Classification of Newspaper Articles

Patrick Schwarz
Graz University of Technology
patrick.schwarz@student.tugraz.at

ABSTRACT

Nowadays it is hard to determine if an article you read online is
trustworthy or not. Many articles are copied over and over on the
internet until it is impossible to find the source of the original
article.

This project tries to look at articles of different newspapers to
find some characteristics to differentiate between them. To find
such characteristics, the main topic of the project describes the
gathering, preprocessing and evaluating of datasets for the news-
papers. The results show us that it is possible to find differences
between newspapers. The harder part was to find characteristic dif-
ferences between renowned newspapers. We think this is because
the language used in them is nearly the same.

ACM Reference Format:

Patrick Schwarz, Matthias Krawanja, and Moritz Wiesinger. 2018. Classifica-
tion of Newspaper Articles. In Proceedings of July 2018, Graz, Austria (Knowl-
edge Discovery and Data Mining 2), Patrick Schwarz, Matthias Krawanja,
and Moritz Wiesinger (Eds.). ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION

There are several advantages and disadvantages that the rapid ex-
change of information through the internet brings along. It provides
us with the ability to know everything right after it happened. The
question we must ask here is "Can we trust this information?".

To give an answer to this question, it is essential to know the
source of the information. One can argue that some sources are
more legitimate than others. Surely there are more aspects in defin-
ing valid information but for this project we concentrate on finding
the source of information.

The scope of this project is to find the original newspaper of
articles found on the web. For this purpose the articles of the news-
papers "Der Standard" !, "Die Presse"? and "Kronen Zeitung"® have
been used. By crawling the official website of these three newspa-
pers we gathered information to train a machine learning algorithm.
The computer then classifies which newspaper authored the newly
shown article. Different preprocessing techniques allowed us to
improve the actual data of the original information.

After all these steps it was possible to find differences between
the newspapers. Furthermore, we found out that some newspapers

!https://derstandard.at
Zhttps://diepresse.com
3https://www.krone.at

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Knowledge Discovery and Data Mining 2, 2018

© 2018 Copyright held by the owner/author(s).

Matthias Krawanja
Graz University of Technology
krawanja@student.tugraz.at

Moritz Wiesinger
Graz University of Technology
moritz.wiesinger@student.tugraz.at

can be easily classified while others will not show any noticeable
difference.

2 DATA ACQUISITION

In this section we will go over the steps needed to produce reason-
able training data. Furthermore, we will explain the basics on the
features used to differentiate between newspapers.

To gather many articles three major newspapers from Austria
were chosen:

e Der Standard
e Kronen Zeitung
e Die Presse

These newspapers were selected because their perceived political
orientation is different.[2] To acquire the data from the newspapers,
a crawler had to be written which extracts the required information
from the newspapers’ websites.

The crawler is written in Python and uses a web crawling frame-
work called Scrapy *.[1] The framework performs the web requests,
handles possible redirections, network issues and supports the
definition of individual spiders. Spiders can be used to define the
detailed information extraction procedure depending on either the
kind of information expected on the page or the content type re-
ceived.

As crawling was not the focus of this project but only a necessary
preliminary step rather simple web crawlers tailored to the selected
newspapers were written. The crawlers extract the news article’s
headline, the lead text, the main content, the date it was published
and possible sub headlines. The reason why more information was
gathered is that at the time of writing the crawler it was not clear
which features will be used for classification. Furthermore, it did
not affect the crawl runtime in a noticeable manner.

For news articles loaded from "Der Standard" and "Die Presse"
the crawler also extracts the category and subcategory the article is
in, although this information was not used during the subsequent
steps. Most articles contain an image with a description which is
crawled too. The gathered data is parsed by Scrapy and can be
queried with Cascading Style Sheet (CSS) or XPath selectors. To
avoid any IP black listing of the crawlers, parallel processing of the
queue was disabled. Instead a delay of 0.7 seconds between each
request was defined.

