Box2D  2.3.0
A 2D Physics Engine for Games
b2Math.h
1 /*
2 * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty. In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #ifndef B2_MATH_H
20 #define B2_MATH_H
21 
23 #include <math.h>
24 
26 inline bool b2IsValid(float32 x)
27 {
28  int32 ix = *reinterpret_cast<int32*>(&x);
29  return (ix & 0x7f800000) != 0x7f800000;
30 }
31 
33 inline float32 b2InvSqrt(float32 x)
34 {
35  union
36  {
37  float32 x;
38  int32 i;
39  } convert;
40 
41  convert.x = x;
42  float32 xhalf = 0.5f * x;
43  convert.i = 0x5f3759df - (convert.i >> 1);
44  x = convert.x;
45  x = x * (1.5f - xhalf * x * x);
46  return x;
47 }
48 
49 #define b2Sqrt(x) sqrtf(x)
50 #define b2Atan2(y, x) atan2f(y, x)
51 
53 struct b2Vec2
54 {
56  b2Vec2() {}
57 
59  b2Vec2(float32 xIn, float32 yIn) : x(xIn), y(yIn) {}
60 
62  void SetZero() { x = 0.0f; y = 0.0f; }
63 
65  void Set(float32 x_, float32 y_) { x = x_; y = y_; }
66 
68  b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
69 
71  float32 operator () (int32 i) const
72  {
73  return (&x)[i];
74  }
75 
77  float32& operator () (int32 i)
78  {
79  return (&x)[i];
80  }
81 
83  void operator += (const b2Vec2& v)
84  {
85  x += v.x; y += v.y;
86  }
87 
89  void operator -= (const b2Vec2& v)
90  {
91  x -= v.x; y -= v.y;
92  }
93 
95  void operator *= (float32 a)
96  {
97  x *= a; y *= a;
98  }
99 
101  float32 Length() const
102  {
103  return b2Sqrt(x * x + y * y);
104  }
105 
108  float32 LengthSquared() const
109  {
110  return x * x + y * y;
111  }
112 
114  float32 Normalize()
115  {
116  float32 length = Length();
117  if (length < b2_epsilon)
118  {
119  return 0.0f;
120  }
121  float32 invLength = 1.0f / length;
122  x *= invLength;
123  y *= invLength;
124 
125  return length;
126  }
127 
129  bool IsValid() const
130  {
131  return b2IsValid(x) && b2IsValid(y);
132  }
133 
135  b2Vec2 Skew() const
136  {
137  return b2Vec2(-y, x);
138  }
139 
140  float32 x, y;
141 };
142 
144 struct b2Vec3
145 {
147  b2Vec3() {}
148 
150  b2Vec3(float32 xIn, float32 yIn, float32 zIn) : x(xIn), y(yIn), z(zIn) {}
151 
153  void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
154 
156  void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
157 
159  b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
160 
162  void operator += (const b2Vec3& v)
163  {
164  x += v.x; y += v.y; z += v.z;
165  }
166 
168  void operator -= (const b2Vec3& v)
169  {
170  x -= v.x; y -= v.y; z -= v.z;
171  }
172 
174  void operator *= (float32 s)
175  {
176  x *= s; y *= s; z *= s;
177  }
178 
179  float32 x, y, z;
180 };
181 
183 struct b2Mat22
184 {
186  b2Mat22() {}
187 
189  b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
190  {
191  ex = c1;
192  ey = c2;
193  }
194 
196  b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
197  {
198  ex.x = a11; ex.y = a21;
199  ey.x = a12; ey.y = a22;
200  }
201 
203  void Set(const b2Vec2& c1, const b2Vec2& c2)
204  {
205  ex = c1;
206  ey = c2;
207  }
208 
210  void SetIdentity()
211  {
212  ex.x = 1.0f; ey.x = 0.0f;
213  ex.y = 0.0f; ey.y = 1.0f;
214  }
215 
217  void SetZero()
218  {
219  ex.x = 0.0f; ey.x = 0.0f;
220  ex.y = 0.0f; ey.y = 0.0f;
221  }
222 
223  b2Mat22 GetInverse() const
224  {
225  float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;
226  b2Mat22 B;
227  float32 det = a * d - b * c;
228  if (det != 0.0f)
229  {
230  det = 1.0f / det;
231  }
232  B.ex.x = det * d; B.ey.x = -det * b;
233  B.ex.y = -det * c; B.ey.y = det * a;
234  return B;
235  }
236 
239  b2Vec2 Solve(const b2Vec2& b) const
240  {
241  float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
242  float32 det = a11 * a22 - a12 * a21;
243  if (det != 0.0f)
244  {
245  det = 1.0f / det;
246  }
247  b2Vec2 x;
248  x.x = det * (a22 * b.x - a12 * b.y);
249  x.y = det * (a11 * b.y - a21 * b.x);
250  return x;
251  }
252 
253  b2Vec2 ex, ey;
254 };
255 
257 struct b2Mat33
258 {
260  b2Mat33() {}
261 
263  b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
264  {
265  ex = c1;
266  ey = c2;
267  ez = c3;
268  }
269 
271  void SetZero()
272  {
273  ex.SetZero();
274  ey.SetZero();
275  ez.SetZero();
276  }
277 
280  b2Vec3 Solve33(const b2Vec3& b) const;
281 
285  b2Vec2 Solve22(const b2Vec2& b) const;
286 
289  void GetInverse22(b2Mat33* M) const;
