

MOC V2 Secure Code Review

Findings and Recommendations Report Presented to:

Rif On Chain community with the
support of RootstockLabs and
mimLABS

May 13, 2024
Version: 1.4

Presented by:

NAGRAVISION SÀRL
Route de Genève 22-24
1033 Cheseaux-sur-Lausanne Switzerland

FOR PUBLIC RELEASE

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 2 of 23

TABLE OF CONTENTS

TABLE OF CONTENTS ... 2

LIST OF FIGURES ... 4

LIST OF TABLES ... 4

EXECUTIVE SUMMARY ... 5

Overview ... 5

Key Findings ... 5

Scope and Rules Of Engagement .. 6

TECHNICAL ANALYSIS & FINDINGS .. 8

Findings ... 9

Build and Test .. 10

Compilation ... 10

Tests ... 10

Deployment ... 10

Static Analysis .. 11

NPM Audit ... 11

Slither .. 11

Mythril .. 11

Semgrep .. 11

Manual code Review .. 12

KS-RSKL-02 – Missing Check in the unpause Function .. 12

KS-RSKL-03 – Mismatch Between Comments and the Implementation.. 12

KS-RSKL-04 – Missing Input Validation ... 13

KS-RSKL-05 – Outdated Dependencies .. 14

KS-RSKL-06 – Improper Order of Role Uniqueness Validation and State Modification 14

KS-RSKL-07 – Unchecked Condition on ctargemaCA and ctargemaTP ... 15

KS-RSKL-08 – Unchecked Boundary Condition ... 15

KS-RSKL-09 – Inconsistent Input Validation Before Division ... 16

KS-RSKL-10 – Incomplete Check for Redeem Liquidation .. 16

KS-RSKL-11 – Validation of Value After Usage ... 17

KS-RSKL-12 – Confusing Variable Naming ... 17

KS-RSKL-13 – Unmatched Comment with Calculation .. 18

KS-RSKL-14 – Outdated Solidity Pragma Version ... 18

KS-RSKL-15 – Unresolved TODO in Code .. 18

Conclusion.. 19

METHODOLOGY ... 20

Tools ... 21

Vulnerability Scoring Systems .. 22

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 3 of 23

REFERENCES ... 23

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 4 of 23

LIST OF FIGURES

Figure 1: Findings by Severity... 8

LIST OF TABLES

Table 1: In Scope Folders ... 6
Table 2: Findings Overview... 9

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 5 of 23

EXECUTIVE SUMMARY

Overview

Rif On Chain community with the support of RootstockLabs and mimLABS engaged Kudelski Security to
perform a MOC V2 Secure Code Review.

The assessment was conducted remotely by the Kudelski Security App & Blockchain Team. Auditing took
place on January 16th, 2024 - February 16th, 2024, and May 10th, 2024, focused on the following
objectives:

• Provide the customer with an assessment of their overall security posture and any risks that were
discovered within the environment during the engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

• To identify potential issues and include improvement recommendations based on the result of our
tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed
descriptions of the discovered vulnerabilities, steps the Kudelski Security App & Blockchain Team took to
identify and validate each issue, as well as any applicable recommendations for remediation.

Key Findings

The following are the major themes and issues identified during the testing period. These, along with
other items, within the findings section, should be prioritized for remediation to reduce to the risk they
pose.

• Missing checks in unpause function

• Missing input validation

During the audit, the following positive observations were noted regarding the scope of the engagement:

• The code is well structured, in a maintainable state, and of production quality.

• Quick and open communication via Slack

• Convenient build and test environment

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 6 of 23

Scope and Rules Of Engagement

Kudelski Security performed a MOC V2 Secure Code Review for Rif On Chain community with the
support of RootstockLabs and mimLABS. This report describes the results of the security audit of the
following source code with the commit hash:

Repository and Commit hash:

• stable-protocol-core-v2: https://github.com/money-on-chain/stable-protocol-core-
v2/releases/tag/v1.0.2-rc (commit 974a50348b8896e56cba71c0fa551717ada784e2)

• RDOC-Contract: https://github.com/money-on-chain/RDOC-Contract (commit
e863445e2df531689fd751914d7ccbaf4f4f995a)

Further changes:

• fix: check protThrld on mintTCandTP (commit 1efd604627dddd12882283f09aeadf218e167fb8)

The goal of the evaluation was to perform a security audit on the source code.

