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Abstract

We introduce mostlyai-qa, an open-source Python package for assessing synthetic
data. The unique contribution of this toolkit lies in its ease of use, its broad support
for mixed-type tabular data, and its combined assessment of fidelity and novelty. Using
holdout data as a north star for quality, it produces a detailed, self-contained HTML report
with a rich set of metrics and visualizations, allowing easy examination of synthetic data
quality. The toolkit handles mixed-type data, such as numerical, categorical, datetime,
and text data, along with multi-sequence time-series data as well as any contextual data,
if available. The assessment is performed purely based on the provided data samples;
therefore, no knowledge or assumptions about the underlying data generation mechanism
are required. This facilitates benchmarking of emerging data synthesizers in the field. The
package is available at https://github.com/mostly-ai/mostlyai-qa/, released under
the Apache License v2, and will be continuously supported.

Keywords: synthetic data, generative models, data quality assessment, privacy-preserving
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1 Introduction

Generative AI is rapidly gaining prominence, not only within unstructured data domains
such as images and natural language but also within structured and semi-structured do-
mains, that are common for proprietary data assets within organizations. The ability to
produce an unlimited number of novel samples, that generalize beyond previously observed
instances, and that help downstream learning, for both humans and machines alike, is of sig-
nificant value. Such capability allows, among others, the privacy-safe sharing of micro-data
across organizations, the sampling of otherwise underrepresented groups, the simulation of
rare scenarios, and the filling of data gaps (Assefa et al., 2020; Jordon et al., 2022; van
Breugel et al., 2024). Fulfilling this promise largely depends upon the quality of the gener-
ated synthetic data. The key question is whether synthetic samples are indeed truly novel
as well as faithfully representative of the original statistics.

Although numerous evaluation frameworks have been introduced before (Howe et al.,
2017; Lu et al., 2019; Platzer and Reutterer, 2021; Chundawat et al., 2022b,a; Alaa et al.,
2022; Espinosa and Figueira, 2023; Task et al., 2023; Hudovernik et al., 2024), each pre-
senting a different set of metrics, there remains a scarcity of well-maintained open-source
packages that quantify and visualize synthetic data quality. See Table 1 for a high-level
tool comparison. In particular, there is a lack of software packages that address both the
fidelity and novelty of samples at the same time. Note that it is easy to excel in one di-
mension while neglecting the other. For instance, merely copying original samples yields
high accuracy without being novel, while generating entirely random samples scores high
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on novelty without being accurate. The true challenge of privacy-safe synthetic data lies
in the generation of data that is both accurate and novel. Thus, any quality assurance for
synthetic data has to measure both of these dimensions.

Further, we aim to meet the rising demand for evaluating mixed-type synthetic data,
characterized by: 1) diverse feature types, including numerical, categorical, datetime, and
text; 2) missing values; 3) variable row counts per sample, accommodating multi-sequence,
multivariate time-series data1; and 4) the incorporation of contextual data.

2 Concepts

Platzer and Reutterer (2021) introduced a holdout-based empirical assessment framework
for mixed-type synthetic data, arguing that synthetic samples should emulate holdout sam-
ples — original samples excluded from the synthesis process. These holdout samples serve
as a north star for privacy-preserving data synthesis, expecting models to produce novel
samples that reflect the underlying data distribution without direct replication. Accord-
ingly, synthetic samples should be as close to training samples as holdout samples are, but
not closer. This approach, akin to the use of holdout samples for supervised learning, en-
ables the evaluation of a generative model’s ability to generalize underlying patterns rather
than merely memorizing specific training samples.

Our toolkit builds upon that framework and introduces three sets of metrics - Accuracy,
Similarity, and Distances - which will be described in the following. Accuracy quantifies
lower-dimensional, and similarity higher-dimensional fidelity; the set of distance metrics
helps to gauge the novelty of samples.

2.1 Accuracy

The accuracy metrics assess how closely the lower-dimensional marginal distributions of
synthetic data align with those of the original, with 100% indicating a perfect match.
This comparison is made for univariate and bivariate distributions across all attributes
(see Figures 3 and 4) and averaged to produce a single overall metric. Following Platzer
and Reutterer (2021), we discretize each attribute into a fixed number of 10 categories to
facilitate comparison across mixed types. Numerical and datetime attributes are binned by
deciles of the original data, ensuring roughly equal-sized groups. For categorical attributes,
we retain the top categories by frequency, and for text, we tokenize and focus on the most
common tokens.

