (and (existsAt x t) (Quality x))) (forall (t_1) (if (existsAt x t_1) (Quality x))))) // axiom label in BFO2 CLIF: [105-001] If an entity is a quality at any time that it exists, then it is a quality at every time that it exists. (axiom label in BFO2 Reference: [105-001]) a quality is a specifically dependent continuant that, in contrast to roles and dispositions, does not require any further process in order to be realized. (axiom label in BFO2 Reference: [055-001]) the ambient temperature of this portion of air the color of a tomato the length of the circumference of your waist the mass of this piece of gold. the shape of your nose the shape of your nostril If an entity is a quality at any time that it exists, then it is a quality at every time that it exists. (axiom label in BFO2 Reference: [105-001]) (forall (x) (if (exists (t) (and (existsAt x t) (Quality x))) (forall (t_1) (if (existsAt x t_1) (Quality x))))) // axiom label in BFO2 CLIF: [105-001] (forall (x) (if (Quality x) (SpecificallyDependentContinuant x))) // axiom label in BFO2 CLIF: [055-001] a quality is a specifically dependent continuant that, in contrast to roles and dispositions, does not require any further process in order to be realized. (axiom label in BFO2 Reference: [055-001]) specifically dependent continuant (iff (SpecificallyDependentContinuant a) (and (Continuant a) (forall (t) (if (existsAt a t) (exists (b) (and (IndependentContinuant b) (not (SpatialRegion b)) (specificallyDependsOnAt a b t))))))) // axiom label in BFO2 CLIF: [050-003] Reciprocal specifically dependent continuants: the function of this key to open this lock and the mutually dependent disposition of this lock: to be opened by this key SpecificallyDependentContinuant Specifically dependent continuant doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. We're not sure what else will develop here, but for example there are questions such as what are promises, obligation, etc. b is a specifically dependent continuant = Def. b is a continuant & there is some independent continuant c which is not a spatial region and which is such that b s-depends_on c at every time t during the course of b’s existence. (axiom label in BFO2 Reference: [050-003]) of one-sided specifically dependent continuants: the mass of this tomato of relational dependent continuants (multiple bearers): John’s love for Mary, the ownership relation between John and this statue, the relation of authority between John and his subordinates. sdc the disposition of this fish to decay the function of this heart: to pump blood the mutual dependence of proton donors and acceptors in chemical reactions [79 the mutual dependence of the role predator and the role prey as played by two organisms in a given interaction the pink color of a medium rare piece of grilled filet mignon at its center the role of being a doctor the shape of this hole. the smell of this portion of mozzarella b is a specifically dependent continuant = Def. b is a continuant & there is some independent continuant c which is not a spatial region and which is such that b s-depends_on c at every time t during the course of b’s existence. (axiom label in BFO2 Reference: [050-003]) (iff (SpecificallyDependentContinuant a) (and (Continuant a) (forall (t) (if (existsAt a t) (exists (b) (and (IndependentContinuant b) (not (SpatialRegion b)) (specificallyDependsOnAt a b t))))))) // axiom label in BFO2 CLIF: [050-003] Specifically dependent continuant doesn't have a closure axiom because the subclasses don't necessarily exhaust all possibilites. We're not sure what else will develop here, but for example there are questions such as what are promises, obligation, etc. per discussion with Barry Smith role Role role (forall (x) (if (Role x) (RealizableEntity x))) // axiom label in BFO2 CLIF: [061-001] BFO 2 Reference: One major family of examples of non-rigid universals involves roles, and ontologies developed for corresponding administrative purposes may consist entirely of representatives of entities of this sort. Thus ‘professor’, defined as follows,b instance_of professor at t =Def. there is some c, c instance_of professor role & c inheres_in b at t.denotes a non-rigid universal and so also do ‘nurse’, ‘student’, ‘colonel’, ‘taxpayer’, and so forth. (These terms are all, in the jargon of philosophy, phase sortals.) By using role terms in definitions, we can create a BFO conformant treatment of such entities drawing on the fact that, while an instance of professor may be simultaneously an instance of trade union member, no instance of the type professor role is also (at any time) an instance of the type trade union member role (any more than any instance of the type color is at any time an instance of the type length).If an ontology of employment positions should be defined in terms of roles following the above pattern, this enables the ontology to do justice to the fact that individuals instantiate the corresponding universals – professor, sergeant, nurse – only during certain phases in their lives. John’s role of husband to Mary is dependent on Mary’s role of wife to John, and both are dependent on the object aggregate comprising John and Mary as member parts joined together through the relational quality of being married. b is a role means: b is a realizable entity & b exists because there is some single bearer that is in some special physical, social, or institutional set of circumstances in which this bearer does not have to be& b is not such that, if it ceases to exist, then the physical make-up of the bearer is thereby changed. (axiom label in BFO2 Reference: [061-001]) the priest role the role of a boundary to demarcate two neighboring administrative territories the role of a building in serving as a military target the role of a stone in marking a property boundary the role of subject in a clinical trial the student role b is a role means: b is a realizable entity & b exists because there is some single bearer that is in some special physical, social, or institutional set of circumstances in which this bearer does not have to be& b is not such that, if it ceases to exist, then the physical make-up of the bearer is thereby changed. (axiom label in BFO2 Reference: [061-001]) (forall (x) (if (Role x) (RealizableEntity x))) // axiom label in BFO2 CLIF: [061-001] generically dependent continuant (iff (GenericallyDependentContinuant a) (and (Continuant a) (exists (b t) (genericallyDependsOnAt a b t)))) // axiom label in BFO2 CLIF: [074-001] GenericallyDependentContinuant gdc The entries in your database are patterns instantiated as quality instances in your hard drive. The database itself is an aggregate of such patterns. When you create the database you create a particular instance of the generically dependent continuant type database. Each entry in the database is an instance of the generically dependent continuant type IAO: information content entity. b is a generically dependent continuant = Def. b is a continuant that g-depends_on one or more other entities. (axiom label in BFO2 Reference: [074-001]) the pdf file on your laptop, the pdf file that is a copy thereof on my laptop the sequence of this protein molecule; the sequence that is a copy thereof in that protein molecule. (iff (GenericallyDependentContinuant a) (and (Continuant a) (exists (b t) (genericallyDependsOnAt a b t)))) // axiom label in BFO2 CLIF: [074-001] b is a generically dependent continuant = Def. b is a continuant that g-depends_on one or more other entities. (axiom label in BFO2 Reference: [074-001]) function function (forall (x) (if (Function x) (Disposition x))) // axiom label in BFO2 CLIF: [064-001] Function A function is a disposition that exists in virtue of the bearer’s physical make-up and this physical make-up is something the bearer possesses because it came into being, either through evolution (in the case of natural biological entities) or through intentional design (in the case of artifacts), in order to realize processes of a certain sort. (axiom label in BFO2 Reference: [064-001]) BFO 2 Reference: In the past, we have distinguished two varieties of function, artifactual function and biological function. These are not asserted subtypes of BFO:function however, since the same function – for example: to pump, to transport – can exist both in artifacts and in biological entities. The asserted subtypes of function that would be needed in order to yield a separate monoheirarchy are not artifactual function, biological function, etc., but rather transporting function, pumping function, etc. the function of a hammer to drive in nails the function of a heart pacemaker to regulate the beating of a heart through electricity the function of amylase in saliva to break down starch into sugar A function is a disposition that exists in virtue of the bearer’s physical make-up and this physical make-up is something the bearer possesses because it came into being, either through evolution (in the case of natural biological entities) or through intentional design (in the case of artifacts), in order to realize processes of a certain sort. (axiom label in BFO2 Reference: [064-001]) (forall (x) (if (Function x) (Disposition x))) // axiom label in BFO2 CLIF: [064-001] material entity