• No additional systems or resources were in scope for this assessment.

Table 1: In Scope Folders

While our comprehensive source code review has provided valuable insights into security posture of
smart contracts, it is important to point out that this assessment does not guarantee the identification of all
potential vulnerabilities, as the constantly evolving nature of the cybersecurity landscape requires ongoing
vigilance and adaptation.

Follow-up:

After the initial report (V1.0) was delivered, Rif On Chain community with the support of RootstockLabs and

mimLABS addressed all vulnerabilities and weaknesses in the following codebase revision:

• Release v1.0.3 (commit 2bf5a95ca7923b27dc2fe552c4bef56be0e2024e)

• No changes on the RDOC-Contract code base

In-Scope folders

├── stable-protocol-core-v2

 ├── contracts

 ├── collateral

 ├── core

 ├── governance

 ├── interfaces

 ├── queue

 ├── tokens

 ├── utils

 ├── vendors

 ├── deploy
 ├── scripts

 ├── hardhat.base.config.ts

├── RDOC-Contract

 ├── contracts

 ├── V2_migration

 ├── Deprecated.sol

 ├── MoC_Migrator.sol

 ├── changers

 ├── V2MigrationChanger.sol

 ├── scripts

 ├── deploy

 ├── upgrade_v0.2.0

 ├── 1_deploy_MoC.js

 ├── 2_deploy_MoCExchange.js

 ├── 3_deploy_Deprecated.js

 ├── 4_deploy_Changer.js

 ├── 5_verification_Changer.js

https://github.com/money-on-chain/stable-protocol-core-v2/releases/tag/v1.0.2-rc
https://github.com/money-on-chain/stable-protocol-core-v2/releases/tag/v1.0.2-rc
https://github.com/money-on-chain/stable-protocol-core-v2/commit/974a50348b8896e56cba71c0fa551717ada784e2
https://github.com/money-on-chain/RDOC-Contract
https://github.com/money-on-chain/RDOC-Contract/commit/e863445e2df531689fd751914d7ccbaf4f4f995a
https://github.com/money-on-chain/stable-protocol-core-v2/commit/1efd604627dddd12882283f09aeadf218e167fb8
https://github.com/money-on-chain/stable-protocol-core-v2/commit/2bf5a95ca7923b27dc2fe552c4bef56be0e2024e

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 7 of 23

Further Follow-up:

Rif On Chain community with the support of RootstockLabs and mimLABS released a further update in the

following codebase revision:

• stable-protocol-core-v2: Release Candidate v1.0 (commit
333d2b98941adbc045cb085d73b497848ed76061)

• RDOC-Contract: https://github.com/money-on-chain/RDOC-Contract (commit
c0edaeba8247a52d566bd87d31329aadbbc01943).

Kudelski Security evaluated these released codebase and no vulnerabilities were identified.

https://github.com/money-on-chain/stable-protocol-core-v2/releases/tag/v1.0.6-rc
https://github.com/money-on-chain/stable-protocol-core-v2/commit/333d2b98941adbc045cb085d73b497848ed76061
https://github.com/money-on-chain/RDOC-Contract
https://github.com/money-on-chain/RDOC-Contract/commit/c0edaeba8247a52d566bd87d31329aadbbc01943

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 8 of 23

TECHNICAL ANALYSIS & FINDINGS

During the MOC V2 Secure Code Review, we discovered 9 Low severity findings.

The following chart displays the findings by severity.