290 
293  void GetSymInverse33(b2Mat33* M) const;
294 
295  b2Vec3 ex, ey, ez;
296 };
297 
299 struct b2Rot
300 {
301  b2Rot() {}
302 
304  explicit b2Rot(float32 angle)
305  {
307  s = sinf(angle);
308  c = cosf(angle);
309  }
310 
312  void Set(float32 angle)
313  {
315  s = sinf(angle);
316  c = cosf(angle);
317  }
318 
320  void SetIdentity()
321  {
322  s = 0.0f;
323  c = 1.0f;
324  }
325 
327  float32 GetAngle() const
328  {
329  return b2Atan2(s, c);
330  }
331 
333  b2Vec2 GetXAxis() const
334  {
335  return b2Vec2(c, s);
336  }
337 
339  b2Vec2 GetYAxis() const
340  {
341  return b2Vec2(-s, c);
342  }
343 
345  float32 s, c;
346 };
347 
351 {
354 
356  b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
357 
359  void SetIdentity()
360  {
361  p.SetZero();
362  q.SetIdentity();
363  }
364 
366  void Set(const b2Vec2& position, float32 angle)
367  {
368  p = position;
369  q.Set(angle);
370  }
371 
372  b2Vec2 p;
373  b2Rot q;
374 };
375 
380 struct b2Sweep
381 {
384  void GetTransform(b2Transform* xfb, float32 beta) const;
385 
388  void Advance(float32 alpha);
389 
391  void Normalize();
392 
394  b2Vec2 c0, c;
395  float32 a0, a;
396 
399  float32 alpha0;
400 };
401 
403 extern const b2Vec2 b2Vec2_zero;
404 
406 inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
407 {
408  return a.x * b.x + a.y * b.y;
409 }
410 
412 inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
413 {
414  return a.x * b.y - a.y * b.x;
415 }
416 
419 inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
420 {
421  return b2Vec2(s * a.y, -s * a.x);
422 }
423 
426 inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
427 {
428  return b2Vec2(-s * a.y, s * a.x);
429 }
430 
433 inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
434 {
435  return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
436 }
437 
440 inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
441 {
442  return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
443 }
444 
446 inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
447 {
448  return b2Vec2(a.x + b.x, a.y + b.y);
449 }
450 
452 inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
453 {
454  return b2Vec2(a.x - b.x, a.y - b.y);
455 }
456 
457 inline b2Vec2 operator * (float32 s, const b2Vec2& a)
458 {
459  return b2Vec2(s * a.x, s * a.y);
460 }
461 
462 inline bool operator == (const b2Vec2& a, const b2Vec2& b)
463 {
464  return a.x == b.x && a.y == b.y;
465 }
466 
467 inline bool operator != (const b2Vec2& a, const b2Vec2& b)
468 {
469  return a.x != b.x || a.y != b.y;
470 }
471 
472 inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
473 {
474  b2Vec2 c = a - b;
475  return c.Length();
476 }
477 
478 inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
479 {
480  b2Vec2 c = a - b;
481  return b2Dot(c, c);
482 }
483 
484 inline b2Vec3 operator * (float32 s, const b2Vec3& a)
485 {
486  return b2Vec3(s * a.x, s * a.y, s * a.z);
487 }
488 
490 inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
491 {
492  return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
493 }
494 
496 inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
497 {
498  return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
499 }
500 
502 inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
503 {
504  return a.x * b.x + a.y * b.y + a.z * b.z;
505 }
506 
508 inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
509 {
510  return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
511 }
512 
513 inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
514 {
515  return b2Mat22(A.ex + B.ex, A.ey + B.ey);
516 }
517 
518 // A * B
519 inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
520 {
521  return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
522 }
523 
524 // A^T * B
525 inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
526 {
527  b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
528  b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
529  return b2Mat22(c1, c2);
530 }
531 
533 inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
534 {
535  return v.x * A.ex + v.y * A.ey + v.z * A.ez;
536 }
537 
539 inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
540 {
541  return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
542 }
543 
545 inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
