{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tutorial of singscore using built-in data\n",
"\n",
"#### Contributor: Antonio Mora, Chengshu Xie \n",
"#### Date of first version: 2019-01-20\n",
"#### Date of last review: 2020-05-26 \n",
"#### Summary:\n",
"\n",
"This is the tutorial about using how to use R package `singscore`. We use the built-in data for this tutorial.\n",
" . \n",
"\n",
"#### Contents:\n",
"* [1. Data Preparation](#link1)
\n",
" * [1.1 Prerequisites](#link2)
\n",
" * [1.2 Load and check data](#link3)
\n",
"* [2. Method application](#link4)
\n",
" * [2.1 Sample Scoring](#link5)
\n",
"* [3. Visualisation and diagnostic functions](#link6)\n",
" * [3.1 Plot Rank Densities](#link7)
\n",
" * [3.2 Plot dispersions of scores](#link8)
\n",
" * [3.3 Plot score landscape](#link9)\n",
" \n",
" \n",
"## 1. Data Preparation\n",
"\n",
"### 1.1 Prerequisites\n",
"\n",
"R package, `singscore`, needs to be installed and loaded in the R session, this can be done easily with the following chunk of code: "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"install.packages(\"BiocManager\")\n",
"BiocManager::install(\"singscore\")\n",
"BiocManager::install(\"GSEABase\")\n",
"\n",
"suppressPackageStartupMessages(library(singscore))\n",
"suppressPackageStartupMessages(library(GSEABase))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2 Load and check data\n",
"\n",
"The datasets used in this vignette have been built within the package. The `tgfb_expr_10_se` dataset was obtained from (Foroutan et al. 2017) and it is a ten-sample subset of the original dataset. We are going to score the integrated TGFb-treated gene expression dataset (4 cases and 6 controls) against a TGFb gene signature with an up-regulated and down-regulated gene-set pair (Foroutan et al. 2017)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"class: SummarizedExperiment \n",
"dim: 11900 10 \n",
"metadata(0):\n",
"assays(1): counts\n",
"rownames(11900): 2 9 ... 729164 752014\n",
"rowData names(0):\n",
"colnames(10): D_Ctrl_R1 D_TGFb_R1 ... Hil_Ctrl_R1 Hil_Ctrl_R2\n",
"colData names(1): Treatment"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"setName: NA \n",
"geneIds: 19, 87, ..., 402055 (total: 193)\n",
"geneIdType: Null\n",
"collectionType: Null \n",
"details: use 'details(object)'"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"setName: NA \n",
"geneIds: 136, 220, ..., 161291 (total: 108)\n",
"geneIdType: Null\n",
"collectionType: Null \n",
"details: use 'details(object)'"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"193"
],
"text/latex": [
"193"
],
"text/markdown": [
"193"
],
"text/plain": [
"[1] 193"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"108"
],
"text/latex": [
"108"
],
"text/markdown": [
"108"
],
"text/plain": [
"[1] 108"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# The example expression dataset and gene signatures are included in the package\n",
"# distribution, one can directly access them using the variable names\n",
"\n",
"# To see the description of 'tgfb_expr_10_se','tgfb_gs_up','tgfb_gs_dn', look at \n",
"# Have a look at the object `tgfb_expr_10_se` containing gene expression data for 10 samples \n",
"tgfb_expr_10_se\n",
"\n",
"# View what tgfb_gs_up/dn contains\n",
"tgfb_gs_up \n",
"tgfb_gs_dn\n",
"\n",
"# Get the size of the gene sets\n",
"length(GSEABase::geneIds(tgfb_gs_up))\n",
"length(GSEABase::geneIds(tgfb_gs_dn))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Method application\n",
"\n",
"### 2.1 Sample Scoring\n",
"\n",
" To get the sample scores, rank the expression data via `rankGenes()` at first. And then use `simpleScore()` to compute."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"A matrix: 6 × 10 of type int\n",
"\n",
"\t | D_Ctrl_R1 | D_TGFb_R1 | D_Ctrl_R2 | D_TGFb_R2 | Hes_Ctrl_R1 | Hes_TGFb_R1 | Hes_Ctrl_R2 | Hes_TGFb_R2 | Hil_Ctrl_R1 | Hil_Ctrl_R2 |
\n",
"\n",
"\n",
"\t| 2 | 1065 | 1255 | 1428 | 1269 | 1252 | 1570 | 1188 | 1122 | 1055 | 1227 |
\n",
"\t| 9 | 6688 | 7611 | 6454 | 6975 | 6244 | 7330 | 7110 | 7052 | 6247 | 7315 |
\n",
"\t| 10 | 1741 | 1599 | 1541 | 1686 | 1777 | 1638 | 1713 | 1418 | 1558 | 1849 |
\n",
"\t| 12 | 5441 | 3682 | 6495 | 5105 | 3906 | 5533 | 4344 | 7036 | 4845 | 4830 |
\n",
"\t| 13 | 3352 | 3599 | 3276 | 3459 | 3337 | 3042 | 3288 | 3906 | 3480 | 3062 |
\n",
"\t| 14 | 10442 | 10013 | 10146 | 9917 | 10382 | 10085 | 10061 | 10029 | 9731 | 10268 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A matrix: 6 × 10 of type int\n",
"\\begin{tabular}{r|llllllllll}\n",
" & D\\_Ctrl\\_R1 & D\\_TGFb\\_R1 & D\\_Ctrl\\_R2 & D\\_TGFb\\_R2 & Hes\\_Ctrl\\_R1 & Hes\\_TGFb\\_R1 & Hes\\_Ctrl\\_R2 & Hes\\_TGFb\\_R2 & Hil\\_Ctrl\\_R1 & Hil\\_Ctrl\\_R2\\\\\n",
"\\hline\n",
"\t2 & 1065 & 1255 & 1428 & 1269 & 1252 & 1570 & 1188 & 1122 & 1055 & 1227\\\\\n",
"\t9 & 6688 & 7611 & 6454 & 6975 & 6244 & 7330 & 7110 & 7052 & 6247 & 7315\\\\\n",
"\t10 & 1741 & 1599 & 1541 & 1686 & 1777 & 1638 & 1713 & 1418 & 1558 & 1849\\\\\n",
"\t12 & 5441 & 3682 & 6495 & 5105 & 3906 & 5533 & 4344 & 7036 & 4845 & 4830\\\\\n",
"\t13 & 3352 & 3599 & 3276 & 3459 & 3337 & 3042 & 3288 & 3906 & 3480 & 3062\\\\\n",
"\t14 & 10442 & 10013 & 10146 & 9917 & 10382 & 10085 & 10061 & 10029 & 9731 & 10268\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A matrix: 6 × 10 of type int\n",
"\n",
"| | D_Ctrl_R1 | D_TGFb_R1 | D_Ctrl_R2 | D_TGFb_R2 | Hes_Ctrl_R1 | Hes_TGFb_R1 | Hes_Ctrl_R2 | Hes_TGFb_R2 | Hil_Ctrl_R1 | Hil_Ctrl_R2 |\n",
"|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 2 | 1065 | 1255 | 1428 | 1269 | 1252 | 1570 | 1188 | 1122 | 1055 | 1227 |\n",
"| 9 | 6688 | 7611 | 6454 | 6975 | 6244 | 7330 | 7110 | 7052 | 6247 | 7315 |\n",
"| 10 | 1741 | 1599 | 1541 | 1686 | 1777 | 1638 | 1713 | 1418 | 1558 | 1849 |\n",
"| 12 | 5441 | 3682 | 6495 | 5105 | 3906 | 5533 | 4344 | 7036 | 4845 | 4830 |\n",
"| 13 | 3352 | 3599 | 3276 | 3459 | 3337 | 3042 | 3288 | 3906 | 3480 | 3062 |\n",
"| 14 | 10442 | 10013 | 10146 | 9917 | 10382 | 10085 | 10061 | 10029 | 9731 | 10268 |\n",
"\n"
],
"text/plain": [
" D_Ctrl_R1 D_TGFb_R1 D_Ctrl_R2 D_TGFb_R2 Hes_Ctrl_R1 Hes_TGFb_R1 Hes_Ctrl_R2\n",
"2 1065 1255 1428 1269 1252 1570 1188 \n",
"9 6688 7611 6454 6975 6244 7330 7110 \n",
"10 1741 1599 1541 1686 1777 1638 1713 \n",
"12 5441 3682 6495 5105 3906 5533 4344 \n",
"13 3352 3599 3276 3459 3337 3042 3288 \n",
"14 10442 10013 10146 9917 10382 10085 10061 \n",
" Hes_TGFb_R2 Hil_Ctrl_R1 Hil_Ctrl_R2\n",
"2 1122 1055 1227 \n",
"9 7052 6247 7315 \n",
"10 1418 1558 1849 \n",
"12 7036 4845 4830 \n",
"13 3906 3480 3062 \n",
"14 10029 9731 10268 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"A data.frame: 6 × 6\n",
"\n",
"\t | TotalScore | TotalDispersion | UpScore | UpDispersion | DownScore | DownDispersion |
\n",
"\t | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
"\t| D_Ctrl_R1 | -0.088097993 | 2867.348 | 0.06096415 | 3119.390 | -0.14906214 | 2615.306 |
\n",
"\t| D_TGFb_R1 | 0.286994210 | 2217.970 | 0.24931565 | 2352.886 | 0.03767856 | 2083.053 |
\n",
"\t| D_Ctrl_R2 | -0.098964086 | 2861.418 | 0.06841242 | 3129.769 | -0.16737650 | 2593.067 |
\n",
"\t| D_TGFb_R2 | 0.270721958 | 2378.832 | 0.25035661 | 2470.012 | 0.02036534 | 2287.652 |
\n",
"\t| Hes_Ctrl_R1 | -0.002084788 | 2746.146 | 0.08046490 | 3134.216 | -0.08254969 | 2358.075 |
\n",
"\t| Hes_TGFb_R1 | 0.176122839 | 2597.515 | 0.22894035 | 2416.638 | -0.05281751 | 2778.392 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 6 × 6\n",
"\\begin{tabular}{r|llllll}\n",
" & TotalScore & TotalDispersion & UpScore & UpDispersion & DownScore & DownDispersion\\\\\n",
" & & & & & & \\\\\n",
"\\hline\n",
"\tD\\_Ctrl\\_R1 & -0.088097993 & 2867.348 & 0.06096415 & 3119.390 & -0.14906214 & 2615.306\\\\\n",
"\tD\\_TGFb\\_R1 & 0.286994210 & 2217.970 & 0.24931565 & 2352.886 & 0.03767856 & 2083.053\\\\\n",
"\tD\\_Ctrl\\_R2 & -0.098964086 & 2861.418 & 0.06841242 & 3129.769 & -0.16737650 & 2593.067\\\\\n",
"\tD\\_TGFb\\_R2 & 0.270721958 & 2378.832 & 0.25035661 & 2470.012 & 0.02036534 & 2287.652\\\\\n",
"\tHes\\_Ctrl\\_R1 & -0.002084788 & 2746.146 & 0.08046490 & 3134.216 & -0.08254969 & 2358.075\\\\\n",
"\tHes\\_TGFb\\_R1 & 0.176122839 & 2597.515 & 0.22894035 & 2416.638 & -0.05281751 & 2778.392\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 6 × 6\n",
"\n",
"| | TotalScore <dbl> | TotalDispersion <dbl> | UpScore <dbl> | UpDispersion <dbl> | DownScore <dbl> | DownDispersion <dbl> |\n",
"|---|---|---|---|---|---|---|\n",
"| D_Ctrl_R1 | -0.088097993 | 2867.348 | 0.06096415 | 3119.390 | -0.14906214 | 2615.306 |\n",
"| D_TGFb_R1 | 0.286994210 | 2217.970 | 0.24931565 | 2352.886 | 0.03767856 | 2083.053 |\n",
"| D_Ctrl_R2 | -0.098964086 | 2861.418 | 0.06841242 | 3129.769 | -0.16737650 | 2593.067 |\n",
"| D_TGFb_R2 | 0.270721958 | 2378.832 | 0.25035661 | 2470.012 | 0.02036534 | 2287.652 |\n",
"| Hes_Ctrl_R1 | -0.002084788 | 2746.146 | 0.08046490 | 3134.216 | -0.08254969 | 2358.075 |\n",
"| Hes_TGFb_R1 | 0.176122839 | 2597.515 | 0.22894035 | 2416.638 | -0.05281751 | 2778.392 |\n",
"\n"
],
"text/plain": [
" TotalScore TotalDispersion UpScore UpDispersion DownScore \n",
"D_Ctrl_R1 -0.088097993 2867.348 0.06096415 3119.390 -0.14906214\n",
"D_TGFb_R1 0.286994210 2217.970 0.24931565 2352.886 0.03767856\n",
"D_Ctrl_R2 -0.098964086 2861.418 0.06841242 3129.769 -0.16737650\n",
"D_TGFb_R2 0.270721958 2378.832 0.25035661 2470.012 0.02036534\n",
"Hes_Ctrl_R1 -0.002084788 2746.146 0.08046490 3134.216 -0.08254969\n",
"Hes_TGFb_R1 0.176122839 2597.515 0.22894035 2416.638 -0.05281751\n",
" DownDispersion\n",
"D_Ctrl_R1 2615.306 \n",
"D_TGFb_R1 2083.053 \n",
"D_Ctrl_R2 2593.067 \n",
"D_TGFb_R2 2287.652 \n",
"Hes_Ctrl_R1 2358.075 \n",
"Hes_TGFb_R1 2778.392 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# The recommended method for dealing with ties in ranking is 'min', \n",
"# you can change by specifying 'tiesMethod' parameter for rankGenes function.\n",
"rankData = rankGenes(tgfb_expr_10_se)\n",
"head(rankData)\n",
"\n",
"# Given the ranked data and gene signature, simpleScore returns the scores and \n",
"# dispersions for each sample\n",
"scoredf = simpleScore(rankData, upSet = tgfb_gs_up, downSet = tgfb_gs_dn)\n",
"head(scoredf)\n",
"\n",
"# To view more details of the simpleScore, use ?simpleScore\n",
"# Note that, when only one gene set is available in a gene signature, one can \n",
"# only input values for the upSet argument. In addition, a knownDirection \n",
"# argument can be set to FALSE if the direction of the gene set is unknown.\n",
"\n",
"# simpleScore(rankData, upSet = tgfb_gs_up, knownDirection = FALSE)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Visualisation and diagnostic functions \n",
"\n",
"### 3.1 Plot Rank Densities \n",
"\n",
"`plotRankDensity()` plots the ranks of genes in the gene-sets for a specific sample. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A matrix: 6 × 1 of type int\n",
"\n",
"\t | D_TGFb_R1 |
\n",
"\n",
"\n",
"\t| 2 | 1255 |
\n",
"\t| 9 | 7611 |
\n",
"\t| 10 | 1599 |
\n",
"\t| 12 | 3682 |
\n",
"\t| 13 | 3599 |
\n",
"\t| 14 | 10013 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A matrix: 6 × 1 of type int\n",
"\\begin{tabular}{r|l}\n",
" & D\\_TGFb\\_R1\\\\\n",
"\\hline\n",
"\t2 & 1255\\\\\n",
"\t9 & 7611\\\\\n",
"\t10 & 1599\\\\\n",
"\t12 & 3682\\\\\n",
"\t13 & 3599\\\\\n",
"\t14 & 10013\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A matrix: 6 × 1 of type int\n",
"\n",
"| | D_TGFb_R1 |\n",
"|---|---|\n",
"| 2 | 1255 |\n",
"| 9 | 7611 |\n",
"| 10 | 1599 |\n",
"| 12 | 3682 |\n",
"| 13 | 3599 |\n",
"| 14 | 10013 |\n",
"\n"
],
"text/plain": [
" D_TGFb_R1\n",
"2 1255 \n",
"9 7611 \n",
"10 1599 \n",
"12 3682 \n",
"13 3599 \n",
"14 10013 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"A matrix: 1 × 10 of type int\n",
"\n",
"\t | D_Ctrl_R1 | D_TGFb_R1 | D_Ctrl_R2 | D_TGFb_R2 | Hes_Ctrl_R1 | Hes_TGFb_R1 | Hes_Ctrl_R2 | Hes_TGFb_R2 | Hil_Ctrl_R1 | Hil_Ctrl_R2 |
\n",
"\n",
"\n",
"\t| 9 | 6688 | 7611 | 6454 | 6975 | 6244 | 7330 | 7110 | 7052 | 6247 | 7315 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A matrix: 1 × 10 of type int\n",
"\\begin{tabular}{r|llllllllll}\n",
" & D\\_Ctrl\\_R1 & D\\_TGFb\\_R1 & D\\_Ctrl\\_R2 & D\\_TGFb\\_R2 & Hes\\_Ctrl\\_R1 & Hes\\_TGFb\\_R1 & Hes\\_Ctrl\\_R2 & Hes\\_TGFb\\_R2 & Hil\\_Ctrl\\_R1 & Hil\\_Ctrl\\_R2\\\\\n",
"\\hline\n",
"\t9 & 6688 & 7611 & 6454 & 6975 & 6244 & 7330 & 7110 & 7052 & 6247 & 7315\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A matrix: 1 × 10 of type int\n",
"\n",
"| | D_Ctrl_R1 | D_TGFb_R1 | D_Ctrl_R2 | D_TGFb_R2 | Hes_Ctrl_R1 | Hes_TGFb_R1 | Hes_Ctrl_R2 | Hes_TGFb_R2 | Hil_Ctrl_R1 | Hil_Ctrl_R2 |\n",
"|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 9 | 6688 | 7611 | 6454 | 6975 | 6244 | 7330 | 7110 | 7052 | 6247 | 7315 |\n",
"\n"
],
"text/plain": [
" D_Ctrl_R1 D_TGFb_R1 D_Ctrl_R2 D_TGFb_R2 Hes_Ctrl_R1 Hes_TGFb_R1 Hes_Ctrl_R2\n",
"9 6688 7611 6454 6975 6244 7330 7110 \n",
" Hes_TGFb_R2 Hil_Ctrl_R1 Hil_Ctrl_R2\n",
"9 7052 6247 7315 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning message:\n",
"\"Ignoring unknown aesthetics: text\"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAflBMVEUAAABNTU1oaGh8fHx/\nyX+ByoGDg4OGy4aHzYeMjIyVlZWampqa0pqf15+jo6Onp6evr6+ysrK5ubm9vb2+rtS/r9XB\nwcHCs9fHx8fJvdrJycnOwt/Q0NDR0dHY2NjZ2dne3t7h4eHk5OTp6enq6urr6+vv7+/w8PD1\n9fX////ALJnNAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dC5ubuNJuwc7uxOOk\nnY7zZfeZOLu74yQO//8PHsRdxcUCSlAl3vXMpC27LApJywgMOEoAALOJ1k4AgBCASAAwAJEA\nYAAiAcAARAKAAYgEAAMQCQAGIBIADEAkABiASAAwwC1S1GB/vIx7J0vMnbfejlNrAKAfnyIZ\nl0a9kyVm+K3n6TUA0I9nkUaYtIxIM2oAoB8PIlWPXw5pyXl251kkthoA6MCnSElyjCLnXRKI\nBBTjV6TbiHELkYBi/IrUKF5O+7SwO701XjinT8XWMxmnaPdk1/qcThJ3Z6u6dGMXHcp5Y7u2\n/D3R7miFlHtuSRp6LV5IZd/NXWuwefyKdC2L1311+OFUxl3j4pmL/c4TPURx3ZUHLqpj2GV1\n+2tPbS9lMYqvdfWVSM9RVLraeAjAVPyKdCj3kaphXY50M8KrZ96a72x5dKsCD2XMrnprnHTW\ndm0sL75V1VciNTZDjY0TAFPxKNLtsi+1OafD+WLG82VXaJKN8PS127ncSBXvbHlkbIzPRWQe\nc8zfm9V26Kwtjdi/ZDnEdvVlfpU+mNkBDnx/j5RvkHbFVqc+/FDPuc7FSM5faHtkNi555KUQ\n6VpuZbKKr1211T5freqrF57LOSZmdoADzyKdugKKP+f8iWtziLc9Sp7qWo556FP97dQl16BV\nW/rvS99ys+KtnBViZgc48CnS7kSG6Nv5ENcD+lq/pfxz6phnHaqtWfKShx4a+2H53K5Vm5lU\n7s9vjWqISCYim/thZgc48LWPdCl2Yyryw9/Vbk5jX6p+5mRevfXUmFTzwuaRi3zD0qrtpXhx\n/9Sha0Yxt8PMDrDg7WDDszW7ahz+HhAp49BXY/WYTB87a7vUop3JUvK4Ym6HmR1gwd9Ru2O5\nF2LINyK7w/kyKNIl3f2JmhOyZKpIye1cubtvPF9HZnM7zOwADx4Pf+/qrYs5/H2+NgM6Rbpk\nbyJHG+IukfqX2pwJltPJU9dys7kdZnaAB48ivaWPn/OHnYe/yVvqnRv7hPFDPUV8i8qDDf1b\nLWrZy97ajapfzuZ2mNkBHnye2XCqJnf1s+c7IpkZoT3ZeqrPID9F5eFvcli9VduucdDC2ow1\nIlOJLpjZAR68niIUlxOnas/nbfBgg/ljTgg6N2u8Vduoa/Hmt3qrdckta9V2qu17s76ibUQ+\nZ+cVYWYHOPAqktn8ZBsGc/J2Oj+7PmW7LLdkQKRsfFtVmu3Q+dY8ReiQP5NczUsvXbUZ1w7Z\n90TnQkxrTyzjltWHmR3gwO9Jq+XxhvpgdFRsnPpFMlMue+ZWHX57amy1Sk5JZ21PjeU1j9pl\ndcV1vZjZARb8ivRWzulOxZiOzXmmz8mgSG8R/VZ2XwpRxtRfS52SpLO2hkmH5vP1Zi3/qgsz\nO8CCX5HqQwcXMx07PGeH5fbJoEjGgYNdq3k3vbAvppcJkofXp/aVhCnn+gD7DTM7wAW3SJq4\nYmYHuNiySPg2FrCxZZH27TNkAZjGZkW6mQ3SYe0sQChsVqTs6N3L/TgAXNi0SO3rdwGYxmZF\n2kcxjjQANjYrEgCcQCQAGIBIADAAkQBgACIBwABEAoABiAQAA6wiRQBsC08icVbGyO+1E5iD\n6uR1Z38/eYikB9XJ684eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC\n703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC\n703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC\n703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC\n703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhEC703JqM4eIhV8KP62G+RT9Q8t\ndAXar3c9KsufPjWf/PSJ1PCpeK5++6dGTR8S66Xiqd+NmPwdnxqlViKf6DMfrPX80FiMldmn\n4r86q0/NrNOXPjSr/lSl8in58OlDV0N9SF9IPn6yM61LaX3ZG8sVbwV++lTllXxqhnz68OFT\n8qlsiOTDhw95vebPh6wH0vBPn4qY/3wwTZC+I335P9m/zf7+ZJ4zoR/yjjHvzBZtSh+Te0Ck\n6h9a6Aq0X4dI9apBpPYjBiASRIJIDEAkiASRGIBIEAkiMQCRIBJEYgAiQSSIxABEgkgQiQGI\nBJEgEgMQCSJBJAYgEkSCSAxAJIgEkRiASBAJIjEAkSASRGIAIkEkiMQARIJIEIkBiASRIBID\nEAkiQSQGIBJEgkgMQCSIBJEYgEgQCSIxAJEgEkRiACJBJIjEAESCSBCJAYgEkSASAxAJIkEk\nBiASRIJIDEAkiASRGIBIEAkiMQCRIBJEYgAiQSSIxABEgkgQiQGIBJEg0kh+PMbxP9/+9lQr\nA4iUQCTZIv15iHNeu6uVAURKIJJskR7iL7+S5O+POP7VWa0MIFICkUSL9G/8JX/wv/hzZ7Uy\ngEgJRBIt0j9xuXMUx53VygAiJRBJtEg1EMkKhkgQaRI/4m+d1coAIiUQSYNIP7/ED93VygAi\nJRBJvkjm6PejXe1vWbzvfeVj9Q8tdAXar3c9KssfPzaf/PiR1PCxeK5++8dGTY10y6D3v62Y\n/B0fG6VWIh/pM++t9XzfWIyV2cfivzqrj82s05feN6v+WKXy8ff7j++7Gup9+kLRIHZ+RcXv\nP2ZvrNeSBH78WOX1+2Mz5ON7U3HZEL/fv3+f12v+vM8WmIZ//FjE/Oe9aYL0HenL/8n+bfb3\nR/OcCX2fd4x5Z7Zoq+t64RDp1+Pnz6lJf5oiTa7MD9giJdgiyd8iGb7FD42TGyASRIJI0/jS\nPNoAkSASRJrGn/ifrmplAJESiKREJOuLJIgEkSDSGB6qMxsgkhUMkSDSGL7E/yse/WyebAeR\nIBJEGsNrtWf02LyQAiJBJIg0is/x48/0z8/H8jTwOZV5AyIlEEm2SKlJOc1T7SASRIJIY3lN\nVXr48st6DiJBJIjEAESCSBCJAYgEkSASAxAJIkEkBiASRIJIDEAkiASRGIBIEAkiMQCRIBJE\nYgAiQSSIxABEgkgQiQGIBJEgEgMQCSJBJAYgEkSCSAxAJIgEkRiASBAJIjEAkSASRGIAIkEk\niMQARIJIEIkBiASRIBIDEAkiQSQGIBJEgkgMQCSIBJEYgEgQCSIxAJEgEkRiACJBJIjEAESC\nSBCJAYgEkSASAxAJIkEkBiASRIJIDEAkiASRGIBIEAkiMQCRIBJEYgAiQSSIxABEgkgQiQGI\nBJEgEgMQCSJBJAYgEkSCSAxAJIgEkRiASBAJIjEAkSASRGIAIkEkiMQARIJIEIkBiASRIBID\nEAkiQSQGIBJEgkgMQCSIBJEYgEgQCSIxAJEgEkRiACJBJIjEAESCSBCJAYgEkSASAxAJIkEk\nBiASRIJIDEAkiASRGIBIEAkiMQCRIBJEYgAiQSSIxABEgkgQiQGIBJEgEgPSRCppi6QI1cnr\nzv5+8hBJD6qT1509RCIE3puSUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puS\nUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puS\nUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puSWTj7dyUstUEkguqxqDr5RbNv\n+sPiEkQiqB6LqpNfMPuWOfNdgkgE1WNRdfKLZd8tzUyTIBJB9VhUnfxS2fcZM88kiERQPRZV\nJ79Q9v2+zJreQSSC6rGoOvlFsh+WZYZJEImgeiyqTn6J7O+ZMt0kiERQPRZVJ+8/e4e522ST\nIBJB9VhUnbz37J0kmWoSRCKoHouqk/edvaMiE02CSATVY1F18p6zdxUEIvGgeiyqTt5v9u5+\nTDMJIhFUj0XVyXvNfowdk0yCSATVY1F18j6zH+fGFJMgEkH1WFSdvMfsx5oxwSSIRFA9FlUn\n7y/70ef+QKT5qB6LqpP3lv0ELca/BSIRVI9F1cn7yn7SsYPRb4JIBNVjUXXyokQa/S6IRFA9\nFlUn7yn7iV+wQqSZqB6LqpP3k/3ks1BHvhEiEVSPRdXJe8l++nUREGkeqsei6uR9ZD/nmtdx\n74VIBNVjUXXyHrKfdRsGiDQL1WNRdfLSRBr3bohEUD0WVSfPn/3ce9WNeT9EIqgei6qTZ89+\n9v1TIdIMVI9F1clzZ89wH+IRVUAkguqxqDp5iDQJiJTy9StvfRCphuVHJtwrgUiEZcbi15zq\nAZNREKmC58daINJkFhiLndqwqASRSng8GlEPRCJ4H4u9xjBslyBSAZdHEGkyfsfiPVdmqgSR\nCthEcq4JIhG8jkUHTWapBJFy+DyCSFPxOBYdHZkxw4NIOYwiudYFkQj+xuIIPaaaBJEyOD1y\nrQ0iEbyNxVFyTNwoQSQDr0cQaRqexuJoMyapBJESdo8cK4RIBD9jcYoVE1SCSB48gkiT8DIW\nJ+7zjH4bRPIhklOVEIngYSxOPwo39o0QyYdHEGkK/GNxzhdDIx2ESD48gkhTYB+LM0/7GfX2\nzYvkxSOnaiESgXsszj4XdUwFEGl+FROrXUSk189xHD/+6KlWFsxjkeGk7hFVbF0kTx5JEekx\nznn401mtLHjHIs9lRs61QCRP3K94AZEe439e0z8/H+OHv13VyoJ1LHJdAOtaz8ZF8uaRCJFe\n48fi0WP8rataWYgUyXV6t22R/HnkULd/kT7HP4tHf+J/uqqVBedY5Lwjg1NdmxbJp0cSRIrj\nrodbEIn3ziYutUEkb9yrfdHD3/FDV7Wy4BuLzHcIcpnebVkkvx6JEuk1/tJVrSzYxiK3Ry5V\nblgkzx6JEukx/tVVrSy4xqIHj+5Xul2RfHt0dwkLivRvc4OURL/D5quiWvXzTsEiuESqD4Mz\nVOYPpg91Lxuku/Vudovkf4MkZotEPApcJF8e3al5qyIt4NG9hSwl0qt9glDgIvnzaLhuiOQR\nESKl2yPbI4g0vfL+2jcq0iIe3VnMMiL9S+Z1syrzC8dY9OrRUP3bFGkhj9YX6e+jdbxuXmW+\nYRiL3D/W0rGEnuc3KdJSHg0vaQGR/jzEP9rPhiuSd436lwGRvLKuSH8fHn52PB2sSEt41LeU\nLYq0nEcri/QtbtBVrSyUiNS9mA2KtKBHK4sUb0ukhTzq3hPbnkhLejS4NNz8hKBGpK4lbU6k\nZT2CSCOYORaX86hrWRDJM/3Lg0gERSK1F7Y1kZb2CCK5M28sLupRez9pYyK9W1ykfpMgEmHW\nWFzYo9YCtyXS8hpBJHd0iUSWuCmR1vAIIjkzZywu7xFZJkTyTt9SIRJBm0jWftKWRFrHI4jk\nyoyxuIpH1mI3JNJKHkEkV6aPxZU8ai54OyKt5RFEcmXyWFzNo8aiNyPSah71LhoiETSKVO0n\nQST/QCQ3po7FNT2qlr4VkVb0CCI5olOkYvEbEWlNj/qWDpEIE8fiyh4VCWxDpHU9gkhuTBuL\nq3uU7ydtQqSVPepJACIR1IqUbESkFc5UpRl0PQmRCJPGogSPTBYbEGl1jSCSG4pFSr6GL5IA\nj7qTgEiEKWNRiEeCEpkERJoCRPLAbzGZTMGh6UV4BJFcmCCSnNH7W1Au47nf9DI8gkgujBdJ\n0Nj9LSqbsdxteiEedSYCkQjaRZKUzkjuNb0YjyCSA+pFkpTPOO40vRyPIJIDo0WSNG7z5CVl\nNIbhpl//i9gG7VwgEgEircZg00vSCCI5MFYkUaO2SF5UTu4MNb0sjzrygUiEkSLJGrNl8v5/\n6swHA00vzSOIdJcgRBKWliP9TS/OI4h0l3EiCRuwdfLCEnOit+nledTOCSIRAhFJWmYu9DW9\nRI8g0j1GiSRttDaT17ef1N30og5710CkOwQjkrjk7tLZ9DI1gkh3GSOSuKFqJy8uvTt0Nb1U\nj1qZQSRCQCLJy2+YjqaX6xFEusMIkeSNU5q8vAyHaDe90P2jDIg0jLtIAkdpK3mBOfbTyl6w\nRgnNDiIRwhJJYpK90OxlewSRhoFIq2FnL3lal2MlCJEIziJJHKIdyUtMswcre/EaQaRhQhNJ\n0RezzewVeASRBnEVSeTw7ExeZKZd1NnLn9ZlNLOESITwRJKZagdV9jo0gkiDOIokc3D2JC8z\n2RZl9lo8gkhDuIkkdGj2Ja9jPynL/p2SaZ0BIg0QpEhS87Ux2euxyNDIFiIRwhRJasIWv7Uc\nZKiASP04iSR1WA4kr2B291uZRhBpiFBFEptzjTqPINIALiKJHZODyYvNOuPdu3cKf92pNmme\nSLvn29QUFIskd0QOJy8373xEblikKIqOl2kpQCQP3Ele7H5SfpBBoUi1SbNFiqL4dJ2QgV6R\npI7G5H7yIlOvvjnasEjXpzhzacIUDyJ54G7yAnMfMzuSB5NIKS/HTKXRUzyI5AF1yVvnMWgU\nqTKJ46jd837CFE+tSMKGooXLDp6k/MdeZCoQTpGaUzznBCCSB1Qdu2+dVQeRDMUMLz47JqBV\nJDHjsAtN3yZP+YkhgfCKdCk0MuzdElAqkpBR2IOaEwU7z/FWKVLifMjxrki3Yl53vORCnZyW\nD5E84Hox1dpr0X0y0LZFuhzyvaNzfgD8OZ3dOS1fp0hrj8A7qLi8t/eKow2LdD0VG6OXOihy\nUwQieUDDnVv6T03dsEgdh+pcd5IgkgfE35Rv8PpXnSIVJs0W6fQ2bfEqRRLu0agbl6+xLsMX\nSmxYpP3EM1Y7K5PBVkRafl3u3o1BqUiJ4xm3d7ZIdWHveuS7pzIZqL42btRQXHht7l+2B5E6\nCiOqlcXQ1drLZTGRcUNxwfVxujcQRMp4gUirM3IoLraf5HYRuVaRHK9K7BbpFnWwG7FwfSLJ\n92j8UFxmnRxvxrBJkZJTh0iu59m1KhMERGLG/Y6P2xSpvUmKn8YsXJ1ICjyaMBS9r9WIWwNt\nU6T8mVG7RT3VymJjInneTxp1x0e1IhmTIBKh9/bZi2YxkUlD0d+ajbxx6oZFmgFE8sC0oehp\n1UbffxgiTUGZSCo8mjoUvUzvxt83dZMi5ZM6erxhxLJ1iaTDo+lDkX/9Jtx/WK9I6dpCJAJE\nYmDajxxBJIgkhOlDkXUFJ94NX7FIicONy7GPpMajOUORbz9p8o8cQaQpQCQPzBqKTCs5/cdZ\nINIUNImkxaOZQ5FjNef85p5mkRw+P5xuEHmMouO4S2UhkgdmDsX507tZvxWmWqS5W6SzOeP7\nlt8CZdTlsopEUuPR/KE4c1Xn/ebelkU6ZEfqijPB4zE/SaFHJD0eMQzFOSs796eUNyzSJT/k\nHUdHc6V5NOb0b4jkAYahOH16N/snYDcs0jGKr9m1sfm/Qd6zQZFHPENx4grP/ynlDYu0yzZC\np/zmqoF+Ibs5kSat8dxpnWHDIuUXxWYzu1BF0uQR11AcP71j0AgivUXRc16ASCvDNhRHrjWL\nR1sWKTZTu3MUmcN1lyg6jFiwEpFUecQ4FMesN8e0zrBhkczBhlucHWS4xiEetdPlEedQdJ/e\nMWm0aZEuUfVNbJjfI21XJOd1Z/NoyyLlX8Vmt7NLPRp1jhBE8gDvUPzqsFXimtYZtixSct5F\nu+zHzHenMdsjJSIp84h/KN5rAEaNNi7SZCCSB/iH4vBGidUjiDQJDSJp88jLUOxvBM5pnQEi\nTUGBSOo88jMU+5qBWaONi1T8FnOI92zQ55Gnodg9vWP3aNMi7QO++QlEquhSCSJZsHyPBJGE\n4G8oUpW4948MGxYp3SDFE39GVrxICj3yOhSt9vCg0aZFGnt9eWe1soBIfTQaxItHGxdp6oKl\ni6TRI89DsTzTwce0zrBhkXbBiqTSI/9D0TSLJ402LdIpisbdhKurWlnkDaLTowWG4tev3jza\nski3cdcgdVcrC4g0zDt/TbNhkbKr+V4mLVi0SEo9WmAopvtHLieFT2LDIgX6axRaPfI/FIt5\nnZ8GgkiBiaTWI+9Dsdo/8tJEEAkiCcHvUGwe9vYxv9uwSDOQK5Jej/wORXq4jr2dINIUIJIH\nfA7F9mFv7o0SRJqCWJEUe7SwSNwbJYg0BakiafbI41DsOS2IdVdp4yJdjtmJQseRXycJFelr\n4L05kYHTGfhMCrzph0W67orDdVF0GrVgiOQBX8kPnhbEZlLgTT8o0jWOKpFG3WhVqEhfQ+/N\nKdw725trehd40w+KlHq0f0mMSOZi2TEnsEIkD3hJ3uEsVR6VAm/6IZHO+Y+LZd/EnsdN7kSK\n9DX43hyP29neHCoF3vR3LjU3W6FMpFtx72JHJIpkBkPgvTke18sm5psUeNM7XCFb/jskx7e4\nr1oxZEMh8N4cy4irYWebFHjT84j0GkMk/7AnP+oqvrnTu8CbfkikQxSZr48yg16GLvL7FssX\nKR8GgffmKEbfnGGeSoE3/Z372lUHG/b9dxT69RjLF+krRCJMuah8jkqBN/3g4e90k7TLDn+/\n7HOnOvhlNkefpYtUDoDAe3MEE2/OMN2kwJt++MyGuL4YKb52V5Bq9PCaCBep6v7Ae9OZ6ffc\nmrxRCrzph0W6VXf/3vV4lMT/vJp/IZJ/+JKfda+giSYF3vROJ63Gx/47rv7J/pUtUt31gfem\nIzPvuTXNpMCbnukyipZIvwXx9evaGQjj3cz3o0Hb+BJpTmXMND9AA/9YdILjnsQTNkqBN/3g\n4e9jtot0ON2/lb5gkaw+D7w3XeC5l+p4kwJv+n6Rnhr3D4rPd6qBSAvAkjzXPYlHXz0beNP3\niVRc0lfR8y1SiVyR7O4OvDfvwvpTE+NMCrzp+0Qy3yDtn7NLkN6ed3dNEisS6ezAe/MezLfI\nH7VRCrzpe0QyP8L8XBefozuXI0kVifZ04L15B/6fmhhhUuBN3y3Slf5Yn7lC9jZQjVCRWv0c\neG8O4uUXxNxNCrzpu0V6iqKjHZduooYOOMgUqd3LgffmEJ5++ch5ehd403eLVFxA0eAy/FtJ\nIkXq6OPAe3MAf78g5mhS4E3fLVLcmshdhy81lyhSVwcH3pt9vPP1w7AZbiYF3vTdInVcDjt8\nqblAkTq7N/De7MGnRQan6V3gTc8kUn+1qwGRCrxujQocTAq86UMVqedDMvDe7GIBjRIXkwJv\n+kBF6uvXwHuzg2U8cpjeBd70YYrU26mB9ybF70EGwh2TAm/6IEXq79LAe5OwoEWGYZMCb/oQ\nRRro0MB702LJrVHO4PQu8KbvFamDEQteU6QN92aD5TUybPczLDyRBicYgfdmxToaQST7kWaR\n7hw8Crw3C9bSKNnw7inTPRv6q12WjR+DNSx6pK5N7ydZ4E0flkh3vxYMvDeTxY/UddDTCYE3\nfUgiOZzyFXhvrrw1KtjkSSUBibT1MydlWGTo/EQLuemTkERyOpk/1N58J8eijI7OCLXpCwIR\nyfXmUEH2pjCJMjZ3TWUYIjnfOSC43pS2KapofbIF1/Q2IYg04q5QIfXmO7ES5WzrTmgBiLTB\nm6tJdyhnU/fmVC/SuDvnKu/NdwVrZ+KI1TfKm/4eykXayA2olQlU0+gepU2fE7hI43+GUVVv\nvntnC6Qq+YLN/MabZpFC/ZGevu2PiuQp1YedyuxLAhZp9M+KZEjvzcEJnPTkeyj6SWn2OeGK\nFNwvAjvsBMlNfpj8I09r9hnBihTUb9S7HkcQmbwTprv0Zp+EKtK0WV2GuN4ccyxOXPLufFWd\nfaAiTbYokdabIw9oy0p+HF+/as4+QJFmbI0McnpzwtdCcpKfwqx+W5vgRJrbG1LG4qTvVqUk\nP43fmk0KTKR5WyODiLE49RQFEclP5jdD961GUCJx9MP6Y3HGiT7rJz8Hk71akwISiefjbO2x\nOOt0ubWTn0eWvVaTwhGJqQdWHYtzzzoNQCSt07tARJp5qK7BmmNx9rnbIYikdKMUhkiMTb/a\nWOS4BiIMkVSaFIRInA2/1lhkuZIoEJE0Tu8CEIm31VcZi1xX5IUiksKNknqRuD+8lh+LjNe1\nhiOSOpOUi8Q/B1h8LHJeHR6QSNqmd7pF8tDWC49F3rsshCSSso2SapF8tPSiY5H7ZiVhiaTK\nJMUi+dn2LzgW+e/5E5hImqZ3ekXy1MaLjUUft84KTSRFGyW1Ivlq4YXGop870IUnkhqTlIrk\nb5u/zFj0dCPHAEXSMr3TKZLHtl1gLPq7IWqIIinZKKkUyWfL+h+LHm8rHKZIKkxSKJLfbb33\nsejz9tyBisR4cr839InkuUn9jkXPt7kPVaRE/lZJm0jeP5q8jkXfPxYRsEjSDzooE8l/Y3oc\ni/5/dCVkkYRvlHSJtEBT+huLC/x2UdgiiTZJk0iLbNw9jcVlfgMscJEkT+8UibRMI/oZiwv9\nkl7oIglWSY9IC7Wgl7G41C9Shi+SWJW0iLRY8/GPxQV/2XULIgndVVIi0nJtxz4Wl/x95G2I\nJNIkHSIt2HLMY3HZ3xnfiEgSz3RQIdKSrcY6FpfVaDsiJfK2ShpEWrTNGMfi0hptSiRpBx0U\niLRsg/GNxcU12pZIwjZK8kVauLmYxuKCh+oabEskUbtK0kVavKl4xuIaFiWbEykRtFUSLtLy\n7cQyFlfyaIMiidlVki3SCo00fyyuM6vL2KBIUlQSLdIaLTR7LK5mUbJRkWSoJFmkVZpn5lhc\nb2tk2KhIElQSLNI6bTNrLK6r0YZFWl8lwSKtw4zeXFujTYu0tkoQiTC1N1c8xFCzaZHWVQki\nESb2pgCLks2LtKZKEIkwpTdFbI0MmxdpPZUgEmFCbwqxKIFIGeuoBJEIY3tTzNbIAJEy1lAJ\nIhFG9qYgixKIVLG8ShCJMKY3RW2NDBCpYmmVIBLBvTelWZRAJItlVYJIBNfeFKgRRCIseb0S\nRCK49aZIjSBSm8VMgkgEl94UqhFE6jCbxi0AABlZSURBVGCprRJEItxvELEaQaRuFnEJIhHu\nNIi4A3UWEKkH/ypBJMJwg0i2KIFIA/hWCSIRBhpE9tbIAJEGWPu3hyFShnyLEoh0B587SxCJ\n0NMgCixKINJ9vLkEkQhdDaJia2SASA74cQkiEdoNosWiBCK54kEliESgDaJII4jkDvtmCSIR\n7AZRpRFEGgWvSRCJ0GgQNbtGFRBpDKxbJYhEqBtEm0UJRBoNn0sQiVA0iL6tkQEijYdJJYhE\nMA2i06IEIk2DZbMEkQi/Vc7pCiDSROa7BJEIardGBog0nZkqQaQmqUWqx6Lq5FfPftZmCSI1\nMNuitXtzFqqTl5D9dJcgUkkxpxPQm9NRnbyQ7CeqBJEKyj0jGb05EdXJi8l+0mYJIhkaRxik\n9OYkVCcvKfvxLkEkckKdoN4cj+rkhWU/UiWIRA53y+rNkahOXlz2ozZLWxep9a2RtN4cherk\nJWbv7tKmRer68lVgb7qjOnmh2Tu6tGWROk9hkNmbjqhOXm72Xx1k2qxIfacCie1NF1QnLzv7\neyptU6SBE+pE9+Y9VCcvPfvhzdImRRo6LVV4bw6jOnkF2Q+4tD2R7pzeLb83B1CdvI7s+1Ta\nmkh3L5JQ0Zt9qE5eS/bdhx42JZLLtUZKerMb1clryr7t0nZEcrxiT1FvtlGdvLLsiUtbEcn5\nulddvUlQnby+7JuTvE2INObycXW92UR18jqzL1UKX6SRN2FQ2ZslqpPXmn2+XQpcpPG3MlHa\nmzmqk9ec/devQYs05YZAintTefK6sw9WpHcT76sVeG9KRnX2YYo04+Z0gfemZFRnv4hIr5/j\nOP782lMtM1M3RQWB96ZkVGe/hEiPcc5jd7WMzJTIEHhvSkZ19guI9G/88ONv8vfHQ/yts1om\nGCQyBN6bklGd/QIixfGf7O+v+KGz2vm8Y5LIEHhvSkZ19v5Feq02RF/in13VzuEdp0MZgfem\nZFRn71+kb3F5lOE1/rer2mnwK5QTeG9KRnX2/kX6HP8qHv2KP3dVO4Z3FZPe7kDgvSkZ1dn7\nF+khrh42d5IcK3tnMymDUQTem5JRnb1/keK466FDZQuZQwi8NyWjOvv1RPoNwJZYbYu0DoF/\nLEpGdfaCp3brEHhvSkZ19v5F+mfWwYbFCbw3JaM6e2WHv/0TeG9KRnX2/kX6t/GFbONkO4jk\nAdXJ685+yVOE6nMcJlfmn8B7UzKqs1/wpNU/zWMNEMkHqpPXnf0CIn2rLqNonGoHkXygOnnd\n2Yd1YR8DgfemZFRnv8il5v9b8lLzmQTem5JRnX2YNz+ZQeC9KRnV2UMkQuC9KRnV2UMkQuC9\nKRnV2QsW6Xvjz/eeF7NH363nvncEfree+E5etcJbDfK941FR/j/zT/rsfxu1fv/eeMP3cnnf\n87/fv38vnsv4r72KzegsmLzaXP7/Wavy3VSVPv5dhTRXu5lSWa6zsNumte7kzfYCGlk2ny/e\n871VX9+C/pv9+/8GYxrP02Xe43vrwf2lDNbTAUQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7\nDJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgkHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJb\nLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7DJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgk\nHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJbLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7\nDJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgkHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJb\nLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7DJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgk\nHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJbLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7\nDJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgkHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJb\nLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7DJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgk\nHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJbLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7\nDJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgkHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJb\nLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7DJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgk\nHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJbLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7\nDJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgkHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJb\nLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7DJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgk\nHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJbLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7\nDJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgkHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJb\nLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7DJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgk\nHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJbLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7\nDJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgkHCLZZYjkFguRSDhEsssQyS0WIpFwiGSXIZJb\nLEQi4RDJLkMkt1iIRMIhkl2GSG6xEImEQyS7DJHcYiESCYdIdhkiucVCJBIOkewyRHKLhUgk\nHCLZZYjkFitYpHW43yCCUZ287uwhEiHw3pSM6uwhEiHw3pSM6uwhEiHw3pSM6uwhEiHw3pSM\n6uwhEiHw3pSM6uwXE+lb3FetLALvTcmozn4pkV5jiOQf1cnrzn4hkb7FEGkBVCevO/tFRPr1\nGEOkJVCdvO7sFxDpl9kcfYZIC6A6ed3ZLyBSqtHDawKRFkB18rqzX0Kkf17NvxDJP6qT1539\nAiL9yf6FSAugOnnd2S/2PRJEWgDVyevOfj2RfgOwJbBF0oPq5HVnj6kdIfDelIzq7L2JFOc0\nyn3VyiLw3pSM6uwhEiHw3pSM6uwxtSME3puSUZ09RCIE3puSUZ09RCIE3puSUZ09RCIE3puS\nUZ09RCIE3puSUZ09RCIE3puSUZ09bn5CCLw3JaM6e4hECLw3JaM6e4hECLw3JaM6e4hECLw3\nJaM6+/VEAmBb+BEJgK0CkQBgACIBwABEAoABiAQAAxAJAAYgEgAMQCQAGIBIADAQlEivn81v\nZLx2P//4oyj9jSuWTW+Y7uTbyfat5Lp0ZhU3MU8IbXoD/fVJA12poaYPSaTHoo8ee55/yO9Y\n/lNkb/Yk30q2byXXpTurpkcP5gmZTW9o/fpk0l6pwaYPSKR/44cff5O/Px7ib9bzj/lPZ/x8\njB/+mvKP+EfX29elL3mabF/cutzN6jXOPsRENr2h/euT7ZUaXsmARIrzzkp+5Z9+Ja+NT5Ss\nBT7Hv5ZNzIWe5FvJ9sWty72sXuN8PiSy6bt/fbK9UsMrGY5Ir9UHxZf4Z+P5z1XpT/yP+fMg\naQgW9CVPk+2NW5V7Wf15+JI/kNj0Pb8+2VqpOysZjkjf4nIv8DX+t/E8vTPs3/jLkmm50Zc8\nTbYvbl3uZfVY+COy6Xt+fbK1UndWMhyR6mnDr/hzd0i2Tf4Z//hf+vnz8EXSLKMveZqsw0qu\nwJ2sfpRDUGTT9/z6ZGul7qxkOCI9NLY8fTN184H4ozpwJGh3vS95muz9lVyD4az+PpQ7qSKb\nvufXJ1srdafpwxFp4Ob+BY/ZZ0r6kfjDHL37+VlQd/YlT5O9v5JrMJzVt+qjXGTTF7QSpyt1\np+k3JNK/+Qz9oZrrPso5htSXPE1WoUh/6+9dRDZ9AUQquTfGXltfpL3K2fe9L0ierEKR6p30\nBoKavgAildxZ0bZHknYzHATJklUoUncjy2n6AohU8s/gzuBreYJQEzljcTj5/PnYLW4FhrLq\nOUwvp+kLWgnRlbrT9OGINHh4Mt0etT0S1Jsux+5jt7gVGMrqc9zR8JKavgCHv0v+bXxhRo8J\n/duY19Ut9kfOmZ99ydNkh1ZyPYayan56i2z6gpZIdKXuNH04ItWrR3dv/z42d22/VK/+T87J\nAX3J02T7V3JNBrL6Kb7pCwZOEcpX6k7ThyNSdVLhH9Imfx6sc45f8zPuEjPr/btMZg70JN9K\ntm8l16U/q3+bbS+z6XP6T1otV2q46QMS6Vt1mrv1aff34cE+x/Ax/mxmuz8f4/8tmd4wPcm3\nku2LW5f+rOzzvUU2fU7XcXt7pYabPiCR6IVXRdN8o5dpVnGShmJP8u1kVVzYV4/KB/tYg8im\nz6hTbjX91i7sS2fe1qXA1RaZipTFPXwT9t16Z/JJO9n/ibzUvC97+kEvsukNXSnTph5q+qBE\nAmAtIBIADEAkABiASAAwAJEAYAAiAcAARAKAAYgEAAMQCQAGIBIADEAkTqIoOttFvoqnVEji\nowa74/PEWkAXaCJOzAi9WkW+iqdUOCCScena977BWkAXaCJOzPDcW0W+iqdUOCxStJtUC+gC\nTcRJNjzPzSJfxQxvaxbfTmQeyr7wbYEm4iQdcofG5E6ySElytrae/AvfFmgiTtIhd4vr4Slb\nJOdKIZIDaCJOzJB7rmdM9Qg879OP/+fG0+coPhUB5120M++4neJodyqrej7EURQfL1ZNZYWX\nY2yOu12qBV/SDeG+nqi9pVVV9dvpdRXby7qddmmFFxK3j3aXrqUDiMRLNuTqyV017uN8535/\nLZ9+S/8/5gH77KVTcs2D8s1ZUTBTxWZNxZ+T/WK2SENcLPepWNywSKdiYR3LukRlDc237U2a\nHUsHCUTiJRty9eSuGIHlsCxHer4nFV2yR8Wgj952xYNs41SN7WLzZomU7tzET+fzU1y8WEfn\n9T9XI71fpNvLYWBZFZfG2wqP6NJBBkTiJB9y1eQuL5qRun9Jkpd98RFvRuhzGRAdb8ktfSWO\nTrfkrQhJ7dql77DeUv/ZFZu8a3EAe5/Xb96clcvlZWqS9CyyqruWFR3e8u3ooVrqdV+sFV06\nyIBInNSf3de6+FyNuF3+EW+2Q1X8wfx9ibKZXv4gD3zLAm6WQcWf9N9bY6GXqv59Vn+9vHhY\npEOZVGtZh7Liaqlm/ncpK2kuHeRAJE6KkXe1tiOHcgiakXnMn36r4l/KB2/NGmiNdIsUn9+q\nkGNZidHwSJbXf4rQ6S0h1At5oU/UHtGlgxyIxEk5cM/53C0vxtVHePqZHydNWapH7Qcpz8co\n6hLpms3Z4lMx3Hf1W7JtkbW8zn2klziKyTG39rKspcb1PI4sHeRAJE6qMbiP4ltjJma/7iJS\ndog56hYpfTU/1BefbgmdsHUsr52e2VQ1jp13LstaalRPR8nSQQ5E4qQag9dsP2O6SOYQc3x8\n6Z7aGW7P2eg3h+kmiGQ2mdUJGD3Lspa6SzdiUT2faywd5EAkTqyR+jx9ape++3BrvtAa44br\nMdsnisluVb28ge+RjtVcrW9Z5IlnekJRsXSQA5E4aYxUM7mL2gcbDomLSNVuz8uQSEW5PtiQ\nM3iwoXoclxr0LYsu9dD63ohms2nQFJw0hta1+j700jz8/Zy4iNTY1+o+atc8deJSbSvyo4LP\n+XYvD+wVyWjzYj25HxbJfCzc2ksHOWgKTppD61ztvTe+kI3tqD6RzDtu+Ts6REp3arKDbuZl\ns1XZ5fXfzoUb5hDbpfnurvSqyV3fsuhSszlgx9JBBkTixBqp1ci81ocCLnZUn0inqMFbQrcN\nsf1ifbJcdg5PtrHJS0MiGYOeBpZFl1puUOnSQQZE4sQaqddqg1CO9PhCovpEKs5kTcWzZ4PF\nn7dyLBcVXsvw4gh1cXLfnZNWjW/X/mW1lpq85VtUunRggEic2CP1XBdbl1GQR60HTztz8sHN\njPZ90hrStyez/7V/qr7IMZdRNM5VMFdB3L+M4liebde5rPZSzWl5x66lA4gEAAsQCQAGIBIA\nDEAkABiASAAwAJEAYAAiAcAARAKAAYgEAAMQCQAGIBIADEAkABiASAAwAJEAYAAiAcAARAKA\nAYgEAAMQCQAGIBIADEAkABiASAAwAJEAYAAiAcAARAKAAYgEAAMQCQAGIBIADEAkABiASAAw\nAJEAYAAiAcAARAKAAYgEAAMQCQAGIBIADEAkABiASAAwAJEAYAAiAcBAMCJdI5tFFlotLT6c\nbyw13p4Pu7S+/emNpbo+jpPfabfs/XYWv0JMBCPSs+3RYZGFWos8M1R4aqzBlaG+HnbTu32k\nSPJXiInVE2BmoU0RXdrt5RhFp7nVXfdpJS9m0/b2FEexv4E3o5VGiaRhhbgyWDsBXt4W2hQV\nNPvvEkUvM6vbR/tbszCzun6WEknDCnFlsHYCvJxZJljOWP33HO3m1fZkj7Q4usyrr5+FRFKx\nQlwZrJ0AL4d6q1C17Vs2wNPiWzr92td9+XyI0/Is8ez+2xcLv6TLiY5mQS/lBvK5FPyYxphU\nTmbZz7Q264DFc/RUrMAxDT5cqkWSN1svN95+iJpPN6JmHY7pEin995pWHx/faKyCFWIiMJEa\nrXmI3soHl2zOd86bu9iTeYnLA24zZu525z3ndR+jekFxMZQOxWfzLYrNuy5FyL7j7TVFYuX+\n+qFYJHmz/XLFvj/Kg0hlTtYa6FghJsIS6dqYXR2LiUS+QTIWHa/J7anYk7kUn2YvxyiefuDa\n7rx8By2t8HxLbufYDKNT9FwE5pHZ2EoLu3TZt7N9pO/QvY/1FMUm0csuOhY1WW8mL5ecor35\nHHnZdUYxT+3M8Da5p+v8pG6FmFg9AVaan4Hl7tIu2zKlm4l8SD9lLf8WVfP104yjbaT/TDGt\nOf/gvUbpgl/yD9CXqPA3m/1Vn6rP1iYpjrqMvlWi5ytC3kxfritLiix2nZWMXtXmOtJSZLaz\n+dKa66BjhZhYPQFWyg2A4Tn/rLrkU4RdOVPIJldpsZpr31rHCL5207G8DpFO1YfykzE0H0xP\nUa54vvBK4pv1/u7B8FRlesmqIG+mL9eVNWes7UrIUt51c3eVS5HKZn9qbpLWXKHFWT0BVnaN\n1n4rDco+1+p+MG3+0pyAs308Z8V99TmazSmfsjG2i5NM1yfS630iRfWsf994dtd+M325JN0x\nP12qDUJ/JaPpFqls3GtzG6tjhZhYPQFWyimG4Zo1brFBeqs72DxdHg+Yu5faIZI1eoqZyC31\n52AGWy56j0hx57ijiZI3963HNTuWsju9WPW1K5m5ytVRu66XdawQE6snwIm1ockbt9hGVYef\n85G9szoipvU403GwgQ4qk8BzOhF5TjdNxbGQHpFa++YTxl0ddy0+LOLzYCUzV3lQJB0rxMTq\nCXBifx1rJnXlPPtU9Wm268TV7vTw91N7UJm9hmO2aTqU+089IrWOFncOkda4I682PsnfzgdT\nOA9VMpq4+dZ8n69PJB0rxMTqCXBysI7zmO+PygNH9Z5LdpjBj0jZ7lhzH8lMJ81eQ7zPXi03\njz0i3eiB+GKf4a39ZP/LlJe92Qr2VzIaq42LKUB9rM46RUvHCjGxegKc2M15is7n8jOxOq50\nyT5D9/Wk4zxjZke3KLukddTOCPSSbSjNkbsdeZedMDmjJn+VHp0nb+47eF8fes4PJfZVMppz\ns6pTPgWov0t4ippna6hYISZWT4CRN7vfztEhLj4Sr+X35Nf8fK9zFXmOInKizhia/XeJsk9J\n+3ukJPt6JHvwEsXFzLNPJHNaZ+Oo4yF7tf7G61J8i2+9mb5cUo207NhhfyWjudXWmFW+5ZkU\nzXkl2yANK8TE6gkwQubkL1F15kC6qxSby2EucRESZ1/F3y67eRc/VP13vRzKhdVnNuTfzN/K\noxlxOQPqFcmcBnO8mKH39pw+zL67N+fCmIsGr6eIfPWYPyIvl9yyEzmyNX5uR5mPk6nnc5zN\nlRHmwcupHM1pQx9e8pMTyBlyGlaIh5BEOtrd+FYfj0tnHMUJXYU21/K4XTzrhGTr2F+5ZSuP\nrZdnuOyLR8fyc7tfJHOSTVVfaXh1bdyl8832yxXlCWzV0ZZm1LHegR/PuU6xOu/0ZdeVg5IV\nYiEkkXbWl9+mY8qDeGYP+c18Otafcfm5xDOmdfkSCnbHRk3m7O/4WO2FPRcj4lJOIgdEMm/O\nrsw+NkbRiznPef/UtzmzXq65nnZR44RsO+o456D/7Sk7eHZ4tvZa4mjXykHJCnEQkkiEt7pp\n159CBw2aN2iRDtXcoH06HeAEIoUs0kttz0u0+k1mggYiBSvSLXmL64M+C1+AvjkgUrAimZ3h\n+oT+nivMABMQKViRdtGusRHqvsIMcAGRghUJgGWBSAAwAJEAYAAiAcAARAKAAYgEAAMQCQAG\nIBIADEAkABiASAAwAJEAYAAiAcAARAKAAYgEAAMQCQAGIBIADPx/WZPRf994TNcAAAAASUVO\nRK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
},
"text/plain": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# You can provide the upSet alone when working with unpaired gene-sets \n",
"# We plot the second sample in rankData, view it by \n",
"head(rankData[, 2, drop = FALSE])\n",
"head(rankData[2, , drop = FALSE])\n",
"\n",
"plotRankDensity(rankData[,2,drop = FALSE], upSet = tgfb_gs_up, \n",
" downSet = tgfb_gs_dn, isInteractive = FALSE)\n",
"\n",
"## Setting `isInteractive = TRUE` generates an interactive plot using the `plotly` package.\n",
"## Hovering over the bars in the interactive plot allows you to get information \n",
"## such as the normalised rank (between 0 and 1) and ID of the gene represented by the bar. \n",
"## For the rest of the plotting functions, the isInteractive = TRUE argument has the same behavior."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.2 Plot dispersions of scores \n",
"\n",
"`plotDispersion()` generates the scatter plots of the `score VS. dispersions` for the total scores, the up scores and the down score of samples."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"- 'Control'
- 'TGFb'
- 'Control'
- 'TGFb'
- 'Control'
- 'TGFb'
- 'Control'
- 'TGFb'
- 'Control'
- 'Control'
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 'Control'\n",
"\\item 'TGFb'\n",
"\\item 'Control'\n",
"\\item 'TGFb'\n",
"\\item 'Control'\n",
"\\item 'TGFb'\n",
"\\item 'Control'\n",
"\\item 'TGFb'\n",
"\\item 'Control'\n",
"\\item 'Control'\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 'Control'\n",
"2. 'TGFb'\n",
"3. 'Control'\n",
"4. 'TGFb'\n",
"5. 'Control'\n",
"6. 'TGFb'\n",
"7. 'Control'\n",
"8. 'TGFb'\n",
"9. 'Control'\n",
"10. 'Control'\n",
"\n",
"\n"
],
"text/plain": [
" [1] \"Control\" \"TGFb\" \"Control\" \"TGFb\" \"Control\" \"TGFb\" \"Control\"\n",
