{ "cells": [ { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [], "source": [ "%%capture \n", "\n", "#!# This example shows the computation of the DC bias and sensitivity in a voltage divider.\n", "\n", "####################################################################################################\n", "\n", "import PySpice.Logging.Logging as Logging\n", "logger = Logging.setup_logging()\n", "\n", "####################################################################################################\n", "\n", "from PySpice.Spice.Netlist import Circuit\n", "from PySpice.Unit import *\n", "from IPython.display import Image\n", "####################################################################################################\n", "\n", "import math\n", "import matplotlib.pyplot as plt\n", "plt.rcParams[\"figure.figsize\"] = (12,5)\n", "\n", "####################################################################################################\n", "\n", "from PySpice.Probe.Plot import plot\n", "\n", "from PySpice.Spice.NgSpice.Shared import NgSpiceShared\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Circuit](voltage.png)" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys \n", "\n", "try:\n", " import ipython_circuitikz.circuitikz\n", "except ImportError:\n", " # Assuming CWD is where we started Jupyter in/\n", " assert os.path.isfile('C:/Users/mopfe/Dropbox/HRW/ipython_circuitikz/circuitikz.py')\n", " sys.path.append('C:/Users/mopfe/Dropbox/HRW/')\n", " import ipython_circuitikz.circuitikz\n", " \n", "%reload_ext ipython_circuitikz.circuitikz" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAADGCAQAAABib98FAAAAAmJLR0QA/4ePzL8AAAAJcEhZcwAAAH0AAAB9ALBPP5YAAAAHdElNRQfiCgkLKQGf9AeeAAAKeHpUWHRSYXcgcHJvZmlsZSB0eXBlIGljYwAAWIWdl22SZKkNRf+zCi+BTwktBwSK8P434ENWd0+33TNjOyuIzHoPhJCu7hXpn+7pH3zqUEn5fVbJPz7167ccudq1jtq115rHHDZWzX/2SVKkadPcy8gjd//TmX/xCXZ9Hv1w57R6/h9DH4/+x/lLugxt0r758u0E6omDZa3aP/8XnV8v6lQlQvn78/XNTulSZf/xfPfvzxPh/ITx63+fPxboz8+P/2Ho5+eRfzbUycyXqzV/7TCzY+j3z/9kfvr1zN8/tfbyDiwmwvtJ+puECMdV4Y2MmrV9h0a33lJvTCJKbxrLXMbvo/x3ptN/2v5vTf/6+dv06zv6/JYlPh0/yJqxkYkKb9j+efTXcWi15VYakP1diUQbD8zlu0eliPvf1dL3z+/mSaz6OVqb8RWHZr+fWM3e99b5mVfmWf8+72Oo9m/IjfmJxRYPED/Ikvxi8Uek8jP4FsUDI8MwVC6m2isLBkVL0jJ1k9v+WtlZ9HbqLBo8GHg3WPOwJ/MRDil5R1N9RQc8CdrEg4mBdxLDgGHAMLAwsHi4MLDrOySDNc4aZ41vDD3mOCw6GGBevvy+++M1TMPY5OX9KeOQmsYwRuRSB4P3DY9Km4zLUXkIsRWyXnC/YKMIi4V3yju8LhMjeFyMOXhboNaCp2UXDG1+4GJxvg/fh+/L9+U7WBCL4mwMh4Y741AvwghCO8lUYXA0qpnBS3avykNlIdmr8+ZqTCTHdWFks5gNq29yMnJ9OSIEFei0l/6WN+AVklXyo9rGLtQbI3KDd5rwTvFJL4Djf+N/jDcC3zb/u+Z2Goaw3K7nFka2hcJpmfphHApr594nCEAXSHfH447BPp36XqCCd3javafcDxOIyYNJjwvUTh7F8yAboy2gA9zHzIOjD6AygMjAq7EYG+lxxhkJbPGDNH/+OKJUzY/IBU+E7ImsLLrBnmexk2VFFn84LFluo9DgnKwpK5hQdtd24IzIVD4Y7VnZWakxJdC6eX4gLjbVmFDrBr+RJ1Uwu+Q5VgLMN084ZOLuXAtg8z+L5tU8AaMBXgN4xjGNjUx6NrVsk98g3gi4eaRs7GIsWKXkxbEWni0gsTjSomwWEFhkaBGLhZqseHnmD0Ld0MWGk7ZQtJu620ze+5UP3wR+k0EvQLCu7EDBh2cH3Q62fGn2V2YA1zF63l9Fsk9/pbbyIS6HiQfIH2fC4TfxuMDhgr5L9i7Huhr52qYcJV9CcO+lLPEoOH8A84AaAlQHsYrdUOPIcV95E6VKBjqMK5xfcdk2bvP86FtYKOTE4LsHfHtKmV7KIlpupdzJ4bRQV6X2Uar0QumUulqpzriQ+SP0ykDXCuIIATAWmPYBEQxKU0qn8Ho3RHqVPnfp60AOlz0hh1LLaHRCQwqyAVnsVMY+hVO9ait0CEVYLOJFZhTZFUd5Fqso1KC9FJVBr2FF1y1gq2homQVDFHqZvJxzlbkCYuc3Cz+Uw5FMdjFOahvonkNj0suqqyxCs1Sho1uARiqLgOJ42W2XzTE3Bjee7LPKYyAgUHzwrbs48XH34gT4QFqHKj76KMwSHUsrB2O3SLl4d4nJtV4ugLrXSpCNaLeE8JvnsaPEXfVDpcSewqvAPIE6SAOyI1UQ4OTQbL+Ipt/Kqlqr1jpGrZOfK2o9B81ZFd6qcFVt1mvzmmqLx5ZRez90Eo7G7drPetVVB5OHMJD64YxAyetTc8bU17xVuZP84pF2q6pUGQb0OOp26mxB8wdsFo6cXu2JLUYJPKJ7KmxC8eAgbcxio0X6oeOARGrdTaBlq5uJIKI+avNm1eVWx6AfhTO9HuJyVOph43PBJaC53VPFMzhcKzVTOSBcvmpYqcFRImCuNmAvim9RvWdTB0C5kz5CVDbfURu+pValtWob3u+Nma1Bzk2jtT1bI2UdX+mRWrfb+pl0Mq0N+HlM+jOvbcShODQ1UYK/bpNriEVv+kTDvOnRNktvNCBtTm/T52tWPkkyNrLNwQO6w8zSnhpHRVmiceK2BViu1fadZFQbbV9zjuS3tVNro1oaOG0wTLso0mXTiyLBJIn8lBZMoFlqcSvK2KjZ/ijykQ+hBYVCRS8HpRd/UCpcr3sQUCUe7KSHrhaJ6shhpx3tc3Uq/JEGUkZDDSmPc+nSa389oazdJZA2oqS6gR0Sh2BNJLtTyH1Cj0blmBDTZZ1OhrxoX3o6jvQN/Dfx3hjeeE39dZLafa8OpDqzUj9GMo73SxNw5Xag8KWVtMrEssd5Qg9hKxex/ageqkAKoYNBYQ5AMCqXGlCnA1ob5BFhXYOAjd6xSmPZz6bK5hjKQZ1qgVcFaZVlgy55EIyhVBIqnsYEglPPmL6HwTImBuEheVnHYtlajBhjE7VtjIvNxoDE/Mg4eHt0pnHcBtQ0rvi4+wwoHwUvAwGg1cIJLqwIG844/MubBY3iWCWi1bjkoOCPswV0SUNb+ku6denXQA9bGUV+VYTflKBQ5YKsixoYZg6FLaizzOvyLjVitsTiIWVy9KBHUNnsvBffEfip4otrK+J+6DHONqFW5cqW66CBiAdHk4DTaccQevqWS24AfLGh9AgkmGpeOEIH2YgE9QdC+9fd0skSZEPnrsQmvXOpwOwSXD9pgnQ3BAah4Lo+mWx1qU3ahgtrcbEksTQ5XeF33dQRvKo+MeRPVbjfUEP6+tcLBV4mwA50MF3j0mV1LrtrvpZiolGz+IFEMkwHAUeHEjRNqhT9PBOsz34pdhaNtemOXnQrgeGW9c5kMbE4pxhkcKdB2mb4GndSlmkuXxOpn8Rw7vDpAmPw7EBdhzUnYt5Pcu6MhmwafTO9G+0a3QbSQvNZ1kyGfEDay9DyVywGl0A59FSToqNOxggbbp8yJL1GB2UE04iDze42N47VnvAum4UDgmnrAGq4fq8wZNCcOR5qB4ShQobu2V0XtBwOui2CFk9ob89MdAiKtAr0zjBZEDSFz0ApO1VFmVOAc43FXrQqBGCBGVB2F16tiZBM2uMFwTLFaGZ8LUQfRVmbMtvXkHRfTid4Or0IWn7RjovsP/zi0X53O0qSrmulTRuyy0GwOorvMH0j9utyQurUqOTS9piL/gy/1TbEBujmxhtKm/I+3Gbgo20shqX32gNLlx8PZ2W77dfw7ENrywmgcTgtUH6UNIKmklYyXzoKURqHlmCZQPWQBIikHS4DtP3QrY++ORlo6Fz9nRtHfw0J+GjH53ZHP9jLaFCmE4vksIVvbrFYcg7iKJbDZwiH+H2326YeHIDbzMmbtq05h6ENbXG4LR3Y/iA3iTgafkBE/Z5xiNYYRw4sjj3icKYgixdsCg0xeSddZ8Um9jS/3EJ8LtqvnA4zkHA/tDwnaA9icbNBLvPmcee64/Q3Axk7GyfbhbsuMnJ7OFUIzedzxSRd+OICACSRNmA7PRbYPyQUUl0X0oRcNvGGWi997z3mdAnzktcbKF84ffSYie57RKFfKBH0MoSkWEBJ0REQdAe2hnvPDZET8pJGozmZMwEdrQ4loAGzpFi08ls1yCeFMomgxaFGbt9xj8ORlG1E+hftkQTIS62KtQAAC69JREFUeNrt3b2O81gdx/Hv/9FTUSAZgUS3yA934AIuwHMJXm25NB5KROMRV+BUW1BlJBoKikRQrxRLvFRbTGiQoGGi5QYmBSAQaDkUdjL/vI49ycRJ9vdxsfskTub45WefYx+fWKA9i/kl/+rwAXkr3+afV7Al/hR+2ncR1lmnQJR8xC/6LrIAP+a/V7AlJsH6LsK69x3n/1uo+i6ygKVw+Vvi7NIAvOu7ACLnRIEQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgRR4EQcRQIEUeBEHEUCBFHgRBxFAgR533fBZD9LCLZ8vJHYOmW16dh3neJL5sCce4SJjve+WTLazdUfRf4sikQl6Bi2mKuhLTFXLKXAnEJpuHu5ZmsVCAOp0a1iKNAiDgKhIjTug1hCVFzsW8e2jTxRC7Qi4GwiIyElLh54ROwORUVVZj1XXw5P5ZDuG8165d9l3XT3kBYSdrcFpoxcG+kZGRgM8YMdCtIVkyZ2IuRsBT43vnVN3YGwhKGJMwZbzsXLM8bBZndBt0MkqUwtZvdkbC42XMiACZgMyqmjM/jwLojEFZSAINdx/8w534538QGOk/Is12RsJKsqXpP3R31jBwY2pRBGPdddsLGRMwDgUfSwMsTSZe5NXWdSAmUreYsCeezFUh4Il/5d72fDMmI1uaNyRnxRGC0/t7Jy73xQsETgbJLwSgJXT+jqeW6vdBArEaizR5CzITAE1mvpd6yUl9RpCb/o743wvVNlxuIRSS61CGaw3GP54n1BQg8vrYwTAj9pvsap0sORICEfxDoUHtYnieSfkq8eqd6CNy+unl8y5yhRX23iuSMzPmK//FZuGu7V4VZuOGOiGE/BXaBsJKEwesvoYYZg/4WRM7SkG/yMz61vMuHwoABiZW9lNid3A6oLi2/ZUTw1xY0HTpdcpWJgsBw84pTi09GPPSzNM//c5QCEPHEE3Hfm+J6pssNhD/EviISRzlAd5+aKtOh1aXl+WbO7amqTRYf/h3yhlyLNEy5oexScQpTBsQUpy704k51vtZb6dXC2MZkFu/q+GeZvxtpERkxVfcoWsqIb516dR3OUlIS5izWz/11dpG0YvUQu79DxzbhzlIKG2/v6+TW4zhMm0N6y2cL9//Zxemp1Wm51ckuZ2s7gpSSEcG9EjEiDpAz7PxXHvw3XdZEoHAVg73VnEutMvHA08Yd6Z0Vpx2v7l12Ilb2M8pjXKqtq0wptHqMvZ0Ktg6dMmPA6vGhrLsNhnsS6/Q8sBVUcJmXeC1t1hEQpsxOXy04wTJGJFTrl1r3VJyybd8SKuZ7nhPPYHWMkWP0m60Dkax/9SHCjOm2xQizjWvR+bLiUG1fJdtZxO7YnT/X5dkiYq6xyrTjELstEpbZZOf3VCQ7D3sJs+NXN+tAZJtpPkhFbC/urJYCz381BsussAQss8wKsMgyy20zKgWta6JnKHEHn4L5cdpuZ2bnIXY1EpbbI6M9Z4Ep7HzXr0csOU4d532zYx73IY16MVp8pzvJpRYRMWVoFYMwt9JKCHdgDzbzJ0NLmYY5la2tkouRctcsR0rEh6vsOJ8x21WBaZrX3+C75M1TEbuP82NKUrZ0CreIZOWwmB7nIPmOOoHH3bEqeMUYQRljYqLlsxVJc8VgzupJM11ep7rANkR9XrTUUnIIr+8oc972VwTn/JbPKKirvjfhw64ZwwzYfnl9fa+NjrMmF5ddS+tlw5hfjCrMLVk+OdUk3iJSbt0nCqKebuofR8K8ufRY2aPNwzVWmPawlGJ5sPwDP2paAd0vlr5JC+I5EH01T58rPfVjqovqRLR8J2P6vOAWQWjiYclFNqp9NS+6xHPcISxuRqqdc8/n/GZx2HvF9aHVFkSrCnobi859N8GOObX50ys34yJmYDFxs5jpMv8pYzfS9WU3p+vlWVxhSnwcLLMMLHv5YsQlC7NmOOa7cBd+1/Xu9Rpfp1ne7rXUUrDEcosXa3XBUssX16wsssyS594OltXvvaNu0hy1G4Ql0Opi4v3yGF83nNLlcO7P+c8YL4ptKf7S7fTyzhCWEC2XLAKmYNnyvsqEilHfZXxboQo3fCCxJyuZHRCJ6fPhxMrFYdJiIgormTNmYjkV2BDAEhsxC/f1XR9LGFIR8dB8bkTFmLIOxPGv6G9tpltcD11gIyubXfyOOs8l96GC5fkBni+iTYnJQmWJDZmQ1Z+02EpyIiu73dDrk8VWMgQWR60ZcyJLiKl/1yFmGuZ83Hc5j2JMuvu2aZiFWz4AD+R8Smn5rlahbdx8WxoQW2mpZTbkuXtHHMZETfU7WhnJY8SM2PJmvxpyH+bMlofthIyYASxvsx/1tv2I0PoJqZR00Tv2uZes7y/b17NTJ+jeEJE+Lx2jbc8bXmbXDQpaPT1JzgNf8Hf+vGeZdm5/Er/+luv0MRAgq7sDMSRvOo2ki7VD0syTL9YsGZP60ekWf/YVqyMw6XuTXNJERB6oOzuv70YXGogOveNI+YL/7OjN1PlQvQxCWX8jj0TkxDwsShYgqfdPhmTkRM2/MopFX6Z99wM7e4MbfdcuJbGCKanl19GRI0yZte2ME6rwQ/64rS1hMQldR2paVLaTprfbrLlOWVlhqRVEdekss5yIGMKcmaWWNTf6miPUEUfMOPb55us9XeYZIsCQDkNOkG/rCUvJyZ+/XPxndKyVSczTcVskX+/pYgMR87TZAXzvJ9aHNksJi4rO6abFfYgBHGnEjCGRv7MsX0/dh5xY6/ZXf/bke9K7ZWGO8sCeFaSMz2CETuldGFCRWYdu/SuRKIgZ9DAyuDtFHTzMQPfTpKYX1+mFVpleuz80o/31Ul0KrA5Udsuh1aYh0QEDncmVec1IXWHKDQN+RQ/VJVgZqOzQapOqS7KuqTY9dOqhFfGO7/B5Pz+ksjKUZbhjSvG6ztVWUDBXc1rWfMyAhIm1OtBaZCUTvuLn/MBysOHJu+Zs1PoeCTx0u49AxIjA03nVYK9juuQ2hFuGJwKTlwawI232vrhpS/y+7bIfsawbL0SLsfxbf0XW9xDm1zxdQyDcIbPYFQqS9f2OXxMIp75Is2sjtDxPPC9o36v8WqfrCERgeeBc+xUh9+tBK3tcE4/Aie9V73p5eZ7Y29ewaHcq1HTABrqaQNSdGBnyuOWtB8rVjh5E5EwIhLpn6snKuHdT1EV/YkTuumb7xdK54a030BUFYlnSmIIREwIThuS7K0UkDDnpOeLlzVHysPWtR8rNn8/TdPQNdIWBWJa41WCkJKdsn75/4RpU1XSizUiI+T7wV+bbfrla5G2E6SmfInzfZib3q9QcPLqyyBl7d/hXiFwPBULEUSBEHAVCxGnVqJaeFe26xsnhFIhzN986UFd9AXzb3HIQBeLMhSk3m6/qAvhbURtCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRBwFQsRRIEQcBULEUSBEHAVCxFEgRJz3neae8RNL+i6yAB/49xVsib/0XYBN/wcTLg6l0ZYAlwAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAxOC0xMC0wOVQwOTo0MTowMSswMjowMK/WnTwAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMTgtMTAtMDlUMDk6NDE6MDErMDI6MDDeiyWAAAAAFHRFWHRwZGY6VmVyc2lvbgBQREYtMS41IAVcCzkAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%%circuitikz filename=current_measurement dpi=125\n", "\\begin{circuitikz}\n", " \\draw (0,0) to [short] (4,0);\n", " \\draw (4,0) to [R, l=$R_{x}$] (4,4);\n", " \\draw (4,4) to [short] (0,4);\n", " \\draw (0,4) to [I, l=$10 mA$] (0,0);\n", " \\draw (4,4) to [short,] (6,4);\n", " \\draw (6,4) to [voltmeter, l=$U_{meas}$] (6,0);\n", " \\draw (6,0) to [short,] (4,0);\n", "\\end{circuitikz}" ] }, { "cell_type": "code", "execution_count": 95, "metadata": {}, "outputs": [], "source": [ "circuit = Circuit('Current_Measurement')\n", "\n", "#internal Resistance\n", "internal_resistance = 10 #Units of Ohms\n", "#Voltmeter Resistance\n", "vm_res = 1000 #Units of kOhms\n", "\n", "circuit.I('input', 'out', circuit.gnd, 0.01@u_A)\n", "circuit.R(1, 'out', circuit.gnd, internal_resistance@u_Ω)\n", "circuit.R(2, 'out', circuit.gnd, vm_res@u_kΩ)\n", "\n", "####################################################################################################\n", "\n", "simulator = circuit.simulator(temperature=25, nominal_temperature=25)" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [], "source": [ "%%capture\n", "sweep = slice(0,0.01,0.001)\n", "analysis = simulator.dc(Iinput=slice(0, 0.01, .001))\n", "print('Lead Resistance: {} Ω' .format(float(internal_resistance)))\n", "print('Voltmeter Resistance: {} kΩ' .format(float(vm_res)))" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4VVX28PHvohNK6J0QOoSmEJoVERUdFREL9jaiM+M44/xGilgAG6KOOtYX29hBKYqKotgLIkElIYFACC10CIQQSEhZ7x/nRK8xyT0JObkp6/M8eXLvaXftm+SunL3PWVtUFWOMMaY4NUIdgDHGmIrPkoUxxpigLFkYY4wJypKFMcaYoCxZGGOMCcqShTHGmKAsWRhjjAnKkoXxREQ2icgREUkXkQMi8r2I3CwiNQpsN0REFrvbpIrIjyJyXTHHbSsiL4rIDvfYa0Vkuog08L9VwYnItSLybZBtvhQRFZEBBZa/6y4f4WuQlZSITBOR10Mdh/HGkoUpifNUtRHQCZgJTAJezF8pIsOBz4GvgG5Ac+AvwNmFHUxEmgHLgPrAcPfYZwBNgK4lDU5EanlZ5pN1wNUBr9scGAbsKafX90REaoY6BlNJqap92VfQL2ATMKrAsiFAHtDXff4t8HQJjnkfEAfUKGJ9JKBArYBlXwJ/dh9fC3wHPAakusf7wzJ32+uBNcB+YAnQKeCYCtwMrHfXPw0I0BvIBHKBQ8CBIuL8ErgbSAFqustuAZ51l41wl9UAJgMbgH3A20CzgOO8A+wE0oCvgT4B684BEoB0YBvw74D34NsC8SjQzX38PzeOxUAGMAqoCzwCbAF2Ac8B9d3tR7gxTwR2AzuAC9zXX+e+p3cEvFaRbQr4+V3jvtZeYKq7bjRwFMh239tVAe1Jdtu5Ebgi1L/79uV82ZmFKTVV/RHng+VkEQkDhgPzSnCIUcACVc07hjCG4ny4tALuL2yZiFwA3AFcCLQEvgHeKnCcc4HBwADgEuAsVV2Dk0SWqWpDVW1STBzbcT7Mz3SfXw28WmCbW3E+eE8F2vFbYsr3EdDdjfsn4I2AdS8CN6lz9tUX5wzOq8tx3ptGOAn9IaAHcBzOGWB7nGSXrw1QL2D588CVwCDgZOBuEenisU0AJwE9gdPdfXur6sfAA8Bc970d4HY9/hc4223nCcAvJWin8ZElC3OstgPNgKY4v087SrBv8xJuX+jrq+qTqpqjqkeKWHYT8KCqrlHVHJwPqeNEpFPAcWaq6gFV3QJ8gfNBWlKvAleLSE+giaouK7D+Jpz/rFNUNQuYBlyU31Wmqi+panrAugEiEu7umw1EiUhjVd2vqj+VIK73VPU7NylnATcCt6lqqqqm47wf4wO2zwbuV9VsYA7QAnjCjS0eiAf6e2mTa7qqHlHVVcAqnIRclDygr4jUV9Ud7uuZCsCShTlW7XG6Jvbj/KG3LcG++0q4fWG2eljWCXjCHXQ/gBOv4MSeb2fA48NAw1LEsgAYCfwdeK2Q9Z2AhQFxrMHp4motIjVFZKaIbBCRgzjdfuB8UAOMw+kK2iwiX7njQ14Fvh8tgTBgZUAcH7vL8+1T1Vz3cX4C3hWw/gi/vT9Ftilge0/vrapmAJfinM3tEJEPRaSXxzYan1myMKUmIoNxPnC/VdXDOIPV40pwiKXA2IJXVAXIcL+HBSxrU2CbwsomF1y2FacLp0nAV31V/d5DjJ7LMrvvwUc4g/qFJYutOF0sgXHUU9VtOF1FY3C65sJx+vvBSWqo6gpVHYPTRfUuztgAOO/Rr++PiBR8fwq2YS/Oh32fgBjCVbU0yTFYm4L5w3urqktU9QycfyLW4nSBmQrAkoUpMRFpLCLn4nRRvK6qce6qicC1InK7ezUQIjJAROYUcaj/AI2BV/K7hESkvYj8R0T6q+oenMHcK93/vK+nFFdJ4QzgThGRPu5rhIvIxR733QV0EJE6Hre/AzhVVTcVEcf9AW1tKSJj3HWNcLqI9uF8+D+Qv5OI1BGRK0Qk3O0aOojz3zs43Tp9ROQ4EamH0w1UJLcr6nngMRFp5R6/vYic5bF9JWlTMLuAyPx/FkSktYic745dZOEMfOcWdwBTfixZmJJ4X0TScf6bnIrzYf/rPRTuf+oj3a9kEUkFZuNcifMHqpqKM4iZDSx3j/0ZztVASe5mNwK343yI9gG8nA0UfJ2FOIO6c9wuntUUcTlvIT7H6aPfKSJ7PbzWdlUt6r6MJ4BFwCduW3/AGYwHZ7xjM05yTHDXBboK2OTGfzPOgDOqug6YgXOWth5nADuYSTjv7w/u8ZbiDECXRnFtCuYd9/s+EfkJ5/Po/3DGwVJxBs3/Wsq4TBkTVZv8yBhjTPHszMIYY0xQliyMMcYEZcnCGGNMUJYsjDHGBFVeRdZ816JFC42MjAx1GMYYU6msXLlyr6q2DLZdlUkWkZGRxMTEhDoMY4ypVERks5ftrBvKGGNMUJYsjDHGBGXJwhhjTFCWLIwxxgRlycIYY0xQviYLERktIokikiQikwtZf4qI/CQiOSJyUYF114jIevfrGj/jNMYYUzzfkoU7MfzTONU9o4DLRCSqwGZbcObcfbPAvs2Ae3CqVw4B7hGRpn7Faowxpnh+nlkMAZJUNVlVj+LMffC7OvequklVY3FmWAt0FvCpO+3jfuBTnAnejTHGuFSVuSu2sDRhV/CNj5GfyaI9v5/OMYXfT2N5zPuKyAQRiRGRmD179pQ6UGOMqWy27DvMFS8sZ9L8ON79xcvEhMfGzzu4pZBlXifP8LSvqs7GmVyH6Ohom5jDGFPl5eYp//t+E48sSaRmDeH+sX25bHCE76/rZ7JIAToGPO+AMwOW131HFNj3yzKJyhhjKql1u9KZOC+WX7YeYGSvVtw/ti9tw+uXy2v7mSxWAN1FpDPOVJHjcSal92IJ8EDAoPaZwJSyD9EYYyq+ozl5PPvlBp76Yj2N6tXmifHHcf6AdogU1gnjD9+SharmiMgtOB/8NYGXVDVeRGYAMaq6SEQGAwuBpsB5IjJdVfuoaqqI3IuTcABmuPM1G2NMtbJq6wEmzY9l7c50zh/QjnvOi6J5w7rlHkeVmYM7OjpareqsMaaqOHI0l8eWruOFb5Jp1age913Ql1FRrcv8dURkpapGB9uuypQoN8aYqmLZhn1MWRDLpn2HuXxoBJPP7kXjerVDGpMlC2OMqSAOZmYz86O1vLl8C52ah/HmjUM5oWuLUIcFWLIwxpgK4bM1u5i6cDW70zOZcEoXbhvVg/p1aoY6rF9ZsjDGmBDadyiL6e8nsGjVdnq2bsRzVw3iuI5NQh3WH1iyMMaYEFBVFq3azvT3E0jPzOa2UT34y4iu1KlVMYuBW7IwxphytiPtCHcuXM1na3czoGMTZo3rT882jUIdVrE8JwsRaQBkqmquj/EYY0yVlZenzFmxlQcXryE7L487/9Sb607sTM0a5XdzXWkVmSxEpAbOXddXAIOBLKCuiOwBFgOzVXV9uURpjDGV3Ka9GUxeEMsPyamc0LU5My/sT0TzsFCH5VlxZxZfAEtxymysVtU8+HWuidOAmSKyUFVf9z9MY4ypnHJy83jpu408+sk66tSswcwL+3Hp4I7lWqqjLBSXLEapanbBhW7ZjfnAfBEJ7V0ixhhTga3deZBJ82JZlZLGqN6tue+CvrQJrxfqsEqluGSxUETeBN5T1YzCNigsmRhjTHWXlZPL019s4JkvkgivX5snLzuec/u3rXRnE4GKSxbP44xZPC4iXwBvAYvdWe+MMcYU4uct+5k0P5Z1uw4x9vj23HVuFM0a1Al1WMesyGShqu8B74lIfeB84BrgORFZDLylqp+WU4zGGFPhHT6aw6OfrOOl7zbSpnE9Xr52MKf1ahXqsMpM0EtnVfUIMBeYKyL9gVdwEkfFuQ/dGGNC6PukvUxeEMeW1MNcOSyCSaN70SjEhf/KWtBkISKtgUtwuqTaAu8A1/kclzHGVHhpR7J5cPEa5qzYSmTzMOZOGMbQLs1DHZYvirvP4kbgMqAnsACYqKrflVdgxhhTkX0Sv5M7313N3kNZ3HSqU/ivXu2q2+FS3JnFCcBMYGn+PRbGGFPd7T2UxbRF8XwQu4NebRrxwjXR9O9Q8Qr/lbXiksV0Vd1U1EpxrgFrr6opZR6VMcZUMKrKu79sY/r7CRzOyuXfZ/bgplO7UrtmxSz8V9aKSxYPuyU/3gNWAnuAekA3nDu4TwfuASxZGGOqtG0HjjB1YRxfJu