
For

Audit Report

September, 2023

QuillAudits

01www.quillaudits.com

RIF On Chain - Audit Report

.. 03Executive Summary

... 05Number of Security Issues per Severity

.. 06Checked Vulnerabilities

.. 07Techniques and Methods

... 08Types of Severity

.. 08Types of Issues

09High Severity Issues

09A.1: Incorrect Calculations | MoCVendors.sol

09A.2: Contract Initialization

10Medium Severity Issues

10A.3: Whitelist Addresses | MoCConnector_v0116.sol

11A.4: Outdated Libraries

11A.5: Two-step Ownable

13Low Severity Issues

13A.6: Unit Testing

13A.7: Unfixed TODO in Code | MoCBucketContainer.sol

14A.8: Older Solidity Version Used

14Informational Issues

14A.9: Convert Modifier to Internal Function | MoCBucketContainer.sol

14A.10: Untracked State Changes | MoCBucketContainer.sol

Table of Content

https://www.quillaudits.com/smart-contract-audit

02www.quillaudits.com

RIF On Chain - Audit Report

15A.11: Unused Variables

15A.12: Wrong Comments

16A.13: Naming Convention

.. 17Functional Tests

.. 18Closing Summary

Table of Content

https://www.quillaudits.com/smart-contract-audit

03www.quillaudits.com

RIF On Chain - Audit Report

Project Name RIF On Chain Smart Contracts by IOV Labs

Overview RIF On Chain is a fork of the Money-on-Chain protocol.

Timeline 25th May, 2023 - 8th July, 2023

Method Manual Review, Functional Testing, etc.

Audit Scope The scope of this audit was to analyze RIF On Chain Contract
codebase for quality, security, and correctness.

https://github.com/money-on-chain/RDOC-Contract

Commit Hash https://github.com/money-on-chain/RDOC-Contract/commit/
e89fa4b80467dcef83b627fad93e16d71c96b815

Fixed In https://github.com/money-on-chain/RDOC-Contract/
tree/7f2dae3a1e2abcf839a79453f55a4cdf1aeccb7f/contracts

Please Note The URLs under "Audit scope" and "fixed In" are public GitHub
repository, however the QuillAudits team has the audited code
that was previously present in the private repository described
below, and this audited code was moved by the IOV Labs team to
the public repository.

Initial Audit Review

https://github.com/money-on-chain/RDOC-Contract-Internal

Branch Name

v0.1.16-1.0

Commit Hash

5aee9e9055A.23dcde01297117e441544f64ac8

Final Audit Review

https://github.com/money-on-chain/RDOC-Contract-Internal/pull/32/
commits

Commit Hash

bcb8c77

Executive Summary

https://www.quillaudits.com/smart-contract-audit
https://github.com/money-on-chain/RDOC-Contract
https://github.com/money-on-chain/RDOC-Contract/commit/e89fa4b80467dcef83b627fad93e16d71c96b815
https://github.com/money-on-chain/RDOC-Contract/commit/e89fa4b80467dcef83b627fad93e16d71c96b815
https://github.com/money-on-chain/RDOC-Contract/tree/7f2dae3a1e2abcf839a79453f55a4cdf1aeccb7f/contracts
https://github.com/money-on-chain/RDOC-Contract/tree/7f2dae3a1e2abcf839a79453f55a4cdf1aeccb7f/contracts
https://github.com/money-on-chain/RDOC-Contract-Internal
https://github.com/money-on-chain/RDOC-Contract-Internal/releases/tag/v0.1.16-1.0
https://github.com/money-on-chain/RDOC-Contract-Internal/pull/32/commits
https://github.com/money-on-chain/RDOC-Contract-Internal/pull/32/commits
https://github.com/money-on-chain/RDOC-Contract-Internal/commit/bcb8c77df34344833220de475e868b0baf65c19e