Where possible the publish date of the articles was limited to
April 2018 as we wanted to use news articles from different papers
about the same topic which is less likely if the articles were written
at completely different points in time.

4https://scrapy.org

https://derstandard.at
https://diepresse.com
https://www.krone.at
https://scrapy.org

Knowledge Discovery and Data Mining 2, 2018

2.1 Kronen Zeitung

For this newspaper we tried several approaches. First, we tried to
use the news feed provided by the website. The problem was that
the news feed just delivered the last 20 articles published. Since
we couldn’t find any other entry point to get more than just 20
articles of the past we had to instead use the ID that was shown in
the link to an article. These article IDs are increasing and therefore
easy to find but not all of them are reachable. The unreachable
URLs are probably due to deleted articles. Even though it could
have been possible that the site itself would ban because of calls to
unreachable content it did not and we could collect 11,683 articles
by iterating over 65,000 IDs.

2.2 Der Standard

The crawling for this newspaper was based on the archive page. The
archive lists all articles published on a given day. So as a first step
all days of the month to be crawled are loaded and the links to the
actual articles are enqueued for the main crawling step. With this
approach all articles published in April 2018 were crawled which
were a total number of 5114.

2.3 Die Presse

This newspaper does not provide an archive where all articles are
listed but they do offer a search page. Requests that do not contain a
valid session ID cookie receive a "No results found" page as answer
independent of the search parameters. To circumvent this issue a
valid session cookie value was copied from a browser and added
to the crawl requests. The search form allows the search keyword
to be empty which will return all articles published in the given
time range. The result is split into several pages so each result page
must be queried. This way 3596 articles from April were fetched.

3 PREPROCESSING

In this section, we cover the steps we took to further streamline
our data to make it ready for training.

3.1 Obvious Indicators

Before the crawled data could be used for machine learning tasks it
needed to be preprocessed. One of the last things we noticed but
one of the first things to mention here is the obvious indicators for a
newspaper. These are for example the name of the newspaper inside

an article or a link to their website that is referenced somewhere.

These indicators had to be removed because we feared that the
algorithm would just take them to classify the articles and that is
not what we intended to achieve in this project.

3.2 Special Characters, Punctuation and
Whitespaces

Instead of using a black listing approach where all special and weird
characters are black listed one by one and then removed from the
dataset using some string replacing technique we chose a different
path. Our solution was to white list everything we wanted to be
left inside the dataset and remove everything else using regular
expressions. We found that this was a far easier solution than the
other way around.

P. Schwarz, M. Krawanja and M. Wiesinger

This white listing of content included of course the normal Ger-
man alphabet (including "Umlauts") and the Arabic numbers. But
in addition to that we found that many words in the current news
have special characters such as the words "Erdogan" or "Orban". So
to keep the original words whole we also included a lot of accented
characters into our whitelist.

In addition to white listing characters, we also removed all punc-
tuation from the articles. We didn’t make special cases for questions
or exclamations in our algorithm, so this was a useful step to fur-
ther simplify our dataset. Furthermore, we also replaced "-" in be-
tween words with normal whitespaces and removed content inside
brackets of any kind. We also removed any kind of special Unicode
whitespaces, multiples of whitespaces or newlines and standardized
them all with normal single whitespaces to get a cleaner dataset.

The resulting function for white listing and erasure of other
unwanted characters can be seen in the code listing below.

def remove_unwanted_symbols(line: str):
ret = line

To lower case
ret = ret.lower()

Remove unwanted symbols and unicode whitespaces
ret = re.sub(r'[-/\u00ad\u1680\ul80e\u2000-\u200b
\u202f\u205f\u3000\ufeffl', ' ', ret)

Remove everything inside brackets
ret = re.sub(r'CO\[{1.*D)N\1T', "', ret)

"', ret, flags=re.IGNORECASE)

return ret

3.3 Further Improvements and Normalization

To make the training set even better we decided on taking training
articles from the same timeframe so that we potentially have more
articles about the same events from different newspapers. Addition-
ally, we took the same number of articles from each newspaper to
reduce overfitting for one newspaper.