" [8] \"TGFb\" \"Control\" \"Control\""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAilBMVEUAAAAaGhobnndNTU1f\nX19oaGh3d3d8fHyDg4OJiYmMjIyVlZWYmJiampqjo6OlpaWnp6evr6+wsLCysrK5ubm6urq9\nvb3BwcHExMTHx8fJycnMzMzQ0NDR0dHV1dXY2NjZXwLZ2dnc3Nze3t7h4eHk5OTp6enq6urr\n6+vv7+/w8PDy8vL19fX///9seItIAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2d\nfUOjRhdH0dmsqampqVa7PtrVasyaJt//6z0Mb3cgF8KNRBHO+WOdJD8YYOdkYIAQbQHg3USf\nvQAAQwCRADoAkQA6AJEAOgCRADoAkQA6AJEAOgCRADoAkQA6AJEAOuDoIv04j6Jocvly7Hqi\nnLOirqiTletmLjBwjtxKnlzevs+PW5GIFHORv9XNjLuYCwyc47aS1yhK+of1vYvOjlqTtPeX\nq6PXBVDluCJdRD/y4iS6P2pVQcfx6qKro9YFUOW4IgWt+/7IO3fhHljcEa6PWhlAhWOLtA7K\n/t/1hT9eesreuzmLorOb4vPLeE+w+nYyUeSKsotnub6c7AxglA5lLpOeMKsxDMdvPZVmri5B\ndRIt6V9evJq3CAyU44p0Fp2Vu4bXbPAh2c17nWTjbEl7jNtllIp0lr0tk8ku4n2cyGdS2oEr\nifSUdH/JW+VwXHP6avKaLWBQVb4E1Um0Zb1MXjlMgpTjivTkm95N0HNMorP41U0U+RYYaxZ3\nTXEPkbTjuFneb9fF2y9nwb7gSzQpZvASa3UR59Y3JXdKL9ZJPnmrHI6SWoo6y1XlS1CdRJKy\nrNHVevsyyccHYfQceWz3Pv1yn1ymIw332Xf/je957nM70nGIvIMp3j6Lnor5nEX5DM5rBqTL\nbyav5J/g/awTSeqsVJUvgTKrnWVNdkGfgl1OGDfHPkmy/nEW7EtdZD4kBz35i2wcIorSnusi\n9+cpba1ZJDXw3E8TyVigUC/Sj9L7N/kML3aqypegOslWWdZXpVIYMR/REl5uLuKOya3TkYKC\n4kU6lpA3ykmxSMX+3Dbdpct38eLjE3fxozIuVydSOZwbkNZZqSqfRXWS+mVFJMj4qJYQH11c\nVhqevCjtg4WXKEj4JukJ0tG47Xnax12t1blt/fi3iFEKl+usVFV8uDtJ7bLatwQMkqO2hLCd\nJV/lh4sU9wmvMgz+cjmpDpqVwsmOW/5WGG4n0u4kiATNHLUlhMMFSaNzZTXU3SWnL9Jl3KNd\nBgPe6/vL0gh5qU1fZEMCO+FI6pzsVFUe+JNJ6pcVkSDjqC3hqjqCfZ6ZpQ82pK/OQ/sEP4kr\nX7DwGrbjsPyS9lyVvb20KynqvNypqqrFq/Q+NcuKSJBx1JawdjLwdubHy340Dn+nr/IBuupF\nRefRZTY3l40YhBc8VK61uyneKocjqfNlpyrpE8uTbGuXFZEg47gt4T5uuPf+5Ob9JG2Jk+j8\nNTkhK2de5SRnNlH6tj8fWroG6CXK37hMTqr6CYNLG0pXf5/LW+WwP0Hs68xOpZarklG78iSS\nrC4rIkHGx5yQLa6tKV0ilI2OZZfrFI0yvxqnern4pOihzvJ5Bp+GAwcX+Vs74fzanmxW5aoC\nlUuT1C8rIkHG0VvCj3N/DukilyK5HvQi72ruL0oXgub4C0LdRfWm2nsxK7nt9rwkWmHR+dVr\n8dZOOH7LnyEuFqdUlSxBZZLaZUUkyBhZS6Dlw3EYWcNCJDgOI2tYiATHYWQNC5HgOIysYSES\nHAcaFkAHIBJAByASQAcgEkAHIBJAByASQAcgEkAHIBJABxxTpGhIsC0EtkWBrNQ7N0rjBjvi\nvD+adzeeTpaiH7AtChDJCo1HYFsUIJIVGo/AtihAJCs0HoFtUYBIVmg8AtuiAJGs0HgEtkUB\nIlmh8QhsiwJEskLjEdgWBYhkhcYjsC0KEMkKjUdgWxQgkhUaj8C2KPiKIp0EVD7674/dcKd1\n97nxyKp2vtI19GhbZO3h2x/L7uZpYWAi7bYgRDoiPdoW0iT+7G6mBr6iSAl6W0GkSum49Ghb\nZKv86++Tk7+6m2t7EMlKjxpPBUTyLE9O/ututq0ZgkjLP75l+8bF3t6f309Ofvu3kuuGHjWe\nChWR4n/+/nby2z9Hq69X20JW/s+0Sypaxb8nyYHzvydJe/jj5N84+ue3k+/dbpgBiPRPtm/8\nj4j0rXhn1CL9dexjhh5tC1n55cnv21Kr+JZ+t6Yb4uRbHP2taB6d8fVFirvyv/7b/vfnycmv\n/N2/ku+kv05+245bpG//ixvUt5PjjWP1aFsE/8++GLaKvxJl4v5p6/36y2+Yf7f//Z40j874\n+iJl3zRxn/1n/u73dC8538Hplh41ngo7Iv1KXnw7XpfUo21RESlsFb/8vt2vk+9+e/wR/5P2\nRf912zK+vkjfs/YSb6mwn/rnr9/GLlL2jfv796PV2KNtURGp1Cp+O/H7J//z+yl+o2RRREoo\nNkOpkL34+1txlmnEImUCfT/eEF6PtkUo0rdKq/hf3AXFWyHeIP+c/A+RyjSJ9Hd8OPnn/34h\nUsJvIxPpXz/YUG4eJ3/8F7/5+8l/f/idfkQKadq1+34iI98jEum3fFhhmQ6z/J6+Gtuu3Z++\n1ym1ivitv0/+jr9f/05GwhEpJBhsSK+vCwYb0n//GZtI+ZbIjrSzE5P/jWywYZmMzpVaRdxJ\n+S+Z5cn38IwIIiUUmyHeg/szHehc5iNV3+OvHz/uOzKR/js5+SNe/V9/pgqdnHz7J9kMxzvR\n36NtEVwi9Pe20ip8i8hOCARRREpQT8j6DXaSHCOl/DsqkYotkZ5qPDn5vfvzjmV6tC2qF62G\nrSI/p/h7dk4WkQLUS4S2y+/Jl87f/o1//ykddXZFjxrPDkt/adT3P9PDA38lTNxHHfO2gh5t\ni8yb73/m6xu0Ct9Z+1P0f6cHTojUC3rUeJr5gCtXv8y2OD6IZOXLNB5E+kgQycqXaTyI9JEg\nkpUv03gQ6SNBJCs0HoFtUYBIVmg8AtuiAJGs0HgEtkUBIlmh8QhsiwJEskLjEdgWBYhkhcYj\nsC0KPkikISGrdTdz09tN9uJ2Gr9Ii8u5c/Pn3fKQt8Xo24Ws1Ds3SuMGywu/jBP2MC/bKVYk\nZvrmy2/T9IUvL5Oiu6uWU4zb2bqEHzrB0Xok0zL1IoxI1nyxLg9u/rbdXLuFfzF3D5vt29z5\nPmnmfm63P53bVsopiCQgkpFBijRzyV5dIskq1Wnju6Rl2v/ceoXCcgYiCYhkZJAiZSS7c3dO\nDoNu3cr/WbnrcjljmCI9xPu5s4e0vFo4d/2WlhsPFxHJynBFivfmfGezcG/FW/N0P27jZuVy\nxiBFSg8X3dyXV2k52SDNh4uIZGWwIsUN4zn9u32eueldVt7mf8NyxhBFuvWHi9vlNLFk4R78\nAWSyr9t8uIhIVoYq0mq+cFNvUvxFW3wl7xPp13DIt8U0Xb1Vspubrmvy757DRUSyMlSRYjZz\nt/TNxvsU7+c9jLJHyklWM7UqcWrP4SIiWRmwSHHLmPsW9JyWZ+MWyR8K3qW7dr7/2XO4iEhW\nhizSjjCLvDwvlzMGLNJzuvd2N83HFPZ8pwxpNxeRrPm9Io1y+Dth5nfn4gNHf7S48KN2e0Xq\nZJl6EUYka75Yl2l6QvbZS5IcHPkD6kVxVJ2cWgrLGcMVKT0HsEpG8FZzf+kUInXMIEW6c/NN\nMua78sJMl8lggxcmG+dNvp7DcspgRbpNvy2uXfoLg/77BZE6ZpAi5Wchkz7nIS0nl39nZyR/\nVsspQxUp88hyuIhIVoYp0vZhFh8LZL/lubqWa2Sab6M47hJ+kkib+TTbEIbDRUSyMlCRDmKQ\nIr1Np/k1UvP00HHpe549h4uIZAWRhCGKtJnKQeCzm7c9XEQkK4gkDFGka5ez9ftwbQ8XEckK\nIglDFMmFIm2faw4RuY3i3SCSMESRDgWRjCCSgEgCIhlBJAGRBEQygkgCIgmIZASRBEQSEMkI\nIgmIJCCSkXqRTk9PmyYcnUg72wOR9tI6/Pj4OFSRTk+bTRqbSLvbA5H20jb86EGkViASItWC\nSO1BJESqZcgicYxUgWOkShUt4BhpPz3MM2r3ZUU6ZhiRrHlEQiQFRLLmEQmRFBDJmkckRFJA\nJGsekRBJAZGseURCJAVEsuYRCZEUEMmaRyREUkAkax6REEkBkax5REIkBUSy5hEJkRQQyZpH\nJERSQCRrHpEQSQGRrHlEQiQFRLLmEQmRFBDJmkckRFJAJGsekRBJAZGseURCJAWzSHczN73d\npOW6Rw3UP6Wuh2JY84iESApWkdLnpqaPZ1sGz1CtK1fm3UMxrHlEQiQFo0gP/tnvm2u38C+y\nR7C5pnJl3j0Uw5pHJERSMIo0Sx8QmkiSPRT01mtTV67Ou4diWPOIhEgKhw02JA8CrXtktfL4\nakQSEEkYuUhv86Szmaf7bhs3qy9X591DMax5REIkhQNEci59wnt+EOT/1pXzef8aDoiESAp2\nkVbzhZt6kywiHbBkfc0jEiIpHHSMtJm7JSIdCCIJYxdpu3JzRDoQRBJGL1IiySIXZl5frs67\nh2JY84iESArvEInh74NAJGG8Ik3TE7LPXpLsxOudH8OrK1fn3UMxrHlEQiQFo0h3bh6btJwm\nnU52KZA/OVtbrsy7h2JY84iESAqHXbSa9jmrtPyzqVyZdw/FsOYRCZEUzMdIDzPnFsu0zG0U\nB4BIwphFOghEEhBJQCQjiCQgkoBIRhBJQCQBkYwgkoBIAiIZQSQBkQREMoJIAiIJiGQEkQRE\nEhDJCCIJiCQgkhFEEhBJQCQjiCQgkoBIRhBJQCQBkYwgkoBIAiIZQSQBkQREMoJIAiIJiGQE\nkQREEhDJCCIJiCQgkhFEEhBJQCQjtSKdnp42TohIiLSXXoQ/V6TT0z0mIRIi7aUXYUSy5hEJ\nkRQQyZpHJERS4BjJmkckRFJg1M6aRyREUkAkax6REEkBkax5REIkBUSy5hEJkRQQyZpHJERS\nQCRrHpEQSQGRrHlEQiQFRLLmEQmRFBDJmkckRFJAJGsekRBJAZGseURCJAVEsuYRCZEUEMma\nP0rjqb94F5H20oswIlnzx2g8DbeTINJeehFGJGsekRBJAZGseURCJAVEsuY5RkIkBUSy5hm1\nQyQFRLLmEQmRFBDJmkckRFJAJGsekRBJAZGseURCJAVEsuYRCZEUEMmaRyREUkAkax6REEkB\nkax5REIkBUSy5hEJkRQQyZpHJERSQCRrHpEQSQGRrHlEQiQFRLLmEQmRFBDJmkckRFJAJGse\nkRBJAZGseURCJAVEsuYRCZEUEMmaRyREUkAkax6REEkBkax5REIkBUSy5hEJkRQQyZpHJERS\nQCRrHpEQSQGRrHlEQiQFRLLmEQmRFBDJmkckRFJAJGsekRBJAZGseURCJAVEsuYRCZEUEMma\nRyREUkAkax6REEkBkax5REIkBUSy5hEJkRQQyZpHJERSQCRrHpEQSQGRrHlEQiQFRLLmEQmR\nFBDJmkckRFJAJGsekRBJAZGseURCJIXPEOn09LTthIiESHvpRfgTRDo9bW8SIiHSXnoRRiRr\nHpEQSQGRrHlEQiSFjxUpNYhjJFuN/Z0AkQo+VCRLX5SCSIi0l16EEcmaRyREUkAkax6REEnh\nM46RDCASIu2lF2GubLDmEQmRFBDJmkckRFJAJGsekRBJAZGseURCJAVEsuYRCZEUEMmaR6Tj\ni2Qb3UWk/fQwj0hHF8l4vhGR9tPDPCIhkgIiWfOIhEgKiGTNIxLHSAqIZM0jEqN2CohkzSMS\nIikgkjWPSIikgEjWPCJpIj3MnZs9ZC9up256mxaX8fvz591ydfr3LFMvwohkzSOSIlKsiGfu\ny2/TpDz15WX6/l21XJ3+XcvUizAiWfOItCvSrZu/xaZME0vm7mGzfZs73yfN3M/t9qdz20q5\nMv37lqkXYUSy5hFpV6RpasfKd0Mrt/DljS8v0/7n1isUlqvTv2+ZehFGJGsekeoHG3x3c+fk\nMOjWrfyflbsul+umP2yZehFGJGsekRpEmm23C/dWvJ6nPdXGvx+W66Y/bJl6EUYkax6RakV6\n9ntvca/0PHPTZD8uPyDyf8NyzfQHLlMvwohkzSNSrUgzP1Ln3F0xgrdXpF+DAZGseUSqEynd\nqXNuGh8kvc3dAz1S5yCSMFiRbtNRBpf+WfljIUTqGEQShipS5lFJmEVenpfL2vSHL1Mvwohk\nzSOSJtJmPl2mpVCktsPfO7dN9MINRDpqHpEUkd6m03zQOzk48udfF8VJ2OTUUliuTL97I18v\n3ECko+YRaVekzXRavLd0vm96myfCZJcFJZ+G5fL0iGSupYdiWPOItCvStcuJXzykpeTy71Va\n/lktl6dHJHMtPRTDmkekXZFcKNJ2dS23VLS7jYJjJGstPRTDmkek2hOyZhi1M4JIAiIJHy7S\n4+PjkeaMSNZ8sJ3uZm56u0nL4S2ijfsziCR8tEiPjzaTEOmIedlO6W2h6bhveIto822hiCSM\nWaTwm3e1cO46O3/Q7lu4h2JY88W6PPjbQjfXyX1spVtEm28LRSRhxCKF37zZeGZiUstv4R6K\nYc0X6zJzyV5dIkl4i+ie20IRSRjvMVLpm3fhz2E/pHcWt/wW7qEY1vzOzWzhGcYW18UgkjDe\nUbvwmze7qir5t+23cA/FsObL2+ltXjrDWL0VVLktFJGE8YqUE+zPJE61/RbuoRjWfGk7ORde\nOlbcIpp9pt47gEgCIiXfsHfprl36E0zJ23u/hXsohjUfbqfVfJHcxpYzk466XqTPvpezQxCp\n4DCRnrMreaf5mELbb+EeimHNV7bTZu6WeTm/RTR9RY+0l9GLlHzzxt/HfnBu0abxfPZXZ4dU\nt9OquFOtuEW0eVsYtvMWkVrQi/BBIqXfvKtkBG8192ckx9sjyXrmt4juuS0UkYSRi5S1mOt0\nn2bpBxUQSW4RZfi7NeMW6YCb8wcp0jQ9IfucSBLcIrrntlBEEsYs0kE35w9SpDs33yQnp1fl\nW0T33BaKSMKIRSrdnJ98Iy99z9P2W7iHYljz1YtWk7Ut3SLafFsoIgnjFSn85n1287Y35w9T\npO3DzLlF0j+XbxHlNoqWjFek0jfvbeub8wcq0kEgkjBekcrfvM8137zjuI3iQBBJGK9IB4JI\nAiIJiGQEkQREEhDJCCIJiCQgkhFEEhBJQCQjiCQgkoBIRhBJQCQBkYwgkoBIAiIZQSQBkQRE\nMoJIAiIJiGQEkQREEhDJCCIJiCQgkhFEEhBJQCQjiCQgkoBIRhBJQCQBkYwgkoBIAiIZQSSh\nxfThI1URaS+9CCOSNX98kUoP+UakvfQijEjW/BFFyvxBpH64gUhHzR9PpFwgROqHG4h01HzH\njSdwphCIY6ReuIFIR81323jC3qfUEwU12kCkTwkjkjV/PJG2ikeItJ9ehBHJmj+iSDU12kCk\nTwkjkjV/vGOkuhptINKnhBHJmu+q8ewzSGq0gUifEkYka76jxrN3n05qtIFInxLutUgtv7QD\nEAmRPifcZ5HatrUAREKkzwkjkjXPMRIiKSCSNc9tFIik0GeRBn2MZKixvxMcU6T2//mItJ8e\n5hHpQ0Qy7I4g0n56mEckRFJAJGsekT5QpFYyIdJ+ephHpI87RmrXLSHSfnqYR6SPG7VDpLpa\neiiGNY9IiKSASNY8In3geSSOkWpq6aEY1jwicUJWAZGseURCJAVEsuYRCZEUEMmaRyREUkAk\nax6REEkBkax5REIkBUSy5hEJkRQQyZpHJERSQCRrHpEQSQGRrHlEQiQFRLLmEQmRFBDJmkck\nRFJAJGsekRBJAZGseURCJAVEsuYRCZEUEMmaRyREUkAkax6REEmhQaSXi6jAUntTLT0Uw5pH\nJERSqBfpJYoQSckjEiIp1It0EZ29WCptVUsPxbDmEQmRFOpFiqLOPHq3SMf50c3D8oiESApN\nIlmqbFnLYQ29/c/XIhIifU64XqTz6NVSZ7taEAmRAkYh0qu7sNTZrhZEQqSAUYi0fZ3cdNUn\ncYwkIJIwCpEihr/VPCIhkgIiWfOIhEgKXCJkzSMSIikgkjWPSIikgEjWPCIhkkKTSOurs/jw\n6Oxqbam7uZYeimHNIxIiKTSIdO+ykQZ3b6m8sZYeimHNIxIiKTSdkI3On+K/T+dR9N4+CZEE\nRBJGIdJldJGVLqJLS+1NtfRQDGsekRBJoV4kV/RD68hZam+qpYdiWPOIhEgKra7+5oRskEck\nRFKgR7LmEQmRFDhGsuYRCZEUGkbtIhm1e+9V4IgkIJIwCpE4j6TnEQmRFLiywZpHJERS4Fo7\nax6REEkBkax5REIkBV0kf+KIG/v0PCIhkgIiWfOIhEgK7NpZ84iESAqIZM0jEiIpIJI1j0iI\npNAk0qXbbl8vouji3SeSEElAJGEcIk38GMMkubTBUnljLT0Uw5pHJERSqBfpJjpbb5/8dXYX\n0ZWl9qZaeiiGNY9IiKRQL9KZf6zLZTTxt1FMLLU31dJDMax5REIkhT039k2SOyg4jxTkEQmR\nFJpFWkfR/RaRSnlEQiSFepEm0Xp7n/yA0FN0Zqm9qZYeimHNIxIiKdSLdBnv1Z17hdZn0Y2l\n9qZaeiiGNY9IiKRQL9I6ua/vye/YvbdDQqQARBJGIdL29Sya+COkyXv7I0QKQSRhHCJ1CCIJ\niCSMQqTzy/ffYr4z7x6KYc0jEiIp7DmP1BGIJCCSMAqRJu/+6Xyllh6KYc0jEiIpNIzanU/u\nu1IJkQREEkYhErea63lEQiQFRLLmEQmRFBj+tuYRCZEUEMmaRyREUkAkax6REEmhSaTkt7+3\n2/P3PosCkUIQSRiHSOnTKPyoA0+jCPKIhEgK9SK9RtHV2ov0lFwD/i4QSUAkYRQiJc/pSwa+\n5dl9h4JIAiIJoxDJ+ef0JSI9cR4pyCMSIinsuWg1VQiRgjwiIZJCU4+0zhR65anmQR6REEmh\nXqRL/0sNiUjnPNU8yCMSIik0XP3tYpNikfxTzd97FTgiCYgkjEKk7StPNdfyiIRICo2XCN2c\n81TznTwiIZIC19pZ84iESAr7e6TzH5aq99TSQzGseURCJIW919rFTN591SoiCYgkjEKk17gz\n8tfYPZ3zoLEwj0iIpNB0rd1FUeJBY5JHJERS2HNlQwIPGgvziIRICnuutdspbh/mzs0eshe3\nUze9TYvL+P358265PO8eimHNIxIiKdSLNInyMYZ18DiKWBHP3Jffpkl56svL9P27arky7x6K\nYc0jEiIp1Iv0o9DnwhXDdrdu/habMk0smbuHzfZt7nyfNHM/t9ufLhmWCMuVefdQDGsekRBJ\noWH4+yY686N2LxfBDbLT1I6V74ZWbuHLG19epv3PrVcoLFfn3UMxrHlEQiSFpmOkKsGHvru5\nc3IYdOtW/s/KXZfL1Xn3UAxrHpEQSeFQkWbb7cK9Fa/naU+18e+H5eq8eyiGNY9ImkilMajk\nMDkrNI1BjUOkJp793lu8rZ5nbprsx+Xbzf8Ny/m8f/WHx8fHd02PSIpI4RiUZ5b95zePQSHS\nzI/Uxduk2Hr7RDpgyY6Uf/S8Z/6ItCtSaQwq5sFl//nNY1CjFyndqXNuGvfTb3P3gEgGhihS\nOAa1Tfbq0//8PWNQYxHpMt4YrxdRdFG5Iek2HWVw6Z+VPxZCpNYMUaSc7L984bJjpD1jUCMR\naeKHFybJLbKl9zOPSsIs8vK8XK7O+/NF2oYeIdL7JtgRKRlfWrpF1jj2jEGNQ6Sb6Gztf9Lu\ntXzR6mY+XaalUCSGv1szYJGe0723mdtkjWPPjkqvBqHeSb1IZ9GL/ymhSfmi1bfpNB/0Tg6O\n0u+ffAc4ObUUlqvz7qEY1jwi1YqUjEFtH+Sgea9InSxTL8J7LlqdJL/EJaeQNtNpEVg63ze9\nzRNhsiGZ5NOwXJl3D8Ww5hGpTqR0DCrdd0MkeR35vih5EoWIdO1ytukgZ0xy+fcqLf+slivz\n7qEY1jwi1YiUHTsvnN/1R6SCSbTe3ic/afckV3+7UKTt6lpOZ3MbRUuGKpKMQUkT2TMGNQ6R\nLuO9unOv0PrM/+bqu0AkYZgihWNQIhLD39vkl1aj5MlIUXA70oEgkjBIkYIxqJTSCdm6Mahx\niLR9PYsm/ghp8t7+CJFChihSOAaVUr5EqGYMaiQidQgiCUMUqTQGleDyi4aaxqAQyQoiCUMU\nydWJNPbbKNJnMOu3Ih0CIglDFOlQEMkIIgmIJAxepK5BJAGRBEQygkgCIgmIZASRBEQSRiHS\n/YW/F+ns8mn7fhBJQCRhBCI9uWKgYfJiqbu5lh6KYc0jEiIp1Ih0H0Xn9/4O89cfk/QK8HeB\nSAIiCYMXaR0FN8XeRI6nmksekRBJQRfpqng2kofnI4V5REIkBV2k5Dbzgqfo3FJ7Uy09FMOa\nRyREUqi/sqH+pR1EEhBJQCQjiCQgkoBIRhBJQCQBkYwgkoBIAiIZQSQBkQREMoJIAiIJIxCp\n/hljh4BIAiIJiGQEkQREEgYvUtcgkoBIAiIZQSQBkQREMoJIAiIJiGQEkQREEhDJyEBFepjL\nQwRWC+eus5/tbfdAgeMsISKdnp62D5vm3AQiWfOyneaueKp7/jOiiUnLtHxXLacgknAMkU5P\nG01CpL7ki3W5dfPYm+U0sWThH1P34B9eWPzItauWUxBJQCQjgxRpmv+89XRberBW9tiFW69Q\nWM5AJAGRjAxSpJzEntSqxKm2D6Y+zhKOXiSOkTR6mN8VyT8z9S7dtfP9zzztqZJnqYblDEQS\nGLUzMmSRnrMHaE3zMYU9D05FJAGRjAxZpJnfnduukiG8hR+12yfSr+GASAWIZM1XttMiGfJe\nJSN4q7l/ACQ9UmsQychwRcqe5X3tkkcRL/2gAiK1BpGMDFakzKOSMIu8PC+XMxBJQCQjAxVp\nM58u01IoEsPfrUEkI8MU6W06zS6u287dxv9Z+p4nOwl75zursJyBSAIiGRmkSJvptHj/2c3j\nvultngiTXRaUfBqWUxBJQCQjgxTpOnyU921auvUfZBew/qyWUxBJQCQjgxTJhSJtn2tuneA2\nigYQycggRToQRBIQyQgiCYgkIJIRRBIQSUAkI4gkIJKASEYQSUAkAZGMIJKASAIiGUEkAZEE\nRDKCSAIiCYhkBJEERBIQyQgiCYgkIJIRRBIQSUAkI4gkIB1jcnsAABOiSURBVJKASEYQSUAk\nAZGMIJKASAIiGUEkAZEERDKCSAIiCYhkBJEERBIQyQgiCYgkIJIRRBIQSUAkI4gkIJKASEYQ\nSUAkAZGMIJKASAIiGUEkAZEERDKCSAIiCYhkBJEERBIQyQgiCYgkIJIRRBIQSUAkI4gkIJKA\nSEYQSUAkAZGMIJKASAIiGUEkAZEERDKCSAIiCYhkBJEERBIQyQgiCYgkIJIRRBIQSUAkI4gk\nIJKASEYQSUAkAZGMIJKASAIiGUEkAZEERDKCSAIiCYhkBJEERBIQyQgiCYgkfDmRHh8fa6KI\nZM0j0nhFenysNQmRrHlEQiSFsYqUbRBEQiRDGJGq5FsEkRDJEuYYqQIidTLB6ESqB5Gs80ck\nRFIYqUgcI3UyASIVjFWkw/OIhEgKiGTNIxIiKSCSNY9IiKSASNY8IiGSAiJZ84iESAqIZM0j\nEiIpIJI1j0iIpIBI1jwiIZICIlnziIRICohkzSMSIikgkjWPSIikgEjWPCIhkgIiWfOIhEgK\niGTNI9KXEen09PRIc94Fkax5RPoqIp2eKiYhUl/yiIRICohkzSMSIikgkjWPSF9FJI6RhB7m\nEenLiPSRYUSy5hEJkRQQyZpHJERSQCRrHpEQSQGRrHlEQiQFRLLmEQmRFBDJmkckRFJAJGse\nkRBJAZGseURCJAVEsuYRCZEUEMmaRyREUjCL9DB3bvZQvFw6lxXi9+fPu+XyvHsohjWPSIik\nYBUpVsQzz1/PMpGW6ft31XJl3j0Uw5pHJERSMIp06+ZvsSnT3JIHl4k0cz+325/pi7BcmXcP\nxbDmEQmRFIwiTVM7Vm6a/N24rEdapmbdeoXCcnXePRTDmkckRFI4cLAh624WLjtGunUr/2fl\nrsvl6rx7KIY1j0iIpHCoSDP/79ItMqXmqVgb/35Yrs67h2JY84iESAqHifSc7r3N3CYTKT8g\n8n/DcnXePRTDmkckRFI4TKRZcoj04B62LUX6NRwQCZEUDhJp4d62+b4bPZIRRBJGLtKtS062\nLtxyi0hmEEkYt0iZR1tX4KVKP/NnasNydd49FMOaRyREUjCLtJlPl2kpFInh79YgkjBikd6m\n07fSG6UTsne+swrL1Xn3UAxrHpEQScEo0mY6rbxTvkRoWi1X5t1DMax5REIkBaNI18HuXIrL\nLxpK+FktV+bdQzGseURCJAWjSK5OJG6jaAsiCeMV6UAQSUAkAZGMIJKASAIiGUEkAZEERDLy\ndUV6fHys5BEJkRQQqZHHx7JJiLRFJBVEagSRGidApAJEagSRGidApAJEaoZjpKYJEKkAkax5\nREIkBUSy5hEJkRQQyZpHJERSQCRrHpEQSQGRrHlEQiQFRLLmEQmRFBDJmkckTaTwISVhufHu\nGkSygkjCIEUKH1ISlpsfUoJIVhBJGKJI4UNKSg8saX5ICSJZQSRhiCKFDykJy3seUoJIVhBJ\nGKJIOWF30+JX2hDJCiIJgxZpVi7veUgJIllBJGHAIj0HIwlJec8vWSOSFUQSBixS+pCSoLxX\npM9+tEh3IJI1j0h1IqUPKQnL9Egdg0jCYEW6DX6jOisjUscgkjBUkRSP9j2kBJGsIJIwTJHk\nISVhmeHvjkEkYZAihQ8pCcp7HlKCSFYQSRiiSOFDSkoPLGl+SAkiWUEkYYgihQ8pKT2wpPkh\nJYhkBZGEIYoUPqSk/MASbqPoFEQShijSoSCSEUQSEElAJCOIJCCSgEhGEElAJAGRjCCSgEgC\nIhlBJAGRBEQygkgCIgmIZASRBEQSEMkIIgmIJCCSEUQSEElAJCOIJCCSgEhGEElAJAGRjCCS\ngEgCIhlBJAGRBEQygkgCIgmIZASRBEQSEMkIIgmIJCCSEUQSvrxIj4+PeRGRChDJmh+7SI+P\nYhIiFSCSNY9IiKSASNY8IiGSAiJZ82MXiWMkFUSy5kcvEqN2GohkzSMSIikgkjWPSIikgEjW\nPCIhkgIiWfOIhEgKiGTNIxIiKSCSNY9IiKSASNY8IiGSAiJZ84iESAqIZM0jEiIpIJI1j0iI\npIBI1jwiIZICIlnziIRICohkzSMSIikgkjWPSIikgEjWPCIhkgIiWfOIhEgKiGTNIxIiKSCS\nNY9IiKSASNY8IiGSAiJZ82MSKfidE3UCRCpAJGt+RCKFv7ylToBIBYhkzSMSIikgkjUfbKeH\nuXOzh+Ll0rmsEL8/f94tJyCSgEhGhilSrIhnnr+eZSIt0/fvquWULyQSx0jto4hkzRfrcuvm\nb7Ep09ySB5eJNHM/t9uf6YuwnPKVRNo3ASIVIJI1X6zLNLVj5abJ343LeqRlatatVygsZyCS\ngEhGBilSTtbdLFx2jHTrVv7Pyl2XyxmIJCCSkWGLNPP/Lt0iU2qeirXx74flDEQSEMnIkEV6\nTvfeZm6TiZQfEPm/YTkDkQREMjJkkWbJIdKDe9i2FOnXcECkAkSy5ivbaeHetvm+Gz2SEUQy\nMlyRbl1ysnXhlltEMoNIRgYrUubR1hV4qdLP/JnasJyBSAIiGRmoSJv5dJmWQpEY/m4NIhkZ\npkhv0+lb6dPSCdk731mF5QxEEhDJyCBF2kynlU/LlwhNq+UURBIQycggRboOdudSXH7RUMLP\najkFkQREMjJIkVydSIO5jWLvBIhUgEjW/Ihu7Ns7ASIVIJI1j0iIpIBI1jwiIZICIlnziIRI\nCohkzSMSIikgkjWPSIikgEjWPCIhkgIiWfOIhEgKiGTNIxIiKSCSNY9IiKSASNb82EUKfzQS\nkQoQyZofuUilnzFGpAJEsuYRCZEUEMmaRyREUkAka37kInGMpINI1vzYRWLUTgWRrHlEQiQF\nRLLmEQmRFBDJmkckRFJAJGsekRBJAZGseURCJAVEsuYRCZEUEMmaRyREUkAkax6REEkBkdqR\nnc8frUjh9QyIVCCbBZFakV9hNlaRSlfYIVJOsFkQqRWIhEgKiGTNIxIiKSCSOc8xEsdIChwj\nHZ4fp0j6BKMXSUAkax6REEnBLNLD3LnZw2653TOBeiiGNY9IiKRgFWmePlprXi0v0/JdtVyZ\ndw/FsOYRCZEUjCLduvlbbMrUWxKW82elJo+sC8uVefdQDGsekRBJwSjSNH9K6rRczp7efesV\nCsvVefdQDGsekRBJ4cDBhrC78eVbt/LFlbsul6vz7qEY1jwiIZLCoSLNyuV5KtamWq7Ou4di\nWPOIhEgKh4n0HIwkJOW8h/J/w3J13j0Uw5pHJERSOEyk2bRS3ifSr+GASIikcJBIC/dWKdMj\ntQaRhJGLdOueq2VEag0iCeMWSfEo7pfS1/7sbFiuzruHYljziIRICmaRNvPpcrfM8HdrEEkY\nsUhv0+mbUs5Owt75DiosV+fdQzGseURCJAWjSJvpVC3nlwVNq+XKvHsohjWPSIikYBTp2uWU\ny/GOXEJyVVBYrsy7h2JY84iESApGkVwgT1jmNorWIJIwXpEOBJEERBIQyQgiCYgkIJIRRBIQ\nSUAkI4gkIJKASEYQSUAkAZGMIJKASAIiGUEkAZEERDISDQm2hcC2KJCVeudGAYAtIgF0AiIB\ndAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdMAxRdq5ZdZz59SsElYnP2zmaj58YFqb/N3MTW83\ntRW8g+Z1UT5tnGAT3MFcP0Hd4+LaTKDVcBCm9TBtpcbmVJpzc8NrboQBRxRp98ljW/+b4frm\n3w2rkx82czUfPjCtfV5+Tak7mtdF+bR5gufdZt689q1qCCdQajgI03qYtlJzcwrn3JxsboQh\nRxRp98lj8dda3ebfDWuTHzhzLV96YFqL/IPPb67doq6Gw2leF+XT5gnCn/Ksm6D2cXGtJlBq\nOAjTepi2UnNzCufcnGxuhCHHE0l58thq7mb6Qu2GlckPnbmaDx+Y1iY/c8leXQf7M/vrCtdF\n+XTPymdL2lhD3ePiWk2g1HAQpvUwbaU9zSmYc3OyuRGWOJ5Iyk+vOndb0xJ3w8rkh868cW5t\nlyePq969i+Z1UT5tniB8QlX9BMV0bWsIJlBqOAjTepi2UnNzCufcnGxuhCWOJ5Ly5LHrVV3D\n3Q0rkx8688a5tZ6/523e4rvJSvO6KJ82T/Dsbu+mbhYuZ/Pat6shmECp4SBM62HaSs3NKZxz\nc7K5EZY4nkjK4ymUl7XhmskPmXnT3J71YyQ9H++Rd3Nw0KKu/KXyafMEt9mR9O3eGpTHxbWa\nQKnhIEzrYdpKzc0pnHNzsrkRlhi7SDN9V03Nr+YLN+3epI5FSo6Pfd/5vG8C5XFxrSZQajgI\n03p0KFI4Z0QyzLxhbuHD09rkN3O33E2/j45FylgG44vNa28QqbS5lu8dwTStR4cihXPusUj5\nEP1XEKl2HLe29lXdiafDOY5ILSZQHhfXaoKaCltjaiHtwsWfurA2+f5kL0RSnjxWv0y74ZrJ\nmz+tXWE9X38+pL72Q1tPPc3ronzabuWDl81r37qG6uZ6r0it1qNdeOH2hLXJ9yebG2GJDx3+\n9uhbv4Ph7/qZ1+TDh6e1nH9TFQfTvC7tB6erIjWN8dY9Lq7VBEoNB2FaD9NWatec/Jy/wPC3\n8uQxj94Qd8M1kx8ycz0fPjytRX6ansR7brFNjTSvi/Jp8wTZgi6DQbXmtW9XQzCBUsNBmNbD\ntJWam1M45+ZkcyMscfxLhCrDYjVtfTesT37QzLV86YFpLfJ3br5JrpFZNU12EM3ronzaOMGt\nW2ySs/6bhglqHxfXZgKthoMwrYdpKzU2p9KcmxtecyMMOaJI4ZPHdo/l9oZ3H1x28My1fOmB\naW3mP299/aKV5nVRtkPzBNmCPjRNUPu4uFYTKDUcYcUrtZi2UnNzCufcnGxuhCEfdBvF/ra+\nG259G0UbkXbyRcNovTwPM+cWnQ9+63WFpeabHJQJ/ILumaC89i1qKE+g1HAQpvUwbaXm5hTO\nuTnZh9soAMYDIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAi\nfTleLs+iKDq/WX/2gkAAIn01rvIn07v7z14UEBDpi3EfuZvX+O/LRRS9fPbCQAEifTEmhT5X\n0cVnLgiUQKQvRlT8j63T4suFiyY36Vuvly5yl69ZcD2Jzn3Ov3nx+vGLOioQ6YsxiX6UXt+n\nB0xnQTk9eIqi8yi6jOVy6bscUR0VRPpi3MSC/JDuJe6Wrtbbl7Mo7pPWLrpYb9cXkfMDelE0\niV9sty66WcddVfomHAtE+mqko3bnNy/Zqwv/5yWa+PJ58t55dLX1IiV90E10kwWvPmFhxwMi\nfTnWV2eJSxOv0lkwdHcWPSV/n5IdvfgYyb84z/6H1+neHxwJRPqSvNxcxCq9hmMPQTkpZK8i\n4cOXckywdb8sl36vDpF6Alv3a1EVp4VIH7Zso4bN/LU4C4axvSNNx0ilN+G4INLX4j5y+dj3\njd+1u/KnivxQgjJql7zI33zK/sJxQKQvxlkUXflO6Cm91m4d+eFt/TxSko/fPH/dPl0mQxNw\nNBDpq3FevvpbubIhyq5sSPOlN+FYINKX4+VyEt6P5C8DL19rl35QjDL4a+2iC46UjgsiAXQA\nIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIB\ndAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQA\nIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAiAXQAIgF0ACIBdAAi9ZEf51EUnd83\nZtYXdZ9Eh/ynRgHpO/cXkyhyF/fVzw+sYOCwSfrHi8ua7FlTqr41dyLS61lUWgpEaoZN0jte\n4s7oKf77dBadN8Q6Fqky5auLJvfruN/74dKlCGeKSLuwSXrHJLrJSmdRw97dcUU6iy7zokuW\nApGaYZP0jXvph17S1vxy4eJjlRdfjJvwpe8rsl0t/2c9SSYohw6kmPIpmgQLdLndEenKRWfN\nx3AjA5E+hdPT07qPzqvd0H12bJL2C2dZuRDpPPINvRyqm/fj42PjYhVTXkY/5N116aOkfJlU\ndrmFHET6DE5P601y0br0Oj5kulpv13HTffVN2D1t1+d+ACBt2bFZ691QzawfH/eYVEw5qSxE\nVSQXe3bvopemmY0LRPoMmkSqanCZffFf+L9pl7OWobMoelJCNbNuL9LuLMIhvSjtr17okgRE\n+gwsIk18JxPz6g9bsg9DkWpDu9hFCuUJy2l/FRxIjR5E+hQajpGqe1Wlxl0nkhZSaH2MlO9f\nhvLsxhi9E9gUfeMiHGx47VakfRRTlhYCkVrApugbwfD3qzvrdNduL8WU9+FemyLSuhwHROof\nLh96fk1OhV5GF8mrcBxhRyQtdADqCdm1IlJyyvip+RqmcYFIveMpvURofZNenPMaRZfpyPZL\nRaTXbfGGFjqA8iVCP+IK1k/xPN22KpJ3/YdLRwzBg0j9Iz+5mu3jKeda/Z9J6frRdidk9xFM\n+XpejNNdVj6Ky1eckK2ASD1kfeWvX8hvYFCu/vF/Xia+pyjad7eXCCVzvPRLcf5j93gou0SI\n/igAkQA6AJEAOgCRADoAkQA6AJEAOgCRADoAkQA6AJEAOgCRADoAkQA6AJEAOgCRADoAkQA6\nAJEAOgCRADoAkQA6AJEAOgCRADoAkQA6AJEAOgCRADoAkQA6AJEAOgCRADrg/w5zqWPzGyCL\nAAAAAElFTkSuQmCC",
"text/plain": [
"plot without title"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
},
"text/plain": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Get the annotations of samples by their sample names\n",
"tgfbAnnot = data.frame(SampleID = colnames(tgfb_expr_10_se),\n",
" Type = NA)\n",
"tgfbAnnot$Type[grepl(\"Ctrl\", tgfbAnnot$SampleID)] = \"Control\"\n",
"tgfbAnnot$Type[grepl(\"TGFb\", tgfbAnnot$SampleID)] = \"TGFb\"\n",
"\n",
"# Sample annotations\n",
"tgfbAnnot$Type\n",
"\n",
"plotDispersion(scoredf, annot = tgfbAnnot$Type, isInteractive = FALSE)\n",
"\n",
"# To see an interactive version powered by 'plotly', simply set the \n",
"# 'isInteractive' = TRUE, i.e :\n",
"#\n",
"# plotDispersion(scoredf,annot = tgfbAnnot$Type,isInteractive = TRUE)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.3 Plot score landscape \n",
"\n",