material (forall (x) (if (MaterialEntity x) (IndependentContinuant x))) // axiom label in BFO2 CLIF: [019-002] (forall (x) (if (and (Entity x) (exists (y t) (and (MaterialEntity y) (continuantPartOfAt y x t)))) (MaterialEntity x))) // axiom label in BFO2 CLIF: [020-002] (forall (x) (if (and (Entity x) (exists (y t) (and (MaterialEntity y) (continuantPartOfAt x y t)))) (MaterialEntity x))) // axiom label in BFO2 CLIF: [021-002] A material entity is an independent continuant that has some portion of matter as proper or improper continuant part. (axiom label in BFO2 Reference: [019-002]) BFO 2 Reference: Material entities (continuants) can preserve their identity even while gaining and losing material parts. Continuants are contrasted with occurrents, which unfold themselves in successive temporal parts or phases [60 BFO 2 Reference: Object, Fiat Object Part and Object Aggregate are not intended to be exhaustive of Material Entity. Users are invited to propose new subcategories of Material Entity. BFO 2 Reference: ‘Matter’ is intended to encompass both mass and energy (we will address the ontological treatment of portions of energy in a later version of BFO). A portion of matter is anything that includes elementary particles among its proper or improper parts: quarks and leptons, including electrons, as the smallest particles thus far discovered; baryons (including protons and neutrons) at a higher level of granularity; atoms and molecules at still higher levels, forming the cells, organs, organisms and other material entities studied by biologists, the portions of rock studied by geologists, the fossils studied by paleontologists, and so on.Material entities are three-dimensional entities (entities extended in three spatial dimensions), as contrasted with the processes in which they participate, which are four-dimensional entities (entities extended also along the dimension of time).According to the FMA, material entities may have immaterial entities as parts – including the entities identified below as sites; for example the interior (or ‘lumen’) of your small intestine is a part of your body. BFO 2.0 embodies a decision to follow the FMA here. Every entity which has a material entity as continuant part is a material entity. (axiom label in BFO2 Reference: [020-002]) MaterialEntity a flame a forest fire a human being a hurricane a photon a puff of smoke a sea wave a tornado an aggregate of human beings. an energy wave an epidemic every entity of which a material entity is continuant part is also a material entity. (axiom label in BFO2 Reference: [021-002]) the undetached arm of a human being A material entity is an independent continuant that has some portion of matter as proper or improper continuant part. (axiom label in BFO2 Reference: [019-002]) (forall (x) (if (and (Entity x) (exists (y t) (and (MaterialEntity y) (continuantPartOfAt x y t)))) (MaterialEntity x))) // axiom label in BFO2 CLIF: [021-002] every entity of which a material entity is continuant part is also a material entity. (axiom label in BFO2 Reference: [021-002]) (forall (x) (if (and (Entity x) (exists (y t) (and (MaterialEntity y) (continuantPartOfAt y x t)))) (MaterialEntity x))) // axiom label in BFO2 CLIF: [020-002] (forall (x) (if (MaterialEntity x) (IndependentContinuant x))) // axiom label in BFO2 CLIF: [019-002] Every entity which has a material entity as continuant part is a material entity. (axiom label in BFO2 Reference: [020-002]) immaterial entity immaterial BFO 2 Reference: Immaterial entities are divided into two subgroups:boundaries and sites, which bound, or are demarcated in relation, to material entities, and which can thus change location, shape and size and as their material hosts move or change shape or size (for example: your nasal passage; the hold of a ship; the boundary of Wales (which moves with the rotation of the Earth) [38, 7, 10 ImmaterialEntity Person:Alan Ruttenberg To say that each spatiotemporal region s temporally_projects_onto some temporal region t is to say that t is the temporal extension of s. (axiom label in BFO2 Reference: [080-003]) To say that spatiotemporal region s spatially_projects_onto spatial region r at t is to say that r is the spatial extent of s at t. (axiom label in BFO2 Reference: [081-003]) To say that each spatiotemporal region s temporally_projects_onto some temporal region t is to say that t is the temporal extension of s. (axiom label in BFO2 Reference: [080-003]) To say that spatiotemporal region s spatially_projects_onto spatial region r at t is to say that r is the spatial extent of s at t. (axiom label in BFO2 Reference: [081-003])