546 {
547  // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
548  // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc]
549  // s = qs * rc + qc * rs
550  // c = qc * rc - qs * rs
551  b2Rot qr;
552  qr.s = q.s * r.c + q.c * r.s;
553  qr.c = q.c * r.c - q.s * r.s;
554  return qr;
555 }
556 
558 inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
559 {
560  // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
561  // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
562  // s = qc * rs - qs * rc
563  // c = qc * rc + qs * rs
564  b2Rot qr;
565  qr.s = q.c * r.s - q.s * r.c;
566  qr.c = q.c * r.c + q.s * r.s;
567  return qr;
568 }
569 
571 inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
572 {
573  return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
574 }
575 
577 inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
578 {
579  return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
580 }
581 
582 inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
583 {
584  float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
585  float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
586 
587  return b2Vec2(x, y);
588 }
589 
590 inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
591 {
592  float32 px = v.x - T.p.x;
593  float32 py = v.y - T.p.y;
594  float32 x = (T.q.c * px + T.q.s * py);
595  float32 y = (-T.q.s * px + T.q.c * py);
596 
597  return b2Vec2(x, y);
598 }
599 
600 // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
601 // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
602 inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
603 {
604  b2Transform C;
605  C.q = b2Mul(A.q, B.q);
606  C.p = b2Mul(A.q, B.p) + A.p;
607  return C;
608 }
609 
610 // v2 = A.q' * (B.q * v1 + B.p - A.p)
611 // = A.q' * B.q * v1 + A.q' * (B.p - A.p)
612 inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
613 {
614  b2Transform C;
615  C.q = b2MulT(A.q, B.q);
616  C.p = b2MulT(A.q, B.p - A.p);
617  return C;
618 }
619 
620 template <typename T>
621 inline T b2Abs(T a)
622 {
623  return a > T(0) ? a : -a;
624 }
625 
626 inline b2Vec2 b2Abs(const b2Vec2& a)
627 {
628  return b2Vec2(b2Abs(a.x), b2Abs(a.y));
629 }
630 
631 inline b2Mat22 b2Abs(const b2Mat22& A)
632 {
633  return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
634 }
635 
636 template <typename T>
637 inline T b2Min(T a, T b)
638 {
639  return a < b ? a : b;
640 }
641 
642 inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
643 {
644  return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
645 }
646 
647 template <typename T>
648 inline T b2Max(T a, T b)
649 {
650  return a > b ? a : b;
651 }
652 
653 inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
654 {
655  return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
656 }
657 
658 template <typename T>
659 inline T b2Clamp(T a, T low, T high)
660 {
661  return b2Max(low, b2Min(a, high));
662 }
663 
664 inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
665 {
666  return b2Max(low, b2Min(a, high));
667 }
668 
669 template<typename T> inline void b2Swap(T& a, T& b)
670 {
671  T tmp = a;
672  a = b;
673  b = tmp;
674 }
675 
681 inline uint32 b2NextPowerOfTwo(uint32 x)
682 {
683  x |= (x >> 1);
684  x |= (x >> 2);
685  x |= (x >> 4);
686  x |= (x >> 8);
687  x |= (x >> 16);
688  return x + 1;
689 }
690 
691 inline bool b2IsPowerOfTwo(uint32 x)
692 {
693  bool result = x > 0 && (x & (x - 1)) == 0;
694  return result;
695 }
696 
697 inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const
698 {
699  xf->p = (1.0f - beta) * c0 + beta * c;
700  float32 angle = (1.0f - beta) * a0 + beta * a;
701  xf->q.Set(angle);
702 
703  // Shift to origin
704  xf->p -= b2Mul(xf->q, localCenter);
705 }
706 
707 inline void b2Sweep::Advance(float32 alpha)
708 {
709  b2Assert(alpha0 < 1.0f);
710  float32 beta = (alpha - alpha0) / (1.0f - alpha0);
711  c0 += beta * (c - c0);
712  a0 += beta * (a - a0);
713  alpha0 = alpha;
714 }
715 
717 inline void b2Sweep::Normalize()
718 {
719  float32 twoPi = 2.0f * b2_pi;
720  float32 d = twoPi * floorf(a0 / twoPi);
721  a0 -= d;
722  a -= d;
723 }
724 
725 #endif
Definition: b2Math.h:350
b2Transform()
The default constructor does nothing.
Definition: b2Math.h:353
A 2D column vector with 3 elements.