04www.quillaudits.com

RIF On Chain - Audit Report

Contracts in Audit Scope

� MoC.so�

� MoCBucketContainer.so�

� MoCEMACalculator.so�

� MoCExchange.so�

� MoCHelperLib.so�

� MoCInrate.so�

� MoCLibConnection.so�

� MoCRiskProxManager.so�

� MoCSettlement.so�

� MoCState.so�

� MoCVendors.so�

� PartialExecution.so�

� MoCToken.so�

� OwnerBurnableToken.so�

� RiskProToken.so�

� StableToken.sol

� MoCConnector_v0116.so�

� MoCExchange_v0116.so�

� MoCSettlement_v0116.so�

� MoCState_v0116.so�

� MoC_v0116.so�

� CommissionSplitter.so�

� MoCBase.so�

� MoCConnector.so�

� MoCConstants.so�

� MoCReserve.so�

� MoCWhitelist.so�

� StableTokenMigrationChanger.so�

� MocRC20.so�

� StableTokenV2.so�

� TokenMigrator.so�

� Governod.sol

It is important to note that in public repository, minor changes has been done to MoC.sol to
account for gas prices as described in the proposal here:

https://github.com/money-on-chain/main-RBTC-contract/pull/114

https://www.quillaudits.com/smart-contract-audit
https://github.com/money-on-chain/main-RBTC-contract/pull/114

05www.quillaudits.com

RIF On Chain - Audit Report

0

4

0

1

0

2

0

1

0

0

1

2

0

0

0

2

Open Issues

Acknowledged Issues

Partially Resolved Issues

Resolved Issues

High Medium Low Informational

High

Low

Medium

Informational

13
Issues Found

Number of Security Issues per Severity

https://www.quillaudits.com/smart-contract-audit

06www.quillaudits.com

RIF On Chain - Audit Report

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

DoS with Block Gas Limit

Transaction-Ordering Dependence

Use of tx.origin

Exception disorder

Gasless send

Balance equality

Byte array

Transfer forwards all gas

ERC20 API violation

Malicious libraries

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

Checked Vulnerabilities

https://www.quillaudits.com/smart-contract-audit

07www.quillaudits.com

RIF On Chain - Audit Report

Throughout the audit of smart contracts, care was taken to ensure:

� The overall quality of code�

� Use of best practices�

� Code documentation and comments match logic and expected behavior�

� Token distribution and calculations are as per the intended behavior mentioned in the
whitepaper�

� Implementation of ERC-20 token standards�

� Efficient use of gas�

� Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Structural Analysis

Manual Analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually
analyzed, their logic was checked and compared with the one described in the
whitepaper.

Code Review / Manual Analysis

In this step, we have checked the behavior of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code
to reduce gas consumption.

Gas Consumption

Remix IDE, Truffle, Hardhat, Solhint.

Tools and Platforms used for Audit

Techniques and Methods

https://www.quillaudits.com/smart-contract-audit

08www.quillaudits.com

RIF On Chain - Audit Report

Every issue in this report has been assigned to a severity level. There are four levels of
severity, and each of them has been explained below.

Types of Severity

A high severity issue or vulnerability means that your smart contract can be exploited.
Issues on this level are critical to the smart contract’s performance or functionality, and
we recommend these issues be fixed before moving to a live environment.

High Severity Issues

The issues marked as medium severity usually arise because of errors and deficiencies in
the smart contract code. Issues on this level could potentially bring problems, and they
should still be fixed.

Medium Severity Issues

Low-level severity issues can cause minor impact and are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Low Severity Issues

These are four severity issues that indicate an improvement request, a general question,
a cosmetic or documentation error, or a request for information. There is low-to-no
impact.

Informational

Types of Issues

Security vulnerabilities identified that must be resolved and are currently unresolved.

Open

These are the issues identified in the initial audit and have been successfully fixed.

Resolved

Vulnerabilities which have been acknowledged but are yet to be resolved.

Acknowledged

Considerable efforts have been invested to reduce the risk/impact of the security issue,
but are not completely resolved.

Partially Resolved

https://www.quillaudits.com/smart-contract-audit

09www.quillaudits.com

RIF On Chain - Audit Report

High Severity Issues

A.1: Incorrect Calculations | MoCVendors.sol

Description
The `totalMocAmount` variable in updatePaidMarkup is assigned the user-defined value
`mocAmount` but is overriden on L200. The initial value stored (mocAmount) gets changed
to the result of the calculation performed. If this is the desired functionality then the input
parameter can be discarded as well as L193.