This approach offers consistency across attribute types. Additionally, the overall accu-
racy metric is decomposable into 1-way and 2-way frequency tables, which are visualized,
making it easily interpretable also for non-statisticians. The greater the discrepancies be-
tween the plotted distributions, the lower the accuracy score. To achieve a high overall
accuracy, each contributing distribution must align closely with the original. However, due
to sampling noise with finite samples, some discrepancies are inevitable. By calculating the
expected accuracy for a theoretical holdout dataset based on the original distributions and
sample size, we provide a reference benchmark. Rather than aiming for 100% accuracy, the

1. Multi-sequence time-series data is the predominant structure for behavioral data, where multiple events
for multiple individuals are recorded.
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goal is for synthetic samples to match this benchmark closely, indicating similarity to the
training samples akin to holdout samples.

When contextual data is present, the toolkit will report the accuracy of bivariate dis-
tributions between contextual and target attributes, enabling assessment of whether these
relationships are well-preserved in the synthetic data.

For sequential data, the toolkit will evaluate attribute coherence between two randomly
selected successive records within each sample. This allows assessment of whether the
original sample sequences’ autocorrelations are faithfully reproduced in the synthetic data.

2.2 Similarity

Complementing accuracy, we report another set of metrics that assess the similarity of
distributions. Rather than analyzing the easy-to-interpret lower-dimensional marginals,
the focus shifts to the high-dimensional full joint distributions. Direct analysis of high-
dimensional distributions is not feasible due to the curse of dimensionality, so we use an
alternative approach: each tabular sample is converted into a string of values, that is then
mapped into an informative embedding space using a pre-trained language model. While
the choice of language model is flexible, we specifically opted for all-MiniLM-L6-v22 as it
is a lightweight, compute-efficient universal model. In this embedding space, we compare
the centroids of the synthetic and training samples using cosine similarity, aiming for a high
similarity score (with an upper bound of 1). However, to account also here for sampling
variance, we use the cosine similarity between the training and holdout centroids as a north
star reference, ensuring that synthetic samples are close to the training distribution without
exceeding the similarity expected due to natural sampling noise.

To enhance interpretability, we provide a visualization of the embedded samples and
their centroids, projected into a lower-dimensional space using Principal Component Anal-
ysis (PCA) (see Figure 6).

In addition to cosine similarity, we leverage the embedding space to train a discrim-
inative model that indicates whether synthetic samples are truly indistinguishable from
training samples. If certain properties of the synthetic samples (e.g., implausible attribute
combinations) reveal them as synthetic rather than real, the area-under-the-curve (AUC)
metric quantifies this distinguishability.

2.3 Distances

Synthetic samples shall resemble novel samples from the original distribution rather than
simply replicating seen samples. Consequently, they are expected to be just as close to
training samples as to holdout samples.

Thus, we assess the novelty of the synthetic data by examining distances between sam-
ples within the high-dimensional embedding space introduced in Section 2.2. For each
synthetic sample, we calculate the distance to its closest record (DCR) among the train-
ing samples. This nearest-neighbor distance is expected to vary depending on whether
the sample is a synthetic inlier or outlier. Therefore, absolute distances alone cannot re-
liably indicate novelty; instead, we need to contextualize these values by comparing them

2. https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/
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to the same distances calculated for an equally sized holdout dataset. This comparison is
performed for both the average DCR, which we report as a metric, and the overall DCR
distribution, which is visualized (see Figure 7).

The need to compare to the corresponding holdout metrics also applies when checking
for identical matches—cases where synthetic and original records are identical across all
attributes. It is crucial to note that the existence of identical matches does not inherently
indicate a lack of novelty. If the original data contains duplicates, we expect and require a
similar proportion of matches in the synthetic dataset. Attempting to enforce novelty by
removing individual records is not sufficient and may inadvertently risk exposing original
records (Hann, 2024).

3 Empirical Demonstration

By splitting the original data into training and holdout samples and, subsequently, gener-
ating multiple synthetic datasets based on the training data, we can effectively compare
quality across various methods. The chart below visualizes key metrics relative to their
holdout-based reference metrics for the UCI Adult Census dataset (Dua and Graff, 2019),
as synthesized and published in Platzer and Reutterer (2021). The closer a synthesizer
approaches the north star reference point at (1, 1), the better its privacy-utility trade-off.
As illustrated, this trade-off applies to AI-based data synthesizers just as it does to tradi-
tional perturbation techniques. These metrics enable effective comparisons both within and
across groups of techniques.

