{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Consider now measuring the value of a resistor by passing a current through it and measuring the voltage across it. " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEKCAYAAAAvlUMdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xt4XXWd7/H3p0l64dYbaemVAlYuIhTIqTo88CgdW0SwgDqCDtROa2UOaHHUmYKjODrjlBmdqmfmCBVaq0crTKEWxAFrQVEGgfRCKRQIA5YGShvojXto+j1/7JV0Z2fvnZ00a+8mfF7Pk2fv9Vu/79q/RRf5ZK3fSpYiAjMzs57Wr9IDMDOzvskBY2ZmqXDAmJlZKhwwZmaWCgeMmZmlwgFjZmapcMCYmVkqHDBmZpYKB4yZmaWiutIDqKTDDz88JkyYUOlhmJn1KqtXr34xImo76/e2DpgJEyZQX19f6WGYmfUqkjaV0s+XyMzMLBUOGDMzS4UDxszMUuGAMTOzVDhgzMwsFakFjKRFkrZJ2pDVNkzSSkkNyevQArV3Stop6Zc57UdJeiCpv0lS/6R9QLL8VLJ+Qlr7ZWZmpUnzDOZHwNk5bfOAVRExEViVLOfzr8AledqvBRYk9TuAWUn7LGBHRLwDWJD0MzOzCkotYCLiXmB7TvN0YEnyfglwfoHaVcDL2W2SBJwFLMtTn73dZcCUpL+ZmVVIuedgRkbEFoDkdUQXaocDOyNiT7LcCIxJ3o8BNifb3QPsSvp3IGmOpHpJ9U1NTd3YhfY+cf39fOL6+7teuPjDma9umHnnTGbeObPLdZsuuZRNl1za5brl31nD8u+s6XLdTf8wj5v+odBJamHbrl/PtuvXd7kOYPHixSxevLjLdavXfJLVaz7Z5boL1jZwwdqGLtf5uCnMx01h3T5uKqQ3TfLnOyOJEta1b4xYGBF1EVFXW9vpXzowM7NuKnfAbJU0CiB53daF2heBIZJa/7zNWOD55H0jMC7ZbjUwmI6X58zMrIzKHTC3ATOS9zOAFaUWRkQA9wAfy1Ofvd2PAXcn/c3MrELSvE15KXA/cKykRkmzgPnAByU1AB9MlpFUJ+mGrNrfA/9JZrK+UdK0ZNXfAX8j6Skycyw3Ju03AsOT9r+h8N1pZmZWJqn9NeWIuLjAqil5+tYDs7OWzyiwzaeByXna3wA+3r2RmplZGnrTJL+ZmfUiDhgzM0uFA8bMzFLhgDEzs1Q4YMzMLBUOGDMzS4UDxszMUuGAMTOzVDhgzMwsFQ4YMzNLhQPGzMxS4YAxM7NUOGDMzCwVDhgzM0uFA8bMzFKR5gPHFknaJmlDVtswSSslNSSvQwvUzkj6NEiakbQdKmld1teLkr6brPu0pKasdbPzbdfMzMonzTOYHwFn57TNA1ZFxERgFXmePClpGHAN8B4yDxe7RtLQiHg5Iia1fgGbgFuzSm/KWn9D7nbNzKy8UguYiLgX2J7TPB1YkrxfApyfp3QasDIitkfEDmAlOUElaSIwAvh9jw7azMx6TLnnYEZGxBaA5HVEnj5jgM1Zy41JW7aLyZyxRFbbRyWtl7RM0rieHLSZmXXdgTjJrzxtkbN8EbA0a/l2YEJEnAT8hn1nSR03Ls2RVC+pvqmpab8Ha2Zm+ZU7YLZKGgWQvG7L06cRyD4DGQs837og6WSgOiJWt7ZFxEsR8Way+EPgtEIDiIiFEVEXEXW1tbXd3xMzMyuq3AFzGzAjeT8DWJGnz13AVElDk7vMpiZtrS6m/dlLa1i1+giwscdGbGZm3VKd1oYlLQXeDxwuqZHMnWHzgZslzQKeBT6e9K0DLouI2RGxXdI3gYeSTX0jIrJvFvgL4Jycj/u8pI8Ae8jcWPDpdPbKzMxKlVrARMTFBVZNydO3HpidtbwIWFRgu0fnabsKuKp7IzUzszQciJP8ZmbWBzhgzMwsFQ4YMzNLhQPGzMxS4YAxM7NUOGDMzCwVDhgzM0uFA8bMzFLhgDEzs1Q4YMzMLBUOGDMzS4UDxszMUuGAMTOzVDhgzMwsFQ4YMzNLhQPGzMxSkVrASFokaZukDVltwyStlNSQvA4tUDsj6dMgaUZW+28lPSFpXfI1ImkfIOkmSU9JekDShLT2y8zMSpPmGcyPgLNz2uYBqyJiIrAqWW5H0jAyj1d+DzAZuCYniD4VEZOSr21J2yxgR0S8A1gAXNuje2JmZl2WWsBExL3A9pzm6cCS5P0S4Pw8pdOAlRGxPSJ2ACvpGFS5sre7DJgiSd0auJmZ9Yhyz8GMjIgtAMnriDx9xgCbs5Ybk7ZWi5PLY1/NCpG2mojYA+wChvf04M3MrHQH4iR/vjOPSF4/FRHvBs5Ivi4poab9xqU5kuol1Tc1Ne33YM3MLL9yB8xWSaMAktdtefo0AuOylscCzwNExHPJ68vAz8jM0bSrkVQNDKbj5TmS2oURURcRdbW1tfu9Q2Zmll+5A+Y2oPWusBnAijx97gKmShqaTO5PBe6SVC3pcABJNcC5QOsdatnb/Rhwd0TkPYMxM7PyqE5rw5KWAu8HDpfUSObOsPnAzZJmAc8CH0/61gGXRcTsiNgu6ZvAQ8mmvpG0HUwmaGqAKuA3wA+TPjcCP5H0FJkzl4vS2i8zMytNagETERcXWDUlT996YHbW8iJgUU6fV4HTCnzWGyRhZWZmB4YDcZLfzMz6AAeMmZmlwgFjZmapcMCYmVkqHDBmZpYKB4yZmaXCAWNmZqlwwJiZWSocMGZmlgoHjJmZpcIBY2ZmqXDAmJlZKhwwZmaWCgeMmZmlwgFjZmapcMCYmVkqUgsYSYskbZO0IattmKSVkhqS16EFamckfRokzUjaDpJ0h6THJT0qaX5W/09LapK0LvmanW+7ZmZWPmmewfwIODunbR6wKiImAquS5XYkDSPzeOX3AJOBa7KC6NsRcRxwCnC6pA9lld4UEZOSrxt6dlfMzKyrUguYiLgX2J7TPB1YkrxfApyfp3QasDIitkfEDmAlcHZEvBYR9yTbbgbWAGNTGbyZme23cs/BjIyILQDJ64g8fcYAm7OWG5O2NpKGAOeROQtq9VFJ6yUtkzSu0AAkzZFUL6m+qampu/thZmadOBAn+ZWnLdpWStXAUuD7EfF00nw7MCEiTgJ+w76zpI4bilgYEXURUVdbW9uDwzYzs2zlDpitkkYBJK/b8vRpBLLPQMYCz2ctLwQaIuK7rQ0R8VJEvJks/hA4rUdHbWZmXVbugLkNmJG8nwGsyNPnLmCqpKHJ5P7UpA1J/wgMBq7MLmgNrcRHgI09PG4zM+uiNG9TXgrcDxwrqVHSLGA+8EFJDcAHk2Uk1Um6ASAitgPfBB5Kvr4REdsljQW+ApwArMm5Hfnzya3LDwOfBz6d1n6ZmVlpqtPacERcXGDVlDx964HZWcuLgEU5fRrJPz9DRFwFXNXtwZqZWY8rGjCS1pewjaaI6BAaZmb29tbZGUwVcE6R9SIzr2JmZtZOZwHz2YjYVKyDpP/dg+MxM7M+ougkf0T8obMNlNLHzMzefkq6i0zSuZLWStouabeklyXtTntwZmbWe5V6F9l3gQuBRyIiOutsZmZW6u/BbAY2OFzMzKxUpZ7B/C3wK0m/A1r/JAsR8W+pjMrMzHq9UgPmn4BXgIFA//SGY2ZmfUWpATMsIqamOhIzM+tTSp2D+Y0kB4yZmZWs1IC5HLhT0uu+TdnMzEpR0iWyiDg07YGYmVnfUvJfU5Y0BjgyuyYi7k1jUGZm1vuVFDCSrgU+ATwGtCTNAThgzMwsr1LnYM4Hjo2IcyLivOTrI50VSVokaZukDVltwyStlNSQvA4tUDsj6dMgaUZW+2mSHpH0lKTvS1JXtmtmZuVRasA8DdR0Y/s/As7OaZsHrIqIicCqZLkdScOAa4D3AJOBa7IC4wfAHGBi8tW6/U6329N+sfY51j67kwee2c7p8+/mF2ufK61w/c3Q+BBs+gMsODGzXKI7nr6D9U3rqd9az9RlU7nj6TtKqtt1++28/vDDvPbQQzScNYVdt99eUt2TD7zA1md28XzDTpZcfR9PPvBCSXUbf38PW558gsbHNrDw8pls/P09JdW9unYbzc/upvmZXWyZ/yCvrt1WUh3A+vXraWxsZNOmTSxYsID160t5nBFseWEFu3atZefOB7jvvjPY8kK+J3l3dMsL21m96zXu3/kqdf/9KLe8sL2kOh83hfm4Kazbx00Fqdhff5H0f8hcChsDnEzmG3f2b/J/vtMPkCYAv4yIE5PlJ4D3R8QWSaOA30bEsTk1Fyd9PpssXw/8Nvm6JyKOy+1XynZz1dXVRX19fWe7kNcv1j7HVbc+wutvtbS1Daqp4p8vfDfnnzKmcOH6m+H2z8Nbr+9rqxkE530fTvqLop95x9N38PX//jpvtLzR1jawaiBf/7Ov8+GjP1ywbtftt7Plq18j3thXp4EDGfXNbzD4vPMK1j35wAvc89PH2dO8t62tun8/PvCp43jne44oWLfx9/fw64X/zp7mN7PqBjB1zhUcf8YHCta9unYbO29tIN7a93mq6ceQCydy8CkjCtZB5pvE7bffzltvvdXWVlNTw3nnncdJJ51UsG7LCyt4/PGvsHfvvn+Pfv0Gcdxx/8SoI6YXrLvlhe186YnNvL533/8/g/qJbx87jo8eMaxgnY8bHzdlPW5SIml1RNR12q+TgJlRcCUQEUtKGMgE2gfMzogYkrV+R0QMzan5EjAwIv4xWf4q8DqZgJkfEX+etJ8B/F1EnFvKdnPtT8C88yv/RXPL3g7tY4YM4r55ZxUu/OYIaHmzY3vVAPhq/p+6Zt45E4D1Tetp3tvcYX3/fv1ZfcnqDu2bLrkUgNcffpho7lin/v0ZdPLJHPmTH7e1Lf/Omrb3W5/ZRcuejsdHVbUYedRgAC744qkA3PQP+04Ytzz5BC173spTV8Ood+7L/A8c8cl265uf3Q0teY7HKtF//GFti7946V5qRh3crktjYyMtLS25lVRVVTF27FhGjNy3j0ccMart/a5da4nI899G/Rk8+BTmvXJRu/ZDDj0egNW7XqM5z/87/SUOW/1Sx30A3nXIINY+uzPvcdO/qh/LD/6n/HWjBmfOXPIcNy9WVfPlcUflrQPgiHcXPG6GvCr+/o6BBUuP3Pxm3uOmecBgHptc+GfLnf0OZ6/yTO/Gq9ByV8G6N17ZDNHx33Bg9SG8/8iL8lRkHLp3CP2o6tD+mpr57aEbC9YBbG3eTgt5/j36v8HJkx4oPNYBuxminR3adzGUH1R/rWDdo6+NZu+Ajv9t+r3ZwrBHdxWse/WlN4i9eY63qn6cMn5InorO3fTZ93WrDkoPmKKT/K0BImkg8A4yZzP/ExFvFKvrAco3nCLtpW9YmkPmEhvjx4/v+sgS+b5JADy/8/W87W3yhUux9uzPzPNNolh7q3zfJIq1tw0pT7gUa9+3vmO4FGvf16HAdgu1Z3fJEy7F2lvlC5di7a3yhUux9rb1BY6bQu1tChwfw1v2FK+j8PGx86DiYy10fNS8WfgbIcDePN/sMw4qWpcvXADe2PNK0TIVuNI/KDq/qp8vXACamwcUrRtMx3ABOIwdRev29s//32Zv/+KzFfnCBUo4biqsaMBIqga+BfwVsInMnM1YSYuBr0REJ98x8toqaVTWpax8P7Y3Au/PWh5L5uylMXmf3f58F7ZLRCwEFkLmDKYb4wcyZyrP5QmT0UMGFS8cPA52bc7fXsDisxcDMHXZVLa8uqXD+lEHj+rQBrSdmTScNYU9zz/fYX316NHtzl5g3xkJwJKr7+OV7R2/sR0ybEC7fgCfuGZ+2/uFl8/k5RebOtQdenhtu365tsx/kJadHT+vasgARnx23+WKOXS8dLFgwQJ27er4jW/w4MHMnDkTmJn3M++77wzeeLPjf5uBA0Zz2qk/Y2WBsdb996M0vtnx8B87oIb6LxY+gz19/t15j5sxQwbxrnlFnt234MS8x40Gj2Pxp4ufhRc8bg4ZxbQ7fl2wrtBxUzN6NBf/8JN5KjIKHjfDBzLjW/9esK7YcfOub51fsK7QcVM9ZCBz5l1RsA6KHTdD+PA5hed/Ch03gwaMZuXphe9/KnjcDOzf7eNmf85E0tbZJP+/AsOAoyLitIg4BTgGGAJ8u5ufeRvQeultBpBvZuwuYKqkocnk/lTgrojYArws6b3J3WOXZtWXst0e8+VpxzKopv1PI4NqqvjytKLTPjDla5lr59lqBmXaOzH31LkMrGp/SWNg1UDmnjq3aN2IL1yJBrav08CBjPjClUXr3jf9GKpzfrKq7t+P900/pmjdGRddSnX/9j8BVvcfwBkXXVq07rBpE1BN+89TTT8OmzahaB3AlClTqKlp/xNrTU0NU6ZMKVp39DFfol+/9v8e/foN4uhjvlS07qqjRzGoX/sT6kH9xFVH5w/7Vj5uCvNxU1i3j5sK6+z3YM4F3pn9HJiI2C3pr4HHgaJHqKSlZM5EDpfUSObOsPnAzZJmAc8CH0/61gGXRcTsiNgu6ZvAQ8mmvhERrbda/DWZu9MGAf+VfFFou2lpnVj722XraW7Zy5ghg/jytGM7n3BrnZBdcUXmssfgcZlvEp1M1AJtE7Jfu+9rNO9tZtTBo5h76tyiE7VA24Tslq/8PdHcTPXo0Yz4wpVFJ2qBtgnZu3+ykZY9wSHDBvC+6ccUnagF2iZk77ru+7TseYtDD6/ljIsuLTpRC7RNyO5Y9iS0BFVDBnDYtAmdTtQCbROyK1asoKWlhcGDBzNlypSiE7VA24Tsxo3ziGhm4IDRHH3Ml4pO1AJtE7JfeHwzzRGMHVDDVUePKjpRCz5uivFxU1i3j5sK62yS/8mIeGdX1/UW+zPJ3+oT198PdGPCbHHyP/fM0m4XzdY66d966axUrZP+uZfFOtM68Z97WawzrRP/xS6L5bPt+sxtotmXxUq1eHHmv0nmsljpVq/JXPI57dSfdanugrUNACw/ZWKX6nzcFObjprBuHzc9rNRJ/s4ukT0mqcP5qaS/JHMGY2Zmlldnl8guB26V9FfAajJ3bP0vMpenLkh5bGZm1ot1dpvyc8B7JJ0FvIvMbcL/FRGryjE4MzPrvUr9c/13A3enPBYzM+tDis7BSFpTbH2pfczM7O2nszOY4yUV+8tvAgb34HjMzKyP6CxgjithG8X/FoeZmb0tdTbJv6lcAzEzs76l1OfBmJmZdYkDxszMUtGtgJFUJelTPT0YMzPrOzq7TfkwSVdJ+ndJU5XxOTKPUO78r+yZmdnbVmd3kf0E2AHcD8wGvgz0B6ZHxLqUx2ZmZr1YZwFzdES8G0DSDcCLwPiIeDn1kZmZWa/W2RxM26PXIqIFeMbhYmZmpejsDOZkSbuT9wIGJcsCIiIOS3V0ZmbWaxU9g4mIqog4LPk6NCKqs953O1wkzZW0QdKjkjo8fzV5VPJySeslPSjpxKT9WEnrsr52t9ZL+rqk57LWndPd8ZmZ2f4r6a8p96QkLD4DTAaagTsl3RERDVndrgbWRcQFko4D/gOYEhFPAJOS7VQBzwHLs+oWRMS3y7EfZmZWXCV+0fJ44I8R8VpE7AF+R8eHl50ArAKIiMeBCZJG5vSZAvyP/5yNmdmBqRIBswE4U9JwSQcB5wDjcvo8DFwIIGkycCQwNqfPRcDSnLYrkstqiyQN7fmhm5lZqcoeMBGxEbgWWAncSSZM9uR0mw8MlbQO+BywNruPpP7AR4D/zKr5AXAMmUtoW4Dv5Pt8SXMk1Uuqb2pq6pF9MjOzjiryt8gi4saIODUizgS2Aw0563dHxMyImARcCtQCz2R1+RCwJiK2ZtVsjYiWiNgL/JDMHE++z14YEXURUVdbW9vDe2ZmZq0qEjCSRiSv48lcCluas35IcpYCmb8gcG9E7M7qcnGemlFZixeQuRRnZmYVUva7yBK3SBpO5hc5L4+IHZIuA4iI68jcCPBjSS3AY8Cs1sJk3uaDwGdztvkvkiYBAfwpz3ozMyujigRMRJyRp+26rPf3AxML1L4GDM/TfklPjtHMzPaPnwdjZmapcMCYmVkqHDBmZpYKB4yZmaXCAWNmZqlwwJiZWSocMGZmlgoHjJmZpcIBY2ZmqXDAmJlZKhwwZmaWCgeMmZmlwgFjZmapcMCYmVkqHDBmZpYKB4yZmaWiUo9Mnitpg6RHJV2ZZ/1QScslrZf0oKQTs9b9SdIjktZJqs9qHyZppaSG5HVoufbHzMw6KnvAJGHxGWAycDJwrqTcp1deDayLiJOAS4Hv5az/QERMioi6rLZ5wKqImAisSpbNzKxCKnEGczzwx4h4LSL2AL8DLsjpcwKZkCAiHgcmSBrZyXanA0uS90uA83tuyGZm1lWVCJgNwJmShks6CDgHGJfT52HgQgBJk4EjgbHJugB+LWm1pDlZNSMjYgtA8joi34dLmiOpXlJ9U1NTj+2UmZm1V13uD4yIjZKuBVYCr5AJkz053eYD35O0DngEWJvV5/SIeF7SCGClpMcj4t4ufP5CYCFAXV1d7N/emJlZIRWZ5I+IGyPi1Ig4E9gONOSs3x0RMyNiEpk5mFrgmWTd88nrNmA5mbkcgK2SRgEkr9vKsjNmZpZXpe4iG5G8jidzKWxpzvohkvoni7OBeyNit6SDJR2a9DkYmErmkhvAbcCM5P0MYEW6e2FmZsWU/RJZ4hZJw4G3gMsjYoekywAi4joyNwL8WFIL8BgwK6kbCSyXBJmx/ywi7kzWzQduljQLeBb4eNn2xszMOqhIwETEGXnarst6fz+Qe+syEfE0mVub823zJWBKDw7TzMz2g3+T38zMUuGAMTOzVDhgzMwsFQ4YMzNLhQPGzMxS4YAxM7NUOGDMzCwVDhgzM0uFA8bMzFLhgDEzs1Q4YMzMLBUOGDMzS4UDxszMUuGAMTOzVDhgzMwsFQ4YMzNLRaUemTxX0gZJj0q6Ms/6oZKWS1ov6UFJJybt4yTdI2ljUjs3q+brkp6