Remediation
Update L200 to allow the value stored in totalMocAmount be incremented with the
calculated value instead of being overridden.

Status
Resolved

IOV Team's Comment
mocAmount is only overridden in the case "(resTokenAmount > 0)" which is correct given
that you can either pay with mocTokens or reserve, not both. From the coverage tool, the
"if" path is taken ~300 times while the other ~500, so yes, both scenarios are tested. I can
paste an image with that info.

Auditor’s Remark
Closed as a false positive.

A.2: Contract Initialization

Description
An attacker can take over the implementation contract if not properly initialized. Almost all
of the contracts in the codebase are missing the check that restricts the implementation
contract initialization. Some of the contracts listed belo�

� MoC.so�

� MoCExchange.so�

� MoCRiskProxManager.so�

� MoCSettlement.sol

https://www.quillaudits.com/smart-contract-audit
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCVendors.sol#L200
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCVendors.sol#L193
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCVendors.sol#L200

10www.quillaudits.com

RIF On Chain - Audit Report

A.2: Contract Initialization

If the logic contract is not initialized then an attacker can takeover the implementation
contract by initializing the implementation contract. More details of the attack can be read
from here.

Remediation
_disableInitializers() should be used in the constructor to avoid initialization of the
implementation contract.

Status
Resolved

IOV Team's Comment
The deployment process will be automatic using scripts to mitigate frontrunning risk.

Medium Severity Issues

A.3: Whitelist Addresses | MoCConnector_v0116.sol

Description
The `migrateStableToken(..)` function has the previous stableToken address removed (L23)
from the whitelist but it does not add the new address to the whitelist.

Remediation
Add the new address to the whitelist to have the same privileges as the old one.

Status
Resolved

IOV Team's Comment
It is not necessary to add the stable token to the whitelist because it doesn’t call any
contract of the solution with the necessity of special permissions. We don't see this as an
issue.

https://www.quillaudits.com/smart-contract-audit
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/6d74b913885d729b5c72209aa03c4b68a33c794c/contracts/proxy/utils/Initializable.sol#L43
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts_updated/MoCConnector_v0116.sol#L23

11www.quillaudits.com

RIF On Chain - Audit Report

A.4: Outdated Libraries

Description

The codebase is replete with old packages from libraries that have gotten updates and
newer releases. If the older versions are still in use and they contain bugs, then the entire
codebase would be opened up to a larger attack surface than necessary.

Remediation

Use tested newer libraries and packages when available. Solidity 0.8.0 also has internal
checks for overflows and underflows, thereby reducing the need for external libraries which
in turn would cause lesser contract sizes, deployment costs, and lower fees for users per
transaction.

IOV Team’s Remarks

We agree that it's a good practice to work with the latest tools and libraries, or at least
follow the fixes of your selected mayor's versions for each one. But we believe that
deployed smart contracts are a special case; as the risk of a change (unless you fix a known
vulnerability) outweighs the possible benefit of an update.

The changes introduced by USDRIF upgrade where indeed made on a separate folder that
uses a new toolset with the latest stable version available. Applying this backward to all
existing code simply doesn't make sense.

Status

Partially Resolved

A.5: Two-step Ownable

Description

OwnerBurnableToken inherits the Ownable library which has been improved via two-step
ownable to provide a more seamless method of ownership transfer by allowing the new
user to accept or reject the new role.

Remediation

Implement two-step ownable instead of single-step ownership transfer.

https://www.quillaudits.com/smart-contract-audit

12www.quillaudits.com

RIF On Chain - Audit Report

A.5: Two-step Ownable

References

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/
Ownable2Step.sol and

https://github.com/razzorsec/RazzorSec-Contracts/blob/main/AccessControl/SafeOwn.sol

Status

Resolved

IOV Team's Comment

This is not a security issue: Any change to the protocol, including governor changes, needs
to go through the proposal, audit and voting process. The proposal itself must include the
new governor address and everyone can verify it, it should be a requirement for the
proposal to be verifiable actually, and provide proof that the new Governor actually has
capabilities. So we don’t think making this part of the protocol is necessary, as the same
“goal” of Ownable2StepUpgradeable can be achieved by doing that verification step on the
changer, and not in the protocol itself, following the principle of externalizing not core
functionalities from it.