Figure 1: Findings by Severity

0 1 2 3 4 5 6 7 8 9 10

Info

Low

Medium

High

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 9 of 23

Findings

The Findings section provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

ID Severity Description Status

KS-RSKL-02 Low Missing Check in the unpause Function Resolved

KS-RSKL-03
Low

Mismatch Between Comments and the
Implementation

Resolved

KS-RSKL-04 Low Missing Input Validation Acknowledged

KS-RSKL-05 Low Outdated Dependencies Resolved

KS-RSKL-06
Low

Improper Order of Role Uniqueness Validation
and State Modification

Resolved

KS-RSKL-07 Low
Unchecked Condition on ctargemaCA and
ctargemaTP

Acknowledged

KS-RSKL-08 Low Unchecked Boundary Condition Resolved

KS-RSKL-09 Low Inconsistent Input Validation Before Division Acknowledged

KS-RSKL-10 Low Incomplete Check for Redeem Liquidation Acknowledged

KS-RSKL-11 Informational Validation of Value After Usage Resolved

KS-RSKL-12 Informational Confusing Variable Naming Acknowledged

KS-RSKL-13 Informational Unmatched Comment with Calculation Resolved

KS-RSKL-14 Informational Outdated Solidity Pragma Version Acknowledged

KS-RSKL-15 Informational Unresolved TOD in Code Resolved

Table 2: Findings Overview

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 10 of 23

BUILD AND TEST

Compilation

The stable-protocol-core-v2 binary files was built by the following steps:

1. Create .env file

$ cp .env.example .env

2. Install the dependencies

$ npm install

3. Build

$ npm run compile

The compilation passed successfully with 4 warnings, which are not relevant to the security audit.

Tests

A total of 1614 tests are written. The unit test was performed by running the following command:
$ npm run test

Alternatively, the unit test using Waffle was performed by the following steps:

1. Install Mocha and Chai

$ npm install --global mocha

$ npm install chai

2. Run the following command

$ npx hardhat test

Due to the slow test platform, the timeout limit value was changed from 100000 to 400000 in

hardhat.base.config.ts.

In result, 1614 tests passed successfully out of 1614 tests in total.

Deployment

The solution allows external repositories to define custom network configurations and execute deploys
using them. Shell scripts and instructions were provided to deploy the contract on the test network.

$ npm run export

The command was performed successfully without a warning or an error. However, a fully functional
deployment on testnet is out of scope of this audit.

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 11 of 23

STATIC ANALYSIS

NPM Audit

NPM audit (v9.5.1) identified 5 findings, which are relevant to the outdated dependencies.

Slither

Slither (v0.10.0) analyzed 102 contracts with 91 detectors on stable-protocol-core-v2 by the command
below:

npm run security-default

In result, Slither identified 164 findings. Among those, only meaningful findings are reported here.

Mythril

Mythril (v0.24.1) analyzed 102 contracts with 91 detectors on stable-protocol-core-v2 by the command
below:

npm run mythril:MocCACoinbase

npm run mythril:MocCARC20

npm run mythril:MocCoreExpansion

npm run mythril:MocVendors

npm run mythril:MocTC

npm run mythril:MocQueue

In result, Mythril did not identify any finding.

Semgrep

Semgrep (v1.20.0) was performed on Solidity code by the following command:

semgrep --config "p/smart-contracts" ./contracts/

In result, Semgrep ran 49 rules and identified 29 findings on smart contracts under stable-protocol-core-
v2, and 2 findings on smart contracts under RDOC-Contract.

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 12 of 23

MANUAL CODE REVIEW

Note that the code review for ROC V2 has been done, together with MOC V2 code base. Since the
findings are overlapped with those in the MOC V2 code review, the IDs of findings are not produced
separately, rather, taken from the audit report of MOC V2. For details of the findings, please refer to “ROC
V2 Secure Code Review, v1.3, April 8, 2024”.

KS-RSKL-02 – Missing Check in the unpause Function

Severity Low

Status Resolved

Impact Likelihood Difficulty
High Low High

Description

The contract Stoppable.sol has emergency pause and unpause functions. While, the pause function

can only be called if stoppable is set to true, there is no such check in the unpause function.

KS-RSKL-03 – Mismatch Between Comments and the Implementation

Severity Low

Status Resolved

Impact Likelihood Difficulty
Low Low High

Description

 makeUnstoppable and makeStoppable functions in the Stoppable contract suggest that these

functions also affect the _paused state of the contract. However, the implementation of these functions

only changes the stoppable state.