After all mentioned preprocessing steps, the whole training set
consisted of 9000 articles with a vocabulary of around 156000 dif-
ferent words. To improve the information even more we had to
normalize our vocabulary.

3.4 Lemmatization and Stemming

The next step in our preprocessing concerns lemmatization where
we are trying to find the right base form and stem of each word.
This allows us to recognize words with the same meaning because
of the same stem. As an example, the word "apples” gets reduced to
just "apple", the word "swimming" gets reduced to "swim" and the
words "am", "are" and "is" get reduced to "be".[8]

For this purpose, we are using a python lemmatization frame-
work called spaCy. [7] This package also provides a German lan-
guage pack which consists of word stems and their modifications in
the German language. After using spaCy to lemmatize our training

]+"

Classification of Newspaper Articles

data, the whole vocabulary got reduced to 98000 different words
which means a lot of words have not been recognized as the same
word until now. The number of words shows us how important
this preprocessing step is.

3.5 Stop Words

With the identification of the word stems comes also the erasure
of stop words. These are extremely common words which do not
help us gain any important information out of the articles.[6] The
spaCy framework helps us with the erasure of the stop words as
well. A list of common words comes with the German language
pack and with a simple if statement, one can check if a word is a
stop word and remove it from the dataset.

After this preprocessing step we reduced our vocabulary to 96000
words. Even though the vocabulary itself did not get reduced much
in overall, the word count was reduced massively.

To give an example: Without removing stop words, the dataset
for "Der Standard" had a total word count of approx. 1,8 million
words. After removing stop words, it got reduced to 887635. So the
amount of words in the dataset got reduced by half.

3.6 Labeling

Now we concentrate on preparing the dataset for use with the
FastText framework by Facebook.[3] This framework and how it is
used for this solution will be explained in Section 4.

To prepare our data for the framework we had to add labels for
every article. They were in the following form:

e __label__krone
e __label__derstandard
e __label__diepresse

These tags were added to inform the learning algorithm that an
article belongs to a certain newspaper. The fastText library also
allows to include more than one label for further classification but
in our case this feature is not needed since we just want to classify
the authoring newspaper of an article.

3.7 Finishing Touches

To finish the preprocessing for the framework we put each article
together with its label on one line of a text file. Each line then
represented a single article and its corresponding tag. The whole
set of articles then was split into training and test set with a separate
script file. The training set was used to let our algorithm learn how
to classify the given newspapers and consisted of 3000 articles per
newspaper. The test set was used to test the performance of the
learned model and consisted of 900 articles from every newspaper.

3.8 Further Improvement Attempts

In the end we tried to improve the performance and word count of
our dataset even further with another preprocessing step.

We split the articles into sentences because we did not want
our algorithm to decide on the length of the article but on the
characteristics of the language used. Unfortunately, this step turned
out to decrease our test result and we reversed that change.

Knowledge Discovery and Data Mining 2, 2018

4 LEARNING PHASE

Once the data was acquired and preprocessed, a classifier had to be
trained on the given data. For this task we used a text classification
and word representation tool called FastText developed by the
Facebook Research Group.

FastText can be used for two major scenarios: First, it can be
trained on labeled data and after that the model can be queried to
which label the text in question most likely belongs. The second
major aspect of FastText is to let it learn details about word repre-
sentations. This way, details about synonyms and hidden language
structures can be learned which in turn may improve results for
subsequent text classification problems.