Even if it is necessary to prevent an error in the address of the future governor, instead of
adding a claim function, in the changer we could verify it by calling some external function
to check that it exists in the Governor contract, for example, isAuthorizedChanger() should
return false and not revert.

https://www.quillaudits.com/smart-contract-audit
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/razzorsec/RazzorSec-Contracts/blob/main/AccessControl/SafeOwn.sol

13www.quillaudits.com

RIF On Chain - Audit Report

Low Severity Issues

A.6: Unit Testing

Description
It is highly recommended to have above 95% of code functionality tested before going into
production so as to catch bugs that could be introduced from user input as well as return
values from function calls. Some tests have not been implemented, if issues persist
consider using more recent frameworks like Hardhat or Foundry.

Remediation
Increase the coverage of unit tests in the codebase to adequately test for all branches in
code.

Status
Acknowledged

IOV Team’s Comment
The current test coverage is 82%.

A.7: Unfixed TODO in Code | MoCBucketContainer.sol

Description
The codebase contains a TODO which has not been implemented in setBucketCobj() on L85.

Remediation
It is recommended that mature codebases do not have TODOs in their code. Implement the
logic described in the TODO.

Fixed In
https://github.com/money-on-chain/RDOC-Contract-Internal/pull/33

Status
Resolved

https://www.quillaudits.com/smart-contract-audit
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCBucketContainer.sol#L85
https://github.com/money-on-chain/RDOC-Contract-Internal/pull/33

14www.quillaudits.com

RIF On Chain - Audit Report

A.8: Older Solidity Version Used

Description
Multiple solidity pragma versions are used in this codebase with majority of the contracts
on version 0.5.8 which has some known bugs fixed in newer versions from 0.6.0 upward.
The SMTChecker, Yul compiler and ABI encoder have received significant upgrades from
that time till now.

Remediation
It is advised to use more recent versions when deploying to production to reduce the
surface of attacks and future-proof the codebase as much as possible.

Status
Acknowledged

Informational Issues

A.9: Convert Modifier to Internal Function | MoCBucketContainer.sol

Description
The `bucketStateUpdate()` modifier can be implemented as an internal function instead of
a modifier. It should only emit the latest state after the update.

Remediation
Convert the modifier to an internal function and adjust its occurrences in the codebase.

Status
Acknowledged

A.10: Untracked State Changes | MoCBucketContainer.sol

Description
The `payInrate()` function on L190 does not emit an event after updating the bucket state
(using the bucketStateUpdate modifier).

Remediation
For consistency and ease of tracking with monitoring software, ensure that changes to state
are marked with event emissions.

https://www.quillaudits.com/smart-contract-audit
https://github.com/ethereum/solidity/releases/tag/v0.6.0
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCBucketContainer.sol#LL278C4-L287C4
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCBucketContainer.sol#L190

15www.quillaudits.com

RIF On Chain - Audit Report

A.10: Untracked State Changes | MoCBucketContainer.sol

Status
Acknowledged

IOV Team's Comment
We don't see this as a security issue. This should be informational.

Auditor’s Remark
If it would not affect any calculable/reported values, it can be downgraded.

A.11: Unused Variables

Description
Some variables in the codebase are not used and can be discarded. The bool `initialized` in
MoCBase and MoCConnector are unused.

Remediation
Remove unused variables.

Status
Acknowledged

IOV Team's Comment
Removing a variable, even if unused, can generate a hole in the storage that needs to be
compensated with the gap, or garbage slot filling. The risk of doing it massively outweighs
the benefits of removing a harmless variable.

A.12: Wrong Comments

Description
On L114 in MoCBucketContainer, the comment for the function getActiveAddressesCount()
should be ‘returns the number of addresses…’.

On L45 in MoCEMACalculator, the comment for the function setEmaCalculationBlockSpan()
should use ‘EMA’ instead of ‘BMA’.