Figure 1: Comparison of synthesizers for UCI Adult Census dataset.

4 Conclusions

It is the need to measure fidelity and novelty, to accommodate for heterogeneity in data
structure, and the objective to effectively inform a broad audience that drives our mo-
tivation to introduce this new Python toolkit. We hope to contribute to the continued
standardization around the quality assessment of synthetic data.
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Appendix A. Metrics Overview

• Accuracy: Accuracy is defined as (100% - Total Variation Distance), for each distri-
bution, and then averaged across.

– overall: Overall accuracy of synthetic data, i.e. average across univariate,
bivariate and coherence.

– univariate: Average accuracy of discretized univariate distributions.

– bivariate: Average accuracy of discretized bivariate distributions.

– coherence: Average accuracy of discretized coherence distributions. Only ap-
plicable for sequential data.

– overall max: Expected overall accuracy of a same-sized holdout. Serves as
reference for overall.

– univariate max: Expected univariate accuracy of a same-sized holdout. Serves
as reference for univariate.

– bivariate max: Expected bivariate accuracy of a same-sized holdout. Serves as
reference for bivariate.

– coherence max: Expected coherence accuracy of a same-sized holdout. Serves
as reference for coherence.

• Similarity: All similarity metrics are calculated within an embedding space.

– cosine similarity training synthetic: Cosine similarity between training
and synthetic centroids.

– cosine similarity training holdout: Cosine similarity between training and
holdout centroids. Serves as reference for cosine similarity training synthetic.

– discriminator auc training synthetic: Cross-validated AUC of a discrimi-
native model to distinguish between training and synthetic samples.

– discriminator auc training holdout: Cross-validated AUC of a discrimina-
tive model to distinguish between training and holdout samples. Serves as refer-
ence for discriminator auc training synthetic.

• Distances: All distance metrics are calculated within an embedding space. An equal
number of training and holdout samples is considered.

– ims training: Share of synthetic samples that are identical to a training sample.

– ims holdout: Share of synthetic samples that are identical to a holdout sample.
Serves as reference for ims training.

– dcr training: Average L2 nearest-neighbor distance between synthetic and
training samples.

– dcr holdout: Average L2 nearest-neighbor distance between synthetic and hold-
out samples. Serves as reference for dcr training.

– dcr share: The share of synthetic samples that are closer to a training sample
than to a holdout sample. This shall not be significantly larger than 50%.
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Appendix B. Tool Comparison

Python package License HTML Plots Metrics Novelty Data

mostlyai-qa (2024) Apache ✓ ✓ ✓ ✓ flexible

ydata-profiling (2024) MIT ✓ ✓ - - flexible

sdmetrics (2024) MIT - ✓ ✓ ✓ flexible

synthcity (2023) Apache - ✓ ✓ ✓ flexible

sdnist (2023) permissive ✓ ✓ ✓ ∼ fixed

Table 1: Comparison across open-source Python libraries for assessing synthetic data.

Appendix C. Basic Usage

The presented toolkit for evaluating the quality of synthetic data requires Python version
3.10 or later, and can be easily installed using pip:

1 pip install -U mostlyai -qa

Once installed, its main interface is the ‘report‘, which expects the data samples to be
provided as pandas DataFrames:

1 from mostlyai import qa

2

3 # analyze single -table data

4 report_path , metrics = qa.report(

5 syn_tgt_data=synthetic_df ,

6 trn_tgt_data=training_df ,

7 hol_tgt_data=holdout_df ,

8 )

9

10 # analyze sequential data with context

11 report_path , metrics = qa.report(

12 syn_tgt_data=synthetic_df ,

13 trn_tgt_data=training_df ,

14 hol_tgt_data=holdout_df ,

15 syn_ctx_data=synthetic_context_df ,

16 trn_ctx_data=training_context_df ,

17 hol_ctx_data=holdout_context_df ,

18 ctx_primary_key="id",

19 tgt_context_key="user_id",

20 )

Additional usage examples, along with their corresponding HTML reports, are available
in the GitHub repository.
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Appendix D. HTML Report Example

Figure 2: Metrics summary.

Figure 3: Univariate distributions and their accuracies.

Figure 4: Bivariate distributions and their accuracies.
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Figure 5: Coherence distributions and their accuracies.

Figure 6: Similarity within PCA-projected embedding space.
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Figure 7: Distribuions of distance to closest records (DCRs) for assessing novelty.
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