FastText was designed by Facebook to work with big sets of
data with several classes each and therefore is highly optimized
to deliver acceptable model training times. This optimization is
accomplished by utilizing hierarchical structures instead of flat
ones where possible and sharing common information across labels
as much as possible too. [4]

For this project, FastText was trained on labeled data where the
label describes the newspaper from which the article was crawled.
FastText supports multi-classification but this was not needed here
as each article belongs to exactly one source newspaper. The Fast-
Text authors provide generic pre-trained models for more than 150
languages including German, but these were not used as those mod-
els do not contain information about our classes - the newspapers.
Instead, our own model was trained using a supervised approach.

The supervised learning can be fine-tuned by adjusting the learn-
ing rate, the number of n-grams to be used and the epoch. The
epoch defines how often each sample is processed during the train-
ing phase. According to the documentation the default value for the
epoch is rather small so that each sample is seen only four times.
[5] The higher the epoch value, the more often each sample is con-
sidered during the training. The learning rate specifies how much
the model should be adjusted during each iteration. The suggested
rate is between 0.1 and 1, a value of zero would mean no learning
at all. Another important setting for the training is the number of
words considered at once - the n-grams. The suggested range for
this setting is between 1 and 5. This is especially important if the
semantic of word combinations should be considered.

To find the ideal combination of these parameters we iterated
over the possible combinations and found out that a low learning
rate of 0.1, a large epoch of 100 and using bi-grams delivered the
best results. Due to the size of the dataset this takes quite some
time. To improve FastText’s training performance another loss func-
tion was set. Instead of the regular softmax function a hierarchical
softmax function was set as suggested in the documentation as
performance tweak. [5] As no major performance reduction was
noticed by this tweak we used that for all iterations. A possible
reason for the good performance of bi-grams is the fact that this
covers word combinations which are influenced by the writing style
of the individual author.

5 PREDICTION PHASE

This section will cover the classification process of the machine
learning algorithm.

Knowledge Discovery and Data Mining 2, 2018

Die Presse | Kronen Zeitung | Der Standard
Die Presse 276 97 227
Kronen Zeitung 103 448 49
Der Standard 265 46 289

Table 1: Confusion matrix for the validation dataset.

After the model was trained the resulting precision and recall
values for the testing dataset could be extracted. Since we only
classify our articles by one label, the values for precision and recall
are equal in every case. The results we achieved with our main
implementation were a precision/recall value of 56%.

The computed confusion matrix for our test dataset can be seen
in table 1. The matrix shows us that we can differentiate between
"Kronen Zeitung" and the other two newspapers pretty well but "Die
Presse" and "Der Standard" do not manifest any major differences.
The model fails to differentiate between those two newspapers. The
newspapers offer as much wrong classification as there are right
classifications. This would be as good as picking the newspaper
randomly.

This raises the question if it is even possible to classify any
newspaper with the same amount of advanced language. To exhibit
this problem further research would be necessary.

6 CONCLUSION

To assess the quality of sources of journalistic work gains impor-
tance in times of rising popularity of terms like ’Fake News’. Fur-
thermore, unquoted reuse of such work can be observed on blogs.
By inspecting features like writing style, average sentence length,
the vocabulary used and others it might be possible to find out the
original source of an article.

6.1 Approach

This project tried to inspect if well-known Austrian newspapers
can be distinguished. To do so, articles from "Der Standard", "Die
Presse" and "Kronen Zeitung" were crawled, preprocessed and fed
into a text classifier.

To crawl the articles a framework called Scrapy was used. To
increase the likelihood that the articles cover the same events it was
tried to fetch articles from April 2018 only. For "Kronen Zeitung"
this was not possible as they neither offer an article search page
nor an archive.

To improve the quality of the dataset a few preprocessing steps
were applied before feeding the data to the classifier. During this
preprocessing special characters were removed, lemmatization of
words was applied and common German words were excluded
as these are not beneficial for the classification. For this task, the
Python framework spaCy was used which already provides a Ger-
man model which was trained on Wikipedia articles. The model is
used to recognize stop words and gives the base information needed
for lemmatization. During this step the amount of data which has
to be fed into the classifier was reduced dramatically which in turn
improved the performance of the subsequent steps.