"`plotScoreLandscape()` plots the scores of the samples against two different gene signatures in a landscape for exploring their relationships."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAACFlBMVEUAAABNTU1oaGh6AXd8\nAXd8fHx+AXiAAXiCAXiDg4OFAXiHAXmJAXmLAXmMjIyNAXqPAXqRAXqUAHuVlZWWAHuYAHua\nAXuampqdAXyfAXyhAXyjAX2jo6OlAX2nAX2np6epAX2rAX6uAX6vr6+wBH+yB4CysrK0C4G2\nDoK3EIO5E4S5ubm7FYW9F4a9vb2/GYfBG4jBwcHDHYnGIIvHIozHx8fJJI3JycnLJY7NJ4/P\nKZDQ0NDRKpHR0dHTLJLVLZPXL5TY2NjZMJXZ2dnaMpbdNJfeN5fe3t7fOZjgPJjhPpnh4eHi\nQZnkQ5rk5OTlRZrmR5rnSZvnS5voTJvpTpzp6enqUZzq6urrU53r6+vsVZ3tV53uWZ7v7+/w\nWp7w8PDxXJ/yXp/zYJ/0YqD1ZKD19fX2ZqH3aaH3a6L3baP4cKT4cqT4daX4d6b4eaf4e6j5\nfqj5gKn5gqr5hav5iKz5iq35jK75jq76kK/6krD6lLH6lrL6mbL6m7P6nbT6oLX6obb6o7b6\npLb7prf7p7f7qbj7qrj7rLn7rbn7r7r7sbr7s7v7tLv7trz8t7z8ubz8ur38vL38vb78vr78\nv778wL/8wr/8w8D8xsH8x8L8ycP8ysX9zMb9zcf9z8n90Mr90sv908391c791s/+2dH+2tP+\n3NT+3db+39f+4Nj+4tr+49v+5dz+5t7+6N/+6eH+6+L///8O3KlBAAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO2992PjWPyWK+WLgaGEMkAuEAgwEMpCuHNhGCAMsARYIBBqCAMs\nAS5D77D03ntbeu+9jP9DrGJHPirW0fm81pHP8/ywiR3rlc7x+4wsWfZmawAIJpt7AwBOAUQC\nMACRAAxAJAADEAnAAEQCMACRAAxAJAADEAnAAEQCMEAk0rvzLMvOru7rlXiv5c57jR7r8N8c\ngANIOnWXZzXn1Up813Lhv1mIBHOi6NRjlpX7oufbPFtNSphQdUSCOVF06iJ7t/31LLudkoBI\nsDAUnWoU9bZ+cTc9QbAIIoE5GpGeG7+vX5p7s8qy1V19c/Pf4vbFY/W324u8OD3xWP6l5GW5\n3QJXmxeNu6AbZ6VuTGsV1WK39UOfr84a50OeL4ojurvWtpQhd3ur61g5JI9CpFW2et67oy75\nqhLkauvFVXkzL/t6vj09cT8gUlH2q5egVXsdzRh3Ffvrf9yeELleN27ddoXcVrfO9lKmHfzB\nqaIQ6a7o2c19YyV1yTd7o/XdWbb1Irt+Xt+fZRebGzfZWbE32PzTv3pZoCVSfrsuDF2VQfer\nvZeN5WNaMY1V1Itt13+RXWyynm+q7LNsdV8snj12hWzWu7vZuXJIHsnhwm317/vZVX2moSzr\nXXZW3cp3e6R1eXe+Lopcefe8exXX+LET6bpK3watssbbTeVjWjGNVdzur3/vQOm23sHcFAu0\nQuodWnnipHvlkDya4+7nd6vmy6GykVfbE3i324LujkGa2zMkUlXwi22F7ypP1nuP3V+isYqL\n/fVnL6cWX/72XCrnhtxsl7voWzkkj+4E1v1NccieF6/F6r1FfeC0v9d5MeD57uY8HxSpunW2\n2+bt3uFATOf6N0dK+cW7+q482z+o2w953C6X960ckkd7JnhzYFH8u+28luoS6flqe/Df+Fu3\nSFmDl1UNxHSvvzqlcHb9vPe3/pDqt+6VQ/II2tBsWPVa6bBIz8XO6/zmfvil3fZWr0jdMd3r\nX98X57+rI6A9KXpCEAkGELShfQ7g8Eu7i+z8+eXWsEh55zYPxDjrb6jxfHtVnsjei2yF7Lb7\nrG/lkDyCXlw3zgzfl0cSXQf73buLuy6RHvcXOO88XzYQ073+mjJ8G1nuQFshu+Wu+lYOySMQ\nafPSaHdCa1We8iobeb89Oj8bEGm197e8au3V/gLbc9X71x8NxGzXnzfXn9fnEEp33jVPf7dC\ndtt937dySB7FK5XNP/lnt8W7nbdnVQm3R/flG6KrrjMB5+XFEOXfqoP/2qCz+/XztXMOrn5P\ntHgv1X3TtxXT+Nvmj2e3L+u/Kt9mLW4W706dZeflW7HFYq2Q7Ru5F70rh+SRvOS/3X0eafXy\nPlL7EqF6C4qfj/XjN+oVCl1Ux/L1hTvOa8H149n20c2BdMQ4Z9jr9V9XN1fbTSwjG5cItUKq\n64zqPVDnyiF5RMfO74p3YfKL5pUN6/ZFq40/Pm7cya8eNwcmZV+LW/W9rQXqoPxib5fQFeOI\ntL5trr/6FO95vYnlJax1YiukeHv5YidOx8oheWY4CfW8rKMLTnPDCI7Xkt1p5Ov6mrmFgEgw\nguO1pDrXsL6/qC4bWgyIBCM4Xkt2HwDKl3WYjkgwgmO25KY4ul9dL2p/hEgwCloCYAAiARiA\nSAAGIBKAAYgEYAAiARiASAAGIBKAAfYiZQDJoBRp/EN/hRnmo2jz8QjriJWExz489ChEstPo\nKColXKaUxx69SLYaHUGlhMuU8tgjF8leI7lKCZcp5bFHLZJGI7FKCZcp5bEjkjUJlynlsSOS\nNQmXKeWxI5I1CZcp5bEjkjUJlynlsSOSNQmXKeWxI5I1CZcp5bEjkjUJlynlsSOSNQmXKeWx\nI5I1CZcp5bEjkjUJlynlsSOSNQmXKeWxI5I1CZcp5bEjkjUJlynlsSOSNQmXKeWxI5I1CZcp\n5bEjkjUJlynlsSOSNQmXKeWxI5I1CZcp5bGLRHq4zPPLr9w787wzuxdEWhgJj10j0kaZgvf7\n975GpBMn4bFrRHqdf7lef7nnzXr9IUekEyfhsUtEeqj2RW8LnXZ8ytkjnToJj10i0tv8qfjx\nlH/RuPNNzjHSqZPw2CUiXVbCbPZBL/c95G/WiHTiJDx2iUhbYZrivM4/IdKpk/DYjyXSh/zD\n2hHp4yGUIh1cOYAdZiJVr/LYI504CY/9SHukN/nDGpFOnoTHLhHpzVaky+09+Q6fRERaGAmP\n/UinvxEpCRIeu/IN2fe5c7UdL+1OnITHLr1E6JVzNyKdOAmPXSPSU/UyrrxCqGEPIp04CY9d\n/zEKREqHhMfOB/usSbhMKY8dkaxJuEwpjx2RrEm4TCmPHZGsSbhMKY8dkaxJuEwpjx2RrEm4\nTCmPHZGsSbhMKY8dkaxJuEwpjx2RrEm4TCmPHZGsSbhMKY8dkaxJuEwpjx2RrEm4TCmPHZGs\nSbhMKY89apFUKm1yzYezI+EypTz2yEVSqFRnmg+oJuEypTz26EWyVqmRZz6kkoTLlPLYFyCS\npUpOlvmg1kmXKeWxL0IkK5U6csyHlXKZUh77QkSyUKknw3pcCZcp5bEvRqRQlQaWtx1XwmVK\neewLEilIpeFlLceVcJlSHvuiRJqs0uEF7caVcJlSHvvCRJqk0riFrMaVcJlSHvviRPJWafwC\nNuNKuEwpj32BInmZ5PvocBIuU8pjX6JIPvsYH41sTEq4TCmPfZkijT3q8dTIRKWEy5Ty2Jcq\n0pjzcBM0MlAp4TKlPPblinRAlKA3nUJIuEwpj33JIg1erBDgUZhKCZcp5bEvW6Tey+fCNApS\nKeEypTz2pYvUeUF3uEYBKiVcppTHvnyRWh8xstFoskoJlynlsZ+CSHsferXTaKJKCZcp5bGf\nhki7r2Gw1WiSSgmXKeWxn4pI5RcD2Ws0QaWEy5Ty2E9HpFi+BS/hMqU8dkRCJDsSHjsiIZId\nCY8dkRDJjoTHjkiIZEfCY0ckRLIj4bEjEiLZkfDYEQmR7Eh47IiESHYkPHZEQiQ7Eh47IiGS\nHQmPHZEQyY6Ex45IiGRHwmNHJESyI+GxIxIi2ZHw2BEJkexIeOyIhEh2JDx2REIkOxIeOyIh\nkh0Jjx2REMmOhMeOSIhkR8JjRyREsiPhsSMSItmR8NgRCZHsSHjsiIRIdiQ8dkRCJDsSHjsi\nIZIdCY8dkRDJjoTHjkiIZEfCY0ckRLIj4bEjEiLZkfDYEQmR7Eh47IiESHYkPHZEQiQ7Eh47\nIiGSHQmPHZEQyY6Ex45IiGRHwmNHJESyI+GxIxIi2ZHw2BEJkexIeOyIhEh2JDx2REIkOxIe\nOyIhkh0Jjx2REMmOhMeOSIhkR8JjRyREsiPhsSMSItmR8NgRCZHsSHjsiIRIdiQ89hMSSaXS\nev3ZZyO8yvSt3wB98NpoIxCph4WJpFBp08iC8ZvgUaZvC/wHOQbPjTYCkXpYnEjWKtWN9Gnl\n6DJ9u2XaQIfw3mgjEKmHBYpkqVKjkeNbObJM3zaZPtguJmy0EYjUwyJFslLJaeTYVo4q07cu\nYQNuMmmjjUCkHhYqkoVKHY0c18oRZWppZKfSxI02ApF6WKxIoSr1NHJMKw+WqVMjG5Umb7QR\niNTDgkUKMWmgkYdbeaBMvRqFqxSw0UYgUg9LFmmySgcaeaiUwzM66FGYSkFbbQMi9bBskSap\ndLiQB0o5NKOHNApQKXCrbUCkHpYukrdK4wo5WMr+GR2j0USVgrfaBkTqYfki+ak0upADpeyb\n0bEaTVDJYKttQKQeTkGk8Sr5NbKvlN0z6qORp0kWG20EIvVwGiKNU8m7kT2t7JpRT418VLLZ\naCMQqYdTEemwSpMa2dnK9oxO0GisSlYbbQQi9XA6Ig2bNLmRHa10Z3SiRmNUsttoIxCphxMS\naUCloEa2SunMaIBHh1Sy3GobEKmHkxKpR6XQQrql3JvRMI0GVbLdahsQqYfJIj1c5vnlV817\n3r/OX7391Jl9RCQa7ZeyMaPhGvWqZL3VNiBSD1NFeshL3r/cc1ne8errruyjItGoWcrdjNpo\n1KmS/VbbgEg9TBXpdf7lev1lnu/u+JBffr3+9EX+piv7yEg0eillPaN2GrVUUmy1DYjUw0SR\nHqp90dtCp4rXefmqrqHWfCLVKlkXclvKckZtNdpTSbPVNiBSDxNFeps/FT+e8i+cP+SvurJn\nQKJRVcqPCo12Kqm22gZE6mGiSJfVjudT/nrv7q8vX3ZRM4skKmRZSo1GpUrCrTYBkXqYKNL2\nFVzzlVxxK2+ex0MkRDohjifS0+Wb/FXDpOzjjCCSu9VzPhunj+keafNa7zJ/mJZojrCSyxTJ\nBPZIPRiLtH7KL6clmiOsJCKliESkN1uRLt2/NNRCJEQ6IY57+huREOlEUb4h+/7lLN2r6g3Z\nrxpqIRIinRDSS4Re3n59n19uTHp4Ve2qJiRaI6wkIqWIRqSn6qLV8u3X6tXcZesyVkRCpBNC\n/zGK+rDow+s8f/PQeAgiIdIJkdQH+xoIK4lIKYJI5pVEpBRBJPNKIlKKIJJ5JREpRRDJvJKI\nlCKIZF5JREoRRDKvJCKlCCKZVxKRUgSRzCuJSCmCSOaVRKQUQSTzSiJSiiCSeSURKUUQybyS\niJQiiGReSURKEUQyryQipQgimVcSkVIEkcwriUgpgkjmlUSkFEEk80oiUoogknklESlFEMm8\nkoiUIohkXklEShFEMq8kIqUIIplXEpFSBJHMK4lIKYJI5pVEpBRBJPNKIlKKIJJ5JREpRRDJ\nvJKIlCKIZF5JREoRRDKvJCKlCCKZVxKRUgSRzCuJSCmCSOaVRKQUQSTzSiJSiiCSeSURKUUQ\nybySiJQiqYqkUqmcUZFGyq22AZF6mFcks+e3L19SyHJGJRpV+ZKtNnKpq03fmiR3Ioz2Jl6R\nds0UYl7I9W5GBRpt12G+1c3ND6Ldpu3WCxBGTyBWkZx2yjAtZMluRgUabddjutXtIUzGbVNz\nBMYIoycRp0idDRVhVsiaxowKNNquy2yr+4Yxif02uaMwRBg9kRhFGmipBJNC7tibUYFG2/WZ\nbPXwULxpjr1rJEYIoycTn0gHmyoguJANnBkVaLRdZ/BWjxmOFy9j7xuNAcLoAGITaWRbzQlr\nZJPe4wRDjQZFGLvRo0c0nu3Yh0YUiDA6iLhEOvTcK5neyH16zlwZa1SvevpGe45qHB8Pj3di\n8pipDIsOJCaRxjz/SqY10qXzvRSBRvXqp230pJEd5uOYsU5KHjeN06ODiUeksR1Q4t/INt0z\nqtCo3gT/jQ4Y3SHGji6uaANiEcmnB0I8G9lF34z6eeS1GX5bHTzCfjwGGFG0CXGI5NOESFTq\nDeifUYVG9aaMf6h39HhGd92/78JoI2IQye+59X16vQncgqEZVWhUb864h02KHodX1/36Low2\nY36R/J9bn6d3EkFrH55RhUb1Jh1+yOTow3h3fXzfhdGGzC3StOd27NM7mYBVH/gowYGnf/J8\nHPIkLPoAk7o+ru/CaFPmFWn6czvm6Q1i8moPfiZn4KkPmo8hV2wv3hg7oPC+C6ONmVOksOf2\n0NMbzMRVjvhwW8/THjwffb5YX054eDA2fRdGmzOjSOFP7tFVGrPQqE+JdjzlFtPR6Yz9Be5D\nA7HruzBawMJFOqpK4xYZ+XFr5+m2mYxqK4duBkYPDcK278JoCYsX6WgqjV1g9PcWNJ5qq6nY\nbmnXr0bRXQOw77swWsQJiHQUlcY/3OMLQOqn2W4iXiak+cM4urnxmr4Lo2WchEhylXwe7PVN\nOhKNqgmRaFRFr0VflLRWRws5EZHkl7OOx+8rqWwnYW9ChNGSrld9F0ZLORmRojEJkYLqLoyW\ngkjWIFJQ24XRUhDJGkQKarswWgoiWYNIQW0XRktBJGsQKajtwmgpiGQNIgW1XRgtBZGsQaSg\ntgujpSCSNYgU1HZhtBREsgaRgtoujJaCSNYgUlDbhdFSEMkaRApquzBaCiJZg0hBbRdGS0Ek\naxApqO3CaCmIZA0iBbVdGC0FkaxBpKC2C6OlIJI1iBTUdmG0FESyBpGC2i6MloJI1iBSUNuF\n0VIQyRpECmq7MFoKIlmDSEFtF0ZLQSRrECmo7cJoKYhkDSIFtV0YLQWRrEGkoLYLo6UgkjWI\nFNR2YbQURLIGkYLaLoyWgkjWIFJQ24XRUhDJGkQKarswWgoiWYNIQW0XRktBJGsQKajtwmgp\niGQNIgW1XRgtBZGsQaSgtgujpSCSNYgU1HZhtBREsgaRgtoujJaCSNYgUlDbhdFSEMkaRApq\nuzBaCiJZg0hBbRdGS0EkaxApqO3CaCmIZA0iBbVdGC0FkaxBpKC2C6OlIJI1iBTUdmG0FESy\nBpGC2i6MloJI1iBSUNuF0VIQyRpECmq7MFqKSKSHyzy//Kp5z4fNPa8/NLOtn91IQKSgtguj\npWhEeshL3r/cc1ndc9nItn52IwGRgtoujJYyTaT7i/L240WWXdx3LPc6/3K9/jLPd3e8zS+/\n3vj1quEWIhUYT0JzPoTRwrYLo6VMEuk2y4rb91nJbWuxh8qXt4VOFa8qp57yVy+J1s9uJCBS\nUNuF0VKmiPScZ9fPm59n2dV6fZPlz+5ib/On4sdT/oX7l8ZOCpEKjCehOR/CaGHbhdFSpoh0\nk10UP+7L3dL6IrtxF7usdPmUv3b/0rjHViSvQUvxE0mlkjpa1fXPuuhvjJ/ofaaIdJ6Vx0W1\nT3fZubvYdr/T2P9UfCU6RtqMY7Eo+l7PhzRa0fV6DYrobwpm60m3SNWeaOPTTfPmGJFevxwi\nGYrkrn5efPdIBWZT0Z4PYbR11xtrsY7+ZkvAEzvMlD1SbU5W7Zg8RHqTf91IUTy3ETBFJMu+\nHzPasuvOmiyjv2ky6ek5zHSRHrcCjRbpbd58i9ZGJI+hHolpIln1/djRVl3vWJtV9DcuE5+g\nYaaItMoeN/99l63KW/fZmbvYm61Il8179z3aJIqe25mZKpJF3+eItuh6zxolGolUmiLSVXlw\ndJ5dl7eui5Pg+3Sd/v50+eqhlS16bmdlukjS+RBGSzSq1irRSKLSFJHus/x+s0PKyvePHreH\nSg3qN2TfN3ZBX7969fX+g8pE1XM7IyEiSSdEF63RqFyxRiOBSpOubLgur2god0i3efvs9+4S\noZdzdJ9evXIfUydqntoZCRNJOiG6aI1GnwN2Sgc0Mjdp2rV2t2fZWXnue+PTqmO5p+oS1fIK\nofKMwxf5lnai5qmdjVCRpBOii5ZoVK1fopG1SoFXf2er9pV2BY2PUZTu5AMieT+940Y2F+Ei\nSSdEFy3RqNoGiUa2Ks34wb7mDVVtZsBCJOV8CKO9yu63HV7RYzWyVCkSkXz+eYocE5Gk8yGM\nHr/PGLsRu20ZH+3jkZlKAVc29NwcS2sp0XN7bIxEks6HKnrkJXgTj9UkGlmpFHSJ0N5NXzqW\nEtXmuJiJJJ0PTXQ5dolG1TZJNLJRKSqRDrynsAwMRZJOiCK6GrtGo3KzNBpZqBSXSIPvci8E\nU5GkE2IfvR27RqPPgzulII3CTYpNpN7rrhaDsUjSCbGOfhm7RKMBlUI1ClYpPpE6rwReEOYi\nSSfENro5dolGPSpZaBSoUowitT6bsigEIkknxDJ6f+wSjTpUstIoSKU4Rdr7tOTCkIgknRC7\naHfsEo0clSw1ClApVpF2n99fHCKRpBNiFd0eu0SjhkrWGk1WKV6Rym+UWSAykaQTYhPdNXaJ\nRrVKCo0mqhSzSMtEKFL0dI5do1GpkkajSSpNE8nBe61u4imBSA6IhEhTQCQHRDrq1d8nAyI5\nIBIiTQGRHBAJkaaASA6IhEhTQCQHREKkKSCSAyL1iZRz1m4ARHJApD6RzhFpAERyQKQ+kW6y\ns+s77zX1Z58WiOSASH0iPV4UL+4u3rX+l5deINLpgUg99J5suL8+27gUtGNCpNMDkXoYOmv3\n/K44VsovbifumBDp9ECkHg6d/r67ynu+/fswiHR6IFIPI95Huj3jrN0eiOSASGP2SGfskRwQ\nyQGRDh0jXRTHSFfd/zuKwyDS6YFIPRw4a7e6bv3P+saDSKcHIvUw8D7S9NN1HYmnBCI5IBJX\nNkwBkRwQiWvtpoBIDojE1d9TQCQHROLzSFNAJAdEQqQpIJIDIiHSFBDJAZEOizTx8Gggcfkg\nkgMiIdIUEMkBkRBpCojkgEiINAVEckAkRJoCIjkgEiJNAZEcEAmRpoBIDojE+0hTQCQHRDrw\nwb7rVbFDOn/0Xmdf4mmASA6INCjSbV5drpplEz8ii0inByL10C/SY5ZdPxci3WXZtM8mIdLp\ngUg99It0kV3V5xqusgvvtXYlngqI5IBIQyLl2WMt0h2fR9oDkRwQaUik0p5KIUTaA5EcEGl4\nj/RcK/SY5d5r7Uo8FRDJAZGGRLrKbmqRzoujpQkg0umBSD30i/Scb0zaiHR3nmXTvpYLkU4P\nROph4H2kx+1XoOS8j7QHIjkg0oFLhG7Oyy9bnfo1kYh0eiBSD1xr5w8iOSASIk0BkRwQqU8k\n9/sheR+pCSI5IBIiTQGRHBCJl3ZTWKZIn01Susb+jUqlMjoSjRDJniWKVBczmPbY615KNKqi\no9AIkexZnkiNcgbijr3RTYlGCpWMhr7PkEg3Z+WPs5uJa0akOHAKGsT+2J1+SjSyVslo6C4D\nIq3qcwxT/1/MiBQFHSUNoDn2jo5KNLJUyWjobfpFuslW1f8/9nmVTdsnIdL89BR1Mi9j7+mp\nRCMrlYKmcqpIZ9n2/8N8n51NWjMizc1AWSeyHftAVyUaWagUOJlBH+xr/eoDIs3LgcJOohr7\ngb5KNApVKXg6gz7YV/8JkZosQ6TDnZ1COfbDnZ2q0YjomTQK+fKT6/q3G778ZI8liDSyt958\nHNfkKSqtx0bPotF0ke6z7KI4Srq/ynZHS34g0lx4dNeX8d2VaDRFJaNJnf4Fkbsr7fhg3x6x\ni+TZXx/8+ivRyFcls2kN/MpiPtjXInKR/PYEPir5dL2qsESjKvrIGnGJkD1Ri+SpkYdKnl2v\na6zQqI4e9SA7EMmaiEWaoNFIlSZ0va6yQqM6+uADLOFaO2uiFWmiRiNUmtj1us4KjerowT/a\nwrV21kQqUoBGh0wKKPs3AyqZRPf+wRqutbMmSpHCNBpUKazrda0VGtXRnXfaw7V21kQoUrhG\nvSqFd72utkKjOrp1hwKutbMmOpFsNOpUyabrdb0VGtXRezc0cK2dNZGJZKdRSyW7rtcVV2hU\nR+9+UcG1dtZEJZKtRnsq2Xa9rrlCozpaqhHX2tkTkUj2Gu1Usu963feIvhjIC661syYakTQa\nlSppul72XRgthWvtrEGkoLYLo6VwiZA1iBTUdmG0FESyBpGC2i6MloJI1iBSUNuF0VIQyRpE\nCmq7MFoKIlmDSEFtF0ZLQSRrECmo7cJoKYhkDSIFtV0YLQWRrEGkoLYLo6UgkjWIFNR2YbQU\nRLIGkYLaLoyWgkjWIFJQ24XRUhDJGkQKarswWgoiWYNIQW0XRktBJGsQKajtwmgpiGQNIgW1\nXRgtBZGsQaSgtgujpSCSNYgU1HZhtBSRSA+XeX75lXPn+7w7+7RApKC2C6OlaER6yEve7935\nVY5IxwSRnGgpGpFe51+u11/ui/MhR6SjgkhOtBSJSA/VvuhtoVPN02X+GpGOCiI50VIkIr3N\nn4ofT/kXu7vy/O0akY4KIjnRUiQiXVbGfMpf7+764mmNSMcFkZxoKRKRtsbsm+OK9BGUIJIb\nPeOTIRXJJ3FBsEcKarswWsqMeySfxAWBSEFtF0ZLQSRrECmo7cJoKRKR3mxFuty7G5GOCiI5\n0VKOdfq7AJGOCiI50VKUb8i+z/evtkOko4JITrQU6SVCr/bvRaSjgkhOtBSNSE/VRavlFUIv\n+iDSUUEkJ1qK/mMUiDQTiORES+GDfdYgUlDbhdFSEMkaRApquzBaCiJZg0hBbRdGS0EkaxAp\nqO3CaCmIZA0iBbVdGC0FkaxBpKC2C6OlIJI1iBTUdmG0FESyBpGC2i6MloJI1iBSUNuF0VIQ\nyRpECmq7MFoKIlmDSEFtF0ZLQSRrECmo7cJoKYhkDSIFtV0YLQWRrIlGJJVKZbSw68JoIYhk\nTUQiKVTaRUu6/h3fIY7WzPIakeyJSiRrlfaiBV0vEEdrZvjAYxDJn8hEslSpFS3our1KrWjN\n7A4+CpH8iU4kK5U6owVdt1WpM1ozswOPQyR/IhTJQqXeaEHX7VTqjdbMau8jEcmfKEUKVWkw\nWtB1G5UGozUz2vNYRPInUpGCVDqQrOh63XdhtGg2Ox+NSP5EK9JklUYkK7oeptKYaNFMdjwe\nkfyJWKRJKo1MVnR9ukpjo0Wz2FoCkfyJWiRvlTySFV2fppJPtGgGnWUQyZ/IRfIyyTPar+zj\nuj5BJc9o0fTtLYVI/sQu0vguTIhWdN1TpQnR9lPnzh8i+RO/SOP6MCX347i++3bdQ6WJ0XbT\n1j2HiOTPEkQ63IlpqeXYFV0fqVJAdPiUDc0jIvmzDJH8z+COoRq7pOtV34XRIdN1cCoRyZ+l\niOT7nuIYtmOXdP2ASuHRU6ZqpEqI5M9yRPK7ymUML2OXdH1AJZton2nyUgmR/FmSSD7XXY6h\nOXZJ16u+C6PHTNEEEMmfZYk0/pMAY9gfu6TrVd+F0UPTg0hHZGkijf1s2hjcsUu6XvVdGN01\nNYh0dJYn0rhPS4+hPXZJ16u+C6Ob04JIM7FEkarv7wina+ySrld9F0avbb/tApH8WaZINnSO\nXdP1su/CaEuNEGkKiOQgbLswGpHmBpEchG0XRiPS3CCSg7DtwmhEmhtEchC2XRiNSHODSA7C\ntgujEWluEMlB2HZhNCLNDSI5CNsujEakuUEkB2HbhdGINDeI5CBsuzAakeYGkRyEbRdGI9Lc\nIJKDsO3CaESaG0RyELZdGI1Ic4NIDsK2C6MRaW4QyUHYdmE0Is0NIjkI2y6MRqS5QSQHYRd7\nWcAAABMZSURBVNuF0Yg0N4jkIGy7MBqR5gaRHIRtF0Yj0twgkoOw7cJoRJobRHIQtl0YjUhz\ng0gOwrYLoxFpbhDJQdh2YTQizQ0iOQjbLoxGpLlBJAdh24XRiDQ3iOQgbLswGpHmBpEchG0X\nRiPS3CCSg7DtwmhEmhtEchC2XRiNSHODSA7CtgujEWluEMlB2HZhNCLNDSI5CNsujEakuUEk\nB2HbhdGINDeI5CBsuzAakeYGkRyEbRdGI9LcIJKDsO3CaESaG0RyELZdGI1Ic4NIDsK2C6MR\naW4QyUHYdmE0Is0NIjkI2y6MRqS5QSQHYduF0Yg0N4jkIGy7MBqR5gaRHIRtF0Yj0twgkoOw\n7cJoRJobRHIQtl0YjUhzg0gOwrYLoxFpbhDJQdh2YTQizQ0iOQjbLoxGpLlBJAdh24XRiDQ3\nyxTps0lK19i/Vam0ydVFF1OCSLOyRJHKJ9sgpz32bwsUfa8zNdHNaUGkmVieSLunOzjJHfu3\nW6z73sizj+6aGkQ6OksTae8JD8zaH/u3TSz77mTZRg9NDyIdkWWJ1HrKg9KaY//WxarvHTl2\n0WOmCJGOwpJE6nzSA/Jext7SyEqlngybaJ9p8mGNSP4sR6T+530q27F3amSh0sDy4dFTpmqU\nRmtEmsBSRDr03E+hGnuvRsEqDS8bFh0wW4enEpH8WYZIo55+b8qxD3oUotLhBQOig2dscCIR\nyZ8liDS+AX58PKzRZJXGLTQx2mzWeiYRkfyJXyTfFngwRqNJKo1fYEK0+cy1JhCR/IldpGlN\nGMVYjUqVNBqVjxZp5Dl7zcUQyZ/IRZr8j+pBfDTy2ilJd1+qCdxfCJH8iVokT408VPLUaLxK\n0gMq1SS6iyCSPxGLNEGjkSpN0GicStJTfKqJbC+ASP5EK9JEjUaoNFGjESqFvTOk8sj/TThE\n8idSkQI0OmRSgEfDKkmvg1DNZ+ejEcmfKEUK02hQpTCNBlSSXpmnmtOex04W6eEyzy+/GrwH\nkY5GuEa9HQnXqEcl6bXiqnntfeRUkR7ykvdD9yDSkbDRqLMnNhp1qCT99JJqbgceN1Wk1/mX\n6/WXeT50DyIdBTuNWl2x08hRSfp5WtX8Dj5qokgP1Z7nbSFP3z2IdAxsNdrri61GDZWk3/Cg\nmuMDj5ko0tv8qfjxlH/Rfw8i6bHXaNcZe41qlaTfOaSa5/Whp32iSJfVK7hP+ev+exBJjUaj\nUiWNRqVKGo0qlZRIRNoeCr0cErXvQSQ1iJSISB9BCSK5Is34ZLBH8oc9UqwiSeGlnTWIhEgt\nJor0ZqvNZf89iKQGkRYvEqe/YwCRFi9S/fbr+/yr/nsQSQ0iLV6k7QVBr4buQSQxiLR8kZ6q\nS1TL64Gq8wvNe6YkLgdEQqQWFh+jqE/U8TGKY4NIJyDSCBBJDCIh0pJBJERqgUj+IBIitUAk\nfxAJkVogkj+IhEgtEMkfREKkFojkDyIhUgtE8geREKkFIvmDSIjUApH8QSREaoFI/iASIrVA\nJH8QCZFaIJI/iIRILRDJH0RCpBaI5A8iIVILRPIHkRCpBSL5g0iI1AKR/EEkRGqBSP4gEiK1\nQCR/EAmRWiCSP4iESC0QyR9EQqQWiOQPIiFSC0TyB5EQqQUi+YNIiNQCkfxBJERqgUj+IBIi\ntUAkfxAJkVogkj+IhEgtEMkfREKkFojkDyIhUgtE8geREKkFIvmDSIjUApH8QSREaoFI/iAS\nIrVAJH8QCZFaIJI/iIRILRDJn2hEUqlURos0KliiRohkT0QiKVQqU4v/aDQqozUafZbONCJZ\nE5VI1irtEotfBBptowUabaNFIJI1kYlkqdJeWnFDoJG9Sq1oCYhkTXQiWanUSiruEGhkq1Jn\ntABEsiZCkSxU6kwp7hRoZKdSb7Q5iGRNlCKFqtSbUPxBoJGNSoPRxiCSNZGKFKTS0NLrIJMG\nN2wdZNKhaFsQyZpoRZqs0qEl15NVOrhR68kqjYm2BJGsiVikSSqNWKx4iEKjz5Nf342NtgOR\nrIlaJG+VRi5SPEyg0TZaoNE22gpEsiZykbxM8nh88VBPj3y2wtMjn2gbEMma2EXya9nYx372\nU8kv2UulCdEWIJI18Ys0/nWPTyM/j1dpYrTlqzonOhxEsmYJIo07Evcs5HYxgUbbaIFG2+hQ\nEMmaZYh0+NzwhELWSyo0qqMVGtXRgSCSNUsRafjdyomFrJdWaFRHKzSqo4NAJGuWI9LA9TMB\njRx4fRec3P/6ziY6AESyZkki9VzRGdbIzz0qmSR3q2QXPRlEsmZZInV8xiC8kZ87VDJLbqtk\nGz0RRLJmaSI5n3qzaeRnRyXT5H2V7KMngUjWLE+kxuew7Rr5uaGSefKLSproCSCSNUsUqf5m\nENtG1qUUaLSNFmi0jfYGkaxZpkhr0Zd36ZLl0X4gkjULFUnTyKKUsmRptC+IZA0iOZWUJSOS\nKDEOEMmppCwZkUSJcYBITiVlyYgkSowDRHIqKUtGJFFiHCCSU0lZMiKJEuMAkZxKypIRSZQY\nB4jkVFKWjEiixDhAJKeSsmREEiXGASI5lZQlI5IoMQ4QyamkLBmRRIlxgEhOJWXJiCRKjANE\nciopS0YkUWIcIJJTSVkyIokS4wCRnErKkhFJlBgHiORUUpaMSKLEOEAkp5KyZEQSJcYBIjmV\nlCUjkigxDhDJqaQsGZFEiXGASE4lZcmIJEqMA0RyKilLRiRRYhwgklNJWTIiiRLjAJGcSsqS\nEUmUGAeI5FRSloxIosQ4QCSnkrJkRBIlxgEiOZWUJSOSKDEOEMmppCwZkUSJcYBITiVlyYgk\nSowDRHIqKUtGJFFiHCCSU0lZMiKJEuMAkZxKypIRSZQYB4jkVFKWjEiixDhAJKeSsmREEiXG\nASI5lZQlI5IoMQ4QyamkLBmRRIlxgEhOJWXJiCRKjANEciopS0YkUWIcIJJTSVkyIokS4wCR\nnErKkhFJlBgHiORUUpaMSKLEOEAkp5KyZEQSJcYBIjmVlCWnINLDZZ5ffuXc+T7vzj4tEMmp\npCw5AZEe8pL3e3d+lSNSvOgqKUtOQKTX+Zfr9Zf74nzIESlidJWUJZ++SA/VvuhtoVPN02X+\nGpEiRldJWfLpi/Q2fyp+POVf7O7K87drRIoYXSVlyacv0mVlzKf89e6uL57WiBQzukrKkk9f\npK0x++YgUtzoCilJlkf7MaNIHyEqBK3c9EuUfIRoS9gj+bPYPVKBcSFVyUeLHo/pHql69wiR\nloyukGbJR40ei0SkN1uRLp0/72UDJIOfSFs6Tn+3RQJIkClvyL7P96+2QyRInkmXCL3avxeR\nIHn8RHqqjpbKK4Re9EEkSJ7pH6NAJIAdp3qyGuCoIBKAAYgEYAAiARiASEO0v6Ki80srTpL2\nSD9s7nn9Ya7tOSKdT/LD8Dk1RBqg/RUVnV9acZK0R3pZ3XPZv8yJ0P0kv0akybS/oqLrSytO\nk9ZI3+aXX29K9ur0/xXpfJLdryZxQaR+2l9R0fGlFSdKe6Svqh49ude1nBydT/In96tJXBCp\nn/Y1uj1X7Z4g/SM9+d1x59Df5BwjTab9FRUdX1pxovSP9OTH3jX0h/zNgX9BEKmf9ucYez7Z\neIL0jvSrkz9G6hr66/wTIk0GkTpG+vrUD5G6hv4h/3DoSUekfhCpPdI3+dfH35jj0h569SoP\nkaaCSK2Rvs1P/83o9tDf5A9rRJpO+ysqer604gTpHmkKHnUMPd/RvxQi9cPp7/2Rfrp89TDX\n9hyR9tARKYz2V1T0fGnFCdIx0q9fvTr546OCvieZl3aTaX9FRfeXVpwirZF+epXAqEt6nmRE\nmkz7Kyqa95w2rbF/MeL1zWnQ/c0kiBRA+ysqkvwYRTn2MQcKJ0LnN5MgEoAeRAIwAJEADEAk\nAAMQCcAARAIwAJEADEAkAAMQCcAARAIwAJEADECkJZL1P23u/yp4+2t+fntoUQiAaV0iE0Ta\ncHFgUQiAaV0igyL13L7Ns3fDi0IATOsSmSLS+jZbDS8KATCtUXN/kWdnN63faxuer/Isv3jc\nW6JfpHX9Uk+2sUnDtMbMbXVws3J/r2x4zKu7bpuLINI8MK0R85xl18/r+1V2s/97bUOe3Tyv\nH6+y/LmxTL9I77Lzjr+DDUxrxFxXJ9rus7P93ysbbrKb+lHXjWWck3Y7cR5vsuxujUgqmNaI\nWWX3nb9XNpzXz91z9XJv9ydXpB1Xu0XBHKY1Ypql3xPAfYeoZ5l141FnV/edfwcbmNaIGS9S\n8w3Y/oyu22AD0xoxh0Rq3oFI88K0RszwMdKqPHnggkjzwLRGzHV1fuC5Omv38ntlw3V5Onu9\nvqt/ViDSPDCtEfOcFWe4d+8j7X6vbHjOs/PH9d1VljWvbUCkeWBaY2b4yob6HvfKBvfq7/1I\nRNLAtEbN/UXWuNYu67jWLrvYP1JCpHlgWgEMQCQAAxAJwABEAjAAkQAMQCQAAxAJwABEAjAA\nkQAMQCQAAxAJwABEAjAAkQAMQCQAAxAJwABEAjAAkQAMQCQAAxAJwABEAjAAkQAMQCQAAxAJ\nwABEAjAAkQAMQCQAAxAJwABEAjAAkQAMQCQAAxAJwABEip3P/+d//6//+T/++3/7r//lP/+n\n//gf/v2/+7f/5l//q3/5L/75P/un/+Qf/6P1P/j7f+/v/p2//bf+5t/463/tr/6Vv/yX/uJf\n+PN/7s/+mT/9p/7kn/jjf+yPrr/5w3/oD/6B3//7fu/v+d2/63f+jt/+237rb/n/f/Nv+o2/\n4df/ul/7a371+lf+8l/2S3/JL/5Fv/AX/Pyf93N/zs/+WT/zZ/z0n/ZTf8pP/kn/3//7E3/C\nj1//2B/zo3/Uj/wRP/yH/dAf8oN/0A/8f37A9/9+3/f7fO/v9T2/x3f/bt/1u3znuacjVhAp\ndhBpESBS7CDSIkCk2EGkRYBIsYNIiwCRYgeRFgEixc6QSP9wSKQ/MiDSrxoS6ccNifSd5p6P\nSEGk2EGkRYBIsYNIiwCRYgeRFgEixQ4iLQJEih1EWgSIFDuItAgQKXYQaREgUuwg0iJApNhB\npEWASLGDSIsAkWIHkRYBIsUOIi0CRIodRFoEiBQ7iLQIECl2EGkRIFLsINIiQKTY4ROyiwCR\nYgeRFgEixcfjVfMWIi0CRIqO2wyRlgciRcdVdtu8iUiLAJGi4yx7bt5EpEWASEfgdpVlq/vq\n1/MsO7spfz3LHosfq+LH5j+bB+XXm9tZwWybChPhKdOzKt3ICpOuql9Xxd21LuWPzV3lH24R\naaHwlMm5LvdGV4U911n+br2+z7PNPuk+Oy/+Wv64z8o/XGQXm3uyfOYNhgkgkprnLC+PeTa7\nmeesejV3l52t1zdZ8UJu/a44R/cuy+7K+893gsGyQCQ115Uw1a/1ie3itdtFdXLuKntX/KGU\n56bYU92+PB6WAyKpOc/ut7+utr8WIu3ONdwXj7mrHnpX2PRujs2EMBBJTePMwfbX++J4af9c\nQ/l7Xpz4bogHywGR1HSIdLV59VYfCt0Wh0uPxX/Ko6l1sYs6/jZCMDxrasrdTLUTOqtewd1l\nm7vqcw15caLurjxbV51rWFdSwcJAJDXlee/bvDr8ye+L/xYO3RQnHjZ3F+cXypMM9Y/H6k0m\nWBiIpOY5L99iLc/X1W/NFr/flr9d1OcaysOi8lzD/faxsCgQSc7jRZat7qrfb8428lQnE27y\nbHVbvfCrXv3VP66z/YtWYREgEoABiARgACJFznXvM3Sz2l1I3rHYWZZfPff8sTxx2P2H5+oo\nrm+lV/kmtjc1ZRApbm57O71qXEje88f8sS/2rC/2dkikx+q8CRfVdoBIUXPTu3O4ylYbTe7y\nzivzboo/Pl/0Xv46FDtwpmOV3TyvH1ecVewAkSLmfpX17jry6v77zv1D/SHb/tdvvbHOx3P3\nN6cS85ldUgeIFDHFO0qHPuQ39Pe+xp9nfcdIz0PXVVxzXr4fRIqY4h2ngyL1Nn/zGqz7OvLi\nUqSe2Nvs6jrPzrqXO896j7kAkSLngEj9n17Ket/YLV6+9cTWH4XvPgraLHN7Vn2xBLggUuQc\nEOms73jlfnWe5Z0mlZf09cSelTuxzb6sa8ksux44UZg4iBQ5wyINvtp6XmV3HfeWLwaHY+86\nz/dlpZkby/revEoZRIqcwcYPnqyuP7vhUn0a98COrvPP9WvFez7o0QEiRc5Q4w941L1wtsN3\nrds7+bawDpiTyOlv7fMq73jldnDhcSJ17XQQaQDmJHJ6W/uY918BVH8u47b65K1HbL3gXedp\nu/rgqPsAKnUQKXJ6r07IB64vuM5Wz+X1Q73fo9J7+vv8ubyiouv6hrus2AX2nNJLHUSKnD6R\nLgZfodVXtPa/5dMXWy/YfV7uZuBNptRBpMjpa/yBQ53io7jnA4dQva8YiwVXfbuc+4uBT26k\nDSIBGIBIAAYgEoABiARgACIBGIBIAAYgEoABiARgACIBGIBIAAYgEoABiARgACIBGIBIAAYg\nEoABiARgACIBGIBIAAYgEoABiARgACIBGIBIAAYgEoAB/xftEz3/XvS3QAAAAABJRU5ErkJg\ngg==",
"text/plain": [
"plot without title"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
},
"text/plain": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"plotScoreLandscape(scoredf_ccle_epi, scoredf_ccle_mes, \n",