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 13 of 23

KS-RSKL-04 – Missing Input Validation

Severity Low

Status Acknowledged

Impact Likelihood Difficulty
High Low High

Description

In Solidity, checking for address(0) is essential primarily to prevent the accidental loss of assets, as it

represents the default value for uninitialized addresses and transactions to it are irrecoverable. It also
ensures that addresses are intentionally set, guarding against errors or uninitialized values in smart
contracts. It is observed that in contracts MocUpgradable.sol, Stoppable.sol and Governed.sol

there are missing validity checks for address(0) in the MocUpgradable_init(), setPauser() and

changeGovernor() functions respectively.

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 14 of 23

KS-RSKL-05 – Outdated Dependencies

Severity Low

Status Resolved

Impact Likelihood Difficulty
High Low High

Description

Some of the dev dependencies are outdated as they are reported to be vulnerable: CVE-2023-40014, CVE-

2023-45857, and CVE-2023-26159.

KS-RSKL-06 – Improper Order of Role Uniqueness Validation and
State Modification

Severity Low

Status Resolved

Impact Likelihood Difficulty

Low Low High

Description

The transferAllRoles function in the smart contract MocRC20.sol function transfers the

PAUSER_ROLE from the sender to a new account but checks for role uniqueness after state changes,

leading to potential unnecessary gas costs. If the role isn't unique, the transaction reverts, incurring costs
despite reversal. This design may cause inefficient gas usage and unintended effects from premature
state modifications.

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 15 of 23

KS-RSKL-07 – Unchecked Condition on ctargemaCA and ctargemaTP

Severity Low

Status Acknowledged

Impact Likelihood Difficulty
Medium Low High

Description

In the function redeemTCandTPto, ctargemaCA and ctargemaTP needs to be bigger than ONE.

However, such condition is not explicitly checked before they are used. Furthermore, the function
_calcCtargemaCA may return protThrld*2 if den == 0, which leads a condition that protThrld >

0.5. Although this condition is obvious, it needs to be explicitly checked to avoid setting a wrong value by

mistake.

KS-RSKL-08 – Unchecked Boundary Condition

Severity Low

Status Resolved

Impact Likelihood Difficulty
Low Low High

Description

The function _checkLessThanOne checks value_ is less than PRECISION ONE, but does not revert

when value_ is equal to PRECISION ONE.

Also, the function _MocBaseBucket_init_unchained checks protThrld is less than ONE, but does

not revert when protThrld is equal to ONE.

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 16 of 23

KS-RSKL-09 – Inconsistent Input Validation Before Division

Severity Low

Status Acknowledged

Impact Likelihood Difficulty
High Low High

Description

The function swapTCforTPto does not check whether nTCcb is equal to zero before the division is

executed, whereas the function _getPTCac checks the denominator and return ONE if the zero division is

expected.

KS-RSKL-10 – Incomplete Check for Redeem Liquidation

Severity Low

Status Acknowledged

Impact Likelihood Difficulty
 Low Low High

Description

The function redeemTCandTPto does not check qTC / qTP > prop as in the pseudo code on the white

paper (page 23).

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 17 of 23

KS-RSKL-11 – Validation of Value After Usage

Severity Informational

Status Resolved

Description

If qACtotalToRedeem is equal to zero, it should be reverted before usage.

KS-RSKL-12 – Confusing Variable Naming

Severity Informational

Status Acknowledged

Description

Variable naming is an important aspect in making your code readable. However, the naming convention
used in the entire codebase does not provide the clear readability nor intuition on the variables and
functions.

Reference

• Variable Naming Conventions: https://curc.readthedocs.io/en/latest/programming/coding-best-
practices.html#variable-naming-conventions

https://curc.readthedocs.io/en/latest/programming/coding-best-practices.html#variable-naming-conventions
https://curc.readthedocs.io/en/latest/programming/coding-best-practices.html#variable-naming-conventions

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 18 of 23

KS-RSKL-13 – Unmatched Comment with Calculation

Severity Informational

Status Resolved

Description

In the function _calcFees, the comment is not matched with the code implementation. the total token is

adjusted by multiplying the precision factor but it is not implemented in the code.
In the function _calcCtargemaCA, the constant PRECISION is multiplied twice since _divPrec itself also

executes the multiplication of PRECISION.