For the actual learning a tool developed by the Facebook Re-
search Group called FastText was used. The available pre-trained

P. Schwarz, M. Krawanja and M. Wiesinger

models were not taken but instead the acquired labeled data of the
newspapers built the basis to train a new model. For this, the best
combination of parameters was determined in an iterative manner.
The parameters consist of a low learning rate, a high epoch which
means that individual samples are considered more often and bi-
grams were used instead of uni-grams. This way the order of words
is important. It is noteworthy that the removal of stop words had a
direct influence on the bi-grams generated at this step.

6.2 Results

Most of the results of table 1 show us that a classification of different
newspapers is possible. Not all papers can be differentiated but
we can tell if the source of an article originates in a boulevard
newspaper or in a more sophisticated newspaper.

6.3 Future Work

This project considers the vocabulary used in an article as well
as the direct neighbors of words. To improve the accuracy of the
classifier, more general aspects of news articles could be considered
too like average length of articles, sentences or even words. Fur-
thermore, it could be beneficial to generate a vocabulary set which
is common to a newspaper but not common in general. This way, if
such vocabulary is found it would be a strong indicator for a given
label.

Another aspect not elaborated in detail in this work is the struc-
ture of sentences. The tool used for lemmatization (spaCy) can
classify tokens to nouns, verbs, adjectives and so on. At first sight,
this worked reasonably well, so by looking in detail how sentences
are structured, hints regarding the author of the article could be
extracted as well.

REFERENCES

[1] Scrapy developers. 2018. Scrapy Tutorial. https://doc.scrapy.org/en/latest/intro/
tutorial.html.

[2] eurotopics. 2017. Dominanz des Boulevards. https://www.eurotopics.net/de/
149419/oesterreich-dominanz-des-boulevards.

[3] facebookresearch. 2018. Library for fast text representation and classification.
https://github.com/facebookresearch/fastText/tree/master/python.

[4] Facebook Inc. 2018. fastText. https://research.fb.com/fasttext/

[5] Facebook Inc. 2018. Text Classification - fastText. https://fasttext.cc/docs/en/
supervised-tutorial.html

[6] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schitze. 2008. Intro-
duction to Information Retrieval. Cambridge University Press. https://doi.org/10.
1017/CB09780511809071

[7] spaCy developers. 2018. Code examples - spaCy. https://spacy.io/usage/examples.

[8] Daniel Tunkelang. 2017. Stemming and Lemmatization. https://
queryunderstanding.com/stemming-and-lemmatization-6c086742fe45

https://doc.scrapy.org/en/latest/intro/tutorial.html
https://doc.scrapy.org/en/latest/intro/tutorial.html
https://www.eurotopics.net/de/149419/oesterreich-dominanz-des-boulevards
https://www.eurotopics.net/de/149419/oesterreich-dominanz-des-boulevards
https://github.com/facebookresearch/fastText/tree/master/python
https://research.fb.com/fasttext/
https://fasttext.cc/docs/en/supervised-tutorial.html
https://fasttext.cc/docs/en/supervised-tutorial.html
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
https://spacy.io/usage/examples
https://queryunderstanding.com/stemming-and-lemmatization-6c086742fe45
https://queryunderstanding.com/stemming-and-lemmatization-6c086742fe45

	Abstract
	1 Introduction
	2 Data acquisition
	2.1 Kronen Zeitung
	2.2 Der Standard
	2.3 Die Presse

	3 Preprocessing
	3.1 Obvious Indicators
	3.2 Special Characters, Punctuation and Whitespaces
	3.3 Further Improvements and Normalization
	3.4 Lemmatization and Stemming
	3.5 Stop Words
	3.6 Labeling
	3.7 Finishing Touches
	3.8 Further Improvement Attempts

	4 Learning phase
	5 Prediction Phase
	6 Conclusion
	6.1 Approach
	6.2 Results
	6.3 Future Work

	References