Definition: b2Math.h:144
b2Mat22(const b2Vec2 &c1, const b2Vec2 &c2)
Construct this matrix using columns.
Definition: b2Math.h:189
b2Vec3()
Default constructor does nothing (for performance).
Definition: b2Math.h:147
A 3-by-3 matrix. Stored in column-major order.
Definition: b2Math.h:257
b2Vec2()
Default constructor does nothing (for performance).
Definition: b2Math.h:56
void Set(float32 x_, float32 y_, float32 z_)
Set this vector to some specified coordinates.
Definition: b2Math.h:156
float32 GetAngle() const
Get the angle in radians.
Definition: b2Math.h:327
float32 Normalize()
Convert this vector into a unit vector. Returns the length.
Definition: b2Math.h:114
b2Mat33()
The default constructor does nothing (for performance).
Definition: b2Math.h:260
Definition: b2Math.h:380
float32 LengthSquared() const
Definition: b2Math.h:108
b2Mat22()
The default constructor does nothing (for performance).
Definition: b2Math.h:186
float32 s
Sine and cosine.
Definition: b2Math.h:345
float32 a
world angles
Definition: b2Math.h:395
b2Vec2(float32 xIn, float32 yIn)
Construct using coordinates.
Definition: b2Math.h:59
b2Mat33(const b2Vec3 &c1, const b2Vec3 &c2, const b2Vec3 &c3)
Construct this matrix using columns.
Definition: b2Math.h:263
b2Vec2 Skew() const
Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
Definition: b2Math.h:135
void Set(float32 x_, float32 y_)
Set this vector to some specified coordinates.
Definition: b2Math.h:65
void Set(const b2Vec2 &position, float32 angle)
Set this based on the position and angle.
Definition: b2Math.h:366
void SetZero()
Set this vector to all zeros.
Definition: b2Math.h:62
void operator+=(const b2Vec2 &v)
Add a vector to this vector.
Definition: b2Math.h:83
void SetIdentity()
Set this to the identity transform.
Definition: b2Math.h:359
void operator-=(const b2Vec2 &v)
Subtract a vector from this vector.
Definition: b2Math.h:89
void SetZero()
Set this vector to all zeros.
Definition: b2Math.h:153
b2Vec2 GetYAxis() const
Get the u-axis.
Definition: b2Math.h:339
b2Rot(float32 angle)
Initialize from an angle in radians.
Definition: b2Math.h:304
b2Vec3(float32 xIn, float32 yIn, float32 zIn)
Construct using coordinates.
Definition: b2Math.h:150
b2Vec2 c
center world positions
Definition: b2Math.h:394
b2Vec2 localCenter
local center of mass position
Definition: b2Math.h:393
A 2-by-2 matrix. Stored in column-major order.
Definition: b2Math.h:183
float32 Length() const
Get the length of this vector (the norm).
Definition: b2Math.h:101
void Set(const b2Vec2 &c1, const b2Vec2 &c2)
Initialize this matrix using columns.
Definition: b2Math.h:203
void SetIdentity()
Set to the identity rotation.
Definition: b2Math.h:320
float32 alpha0
Definition: b2Math.h:399
void SetIdentity()
Set this to the identity matrix.
Definition: b2Math.h:210
void Normalize()
Normalize the angles.
Definition: b2Math.h:717
void GetTransform(b2Transform *xfb, float32 beta) const
Definition: b2Math.h:697
float32 operator()(int32 i) const
Read from and indexed element.
Definition: b2Math.h:71
bool IsValid() const
Does this vector contain finite coordinates?
Definition: b2Math.h:129
void SetZero()
Set this matrix to all zeros.
Definition: b2Math.h:217
A 2D column vector.
Definition: b2Math.h:53
void Advance(float32 alpha)
Definition: b2Math.h:707
void operator*=(float32 a)
Multiply this vector by a scalar.
Definition: b2Math.h:95
void Set(float32 angle)
Set using an angle in radians.
Definition: b2Math.h:312
b2Vec2 operator-() const
Negate this vector.
Definition: b2Math.h:68
b2Transform(const b2Vec2 &position, const b2Rot &rotation)
Initialize using a position vector and a rotation.
Definition: b2Math.h:356
void SetZero()
Set this matrix to all zeros.
Definition: b2Math.h:271
b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
Construct this matrix using scalars.
Definition: b2Math.h:196
b2Vec2 Solve(const b2Vec2 &b) const
Definition: b2Math.h:239
b2Vec2 GetXAxis() const
Get the x-axis.
Definition: b2Math.h:333
Rotation.
Definition: b2Math.h:299