/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/ReciprocalMulConstants.h" #include "mozilla/Assertions.h" #include using namespace js::jit; template struct TwiceLarger; template <> struct TwiceLarger { using Type = uint64_t; using SignedType = int64_t; }; template <> struct TwiceLarger { using Type = js::Uint128; using SignedType = js::Int128; }; template static auto ComputeDivisionConstants(UintT d, int maxLog) { using UintT_Twice = typename TwiceLarger::Type; using IntT_Twice = typename TwiceLarger::SignedType; MOZ_ASSERT(maxLog >= 2 && maxLog <= std::numeric_limits::digits); // In what follows, 0 < d < 2^maxLog and d is not a power of 2. MOZ_ASSERT(UintT_Twice(d) < (UintT_Twice(1) << maxLog) && !mozilla::IsPowerOfTwo(d)); // NOTE: The following explanation assumes T = uint32_t, but // T = uint64_t works similar. // // Speeding up division by non power-of-2 constants is possible by // calculating, during compilation, a value M such that high-order // bits of M*n correspond to the result of the division of n by d. // No value of M can serve this purpose for arbitrarily big values // of n but, for optimizing integer division, we're just concerned // with values of n whose absolute value is bounded (by fitting in // an integer type, say). With this in mind, we'll find a constant // M as above that works for -2^maxLog <= n < 2^maxLog; maxLog can // then be 31 for signed division or 32 for unsigned division. // // The original presentation of this technique appears in Hacker's // Delight, a book by Henry S. Warren, Jr.. A proof of correctness // for our version follows; we'll denote maxLog by L in the proof, // for conciseness. // // Formally, for |d| < 2^L, we'll compute two magic values M and s // in the ranges 0 <= M < 2^(L+1) and 0 <= s <= L such that // (M * n) >> (32 + s) = floor(n/d) if 0 <= n < 2^L // (M * n) >> (32 + s) = ceil(n/d) - 1 if -2^L <= n < 0. // // Define p = 32 + s, M = ceil(2^p/d), and assume that s satisfies // M - 2^p/d <= 2^(p-L)/d. (1) // (Observe that p = CeilLog32(d) + L satisfies this, as the right // side of (1) is at least one in this case). Then, // // a) If p <= CeilLog32(d) + L, then M < 2^(L+1) - 1. // Proof: Indeed, M is monotone in p and, for p equal to the above // value, the bounds 2^L > d >= 2^(p-L-1) + 1 readily imply that // 2^p / d < 2^p/(d - 1) * (d - 1)/d // <= 2^(L+1) * (1 - 1/d) < 2^(L+1) - 2. // The claim follows by applying the ceiling function. // // b) For any 0 <= n < 2^L, floor(Mn/2^p) = floor(n/d). // Proof: Put x = floor(Mn/2^p); it's the unique integer for which // Mn/2^p - 1 < x <= Mn/2^p. (2) // Using M >= 2^p/d on the LHS and (1) on the RHS, we get // n/d - 1 < x <= n/d + n/(2^L d) < n/d + 1/d. // Since x is an integer, it's not in the interval (n/d, (n+1)/d), // and so n/d - 1 < x <= n/d, which implies x = floor(n/d). // // c) For any -2^L <= n < 0, floor(Mn/2^p) + 1 = ceil(n/d). // Proof: The proof is similar. Equation (2) holds as above. Using // M > 2^p/d (d isn't a power of 2) on the RHS and (1) on the LHS, // n/d + n/(2^L d) - 1 < x < n/d. // Using n >= -2^L and summing 1, // n/d - 1/d < x + 1 < n/d + 1. // Since x + 1 is an integer, this implies n/d <= x + 1 < n/d + 1. // In other words, x + 1 = ceil(n/d). // // Condition (1) isn't necessary for the existence of M and s with // the properties above. Hacker's Delight provides a slightly less // restrictive condition when d >= 196611, at the cost of a 3-page // proof of correctness, for the case L = 31. // // Note that, since d*M - 2^p = d - (2^p)%d, (1) can be written as // 2^(p-L) >= d - (2^p)%d. // In order to avoid overflow in the (2^p) % d calculation, we can // compute it as (2^p-1) % d + 1, where 2^p-1 can then be computed // without overflow as UINT64_MAX >> (64-p). static constexpr auto UINT_BITS = std::numeric_limits::digits; static constexpr auto UINT_TWICE_BITS = std::numeric_limits::digits; static constexpr auto UINT_TWICE_MAX = std::numeric_limits::max(); // We now compute the least p >= UINT_BITS with the property above... int32_t p = UINT_BITS; while (true) { auto u = (UintT_Twice(1) << (p - maxLog)); auto v = (UINT_TWICE_MAX >> (UINT_TWICE_BITS - p)); if (u + (v % UintT_Twice(d)) + UintT_Twice(1) < UintT_Twice(d)) { p++; } else { break; } } // ...and the corresponding M. For either the signed (L=31) or the // unsigned (L=32) case, this value can be too large (cf. item a). // Codegen can still multiply by M by multiplying by (M - 2^L) and // adjusting the value afterwards, if this is the case. DivConstants rmc; rmc.multiplier = static_cast( (UINT_TWICE_MAX >> (UINT_TWICE_BITS - p)) / UintT_Twice(d) + UintT_Twice(1)); rmc.shiftAmount = p - UINT_BITS; return rmc; } ReciprocalMulConstants::Div32Constants ReciprocalMulConstants::computeDivisionConstants(uint32_t d, int maxLog) { return ComputeDivisionConstants(d, maxLog); } ReciprocalMulConstants::Div64Constants ReciprocalMulConstants::computeDivisionConstants(uint64_t d, int maxLog) { return ComputeDivisionConstants(d, maxLog); }