5hYEQTZl3Un26tKnbhv7JW3KWzF4tIFE5tqOtxBrcPA2twakPdr6qZ5RKlMcaEQF6e8saPW5i5eA15CvecF8XVwyMrReG/slbs1VCqmgBMLadYjDGmwkjec4jJ8+P4cVMqJ3VrwYMX9qNjs8pT+K+s2XwWxhgTICc3jxe+3chjn66jbq0azLqoPxcP6lCpS3WUBUsWxhjjSth+kInzV7F620HO6tOae8f0pVXjyln4r6xZsjDGVHuZ2bk89XkSz321gSZhdXj2ioGc3a9tqMOqULzcwS04g9xdVHWGiEQAbVT1R9+jM8YYn63cnMrEebFs2JPBuIEduOvc3jQJq/yF/8qalzOLZ4A8YCQwA0jHmc9isI9xGWOMrzKycnh4SSKvLNtEu/D6vHL9EE7t0TLUYVVYXpLFUFUdKCI/A6jqfhGxtGuMqbS+XreHKQvi2J52hKuHdeL20b1oWNd65Yvj5d3JFpGagAKISEucMw1jjKlU0g5nc++HCcxbmUKXlg14+6bhDI5sFuqwKgUvyeK/wEKglYjcD1wE3OlrVMYYU8Y+Xr2Du96LJzXjKH8d0ZVbT+9epQv/lTUv81m8ISIrccp7CHCBqq7xPTJjjCkDu9Mzuee9eD5avZOoto15+drB9G0fHuqwKh0vV0MNA+JV9Wn3eSMRGaqqy32PzhhjSklVmf/TNu79IIEj2blMHN2TG0/uUm0K/5U1L+/as8ChgOcZ7rKgRGS0iCSKSJKITC5kfV0RmeuuXy4ike7y2iLyiojEicgaEZni5fWMMQZga+phrn7pR/79zip6tG7IR/84mb+O6GaJ4hh4GbMQVdX8J6qaJyJezkhqAk8DZ+BUpl0hIovcelP5bgD2q2o3ERkPPARcClwM1FXVfiISBiSIyFvFlUw3xpi8POXVZZuYtSQRAWaM6cOVQztRoxoW/itrXpJFsojcym9nE38Fkj3sNwRIUtVkABGZA4wBApPFGGCa+3ge8JR7E6ACDdykVB84Chz08JrGmGoqafchJs+PJWbzfk7p0ZIHxvalQ9PqW/ivrHlJFjfjXBF1J86H+GfABA/7tQe2BjxPAYYWtY2q5ohIGtAcJ3GMAXYAYcBtqppa8AVEZEJ+LBERER5CMsZUNdm5ecz+Opknlq6nfp2aPHLxAMYNbF/tC/+VNS9XQ+0Gxpfi2IX9pNTjNkOAXKAd0BT4RkSW5p+lBMQ2G5gNEB0dXfDYxpgqbvW2NCbOiyVhx0H+1K8t087vQ8tGdUMdVpXkZeyhJXAjEBm4vapeH2TXFKBjwPMOwPYitklxu5zCgVTgcuBjVc0GdovId0A03rq/jDFVXGZ2Lk98tp7ZXyfTrEEdnrtyEKP7tgl1WFWal26o94BvgKU4/+17tQLoLiKdgW04ZyeXF9hmEXANsAznZr/PVVVFZAswUkRex+mGGgY8XoLXNsZUUSs2pTJpXizJezO4JLoDU8+JIjysdqjDqvK8JIswVZ1U0gO7YxC3AEuAmsBLqhovIjOAGFVdBLwIvCYiSThnFPndXU8DLwOrcbqqXlbV2JLGYIypOg5l5TDr47W8umwzHZrW5/UbhnJS9xahDqvakICrYgvfQOQ+4HtVXVw+IZVOdHS0xsTEhDoMY4wPvkzczdSFq9medoRrT4jk32f2pIEV/isTIrJSVaODbefl3f4HcIeIZAHZOP/pq6o2PsYYjTGmWPszjnLvhwks+Gkb3Vo1ZN7NJzCoU9NQh1UtebkaqlF5BGKMMflUlY9W7+Tu91Zz4HA2fx/ZjVtGdqNuLSv8FyqezuNEpCnQHfh1MlpV/dqvoIwx1dfug5nc9d5qlsTvol/7cF69fihR7awjI9S8XDr7Z5yuqA7ALzhXJi3DmTnPGGPKhKryTkwK932YQFZOHpPP7sWfT+pMLavnVCF4HbMYDPygqqeJSC9gur9hGWOqk62ph5myII5vk/YyJLIZM8f1o0vLhqEOywTwkiwyVTVTRBCRuqq6VkR6+h6ZMabKy81TXvl+Ew8vSaSGwL0X9OWKIRFW+K8C8pIsUkSkCfAu8KmI7OePd2IbY0yJrN+VzqT5sfy05QAjerbk/rH9aN+kfqjDMkXwcjXUWPfhNBH5Aqckx0e+RmWMqbKyc/N47ssNPPl5Eg3q1uTxS49jzHHtrPBfBedlgPs1Vb0KQFW/yl8GXOVzbMaYKiYuJY3b561i7c50zu3vFP5r0dAK/1UGXrqh+gQ+cSc1GuRPOMaYqigzO5fHlq7j+a+TadGwLrOvGsSZfazwX2VSZLJwpzK9A6gvIvkTDwnORESzyyE2Y0wV8EPyPqYsiGPj3gzGD+7IlHN6E17fCv9VNkUmC1V9EHhQRB5UVZsD2xhTIumZ2cz8aC1vLN9Cx2b1eePPQzmxmxX+q6y8dEN9ICINVDVDRK4EBgJPqOpmn2MzxlRSX6zdzR0L49h5MJMbTurM/53Zg7A6VvivMvPy03sWGCAiA4CJOGXFXwVO9TMwY0zlk5pxlBnvx/PuL9vp3qoh8/9yAgMjrPBfVeAlWeS4ExKNwTmjeFFErvE7MGNM5aGqfBC7g2mL4kk7ks2tp3fnb6d1tcJ/VYiXZJHuDnZfCZziXg1lo1PGGAB2Hcxk6sLVLF2zi/4dwnn9z0Pp3dYK/1U1XpLFpTjTod6gqjtFJAJ42N+wjDEVnaoyd8VW7l+8hqM5eUw9pzfXnRhphf+qKC93cO8E/hPwfAvOmIUxppravC+DyfPjWJa8j6Gdm/HQuP5EtmgQ6rCMj4q7z+JbVT1JRNKBwLlXbaY8Y6qp3Dzl5e828sgnidSqUYMHxvZj/OCOVvivGijuPouT3O82U54xhsSd6UycH8uqrQc4vVcr7hvbl7bhVvivuvBSG6orkKKqWSIyAugPvKqqB/wOzhgTekdz8njmyySe/iKJRvVq88T44zh/gBX+q268DHDPB6JFpBvOPRaLgDeBc/wMzBgTequ2HmDivFgSd6Uz5rh23H1uFM2t8F+15CVZ5KlqjoiMBR5X1SdF5Ge/AzPGhM6Ro7n859NEXvx2I60a1eOFq6MZFdU61GGZEPKSLLJF5DLgGuA8d5ndZ2FMFfX9hr1Mnh/HltTDXD40gsln96JxPfuTr+68JIvrgJuB+1V1o4h0Bl73NyxjTHk7mJnNg4vX8taPW+jUPIy3bhzG8K7NQx2WqSC83GeRICKTgAj3+UZgpt+BGWPKz9KEXUx9N4496VlMOKULt43qQf06VqrD/MbL1VDnAY8AdYDOInIcMENVz/c7OGOMv/YdymL6+wksWrWdXm0aMfuqaAZ0bBLqsEwF5KUbahowBPgSQFV/cbuijDGVlKqyaNV2pi2K51BWDreN6sFfRnSlTi0r1WEK57XqbFqBa6q1qI2NMRXbjrQj3LlwNZ+t3c1xHZsw66L+9Ght996a4nlJFqtF5HKgpoh0B24Fvvc3LGNMWcvLU95asYUHF68lN0+569worj0hkppWqsN44OWc8+9AHyAL52a8NOCfXg4uIqNFJFFEkkRkciHr64rIXHf9chGJDFjXX0SWiUi8iMSJSD0vr2mM+aONezO47PkfmLpwNQM6hrPkn6dww0mdLVEYz4o9s3DnrpiuqrcDU0tyYHffp4EzgBRghYgsUtWEgM1uAParajcRGQ88BFwqIrVwLs+9SlVXiUhzILskr2+MgZzcPF76biOPfrKOOrVq8NC4flwS3dFKdZgSKzZZqGquiAwq5bGHAEmqmgwgInOAMUBgshiDM4AOMA94Spzf4jOBWFVd5caxr5QxGFNtrd15kInzYolNSeOMqNbcd0FfWje2E3RTOl7GLH4WkUXAO0BG/kJVXRBkv/bA1oDnKcDQorZxS4qkAc2BHoCKyBKgJTBHVWcVfAERmQBMAIiIiPDQFGOqvqycXJ7+YgPPfJFEeP3aPHX58fypX1s7mzDHxEuyaAbsA0YGLFMgWLIo7Dez4FVURW1TCzgJGAwcBj4TkZWq+tnvNlSdDcwGiI6Otiu0TLX305b9TJoXy/rdh7jw+PbcdW4UTRvUCXVYpgrwcgf3daU8dgrQMeB5B2B7EdukuOMU4UCqu/wrVd0LICKLgYHAZxhj/uDw0RweWbKOl7/fSNvG9Xj5usGc1rNVqMMyVYiXM4vSWgF0d2/g2waMx5nLO9AinAKFy4CLgM9VNb/7aaKIhAFHgVOBx3yM1ZhK67ukvUxeEMvW1CNcNawTE0f3pJEV/jNlzLdk4Y5B3AIsAWoCL6lqvIjMAGJUdRHO/BiviUgSzhnFeHff/SLyH5yEo8BiVf3Qr1iNqYzSjmTzwIdrmBuzlc4tGjB3wjCGdrHCf8Yfolo1uvqjo6M1JiYm1GEYUy6WxO/krndXsy/jKDee3IV/jupOvdpW+M+UnDseHB1suyLPLETkX8XtqKr/KU1gxpjS25OexbRF8XwYt4PebRvz4jWD6dchPNRhmWqguG4oKxZjTAWhqiz8eRszPkjgcFYu/z6zBzed2pXaNa3wnykfRSYLVZ1enoEYYwq37cARpi6M48vEPQyMcAr/dWtl/8uZ8uVlPot6OGU5+gC/3v6pqtf7GJcx1V5envLG8s3M/GgtCkw7L4qrhlvhPxMaXq6Geg1YC5wFzACuANb4GZQx1d2GPYeYMj+OHzelcnL3Fjwwth8dm4WFOixTjXlJFt1U9WIRGaOqr4jImziXwxpjylhObh6zv0nm8aXrqVerBg9f1J+LBnWwUh0m5Lwki/xqrwdEpC+wE4j0LSJjqqn47WlMmh/L6m0HOatPa+4d05dWVvjPVBBeksVsEWkK3IVzx3VD4G5fozKmGsnMzuXJz9fz3FfJNA2rw7NXDOTsfm1DHZYxv+OlNtQL7sOvgC7+hmNM9RKzKZVJ82PZsCeDcQM7cNe5vWkSZoX/TMXj5WqousA4nK6nX7dX1Rn+hWVM1ZaRlcPDSxJ5Zdkm2oXX55Xrh3Bqj5ahDsuYInnphnoPZyrVlThTqxpjjsHX6/YwZUEc29OOcPWwTtw+uhcN6/pZ09OYY+flN7SDqo72PRJjqrgDh49y34drmLcyhS4tG/D2TcMZHNks1GEZ44mXZPG9iPRT1TjfozGmivoobgd3vRfP/sNH+euIrtx6uhX+M5WLl2RxEnCtiGzE6YYSQFW1v6+RGVMF7E7P5J734vlo9U6i2jbmf9cNpm97K/xnKh8vyeJs36MwpopRVeatTOHeDxLIzMnj9rN6MuGULlb4z1RaxSYLEakBfKiqfcspHmMqva2ph7ljYRzfrN9LdKemzBzXn26tGoY6LGOOSbHJQlXzRGSViESo6pbyCsqYyigvT3l12SZmLUlEgBlj+nDl0E7UsMJ/pgrw0g3VFogXkR+BjPyFqnq+b1EZU8kk7U5n0vw4Vm7ezyk9WvLA2L50aGqF/0zV4SVZ2LwWxhQhOzeP2V8n88TS9dSvU5NHLx7AhQPbW+E/U+V4KffxlYh0Arqr6lIRCQPsmj9T7a3elsbEebEk7DjIOf3aMP38vrRsVDfUYRnjCy/lPm4EJgDNgK5Ae+A54HR/QzOmYsrMzuWJz9Yz++tkmjWow3NXDmJ03zahDssYX3nphvobMARYDqCq60Wkla9RGVNBrdiUyqR5sSTvzeCS6A5MPSeK8LDaoQ7LGN95SRZZqno0vw9WRGoB6mtUxlQwh7JymPXxWl5dtpkOTevz+g1DOal7i1CHZUy58ZIsvhKRO4D6InIG8FfgfX/DMqbi+CJxN1MXxLHjYCbXnRjJv8/sSQMr/GeqGS+/8ZOBG4A44CZgsao+72tUxlQA+zOOcu8HCSz4eRvdWjVk3s0nMKhT01CHZUxIeEkWf1fVJ4BfE4SI/MNdZkyVo6osjtvJPYtWc+BwNn8f2Y1bRnajbi27CNBUX16SxTVAwcRwbSHLjKn0dh/M5M53V/NJwi76tQ/n1euHEtWucajDMibkikwWInIZcDnQWUQWBaxqBOzzOzBjypOq8k5MCvd+mMDRnDymnN2LG07qTC0r/GcMUPyZxffADqAF8GjA8nQg1s+gjClPW1MPM2VBHN8m7WVI52bMvLAfXVpa4T9jAhWZLFR1M7AZGF5+4RhTfnLzlFe+38TDSxKpWUO474K+XD4kwgr/GVMIL3dwXwg8BLTCmfgof/Ij68g1ldb6XelMnB/Lz1sOMKJnSx4Y2492TeqHOixjKiwvHbKzgPNVNVxVG6tqI6+JQkRGi0iiiCSJyORC1tcVkbnu+uUiEllgfYSIHBKRf3t5PWOCOZqTx38/W8+f/vstm/Zm8Pilx/HytYMtURgThJeroXap6pqSHlhEagJPA2cAKcAKEVmkqgkBm90A7FfVbiIyHucM5tKA9Y8BH5X0tY0pTGzKASbOi2XtznTOG9COe86LokVDK/xnjBdekkWMiMwF3sWZgxsAVV0QZL8hQJKqJgOIyBxgDBCYLMYA09zH84CnRERUVUXkAiCZgDk0jCmNzOxcHvt0Hc9/k0zLRnV5/upozohqHeqwjKlUvCSLxsBh4MyAZQoESxbtga0Bz1OAoUVto6o5IpIGNBeRI8AknLOSIrugRGQCTkVcIiIigjbEVD8/JO9j8vxYNu07zGVDOjL57N6E17fCf8aUlJf5LK4r5bELu6SkYAHCoraZDjymqoeKm0RGVWcDswGio6OtuKH5VXpmNjM/Wssby7cQ0SyMN/88lBO6WeE/Y0qruJvyJqrqLBF5kkKqzKrqrUGOnQJ0DHjeAdhexDYpbjXbcCAV5wzkIhGZBTQB8kQkU1WfCtYgYz5fu4upC1ez62Amfz6pM/86swdhdazwnzHHori/oPxB7ZhSHnsF0F1EOgPbgPE4d4QlY3THAAAWj0lEQVQHWoRTTmQZcBHwuaoqcHL+BiIyDThkicIEk5pxlBnvx/PuL9vp0bohz1xxAsdHWOE/Y8pCcTflve9+f6U0B3bHIG4BluBMw/qSqsaLyAwgRlUXAS8Cr4lIEs4ZxfjSvJap3lSV92N3MG1RPOmZ2fzj9O787bRu1KllpTqMKSvi/CNf+UVHR2tMTGlPgkxltTPNKfy3dM0uBnQI56GL+tOrjd0vaoxXIrJSVaODbWcduaZSUlXmrNjKAx+uITsvj6nn9Ob6kzpT00p1GOOLYpOFe2Pdrar6WDnFY0xQm/dlMHl+HMuS9zGsSzNmXtifyBYNQh2WMVVasclCVXNFZAzOndTGhFRunvLydxt55JNEateowQNj+zF+cEcr/GdMOfDSDfWdiDwFzCXgbmpV/cm3qIwpIHGnU/hv1dYDnN6rFfeN7UvbcKvnZEx58ZIsTnC/zwhYpsDIsg/HmN87mpPHM18m8fQXSTSqV5v/XnY85/VvS3E3axpjyp6XO7hPK49AjCnol60HmDQvlsRd6Yw5rh13nxtFcyv8Z0xIeJnPojXwANBOVc8WkShguKq+6Ht0plo6cjSXRz9J5KXvNtKqUT1evCaa03tb4T9jQslLN9T/gJeBqe7zdTjjF5YsTJn7fsNeJs+PY0vqYa4YGsGks3vRuJ4V/jMm1Lwkixaq+raITIFf78zO9TkuU80czMzmwcVreOvHrUQ2D2POhGEM69I81GEZY1xekkWGiDTHLSYoIsOANF+jMtXK0oRdTH03jj3pWdx0Shf+OaoH9evUDHVYxpgAXpLF/+EU/OsqIt8BLXGK/hlzTPYdymLa+wm8v2o7vdo04vmro+nfoUmowzLGFMLL1VArReRUoCfO/BOJqprte2SmylJVFq3azrRF8RzKyuFfZ/Tg5lO7WuE/YyowL1dDrcIZ0J6rqhv8D8lUZdsPHOHOd1fz+drdHB/RhFnj+tO9daNQh2WMCcJLN9T5wKXA2yKSh5M43lbVLb5GZqqUvDzlzR+3MPOjteTmKXefG8U1J0Ra4T9jKgkv3VCbgVnALBHpDtwFPIQzR4UxQW3cm8Hk+bEs35jKid2a8+DY/kQ0Dwt1WMaYEvBUolxEIoFLcM4wcoGJ/oVkqoqc3Dxe+m4jj36yjjq1ajBrXH8uju5gpTqMqYS8jFksB2oD7wAXq2qy71GZSm/NjoNMmh9LbEoaZ0S15r4L+tK6cb1Qh2WMKSUvZxbXqOpa3yMxVUJWTi5Pf57EM19uoElYbZ6+fCDn9GtjZxPGVHJeksUOEfkPcIr7/CtghqrajXnmd37asp9J82JZv/sQFw5sz11/iqJpgzqhDssYUwa8JIuXgNU4YxYAV+HUirrQr6BM5XL4aA6PLFnHy99vpG3jerx83WBO69kq1GEZY8qQl2TRVVXHBTyfLiK/+BWQqVy+Xb+XKQtj2Zp6hKuHd2Li6F40rGtTuxtT1Xj5qz4iIiep6rcAInIicMTfsExFl3Ykm/s/TODtmBQ6t2jA2zcNZ0jnZqEOyxjjEy/J4mbgVREJd5/vB67xLyRT0S2J38ld765mX8ZR/jKiK/84vTv1atttN8ZUZV5uylsFDBCRxu7zg75HZSqkPelZTFsUz4dxO+jdtjEvXjOYfh3Cg+9ojKn0PHcuW5KovlSVhT9vY8YHCRzOyuX2s3oy4ZQu1K5phf+MqS5sJNIUa9uBI9yxII6v1u1hUKemPDSuP91aNQx1WMaYcmbJwhQqL095fflmHvpoLQpMOy+Kq4dHUsMK/xlTLXkp9xGGMwFShKre6BYT7KmqH/genQmJDXsOMXl+LCs27efk7i14YGw/Ojazwn/GVGdezixeBlYCw93nKTh1oixZVDE5uXnM/iaZx5eup16tGjx8UX8uGmSF/4wx3m/Ku1RELgNQ1SNinx5VTvz2NCbNj2X1toOM7tOGGRf0oVUjK/xnjHF4uZzlqIjUBxRARLoCWV4OLiKjRSRRRJJEZHIh6+uKyFx3/XK3FDoicoaIrBSROPf7SM8tMiWSmZ3Lw0vWcv5T37EzLYtnrxjIc1cNskRhjPkdL2cW9wAfAx1F5A3gRODaYDuJSE3gaeAMnK6rFSKySFUTAja7Adivqt1EZDzOpEqXAnuB81R1u4j0BZYA7b03y3gRsymVifNjSd6TwUWDOnDnn3rTJMwK/xlj/sjLTXmfishPwDBAgH+o6l4Pxx4CJOXPfyEic4AxQGCyGANMcx/PA54SEVHVnwO2iQfqiUhdVfV0RmOKl5GVw8NLEnll2Sbahdfn1euHcEqPlqEOyxhTgXm5Gmqg+3CH+z3CLf2xWVVzitm1PbA14HkKMLSobVQ1R0TSgOY4Zxb5xgE/F5YoRGQCMAEgIiIiWFMM8PW6PUxZEMf2tCNcMzyS28/qSQMr/GeMCcLLp8QzwEAgFufMoq/7uLmI3KyqnxSxX2GD4FqSbUSkD07X1JmFvYCqzgZmA0RHRxc8tglw4PBR7vtwDfNWptClZQPeuWk40ZFW+M8Y442XZLEJuEFV4wFEJAq4HbgXWAAUlSxSgI4BzzsA24vYJkVEagHhQKr7Oh2AhcDVqrrBS2NM4T6K28Fd78Wz//BR/nZaV/4+0gr/GWNKxkuy6JWfKABUNUFEjlfV5CBX0K4AuotIZ2AbMB64vMA2i3Aq2C4DLgI+V1UVkSbAh8AUVf3Oe3NMoN0HM7n7vXg+jt9Jn3aNeeX6wfRpZ4X/jDEl5yVZJIrIs8Ac9/mlwDoRqQtkF7WTOwZxC86VTDWBl1Q1XkRmADGqugh4EXhNRJJwzijGu7vfAnQD7hKRu9xlZ6rq7hK2r1pSVeatTOHeDxLIzMlj0uhe3HhyZ2pZ4T9jTCmJavFd/e49Fn8FTsIZY/gWZxwjEwhT1UN+B+lFdHS0xsTEhDqMkNuaepg7Fsbxzfq9DI5sysxx/ena0gr/GWMKJyIrVTU62HZeLp09AjzqfhVUIRKFcQr/vbpsE7OWJCLAvWP6cMXQTlb4zxhTJrxcOtsdeBCIAn69rVdVu/gYlymBpN3pTJofx8rN+zm1R0vuH9uXDk2t8J8xpux4LSR4D/AYcBpwHYVf8mrKWXZuHv/vqw3897MkwurW5D+XDGDs8e2t8J8xpsx5SRb1VfUz987qzcA0EfkGJ4GYEFm9LY3b58WyZsdB/tS/LdPO60PLRnVDHZYxporykiwyRaQGsN69umkb0MrfsExRMrNzeXzpep7/JplmDerw/64axFl92oQ6LGNMFeclWfwTCANuxbkR7zTgaj+DMoX7cWMqk+fHkrw3g0ujO3LHOb0JD6sd6rCMMdWAl2QRqaorcK58ug5ARC4GlvsZmPlNemY2sz5O5LUfNtOxWX1ev2EoJ3VvEeqwjDHViJdkMQVnZrxgy4wPvkjczdQFcew4mMn1J3bm32f1IKyOFf4zxpSvIj91RORs4BygvYj8N2BVY6C4arOmDOzPOMq9HySw4OdtdG/VkPl/OYGBEU1DHZYxppoq7l/U7Thzb5/vfs+XDtzmZ1DVmaryYdwO7nkvnrQj2dw6sht/G9mNurWs8J8xJnSKTBaqugpYJSKvB5m3wpSRXQczuevd1XySsIt+7cN5/c9D6d22cajDMsaYYruh4vht3u0/rFfV/v6FVb2oKm/HbOW+D9dwNCePO87pxfUnWuE/Y0zFUVw31LnlFkU1tmXfYSYviOX7DfsY2rkZD43rT2SLBqEOyxhjfqe4bqjN+Y9FpDUw2H36o5UKP3a5ecr/vt/EI0sSqVlDuH9sXy4bHGGF/4wxFZKXQoKXAA8DX+LUhHpSRG5X1Xk+x1ZlrduVzsR5sfyy9QAje7Xi/rF9aRteP9RhGWNMkbxcsD8VGJx/NiEiLYGlgCWLEjqak8dzX23gyc/X07BuLZ4YfxznD2hnhf+MMRWel2RRo0C30z7ARl5LaNXWA0yaH8vanemcP6Ad95wXRfOGVvjPGFM5eEkWH4vIEuAt9/mlwGL/QqpajhzN5bGl63jhm2RaNarHC1dHMyqqdajDMsaYEvEyU97tInIhv02rOltVF/oeWRWwbMM+piyIZdO+w1w2JIIp5/SicT0r/GeMqXy8DHDfBryjqgvKIZ4q4WBmNjM/Wsuby7fQqXkYb944lBO6WuE/Y0zl5aUbqjGwRERSgTnAPFXd5W9Yldfna3dxx4LV7E7P5MaTO/OvM3pSv46V6jDGVG5euqGmA9NFpD/OeMVXIpKiqqN8j64S2XcoixkfJPDeL9vp2boRz101iOM6Ngl1WMYYUyZKUut6N7AT52oomynPpaosWrWd6e8nkJ6ZzT9HdeevI7pRp5ZdMGaMqTq8jFn8BeeMoiXOvRU3qmqC34FVBjvSjnDnwtV8tnY3Azo2Yda4/vRs0yjUYRljTJnzcmbRCfinqv7idzCVRV6eMmfFVh5cvIbsvDzu/FNvrjuxMzWtVIcxporyMmYxuTwCqSw27c1g8oJYfkhOZXiX5swc149Oza3wnzGmarP5OT3KzVNe+nYjj36aSO0aNZh5YT8uHdzRSnUYY6oFSxYeJO5MZ+K8VaxKSWNU71bcd0E/2oTXC3VYxhhTbixZFCMrJ5dnvtjAM18m0bhebZ687HjO7d/WziaMMdWOJYsi/LxlP5Pmx7Ju1yEuOK4dd5/Xh2YN6oQ6LGOMCQlLFgUcPprDo5+s46XvNtKmcT1eujaakb2s8J8xpnrz9c4xERktIokikiQif7iqSkTqishcd/1yEYkMWDfFXZ4oImf5GWe+75P2Mvrxb3jx241cPiSCT247xRKFMcbg45mFiNQEngbOAFKAFSKyqMANfTcA+1W1m4iMBx4CLhWRKGA80AdoBywVkR6qmutHrGlHsnlw8RrmrNhKZPMw5kwYxrAuzf14KWOMqZT87IYaAiSpajKAiMwBxgCByWIMMM19PA94SpzR4zHAHFXNAjaKSJJ7vGVlHWRsygFufDWGPelZ3HRqF24b1YN6ta3wnzHGBPIzWbQHtgY8TwGGFrWNquaISBrQ3F3+Q4F92xd8ARGZAEwAiIiIKFWQEc3C6NG6Ec9fHU3/Dlb4zxhjCuNnsijs+lL1uI2XfVHV2cBsgOjo6D+s96JJWB1eu6FgDjPGGBPIzwHuFKBjwPMOwPaithGRWkA4kOpxX2OMMeXEz2SxAuguIp1FpA7OgPWiAtssAq5xH18EfK6q6i4f714t1RnoDvzoY6zGGGOK4Vs3lDsGcQuwBKgJvKSq8SIyA4hR1UXAi8Br7gB2Kk5Cwd3ubZzB8Bzgb35dCWWMMSY4cf6Rr/yio6M1JiYm1GEYY0ylIiIrVTU62HY2nZsxxpigLFkYY4wJypKFMcaYoCxZGGOMCarKDHCLyB5g8zEcogWwt4zCqQyqW3vB2lxdWJtLppOqtgy2UZVJFsdKRGK8XBFQVVS39oK1ubqwNvvDuqGMMcYEZcnCGGNMUJYsfjM71AGUs+rWXrA2VxfWZh/YmIUxxpig7MzCGGNMUJYsjDHGBFUlk4WIjBaRRBFJEpHJhayvKyJz3fXLRSQyYN0Ud3miiJzl9ZihVtZtFpGOIvKFiKwRkXgR+Uf5tcYbP37O7rqaIvKziHzgfytKxqff7SYiMk9E1ro/7+Hl0xpvfGrzbe7v9WoReUtE6pVPa4IrbXtFpLn7N3tIRJ4qsM8gEYlz9/mvO311yahqlfrCKYe+AegC1AFWAVEFtvkr8Jz7eDww130c5W5fF+jsHqeml2NWwTa3BQa62zQC1lX1Ngfs9y/gTeCDULezPNoMvAL82X1cB2gS6rb6/LvdHtgI1He3exu4NtRtLYP2NgBOAm4Gniqwz4/AcJxZSD8Czi5pbFXxzGIIkKSqyap6FJgDjCmwzRicPxCAecDpbqYdA8xR1SxV3QgkucfzcsxQKvM2q+oOVf0JQFXTgTUUMg96CPnxc0ZEOgB/Al4ohzaUVJm3WUQaA6fgzC2Dqh5V1QPl0BavfPk548zlU1+cGTrDqDgzcZa6vaqaoarfApmBG4tIW6Cxqi5TJ3O8ClxQ0sCqYrJoD2wNeJ7CHz/kft1GVXOANKB5Mft6OWYo+dHmX7mnuccDy8sw5mPlV5sfByYCeWUf8jHzo81dgD3Ay27X2wsi0sCf8EulzNusqtuAR4AtwA4gTVU/8SX6kjuW9hZ3zJQgxwyqKiaLwvriCl4fXNQ2JV1eUfjRZmcnkYbAfOCfqnqw1BGWvTJvs4icC+xW1ZXHGpxP/Pg51wIGAs+q6vFABlCRxuT8+Dk3xfnvvDPQDmggIlceU5Rl51jaeyzHDKoqJosUoGPA8w788RTz123c09BwnGldi9rXyzFDyY82IyK1cRLFG6q6wJfIS8+PNp8InC8im3BO/0eKyOt+BF9Kfv1up6hq/lnjPJzkUVH40eZRwEZV3aOq2cAC4ARfoi+5Y2lvccfsEOSYwYV6QMeHAaJaQDLOfw35A0R9CmzzN34/QPS2+7gPvx8QS8YZcAp6zCrYZsHp23w81O0rrzYX2HcEFW+A25c2A98APd3H04CHQ91Wn3+3hwLxOGMVgtP///dQt/VY2xuw/lr+OMC9AhjGbwPc55Q4tlC/OT694efgXL2zAZjqLpsBnO8+rge8gzPg9SPQJWDfqe5+iQRcMVDYMSvSV1m3GeeqCgVigV/crxL/glWmNhc49ggqWLLw8Xf7OCDG/Vm/CzQNdTvLoc3TgbXAauA1oG6o21lG7d2Ec5ZxCOeMIspdHu22dQPwFG71jpJ8WbkPY4wxQVXFMQtjjDFlzJKFMcaYoCxZGGOMCcqShTHGmKAsWRhjjAnKkoUxISQiI0SkyBvCROQCEbm7wLJVIvJWgWWPiMhIv+I0xpKFMaUgIjULPBcRKc3f0wiKv3t4IvBMwOv0xvm7PaVADacnqVhlOkwVY8nCVGsicrWIxLr/rb/mLvufiFwUsM0h9/sId76AN4E4EYl05394BvgJ6CgiZ4rIMhH5SUTecWtrISKbRGS6uzxORHq5BRpvBm4TkV9E5OQCsfUAslR1b8Diy3FuIvsEOD9/oapuBpqLSJsyf5OMwZKFqcZEpA/OHb4jVXUA4GWCpyE4d9VGuc97Aq/qb0X47gRGqepAnLui/xWw7153+bPAv1V1E/Ac8JiqHqeq3xR4rRNxklCgS4G5wFvAZQXW/eTuY0yZqxXqAIwJoZHAvPz/3FW1uGJs+X5UZ26EfJtV9Qf38TCcCXe+cyciqwMsC9g2vxjjSuBCD6/VFqd8OAAiMhjYo6qbRSQFeElEmqrqfneT3ThVVI0pc5YsTHUmFF6qOQf3rNudRKdOwLqMAtsGPhfgU1Ut+B9/viz3ey7e/vaO4FQUzXcZ0MutigvQGBjHbxM11XP3MabMWTeUqc4+Ay4RkeYAItLMXb4JGOQ+HgPU9ni8H4ATRaSbe7wwd9yhOOk409YWZg2Qf6wawMVAf1WNVNVIN7bAxNQDp1icMWXOkoWptlQ1Hrgf+EpEVgH/cVc9D5wqIj/ilLMueDZR1PH24JSHfktEYnGSR68gu70PjC1sgBv4GjjePbs5BdimzixvgeujRKStO/dIN5xxEmPKnFWdNaYCE5EngPdVdWmQ7cYCA1X1rvKJzFQ3dmZhTMX2AM4kPcHUAh71ORZTjdmZhTHGmKDszMIYY0xQliyMMcYEZcnCGGNMUJYsjDHGBGXJwhhjTFD/HzNORPN6gRPeAAAAAElFTkSuQmCC\n", "text/plain": [ "