On L131, the return comment for the function unregisterVendor() shows a return value of
false for both scenarios.

https://www.quillaudits.com/smart-contract-audit
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/base/MoCBase.sol#L15
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/base/MoCConnector.sol#L27
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCBucketContainer.sol#L114
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCEMACalculator.sol#L45
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/MoCVendors.sol#L131

16www.quillaudits.com

RIF On Chain - Audit Report

A.12: Wrong Comments

On L172, the comment for the function executeTask() should be ‘executes the task’.

Remediation

Fix the comment-code relationships as described above.

Fixed In

https://github.com/money-on-chain/RDOC-Contract-Internal/pull/33

Status

Resolved

A.13: Naming Convention

Description

The naming convention used in the codebase is not clear and reduces the readability of the
entire codebase.

Remediation

Follow industry standard naming conventions and practices to make code easier to read.

Status

Acknowledged

https://www.quillaudits.com/smart-contract-audit
https://github.com/money-on-chain/RDOC-Contract-Internal/blob/v0.1.16-1.0/contracts/PartialExecution.sol#L172
https://github.com/money-on-chain/RDOC-Contract-Internal/pull/33

17www.quillaudits.com

RIF On Chain - Audit Report

Functional Tests

FAILED

PASSED

PASSED

PASSED

Actual

PASSED

PASSED

PASSED

PASSED

Verdict

FAILED

PASSED

PASSED

PASSED

Expectation

MoCConnector_v0116: Add new
token address to the whitelist

Upgrade contracts and change
implementation afterward

Deploy libraries and inter-contract
dependencies

Deploy and initialize contracts

Test

https://www.quillaudits.com/smart-contract-audit

18www.quillaudits.com

RIF On Chain - Audit Report

Closing Summary

In this report, we have considered the security of the RIF On Chain codebase. We performed our
audit according to the procedure described above.

Some issues of High, Medium, Low, and Informational severity were found. Some suggestions
and best practices are also provided in order to improve the code quality and security posture.

The RIF On Chain Community with the help of IOV Labs team implemented newer functionality
that allows to set gas prices as described in this proposal to mitigate (not completely eliminate)
possible risks to users.

Disclaimer

QuillAudits Smart contract security audit provides services to help identify and mitigate potential
security risks in RIF On Chain smart contracts. However, it is important to understand that no
security audit can guarantee complete protection against all possible security threats. QuillAudits
audit reports are based on the information provided to us at the time of the audit, and we
cannot guarantee the accuracy or completeness of this information. Additionally, the security
landscape is constantly evolving, and new security threats may emerge after the audit has been
completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to
ensure the ongoing security of RIF On Chain smart contracts. One audit is not enough to
guarantee complete protection against all possible security threats. It is important to implement
proper risk management strategies and stay vigilant in monitoring your smart contracts for
potential security risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur subsequent
to and despite using our audit services. It is the responsibility of the RIF On Chain community
with the support of IOV Labs to implement the recommendations provided in our audit reports
and to take appropriate steps to mitigate potential security risks

https://www.quillaudits.com/smart-contract-audit
https://github.com/money-on-chain/main-RBTC-contract/pull/114

www.quillaudits.com

RIF On Chain - Audit Report

Follow Our Journey

$30B
Lines of Code Audited

$30B
Secured

850+
Audits Completed

About QuillAudits

QuillAudits is a secure smart contracts audit platform designed by QuillHash Technologies. We
are a team of dedicated blockchain security experts and smart contract auditors determined to
ensure that Smart Contract-based Web3 projects can avail the latest and best security solutions

to operate in a trustworthy and risk-free ecosystem.

https://www.quillaudits.com/smart-contract-audit
https://twitter.com/quillaudits
https://www.linkedin.com/company/quillaudits/
https://t.me/QuillAudits
https://www.reddit.com/r/QuillAudits/
https://quillaudits.medium.com/
https://discord.gg/jJfN9UD4YX
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

QuillAudits

Canada, India, Singapore, UAE, UK

www.quillaudits.com

audits@quillhash.com

For

Audit Report

September, 2023

https://www.quillaudits.com/smart-contract-audit
mailto:audits@quillhash.com