KS-RSKL-14 – Outdated Solidity Pragma Version

Severity Informational

Status Acknowledged

Description

Multiple contracts in RDOC-Contract repository use an outdated solidity pragma version 0.5.8 which has
some known bugs. Also, ABI encoder and Yul compiler have been upgraded significantly in the version
0.6.0 upward.

KS-RSKL-15 – Unresolved TODO in Code

Severity Informational

Status Resolved

Description

There is a TODO comment in the function _calcQACforRedeemTCandTP, which should be resolved
before the code release. In particular, there is no clear explanation how the code in the TODO comment
could replace the current implementation and improve the function against the rounding error.

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 19 of 23

CONCLUSION

During the MOC V2 Secure Code Review, multiple vulnerabilities and weaknesses were identified in the

codebase, and those vulnerabilities and weaknesses were all addressed or acknowledged by the Rif On

Chain community with the support of RootstockLabs and mimLABS in the follow-up revision of the

codebase.

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 20 of 23

METHODOLOGY

During this source code review, the Kudelski Security Services team reviewed code within the project
within an appropriate IDE. During every review, the team spends considerable time working with the client
to determine correct and expected functionality, business logic, and content to ensure that findings
incorporate this business logic into each description and impact. Following this discovery phase, the team
works through the following categories:

- Key / Secrets handling

- Error handling and logging

- Handling of exception / boundary condition

- Nonce and randomness

- Countermeasures against known vulnerabilities

- Input validation

- Logical flaws

- Authentication

- Code practice

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 21 of 23

Tools

The following tools were used during this portion of the test. A link for more information about the tool is
provided as well.

- Visual Studio Code

- Slither

- Mythril

- Echidna

- NPM audit

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 22 of 23

Vulnerability Scoring Systems

Kudelski Security utilizes a vulnerability scoring system based on impact of the vulnerability, likelihood of
an attack against the vulnerability, and the difficulty of executing an attack against the vulnerability based
on a high, medium, and low rating system.

Impact
The overall effect of the vulnerability against the system or organization based on the areas of concern or
affected components discussed with the client during the scoping of the engagement.

High:
The vulnerability has a severe effect on the company and systems or has an effect within one of
the primary areas of concern noted by the client

Medium:
It is reasonable to assume that the vulnerability would have a measurable effect on the company
and systems that may cause minor financial or reputational damage.

Low:
There is little to no effect from the vulnerability being compromised. These vulnerabilities could
lead to complex attacks or create footholds used in more severe attacks.

Likelihood
The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold varies
based on a variety of factors including compensating controls, location of the application, availability of
commonly used exploits, and institutional knowledge

High:
It is extremely likely that this vulnerability will be discovered and abused

Medium:
It is likely that this vulnerability will be discovered and abused by a skilled attacker

Low:
It is unlikely that this vulnerability will be discovered or abused when discovered.

Difficulty
Difficulty is measured according to the ease of exploit by an attacker based on availability of readily
available exploits, knowledge of the system, and complexity of attack. It should be noted that a LOW
difficulty results in a HIGHER severity.

Low:
The vulnerability is easy to exploit or has readily available techniques for exploit

Medium:
The vulnerability is partially defended against, difficult to exploit, or requires a skilled attacker to
exploit.

Low:
The vulnerability is difficult to exploit and requires advanced knowledge from a skilled attacker to
write an exploit

Severity
Severity is the overall score of the weakness or vulnerability as it is measured from Impact, Likelihood,

and Difficulty

Rif On Chain community with the support of RootstockLabs and mimLABS
MOC V2 Secure Code Review

© 2024 Kudelski Security, Inc. Public. All Rights Reserved. Version 1.4 | 5/13/2024

 Page 23 of 23

REFERENCES

• Rif On Chain Stablecoin Protocol Collateralized with RIF, Technical whitepaper release 2, revision 1,
December 2023

• MOC main protocol

o https://github.com/money-on-chain/stable-protocol-core-v2/tree/master/docs

• ROC V1 to V2 Migration plan overview

• RoC Stable Platform Wiki

o https://docs.moneyonchain.com/rdoc-contract/

https://github.com/money-on-chain/stable-protocol-core-v2/tree/master/docs
https://docs.moneyonchain.com/rdoc-contract/

