
Security Assessment Report
RDOC Flux Capacitor - August 23’

Project dashboard
Application Summary:

Name RDOC Contracts

Version Branch: upgrade-flux-capacitor
Commit: 8e94548

Language Solidity

Engagement Summary:

Dates 17 August - 25 August

Reviewers Ulas Anil Acikel

Level of effort 1 week (working days)

Vulnerability Summary:

Total Critical-Severity Issues 0

Total High-Severity Issues 0

Total Medium-Severity Issues 1 ∎

Total Low-Severity Issues 0

Total Informational-Severity Issues 0

Total 1 ∎

Code Maturity Evaluation:

Category Name Description

Access Control Strong. The functions correctly check which roles can access which
functions. Contract management functions can only be called by the
governance protocol or the Stopper account which is managed by
MoC.

Arithmetic Moderate. Throughout the contract SafeMath library is used. This
prevents overflow/underflow attacks. However, the recent changes in
the flux capacitor don't use that library. Although highly unlikely to
happen, we found some edge cases where integer overflow was
possible.

Key Management Not reviewed.

Specification Strong. Flux capacitor changes and use cases were documented in
detail and were provided to us before the review started.

Testing Not reviewed

Goals
The main goal of this audit is to validate the security of the RDOC minting/redeeming protocol
after the changes in the upgrade-flux-capacitor applied.

Coverage
Mainly the code changes in the upgrade-flux-capacitor branch were reviewed. These changes
could affect the RDOC minting/redeeming protocol. This was taken into account during the
audit. As such, additional code that might be affected by these changes were also reviewed.
However, this is not a complete review of the MoC protocol. Test cases and deployment
processes weren’t reviewed.

Recommendations summary
Short term

- Fix FLUX-01

Long term
- Pseudo-Linear Decay Factor model could be vulnerable to sophisticated attacks such as

congesting the protocol. Although this is not an immediate risk, additional reviews could
be done to verify solidness of the protocol. Simulating unusual transaction traffic could
help with testing the model’s edge cases.

Findings summary
Following is a list of the findings, with their severity and current status:

ID Severity Status

FLUX-01 Medium Fixed

JavaScript

Findings
FLUX-01 Absolute Accumulator can be inflated and can overflow

during minting

ID Severity Status

FLUX-01 Medium Fixed

Affected Assets
contracts/MoCExchange.sol

Fix
The finding is fixed in the following commit:
https://github.com/money-on-chain/RDOC-Contract/commit/8e94548fa92eb191300513f1752a2
b60f1ebad08#diff-346093d1d51d830248ff180a181f0985e52f2f7b96c6c434a8e5c51bdb355cc0
R442

Description

_updateAccumulatorsOnMint is called inside the mintStableToken during the minting operation.
_updateAccumulatorsOnMint is called with user supplied resTokensToMint value which might
not be the actual reserve token amount.

function mintStableToken(address account, uint256 resTokensToMint,
address vendorAccount)
public
onlyWhitelisted(msg.sender)
returns (uint256, uint256, uint256, uint256, uint256)
{
// reverts if not allowed by accumulators
_updateAccumulatorsOnMint(resTokensToMint);

https://github.com/money-on-chain/RDOC-Contract/commit/8e94548fa92eb191300513f1752a2b60f1ebad08#diff-346093d1d51d830248ff180a181f0985e52f2f7b96c6c434a8e5c51bdb355cc0R442
https://github.com/money-on-chain/RDOC-Contract/commit/8e94548fa92eb191300513f1752a2b60f1ebad08#diff-346093d1d51d830248ff180a181f0985e52f2f7b96c6c434a8e5c51bdb355cc0R442
https://github.com/money-on-chain/RDOC-Contract/commit/8e94548fa92eb191300513f1752a2b60f1ebad08#diff-346093d1d51d830248ff180a181f0985e52f2f7b96c6c434a8e5c51bdb355cc0R442

StableTokenMintStruct memory details;

// StableTokens to issue with tx value amount
if (resTokensToMint > 0) {
uint256 resTokenPrice = mocState.getReserveTokenPrice();

details.stableTokens =
mocLibConfig.maxStableTokensWithResTokens(resTokensToMint,
resTokenPrice); //reserve token to stable token

details.stableTokenAmount = Math.min(details.stableTokens,
mocState.absoluteMaxStableToken());

details.totalCost = details.stableTokenAmount ==
details.stableTokens

? resTokensToMint
:

mocLibConfig.stableTokensResTokensValue(details.stableTokenAmount
, mocState.peg(), resTokenPrice);
... redacted for brevity ...

Here the actual reserve token value used depends on the maximum available stable token (
mocState.absoluteMaxStableToken()). Even if the user supplies really large resTokensToMint
value, the actual reserve token used will be re-calculated according to the available stable
tokens.

Since _updateAccumulatorsOnMint uses the user supplied value, a user can overflow the AA
calculation if they can mint the max stable tokens. Currently, this value is around $1MM. So the
cost of the attack is $1MM but this value can go down depending on the demand on minting
stable tokens.

Proof of Concept
N/A. A PoC code can be provided upon request.

Remediation

_updateAccumulatorsOnMint should be called after the final reserve token amount is calculated.
In this case the final reserve token value is details.totalCost.

Appendix
Vulnerability Classifications
Severity Categories

Severity Description

Critical Vulnerabilities where the exploitation is likely result in a root-level
compromise of any of the project components.
Exploitation is straightforward in the sense that the attacker does not need
any special authentication credentials or additional knowledge or persuade a
target user into performing any special functions.

High The issue affects numerous users and has serious reputational, legal or
financial implications.

Medium Individual users’ information is at risk; exploitation could pose reputational,
legal or moderate financial risk.

Low The risk is relatively small or not a risk considered important.

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Code Maturity Classifications
Code Maturity Classes

Category Name Description

Access Controls Related to the authentication and authorization components.

Arithmetic Related to the proper use of mathematical operations and semantics.

Centralization Related to the existence of a single point of failure.

Upgradeability Related to contract upgradeability

Function Composition Related to separation of the logic into functions with clear purposes.

Key Management Related to the existence of proper procedures for key generation,
distribution, and access.

Monitoring Related to the use of events and monitoring procedures.

Specification Related to the expected codebase documentation.

Testing Related to the use of testing techniques and code coverage.