" scorenames = c('ccle-EPI','ccle-MES'),hexMin = 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similarly, pre-computed scores for the TCGA breast cancer RNA-seq dataset against epithelial and mesenchymal gene signatures are stored in scoredf_tcga_epi and scoredf_tcga_mes respectively (Tan et al. 2014). The utility of this function is enhanced when the number of samples is large."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAACLlBMVEUAAABNTU1oaGh6AXd8\nAXd8fHx+AXiAAXiCAXiDg4OFAXiHAXmJAXmLAXmMjIyNAXqPAXqRAXqUAHuVlZWWAHuYAHua\nAXuampqdAXyfAXyhAXyjAX2jo6OlAX2nAX2np6epAX2rAX6uAX6vr6+wBH+yB4CysrK0C4G1\nDIK2DoK3EIO5E4S5ubm7FYW9F4a9vb2/GYfBG4jBwcHCHYnDHYnGIIvHIozHx8fJJI3JycnL\nJY7NJ4/PKZDQ0NDRKpHR0dHTLJLVLZPXL5TY2NjZMJXZ2dnaMpbdNJfeN5fe3t7fOZjgPJjh\nPpnh4eHiQZnkQ5rk5OTlRZrmR5rnSZvoTJvpTpzp6enqUZzq6urrU53r6+vsVJ3sVZ3tV53u\nWZ7v7+/wWp7w8PDxXJ/yXp/zYJ/zYaD0YqD1ZKD19fX2ZqH3aaH3a6L3baP4cKT4caT4cqT4\ndaX4d6b4eaf4e6j5fqj5gKn5gar5gqr5hav5iKz5iq35jK75jq76kK/6krD6lLH6lrL6mbL6\nm7P6nbT6n7X6oLX6obb6o7b6pLb7prf7p7f7qbj7qrj7rLn7rbn7r7r7sbr7s7v7tLv7tbv7\ntrz8t7z8ubz8ur38vL38vb78v778wL78wL/8wr/8w8D8xsH8x8L8ycP8ysX9ysX9zMb9zcf9\nz8n90Mr90sv908391c791s/+2dH+2tP+3NT+3db+39f+4Nj+4tr+49v+5dz+5t7+6N/+6eH+\n6+L///+HW8ocAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2d94MbSfrWu3UIGMIQ\nzDGE4QYwDAcsDPgAY7hhgWUwCwz4CIPZBZYBDkwyeYnLl7BkE5dssokmDnH6v0OdpK5635Kq\nVW+rHo2ezw+2VGpVP+quz3R3qapVVISQZIrcAQh5CFAkQgygSIQYQJEIMYAiEWIARSLEAIpE\niAEUiRADKBIhBlAkQgywFunpcVEUs7PrrvbR1V+NXuOIdYyPQ0gctk3rqiw6jtvax1Z/Mj4P\nRSIAmDatm6JojkW3l2Ux3y4ORSJ7iWnTOime9g9nxeU2NVAksp+YNq1BQ73sTu62r2GCt1Ak\nMhXGIt0OHlerlnsxL4r5Vfd08W/9/OSmfe3ypKy7J26aVxpW71u+4Wxx0ris6MJbqV+NWEX7\ntstu0duz2aA/5PakvqK7ElmaSq6c1SkrJ6TFVKR5Mb91CrpGPm8FOeu9OGuelk17Pe67J67X\niFQ39rNVRXO5jmE1/irc9d/0HSLn1eDZpVbJZfts5tSy3cUfeeCYinRVt7OL60HtXSNfHI2q\nq1nRe1Gc31bXs+Jk8eSimNVHg8Wf/vnqDUKk8rKqDZ03FV3PndPGZhlRzWAV3dv69Z8UJ4u6\nbi/aumfF/Lp+e3GjVbJY7/KpunJCWmyvGi7bv++zs66noWmsV8WsfVYuj0hVU1xWdUNuvbtd\nnsUN/luKdN7W3lc0LwZfNzXLiGoGq7h01+9cKF12B5iL+g2iku6A1nSc6CsnpMX48vv26Xx4\nOtS0yLO+A++yb6DLa5BhkHUitQ38pG/CV60nlbOs+47BKk7c9RerrsXVa7eNcn4lF/37TkIr\nJ6Rlgn6s64v6kr2sz8W6o0V34eQedVYG3F5dHJdrRWqfzZZh+6PDhmrU9S+ulMqTp11RWbgX\ndW4lN/37ytDKCWmZqEN4cWFR/932zqU0kW7P+ov/wWu6SMWAwScIV6Ovv+1SmJ3fOq+FK2kf\n6SsnpMWyUQxbWHuutFmk2/rgdXxxvf7Urn8WFEmvRl9/dV33f7dXQI4UgUooEtmMZaOQfQCb\nT+1OiuPb1bP1IpVq2DXVeOsfqHF7edZ0ZDtVikqWuWehlRPSYtk8zgc9w9fNlYR2sa8fLq40\nkW7cNxyr/WVrqtHX39FU3lfZHEBFJcv3nYVWTkiLpUiLU6Nlh9a86fJqWuR1f3U+WyPS3Hmt\nbFvtmfuGvq/aHX+0ppp+/eVw/WXXh9C483TY/S0qWea+Dq2ckBbTE5bFn/zZZf1t5+WsbYT9\n1X3zhehc6wk4bgZDNK+1F/+dQbPr6vbc64PrvhOtv0v1v/QV1QxeW7w4u1yt/6z5mrV+Wn87\nNSuOm69i67eJSvovck+CKyekxfbM/3I5H2m++h5JDhHqVl3/f9Mtv1CvVuikvZbvBu5454LV\nzaxfevgJlGq8HvZu/eft03kfsalyMERIVNKOM+qOQOrKCWmxvoR+Wn8LU54MRzZUctDq4MWb\nhTvl2c3iwqRpr/WzrlS8oauoPHEOCVo1nkjV5XD97Sze4y5iM4S1q1FUUn+9fLIUR1k5IS27\n7Iu63a+rC3Zzk3h20FiW3cjn3Zi5PYEikXh20Fjavobq+qQdNrQ3UCQSzw4ay3ICULlfl+kU\nicSzk8ZyUV/dz8/36nhEkcgY2FgIMYAiEWIARSLEAIpEiAEUiRADKBIhBlAkQgygSIQYYChS\nQcihMYlIdlX5fDJd1VsAlQYqDFaaHYShSClApYEKg5WGIgmg9g9WGqgwWGkokgBq/2ClgQqD\nlYYiCaD2D1YaqDBYaSiSAGr/YKWBCoOVhiIJoPYPVhqoMFhpKJIAav9gpYEKg5WGIgmg9g9W\nGqgwWGkokgBq/2ClgQqDlYYiCaD2D1YaqDBYaSiSAGr/YKWBCoOVhiIJoPYPVhqoMFhpKJIA\nav9gpYEKg5WGIgmg9g9WGqgwWGkokgBq/2ClgQqDlYYiCaD2D1YaqDBYaSiSAGr/YKWBCoOV\nhiIJoPYPVhqoMFhpKJIAav9sk+b+3j5Gy95vmumgSAKo/TM+zX3DFFH2ftNMCUUSQO2fsWnu\nlwCEmRioNBRJALV/xqW5d8gcZnKg0lAkAdT+GZPmXpAxzA6ASkORBFD7Z0Qa6ZG5Sfu6aXYA\nRRJA7R+KFAYqDUUSQO0fihQGKg1FEkDtH4oUBioNRRJA7R+KFAYqDUUSQO0fihQGKg1FEkDt\nH4oUBioNRRJA7R+KFAYqDUUSQO0ffiEbBioNRRJA7Z+sQ4REFZCbRv2k6qeP3iRbbDyKJIBs\nLbGYaiSqAdw06qdVt0D0ZtlqA1IkAWBrGYOpRl5VcJtGPf6q0aP/wmx5SKdIArjWMhZTjZwG\nhbVp/ItCrVBdcmyVMVAkAVZryZHmXpAxTBCZ8j4QPfh5oqqMgyIJoFpLjjRKc7rPFiaMGjOy\nLOBH/JICiiSAai0UKQhFsq3UHKjWQpGCUCTbSs2Bai0UKQhFsq3UHKjWQpGCUCTbSs2Bai0U\nKQhFsq3UHKjWQpGCUCTbSs2Bai0UKQhFsq3UHKjWQpGCUCTbSs2Bai0c2RBEbfRq9Gg7tveI\nIkmgWkumNIHGZBlmRCNdU4WMqaiVMtbu/fu4LBRJQJFq1GZnF2bk33uVmNHf/oPN6/Q0qokM\nMzUUKYV8aZRmZxUm7uiwic3zkfxDU9z6PI3iVKJIAorUM9EMWXH6tCWbZsiK9YybIfveITLM\nlFCkFKDSWIS5l0ySJnE97wUpYUygSClApZlIpC1NGi3SiPVIjzaYRJEEUE0XKw1F2jKMCRQp\nBag0FGnLMCZQpBSg0lCkLcOYQJFSgEpDkbYMYwJFSgEqDUXaMowJFCkFqDQUacswJlCkFKDS\nUKQtw5hAkVKASkORtgxjAkVKASoNRzZsGcYEihSHvqMfnEi7GWt3d8exdiMrNSfnDCBZ/gBF\nmn70910DR3+PqtScvHNSEdIE2Y/5SHdLOB9pRKXm7L7prjvVeaAiTTdD9s6BM2SjKzVn1033\nXpAzzVqgwsjtdu9r1KrEezZEVWrOjluLsvNgf9sLKoy64aRId7yLUFyl5lCkIFBhKJJtpeZQ\npCBQYSiSbaXmUKQgUGEokm2l5lCkIFBhKJJtpeZQpCBQYSiSbaXmUKQgUGEokm2l5lCkIFBh\nKJJtpebwC9kgUGHURq94xC9k4yo1h0OEguQazxsoVNu8r9GdHAjejKGTVdZliplxIfVNM8LE\nzVCkzYT/Ah68SOpm6QvVvz+eRneeSstR3W6VfZlygIuJqW2akQe1TVCkGELb/MBFUv/CDAvV\nxuppNFTJmWe0esewzNMoTiW5aVTJU6BIcRzMxL54tFM3Uag2VE+jXiUx87Vd2i+7l5dbm6L6\nm+ZezZ4ERUoBKs1uw9wLQoUaWv+ddiuGwKxytddiDe6mkSkNVKJIKUClyS3SmN+DVUS60+9p\nopWp717HRpHSTaJIKUCloUhBIEV6cVqWpx8PS549Ko+evFIrNQeq6WKloUhBEEV6UTY8W5Wc\nNgVHn2mVmgPVdLHSUKQgiCI9Kj+qqo/KclnwYXn6WfXqg/KxVqk5UE0XKw1FCgIo0ov2WPSk\n1qnlUdmc1Q3UokhZoEhBAEV6Ur6s/3tZfuC9UB5plZoD1XSx0lCkIIAinbYHnlflI6f4s9PV\nIYoi5YEiBQEUqT+DG57J1c/KYT8eRcoBRQqyLyK9PH1cHg1MKj4hD5z4kQ3amycZ2ZAQXY85\nCpsj0uJc77R8MbKqrYA6BmClyT3Wrv9n89/5WgYhwldfKWPt3r2TY+3evn0buGVrEMCxdiGR\nqpfl6ciqtgKq6WKlyTv623+wTqNWCE+jGm/097sGd/T325bATcQDAI7+ftyLdOq/MlCLIuUg\n53wk/9C0SSNHpV4jR6Veo6FKS42GKsVIATgfKdj9TZFyk2+GrDhTitBoqdJQo6VKQ416lRyN\nepXiTtMAZ8h2X8g+W/XSHbVfyH48UIsi5SDfVC1BII3acfCVoPI1alV6K4mdEoF4z4ZuiNDq\n69dn5enCpBdH7aFqTFXbANV0sdIAiXQfK9J7xaOFSdKjhUmKSG8ju7IRRXrZDlptvn5tz+ZO\nxTBWipQDirRXIg2nUXSXRR8+KsvHLwaLUKQcUKT9EmlUpeZANV2sNBSJIsUD1XSx0lAkihQP\nVNPFSkORKFI8UE0XKw1FokjxQDVdrDQUiSLFA9V0sdJQJIoUD1TTxUoDJFIgjeLR4Y5sGFdp\nMv6GmWyTbDXu6sGKpLdHfUnzsXaNNlIjZazd55/HrfzgRZJ/YybaJMG/Zet5oCKF/7TrS5qO\n/l6qI49G3ujvzxtiVn7gImmH60k2ydrTgnU8SJHWnyXpS5rNR3KOQvKkbjAf6fMlm1d+0CKJ\nQ3bDBJtEXU8cD1AkfbNvXtJkhqy4LpLXRt0M2c8dNq38gEW6lzTl5psksJ44HpxIoc0es2So\nUEO9Z4PWVad0MVS+Rq1K61ZOkcR2sd4kofXEcQgiBTaHtmD8uxWR7qI7vRWPFiatWzlFokjx\nUCSKJKFIo6FIFElCkUZDkSiShCKNhiJRJAlFGg1FokgSijQaikSRJBRpNBSJIklCW4VfyAbh\nF7LBlR+wSBwiNJr0MOpIbhV5i9MxQ4TqF4RGtSGKRnKIUKONr9FbOadiMIb9E2/lE4ArEget\njiQ1zKD5RR1Pth202r/oadRaohyN3EGrS3U8jd56Kjlj2D8RKzcHWSROoxhFWphAE1QYtn9V\nvgiNHJVcU5STupVSzlHI02iokpfoE2XlxmCLxIl9I0gJc++wbmKff0Y2bmKfv6Cn0VIlbcy3\nuDRqJ/aJK6jgCapWZga6SD5QTRcrzfZh7gWhJbU+Avnu+0AadUG1N0Er1LrqRsw/j/+QW0GR\nUoBKs3UYpd2N6bXW3x4n0r1+SxO1UO30VpdUE0V/yO2gSClApaFIFCkeqKaLlYYiUaR4oJou\nVhqKRJHigWq6WGkoEkWKB6rpYqWhSBQpHqimi5WGIlGkeKCaLlYaikSR4oFqulhpKBJFigeq\n6WKl4ciGfkk10bQeUaQkoNJEhNEaj9LKujFwPk2hr5GiUnsrVXXlSuuWw+oa/MIvv4wda1cv\nKRLVw/cm1IgipQGVZmMYrQEpf7AHo7KHDNS58x57Y62Xv9iirVw5SLgDvZe4ctTEjP7ul/Q0\nageUT6YRRUoDKs2GMFoj8o8OQ41cle40fZQTPPfnJtSVS6XuV/MkHFw5HJUC85GGS3oaDVVK\n3dQKFCkFqDRrw2inNfd+oTpztUYUaid5nkYDlbT1iJULjWpcOZYqBWbI+kt6GvUq2W3yARQp\nBag0a8LcCwJX5LIzQRgTLKwCP8kXvXKVLwVV4J4N6pLabSAmgSKlAJUmHEZptoFb/ijO3EUX\nar8R+37EylWkHl/qHeHKgl/qNyaaBIqUAlQaikSR4oFqulhpKBJFigeq6WKloUgUKR6opouV\nhiJRpHigmi5WGopEkeKBarpYaSgSRYoHqulipaFIFCkeqKaLlYYiUaR4oJouVhqObFCW3JVH\nBy5SeP/FkVMkET19rF2NsEMdgCcLA2Ptmn+iVv7mjRK7lsGX4/nz53KsXVPoL/n69Ws51m4i\nDlmk9X8KY8gnkhI9dfR3j2+Hf6jSCgOjv5cPNq78TYMXuRfC0+i5p9Kg0NPotafSdts6isMV\nafNZxS7TjEONnjYfaYhvx9AarTAwH8k5NK1d+Zslg1eHUngaDVXyCj2NhiqN28YjOVSR3BOL\nbVXKI1IgesoMWR/fjt4arTAwQ1ZcLAVX/sahe8U/TfM06lVSCj2NepXitu3WHKZI95KMacYR\njG4cRl2PVqhuTK3/TueNoNI7Dp5LAoWvJbbbRoEipZiUQaRwdPN+GLme+EK1J1xDerQwSXq0\nMElx5rleqIg0uUkUiSLFr4ciBaFIFCl+PRQpCEWiSPHroUhBKBJFil8PRQpCkShS/HooUhCK\nRJHi10ORglAkihS/HooUhCIleMQvZPmFbM9hinSoQ4QM1qMVqhszTqMaoVGNr1GNMCZYuGuN\nsom0ddvloNUaNfqWYdZ9fnc9q/9Eobcx2xGinkZ3yi9cdC+5GnWFrkZffPFF5Y1PrapvfOMb\nsvDb3/525Q1araqvvvpKrFwLtHXLzCFSSvvlNIoWJfpWYTbtC8eY/rEodB4N5iysNBrM/lsx\n0MzRqC90NPrCUalqLGpwCr/dUQ2mUdQWNTgrVxNt3zR3L5JyFjACTuzrGTexL1BFxK6Q10aB\nQlejziVXo2HL9U/8Go38wkajL4Z0c/iWGnUuuRp1LrkaDV3SAqW1zB2LdC8YWTXU5G6sNGPD\nxO8LdUmtTJ3YfSeoApPS1cIvfCrPov6w9G1B5VnUq6QmSmyauxVJhh1rElTTxUozMkz8vlCX\n1MrUW43IVhu6TYpaKDxamCQ9WpgkPVqYJD1amKQmSm2aFCkFqDQUiSLFA9V0sdJQJIoUD1TT\nxUpDkShSPFBNFysNRaJI8UA1Xaw0FIkixQPVdLHSUCSKFA9U08VKQ5EoUjxQTRcrDUU6HJE4\nsmFC0kUas6T6bsUjfRyBpoxeqHiUOrJB8yh5Zs3Ox9olaQTWdLHSjA4T127UW6lKlbrB1L5G\nd/KXK9oqhTF1E1c08lXqRtD5Gn3ta1/zVaqqTz/91FepHb6naJQ6sybD6O8EjcCaLlaaLcLE\naCT+YK9Gf3sa3XkqDQpdjcRRqW/uXmGvjqfRa0+lRqOveSo1Gn3qqbQaUK4cjdJm1mSZj7S1\nRmBNFytNyjSKwKvKuY+rj6fRUCWvUFPK08hRydXH02io0lKjoUpLjYYquVOclJO6lJk12Sb2\nbVk1VNPFSmM+sU+5jJAndJ5GvUpKoXaS52m0VEme0Hka9So5GvUqORr1KslJt/6htv98W23G\nQ51qbgNUGuMwd4JK72KQC476lT+tO0DtYlDvxPA1idCoVUm7DUR659cSipQCVBrbMIoJgT5i\ndcnYQr2DWunz/kK/N5Ai0tc0kT5Vf4xW/TzbQZFSgEpDkShSPFBNFysNRaJI8UA1Xaw0FIki\nxQPVdLHSUCSKFA9U08VKQ5EoUjxQTRcrDUWiSPFANV2sNBSJIsUD1XSx0lAkihQPVNPFSsOR\nDZ1HHNkQAVTTxUpjfFt0OTCuf8XTSBlWVw+WE4Valc0/vkbNTcB9jerhe0Kjzz9Xxtp9/euR\nY+2akbX+59nWJYqUAlQa8x/qcIdq+68OFvAGevfDtz2NZJXLB55GbzyVVgPKPY1qvNHfX2+I\nGP29nOvhabTlYYkipQCVZoKfjlqZoiwRkGI4ocjTaI18nkZDldwpTp5Gjkq9Ro5K+nwkZ/ah\np9FWKlGkFKDSTPJjhu25m7JU4DTNn+LqabTmdNDTqFdJTrr1NFqqNNRoqZI+Q1bMh9/LGbJJ\nQDVdrDQWYe4lgSXvBFXg5yS0KuW779Sfkw3cBuJzQeVr1KqkdmVot2jZv3s2JALVdLHSTCRS\noD1pKih3L3k/ostc/V1mrdVLjxYmSY8WJqmd60qV7/btLkLJQDVdrDQUiSLFA9V0sdJQJIoU\nD1TTxUpDkShSPFBNFysNRaJI8UA1Xaw0FIkixQPVdLHSUCSKFA9U08VKQ5EoUjxQTRcrDUWi\nSPFANV2sNCZh4luTFGHEyAZ9YITikTIOoUod2aCPlkjziCIlAZXGKIzfliJV6u40XHkaKS7V\nwsh3t+vxLZIqdWPtKk+j58+fV55LVfXNb36z8lyqqrdvZZWVVGntJ1egSClApTGfRnFfrQZG\nBxAHo9Wj907hoMqlJZWjUb8eR6N+yVWTX47+rgYHo+ct1UqlqtHom65KVa1RzaDKd9VqksaY\nT+5DkVKASmM+sS/qF3jEOV1VKQenVZ3OAad7t7ee7jV3SUejTqXK0ahTqXI06lSqhhoNVOr+\ne+eoFPnJXShSClBpzMNEXzHI66JQobgCCq5HW1LMkK157tIWftOlLXzr0K1HXCuN+uQrKFIK\nUGmMw9wLAgtqXXV6odqZoK5HW1K9Z8NzidCoVemtoLLsdqBIKUClsQ0jW1OoPSnOBH5YWerx\nRl+PsuAb/S5CikjPNZG+qYj01rIjnCKlAJWGIlGkeKCaLlYaikSR4oFqulhpKBJFigeq6WKl\noUgUKR6opouVhiJRpHigmi5WGopEkeKBarpYaSgSRYoHqulipeEXsp1H/EI2Aqimi5UmzxAh\nxZp2MLUobMd9u3I0tw/219O0cX/Jeqyc0Kh+t9DoO99Rhgh961tyiNBX8m6RYz65C0VKASrN\nBGEij0be+NS+TXoatdV4Gn3pqbRs7u6S/ehtT6P23Z5GNd6g1W81uINWlyPChUZRn9yHIqUA\nlWaSMJEndYMZE8N26Wk0VMn5lZXVepxDhquRo5L7yxKeRo5KvUZDlZxJSsNpFLGfXEKRUoBK\nM1GYyGujbu6Ef6bkadSrJH73q12PuIhxNVqqJH/ryNNoqdJQo14lMW+2m9gX/ck1KFIKUGl2\nG0brTIi/dtd+h1LtV9Pniqu/vvcdQeVr1Kqk3cchGYqUAlSa3CK9H9GbrIj0pSbSW7XVq++W\nHi1Mkh4tTFKqTDeJIqUAlYYi7ZdIL07L8vTjYcmHi5JHH6qVmgPVdLHSUKS9EulF2fBsVXLa\nlpxqlZoD1XSx0lCkvRLpUflRVX1UlsuCJ+XpZwu/jgZuUaQcUKR9EulF68uTWqeWo9apl+XR\nyKq2AqrpYqWhSPsk0pPyZf3fy/ID/5XBQYoi5YAi7ZNIp60ur8pH/iuDEoqUA4q0TyL1x53B\n8aflY14jZYYiPQiRHq0ukariE7KPLGSMLPzkwY1sSN12ViI9Lj8biBRV1VZAHQOw0qSHUQeX\nRY+1a24/7Gv0XhtrVy8oRKiH1SkaybF23/3ud+VYu8YQXyN1rF2dyvpwVJkdkZ6Uw69oKVIO\nUsP0zXxzYY+n0Z2nUmD0d7+gp1E70Fs5Grmjv7/b4o7+XlriaSRHf/fJjDUaL9LjXqTTYanr\nEUXKQlqYYVNfXzjE02ioUmA+0nBBTyNHJVcfT6OhSs4xZ8N8pKHkphrZdH+/Oj16EajUHKim\ni5UmJYx/8hUu9PE06lUKzJD1F/Q0WqokT+g8jXqVxFXQmhmy/mmnoUZbfyH7bHAI+uzo6DN3\nIYqUg+3DaN0B8XcukD++dxe4Z0P8z/Rp3QHflWidCd8K3LNB7QixY9shQqs+uldHR/4yFCkH\nW4eRyiykUQtVFJECPyerLSg9Wpik9Kt9pYn0Xb1/W72LkNY1b8hokV62Q1SbEUJNj8MHZc/Y\nqrYBqulipaFIeyXScBpF405JkTCgSPsl0qhKzYFqulhpKBJFigeq6WKloUgUKR6opouVhiJR\npHigmi5WGopEkeKBarpYaSgSRYoHqulipaFIFCkeqKaLlYYjGzqP9mNkw7hKzYFqulhpJh9r\np7pUy6BopIy1k0t2syx8jRLH2ikqVdUXX8ixdq3I4vMohRFQpBSg0kw8+ls9LPVCKEcjb/S3\nXHIwy8LTKGX0t3JUqjWqcUd/r46J4vNsoxJFSgEqzaTzkdQzvKEUykndwBS5pOeZp9G285GU\nE7xeo6FKnvny84xXiSKlAJVmwhmy6sWSf5rm29GrpC2pnPkZzJBVrpWGGvUqKeei8vOMVYki\npQCVZrIwav/dnaAK/ESFtqTaF5F4zwat28HTqFVJBpLXeaNVokgpQKXZpUj3asNT9FD7vANL\npt1FSO0Ilx4tTFITqYUjCIl0fdI8vzkpipPrsVueIuWAIgGKdFkU9fProuFy5JanSDmgSHgi\n3ZbF+e3i/1lxVlUXRXk7bstTpBxQJDyRLoqT+r/r5rBUnRQX47Y8RcoBRcIT6bhoros6n66K\n43FbniLlgCLhidQeiRY+XQyfblGpOVBNFysNRYIVqWgPTBQpBFQaioQq0k0vEEUKAJWGX8gK\nj7J/ITsvbhb/Pi3mzbPrYjZuy1OkHEwURh0ipN01VTGkK5RLKkOEFJXqAjlEqHnB10iZU1FV\nz58/l0OEPv88MFxdFAYnjmjoIp01F0fHxXnz7LzuBB8DRcrBJGFW5jga+UelwKBV5e99YNCq\nclTqn7iDVpcvehr505MajZ57KtUa1QSGq3satR8yEl2k66K8XhyQiub7o5v+UmmLSs2BarpY\naSYII+25dwuVE6NAu9SU8jRyVBo6tRoH7njmaTRUaanRUKVeI0elgPnDDxlFYGTDeTOioTkg\nXZZje78pUhbMw8jzOXGWt2ZinygMTuxTrpX8s7x2HLg48/M06lVyNOpVGmq0VClwLup/yAhC\nY+0uZ8Ws6fte+DQfuwcoUg6Mw2g9DGrhnSS6sAp0UGjdDmpfhDr//LnE16hVSV+5+sk3sXH0\ndzEfO9KOIuXBNoxsTaE7oijOBHqTtTLZlEMd4WqhekcURaTnikif6ytXP+RGOI0iBag0FIki\nxQPVdLHSUCQ8kbxvYPmFbACoNBQJViSObNgAVBqKRJHigWq6WGkoEkWKB6rpYqWhSBQpHqim\ni5WGIlGkeKCaLlYaikSR4oFqulhpOLKh8whoZANFigMqzeRj7YKFijFRA/ACY+2aV3xj1LF2\nr18rY+1qQ4RG2li7Zhisv/L70IDCDVCkFKDSTDz6e22hcuDZOCQ8MPp7+aqrkTL6+3WDN/q7\nt8TTSI7+Xk7M8DS691RafZ61UKQUoNJMOh9pY6Fy/rZ2qkJgPpIjn6uRNx/p9ZLBfKShKZ5G\n7nwkZ6qgp9FQJffzrIEipQCVZsIZslGF/lGof66duwVmyIrTweAM2dcO3QxZ/9zteWiGrJi8\n7mnUqyQ/T5CQSB7jtj1FygFAmDtBpV/QyzL1B/3uAvdseC2oAr0J2j0btPupjLgxhQ5FSgEq\nTf4wigmB/m21UH271uqlRwuTlO7tz/W7CClVfhV/q6QAHP2dAlSa/GEokvsoGYqUg/xhKJL7\nKBmKlIP8YSiS+ygZipSD/GEokvsoGZu9GecAACAASURBVIqUg/xhKJL7qKpK9tpFAZUmfxiK\n5D6q77FKkWKASpM/DEVyH9U/jDQ7v9p+g1KkHOQPQ5HcR/VvMNcndydPR/7kpVaVMflbyxCo\nNABh1HanKHMwIxsWXJ/PFi5td2CiSDkYFWbULy3EvV1peoF5EvWCiluBqRd+k2+08TVq/vE1\narSRGilj7erhe0KjmkiN1vfa3T6tr5XKk8uxByaKlIMRYYZNZQu0tyt/xQPzJPoFlUNUYOqF\np9FrT6VBoafRF55Kq/kYnkbtgHKhUU2URpu7v6/OyvF3/6ZIOYgOozWXEWhvV06IAqYMF1Q9\n8y0cqOQciFbzkZxCT6OhSq6RnkaOSu4HjtAo6nukyxl77QJApYkMo53AjEB7u3JtETh38xdU\nz/x8CzuVxKVRO0NWFHoa9SrJc0RPo6VK8kNvPUN2xdXZjEekIFBposLcC0atQ3u7LJOXQP7R\naLBybUG1UOuq0wu1rjq910K7DcR2rL9GOqmvkc5G/xwFRcrBliKNMUl5d+DWQopI6v15RvSO\nK8681gtjO731GxNtx4Zeu/n5yB/r06qyBKrpYqWhSHgiNd8jbdFdp1RlDFTTxUpDkfBE4siG\nOKDSUCQ8kTjWLg6oNBQJTySO/o4DKg1FwhMpEYqUA4pEkeKBarpYaSjSfog04vyOIuWAX8j2\nhZpHOb+Q9ZakSAKoNFsOEYp3qRm6o1ko7Hj3ThkipL37nVwyMESoXloYo44bqguFRvL+qoGb\n9W8LRUoBKs1Wg1bjD0vLwaTawcy3wxdkNfJTLvguYtBq/w7PmFYItdDTqB3J6ml056m0xUZf\nQpFSgEqzxTQKcWwJ4kxv0N7h2zEUxJ2LIBd8t2EaxTClZ4yjklvoaTRUKXCz/hQoUgpQaUZP\n7BNnZEHEhLvgxL53Dt3wbu3d7+SSgYl9fkrPmKVKstDTqFcpcLP+NChSClBpRoa5lwSWvJME\nlnwnUN+uLfgusB41pdpxoBZq88/jP88IKFIKUGnSRQqYpDQ8veUperzT3x2/pJZSKrOQRi1U\n74gS/XnGQJFSgEpDkShSPFBNFysNRaJI8UA1Xaw0FIkixQPVdLHSUCSKFA9U08VKQ5EoUjxQ\nTRcrDUWiSPFANV2sNBQJXaTbq+NtKzUHqulipaFIoCJdzTlDdgNQaTiyQSlUPNr1yIbrlUaz\nkTdCoUg5GB0mTiPlVxn0BRVDVq94cihj7d68CYzp81N++eWXcljdp59+Kgvf1HX6GinKRt1K\ndQNhkU6K+W1VFrfVRXG+daXmQDVdrDRbhInRqH0xRiP/YCNfHRxjvNHfbxoCo8w9jb70VGo0\n+tRTqa/yjTv6Wzn6Rd7cewNhkYripr6d0HVVnRU8IulApdkqTIxGjkr6gk67FBqtlgjMR3qz\nJDDvydNoqNJSo6FKwyrfrOYjKSeS0T83sYF1IlX1De6eVtVtwc4GHag0W4aJ0Wipkr6gOFMS\nGrVLBWbIvnEIzMT1NOpVcjTqVfKrfNPOkFWuyUb8ANIGNoh01ZzWsbMhAFQa4zD3gsCCd5JA\nGrXKN4LAkl9KhEatSrLKNyM6QrYjLNJxfWp3W8wqihQEKo1tGNmUx/WOx4l0rzX6N/rKFZG+\n1ET6VK9T6yjUo29FWKSnxXxh0qy4XFwj8WdddKDSUCRMkap5fSC6avq/2dmgA5WGIoGKVF3U\np3VXs2L2dOtKzYFqulhpKBKqSFtDkXJAkShSPFBNFysNRcIUyfk1itnJmF/uo0g5oEh7INKC\nERdKFCkHFAlTpOqyPK57665Oysvq9qIo4o9JFCkHFAlTpKvipHt0Und/XyyfjqnUHKimi5WG\nIxs6j8BGNsyL/qeYm+ENt0W5RaXmQDVdrDSWYe61+QuqS6FZFjJNsEq/ySs/AdPeVFhoVN+S\nWGhUv6BoFHk75W3ZMNZu8JBTzSVQaezCDNu5/1hbUptl4adZW6Wnkbx1fn+be0+j9ib5nkbt\ni8rRKOIG/9sTFqkcHJHqgxFFkkClsQrjHzL8o5O2pJxl8UmgzkCVnkbuj7kMf3jF08hRaSja\nYD7SUB9PI/cnZ1JYN7FvdY10Vl8yzbao1ByopouVxiaMe0p1v+Z3K/wyty1+EqwzUKWn0ern\nxfyfAvM0Wqrkn/p1M2T9E7rgj6ClERbppiy6XruivKlu5yPmyVKkHFiEuZdEF4bSRFf5XhL4\ncUrtpy2VzohK72JQ15PKupuflN03SAuPFid25a2/QESl5kA1Xaw0E4kU+LVlVQUtTXyVSgN/\nr/1esv5jy2rvuNLn/U5fTyprhwg9PV5odNx8E1sc32xTqTlQTRcrDUWCFSm9UnOgmi5WGopE\nkeKBarpYaSgSqkgXbT/d7GL7Ss2BarpYaSgSqEjz7pujYuxMc4qUBYqEKdJFMW+Hqd7Oi5HH\nJIqUA4qEKdJsOdz7esR3sWpVhkA1Xaw0FAlTJH+s3VaVmgPVdLHS8AtZ4RHEF7KrsXYUKQRU\nmomGCEUWrksTXaXavIVGNUKjGqFRja9RcD1prBtr148JGjMVSa3KEKimi5VmkkGrkYXds2Ca\niCrboXpe824LXY06HVyN2mlMlavR69evuzcMNGpr9taTbtPan3VpbtRwfTZmcqxalSFQTRcr\nzQTTKCILBy8vXw9No9CrHExkWDXvQaGjUe+Eo1E/JdDRqKEa3tZ/Vbt4lKbSuqnmy9s1XG5d\nqTlQTRcrjfnEvsjCyjtPC6UJV+nNrXM16gobjfyztEYjf3Zto9HrIVV3W3/vfE4cm1JcWveF\n7O15/Zt98/P40arBqsyAarpYabKFuReMSaPO9lYLtY4Dfab6a0Gl9DFoZVurxCFCKUClyRVG\nelSbFJtGKrOQRi1Uu7KV2zO8UTxamCSdeW/ZER7X/R1/uwa1KkOgmi5WGoqELxK7v3Wg0lAk\ndJGuKFIAqDQUCU+k0rvLKr9H0oFKQ5HwRHrqejRmdqxflTFQTRcrDUXCE6l5vr0OFCkHFIki\nxQPVdLHSUCRMkRKgSDmgSBQpHqimi5UGSKQxaRRl9ELNI/1++ZpH+iAGM48oUhJQafKFERqp\nv1wRHGvnG/Neu7m9olK9pHK//HpJoVFXr2PMOzk5afttQJFSgEqTM4ynUXdUkkuo73LvY79s\n0q5G4qjUL+ndL79f0tPIqbvX6J2nUsoWoEgpQKXJG8bTyLNGK3Tkk019cHN75QTPbf+eRo5K\nmqYBI1OgSClApckdxtNoYI1WKE4H5clXd3N75VpJnpF5Gi1V0k4cA+eIaVCkFKDSAIRRux20\nQlkWumfDnaAK9BGoS2qFaq9FKhQpBag0+cMoesTfgyhwFyFpwl30gmP60VOhSClApckfhiK5\njwwrNSd/axkClSZ/GIrkPlrPi9OyPP3YK3zmTP2jSDnIH4YiuY/W8qJseOYUflxSpOzkD0OR\n3EdreVR+VFUfueJ8WFKk/OQPQ5HcR+t40R6LntQ6dbw8LR9RpPzkD0OR3EfreFK+rP97WX6w\nLCrLJxVFyk/+MBTJfbSO09aYV+WjZdEHLyuKBED+MBTJfbSO3hjXHF+kT8jhUe31yIbUTz+N\nSFFVbUX+P7tDoNLkDqMYEiisW7PiljLWTptlcRecEuEvqZgYmI+RDkVKASoN4OhvtbBv0coh\nyhv97b5jqdHSkqFG7zyVxszHsIAipQCVBm4+klo4bNWqZ55Grnz+Aef9e39KhPRs03wMG8aK\n9LgX6dQppkj5AZshqxb651m+cL1K+ungnf92dUrEuPkYVhh0f9dQpPxA3bNBLbwTqG8PFMp3\nhzoO4nst7NjyC9lnpTvajiLlB0ikQP+2pkLSuwNd2YpIej+6IdsOETpySylSfijSXon0sh20\n2owQWulDkfJDkfZKpOE0CoqUO8AQirRfIo2q1ByopouVhiJRpHigmi5WGopEkeKBarpYaSgS\nRYoHqulipaFIFCkeqKaLlYYiUaR4oJouVppsYZRGHyjUmnLCu+u3Kx7FTrMw3QgUKQWoNBnD\nKB7Iwga1JXtLKi51kyf8d78Xg+36QsUi8fZBrHQoUgpQaSCmUdwPHw0frtCOB+p75MFo9Wgw\nMLVaueQUrh7eibeHsm0PRUoBKk3uMOqBRG2p6mmVehTrD0bDA8nyYDQ85CindN2xSX27erRM\ngiKlAJUGIMy9IP3t2qWNeg0Ud2EUvCxLhCKlAJUmfxjZQEc1UfXt0oTAzU/UQuXdgY7CVChS\nClBp8oehSO4jw0rNyd9ahkClyR+GIrmPDCs1J39rGQKVJn8YiuQ+MqzUnPytZQhUmvxhKJL7\nyLBSc/K3liFQafKHoUjuI8NKzcnfWoZApckfhiK5jwwrNSd/axkClSZ/GIrkPjKs1Jz8rWUI\nVJr8YSiS+8iwUnPyt5YhUGkAwqQ1ULV9KyKkjmyYwiOKlARUGogwae1TNG/t7qwNvjHvxZDv\n99qQ77vAetKhSClApQEJk9Y+PY38o9JgSU+j955Kg4He2tuNNaJIaUClgQmT1j49jYYqeUtK\ne96vCp2jkPZ2U40oUhpQaYDCpLVPT6NeJWVJeT73vi0U10XBiRtWUKQUoNJAhUlME90doHXV\nTX17BhWKlAJUGqgwaWmkRyGTFJECnd4TQ5FSgEoDFYYi2VZqzgNqLdZAhaFItpWa84BaizVQ\nYSiSbaXmPKDWYg1UGIpkW6k5D6i1WAMVhiLZVmrOA2ot1kCFoUi2lZrzgFqLNVBhKJJtpeY8\noNZiDVQYimRbqTkPqLVYAxWGIxtsKzXnIbUWY4DCRA9iUw25k5OG1qxH0ShyrF08EZ+HIqUA\nlQYmzNq2Lxf0lly2/QiN2heVo1HE6G/jz0ORUoBKAxJmY/uXCw6WdNp/hEaOSu7UI//BlipF\nfh6KlAJUGogwUWdkcsFuSXFGFqHRUiU5GdY/NG2hUvTnoUgpQKUBCHMviF5QvT1DqN2r61Hf\nHV1l2uehSGlApckfRtEj0PLUJRWR9GYf/+7oKqNjhhalSClApckfhiK5j5KhSDnIH4YiuY+S\noUg5yB+GIrmPkqFIOcgfhiK5j5KhSDnIH4YiuY+SoUg5yB+GIrmPkqFIOcgfhiK5j5KhSDnI\nH4YiuY+SoUg5AAgT3+7UJaMbffy7kzxSVhRckiKlAJUGI0xcswst6Dd5rYp2ce/tijaBwok+\nD0VKASoNSpgYi9Ys6Wgk61m9RR6M3HerhQkfaP1CFCkFqDRAYaI0Ci7YNXntQOAdHcQ53ert\nauGEn4cipQCVBipMchrt0kS9XlEvgVKui7aDIqUAlQYqzAT3bJBloakXauHEUKQUoNJAhZng\nLkJqoeJMcqf3VlCkFKDSQIWhSLaVmvOAWos1UGEokm2l5jyg1mINVBiKZFupOQ+otVgDFYYi\n2VZqzgNqLdZAhaFItpWa84BaizVQYSiSbaXmPKDWYg1UGIpkW6k5D6i1WAMVhl/I2lZqzkNq\nLcZAhck4REjxa8Rt/beFIqUAlQYqjEEa3xi3bNP9wtXCCaFIKUClgQpjkkZr/0KjGs8YR6UR\nt/VPgSKlAJUGKoxRmvDEPg/PmKVKI26DnwZFSgEqDVSYDGm0vogxt8FPgyKlAJUGKszu00hl\nQl3mk0CRUoBKAxWGItlWas6Bt5Z1QIWhSLaVmnPgrWUdUGEokm2l5hx4a1kHVBiKZFupOQfe\nWtYBFYYi2VZqzoG3lnVAhaFItpWac+CtZR1QYSiSbaXmHHhrWQdUGIpkW6k5B95a1gEVhiMb\nbCs159Bbyxqgwuw6TXhYXZRG6X5RpBSg0kCF2W2a9QO9IzRKP1RRpBSg0kCF2WWazVOPIjRK\nVYkipQCVBirM7tLETYaN0ChNJYqUAlQaqDC7ShN3e4ZgGLu+CIqUAlQaqDAZRVJMCoWRHm1t\nEkVKASoNVBiKZAFFygFUGIpkAUXKAVQYimQBRcoBVBiKZAFFygFUGIpkAUXKAVQYimQBRcoB\nVBiKZAFFygFUGIpkAUXKAVQYjmywgCLlACrMbtKoPzwRXDLwgoVGFCkNqDRQYXaRpm/7MRqt\nscRCI4qUBlQaqDDTpxm2/xiNNqqUFocipQCVBirM1Gn8M7IYjdaqlBqIIqUAlQYqzLRp4vsI\n7HoTNkCRUoBKAxVm0jTSjpAf8UumQpFSgEoDFYYi2VZqzuG0ltFAhaFItpWaczitZTRQYSiS\nbaXmHE5rGQ1UGIpkW6k5h9NaRgMVhiLZVmrO4bSW0UCFoUi2lZpzOK1lNFBhKJJtpeYcTmsZ\nDVQYfiFrW6k5B9RaxgIVZtdDhMKGRGkUHGAUDUVKASoNVJjdDlpdb0mERmuGvEZCkVKASgMV\nZpfTKDYfcCI0SlWJIqUAlQYqzO4m9sVdAkVolKYSRUoBKg1UmF2lieuVC4aJmqgeBUVKASoN\nVJiMIikmhcLE3TolCoqUAlQaqDAUyQKKlAOoMBTJAoqUA6gwFMkCipQDqDAUyQKKlAOoMBTJ\nAoqUA6gwFMkCipQDqDAUyQKKlAOoMBTJAoqUA6gwHNlgAUXKAVSY3aSp2/1mjdaGsdGIIqUB\nlQYqzC7S9G1/k0YbwlhoRJHSgEoDFWb6NMP2v16jjWHSNaJIaUClgQozdRr/jGydRhFhOEM2\nL1BpoMJMm2ZsH8EONg1FSgEqDVSYSdOM7rWmSILDaS2jgQpDkWwrNedwWstooMJQpI28OC3L\n04/XllCkHECFoUibeFE2PFtXQpFyABWGIm3iUflRVX1UlutKKFIOoMJQpA28aI88T2p5QiUU\nKQtQYSjSBp6UL+v/XpYfhEsoUhagwlCkDZy2Z3CvykfhEoqUBagwFGkD/aXQ6pJIllTFJ4RM\nhj6yIXOoaUSKqmorDufP7migwux6rF3WMDUUKQWoNFBhdjv6O3sYipQGVBqoMLucj7QZQJEe\n99qchksoUhagwuxuhmwMgCKx+3sIVBqoMFhpAEXqvn59Vn4cLqFIWYAKg5UGUKR+QNDRuhKK\nlAOoMFhpEEV62Q5RbcYDtf0Lw5JRVW0D1P7BSgMVBisNokjDSRNdRx2nUUAAFQYrDaRIoyo1\nB2r/YKWBCoOVhiIJoPYPVhqoMFhpKJIAav9gpYEKg5WGIgmg9g9WGqgwWGkokgBq/2ClgQqD\nlYYiCaD2D1YaqDBgaaq1N2K1gCKlAJUGKgxWmg23BreAIqUAlQYqDFKajT9WYQFFSgEqDVQY\nnDQRP59kAUVKASoNVBiUNFE/6GcBRUoBKg1UGJA0cT8xawFFSgEqDVQYkDQUKQTG/umBSgMV\nBiQNRQqBsX96oNJAhQFJQ5FCYOyfHqg0UGFA0lCkEBj7pwcqDVQYkDQUKQTG/umBSgMVBiQN\nRQqBsX96oNJAhQFJQ5FCYOyfHqg0UGFA0lCkEBj7pwcqDVQYlDS78ogiJQGVBioMTpqdaESR\n0oBKAxUGKc0ONKJIaUClgQqDlWZyjShSGlBpoMKApeEMWR+s/QOVBioMVhres0EAtX+w0kCF\nwUpDkQRQ+wcrDVQYrDQUSQC1f7DSQIXBSkORBFD7BysNVBisNBRJALV/sNJAhcFKQ5EEUPsH\nKw1UGKw0FEkAtX+w0kCFwUpDkQRQ+wcrDVQYrDQUSQC1f7DSQIXBSkORBFD7BysNVBisNBRJ\nALV/sNJAhcFKQ5EEUPsHKw1UGKw0FEkAtX+w0kCFwUpDkQRQ+wcrDVQYrDQUSQC1f7DSQIXB\nSkORBFD7BysNVBisNBRJALV/sNJAhcFKQ5EEUPsHKw1UGKw0FEkAtX+w0kCFwUpDkQRQ+wcr\nDVQYrDQUSQC1f7DSQIXBSkORBFD7BysNVBisNBRJALV/sNJAhcFKQ5EEUPsHKw1UGKw0FEkA\ntX+w0kCFwUpDkQRQ+wcrDVSYXadZf2tviiQ46NayHqgwu02z6dcmKJLggFvLJqDC7DBNxO8f\nUSTBobaWCKDC7CxN1E/yUSTBYbaWKKDC7CpN3I/EUiTBQbaWOKDCUCTbSs05yNYSB1QYimRb\nqTkH2VrigApDkWwrNecgW0scUGEokm2l5hxka4kDKgxFsq3UnINsLXFAhaFItpWac5CtJQ6o\nMBTJtlJzDrK1xAEVhiLZVmrOQbaWOKDCZBQpTxiKlAJUGqgwu0uzWSOKpHCgrSUGqDC7TLNJ\nI4qkcLCtZTNQYbJMowi+TpEEB9xaNgEVhhP7bCs156Bby3qgwmCloUgCqP2DlQYqDFYaiiSA\n2j9YaaDCYKWhSAKo/YOVBioMVhqKJIDaP1hpoMJgpaFIAqj9g5UGKgxWGookgNo/WGmgwmCl\noUgCqP2DlQYqDFYaiiSA2j9YaaDCYKWhSAKo/YOVBioMVhqKJIDaP1hpoMJgpaFIAqj9g5UG\nKgxWGookgNo/WGmgwmCloUgCqP2DlQYqDFYaiiSA2j9YaaDCYKWhSAKo/YOVBioMVhqKJIDa\nP1hpoMJgpaFIAqj9g5UGKgxWGookgNo/WGmgwmCl2VuRCDk0phCJkMOFIhFiAEUixACKRIgB\nFIkQAygSIQZQJEIMoEiEGECRCDEAWqQXp2V5+rFX+KzEiKKGyxWmyrVdKi3Nh4uSRx+ChHn2\nqDx68mryFSOL9KJseOYUflzmaDAyihouV5gq13ZR05y2JadAYY4+m3rNyCI9Kj+qqo/cBvJh\nmaXByChauGxhsm0XLc2T8nTRbF8c5fgjI8J8WId59UH5eOo1A4v0ot0TT+pt0/HytHyUo8HI\nKEq4fGGybRc1zVEb5GV5BBDmUdmc1U2/cYBFelK+rP97WX6wLCrLJzvYJjFRlHD5wmTbLnqa\njgyBgmGmlxpYpNN2R7wqHy2LPniZZf8oUZRw+cJk2y56mg6MTVPz2en0Jw7AIvUtw2shORqM\njBIIlydMriTD1YrVf5zhGkkPs7h8nL53lSJtF4UieasVq3+0+0skPczL08fl0eQmUaTtolAk\nb7X+6h+Xk/c4x4d5dVq+mHjVgCK1XwVANRiKFCSQ5skOzqaiw9TdD1N/qwUs0uN+q5x6L+8+\nkowSCJcnTPs0j0h6mjwerdkrk28dQJF6An2Z7P7G2S6BNK9Oj6Y+k4oP03LIInXfrj3z/rhl\n/EJ2ECUQLk+YhrxfyA7TfHY0/Yic2DBH7ReyH0/+Bw9YpH68h9f7k3NUztG6koxhajIPEVql\neXWUY6MEwjwrT18145VeTrxmZJFetldLzXdp8jI/c5RhSfYw7qPMaT4oewDC9CNon029ZmSR\nhmPiczcYGQVjGkXu7aKkKTOKpGyaDx+V5ePpL9mgRSJkX6BIhBhAkQgxgCIRYgBFIsQAikSI\nARSJEAMoEiEGUCRCDKBIhBhAkQgxgCIh8nT7YWr+TwX3D8vjy+51o4zEgZsVkYTWHhJpwUli\n1WQN3KyIJIkUeH5ZFk/TqiZr4GZFZAqRqstinlY1WQM3Kx6r87Lrk7KYXbSlN4vH86tehKfH\n9bnatfbm4PPuVG+a0IcONyseS5Eu2wf1gaS6KpvHl60I826ZK+XNwecUaUK4WRFpW/ttUZzf\nVtfzoj4mlcXJbXW7OCrVL10U85vFMWreOqa8VXv+tDhWXic2cLMi0rb287af7bqY9RZU1XHz\n0qy4qZ/cKlZ4nXZLcW4u2uMXRZoGblZE+vO31TXQcXcWd+WIECXSkrPAW4gB3KyIuAcT53H/\n4Pbq4rhURfKft8zOrtXXiQ3crIhsFOlqNjjoKG+Nf05s4GZFZJNIixO82fnTa/0aadxzYgM3\nKyKbrpFmRXDgHEXKAzcrIn2vXdM9cNv22jU9eNXJ8MugC4oEAzcrIm1P9eLM7aJSv0ea1Yrd\nni2ukW7lW8c9JzZwsyJyLEc23AxHNjxtXzifyaENcvS3//ouPsDhwc2KyM3iDK6eknS9+H85\n1u6sLGb9WLureVEcXy2umI79t1KkPHCz7hfNBRPBgyLtB/3V0EXX6UDAoEj7wXE9haK6vSgK\nZeoEyQ9F2g+6voaimeU6pPAvikgWuOn3hNvzWVGUciofRcKAm54QAygSIQZQJEIMoEiEGECR\nCDGAIhFiAEUixACKRIgBFIkQAygSIQZQJEIMoEiEGECRCDGAIhFiAEUixACKRIgBFIkQAygS\nIQZQJEIMoEiEGECRCDGAIhFiAEUixACKRIgBFIkQAygSIQZQJGTu/9///T//+3/9z7v/8d//\n23/9L//5/X/6j//h3/+7f/tv/vW/+pf/4p9X//Sf/ON/9A//wd//e3/37/ztv/U33/yNv/7X\n/upf+ct/6S/+hT//577nz37xZ/70n/qTf6L6Y3/0j/zhP/QH/8Dv/32/9/f87t/1O3/Hb/9t\nv/W3/Obf9Bt/w6//db/213znV/+qX/krfnn1/Jf+kl/8i37hL/j2z/95P/fn/Oyf9TN/xk//\naT/1p/zkn/QTf8KP/3E/9hs/5kf/qB/5I3549cN+6A/5wT/oB/6A7//9vu/3+d7fK/f2AIYi\nIUOR9gaKhAxF2hsoEjIUaW+gSMhQpL2BIiFDkfYGioTMGpH+2UaR/vhGkX7ZZpG+TpHioEjI\nUKS9gSIhQ5H2BoqEDEXaGygSMhRpb6BIyFCkvYEiIUOR9gaKhAxF2hsoEjIUaW+gSMhQpL2B\nIiFDkfYGioQMRdobKBIyFGlvoEjIUKS9gSIhQ5H2BoqEDEXaGygSMhRpb6BIyHCG7N5AkZCh\nSHsDRcLi5mz4jCLtDRQJisuCIu0nFAmKs+Jy+JQi7Q0UCYpZcTt8SpH2Boo0MZfzophftw+P\ni2J20TycFTf1f/P6v8U/i4XK88XzoiZbVJIAd9u0zBs3itqks/bhvC7udGn+WxQ1L1xSpD2G\nu21Szpuj0Vltz3lRPq2q67JYHJOui+P61ea/66J54aQ4WZQUZebAZEso0pTcFmVzzbM4zNwW\n7dncVTGrqouiPpGrntZ9dE+L4qopP14KRvYPijQl560w7cOuY7s+dztpO+fOiqf1C408F/WR\n6nK1PNkvKNKUHBfX/cN5/7AW1pjvAAAAAvdJREFUadnXcF0vc9UuelXb9DRHTJIORZqSQc9B\n//C6vl5y+xqax2Xd8T0Qj+wXFGlKFJHOFmdv3aXQZX25dFP/01xNVfUhavcZiQncc1PSHGba\ng9CsPYO7KhZFXV9DWXfUXTW9dW1fQ9VKRfYQijQlTb/3Zdle/pTX9b+1Qxd1x8OiuO5faDoZ\nuv9u2i+ZyB5Ckabktmy+Ym3667qvZuvHl82jk66vobksavoarvtlyd5BkSbl5qQo5lft44vZ\nQp62M+GiLOaX7Ylfe/bX/XdeuINWyd5AkQgxgCIRYgBF2kNu28ut4L4771+5qoeeayeL/RKh\nmi7my4Hq4UrIAIq0h1yuF+myf+WqXUwOO1ouEahpPhioHqyEDKFIe8jZ2i6Ji6UYs3rE0VPl\neFOsvh7Wajor5jcLg8rGnlAlxIHbZw/x5tE6XM+LWdfqr9rDyJk3gG+wRKCmsn31uh5tEaiE\neFCk/eN23QCI+puoTpOz9iuq63bshLbE2praYU2BSogHRdo/Louz87KY6YeI+puqTpO5bstg\nibU1tSOWApUQD4q0f3Rz1sODIIaDyytn6Ky3xPqamtlRayohA7h59o/m8r+6mQe7HKJFWl/T\nrFxfCRnAzbO3XAXnpUeLtLam42b2IUWKg5tnfwm27bEiqTV1PeMUKQ5unv1lk0jHvQNycsZm\nkfpvmNZUQgZQpP0l2JG2vvt7sESwptt52Y1ZZ/d3HBRp/+hmXlwFu+3cL2TPla6E4Y0ilJpu\nyvKme7imEjKAIu0fZ8XxbTNAITS+wRsipNx0cnnMUmu6LQdvCVdCBlCkPaQbU3oRen11x6IG\n5fvWfgm9ppOiZ20lZABF2kfqybZrZjYsr4CCMyCWS6g1FUOROI0iCopEiAEUiRADKBIhBlAk\nQgygSIQYQJEIMYAiEWIARSLEAIpEiAEUiRADKBIhBlAkQgygSIQYQJEIMYAiEWIARSLEAIpE\niAEUiRADKBIhBlAkQgygSIQYQJEIMYAiEWLA/wfSEMAgEZwC/wAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
},
"text/plain": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"tcgaLandscape = plotScoreLandscape(scoredf_tcga_epi, scoredf_tcga_mes, \n",
" scorenames = c('tcga_EPI','tcga_MES'), isInteractive = FALSE)\n",
"\n",
"tcgaLandscape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also project new data points onto the landscape plot generated above by using the projectScoreLandscape function. For example, the plot below overlays 3 CCLE samples onto the TCGA epithelial-mesenchymal landscape. Points are labeled with their sample names by default"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning message:\n",
"\"Ignoring unknown aesthetics: text\"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAACOlBMVEUAAAAbnndNTU1oaGh1\ncLN6AXd8AXd8fHx+AXiAAXiCAXiDg4OFAXiHAXmJAXmLAXmMjIyNAXqPAXqRAXqUAHuVlZWW\nAHuYAHuaAXuampqdAXyfAXyhAXyjAX2jo6OlAX2nAX2np6epAX2rAX6uAX6vr6+wBH+yB4Cy\nsrK0C4G2DoK3EIO5E4S5ubm7FYW9F4a9vb2/GYfBG4jBwcHDHYnGIIvHIozHx8fJJI3JycnL\nJY7NJ4/PKZDQ0NDRKpHR0dHTLJLVLZPXL5TY2NjZMJXZXwLZ2dnaMpbdNJfeN5fe3t7fOZjg\nPJjhPZjhPpnh4eHiQZnkQ5rk5OTlRZrmR5rnSZvoTJvpTpzp6enqUZzq6urrU53r6+vsVJ3s\nVZ3tV53uWZ7v7+/wWp7w8PDxXJ/xXp/yXp/zYJ/0YqD1ZKD19fX2ZqH3aKH3aaH3a6L3baP4\ncKT4cqT4daX4d6b4eaf4e6j5fqj5gKn5gar5gqr5hav5iKz5iq35jK75jq76kK/6krD6lLH6\nlrL6mLL6mbL6m7P6nbT6oLX6obb6orb6o7b6pLb7prf7p7f7qbj7qrj7rLn7rbn7r7r7sbr7\nsrv7s7v7tLv7trz8t7z8ubz8ur38vL38vb78v778wL/8wr/8w8D8xsH8x8L8ycP8ysX9ysX9\nzMb9zcf9z8n90Mr90sv908z908391c791s/+2dH+2tP+29P+3NT+3db+39f+4Nj+4tr+49v+\n5dz+5t7+6N/+6eH+6+L///8MAb+KAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2d\n94PjSBqWtfIeBprQhAFMaGhgoAl7NAzQDKxZYFkDC4thSE2zByzmCMORlrSEJR3pSEM40hCG\ntKQhNakJ1v+GS6VQ4SupqlSWvrbe54cZW5ZKr6V6WlK5SsoKAMBgsqkDAHAKQCQAEgCRAEgA\nRAIgARAJgARAJAASAJEASABEAiABEAmABEAkABKQWqSb8yzLFpfbqvTg4jfBawxYR3gcAPxI\nW7U2eVZxLksPLX4VngciAQYkrVq3WVYei3brPFvGxYFI4FGStGqtspv65SJbx5QAkcDjJGnV\nUirqujq5iy/hCItAJHAsEou0U14Xbc29XmbZclO9Pfwr3q9u5WfrVS6aJ27LT0ra5ZoFLg8n\njU1B18ZKzWKsVcjF1tWsu8uF0h6yW4kruo2VpSxko62OWDkAkqQiLbPlTptQVfKlFOSy9uKy\nfJuX9fW8bp7YdogkKvtlW9DSXodajLkKff23dYPIVaG8W1OFrOW7hVZK3MUfOHGSirQR9ex6\nq5ReVfLD0ajYLLLai+xqV2wX2erw5jpbiKPB4U//sl3AEilfF8LQZVnQdqmdNpbzWMUoq6gW\nq9e/ylaHsnbXsuxFttyKxbNbqpDDepu35MoBkKS9aljLv++Ly3VVuih+ky3ku7w5IhXl5LwQ\nFVl6t2vO4pT/GpGuZOl1QctM+bmpnMcqRlnFWl+/dqG0rg4w12IBq5DqgFY2nNArB0CS+PJ7\nd7NUT4fKGnlZN+Ct6wraXIOoQbpEkhV8VVfhjfSk0ObVl1BWsdLXn7VNi+1nu1I5s5DrermV\na+UASI7QjrW9FpfsuTgXq44W1YWTftRpDdhtrs/zTpHku0UTtj469BRDrv9wpZSvbqpJeaZf\n1OmF3NbL5a6VAyA5UoPw4cJC/N02zqUokXaX9cW/8hktUqagfAN3MfT6ZZPC4mqnfeYuRL6i\nVw6AJGWlUGuYPFfqF2knDl7n19vuU7v6nVMkuhh6/cVWtH/LKyBNCkchEAn0k7JS2G0A/ad2\nq+x8177rFiknw3YUY6xfUWO3viwbsrUirUKa3AvXygGQpKweV0rL8La8kqAu9unDxYYS6VZf\n4JxsL+sohl5/RVl4XWR5ALUKaZa7dK0cAElKkQ6nRk2D1rJs8ipr5La+Ol90iLTUPstlrb3U\nF6jbqvX+Rx3F1OvP1fXnVRtC6c6N2vxtFdLk3rpWDoAk6QnL4U/+Yi1+7VwvZCWsr+7LH0SX\nVEvAedkZovxMXvxXBi22xe7KaIOrfhMVv6WaP/paxSifHT5crNv1X5Y/s4q34tepRXZe/hQr\nFrMKqX/IXTlXDoAk7Zn/uhmPtGx/R7K7CFWrFv/fVvMf1BMKreS1fNVxxzgXLG4X9dzqNyCK\nMVrYq/VfybfLOmJZpNJFyCpE9jOqjkDkygGQpL6EvhG/wuSrdVV6VbzZaVX58PbgTn55e7gw\nKeureFdNtRaoCspX2iGBKsYQqVir65ejeM+riGUX1qpEqxDx83L9XciVAyAZsy1q97iuLtDM\nDfwZobI0zchXVZ+5RwJEAv6MUFlkW0OxXcluQ48GiAT8GaGyNAOAytayxwNEAv6MUlmuxdX9\n8upRHY8gEggBlQWABEAkABIAkQBIAEQCIAEQCYAEQCQAEgCRAEgARAIgAQlFygCYG0cRKV1R\nBp8ereRwGGVBFJIxs0CkaBhlQRQSiORkrrupB0QhgUhO5rqbekAUEojkZK67qQdEIYFITua6\nm3pAFBKI5GSuu6kHRCGBSE7mupt6QBQSiORkrrupB0QhgUhO5rqbekAUEojkZK67qQdEIYFI\nTua6m3pAFBKI5GSuu6kHRCGBSE7mupt6QBQSiORkrrupB0QhgUhO5rqbekAUEojkZK67qQdE\nIYFITua6m3pAFBKI5GSuu6kHRCGBSE7mupt6QBQSiOTEe9O8KzhajBJGVQZRSCCSE89N827D\n0ZKwqjKIQgKRnPhtmnffHcMkRlUGUUggkhOIRIIoJBDJidemaQQ6rkmMqgyikEAkJ94ima+m\nyjIOiEICkZz4bJp3IdKEMIoCkdz4HpHaVxBpXBhFgUhucGpHgigkEMmJf6td/eJoUThVGUQh\ngUhO0PxNgigkEMkJRCJBFBKI5ARdhEgQhQQiOUGnVRJEIYFITua6m3pAFBKI5GSuu6kHRCGB\nSE7mupt6QBQSiORkrrupB0QhgUhO5rqbekAUEojkZK67qQdEIYFITua6m3pAFBKI5GSuu6kH\nRCGBSE7mupt6QBQSiORkrrupB0QhgUhO5rqbekAUEojkZK67qQdEIYFITua6m3pAFBKI5GSu\nu6kHRCGBSE7mupt6QBQSiORkrrupB0QhgUhO5rqbekAUEojkZK67qQdEIYFITua6m3pAFBKI\n5GSuu6kHRCGBSE7mupt6QBQSiORkrrupB0QhgUhO5rqbekAUEojkZK67qQdEIYFITua6m3pA\nFBKI5GSuu6kHRCGBSE7mupt6QBQSiORkrrupB0QhgUhOTmU37ffJYggYbZY6SuJvGAVEcsKo\nxgzIsi9hESU5MkrybxgFRHLCqMZEZ9k3TB7lCIgoR/iG0VnGAiJFE5dlrzFplCNxlG8YBURy\nwqnGxGTZW0wW5Ugc6RtGAZGcMKoxiURKUs8YbZYjfcMoIJITRjUGIpFAJIgUCESigEgQKRCI\nRAGRIFIgEIkCIkGkQCASBUSCSIFAJAqIBJECgUgUEAkiBQKRKCASRAoEPRsoGHkEkdwwqjFj\n97XrmjvhZhle8c1vSJbovRpqxocHv2UhkpPHL1Jk3+juJZJtluHHELP3N1mi92qoGR9KfLOM\nBUSKZsTxSH3HsESbJcXpmD4eiSzRezXUjA8NvlnGASJFM9oI2f5rjiSbJfqkk4yia6SU6L0a\nasYHDd8sYwCRohkpy97mGFE81uJFG4Us0Xs11IwPFr5Zjg9EimY6kazKdxSR4kzqEmnv9WVc\nC+8JkbpNgkhOIBJEgkgJgEgQCSIlACJBJIiUAIgEkSBSAiASRIJICYBIEAkiJQAiQSSIlACI\nBJEgUgIgEln10LOhJ8vxgUjRjJalv+Y9kr52Zc33Xo05o62Sb5YxgEjRjJilr+Y9it7fTe33\nXo2ukXlU8s0yDhApmlGzdNe8ZFGGauQej6QdSLxX4xbSN8tYQKRoRs7SVfMSRjnOCFnr0iZo\nhKxZIkbIDmbGInXBKMregmok8DTBWaIfEMkJoxrDKQujKHa1J5utA0yiSvQDIjlhVGM4ZWEU\nBSJBpEAYZWEUBSJBpEAYZWEUBSJBpEAYZWEUBSJBpEAYZWEUBSJBpEAYZWEUBSJBpEAYZWEU\nBSJBpEAYZWEUBSJBpEAYZWEUhar1gzxCz4ZjMHWNUffi1FkUGEXxudXwA91d7u1bzxJ9VaI3\ny/DehBQQKQD9DyKj2sssCnXsMDSyj0pvSxyl6hr5HpWozRJ2TPMHInlj/pllVnuZoI9HUjE0\n0lV62+AoV9fITwZ7s4SfHvoCkTyxT9PZ1V4W1FGoqmpo1Kr0VsNRsvP5Fr1Z2hJirrT8gEhe\n7G0mSkLCUCQHVLPDWwvHwqE7Qc9y3F0IkbwgROJk0qMRiWwIt0VymBS6E7QsR96FEMkLiOQL\nRIJIHUAkXyASROoAIvkCkSBSBxDJF4gEkTqASL5AJIjUAUTyBSJBpA4gki8Qybf2v7jI84uP\n1SnPn+Rnz16ShaYGIpFApP4s3ER6kZc8b6dclBPOPqMKTQ1EIoFI/Vm4ifQk/7AoPszzZsIH\n+cVnxcv38qdUoalhJNJESUgejUjoIlTzQh6LngmdJE/y8qxOUesERUKn1Qqq9mlVMrjT6ps3\ndqfVN2KiiZhm7oRuGzh3Wn2W34n/7vL3jA/yM6rQ1GAYBclYUagaaFTLwGEUb0r0YRRv6okq\n9TRDo04jOA+juJAHnpf5E23yZxftIepURZr9wD6qFlp/4T91zKgdhXSNVJXUaYpK6jRDow4r\nqM1yHI3CRarP4NQzOfEuV9vxsk9Pk+pUYuoYU2CfF9nTyIlymnVdpGtUq2ROeyOXNqfZI5P8\n94pcOv0GSiLS3cXT/Ewx6VSPSDqMshw/yt7C0QJDTaOa6kxlSkPsaeRE38afMfdQmiPS4Vzv\nIn8RWFQMjCovpyxTiOR4RDk1jWz0pqQhppETPduyH6NIxV1+EVhUDIwqL6csEOnRifS0FunC\n/ERRCyKNDER6dCI5m78h0oRApEcnUvWD7PO2le5M/iD7saIWRBoZiPToRKq7CLU/vz7PLw4m\nvTiTh6qQoiJgVHk5ZYFIj0+kO9lptfz5VZ7NXVjdWCHSyECkxyeSOoyiuiz64EmeP32hzAKR\nRgYiPUKRggpNDaPKyykLRIJIYTCqvJyyoGfDo+vZEFjoYIwNdKRNQ++HHk5TJOeWsI2hxpYQ\nMwosjai+dvf3RF87uwNeUXz3u8SqieAQqcb6W3OUTeP+k9bJKYrUuSXsA0/K3t/3JUbvb7tL\nuNBIYKyaDA6RJMT+OMKm6T476OD0ROrdErY+qcYj3Tco45HsQUq1RppKzuAQSWAeukuSb5o9\nuRovTk0kry1hn9ClGCF7r1GNkLWHzaoaNSp1BIdIzgH2iTeNvZYAlU5LJO8t0TNjTxSq2eHe\noqBv5PBdi+48EMlZxY8vkr9Jpy6SY0v0zNgdhWwIt0W6p+4s9JYQ6buduxAiQaQwIBJEcgCR\nQoBIEMkBRAoBIkEkBxApBIgEkRxApBAgEkRyAJFCgEgQyQFECgEiQSQHECkEiASRHDi2Dno2\nkKBnA5kHIgnIjYO+diSDo3R2WVMRFd+cUZs7uK/d69d2X7tSG1OjL76w+9oRg5OUVUMkyTh/\nYyI1OiWRFCP6NJKV39BIXeJTrUR7YaP39+sSvfd3o46ukUDv/U2M89NWDZFqrP1xlE0TpdHp\niOSohTaqALZ7+zYKJaR2FNI1UlXSDkTteKQvGtrxSMSQWWPVEKkFI2R9GBDFeV5kYp6SDR8h\n+1pDjpC1rot0jWqViKG03menx4G7SAaMKi+nLNFR9haOGalGAnth261yGtVUZ2gkVaKa6gyN\npEr2fRzIGznEbpYIIFI0jLIkFMlR+SgXiIUD7iJki/SabvS2RfqCvt2Q95c5BhApGkZZIBJE\nCoNR5eWUBSJBpDAYVV5OWSASRAqDUeXllAUiQaQwGFVeTlkgEkQKg1Hl5ZQFIkGkMBhVXk5Z\nIBJECoNR5eWUBSJBpDAYVV5OWdCzAT0bwmBUeTll6Y9CViqqe5qo4xbU8AdCJdldzlaL6Gsn\nMDUSWBq9emX3tRPTLI3ERHPVX30VvUlDgUjRMMrSF4X8+2wfQ9pu2RqtOqpG1lGp7cBtH6GM\n3t81pkYCQyOB3vu7nmZoJCfqGgkGbNYQIFI0jLJ0RyFPdboruzIjpQ9xgqcPKXJLalhqaiQw\nNFJV0qcZGqkq1RqNphJEioZRlq4o5ukOOdE+/apmpE7ozGmGRrVK1Gkjcd5oaiQwNKpVsqcZ\nGtUqqRqNpBJEioZRFneUvYVj4oNFQU8kZ6Ruu0Cu2ptXFvQ0cuJXFoM2rw8QKRpGWUJEcjxE\n2fbjgW62pqYR9wG6H9YabetxEMRz2itCpKObBJGiYZQFIkGkMBhVXk5ZIBJECoNR5eWUBSJB\npDAYVV5OWSASRAqDUeXllAUiQaQwGFVeTlkgEkQKg1Hl5ZQFIkGkMBhVXk5ZIBJECoNR5eWU\nBT0b9InjezRrkQaOV5lOJCv44L52AtMOwi+6U96e6mtHD6ggtjjV1668t7dpxze+YU/71re+\nZU/88kv0tesjYeUN/yNpMJVIRPCBvb9rDDvMQxXdTbyZUdfIPCo5nlVA9f5unjahayTQp31L\nok/8sgS9v7tJVnnjzjeOkyUIMvig8Ugqhh2qNvTAJW1GXSNVJcfTc6jxSNrzj3SNVJUajVSV\nao1UlYK3cBzzFMk855gySxCO4ANGyJqQA1+px4s5R8ja10qOx1ZQI2StJ/LpGtUqaRrVKqka\n1SoFb+FY5ijS3mK6LEE4gye+dCRW4zfNulZyNTvs6Xs2UA+JNTSSKn3LxtRIqjQaECnapNFF\nInLvjxCFXI3ntD35ZGVyRuouQoRI3yVE+gYl0rcIkb5MuV26gUgQyWc1EKkHiASRfFYDkXqA\nSBDJZzUQqQeIBJF8VgOReoBIEMlnNRCpB4gEkXxWA5F6gEgQyWc1EKkHiASRfFYDkXqASLEe\noWcDOSPhEXo2DC/URWwHN/S1I4NHRnF9davSU33tyC504lbDpkbOTnmmRuL2w5ZG3/623dfu\nk0+Ivna2SrJEC+q+yQNH1BQTiRRff9H7mwweFaXr6xsa2b2/9f8bjeTN73WNOrqJ6xrJG+Ib\nGgn03t+flBi9v+2jUluiRjMW0XNL+DKBSEPqMMYjRYxH6iilVyV6PJKt1F59HktrSu/AJV0j\nTaVaI1WlWiNNJdWpdjySWmKDNqzXc0v4MbpIe43QkhNfDAxafCqRAkfIOkro3wuGRu0IWXNh\nQ6NaJc+htLpGjUqqRrVKqkaNSuZZnhwha5ZYYubx3RI+jCzS3iKs5Okqrw2jLIFRvPfCg4Vj\nYeqRldTCZFsE9RhLQyOp0icWBdXu4CjR+8tEMblIYckZVV5OWcKiEDuB3gt21aMfwUw/RJla\nmGgcvycfCGt7dDDJFukTuiGcKtH7y8QBkaJhlAUiQSSIlACIBJEgUgIgEkSCSAmASBAJIiUA\nIkEkiJQAiASRIFICIBJEgkgJgEgQKaxkRpWXUxb0bNA8mkHPBlZ97QbCKMtR+to92A9xofva\nlTbYGtkLl/+YGonbCpuVvux1ampkq1QUX/va1+y+dt/8pqP3np3n0fa1EwyJzajycspyhN7f\nau03/oDrCzdG2EcjfeHmha6RvNG9odGXhkrtgApDo68ZKgmNBI7+5HaeR9v7WxAfm1Hl5ZQl\n+Xgk80Bi1ThDI1UlurpqJeoaqSppg/NafewTvEYjVaVaI1UlY4RT19+HIcxzhGwSGGWJjOKh\nkfsciBhXLkfIUgtbJeoa1SpZw8XlCZ19raRpVKukalSrRIy5dZ2xDmOO92xIBKMsSaM82NBX\n5VQLnOfTMh/ox1OSty+hmh2+ZmNqJFUi7wJBxRkKRIqGUZZji0S3E5Nt2dTCZInUA5MJkb6k\nWsIpkb5GiPRN+r5EpNgDgUjRMMoCkSBSGIwqL6csEAkihcGo8nLKApEgUhiMKi+nLBAJIoXB\nqPJyygKRIFIYjCovpywQCSKFwajycsoCkSBSGIwqL6csEAkihcGo8nLKgp4N6NkQBqPKyylL\n4ihkLTM1sodE3NM3KibGJsmlTY3EjJZG4o7GpkavXhF97cQdjW2NiL52YlVUnGFApGgYZUke\nhfxjrWskPzM0Mo9KVI9wpUu4rpGc0dBI3mNf10hg9P6u77FvH42M3t/16qg4Q4BI0TDKcoQo\n5DmPrpGmEv0wF2LErL60rpGmkv7UF10jTSX9qS/2SZ0yHkk1l4oTD0SKhlGWo0Qhaxb1hApD\no1olatQsMYJB16hRyX4Oma5Ro5L9HDL72qgaIWueS1JxYoFI0TDKMmaUB4uCvhUDdR8Hcmly\nRurJmK8sCvrJmFQLA9m6QX6ZKCBSNIyyTCuS4+ZAth/knYUeyBmJRzW/JkR6RT2q+RtkWx3R\n3P5VwoZwiBQNoywQCSKFwajycsoCkSBSGIwqL6csEAkihcGo8nLKApEgUhiMKi+nLBAJIoXB\nqPJyygKRIFIYjCovpywQCSKFwajycsoCkSBSGIwqL6cs6NmgeYSeDb0wqrycsowbhax5pkYC\nyw7X0uSMpkYCSyOBqZHA0khgauT8MhFApGgYZTlKlD11Q2w5Ta95Vd3XNZL/6nZUdV9fuinD\nnlHXqHzIUaFrVPbz1nt/F8X774t/dY2q/3SN6gBqHPJbewCRomGU5QhRmpFH9kTxStPoraaS\n/kqz45WmElWOMaOqUfW8sELT6JuaSuLV+yXilabRdzWVXCHIb+0FRIqGUZbkUbSxsPZE8c48\nklQqyX/VY5NmR6uS/Fc/shEzqhq1Kol/tbGwcoRsrVGrkvxXOzipGumHRfJbewKRomGUJXEU\n6+4M9kQ5zW4jKOirJbuNoKAvT8gZradYFtYNGuTE9zXkNLvVwbFq8lt7A5GiYZQlaRT7Pid7\n+uYnVLM12X5HNVuTDWbkjNQDYakbBhkaSZWohnBy1eS3DgAiRcMoy7FF2vs/y5z6RYnw4xX5\nEw45oy3SG0qkbxIive9/Oy7yWwcAkaJhlAUiQaQwGFVeTlkgEkQKg1Hl5ZQFIkGkMBhVXk5Z\nIBJECoNR5eWUBSJBpDAYVV5OWSASRAqDUeXllAUiQaQwGFVeTlkgEkQKg1Hl5ZQFPRvQsyEM\nRpWXU5Yp+toRKlHPepEzEnbYHd7ENGtG0WnV1EjIQGhk97X7/HPPx7o4v7U3LpG2q/L97SrL\nVlvtkxcXeX7xsTrlg8OUJx+QhaaGUeXllGX83t/EUYl61ks7I3GQ0btg19MMjeQwCl0jKQRx\nNNJ7f39e4vFYl85v7YlDpHWWiffbrGStfPIiL3neTrmQUy6oQlPDqPJyyjL2eCTiBI961os+\nI3Gu1rqnTjM0UlXSx+sRJ3WtUp839DzWpfdbe0GLtMuzq93h/0V2WRTXWb5rP3qSf1gUH+Z5\nM+FZfvHZwa8zxS2INDLjjpA1T4EMjWqV7BmJSx55NmhOMzSqVbJHkBPXRvIk73ONjse6eH1r\nD2iRrrOV+G9bHpaKVXbdfPJC+vJM6CQ5k07d5WdkUWlhVHk5ZRkzyt6i8L18L+iWA2oaefMT\nquGAbGL43KKgb36SDlqk86y8Lqp82mTnzSfP8jvx313+nlmScpCCSCMzrUh7/weh284crKGm\nkbfjoprgiDbv9wmRPqdvx5UOWiR5JDr4dK2+FVxIXV7mT8ySlCkQaWQgEm+RMnlgUkWqjzvK\n8UfysXqN9Ck4VU5LpHTbpUuk21ogH5GetJdIOCKNDY5ITI9Iy+z28O9NtizfbbNF84lLpKf5\nZ1ShqWFUeTllgUhMRbosL47Os6vy3ZVoBK9wiPQsV3+ihUgjA5GYirTN8u3hgJSVvx/d1pdK\ngqe1SMrvr6ZHEGlsIBJTkQ4HIUF5QFrnSus32fz98uLshaPQ1DCqvJyyQCSuIhXrRbYo274P\nPi2V6dUPss+VQ9BnZ2efactCpLGBSGxFaicv19r7qotQ20b38uzMWAQijQ16Nmge8enZ0MGd\n7KJa9hAqWxzey2tCi4qAUeXllGVwFKqD2QPdFc3uQld2TzU1EjaYMz5Q/epERz1zWqmNqdEX\nX9h97cob55saff3rdl+7sj+gqRHdmTBlX7sulGEUpTs5RJqcgVGa44VCYwQ1o6HRvaFS21fb\n0OjhwezpXXcdNzR6bagkNBLovb+bR7noGgn03t9ND3VdI/tb76mJXnT2bHC8DSg0NYwqL6cs\ng6Jop14V2sGFmtHQSFVJt8LQSPdMHcxkaKSqVGukqqQ9X6wdPPH1hnY8kjZmStdI/9Z7aqIn\nPV2EtLcRhaaGUeXllGVAFOsqprCueOgZDY1qlezzNEOj9szPHF5raFSrpGpUq2Q98VIOnvi6\nhhwha43i1TVqv/WemugNRIqGUZboKHsL+mnL5IzUfU7IlgOyROqGD1RTnaGRVIl6ArOhkVSJ\nvK8E9WXsaSnu2QCRPGCUJaFIAW3ZhEj3ZFs2WSJVxclGb1ukL+hnmdsifZ2+0xH1ZYhpQSZB\npGgYZYFIECkMRpWXUxaIBJHCYFR5OWWBSBApDEaVl1MWiASRwmBUeTllgUgQKQxGlZdTFogE\nkcJgVHk5ZYFIbEUyCNs9EGlkIBJECoNR5eWUBT0bmPZsGAhEGplj97WjBk8ILI3EB7ZGRIm2\nSo6+duIDUyNxQ2NLIzHR1Ejc0NjSiOprR6gUuB0hUjSMshy397f9R7ud0dBIfmgfjYwS7aOS\no/d3/aGukbzFvqGRnKhrJG+xb2hk9/4mjkrBWxEiRcMoyzHHI1E1TsXQSFVJH6NkvlBUcoxH\nUgXQNdJU0ifqGmkq0eOR7C+YbjzSQCDSyBxvhCx1DmRyTz15gnqSmHloqlRyjJA1T8l0jRqV\n7Im6Ro1K9AhZ+wuONUI2qNDUMKq8nLIcK8reImBGqoWBnEi1T5BtEdSDMcmJ1IMxyXs2eH/B\nXmiRcrTa9cMoy5Gi2NXMUdHIGW1nHuiGcKrFnGhte0s+YpaY9op8xCx5FyHfL9gPLdI5ROqH\nURaIxFSk62xxtYkssYBIowORmIp0uxInd6ubnb1AWKGpYVR5OWWBSExFOrC9WhxcijswQaSR\ngUh8RTqwuxHXSvlqHXpggkgjA5FYiyTYXObG3b+DCk0No8rLKQtEYi9SUd5PH612BIyyQCT2\nIm0uFzgi0TDKApFYi7S7WYlrpMt1fKGpYVR5OWVBzwZ9IuHRND0birrVbnm1LcKBSCNzvChm\nLfPua0d3q3vr19euLNHUSMxsGvPJJ5/YE7/9bbuvXfmBqRHVmfCBegaHBx2/I0U01xFFpYVR\n5eWU5ZhRdI3sP9pk7+/aEkOjt4ZKdO/vpkRdI7mAodEnhkpCI4He+7v5UNdIlkgcRSM2E3o2\nRMMoy3Gj6BrpKpHjkVRTDI10K9RphkaqSnqJhkaqSrVGqkraEasdj6SWSJyMBm8k9LWLhlGW\nY0cJGiFrnrsR48rdI2StEqmzQUOjWiVVo1ol6xpKjpA1SySfmBEEen9HwyjL8aNQV+XkPRse\nLBw3TqCmeZf4iY2pkVSJatMjS7SnhamE8UjRMMoyhUiOuwhRFZIQ6S1pl3eJhEifECJ9m24d\np0okpgWZBJGiYZQFIj0ikQLO7yDSyEAkiBQGo8rLKQtEgkhhMKq8nLJAJIgUBqPKyykLRIJI\nYTCqvJyyQCSIFAajysspC0SCSGEwqrycskAkiBQGo8rLKXP8VSIAACAASURBVAt6Njying0Q\nyYBRlv4o8QNt2hJ0jQiV6MET9pCIt3JpWyOiRLviy3ESlkZUXztCJbqvnd2j7yFwm0GkaBhl\n6YtSV/5h6BpZRyV68ET9maGRXNo+Ghkl2seQdpyEoZGcUdfIOirRvb/rCIZGQdsMIkXDKEt3\nFFWAYegaaSrRgydUKQyNVJX0GQ2NVJV0UwyNVJX0GQ2N9PFIqs2GRgHbDCJFwyhLVxTzlGwY\n1IAK4kpGnuSZp2mGRrVK9oyGRrVK9rnbJ64RssS1Ej1C1jy/NDTy3mYQKRpGWdxR9hZD10WW\n+GBBtRw4liZnpBoJqNYE/xmpezZQLR5x2wwiRcMoS4hIQ02iSrQ9Ophk+3FP326ImpFobXvl\n375NzUjeRYhqTyQz9uIj0m5zHratIdLIQCTOIm2WGCHbBaMsEImxSNtWo0XgjVAg0shAJMYi\nrbLlrsizXXGdXQVua4g0MhCJsUhZdituJ7QtissMRyQCRlkgEmuRCnGDu5ui2GVobCBglAUi\ncRdpU57WobGBglEWiMRYpHNxarfLFgVEomGUBSIxFukmWx5MWmTrwzUSHutCwCgLejZ4zEh4\nNE7PhqU4EG3K9m80NhAwyhLS187bpQfXiByzxAf6yRN2F7oHqh+bfaPiakbTDmqcxOvXr+0Z\nv/Mde8bytuKmRtQzL8hv6EFXz4ZrcVq3WWSLG78t31FUKhhVXk5Z/Ht/e9eNxoi+EpsZdY1k\ntTTseHgwe1bbt85XZtQ1Mg82pUavDZWERgJ9xuZBF7pGcnWWRuY39AJ3Wo2GURbf8Ujef2a1\ng0tXidqMukaqSo6xPvbDXIwZdY1UlRqNVJVqjVSVtKcvteORVHMtjdRv6AlEioZRFr8Rst4n\n/tbljqtEa0ZqYAIxXFwubT9ejJhR16hWSdOoVknVqFbJeh6gHCFrnktaGtXf0Juu5m+FxSrk\nyX0QaWR8ouxt6BkfbAJmpC7fyRmpB16SM1KtCa9tTI2kStTzaenWjYF4inQg4EIJIo1MpEi0\nSURtpk0iZ6QalMkZqSpOzmiL9IoS6TUh0neotbyh77EykI5Tu3V+LlrrNqt8Xeyus8z/mASR\nRgYiMRZpk62qVyvR/H3dvA0pNDWMKi+nLBCJsUjLrH4Uc9m9YZflEYWmhlHl5ZQFIjEWSekX\nVL7EUHMDRlkgEmORcuWIJA5GEMmAURaIxFiklXKNdCkumRYRhaaGUeXllAUiMRbpNs+qVrss\nvy12y4BxshBpZCASY5GKTV79gnTw6HBil+/MGTwKTQ2jysspC0TiLFJR3JwfNDovf4nNzm9j\nCk0No8rLKQt6NjDu2ZCk0NQwqrycsvhF8dJIYNVlamayrx31kAlnpzyzfpOPhBATTY3EzJZG\nX3xh97UT3eoIW+2+dsOHaUGkaBhl8Y3ipZHAsMNeoJ5GzqhrRMxoH5Ucj4SoJ+oayQUMjQR6\n7++6ozdx0NN7f/tskT56xyMVxeI6vtDUMKq8nLL4R/HSSGDYoS+kTiNn1DUyZlRN0TXSVNIn\n6hppKtUaqSrpQ4+Ic8d23IbvH5du+kbIig9CR5pDpLEJieJdYQw72ppmTiNnpB48YWhUq+R4\nJIQ5UdeoUUnVqFbJHgxLXILJcRvUF4zBLdJ1tpTdVHfLLPCYBJFG5lhR9haOOxp4z/hg4bhx\nAjWRajgwNJIqUbdnIFdNZozCLdKi6e69DfgtliwqHYwqL6csR4piV7NDRfOcRs9oV2ZHizkx\n7S3ZBGd7dDCJumEQuWoqYxz+fe2iCk0No8rLKQtEYixS29cOIpEwygKRGIu0avoEhQxFIotK\nB6PKyykLRGIs0jbLyhs1bC9DBseSRaWDUeXllAUiMRapWDe3a1hHF5oaRpWXUxaIxFmkYncl\nntm3vPLvreosKhWMKi+nLBCJtUjRQKSRgUiMRVKbv/1v10AWlQ5GlZdTFoj0SERC8zcBoyzo\n2aB5xKtnQ2vPBiJRMMpynChiGBJVy2yNHBPJGc26XFCPhBADhKyJX9p97YrvFHZfO7G0pZGt\nkiNjJLRIuXGXVfyORMAoyzGiNJWNqGX20cgxkZxR10h2wdY1qsba6RoJ9N7fRdXRu9A1kkvr\nGllHJUfGaGiRbnSPQkbHmkWlhVHl5ZQlfRSrwjnGIxWWKcZEckZdI1UlfVqha6SqVChjj4p2\nPJK6tK6RppIj4wC8rpHiC00No8rLKUvyKOYpkGOErH5mRE10zSiHr+uDveUjIe6piV9+qZhU\njrzQh8MWcoSsWWKpTmGc5MlVUxmHAJGiYZQlcRT7otzB3oCa6J6Rum8CeTOFL3XKafbtGRwl\nEs0OAaPuvcHvSNEwypI0it265VDJtKOskp7T6EcwE9PuTY1KlYgbBn2HLJFoCP8qYaN3C0SK\nhlEWiASRwmBUeTllgUgQKQxGlZdTFogEkcJgVHk5ZYFIECkMRpWXUxaIBJHCYFR5OWWBSBAp\nDEaVl1MWiASRwmBUeTllgUgQKQxGlZdTFogEkcJgVHk5ZTm2SPSMZH30m7ann61CqUCIRD3B\n5Tt0iZRHCUchtUCkaBhlOW5fO/eMhDI+Q5j27merWCaIiaZGoiOrpZGtkrxduKURdafyri/p\nB0SKhlGWY/b+7p6ROPL0DWHadz9b5Z6aqGskh1YYGplHpfYBFoZGctVUnCFApGgYZTlCFC+N\nBIZGulLkjKqkujGaSvpEXSNNJf2pSLpGmkr6qqk48UCkaBhlOUoU75q1p07o6CFMe/O8kX62\nyj01UdeoUcl+Tp+uUaOSvWoqTiwQKRpGWSaPsrdwzEg1ZJALUxPJu6RQzQ7UY2fJVVPT4oBI\n0TDKMnUUu9Y7TLIrruOeWGSJtkhv6YZw6kHo5KqpaXFApGgYZZk6CkSCSPEwyjJ1FIgEkeJh\nlGXqKBAJIsXDKMvUUSASRIqHUZapo0AkiBQPoyxTR4FIECkeRlmmjgKRIFI8jLJMHQUiQaR4\nGGWZPIqPRx8JqIpLLkxNJDxCz4Y4Jq8xCoyyTBtl79PX7qMGo95S3eoIv2SJpkbljKZG3n3t\nbJXiNwJEioZRlimjKBV9b7xW5vroI8okuvc3cahqSzQ0ejBUCuj9bR+VhmwGiBQNoyzTRdlT\nlZ04wVNF6h6PRJz16SUaGqkqBYxHopQaAkSKhlGWqaJYVzGuEbKVQO0L1whZ64qFKtHQqFYp\nYIQsdZI3jHCRXlzk+cXHxsTn2uOaIdLITBNlb+Nqdqg9Ul7dWzhuF0GVSM5IlUjes4FaeCjB\nIr3IS55rEz/OIdKUsBGJvotQe0DqFOnev3WcnJEqkbyLEKnhQIJFepJ/WBQf6uJ8kEOkSeEu\nUtF4BJEqXshj0TOhU8XdRf4EIk3KYxAJRySNZ/md+O8uf6+ZlOfPCog0KexFav1pjJq5SBfS\nmJf5k2bSe3cFRJqWxyFS2/wtmLlItTG6ORBpWiDSiYr0KTh9/EUSc7ceVUszE2no1sARKRpG\nWfgfkQqtDVzATKShQKRoGGV5FCIZzFykp7VIF9pkiDQpbEQKuFUkUevn1LOBaP4WQKRJYd3X\njqym9pMnqE5wD/SzI968IWYUE6kSLY1S3qi4JfIH2ee53tsOIk0K497fZFWtP7SPRkanbvuo\nJIwRGDPWE6kSDY3MY1qaDRHbRehMnwqRJoXteCSyuqoz2id1yjAjdaKukaaSPpEq0dCoQ/Fo\ngkW6k51Wyx5CrT4QaVKYjpAlT6DMGe1ro2rgqzlR16hRyZ5IlfiV/aS+FIMnWgYNo4BITJg8\nyt7CcUnvPSM18Y1FQU/0XnU6MLAvGkZZpo5i11G6idp/RmLaA+HMG2raG/9VpwMiRcMoy9RR\nIBJEiodRlqmjQCSIFA+jLFNHgUgQKR5GWaaOApEgUjyMskwdBSJBpHgYZZk6CkSCSPEwyjJ1\nFIgEkeJhlGXqKBAJIsXDKMvkUag6SlRm9GyILTQ1k9cYBUZZGEQxq6h3XzsBOaM5kepWR/hF\n97VzrjoVECkaRllYRNE1Mg82jhlryBl1jcyjUkDv785VpwEiRcMoC5MoukaqSo4ZVcgZdY1U\nawLGI/WuOgUQKRpGWdhECRoha0LOSA2oCBoh67Xq4UCkaBhlYRQl/SX9g0XAPRtGAyJFwygL\noyi2SENNoqQhptF3ERoNiBQNoyyMokAkiBQIoyyMokAkiBQIoyyMokAkiBQIoyyMokAkiBQI\noyyMokAkiBQIoyyMokAkiBQIoyyMokAkiBQIoyyMokAkiBQIoyyMoiT3CD0bjgGjGsMpC5so\nVF87b5wV39aI6GtHPd/iON3qSCBSNIyyMIlSqxOpUccxxD4aGb2/69XpGqU4IHoCkaJhlIVF\nFFWfSI16VXI8tkJdta7RaCpBpGgYZWEQxTyhi9SoUyXHYyvMVesajaQSRIqGUZbJowxqYvBu\nJKBaGMhVD4oTB0SKhlGWqaPYFTek6no3W1NtdeSqB8WJAyJFwyjL1FEgEkSKh1GWqaNAJIgU\nD6MsU0eBSBApHkZZpo4CkSBSPIyyTB0FIkGkeBhlmToKRIJI8TDKMnUUiASR4mGUZeooEAki\nxcMoy+RRBlVcX4/QsyEdk9cYBUZZGETxqbfOD0yNnDOaGt1T/eqo/ndDv1zvLBApGkZZWETx\n0Mj9oaGRe0ZDo/t7s6d3/WFKjTxKgUjRMMrCJIqHRn0qecxoaKQupXuWUqPekiBSNIyysIni\noVGXSp4zEuPK6SebpdSoRyWIFA2jLMyj7G3ohb1nJBv6yLaIQfjGKSDSABhlYR6F8IOukd4z\nEiLd03dEGYS32BBpAIyyMI8CkSKBSCPDPApEigQijQzzKBApEog0MsyjQKRIINLIMI8CkSKB\nSCPDPApEigQijQzzKBApEog0MsyjQKRIINLIMI/iXR+9Z6Q8Qs+GABjVGE5Z2EfxrY72jJ4q\n0X3tUqvUMSNEioZRlkcQxa86mjN6HpXo3t+pj0qds0GkaBhleRRRvDTSZvQ8waPHI6U+weuZ\nCSJFwyjLI4nipVEzo89Z1b1rhGzqa6XeWSBSNIyynGCUvUXAjOmbHXqBSNEwynJ6UWw9QlrM\n0zeE9wKRomGU5fSiQKTERRkwqjGcspxeFIiUuCgDRjWGU5bTiwKREhdlwKjGcMpyelEgUuKi\nDBjVGE5ZTi8KREpclAGjGsMpy+lFgUiJizJgVGM4ZTm9KBApcVEGjGoMpyynFwUiJS7KgFGN\n4ZTlBKN4eoSeDXEwqjGcspxkFB+NHqgnT1ADKhxrSBYWIsXDKMuJRvHQ6MFQiR5Q0VF6qqwQ\nKRpGWU42iodGqkr0gIqOktOpBJGiYZTlhKP4PXKsevKEfa3kLNXj6isIiBQNoyyzi0I2yw1q\nnxgKRIqGUZbZRSFEIp/LTC/tPWMAECkaRllmFwUiDYRRjeGUZXZRINJAGNUYTllmFwUiDYRR\njeGUZXZRINJAGNUYTllmFwUiDYRRjeGUZXZRINJAGNUYTllmFwUiDYRRjeGUZXZRINJAGNUY\nTllmFwUiDYRRjeGUZYZRLI0E3nak1ggiDYBRlplFkTXf0kh+pNrRoUhajSDSABhlmVWUpvbb\nGhWKIH0DjtJ6BJHiYZRlRlG0A4mlUTOHz4CjhBpBpAEwyjKbKNalDTngiBiZ5CguXTKIFA2j\nLDOJ4t3Y5j1jOiBSNIyyzCSK7ceI7ds9QKRoGGWZSRSIlAxGNYZTlplEgUjJYFRjOGWZSRSI\nlAxGNYZTlplEgUjJYFRjOGWZSRSIlAxGNYZTlplEgUjJYFRjOGWZSRSIlAxGNYZTlplEgUjJ\nYFRjOGWZSRRvPcb3CCLFwyjLbKKYdngekxylpXxsEkSKhlGWGUUxNOo9vXtHQM5gD8EYAkSK\nhlGWWUUxNOpU6Z0G80NiUOAgIFI0jLLMLIr9BBeHSu+84zCJGKY+EIgUDaMss4vi1yz3qUMk\n4sYpg4FI0TDKMrsohEiESY1AhknULYiGApGiYZRldlH8RTJfCSASpxrDKcvsoniJ9A5EcsKo\nxnDKMrso3kek9hVEUmFUYzhlmV0UnNoNhFGN4ZRldlH8RPq08aev1Q4iTQijLLOLEiCSV/M3\nRJoQRllmFwUiDYRRjeGUZXZRPEUqSI8gEqsawynL7KJ4eVRmoTraHcEjiBQPoywziyIqfr9G\nXVlSawSRBsAoy6yi1JW/T6PuLGk1gkgDYJRlRlFUAbo16suSUiOINABGWWYTxTwl69KoPwtG\nyLKAUZaZRAltJBhzs0CkaBhlmUmU0GZriOSEUY3hlGUmUSBSMhjVGE5ZZhLltER6cZHnFx93\nToFIIzOTKCcl0ou85HnXFIg0MjOJclIiPck/LIoP87xrCkQamZlEOSWRXsgjzzMhj2sKRBqb\nmUQ5JZGe5Xfiv7v8PfcUiDQ2M4lySiJdyDO4l/kT9xSINDYziXJKItWXQu0lkT0FIo3NTKIE\nenQCIn0KQHrsvnbkTKL/3ejZcESKhlGWGUXpPRopPcIf/xEpQTAaRjWGU5ZZRfHQqFKJs0hP\na20u3FMg0tjMLIqHRp3jlI4Bmr+jYZQFUQRe93E4FpE/yD7PP3ZPgUhjgygCvzuiHInYLkJn\nXVMg0sggiuBxiXQnu6iW/YFk+4I6JaioCBjVGE5ZEEXwuERSB01UDXUYRjE1iCJ4ZCIFFZoa\nRjWGUxZEEUAkfxjVGE5ZEEUAkfxhVGM4ZUEUAUTyh1GN4ZQFUQQQyR9GNYZTFkQRQCR/GNUY\nTlkQRTClRxApHkZZEEUymUYQaQCMsiBKjaYR597fgYWmhlGN4ZQFUVqUoxFEcjL5blJglAVR\nVJqTOojkhMFuamCUBVFIIJKTue6mHhCFBCI5metu6gFRSCCSk7nuph4QhQQiOZnrbuoBUUgg\nkpO57qYeEIUEIjmZ627qAVFIIJKTue6mHhCFBCI5metu6gFRSCCSk7nuph4QhQQiOZnrbuoB\nUUggkpO57qYeEIUEIjmZ627qAVFIIJKTue6mHhCFBCI5metu6gFRSCCSk7nuph4QhQQiOZnr\nbuoBUUggkpO57qYeEIUEIjmZ627qAVFIIJKTue6mHhCFBCI5metu6gFRSCCSk7nuph4QhQQi\nOZnrbuoBUUggkpO57qYeEIUEIjmZ627qAVFIIJKTue6mHhCFBCI5metu6mFmUXwfNAGRnDCq\nMZyyzCqK/zNbIJITRjWGU5YZRQl5/BFEcsKoxnDKMpsoYU8Sg0hOGNUYTllmEiX02ZYQyQmj\nGsMpy0yihD5tGSI5YVRjOGWZSRSIlAxGNYZTlplEgUjJYFRjOGWZSRSIlAxGNYZTlplEgUjJ\nYFRjOGWZSRSIlAxGNYZTlplEgUjJYFRjOGWZSRSIlAxGNYZTlplEgUjJYFRjOGWZSZRAjyCS\nG0Y1hlOW2UQJ0QgidcCoxnDKMqMo/hpBpA4Y1RhOWWYVxVcjiNQBoxrDKcvMomCE7GAY1RhO\nWRCFBCI5metu6gFRSCCSk7nuph4QhQQiOZnrbuoBUUggkpO57qYeEIUEIjmZ627qAVFIIJKT\nue6mHhCFBCI5metu6gFRSCCSk7nuph4QhQQiOZnrbuoBUUggkpO57qYeEIUEIjmZ627qAVFI\nIJKTue6mHhCFBCI5metu6gFRSCCSk7nuph4QhQQiOZnrbuoBUUggkpO57qYeEIUEIjmZ627q\nAVFIIJKTue6mHhCF5PGLBMDcOIZIAMwXiARAAiASAAmASAAkACIBkACIBEACIBIACYBIACQA\nIgGQAM4ivbjI84uPjYnPcw5ByGjTRCmm2SZUlA8OU558wCPL8yf52bOX4yVgLNKLvOS5NvHj\nfPxKYwcho00TpZhmm1BRLuSUCz5Zzj4bLQJjkZ7kHxbFh3ol+SCfoNLYQahoE0WZaJsQUZ7l\nF4d6++Jsgr8vVpYPRJaX7+VPR4vAV6QXcoc8E9uo4u4ifzJ+pbGDENGmijLRNqGinMkUd/nZ\n9Fme5OVZ3Ygbhq9Iz/I78d9d/l4zKc+fjbltnEGIaFNFmWibdG0DDnuojjKe03xFupD742X+\npJn03t0Uu8kOQkSbKspE26RrG4y+VVxZPrsY8ZSBr0h17TBqyfiVxg7iiDZFlGlyuKOIpo/R\nr5HoLIdLxxHbVSFSRBCI1LENnox+iURnubt4mp+NZxJEiggCkdzb4Gk+XpNzX5aXF/mLsTLw\nE0n+JMCo0kCkgCjPxjyd6skimh9G+1GLr0hP661zYXw8diA7iCPaFFHk2wlEoqNM4lHH/hhv\ny/ATqcbRpsmhcZVT87eAS/P3y4uz0U6l+rJIIFLzK9tz42/cZD/IKkEc0aaIUjLhD7JqlM/O\nRuyS053lTP4g+/F4f+r4ilT3+zAagabrl3PWNWWyKIIpuwi1UV6ejb89XFme5xcvy+5Kd2NF\nYCzSnbxaKn9Tsy/0Jw2iTpk4iv5qyijv5TXTZ6k70I73kxZjkdS+8dNWGjsIh2EUE4tkRcmn\nE4nYLB88yfOnI16xcRYJgEcDRAIgARAJgARAJAASAJEASABEAiABEAmABEAkABIAkQBIAEQC\nIAEQCYAEQCSO3MR3VzMfFVy/zM/X1edpIgIdbFaODKjtLpEOrAYWDTrAZuXIIJEc79d5djOs\naNABNitHjiFSsc6Ww4oGHWCz8qM9L9uu8mxxLafeHl4vN7UIN+fiXG1LLex8X53qHSf03MFm\n5Ucj0lq+EAeSYpOXr9dShGU1z4ZY2PkeIh0RbFaOyNq+y7KrXbFdZuKYlGerXbE7HJXER9fZ\n8vZwjFpKx4hFqfc32TnxOUgDNitHZG2/ku1s22xRW1AU5+VHi+xWvNkRVhiNdo04t9fy+AWR\njgM2K0fq87f2Gui8OovbaCJ4idRw6VgEJACblSP6wUR7Xb/Yba7Pc1Ik871kcbklPwdpwGbl\nSK9Im4Vy0CEW9X8P0oDNypE+kQ4neIurmy19jRT2HqQBm5UjfddIi2ytzEcs6v8epAGblSN1\nq13ZPLCTrXZlC16xUn8MuoZIbMBm5YhsqT6cuV0X5O9IC6HY7vJwjbSzFw17D9KAzcqRc7tn\nw63as+FGfnC1sLs22L2/zc/H+ALzA5uVI7eHMzgxJGl7+L/pa3eZZ4u6r91mmWXnm8MV07m5\nKESaBmzWx0V5wQT4AZEeB/XV0HXV6ACYAZEeB+diCEWxu84yYugEmB6I9Dio2hqycpSrSmZe\nFIFJwKZ/JOyuFlmW20P5IBIPsOkBSABEAiABEAmABEAkABIAkQBIAEQCIAEQCYAEQCQAEgCR\nAEgARAIgARAJgARAJAASAJEASABEAiABEAmABEAkABIAkQBIAEQCIAEQCYAEQCQAEgCRAEgA\nRAIgARAJgARAJAASAJEASABEAiABEAlMwf7//d//878f/tf//B///b/91//yn//Tf/wP//7f\n/dt/86//1b/8F//8zT/7p//kH7/+R//wH/z9v/d3/87f/luv/ubf+Ot/rfgrf/kv/cW/8Of/\n3J/9M3/6yz/1J//EH/9jf/SP/OE/9Pkf/AO///f93t/zu3/X7/wdv/23/dbf8pt/02/8Db/+\n1/3aX/Orf9Wv/BW//Jf90uIX/6Jf+At+/vs/7+f+nJ/9s37mz/jpP+3rP/Wn/OSf9BN/wo//\ncT/2x/zoH/Ujf8QP/2E/9If84B/0A3/A9/9+3/f7fO/v9T2/x+AvBJHAFEAkABIAkQBIAEQC\nIAEQCYAEQCQAEhAm0l8NF+mXQCQwAyDSaLwjcH5aPepxcaW+s5/+uKnfb8+zbHUrX18tsvxy\n5yj4I0HHaq1XN4eSs/N1M4v+/np5CHndfHhVLbVrw3Y+t/JdgTMNFcf4XC1b/d7Xi3Z76HOO\n8/xMiDQS7zTQnzd7fam9M6vBonq/lZ+VNWdZvsxvzSIFHzW4Vmu82uZqDuv9UvuwWNfLrwmR\ncmtt7zbQafxFyo3vfSknb+w5IVIcTEV6550ek+p6vMwujUkq13W1OM+uxbvzctryttitytcm\nH33UY5JZcw+CnovauFnK8oz3l2JdxSbPrvQ4hw/WRsnrzHrO8rvv9pnUJ5Jatvq911l+SHm7\nNNwd8WHOEGkcfEUqbts/5HY12GX1EUn+V/67yHb03EWESIusPm1blmoY7/P6eChCHqSv49Qh\nWrbZdWGSSiRZtvq9l/JYtMluHMUdHYg0Co1ATpOafd5Vl86z+hpJ1mj17Ik4k2qvj5wmGWtb\nt8e1rTg0mu+1mbPDlGr5g+FGwbk5Qbk+cptkHSBXh3O31caYSyu7/N71csZhGSLFw1ck85VO\nvc+VKmlVg82hnlQTr+Sp3VX90e3S+GNc0urjKdK5cYZmvm9mFiFX22b5dXZ5lWeLNsKVfWJX\ntPr4irSpLnL0EGrZ1fduRNL/mkCkeFiK9I63SNtlW2usaiBOZuqJV6IR4KqdlarxHwWLlBtn\naOb7inWz5mr56lq/OWjdElds74aLtCgtudEPd2rZ9fdeSLfWxiaDSPGwFKlo7XGLVHGlTNJn\nuRZHoVa4A+dVS912eZ7la7vQ1h63SFrjlrlKR01cmNdxssbfNn8FzokDUtHa0yFSZxyz7OZ7\nlw0PxTqHSKcvUu8RqeJ8207S5pAnfXXjmqg422Xb5r1bZualhN+pXYRI59ktPcOmOljsmvZx\nFa8jkhbnoMnqxmjWN8quvrdsCr+ESCcuUutPT6vd7jpvhDCqwXn5gZy4qlupVs3HW6ryNv54\nttqZjW9WY5xAbeqma+4VfWnV+OPbandb/oi10Nr/zLKr731dXqJBpDmI5NX8rQhh1Yr2b3Vz\ncZ2pn9ulhjZ/r9Raemu/F2g/GdE1N6f3QkTz93qln+4SZSsRtmi1g0h2q/cEIinN3bf50n4v\nTqXyDbm8fFs2C1BNDYK435G2K7Utzi5biXCtNtHb6Y4JRBqJ/i5C1YttU23IaiAnLuUp10Yc\nvaqWtbVymtcS2kUor1vRD2dVa+L9ba53RWoOQVWezP8DcQAAA/BJREFUsiJfEz/GlkR2EVJf\nt2Wr37t6vTKuEyFSPFxF6u+0Kv/f5M1f1Q6R1tlyU7eSXWXLXbkc0VBWhHZa3cguQeJS7Zx4\nv8vpTjiX2fmubEos6zPZZicJ67QqGwMv1YNQW7b6vS/F6921eZkIkeLhK1I37Ynbsp1kvzJ+\nuCmdW5rt5kGrNV6tm9bDgni/UtvU1OWrDPJoscjIDrThcaofZMuDYNPQ3pStfO9d3s7o2c8o\nMRCJCU19vVEm2a+al+tDNVqu5WsxhODcbvz2W635anclKuhqXU/X3mcukcoMdZ74+msdIMsu\nQqoe2mle+713l3m2uHR9pxHACFkAEgCRAIjiVmshhEgAxLDOIBIAgzGGMkIkAGIwek9BJAAk\nZUOo/JVqfd508VvUN8a4Lf85zJSLBne16fIkOekvB45I9bOUMOlS+UVPbXY/TCo/WEMkAGiu\nyqPRpbDnKstvyvsnXTf9YMv/tln5warsjEUN7T8lIBKIYZfl9b1UdtVtzjaiC241nP9GtNHd\nyPt9baRUdMfckwEigRiu2i5WV5nSRaIaSHIpev1dSXnKfrPruC5ZjweIBGJQOtou65dCpKat\nYVsPrZT/XVM3mzklIBKIgejOWA6x1NsaytflmI2OHu6nAUQCMRAiXR7O3qpLobW4XLqVwxZ3\n1f2Sx884Kqf+/cBxkEMDy4PQor4hxmFS1daQi4a66g4Z8g4v1h0xTw2IBGIo273Xubz8yctb\niwuHysHr4jZf183g3PK/W/I+SacERAIxVEMD1ZGS4rUc17iq2hrKy6KyrWGbZcb9IU4NiASi\nuF1l5fh9QfmwJdmYcJ2L8YrliV91Ywj53xV5b9sTAiIBkACIBEACIBLgTP2sUPHotuYmFx2o\njxr1XCQNEAkwpnlexsbv1k/qo0Y9F0kERAJ8aZ8VWt6y76ZvJIb2qFG/RVIBkQBXlGeFbuSB\n5bKnx576qFHPRVIBkQBXlGeFXsrfpLbkfaapJYMXGQpEAlxRnhVaddWzn71LI2YLXGQoEAlw\nxrhhrN8VTzn4KWyRwUAkwJkokRbak9shEgAxIslHjUIkABoiRKpuRQmRAGioNDivregfjVHf\n0jVgkRRAJMCZ0Obv9lGjaP4GoEH/Qdbx+PcW5VGjvoskAiIBzhhdhHruMqk9atRvkVRAJMCZ\n9hZFJT3dfbRHjfotkgqIBDjTtLl5jYnQHzWKYRQAPDYgEgAJgEgAJAAiAZAAiARAAiASAAmA\nSAAkACIBkACIBEACIBIACYBIACQAIgGQAIgEQAIgEgAJgEgAJAAiAZAAiARAAiASAAmASAAk\nACIBkACIBEACIBIACYBIACTg/wP4DvMyxo5rAwAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
},
"text/plain": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Project on the above generated 'tcgaLandscape' plot\n",
"projectScoreLandscape(plotObj = tcgaLandscape, scoredf_ccle_epi, \n",
" scoredf_ccle_mes,\n",
" subSamples = rownames(scoredf_ccle_epi)[c(1,4,5)],\n",
" annot = rownames(scoredf_ccle_epi)[c(1,4,5)], \n",
" sampleLabels = NULL,\n",
" isInteractive = FALSE)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning message:\n",
"\"Ignoring unknown aesthetics: text\"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAB1FBMVEUAAAAbnndNTU1gu6Bm\nph5oaGh1cLN4xa56AXd8fHyDg4OKzbmMjIyUwWKVlZWY08Kampqem8qjo6Okynql2Mmnp6ev\nr6+w0Yuw3dCysrK5ubm615q7FYW9vb3BwcHC3KbE5tzHx8fIxuHJycnN6eHPKZDPzeTQ0NDR\n0dHR5LvV7ebX6MXY2NjZXwLZ2dnd683d8Ore3t7hPZjh4eHj7tXkj07k5OTk8+/nKYrooGnp\n6enq6fPq6urr6+vr9vPsVJ3tt43t9OTuaq3v7+/wgLnwwJvw8PDxXp/xyKj0n8r1qtH11b31\n9fX2tdb228f2+vL3aKH3v9z4daX4x+D44dD5gar5jK750OX6lLH6lrL6mLL6mbL6m7P6nbT6\noLX6obb6orb6o7b6pLb61+n67OH7prf7p7f7qbj7qrj7rLn7rbn7r7r7sbr7srv7s7v7tLv7\ntrz73+378en8t7z8ubz8ur38vL38vb78v778wL/8wr/8w8D8xsH8x8L8ycP8ysX87PX89vD9\nysX9zMb9zcf9z8n90Mr90sv908z908391c791s/98/j+2dH+2tP+29P+3NT+3db+39f+4Nj+\n4tr+49v+5dz+5t7+6N/+6eH+6+L////mQrrpAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElE\nQVR4nO2diZ/kSHqW1XLnsFmbbtKFa3ANWw1Fs84BphPPFG7aRa/X3lnn2rttWMaeMSzXgg00\nx3IYmqM5bJarAUNzFUfpnyVDoSOOL6SIUEj6qvQ+v99MZyql0JtSPCUpMkLKCgDAYLK5AwBw\nH4BIACQAIgGQAIgEQAIgEgAJgEgAJAAiAZAAiARAAiASAAmASAAkILVIl5ssy1ZnV1XpwcXv\ng9cYsI7wOAD4kbZq7fOsYiNLDy1+G54HIgEGJK1a11lWHosOuzxbx8WBSOBOkrRqbbPL+uUq\n28WUAJHA3SRp1VIq6q46uYsvYYRFIBIYi8QiHZTXRVtzL9ZZtt5Xb4//F++31/Kz3TYXzRPX\n5Scl7XLNAmfHk8amoAtjpWYx1irkYrtq1sPZSmkPOWzFFd3eylIWstdWR6wcAElSkdbZ+qBN\nqCr5WgpyVntxVr7Ny/q6qZsnrjpEEpX9rC1oba9DLcZchb7+67pB5LxQ3u2oQnby3UorJe7i\nD9xzkoq0F/Xs4kopvarkx6NRsV9ltRfZ+aG4WmXb45uLbCWOBsc//et2AUukfFcIQ9dlQVdr\n7bSxnMcqRllFtVi9/m22PZZ1uJBlr7L1lVg8u6YKOa63eUuuHABJ2quGnfz7vjqrWhrKyrrP\nVvJd3hyRinJyXoiKLL07NGdxyj+NSOey9Lqgdab83FTOYxWjrGKnr1+7UNpVB5gLsYBVSHVA\nKxtO6JUDIEl8+X24XKunQ2WNPKsb8HZ1BW2uQdQgXSLJCr6tq/BeelJo8+pLKKvY6uvP2qbF\n9rNDqZxZyEW93Na1cgAkI7RjXV2IS/ZcnItVR4vqwkk/6rQGHPYXm7xTJPlu1YStjw49xZDr\nP14p5dvLalKe6Rd1eiHX9XK5a+UASEZqED5eWIi/28a5FCXS4ay++Fc+o0XKFJRv4C6GXr9s\nUlidH7TP3IXIV/TKAZCkrBRqDZPnSv0iHcTBa3Nx1X1qV79zikQXQ6+/uBLt3/IKSJPCUQhE\nAv2krBR2G0D/qd022xzad90i5WTYjmKM9StqHHZnZUO2VqRVSJN75Vo5AJKU1eNcaRm+Kq8k\nqIt9+nCxp0S61hfYkO1lHcXQ668oC6+LLA+gViHNcmeulQMgSSnS8dSoadBal01eZY28qq/O\nVx0irbXPcllrz/QF6rZqvf9RRzH1+nN1/XnVhlC6c6k2f1uFNLmvXCsHQJL0hOX4J3+1E792\n7layEtZX9+UPomuqJWBTdoYoP5MX/5VBq6vicG60wVW/iYrfUs0ffa1ilM+OH6527frPyp9Z\nxVvx69Qq25Q/xYrFrELqH3K3zpUDIEl75r9rxiOt29+R7C5C1arFv9fV/Ef1hEJbeS1fddwx\nzgWL61U9t/oNiGKMFvZq/efy7bqOWBapdBGyCpH9jKojELlyACSpL6Evxa8w+Vbt2VDYnVaV\nD6+P7uRn18cLk7K+infVVGuBqqB8qx0SqGIMkYqdun45indTRSy7sFYlWoWIn5e3jTjEygGQ\nTNkWdbhbVxdo5gb+TFBZmmbk86rP3B0BIgF/Jqgssq2huNrKbkN3BogE/JmgsjQDgPK7dZkO\nkYA/k1SWC3F1vz6/U8cjiARCQGUBIAEQCYAEQCQAEgCRAEgARAIgARAJgARAJAASAJEASEBC\nkTIAlsYoIqUryuBro5UcDqMsiEIyZRaIFA2jLIhCApGcLHU39YAoJBDJyVJ3Uw+IQgKRnCx1\nN/WAKCQQyclSd1MPiEICkZwsdTf1gCgkEMnJUndTD4hCApGcLHU39YAoJBDJyVJ3Uw+IQgKR\nnCx1N/WAKCQQyclSd1MPiEICkZwsdTf1gCgkEMnJUndTD4hCApGcLHU39YAoJBDJyVJ3Uw+I\nQgKRnCx1N/WAKCQQyclSd1MPiEICkZwsdTf1gCgkEMnJUndTD4hCApGceG+a54LRYpQwqjKI\nQgKRnHhumucNoyVhVWUQhQQiOfHbNM+fT2ESoyqDKCQQyQlEIkEUEojkxGvTNAKNaxKjKoMo\nJBDJibdI5qu5skwDopBAJCc+m+Y5RJoRRlEgkhvfI1L7CiJNC6MoEMkNTu1IEIUEIjnxb7Wr\nX4wWhVOVQRQSiOQEzd8kiEICkZxom+a5A4g0I4yiQCQ36qZxOaKZNFoSVlUGUUggkhNl07gl\neV6g0+psMIoCkdyoIjlnGlmgGkZVBlFIIJITiESCKCQQyQlEIkEUEojkBCKRIAoJRHICkUgQ\nhQQiObFFKtvmfu2bz7/5K+YnY8OoyiAKCURyQov0a2Vj968Yn4wNoyqDKCQQyQkt0jef/4Pi\n159/w/hkbBhVGUQhgUhOHKd22guINCeMokAkN26Rfv35LxufjA2jKoMoJBDJiVOkX3r+S+Yn\nY8OoyiAKCURy4hTpl7/ZmgSRZoRRFIjkpuMa6deaczuINCOMokAkNx0iKc0Oo63elWVuEIUE\nIjmhRfrG898pIBIPGEWBSG5okX75+Z8pil95/m39k7FhVGUQhQQiOaFF+p1viJ4N3/ht/ZOx\nYVRlEIUEIjlxXCP99refP//2bxufjA2jKoMoJBDJCXp/kyAKCURyApFIEIUEIjnxvvnJBDCq\nMohCApGc+NyOCyLNCaMoEMmNcYNIapax78LVwKjKIAoJRHKibxr6PqtTwajKIAoJRHKy1N3U\nA6KQQCQnS91NPSAKCURystTd1AOikEAkJ0vdTT0gCglEcnJfdtPtbbIYAkabpY6S+BtGAZGc\nMKoxA7LclrCIkhwZJfk3jAIiOWFUY6Kz3DbMHmUERJQRvmF0lqmASNHEZbnVmDXKSIzyDaOA\nSE441ZiYLLcWs0UZiZG+YRQQyQmjGpNIpCT1jNFmGekbRgGRnDCqMRCJBCJBpEAgEgVEgkiB\nQCQKiASRAoFIFBAJIgUCkSggEkQKBCJRQCSIFAhEooBIECkQiEQBkSBSIOjZQMHII4jkhlGN\nmbqvXdfcCTfL8IpvfkOyRO/VUDPe3PgtC5Gc3H2RIvtGdy+RbLMMP4aYvb/JEr1XQ814U+Kb\nZSogUjQTjkfqO4Yl2iwpTsf08Uhkid6roWa8afDNMg0QKZrJRsj2X3Mk2SzRJ51kFF0jpUTv\n1VAz3mj4ZpkCiBTNRFlubcaI4rEWL9ooZIneq6FmvLHwzTI+ECma+USyKt8oIsWZ1CXSrdeX\ncS18S4jUbRJEcgKRIBJESgBEgkgQKQEQCSJBpARAJIgEkRIAkSASREoARIJIECkBEAkiQaQE\nQCSIBJESAJHIqoeeDT1ZxgciRTNZlv6ad0f62pU133s15oy2Sr5ZpgAiRTNhlr6adyd6fze1\n33s1ukbmUck3yzRApGgmzdJd8+7AeCTtQOK9GreQvlmmAiJFM3GWrprHfoSsdWkTNELWLBEj\nZAezYJG6YBTl1oJqJPA0wVmiHxDJCaMawykLoyh2tSebrQNMokr0AyI5YVRjOGVhFAUiQaRA\nGGVhFAUiQaRAGGVhFAUiQaRAGGVhFAUiQaRAGGVhFAUiQaRAGGVhFAUiQaRAGGVhFAUiQaRA\nGGVhFAUiQaRAGGVhFIWq9YM8Qs+GMZi7xqh7ce4sCoyi+Nxq+IbuLvf2rWeJvirRm2V4b0IK\niBSA/geRUe1lFoU6dhga2UeltyWOUnWNfI9K1GYJO6b5A5G8Mf/MMqu9TNDHI6kYGukqvW1w\nlKtr5CeDvVnCTw99gUie2Kfp7GovC9QRsiaGRq1KbzUcJTufb9GbpS0h5krLD4jkxa3NTElI\nGIrkgGp2eGvhWDh0J+hZxt2FEMkLQiROJt0ZkciGcFskh0mhO0HLMvIuhEheQCRfIBJE6gAi\n+QKRIFIHEMkXiASROoBIvkAkiNQBRPIFIkGkDiCSLxAJInUAkXyBSL61/9lpnp9+rE558ig/\nefySLDQ1EIkEIvVn4SbSs7zkSTvltJxw8ilVaGogEglE6s/CTaRH+UdF8VGeNxM+zE8/LV5+\nkL9PFZoaRiLNlITkzoiELkI1z+Sx6LHQSfIoL8/qFLXuoUjotFpB1T6tSgZ3Wn3zxu60+kZM\nNBHTzJ3QbQPnTquP8xfinxf5B8YH+QlVaGowjIJkqihUDTSqZeAwijcl+jCKN/VElXqaoVGn\nEZyHUZzKA8/L/JE2+dPT9hB1X0Va/MA+qhZaf+GDBva9aWgH9r1RJ9ao0wyNOqzgPLCvPoNT\nz+TEu1xtx8u+dj+pTiXmjjEH9nmRPY2cKKdZ10W6RrVK5rQ3cmlzmj0yyX+vyKXTb6AkIr04\nfT8/UUy6r0ckHUZZxo9ya+FogaGmUU11pjKlIfY0cqJv4w/nm5/QR6Tjud5p/iywqBgYVV5O\nWeYQyfGIcmoa2ehNSUNMIyd6tmXfRZGKF/lpYFExMKq8nLJApDsn0vu1SKfmJ4paEGliINKd\nE8nZ/A2RZgQi3TmRqh9kn7StdCfyB9mPFbUg0sRApDsnUt1FqP359Ul+ejTp2Yk8VIUUFQGj\nysspC0S6eyK9kJ1Wy59f5dncqdWNFSJNDES6eyKpwyiqy6IPH+X5+8+UWSDSxECkOyhSUKGp\nYVR5OWWBSBApDEaVl1MW9Gy4cz0bAgsdjLGBRto09H7o4X6K5NwStjHU2BJiRoGlEdXX7t07\noq+d3QGvKH7wA2LVRHCIVGP9rRll07j/pHVyH0Xq3BL2gSdl7+93JUbvb7tLuNBIYKyaDA6R\nJMT+GGHTdJ8ddHD/ROrdErY+qcYjvWtQxiPZg5RqjTSVnMEhksA8dJck3zS35Gq8uG8ieW0J\n+4QuxQjZdxrVCFl72KyqUaNSR3CI5Bxgn3jT2GsJUOl+ieS9JXpmjLhnwzuLgr6Rww8suvNA\nJGcVH18kf5Puu0iOLdEzY8RdhGyR3lF3FnpLiPSDzl0IkSBSGBAJIjmASCFAJIjkACKFAJEg\nkgOIFAJEgkgOIFIIEAkiOYBIIUAkiOQAIoUAkSCSA4gUAkSCSA4cWwc9G0jQs4HMA5EE5MZB\nXzuSwVE6u6ypiIpvzqjNHdzX7vVru69dqY2p0eef233tiMFJyqohkmSavzGRGt0nkRQj+jSS\nld/QSF0isPf36xK993ejjq6RQO/9TYzz01YNkWqs/YHxSCSDojhqoY0qgO1ezHik1w3teCTt\nKKRrpKpkDFwi/xZApBaMkPVhQBTneZGJeUo2fITsaw05Qta6LtI1qlUihtJ6n52OA3eRDBhV\nXk5ZoqPcWjhmpBoJ7IVtt8ppVFOdoZFUiWqqMzSSKtn3cbCulSZWCSJFwyhLQpEclY9ygVg4\n4C5Ctkiv6UZvW6TP6dsNeX+ZMYBI0TDKApEgUhiMKi+nLBAJIoXBqPJyygKRIFIYjCovpywQ\nCSKFwajycsoCkSBSGIwqL6csEAkihcGo8nLKApEgUhiMKi+nLBAJIoXBqPJyyoKeDejZEAaj\nysspS38UslJR3dNEHbeghj8QKsnucrZaRF87gamRwNLo1Su7r52YZmkkJpqr/uEPozdpKBAp\nGkZZ+qKQf5/tY0jbLVujVUfVyDoqtR247SOU0fu7xtRIYGgk0Ht/19MMjeREXSPBgM0aAkSK\nhlGW7ijkqU53ZVdmpPQhTvD0IUVuSQ1LTY0EhkaqSvo0QyNVpVqjyVSCSNEwytIVxTzdISfa\np1/VjNQJnTnN0KhWiTptJM4bTY0Ehka1SvY0Q6NaJVWjiVSCSNEwyuKOcmvhmHhjUdATyRmp\n2y6Qq/bmlQU9jZz4Q4tBm9cHiBQNoywhIjkeomz7cUM3W1PTiPsAvRvWGm3rcRTEc9orQqTR\nTYJI0TDKApEgUhiMKi+nLBAJIoXBqPJyygKRIFIYjCovpywQCSKFwajycsoCkSBSGIwqL6cs\nEAkihcGo8nLKApEgUhiMKi+nLBAJIoXBqPJyyoKeDfrE6T1atEgDx6vMJ5IVfHBfO4FpB+EX\n3SnvluprRw+oILY41deuvLe3acfXv25P++53v2tP/OIL9LXrI2HlDf8jaTCXSETwgb2/aww7\nzEMV3U28mVHXyDwqOZ5VQPX+bp42oWsk0Kd9V6JP/KIEvb+7SVZ54843xskSBBl80HgkFcMO\nVRt64JI2o66RqpLj6TnUeCTt+Ue6RqpKjUaqSrVGqkoR2ziGZYpknnPMmSUIR/ABI2RNyIGv\n1OPFnCNk7Wslx2MrqBGy1hP5dI1qlTSNapVUjWqVIrZxHEsU6dZivixBOIMnvnQkVuM3zbpW\ncjU73NL3bKAeEmtoJFX6ro2pkVRpMiBStEmTi0Tkvh0hCrkaz2m35JOVyRmpuwgRIv2AEOnr\nlEjfJUSa0CSIBJF8VgOReoBIEMlnNRCpB4gEkXxWA5F6gEgQyWc1EKkHiASRfFYDkXqASBDJ\nZzUQqQeIBJF8VgOReoBIEMlnNRCpB4gU6xF6NpAzEh6hZ8PwQl3EdnBDXzsyeGQU11e3Kj3V\n147sQiduNWxq5OyUZ2okbj9safS979l97T75hOhrZ6skS7Sg7ps8cERNMZNI8fUXvb/J4FFR\nur6+oZHd+1v/t9FI3vxe16ijm7iukbwhvqGRQO/9/UmJ0fvbPiq1JWo0YxE9t4QvM4g0pA5j\nPFLEeKSOUnpVoscj2Urdqs9jaU3pHbika6SpVGukqlRrpKmkOtWOR1JLbNCG9XpuCT8mF+lW\nI7RkjJAVWMGDo/jsBUOjdoSsubChUa2S51BaXaNGJVWjWiVVo0Yl8yxPjpA1Sywx8/huCR8m\nFunWIqxkRvdJ4JQlMIr3XrixcCxMPbKSWphsi6AeY2loJFX6xKKg2h0cJXp/mShmFyksOaPK\nyylLWBRiJ9B7wa569COY6YcoUwsTjePvyAfC2h4dTbJF+oRuCKdK9P4ycUCkaBhlgUgQCSIl\nACJBJIiUAIgEkSBSAiASRIJICYBIEAkiJQAiQSSIlACIBJEgUgIgEkQKK5lR5eWUBT0bNI8W\n0LOBVV+7gTDKMkpfuxv7IS50X7vSBlsje+Hyf6ZG4rbCZqUve52aGtkqFcWXvvQlu6/dt77l\n6L1n57mzfe0EQ2IzqrycsozQ+1ut/cYfcH3hxgj7aKQv3LzQNZI3ujc0+sJQqR1QYWj0JUMl\noZHA0Z/cznNne38L4mMzqrycsiQfj2QeSKwaZ2ikqkRXV61EXSNVJW1wXquPfYLXaKSqVGuk\nqmSMcOr6+zCEZY6QTQKjLIlHyOqnQI5zIGJcuRwhSy1slahrVKtkDReXJ3T2tZKmUa2SqlGt\nEjHm1nXGOowl3rMhEYyyJI1yY0NflVMtcJ5Py7yhH09J3r6Eanb4ko2pkVSJvAsEFWcoECka\nRlnGFoluJybbsqmFyRKpByYTIn1BtYRTIn2JEOlb9H2JSLEHApGiYZQFIkGkMBhVXk5ZIBJE\nCoNR5eWUBSJBpDAYVV5OWSASRAqDUeXllAUiQaQwGFVeTlkgEkQKg1Hl5ZQFIkGkMBhVXk5Z\nIBJECoNR5eWUBT0b0LMhDEaVl1OWxFHIWmZqZA+JeEffqJgYmySXNjUSM1oaiTsamxq9ekX0\ntRN3NLY1IvraiVVRcYYBkaJhlCV5FPKPta6R/MzQyDwqUT3ClS7hukZyRkMjeY99XSOB0fu7\nvse+fTQyen/Xq6PiDAEiRcMoywhRyHMeXSNNJfphLsSIWX1pXSNNJf2pL7pGmkr6U1/skzpl\nPJJqLhUnHogUDaMso0Qhaxb1hApDo1olatQsMYJB16hRyX4Oma5Ro5L9HDL72qgaIWueS1Jx\nYoFI0TDKMmWUG4uCvhUDdR8HcmlyRurJmK8sCvrJmFQLA9m6QX6ZKCBSNIyyzCuS4+ZAth/k\nnYVuyBmJRzW/JkR6RT2q+etkWx3R3P7DhA3hECkaRlkgEkQKg1Hl5ZQFIkGkMBhVXk5ZIBJE\nCoNR5eWUBSJBpDAYVV5OWSASRAqDUeXllAUiQaQwGFVeTlkgEkQKg1Hl5ZQFIkGkMBhVXk5Z\n0LNB8wg9G3phVHk5ZZk2ClnzTI0Elh2upckZTY0ElkYCUyOBpZHA1Mj5ZSKASNEwyjJKlFvq\nhthyml7zqrqvayT/r9tR1X196aYMe0Zdo/IhR4WuUdnPW+/9XRRf/ar4v65R9Y+uUR1AjUN+\naw8gUjSMsowQpRl5ZE8UrzSN3moq6a80O15pKlHlGDOqGlXPCys0jb6lqSRefbVEvNI0+oGm\nkisE+a29gEjRMMqSPIo2FtaeKN6ZR5JKJfl/9dik2dGqJP+vH9mIGVWNWpXE/7WxsHKEbK1R\nq5L8v3ZwUjXSD4vkt/YEIkXDKEviKNbdGeyJcprdRlDQV0t2G0FBX56QM1pPsSysGzTIiV/V\nkNPsVgfHqslv7Q1EioZRlqRR7PucWI+7lNOoZmuy/Y5qtiYbzMgZqQfCUjcMMjSSKlEN4eSq\nyW8dAESKhlGWsUW69X+WOfWLEuHHK/InHHJGW6Q3lEjfIkT6qv/tuMhvHQBEioZRFogEkcJg\nVHk5ZYFIECkMRpWXUxaIBJHCYFR5OWWBSBApDEaVl1MWiASRwmBUeTllgUgQKQxGlZdTFogE\nkcJgVHk5ZYFIECkMRpWXUxb0bEDPhjAYVV5OWeboa0eoRD3rRc5I2GF3eBPTrBlFp1VTIyED\noZHd1+6zzzwf6+L81t64RLralu+vt1m2vdI+eXaa56cfq1M+PE559CFZaGoYVV5OWabv/U0c\nlahnvbQzEgcZvQt2Pc3QSA6j0DWSQhBHI73392clHo916fzWnjhE2mWZeH+VleyUT57lJU/a\nKadyyilVaGoYVV5OWaYej0Sc4FHPetFnJM7VWvfUaYZGqkr6eD3ipK5V6rOGnse69H5rL2iR\nDnl2fjj+u8rOiuIiyw/tR4/yj4riozxvJjzOTz89+nWiuAWRJmbaEbLmKZChUa2SPSNxySPP\nBs1phka1SvYIcuLaSJ7kfabR8VgXr2/tAS3SRbYV/1yVh6Vim100nzyTvjwWOklOpFMv8hOy\nqLQwqrycskwZ5dai8L18L+iWA2oaefMTquGAbGL4zKKgb36SDlqkTVZeF1U+7bNN88nj/IX4\n50X+gVmScpCCSBMzr0i3/g9Ct505WkNNI2/HRTXBEW3eXyVE+oy+HVc6aJHkkejo04X6VnAq\ndXmZPzJLUqZApImBSLxFyuSBSRWpPu4oxx/Jx+o10tfAfeV+iZRuu3SJdF0L5CPSo/YSCUek\nqcERiekRaZ1dH/9/ma3Ld1fZqvnEJdL7+adUoalhVHk5ZYFITEU6Ky+ONtl5+e5cNIJXOER6\nnKs/0UKkiYFITEW6yvKr4wEpK38/uq4vlQTv1yIpv7+aHkGkqYFITEU6HoQE5QFplyut32Tz\n98vTk2eOQlPDqPJyygKRuIpU7FbZqmz7Pvq0VqZXP8g+UQ5Bn56cfKotC5GmBiKxFamdvN5p\n76suQm0b3cuTE2uZROFsGFVeTlnQs0HziE/Phg5eyC6qZQ+hssXhg7wmtKgIGFVeTlkGR6E6\nmN3QXdHsLnRl91RTI2GDOeMN1a9OdNQzp5XamBp9/rnd1668cb6p0Ve+Yve1K/sDmhrRnQmn\nehqFMoyidCeHSLMzMEpzvFBojKBmNDR6Z6jU9tU2NLq5MXt6113HDY1eGyoJjQR67+/mUS66\nRgK993fTQ13XyP7Wt9RELzp7NjjeBhSaGkaVl1OWQVG0U68K7eBCzWhopKqkW2FopHumDmYy\nNFJVqjVSVdKeL9YOnvhKQzseSRszpWukf+tbaqInPV2EtLcRhaaGUeXllGVAFOsqprCueOgZ\nDY1qlezzNEOj9szPHF5raFSrpGpUq2Q98VIOnviKhhwha43i1TVqv/UtNdEbiBQNoyzRUW4t\n6KctkzNS9zkhWw7IEqkbPlBNdYZGUiXqCcyGRlIl8r4S1Jexp6W4ZwNE8oBRloQiBbRlEyK9\nI9uyyRKpKk42etsifU4/y9wW6Sv0nY6oL0NMS3AXIYjkAaMsEAkihcGo8nLKApEgUhiMKi+n\nLBAJIoXBqPJyygKRIFIYjCovpywQCSKFwajycsoCkSBSGIwqL6csEImtSAZhuwciTQxEgkhh\nMKq8nLKgZwPTng0DgUgTM3ZfO2rwhMDSSHxga0SUaKvk6GsnPjA1Ejc0tjQSE02NxA2NLY2o\nvnaESoHbESJFwyjLuL2/7T/a7YyGRvJD+2hklGgflRy9v+sPdY3kLfYNjeREXSN5i31DI7v3\nN3FUCt6KECkaRlnGHI9E1TgVQyNVJX2MkvlCUckxHkkVQNdIU0mfqGukqUSPR7K/YLrxSAOB\nSBMz3ghZ6hzI5B315AnqSWLmoalSyTFC1jwl0zVqVLIn6ho1KtEjZO0vONUI2aBCU8Oo8nLK\nMlaUW4uAGakWBnIi1T5BtkVQD8YkJ1IPxiTv2eD9BXuhRcrRatcPoywjRbGrmaOikTPaztzQ\nDeFUiznR2vaWfMQsMe0V+YhZ8i5Cvl+wH1qkDUTqh1EWiMRUpItsdb6PLLGASJMDkZiKdL0V\nJ3fby4O9QFihqWFUeTllgUhMRTpydb46uhR3YIJIEwOR+Ip05HAprpXy7S70wASRJgYisRZJ\nsD/Ljbt/BxWaGkaVl1MWiMRepKK8nz5a7QgYZYFI7EXan61wRKJhlAUisRbpcLkV10hnO+sT\n70JTw6jycsqCng36RMKjeXo2FHWr3fr8qggHIk3MeFHMWubd147uVvfWr69dWaKpkZjZNOaT\nTz6xJ37ve3Zfu/IDUyOqM+EN9QwODzp+R4poriOKSgujysspy5hRdI3sP9pk7+/aEkOjt4ZK\ndO/vpkRdI7mAodEnhkpCI4He+7v5UNdIlkgcRSM2E3o2RMMoy7hRdI10lcjxSKophka6Feo0\nQyNVJb1EQyNVpVojVSXtiNWOR1JLJE5GgzcS+tpFwyjL2FGCRsia527EuHL3CFmrROps0NCo\nVknVqFbJuoaSI2TNEsknZgSB3t/RMMoyfhTqqpy8Z8ONhePGCdQ071zPvgoAACAASURBVBI/\nsTE1kipRbXpkifa0MJUwHikaRlnmEMlxFyGqQhIivSXt8i6REOkTQqTv0a3jVInEtCCTIFI0\njLJApDskUsD5HUSaGIgEkcJgVHk5ZYFIECkMRpWXUxaIBJHCYFR5OWWBSBApDEaVl1MWiASR\nwmBUeTllgUgQKQxGlZdTFogEkcJgVHk5ZUHPhjvUswEiGTDK0h8lfqBNW4KuEaESPXjCHhLx\nVi5ta0SUaFd8OU7C0ojqa0eoRPe1s3v03QRuM4gUDaMsfVHqyj8MXSPrqEQPnqg/MzSSS9tH\nI6NE+xjSjpMwNJIz6hpZRyW693cdwdAoaJtBpGgYZemOogowDF0jTSV68IQqhaGRqpI+o6GR\nqpJuiqGRqpI+o6GRPh5JtdnQKGCbQaRoGGXpimKekg2DGlBBXMnIkzzzNM3QqFbJntHQqFbJ\nPnf7xDVClrhWokfImueXhkbe2wwiRcMoizvKrcXQdZEl3lhQLQeOpckZqUYCqjXBf0bqng1U\ni0fcNoNI0TDKEiLSUJOoEm2PjibZfryjbzdEzUi0tr3yb9+mZiTvIkS1J5IZe/ER6bDfhG1r\niDQxEImzSPs1Rsh2wSgLRGIs0lWr0SrwRigQaWIgEmORttn6UOTZobjIzgO3NUSaGIjEWKQs\nuxa3E7oqirMMRyQCRlkgEmuRCnGDu8uiOGRobCBglAUicRdpX57WobGBglEWiMRYpI04tTtk\nqwIi0TDKApEYi3SZrY8mrbLd8RoJj3UhYJQFPRs8ZiQ8mqZnw1ociPZl+zcaGwgYZQnpa+ft\n0o1rRI5Z4g395Am7C90N1Y/NvlFxNaNpBzVO4vXr1/aM3/++PWN5W3FTI+qZF+Q39KCrZ8OF\nOK3br7LVpd+W7ygqFYwqL6cs/r2/vetGY0Rfic2MukayWhp23NyYPavtW+crM+oamQebUqPX\nhkpCI4E+Y/OgC10juTpLI/MbeoE7rUbDKIvveCTvP7PawaWrRG1GXSNVJcdYH/thLsaMukaq\nSo1Gqkq1RqpK2tOX2vFIqrmWRuo39AQiRcMoi98IWe8Tf+tyx1WiNSM1MIEYLi6Xth8vRsyo\na1SrpGlUq6RqVKtkPQ9QjpA1zyUtjepv6E1X87fCahvy5D6INDE+UW5t6BlvbAJmpC7fyRmp\nB16SM1KtCa9tTI2kStTzaenWjYF4inQk4EIJIk1MpEi0SURtpk0iZ6QalMkZqSpOzmiL9IoS\n6TUh0veptbyh77EykI5Tu12+Ea11+22+Kw4XWeZ/TIJIEwORGIu0z7bVq61o/r5o3oYUmhpG\nlZdTFojEWKR1Vj+KuezecMjyiEJTw6jycsoCkRiLpPQLKl9iqLkBoywQibFIuXJEEgcjiGTA\nKAtEYizSVrlGOhOXTKuIQlPDqPJyygKRGIt0nWdVq12WXxeHdcA4WYg0MRCJsUjFPq9+QTp6\ndDyxyw/mDB6FpoZR5eWUBSJxFqkoLjdHjTblL7HZ5jqm0NQwqrycsqBnA+OeDUkKTQ2jyssp\ni18UL40EVl2mZib72lEPmXB2yjPrN/lICDHR1EjMbGn0+ed2XzvRrY6w1e5rN3yYFkSKhlEW\n3yheGgkMO+wF6mnkjLpGxIz2UcnxSIh6oq6RXMDQSKD3/q47ehMHPb33t88W6aN3PFJRrC7i\nC00No8rLKYt/FC+NBIYd+kLqNHJGXSNjRtUUXSNNJX2irpGmUq2RqpI+9Ig4d2zHbfj+cemm\nb4Ss+CB0pDlEmpqQKN4VxrCjrWnmNHJG6sEThka1So5HQpgTdY0alVSNapXswbDEJZgct0F9\nwRjcIl1ka9lN9bDOAo9JEGlixopya+G4o4H3jDcWjhsnUBOphgNDI6kSdXsGctVkxijcIq2a\n7t5XAb/FkkWlg1Hl5ZRlpCh2NTtWNM9p9Ix2ZXa0mBPT3pJNcLZHR5OoGwaRq6YyxuHf1y6q\n0NQwqrycskAkxiK1fe0gEgmjLBCJsUjbpk9QyFAksqh0MKq8nLJAJMYiXWVZeaOGq7OQwbFk\nUelgVHk5ZYFIjEUqds3tGnbRhaaGUeXllAUicRapOJyLZ/atz/17qzqLSgWjysspC0RiLVI0\nEGliIBJjkdTmb//bNZBFpYNR5eWUBSLdEZHQ/E3AKAt6Nmge8erZ0Nqzh0gUjLKME0UMQ6Jq\nma2RYyI5o1mXC+qREGKAkDXxC7uvXfH9wu5rJ5a2NLJVcmSMhBYpN+6yit+RCBhlGSNKU9mI\nWmYfjRwTyRl1jWQXbF2jaqydrpFA7/1dVB29C10jubSukXVUcmSMhhbpUvcoZHSsWVRaGFVe\nTlnSR7EqnGM8UmGZYkwkZ9Q1UlXSpxW6RqpKhTL2qGjHI6lL6xppKjkyDsDrGim+0NQwqryc\nsiSPYp4COUbI6mdG1ETXjHL4uj7YWz4S4h018YsvFJPKkRf6cNhCjpA1SyzVKYyTPLlqKuMQ\nIFI0jLIkjmJflDu4NaAmumek7ptA3kzhC51ymn17BkeJRLNDwKh7b/A7UjSMsiSNYrduOVQy\n7SirpOc0+hHMxLR3pkalSsQNg75Plkg0hP8wYaN3C0SKhlEWiASRwmBUeTllgUgQKQxGlZdT\nlrsm0nsOIJKr0NQwqrycstwxkd57j14zaRJEGgNGlZdTlrsmkmvVEMlVaGoYVV5OWe6NSIRJ\nEGkMGFVeTlnui0jUIQkijQGjysspC0SCSGEwqrycskAkiBQGo8rLKcvYItEzkvXRZ1qISFYH\nIeER+Sgk8mktlEcJRyG1QKRoGGUZt6+de0ZCGZ8hTJVIdSv4T7ZimSLJEk2NREdWSyNbJXm7\ncEsj6k7lXV/SD4gUDaMsY/b+7p6ROPL0DWG6LXSRflL5Wek9o/92XYqukRxaYWhkHpXaB1gY\nGskvpWvU/0X7gEjRMMoyQhQvjQTECVzXECZRbzWR/uB7qkjic0MjVSV9sJ+hkaqS/kglQyNV\nJWOwXzQQKRpGWUaJ4l2zbqkTOnoIk6y3qkg/9mN/UhepUskuUdeoUcl+Tp+uUaOSPdRc12iY\nShApGkZZZo9ya+GYsayuqkg/2V4rFZVIztupkHdJoZodqMfOkjc/8W1X6QciRcMoy9xR7Frv\nMOnGEqmgRHJ0GLdFeks3hFMPQredOVpDTYsDIkXDKMvcUSASRIqHUZa5o0AkiBQPoyxzR4FI\nECkeRlnmjgKRIFI8jLLMHQUiQaR4GGWZOwpEgkjxMMoydxSIBJHiYZRl7ihxIhFAJEehqZm7\nxqgwyjJ7FB+PyvsE+YnkKJHwCD0b4pi9xigwyjJvlFufvnbtPbc6RHqvWviGGupgq1TNaGrk\n3dfOVil+I0CkaBhlmTOKUtFvjdfKXOrd67pFUjqeUyUaGt0YKgX0/raPSkM2A0SKhlGW+aLc\nUpWdOMFTRSoc97V77z2jOzZdoqGRqlLAeCRKqSFApGgYZZkrinUV4xohKwVqX9A3WrVGNdzQ\nJRoa1SoFjJClTvKGES7Ss9M8P/3YmPhEe1wzRJqYeaLc2riaHWqPlFfUHRZubOgSyRm979lA\nLTyUYJGe5SVPtIkf5xBpTtiIRN9FqD0gdYr0zv/J4+SMVInkXYRIDQcSLNKj/KOi+EgX58Mc\nIs0Kd5GKdjg5RJI8k8eix0Knihen+SOINCt3QSQckTQe5y/EPy/yD5pJef64gEizwl6k1p/G\nqIWLdCqNeZk/aiZ98KKASPNyN0Rqmr9LFi5SbYxuDkSaF4h0T0X6Grj/+Isk5m49qpZmJtLQ\nrYEjUjSMsvA/IhVaG7iAmUhDgUjRMMpyJ0QyWLhI79cinWqTIdKssBEp4FaRRK1fUs8Govlb\nAJFmhXVfO7KaKvf4VjQiutBRAyrevCFmFBOpEi2NUt6ouCXyB9knud7bDiLNCuPe32RVrT+0\nj0ZGp277qCSMERgz1hOpEg2NzGNamg0R20XoRJ8KkWaF7XgksrqqM9ondcowI3WirpGmkj6R\nKtHQqEPxaIJFeiE7rZY9hFp9INKsMB0hS55AmTPa10bVwFdzoq5Ro5I9kSrxh/aT+lIMnmgZ\nNIwCIjFh9ii3Fo5Leu8ZqYlvLAp6oveq04GBfdEwyjJ3FLuO0k3U/jMS024IZ95Q0974rzod\nECkaRlnmjgKRIFI8jLLMHQUiQaR4GGWZOwpEgkjxMMoydxSIBJHiYZRl7igQCSLFwyjL3FEg\nEkSKh1GWuaNAJIgUD6Msc0eBSBApHkZZZo9C1VGiMqNnQ2yhqZm9xigwysIgillFvfvaCcgZ\nzYlUtzrCL7qvnXPVqYBI0TDKwiKKrpF5sHHMWEPOqGtkHpUCen93rjoNECkaRlmYRNE1UlVy\nzKhCzqhrpFoTMB6pd9UpgEjRMMrCJkrQCFkTckZqQEXQCFmvVQ8HIkXDKAujKOkv6W8sAu7Z\nMBkQKRpGWRhFsUUaahIlDTGNvovQZECkaBhlYRQFIkGkQBhlYRQFIkGkQBhlYRQFIkGkQBhl\nYRQFIkGkQBhlYRQFIkGkQBhlYRQFIkGkQBhlYRQFIkGkQBhlYRQFIkGkQBhlYRQluUfo2TAG\njGoMpyxsolB97bxxVnxbI6KvHfV8i3G61ZFApGgYZWESpVYnUqOOY4h9NDJ6f9er0zVKcUD0\nBCJFwygLiyiqPpEa9arkeGyFumpdo8lUgkjRMMrCIIp5QhepUadKjsdWmKvWNZpIJYgUDaMs\ns0cZ1MTg3UhAtTCQqx4UJw6IFA2jLHNHsStuSNX1bram2urIVQ+KEwdEioZRlrmjQCSIFA+j\nLHNHgUgQKR5GWeaOApEgUjyMsswdBSJBpHgYZZk7CkSCSPEwyjJ3FIgEkeJhlGXuKBAJIsXD\nKMvcUSASRIqHUZbZowyquL4eoWdDOmavMQqMsjCI4lNvnR+YGjlnNDV6R/Wro/rfDf1yvbNA\npGgYZWERxUMj94eGRu4ZDY3evTN7etcfdsV5KAj8Yj0zQaRoGGVhEsVDoz6VPGY0NFKX0j3r\n1MjbJc/jGkSKhlEWNlE8NOpSyXNGYlw5/WQzsoCHDwNM8j5FhEjRMMrCPMqtDb2w94xkQx/Z\nFmETIJJvnAIiDYBRFuZRCD/oGuk9IyHSO/qOKBaNQB4meYsNkQbAKAvzKOxEMl+5gEhTwCgL\n8yhziPSwC1kIROIBoyzMo8wgkssQ9XwOIvGAURbmUaYXyW0IjkgljGoMpyzMo8wgkjPfw9af\nmFY7iJQeRlmYR+EnUnTzN0RKD6MszKNApEgg0sQwj8JLpIAuQhBpChhlYR7Fuz56z0h55C2S\nf6dVf48gUjyMsrCP4lsd7Rk9VTL62jXtcvLf39ta49/pm8jTMSNEioZRljsQxa86mjN6HpWs\n3t+6SH/0YbRI6P09Poyy3IkoXhppM3qe4BHjkTSRfv7hEJEwHmlsGGW5I1G8NGpm9DmreucY\nIauJ9Ht+dJhIGCE7Loyy3MMotxYBM2pHpD/88I8NFckDiBQNoyz3L4qtR0iLuSrSzz/8fQVE\nMmFUYzhluX9R0on0oz/6pyGSBaMawynL/YuSTKTf//CPFxDJglGN4ZTl/kVJJpLZiwEilTCq\nMZyy3L8oEClxUQaMagynLPcvSjKRtH8LiFTBqMZwynL/okCkxEUZMKoxnLLcvygQKXFRBoxq\nDKcs9y9KGpEIIFIJoxrDKcs9jOLpUXfPBgKIVMKoxnDKci+j+Gh0Qz154vhfx81PtDUkCwuR\n4mGU5Z5G8dDo5sZ88oT810OkzuNcMBApGkZZ7m0UD41UlRSl6GNSO7X3lDEQiBQNoyz3OIrf\nI8eqJ09o53juW6ymfg6ZACJFwyjL4qLc2AxsnxgKRIqGUZbFRSFEIp/LTC/tPWMAECkaRlkW\nFwUiDYRRjeGUZXFRINJAGNUYTlkWFwUiDYRRjeGUZXFRINJAGNUYTlkWFwUiDYRRjeGUZXFR\nINJAGNUYTlkWFwUiDYRRjeGUZXFRINJAGNUYTlkWFwUiDYRRjeGUZYFRLI0E/XY8oBmeByJF\nwyjLwqJIRSyN5EeqRpZLDmUSmASRomGUZVFRGk1sjQrFJGoMhtMXiDQjjLIsKIp2xLE0auag\nBxy5fRlsEkSKhlGWxUSxroEsjcq5XAOOIFINoxrDKctCong3trlmhEg1jGoMpywLiWL7Edi+\nDZFqGNUYTlkWEgUiJYNRjeGUZSFRUolUtnb/7I8/ePDln6qXgEjzwSjLQqKkFOln5S+xtUkQ\naT4YZVlIlJQi/fiDnyiKn3jwu6olINJ8MMqykCgpRfqRB/Ur9ZN4IFI0jLIsJEpKkapXOCLN\nD6MsC4mSXKQ/8uAPVK8g0nwwyrKQKKlF+tkf+XK9BESaD0ZZFhLF16O+ng2VSIpHEGlGGGVZ\nTBTTDs9jUj1VE+lPKB5BpBlhlGVBUQyNek/vtHF7qkh/6MHvVuaGSPPBKMuiohgadaqkjYFt\njBL//tSDL6vzQqT5YJRlYVGsJ7i4VNJGkz/Qjkhf1geZQ6T5YJRlcVFczXJGFvO+DIpIDyAS\nFxhlWVwUQiTCpMYUQyQCiDQfjLIsLoq/SNoriFTDqMZwyrK4KF4i6QckiKTCqMZwyrK4KN5H\npPKf/iPS8PtxQaRoGGVZXJTIUzuXSbiv3ZwwyrK4KH4ifa0xSTOKgLwZURAQKRpGWRYXJUAk\n4q7E1I3DhwKRomGUZXFRINJAGNUYTlkWF8VTpIL0CCKxqjGcsiwuipdHZRbqYRMjeASR4mGU\nZWFRRMXv16grS2qNINIAGGVZVJS68vdp1J0lrUYQaQCMsiwoiipAt0Z9WVJqBJEGwCjLYqKY\np2RdGvVnSacRRBoAoywLiRLaSDDlZoFI0TDKspAooc3WEMkJoxrDKctCokCkZDCqMZyyLCTK\n/RLp2Wmen37cOQUiTcxCotwrkZ7lJU+6pkCkiVlIlHsl0qP8o6L4KM+7pkCkiVlIlPsk0jN5\n5Hks5HFNgUhTs5Ao90mkx/kL8c+L/AP3FIg0NQuJcp9EOpVncC/zR+4pEGlqFhLlPolUXwq1\nl0T2FIg0NQuJEujRPRDpawCkx+5rR84k+t9Nng1HpGgYZVlQlN6jkdIj/O4fkRIEo2FUYzhl\nWVQUD40qlTiL9H6tzal7CkSamoVF8dCoc5zSGKD5OxpGWRBF4HUfh7GI/EH2Sf6xewpEmhpE\nEfjdEWUkYrsInXRNgUgTgyiCuyXSC9lFtewPJNsX1ClBRUXAqMZwyrL0KE8Fd0wkddBE1VCH\nYRRzs+woTxvulEhBhaaGUY3hlGXRUZ4+dZs0XQqIFA2jLIuOApEiYFRjOGVZchR5fVS/gEh+\nMKoxnLIsOUrtkXwFkfxgVGM4ZVlwlKcQKQZGNYZTliVHaTwiRJowBkSKhlGWJUdxH5EmjQGR\nomGUZdFRGpP0H2UnzgKRomGUZRFRntJo04s7Mx4psNDUMKoxnLIsIcpTx+SnhkhyhOy4WQgg\nUjSMsiwgisMj8YHh0fhZKCBSNIyyLCCKW6SnWhv4FFkoIFI0jLIsIIpTpI5PIJITRjWGU5YF\nRIFISWFUYzhlWUAUiJQURjWGU5YFRIFISWFUYzhlWUCUpvdCUTd5G59MmIUCIkXDKMsCoigi\n/QZEGgyjGsMpywKiKCL96tNfJD6ZMAsFRIqGUZYFRFFE+s7TP0V8MmEWCogUDaMsC4iiiPQL\nT3/1557+zG8Yn0yYhQIiRcMoywKiKCL9nLxG+k39kwmzUECkaBhlWUAURaSnT39VnN/9gv7J\nhFkoIFI0jLIsIIra/K2/gkgRMKoxnLIsIApESgqjGsMpywKiKCL9tLz71s/on0yYhQIiRcMo\nywKiaK123xHXSN/RP5kwCwVEioZRlgVEUUT6zZ8WjXY/Y3wyYRYKiBQNoywLiKJeI/3mzz19\n+ov/2vhkwiwUECkaRlkWEAW9v5PCqMZwyrKAKBApKYxqDKcsC4gCkZLCqMZwyrKAKB13EXIC\nkZwwqjGcsiwhivO+du5FIJITRjWGU5YlRHHcaLXDI4jkhlGN4ZQFUUggkpOl7qYeFhbF90ET\nEMkJoxrDKcuiovg/swUiOWFUYzhlWVCUkMcfQSQnjGoMpyyLiRL2QD6I5IRRjeGUZSFRbi3m\ny2ICkaJhlGUhUWyRuk2CSE4Y1RhOWRYSBSIlg1GN4ZRlIVEgUjIY1RhOWRYSBSIlg1GN4ZRl\nIVEgUjIY1RhOWRYSBSIlg1GN4ZRlIVEgUjIY1RhOWRYSBSIlg1GN4ZRlIVEgUjIY1RhOWRYS\nJdAjiOSGUY3hlGUxUUI0gkgdMKoxnLIsKIq/RhCpA0Y1hlOWRUXx1QgidcCoxnDKsrAoGCE7\nGEY1hlMWRCGBSE6Wupt6QBQSiORkqbupB0QhgUhOlrqbekAUEojkZKm7qQdEIYFITpa6m3pA\nFBKI5GSpu6kHRCGBSE6Wupt6QBQSiORkqbupB0QhgUhOlrqbekAUEojkZKm7qQdEIYFITpa6\nm3pAFBKI5GSpu6kHRCGBSE6Wupt6QBQSiORkqbupB0QhgUhOlrqbekAUEojkZKm7qQdEIYFI\nTpa6m3pAFBKI5GSpu6kHRCG5+yIBsDTGEAmA5QKRAEgARAIgARAJgARAJAASAJEASABEAiAB\nEAmABEAkABLAWaRnp3l++rEx8UnOIQgZbZ4oxTzbhIry4XHKow95ZHnyKD95/HK6BIxFepaX\nPNEmfpxPX2nsIGS0eaIU82wTKsqpnHLKJ8vJp5NFYCzSo/yjovhIryQf5jNUGjsIFW2mKDNt\nEyLK4/z0WG+fnczw98XK8qHI8vKD/P3JIvAV6ZncIY/FNqp4cZo/mr7S2EGIaHNFmWmbUFFO\nZIoX+cn8WR7l5VndhBuGr0iP8xfinxf5B82kPH885bZxBiGizRVlpm3StQ047KE6ynRO8xXp\nVO6Pl/mjZtIHL+bYTXYQItpcUWbaJl3bYPKt4sry6emEpwx8Raprh1FLpq80dhBHtDmizJPD\nHUU0fUx+jURnOV46TtiuCpEigkCkjm3waPJLJDrLi9P385PpTIJIEUEgknsbvJ9P1+Tcl+Xl\naf5sqgz8RJI/CTCqNBApIMrjKU+nerKI5ofJftTiK9L79dY5NT6eOpAdxBFtjijy7Qwi0VFm\n8ahjf0y3ZfiJVONo0+TQuMqp+VvApfn75enJZKdSfVkkEKn5le2J8Tduth9klSCOaHNEKZnx\nB1k1yqcnE3bJ6c5yIn+Q/Xi6P3V8Rar7fRiNQPP1yznpmjJbFMGcXYTaKC9Ppt8erixP8tOX\nZXelF1NFYCzSC3m1VP6mZl/ozxpEnTJzFP3VnFE+yGvmz1J3oJ3uJy3GIql94+etNHYQDsMo\nZhbJipLPJxKxWT58lOfvT3jFxlkkAO4MEAmABEAkABIAkQBIAEQCIAEQCYAEQCQAEgCRAEgA\nRAIgARAJgARAJAASAJE4chnfXc18VHD9Mt/sqs8TZQQa2KwcGVDbXSId2Q4sGnSAzcqRQSI5\n3u/y7HJY0aADbFaOjCFSscvWw4oGHWCz8qM9L7va5tnqQk69Pr5e72sRLjfiXO2KWtj5vjrV\nGyf00sFm5Ucj0k6+EAeSYp+Xr3dShHU1z55Y2PkeIo0INitHZG0/ZNn5obhaZ+KYlGfbQ3E4\nHpXERxfZ+vp4jFpLx4hFqfeX2Yb4HKQBm5Ujsrafy3a2q2xVW1AUm/KjVXYt3hwIK4xGu0ac\n6wt5/IJI44DNypH6/K29BtpUZ3F7TQQvkRrOHIuABGCzckQ/mGiv6xeH/cUmJ0Uy30tWZ1fk\n5yAN2Kwc6RVpv1IOOsSi/u9BGrBZOdIn0vEEb3V+eUVfI4W9B2nAZuVI3zXSKnN2nINI84DN\nypG61a5sHjjIVruyBa/Yqj8GXUAkNmCzckS2VB/P3C4K8neklVDscHa8RjrYi4a9B2nAZuXI\nxu7ZcK32bLiUH5yv7K4Ndu9v8/MpvsDywGblyPXxDE4MSbo6/tv0tTvLs1Xd126/zrLN/njF\ntDEXhUjzgM16tygvmAA/INLdoL4auqgaHQAzINLdYCOGUBSHiywjhk6A+YFId4OqrSErR7mq\nZOZFEZgFbPo7wuF8lWW5PZQPIvEAmx6ABEAkABIAkQBIAEQCIAEQCYAEQCQAEgCRAEgARAIg\nARAJgARAJAASAJEASABEAiABEAmABEAkABIAkQBIAEQCIAEQCYAEQCQAEgCRAEgARAIgARAJ\ngARAJAASAJEASABEAiABEAmABEAkABIAkQDQuP1///f//O+b//U//8d//2//9b/85//0H//D\nv/93//bf/Na/+pf/4p+/+Wf/9J/849f/6B/+/b/3d//O3/5bf/PV3/jrf+2vFn/5L/3Fv/Dn\n/9yfhUgAaEAkABIAkQBIAEQCIAEQCYAEQCQAEhAm0l+BSABQRIr04IG7yOp5iqtz9Z39iMV9\n/f5qk2Xba/n6fJXlZwe63KeCrtVary6PJWebXTOL/v5ifQx5UYU5vl7v7OkG7wnGSXDkvFrq\n0G6uzsdTPhc401BxjM/VstUtf7Fq94g+p+MxmQ8FziD55qIu7Ppikyslag/lzLPcd7mqbins\nlWTEdhyfaJEeOF1qtvlae2d+o1X1/kp+Vm6ytdy812aRRaVRl0tWvbnK1RzW+7XyZi9fn5vT\ndd5rSJ/gyK5efkeIZNSxotKoyyVvkfJC3/JncvLenpOulQ8bXEGys+rlWVVCW179Sfmtd97L\nmbtn1SajtuP4DBHJYVJdi9btRiK+zEX9DTfZhXi3Kaetr4vDtnxt8PRpn0lmvTkKuhF14Xiw\n2RDvz8S6in1e2rMSj/2+LJfTpmu8916PSUMSKBvk+IFeoUSVsB6n/Px5n0l9Iqllq1t+l+XH\nlNdrw11nIQ8f9ph0PILUZeWrWojy7fVF1mznTXZm7Hj3cmrdKmk3Xud2HJHxRCqu2z+j9k44\nZPXfEGULrbIDPXeMSKusPmlalxvUeJ/Xx8NcHJDKvXkmdFKnnqy1LAAAB8NJREFU6wSLFJBA\nVI3mj2q1GVquMvtMM5VIsmx1y6/lsWgvtgZZnIGHSOfV4e24oTUhyj8u8sseK4T5xTuWu9Z3\nT1ubOrfjmEQ3NrhNajZS157cZPVZraxP6oYhzmMagdwmGWvbtX/ersSfL/O9OvOZ/IN/lW2p\n4ioagZwmDUhQiLOYanlRpXRyc4JyfeQ2yTpAbsVFyd6YSyu73PL1ctbxgVxLe33kNOl43l59\n3+OGNkQ6TpKHpPOj0Bf6aUDXcnqatjZ1bscxiW+16xVJ+SLWTtgf91I18Vye2jWb8Hpt/CkU\ntPr4irQxjuvm+2bmlfgbbAaW0zVafTxFCklQiKvuavlddnaeZ6t2I5zbJ3ZFq4+vSNV1oBFC\nLbva8o1I+t+zLpHMV1aQ6hwtzwtTpKvK1/x4+Djoq+xYTpdEqU1d23FUxhPpat3uM2sniKNu\nPfE8z9oz5cLa1YKn4SLlxnHdfF+xE2tuqk6mT1d5L1ikkATq8mfGZfg1cc34PFyk8jrweCGo\n/YFQy663/Eq6tTN2Wn+DXYdIZ+U52r45XCiFyZfycL3V9r17ObVuFXptKpzbcVxGESlTGsGq\nSfosF+Io1G6UI5uqpe5qvcly0qT2lUskrWnJXKWjHqy0k5lMn67R2uMWKTqBOoOs8ddNXdkQ\nB6SitadDpM44ZtnNli8bHopd7idS0drTIdK+rM5CC4dI8nC90/5mkMtZdUuvTUrh5nYclzFF\n2ly1k7Q55IG5btoSu+1q3bZ5H9aZeSLvd2oXUY03ZbO7LZKcruFzRIpOQMywryrVgWqJ9zu1\n0+IcNdleGt/KKLva8rIp/MxfpP4jkjg5k5fDtEj1SZ121CaXs+qWVpuIpHuqETg9g0Sii6yv\n9S7yRghjJ2zKD+TEbd1G1F7oXxFVp/HHt9XObLIhm3CqBlJLJLLhtPHHs9UuJIGxvPr2nP6L\n2vjj22p3Xf6Ipf/SbJZdbfmL8tLCU6TWH3ernTyolPvYFikvgxCHGvdyat3SahOV1Bk8KSM2\nfytCWF+t/UtJnFZRXz24+Vs73b623wvqWrypM6z16Tqhzd8hCYzl1bc5XQ8imr93W/OkyCpb\niXDl2Wrn0/xdXvnLL2uKJA8YeVMjcr/llD+22nGXSHr3RSrcX218kZTT7et8bb8XJzJ59VdN\nb/5up+uEihSSwFhevi2bBaimBkHc70hXW7Wm2mUrES6Mq/RhIokDT96e8LaFlT/etZtmYx6h\nXcupr3pEmqQVfJQuQtWL9kdNcifIiWt5wrMXf2GqM+Sd+ntOTXAXobxuRT+e0+yI99d5c1lW\n/SB7bk43CO0iFJBAXT6vt0hZkS+IH2NLIrsIqa/bstUtX73eGleq7j/s/V2EyuJ25UHEOrKI\nOrJp1rXXmhH7lqPjkdtxbEbptCr/3efNV+gQ6biZ9nXbynm2PpTLEc1UwZ1W97JDjjid3hDv\nD7myJ6ouQrk53SSs02pIAmX5s2xzKBszy3pAttlJwjqtykYsrRtOW7a65c/E68OFeaHadYbU\n3Wm1Oj5nyq9UVWGii9CF/quQciXpXk6tW3Y8cjuOzQjDKNpDrXIaa79qv69sJBKv13bbpjf2\nJUHTwlMQ77fqCUHVcfbSnD5dAnX5aivIo8XKbj+Mi1P9IJsrzZRK2cqWP+TtjI7DWkQQ0RX7\nULRC1Ij9rrZ5KD/sdS63NjIRL7XtODYjirS5VCbZr5qXO3UIw6rq2BmOvY7DudiU22Ynae/1\nM+t2GIV1xj1RAnV5sRXqLTKw/iqv9mUXIVUP7TSv3fKHszxbnbm+U2yQtVr3qy++OisPidqh\nWbxRDz/UcnXd6hZJ245jgxGyACQAIgEQx7V6mQaRAIhil0EkAAaj/2wPkQCIQu/yBZEAqCjb\nj+VPa7tN0y9xVd9P5Lr833GmXPxKENeyawCRwP2j+t1JmHRm/1glOyxlcqYdRAKA5rw8Gp0J\ne86z/LK86dNF03m3/OcqKz/Yln3YiDsiBAORwH3jkOX1DWAO1d3h9qLrUnUXhEvRRneZVSN2\nN3bv+CggErhvnLc9084zpV9HNfql7KV+LuUpO/taNyOIASKB+4bSO3hdvxQiNW0NV00v9fKf\nC+IePcFAJHDfIDrrlaMH9baG8nU5QKOjW37ASocXAQArCJHEPfeqS6GduFy6lsM9DtVNnlOs\nNEEZAHBCjgMsD0Kr+j4ix0lVW0MuGuqqG4vIwYdJBt5CJHDfKNu9d7m8/MnL+6ELh8oR9+Le\nZBfNiOLyn2vy5k6hQCRw36jGM6oDTMVrORhzW7U1lJdFZVvDVZbi1pMQCdw7rrdZedsDQfmE\nKNmYcJGLwYHliV91Fwj5zzl1S+BQIBIACYBIACQAIgEQRf1cTnmbEIgEQAzNMz72kXfYAQAo\nz+WsbqU4bxwA7iLKczmrm/tCJACCUZ7LWd1uHiIBEIzyXM6qmQEiARCFfpNbiARAFBAJgARA\nJAASAJEASEBl0AYiATAANH8DkAD8IAtAAtBFCIAEtHcoQqdVAKJp3MEwCgBSAZEASABEAiAB\nEAmABEAkABIAkQBIAEQCIAEQCYAEQCQAEgCRAEgARAIgARAJgARAJAASAJEASABEAiABEAmA\nBEAkABIAkQBIAEQCIAEQCYAEQCQAEgCRAEgARAIgAf8fspu0cE36p18AAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {
"image/png": {
"height": 420,
"width": 420
},
"text/plain": {
"height": 420,
"width": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Custom labels can be provided by passing a character vector to the sampleLabels argument.\n",
"projectScoreLandscape(plotObj = tcgaLandscape, scoredf_ccle_epi, scoredf_ccle_mes,\n",
" subSamples = rownames(scoredf_ccle_epi)[c(1,4,5,8,9)],\n",
" sampleLabels = c('l1','l2','l3','l4','l5'),\n",
" annot = rownames(scoredf_ccle_epi)[c(1,4,5,8,9)], \n",
" isInteractive = FALSE)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"R version 4.0.0 (2020-04-24)\n",
"Platform: x86_64-w64-mingw32/x64 (64-bit)\n",
"Running under: Windows 10 x64 (build 18363)\n",
"\n",
"Matrix products: default\n",
"\n",
"locale:\n",
"[1] LC_COLLATE=Chinese (Simplified)_China.936 \n",
"[2] LC_CTYPE=Chinese (Simplified)_China.936 \n",
"[3] LC_MONETARY=Chinese (Simplified)_China.936\n",
"[4] LC_NUMERIC=C \n",
"[5] LC_TIME=Chinese (Simplified)_China.936 \n",
"\n",
"attached base packages:\n",
"[1] stats graphics grDevices utils datasets methods base \n",
"\n",
"other attached packages:\n",
"[1] singscore_1.8.0\n",
"\n",
"loaded via a namespace (and not attached):\n",
" [1] ggrepel_0.8.2 locfit_1.5-9.4 \n",
" [3] Rcpp_1.0.4.6 lattice_0.20-41 \n",
" [5] tidyr_1.1.0 assertthat_0.2.1 \n",
" [7] digest_0.6.25 IRdisplay_0.7.0 \n",
" [9] R6_2.4.1 GenomeInfoDb_1.24.0 \n",
"[11] plyr_1.8.6 repr_1.1.0 \n",
"[13] stats4_4.0.0 RSQLite_2.2.0 \n",
"[15] evaluate_0.14 ggplot2_3.3.0 \n",
"[17] pillar_1.4.4 zlibbioc_1.34.0 \n",
"[19] rlang_0.4.6 uuid_0.1-4 \n",
"[21] annotate_1.66.0 hexbin_1.28.1 \n",
"[23] blob_1.2.1 S4Vectors_0.26.1 \n",
"[25] Matrix_1.2-18 labeling_0.3 \n",
"[27] stringr_1.4.0 RCurl_1.98-1.2 \n",
"[29] bit_1.1-15.2 munsell_0.5.0 \n",
"[31] DelayedArray_0.14.0 compiler_4.0.0 \n",
"[33] pkgconfig_2.0.3 BiocGenerics_0.34.0 \n",
"[35] base64enc_0.1-3 htmltools_0.4.0 \n",
"[37] tidyselect_1.1.0 SummarizedExperiment_1.18.1\n",
"[39] tibble_3.0.1 GenomeInfoDbData_1.2.3 \n",
"[41] edgeR_3.30.0 IRanges_2.22.2 \n",
"[43] matrixStats_0.56.0 XML_3.99-0.3 \n",
"[45] crayon_1.3.4 dplyr_0.8.5 \n",
"[47] bitops_1.0-6 grid_4.0.0 \n",
"[49] jsonlite_1.6.1 xtable_1.8-4 \n",
"[51] GSEABase_1.50.0 gtable_0.3.0 \n",
"[53] lifecycle_0.2.0 DBI_1.1.0 \n",
"[55] magrittr_1.5 scales_1.1.1 \n",
"[57] graph_1.66.0 stringi_1.4.6 \n",
"[59] farver_2.0.3 XVector_0.28.0 \n",
"[61] reshape2_1.4.4 limma_3.44.1 \n",
"[63] ellipsis_0.3.1 vctrs_0.3.0 \n",
"[65] IRkernel_1.1 RColorBrewer_1.1-2 \n",
"[67] tools_4.0.0 bit64_0.9-7 \n",
"[69] Biobase_2.48.0 glue_1.4.1 \n",
"[71] purrr_0.3.4 parallel_4.0.0 \n",
"[73] AnnotationDbi_1.50.0 colorspace_1.4-1 \n",
"[75] GenomicRanges_1.40.0 memoise_1.1.0 \n",
"[77] pbdZMQ_0.3-3 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sessionInfo()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "R 4.0.0",
"language": "R",
"name": "ir400"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "4.0.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}