TtC75Oqec+2RmZu2VPWCSsPgMMJnM0ynPlZT79MqrgXURcRJwKfC9pH0P8MWIOB54L3C5pBOy6hZExKTk61ep7oiZmRVViTOY44E/RsRrEbEH+B1wQU6fE4BVABHxODBB0siI2BIRa5L2l4GNwJjyDd3MzEpViYDZAJwpabikg4BzgHE5fR4GLgSQNBk4Ehib3UHSBOAU4IGs5iuSy2qLJA3N9+GS5kiql1Tf1NTUE/tjZmZ5lD1gImIjcC2wEriTTJjsyek2HxgqaR3wOWBtdh9JhwC3AFdGxO6k+QfAMcAkYAvwnQKfvzAi6iKirra2tsf2y8zM2quuxIdGxI3AjQCSvgU05qzfDcxM1gt4JvlCUg2ZcPlpRNyaVbO19b2kHwK/THcvzMysmErdRTYieR1P5lLY0pz1QyT1TxZnA/dGxO4kbG4ENkbEv+XUjMpavIDMpTgzM6uQipzBALdIGg68BVweETskXQYQEdeRuRHgx5JagMeAWUnd6cAlwCPJ5TOAq5M7xv5F0iQggD8Bny3b3piZWQeVukR2Rp6267Le3w/k3rpMRPwBUIFtXtKTYzQzs/3j3+Q3M7NUOGDMzCwVDhgzM0uFA8bMzFLhgDEzs1Q4YMzMLBUOGDMzS4UDxszMUuGAMTOzVDhgzMwsFQ4YMzNLhQPGzMxS4YAxM7NUOGDMzCwVDhgzM0tFpZ5oOVfSBkmPSroyz/qhkpZLWi/pQUknZq07W9ITkp6SNC+r/ShJD0hqkHRT1hMxzcysAsoeMElYfAaYDJwMnCsp9+FiVwPrIuIk4FLge0ltFfAfwIeAE4CLJZ2Q1FwLLIiIicAO9j0F08zMKqASZzDHA3+MiNciYg/wO+CCnD4nAKsAIuJxYIKkkWRC6amIeDoimoGfA9MlCTgLWJbULwHOT39XzMyskEoEzAbgTEnDJR0EnAOMy+nzMHAhgKTJwJHAWGAMsDmrX2PSNhzYmQRWdruZmVWIIqL8HyrNAi4HXgEeA16PiC9krT+MzGWxU4BHgOOA2cA7gWkRMTvpdwmZs5pvAPdHxDuS9nHAryLi3Xk+ew4wB2D8+PGnbdq0Ka3dNDPrkyStjoi6zvpVZJI/Im6MiFMj4kxgO9CQs353RMyMiElk5mBqgWfInJlkn+2MBZ4HXgSGSKrOac/32Qsjoi4i6mpra3t0v8zMbJ9K3UU2InkdT+ZS2NKc9UOy7gKbDdwbEbuBh4CJyR1j/YGLgNsicxp2D/CxpGYGsCL9PTEzs0KqO++SilskDQfeAi6PiB2SLgOIiOvI3AjwY0ktZC6hzUrW7ZF0BXAXUAUsiohHk23+HfBzSf8IrAVuLOsemZlZOxWZgzlQ1NXVRX19faWHYWbWqxzQczBmZtb3OWDMzCwVDhgzM0uFA8bMzFLhgDEzs1S8re8ik9QEdPdX+Q8n8wuefZn3sW/wPvZ+B9r+HRkRnf6m+ts6YPaHpPpSbtPrzbyPfYP3sffrrfvnS2RmZpYKB4yZmaXCAdN9Cys9gDLwPvYN3sfer1fun+dgzMwsFT6DMTOzVDhgukHS2ZKekPSUpHmVHk9PkzRO0j2SNkp6VNLcSo8pDZKqJK2V9MtKjyUNyWMvlkl6PPm3fF+lx9TTJH0hOUY3SFoqaWClx7S/JC2StE3Shqy2YZJWSmpIXodWcoylcsB0kaQq4D+ADwEnABdLOqGyo+pxe4AvRsTxwHuBy/vgPgLMBTZWehAp+h5wZ0QcB5xMH9tXSWOAzwN1EXEimUd4XFTZUfWIHwFn57TNA1ZFxERgVbJ8wHPAdN1k4KmIeDoimoGfA9MrPKYeFRFbImJN8v5lMt+YxlR2VD1L0ljgw8ANlR5LGpLHjp9J8lykiGiOiJ2VHVUqqoFBydNsD6LAk2x7k4i4l8yTfrNNB5Yk75cA55d1UN3kgOm6McDmrOVG+tg332ySJgCnAA9UdiQ97rvA3wJ7Kz2QlBwNNAGLk8uAN0g6uNKD6kkR8RzwbeBZYAuwKyJ+XdlRpWZkRGyBzA+AwIgKj6ckDpiuU562PnkrnqRDgFuAK5NHVvcJks4FtkXE6kqPJUXVwKnADyLiFOBVeslllVIl8xDTgaOA0cDBkv6ysqNbGGTNAAACS0lEQVSybA6YrmsExmUtj6UPnJbnklRDJlx+GhG3Vno8Pex04COS/kTmEudZkv5fZYfU4xqBxohoPfNcRiZw+pI/B56JiKaIeAu4FfizCo8pLVsljQJIXrdVeDwlccB03UPARElHSepPZlLxtgqPqUdJEplr9xsj4t8qPZ6eFhFXRcTYiJhA5t/v7ojoUz/5RsQLwGZJxyZNU4DHKjikNDwLvFfSQckxO4U+diNDltuAGcn7GcCKCo6lZNWVHkBvExF7JF0B3EXmrpVFEfFohYfV004HLgEekbQuabs6In5VwTFZ130O+Gnyg9DTwMwKj6dHRcQDkpYBa8jc+biWXvob79kkLQXeDxwuqRG4BpgP3CxpFplg/XjlRlg6/ya/mZmlwpfIzMwsFQ4YMzNLhQPGzMxS4YAxM7NUOGDMzCwVDhgzM0uFA8asDCT9VtK0nLYrJf3fnLYJkl5v/f2jYnWSjpG0TtIr6e+BWdc5YMzKYykd/5T8RUl7rv+JiEmd1UVEdj+zA44Dxqw8lgHnShoAbX+lejTwh5TqzCrOAWNWBhHxEvAg+x4kdRFwU3TypzS6W2d2IHDAmJVP9uWuQpfHerLOrKIcMGbl8wtgiqRTgUGtTw1Nsc6sohwwZmUSEa8AvwUW0YWzkO7WmVWaA8asvJYCJ5N50Fk56swqxs+DMSujiFhO/sdup1JnVkk+gzE7sLQAg7Me9FZQ6y9aAlvTH5ZZ1/mBY2ZmlgqfwZiZWSocMGZmlgoHjJmZpcIBY2ZmqXDAmJlZKv4/bOWspUplYLwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import uncertainties as unc\n", "import numpy as np\n", "import math\n", "\n", "\n", "for i in range(1,102,5): \n", " ia = unc.ufloat(i/100, 0.01+i/100*0.05)\n", " ra = unc.ufloat(10,0)\n", " va = ra*ia\n", " verr = unc.ufloat(0, 0.0+va.n*0.01)\n", " rm = (va+verr) / ia\n", " vplot = va+verr\n", " \n", " plt.errorbar(vplot.nominal_value, rm.nominal_value, xerr=vplot.std_dev, yerr=rm.std_dev, fmt='o')\n", "\n", "\n", "plt.xkcd() # Yes...\n", "\n", "#plt.scatter(x,y)\n", "#plt.errorbar(xa, y, xerr=0, yerr=y.std_dev, fmt='o')\n", "#plt.axis([0,100,0,200])\n", "plt.xlabel('V [V]')\n", "plt.ylabel('R [Ohm]')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }