/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * JS math package. */ #include "jsmath.h" #include "mozilla/CheckedInt.h" #include "mozilla/FloatingPoint.h" #include "mozilla/MathAlgorithms.h" #include "mozilla/RandomNum.h" #include "mozilla/WrappingOperations.h" #include #include "fdlibm.h" #include "jsapi.h" #include "jstypes.h" #include "jit/InlinableNatives.h" #include "js/Class.h" #include "js/ForOfIterator.h" #include "js/Prefs.h" #include "js/PropertySpec.h" #include "util/DifferentialTesting.h" #include "vm/Float16.h" #include "vm/Interpreter.h" #include "vm/JSContext.h" #include "vm/Realm.h" #include "vm/Time.h" #include "xsum/xsum.h" #include "vm/JSObject-inl.h" using namespace js; using JS::GenericNaN; using JS::ToNumber; using mozilla::ExponentComponent; using mozilla::FloatingPoint; using mozilla::IsNegative; using mozilla::IsNegativeZero; using mozilla::Maybe; using mozilla::NegativeInfinity; using mozilla::NumberEqualsInt32; using mozilla::NumberEqualsInt64; using mozilla::PositiveInfinity; using mozilla::WrappingMultiply; bool js::math_use_fdlibm_for_sin_cos_tan() { return JS::Prefs::use_fdlibm_for_sin_cos_tan(); } static inline bool UseFdlibmForSinCosTan(const CallArgs& args) { return math_use_fdlibm_for_sin_cos_tan() || args.callee().nonCCWRealm()->creationOptions().alwaysUseFdlibm(); } // Stack alignment on x86 Windows is 4 byte. Align to 16 bytes when calling // rounding functions with double parameters. // // See |ABIStackAlignment| in "js/src/jit/x86/Assembler-x86.h". #if defined(JS_CODEGEN_X86) && (!defined(__GNUC__) || defined(__MINGW32__)) # define ALIGN_STACK_FOR_ROUNDING_FUNCTION \ __attribute__((force_align_arg_pointer)) #else # define ALIGN_STACK_FOR_ROUNDING_FUNCTION #endif template static bool math_function(JSContext* cx, CallArgs& args) { if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) { return false; } // TODO(post-Warp): Re-evaluate if it's still necessary resp. useful to always // type the value as a double. // NB: Always stored as a double so the math function can be inlined // through MMathFunction. double z = F(x); args.rval().setDouble(z); return true; } double js::math_abs_impl(double x) { return mozilla::Abs(x); } bool js::math_abs(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) { return false; } args.rval().setNumber(math_abs_impl(x)); return true; } double js::math_acos_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_acos(x); } static bool math_acos(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_asin_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_asin(x); } static bool math_asin(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_atan_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_atan(x); } static bool math_atan(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::ecmaAtan2(double y, double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_atan2(y, x); } static bool math_atan2(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); double y; if (!ToNumber(cx, args.get(0), &y)) { return false; } double x; if (!ToNumber(cx, args.get(1), &x)) { return false; } double z = ecmaAtan2(y, x); args.rval().setDouble(z); return true; } ALIGN_STACK_FOR_ROUNDING_FUNCTION double js::math_ceil_impl(double x) { AutoUnsafeCallWithABI unsafe; return std::ceil(x); } static bool math_ceil(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) { return false; } args.rval().setNumber(math_ceil_impl(x)); return true; } static bool math_clz32(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setInt32(32); return true; } uint32_t n; if (!ToUint32(cx, args[0], &n)) { return false; } if (n == 0) { args.rval().setInt32(32); return true; } args.rval().setInt32(mozilla::CountLeadingZeroes32(n)); return true; } double js::math_cos_fdlibm_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_cos(x); } double js::math_cos_native_impl(double x) { MOZ_ASSERT(!math_use_fdlibm_for_sin_cos_tan()); AutoUnsafeCallWithABI unsafe; return std::cos(x); } static bool math_cos(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (UseFdlibmForSinCosTan(args)) { return math_function(cx, args); } return math_function(cx, args); } double js::math_exp_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_exp(x); } static bool math_exp(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } ALIGN_STACK_FOR_ROUNDING_FUNCTION double js::math_floor_impl(double x) { AutoUnsafeCallWithABI unsafe; return std::floor(x); } bool js::math_floor(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) { return false; } args.rval().setNumber(math_floor_impl(x)); return true; } bool js::math_imul_handle(JSContext* cx, HandleValue lhs, HandleValue rhs, MutableHandleValue res) { int32_t a = 0, b = 0; if (!lhs.isUndefined() && !ToInt32(cx, lhs, &a)) { return false; } if (!rhs.isUndefined() && !ToInt32(cx, rhs, &b)) { return false; } res.setInt32(WrappingMultiply(a, b)); return true; } static bool math_imul(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_imul_handle(cx, args.get(0), args.get(1), args.rval()); } // Implements Math.fround (20.2.2.16) up to step 3 bool js::RoundFloat32(JSContext* cx, HandleValue v, float* out) { double d; bool success = ToNumber(cx, v, &d); *out = static_cast(d); return success; } bool js::RoundFloat32(JSContext* cx, HandleValue arg, MutableHandleValue res) { float f; if (!RoundFloat32(cx, arg, &f)) { return false; } res.setDouble(static_cast(f)); return true; } double js::RoundFloat32(double d) { return static_cast(static_cast(d)); } static bool math_fround(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } return RoundFloat32(cx, args[0], args.rval()); } double js::RoundFloat16(double d) { AutoUnsafeCallWithABI unsafe; // http://tc39.es/proposal-float16array/#sec-function-properties-of-the-math-object // 1. Let n be ? ToNumber(x). // [Not applicable here] // 2. If n is NaN, return NaN. // 3. If n is one of +0𝔽, -0𝔽, +∞𝔽, or -∞𝔽, return n. // 4. Let n16 be the result of converting n to IEEE 754-2019 binary16 format // using roundTiesToEven mode. js::float16 f16 = js::float16(d); // 5. Let n64 be the result of converting n16 to IEEE 754-2019 binary64 // format. // 6. Return the ECMAScript Number value corresponding to n64. return static_cast(f16); } static bool math_f16round(JSContext* cx, unsigned argc, Value* vp) { // http://tc39.es/proposal-float16array/#sec-function-properties-of-the-math-object CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } // 1. Let n be ? ToNumber(x). double d; if (!ToNumber(cx, args[0], &d)) { return false; } // Steps 2-6. args.rval().setDouble(RoundFloat16(d)); return true; } double js::math_log_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_log(x); } static bool math_log(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_max_impl(double x, double y) { AutoUnsafeCallWithABI unsafe; // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0 if (x > y || std::isnan(x) || (x == y && IsNegative(y))) { return x; } return y; } bool js::math_max(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); double maxval = NegativeInfinity(); for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) { return false; } maxval = math_max_impl(x, maxval); } args.rval().setNumber(maxval); return true; } double js::math_min_impl(double x, double y) { AutoUnsafeCallWithABI unsafe; // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0 if (x < y || std::isnan(x) || (x == y && IsNegativeZero(x))) { return x; } return y; } bool js::math_min(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); double minval = PositiveInfinity(); for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) { return false; } minval = math_min_impl(x, minval); } args.rval().setNumber(minval); return true; } double js::powi(double x, int32_t y) { AutoUnsafeCallWithABI unsafe; // It's only safe to optimize this when we can compute with integer values or // the exponent is a small, positive constant. if (y >= 0) { uint32_t n = uint32_t(y); // NB: Have to take fast-path for n <= 4 to match |MPow::foldsTo|. Otherwise // we risk causing differential testing issues. if (n == 0) { return 1; } if (n == 1) { return x; } if (n == 2) { return x * x; } if (n == 3) { return x * x * x; } if (n == 4) { double z = x * x; return z * z; } int64_t i; if (NumberEqualsInt64(x, &i)) { // Special-case: |-0 ** odd| is -0. if (i == 0) { return (n & 1) ? x : 0; } // Use int64 to cover cases like |Math.pow(2, 53)|. mozilla::CheckedInt64 runningSquare = i; mozilla::CheckedInt64 result = 1; while (true) { if ((n & 1) != 0) { result *= runningSquare; if (!result.isValid()) { break; } } n >>= 1; if (n == 0) { return static_cast(result.value()); } runningSquare *= runningSquare; if (!runningSquare.isValid()) { break; } } } // Fall-back to use std::pow to reduce floating point precision errors. } return std::pow(x, static_cast(y)); // Avoid pow(double, int). } double js::ecmaPow(double x, double y) { AutoUnsafeCallWithABI unsafe; /* * Use powi if the exponent is an integer-valued double. We don't have to * check for NaN since a comparison with NaN is always false. */ int32_t yi; if (NumberEqualsInt32(y, &yi)) { return powi(x, yi); } /* * Because C99 and ECMA specify different behavior for pow(), * we need to wrap the libm call to make it ECMA compliant. */ if (!std::isfinite(y) && (x == 1.0 || x == -1.0)) { return GenericNaN(); } /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ if (y == 0) { return 1; } /* * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) * when x = -0.0, so we have to guard for this. */ if (std::isfinite(x) && x != 0.0) { if (y == 0.5) { return std::sqrt(x); } if (y == -0.5) { return 1.0 / std::sqrt(x); } } return std::pow(x, y); } static bool math_pow(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); double x; if (!ToNumber(cx, args.get(0), &x)) { return false; } double y; if (!ToNumber(cx, args.get(1), &y)) { return false; } double z = ecmaPow(x, y); args.rval().setNumber(z); return true; } uint64_t js::GenerateRandomSeed() { Maybe maybeSeed = mozilla::RandomUint64(); return maybeSeed.valueOrFrom([] { // Use PRMJ_Now() in case we couldn't read random bits from the OS. uint64_t timestamp = PRMJ_Now(); return timestamp ^ (timestamp << 32); }); } void js::GenerateXorShift128PlusSeed(mozilla::Array& seed) { // XorShift128PlusRNG must be initialized with a non-zero seed. do { seed[0] = GenerateRandomSeed(); seed[1] = GenerateRandomSeed(); } while (seed[0] == 0 && seed[1] == 0); } mozilla::non_crypto::XorShift128PlusRNG& Realm::getOrCreateRandomNumberGenerator() { if (randomNumberGenerator_.isNothing()) { mozilla::Array seed; GenerateXorShift128PlusSeed(seed); randomNumberGenerator_.emplace(seed[0], seed[1]); } return randomNumberGenerator_.ref(); } double js::math_random_impl(JSContext* cx) { return cx->realm()->getOrCreateRandomNumberGenerator().nextDouble(); } static bool math_random(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (js::SupportDifferentialTesting()) { args.rval().setDouble(0); } else { args.rval().setDouble(math_random_impl(cx)); } return true; } template T js::GetBiggestNumberLessThan(T x) { MOZ_ASSERT(!IsNegative(x)); MOZ_ASSERT(std::isfinite(x)); using Bits = typename mozilla::FloatingPoint::Bits; Bits bits = mozilla::BitwiseCast(x); MOZ_ASSERT(bits > 0, "will underflow"); return mozilla::BitwiseCast(bits - 1); } template double js::GetBiggestNumberLessThan<>(double x); template float js::GetBiggestNumberLessThan<>(float x); ALIGN_STACK_FOR_ROUNDING_FUNCTION double js::math_round_impl(double x) { AutoUnsafeCallWithABI unsafe; double result = std::ceil(x); if (x < result - 0.5) { result -= 1.0; } return result; } float js::math_roundf_impl(float x) { AutoUnsafeCallWithABI unsafe; float result = std::ceil(x); if (x < result - 0.5f) { result -= 1.0f; } return result; } /* ES5 15.8.2.15. */ static bool math_round(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) { return false; } args.rval().setNumber(math_round_impl(x)); return true; } double js::math_sin_fdlibm_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_sin(x); } double js::math_sin_native_impl(double x) { MOZ_ASSERT(!math_use_fdlibm_for_sin_cos_tan()); AutoUnsafeCallWithABI unsafe; return std::sin(x); } static bool math_sin(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (UseFdlibmForSinCosTan(args)) { return math_function(cx, args); } return math_function(cx, args); } double js::math_sqrt_impl(double x) { AutoUnsafeCallWithABI unsafe; return std::sqrt(x); } static bool math_sqrt(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_tan_fdlibm_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_tan(x); } double js::math_tan_native_impl(double x) { MOZ_ASSERT(!math_use_fdlibm_for_sin_cos_tan()); AutoUnsafeCallWithABI unsafe; return std::tan(x); } static bool math_tan(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (UseFdlibmForSinCosTan(args)) { return math_function(cx, args); } return math_function(cx, args); } double js::math_log10_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_log10(x); } static bool math_log10(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_log2_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_log2(x); } static bool math_log2(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_log1p_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_log1p(x); } static bool math_log1p(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_expm1_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_expm1(x); } static bool math_expm1(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_cosh_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_cosh(x); } static bool math_cosh(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_sinh_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_sinh(x); } static bool math_sinh(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_tanh_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_tanh(x); } static bool math_tanh(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_acosh_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_acosh(x); } static bool math_acosh(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_asinh_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_asinh(x); } static bool math_asinh(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::math_atanh_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_atanh(x); } static bool math_atanh(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } double js::ecmaHypot(double x, double y) { AutoUnsafeCallWithABI unsafe; return fdlibm_hypot(x, y); } static inline void hypot_step(double& scale, double& sumsq, double x) { double xabs = mozilla::Abs(x); if (scale < xabs) { sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); scale = xabs; } else if (scale != 0) { sumsq += (xabs / scale) * (xabs / scale); } } double js::hypot4(double x, double y, double z, double w) { AutoUnsafeCallWithABI unsafe; // Check for infinities or NaNs so that we can return immediately. if (std::isinf(x) || std::isinf(y) || std::isinf(z) || std::isinf(w)) { return mozilla::PositiveInfinity(); } if (std::isnan(x) || std::isnan(y) || std::isnan(z) || std::isnan(w)) { return GenericNaN(); } double scale = 0; double sumsq = 1; hypot_step(scale, sumsq, x); hypot_step(scale, sumsq, y); hypot_step(scale, sumsq, z); hypot_step(scale, sumsq, w); return scale * std::sqrt(sumsq); } double js::hypot3(double x, double y, double z) { AutoUnsafeCallWithABI unsafe; return hypot4(x, y, z, 0.0); } static bool math_hypot(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_hypot_handle(cx, args, args.rval()); } bool js::math_hypot_handle(JSContext* cx, HandleValueArray args, MutableHandleValue res) { // IonMonkey calls the ecmaHypot function directly if two arguments are // given. Do that here as well to get the same results. if (args.length() == 2) { double x, y; if (!ToNumber(cx, args[0], &x)) { return false; } if (!ToNumber(cx, args[1], &y)) { return false; } double result = ecmaHypot(x, y); res.setDouble(result); return true; } bool isInfinite = false; bool isNaN = false; double scale = 0; double sumsq = 1; for (unsigned i = 0; i < args.length(); i++) { double x; if (!ToNumber(cx, args[i], &x)) { return false; } isInfinite |= std::isinf(x); isNaN |= std::isnan(x); if (isInfinite || isNaN) { continue; } hypot_step(scale, sumsq, x); } double result = isInfinite ? PositiveInfinity() : isNaN ? GenericNaN() : scale * std::sqrt(sumsq); res.setDouble(result); return true; } ALIGN_STACK_FOR_ROUNDING_FUNCTION double js::math_trunc_impl(double x) { AutoUnsafeCallWithABI unsafe; return std::trunc(x); } bool js::math_trunc(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) { return false; } args.rval().setNumber(math_trunc_impl(x)); return true; } double js::math_sign_impl(double x) { AutoUnsafeCallWithABI unsafe; if (std::isnan(x)) { return GenericNaN(); } return x == 0 ? x : x < 0 ? -1 : 1; } bool js::math_sign(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); if (args.length() == 0) { args.rval().setNaN(); return true; } double x; if (!ToNumber(cx, args[0], &x)) { return false; } args.rval().setNumber(math_sign_impl(x)); return true; } double js::math_cbrt_impl(double x) { AutoUnsafeCallWithABI unsafe; return fdlibm_cbrt(x); } static bool math_cbrt(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return math_function(cx, args); } static bool math_toSource(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); args.rval().setString(cx->names().Math); return true; } enum class SumPreciseState : uint8_t { MinusZero, Finite, PlusInfinity, MinusInfinity, NotANumber, }; /** * Math.sumPrecise ( items ) * * https://tc39.es/proposal-math-sum/#sec-math.sumprecise */ static bool math_sumPrecise(JSContext* cx, unsigned argc, Value* vp) { constexpr int64_t MaxCount = int64_t(1) << 53; // Step 1. Perform ? RequireObjectCoercible(items). CallArgs args = CallArgsFromVp(argc, vp); if (!args.requireAtLeast(cx, "Math.sumPrecise", 1)) { return false; } // Step 2. Let iteratorRecord be ? GetIterator(items, sync). JS::ForOfIterator iterator(cx); if (!iterator.init(args[0], JS::ForOfIterator::ThrowOnNonIterable)) { return false; } // Step 3. Let state be minus-zero. SumPreciseState state = SumPreciseState::MinusZero; // Step 4. Let sum be 0. xsum_small_accumulator sum; xsum_small_init(&sum); // Step 5. Let count be 0. int64_t count = 0; // Step 6. Let next be not-started. // (implicit) JS::Rooted value(cx); // Step 7. Repeat, while next is not done, while (true) { // Step 7.a. Set next to ? IteratorStepValue(iteratorRecord). bool done; if (!iterator.next(&value, &done)) { return false; } // Step 7.b. If next is not done, then if (done) { break; } // Step 7.b.i. Set count to count + 1. count += 1; // Step 7.b.ii. If count ≥ 2**53, then if (count >= MaxCount) { // Step 7.b.ii.1. Let error be ThrowCompletion(a newly created RangeError // object). JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_SUMPRECISE_TOO_MANY_VALUES); // Step 7.b.ii.2. Return ? IteratorClose(iteratorRecord, error). iterator.closeThrow(); return false; } // Step 7.b.iv. If next is not a Number, then if (!value.isNumber()) { // Step 7.b.iv.1. Let error be ThrowCompletion(a newly created TypeError // object). JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_SUMPRECISE_EXPECTED_NUMBER); // Step 7.b.iv.2. Return ? IteratorClose(iteratorRecord, error). iterator.closeThrow(); return false; } // Step 7.b.v. Let n be next. double n = value.toNumber(); // Step 7.b.vi. If state is not not-a-number, then if (state == SumPreciseState::NotANumber) { continue; } // Step 7.b.vi.1. If n is NaN, then if (std::isnan(n)) { // Step 7.b.vi.1.a. Set state to not-a-number. state = SumPreciseState::NotANumber; } else if (n == PositiveInfinity()) { // Step 7.b.vi.2. Else if n is +∞𝔽, then if (state == SumPreciseState::MinusInfinity) { // Step 7.b.vi.2.a. If state is minus-infinity, set state to // not-a-number. state = SumPreciseState::NotANumber; } else { // Step 7.b.vi.2.b. Else, set state to plus-infinity. state = SumPreciseState::PlusInfinity; } } else if (n == NegativeInfinity()) { // Step 7.b.vi.3. Else if n is -∞𝔽, then if (state == SumPreciseState::PlusInfinity) { // Step 7.b.vi.3.a. If state is plus-infinity, set state to // not-a-number. state = SumPreciseState::NotANumber; } else { // Step 7.b.vi.3.b. Else, set state to minus-infinity. state = SumPreciseState::MinusInfinity; } } else if (!IsNegativeZero(n) && (state == SumPreciseState::MinusZero || state == SumPreciseState::Finite)) { // Step 7.b.vi.4. Else if n is not -0𝔽 and state is either minus-zero or // finite, then // Step 7.b.vi.4.a. Set state to finite. state = SumPreciseState::Finite; // Step 7.b.vi.4.b. Set sum to sum + ℝ(n). xsum_small_add1(&sum, n); } } double rval; switch (state) { case SumPreciseState::NotANumber: // Step 8. If state is not-a-number, return NaN. rval = GenericNaN(); break; case SumPreciseState::PlusInfinity: // Step 9. If state is plus-infinity, return +∞𝔽. rval = PositiveInfinity(); break; case SumPreciseState::MinusInfinity: // Step 10. If state is minus-infinity, return -∞𝔽. rval = NegativeInfinity(); break; case SumPreciseState::MinusZero: // Step 11. If state is minus-zero, return -0𝔽. rval = -0.0; break; case SumPreciseState::Finite: // Step 12. Return 𝔽(sum). rval = xsum_small_round(&sum); break; } args.rval().setNumber(rval); return true; } UnaryMathFunctionType js::GetUnaryMathFunctionPtr(UnaryMathFunction fun) { switch (fun) { case UnaryMathFunction::SinNative: return math_sin_native_impl; case UnaryMathFunction::SinFdlibm: return math_sin_fdlibm_impl; case UnaryMathFunction::CosNative: return math_cos_native_impl; case UnaryMathFunction::CosFdlibm: return math_cos_fdlibm_impl; case UnaryMathFunction::TanNative: return math_tan_native_impl; case UnaryMathFunction::TanFdlibm: return math_tan_fdlibm_impl; case UnaryMathFunction::Log: return math_log_impl; case UnaryMathFunction::Exp: return math_exp_impl; case UnaryMathFunction::ATan: return math_atan_impl; case UnaryMathFunction::ASin: return math_asin_impl; case UnaryMathFunction::ACos: return math_acos_impl; case UnaryMathFunction::Log10: return math_log10_impl; case UnaryMathFunction::Log2: return math_log2_impl; case UnaryMathFunction::Log1P: return math_log1p_impl; case UnaryMathFunction::ExpM1: return math_expm1_impl; case UnaryMathFunction::CosH: return math_cosh_impl; case UnaryMathFunction::SinH: return math_sinh_impl; case UnaryMathFunction::TanH: return math_tanh_impl; case UnaryMathFunction::ACosH: return math_acosh_impl; case UnaryMathFunction::ASinH: return math_asinh_impl; case UnaryMathFunction::ATanH: return math_atanh_impl; case UnaryMathFunction::Trunc: return math_trunc_impl; case UnaryMathFunction::Cbrt: return math_cbrt_impl; case UnaryMathFunction::Floor: return math_floor_impl; case UnaryMathFunction::Ceil: return math_ceil_impl; case UnaryMathFunction::Round: return math_round_impl; } MOZ_CRASH("Unknown function"); } const char* js::GetUnaryMathFunctionName(UnaryMathFunction fun, bool enumName) { switch (fun) { case UnaryMathFunction::SinNative: return enumName ? "SinNative" : "Sin (native)"; case UnaryMathFunction::SinFdlibm: return enumName ? "SinFdlibm" : "Sin (fdlibm)"; case UnaryMathFunction::CosNative: return enumName ? "CosNative" : "Cos (native)"; case UnaryMathFunction::CosFdlibm: return enumName ? "CosFdlibm" : "Cos (fdlibm)"; case UnaryMathFunction::TanNative: return enumName ? "TanNative" : "Tan (native)"; case UnaryMathFunction::TanFdlibm: return enumName ? "TanFdlibm" : "Tan (fdlibm)"; case UnaryMathFunction::Log: return "Log"; case UnaryMathFunction::Exp: return "Exp"; case UnaryMathFunction::ACos: return "ACos"; case UnaryMathFunction::ASin: return "ASin"; case UnaryMathFunction::ATan: return "ATan"; case UnaryMathFunction::Log10: return "Log10"; case UnaryMathFunction::Log2: return "Log2"; case UnaryMathFunction::Log1P: return "Log1P"; case UnaryMathFunction::ExpM1: return "ExpM1"; case UnaryMathFunction::CosH: return "CosH"; case UnaryMathFunction::SinH: return "SinH"; case UnaryMathFunction::TanH: return "TanH"; case UnaryMathFunction::ACosH: return "ACosH"; case UnaryMathFunction::ASinH: return "ASinH"; case UnaryMathFunction::ATanH: return "ATanH"; case UnaryMathFunction::Trunc: return "Trunc"; case UnaryMathFunction::Cbrt: return "Cbrt"; case UnaryMathFunction::Floor: return "Floor"; case UnaryMathFunction::Ceil: return "Ceil"; case UnaryMathFunction::Round: return "Round"; } MOZ_CRASH("Unknown function"); } static const JSFunctionSpec math_static_methods[] = { JS_FN("toSource", math_toSource, 0, 0), JS_INLINABLE_FN("abs", math_abs, 1, 0, MathAbs), JS_INLINABLE_FN("acos", math_acos, 1, 0, MathACos), JS_INLINABLE_FN("asin", math_asin, 1, 0, MathASin), JS_INLINABLE_FN("atan", math_atan, 1, 0, MathATan), JS_INLINABLE_FN("atan2", math_atan2, 2, 0, MathATan2), JS_INLINABLE_FN("ceil", math_ceil, 1, 0, MathCeil), JS_INLINABLE_FN("clz32", math_clz32, 1, 0, MathClz32), JS_INLINABLE_FN("cos", math_cos, 1, 0, MathCos), JS_INLINABLE_FN("exp", math_exp, 1, 0, MathExp), JS_INLINABLE_FN("floor", math_floor, 1, 0, MathFloor), JS_INLINABLE_FN("imul", math_imul, 2, 0, MathImul), JS_INLINABLE_FN("fround", math_fround, 1, 0, MathFRound), JS_INLINABLE_FN("f16round", math_f16round, 1, 0, MathF16Round), JS_INLINABLE_FN("log", math_log, 1, 0, MathLog), JS_INLINABLE_FN("max", math_max, 2, 0, MathMax), JS_INLINABLE_FN("min", math_min, 2, 0, MathMin), JS_INLINABLE_FN("pow", math_pow, 2, 0, MathPow), JS_INLINABLE_FN("random", math_random, 0, 0, MathRandom), JS_INLINABLE_FN("round", math_round, 1, 0, MathRound), JS_INLINABLE_FN("sin", math_sin, 1, 0, MathSin), JS_INLINABLE_FN("sqrt", math_sqrt, 1, 0, MathSqrt), JS_INLINABLE_FN("tan", math_tan, 1, 0, MathTan), JS_INLINABLE_FN("log10", math_log10, 1, 0, MathLog10), JS_INLINABLE_FN("log2", math_log2, 1, 0, MathLog2), JS_INLINABLE_FN("log1p", math_log1p, 1, 0, MathLog1P), JS_INLINABLE_FN("expm1", math_expm1, 1, 0, MathExpM1), JS_INLINABLE_FN("cosh", math_cosh, 1, 0, MathCosH), JS_INLINABLE_FN("sinh", math_sinh, 1, 0, MathSinH), JS_INLINABLE_FN("tanh", math_tanh, 1, 0, MathTanH), JS_INLINABLE_FN("acosh", math_acosh, 1, 0, MathACosH), JS_INLINABLE_FN("asinh", math_asinh, 1, 0, MathASinH), JS_INLINABLE_FN("atanh", math_atanh, 1, 0, MathATanH), JS_INLINABLE_FN("hypot", math_hypot, 2, 0, MathHypot), JS_INLINABLE_FN("trunc", math_trunc, 1, 0, MathTrunc), JS_INLINABLE_FN("sign", math_sign, 1, 0, MathSign), JS_INLINABLE_FN("cbrt", math_cbrt, 1, 0, MathCbrt), JS_FN("sumPrecise", math_sumPrecise, 1, 0), JS_FS_END, }; static const JSPropertySpec math_static_properties[] = { JS_DOUBLE_PS("E", M_E, JSPROP_READONLY | JSPROP_PERMANENT), JS_DOUBLE_PS("LOG2E", M_LOG2E, JSPROP_READONLY | JSPROP_PERMANENT), JS_DOUBLE_PS("LOG10E", M_LOG10E, JSPROP_READONLY | JSPROP_PERMANENT), JS_DOUBLE_PS("LN2", M_LN2, JSPROP_READONLY | JSPROP_PERMANENT), JS_DOUBLE_PS("LN10", M_LN10, JSPROP_READONLY | JSPROP_PERMANENT), JS_DOUBLE_PS("PI", M_PI, JSPROP_READONLY | JSPROP_PERMANENT), JS_DOUBLE_PS("SQRT2", M_SQRT2, JSPROP_READONLY | JSPROP_PERMANENT), JS_DOUBLE_PS("SQRT1_2", M_SQRT1_2, JSPROP_READONLY | JSPROP_PERMANENT), JS_STRING_SYM_PS(toStringTag, "Math", JSPROP_READONLY), JS_PS_END, }; static JSObject* CreateMathObject(JSContext* cx, JSProtoKey key) { RootedObject proto(cx, &cx->global()->getObjectPrototype()); return NewTenuredObjectWithGivenProto(cx, &MathClass, proto); } static const ClassSpec MathClassSpec = { CreateMathObject, nullptr, math_static_methods, math_static_properties, nullptr, nullptr, nullptr, }; const JSClass js::MathClass = { "Math", JSCLASS_HAS_CACHED_PROTO(JSProto_Math), JS_NULL_CLASS_OPS, &MathClassSpec, }; #undef ALIGN_STACK_FOR_ROUNDING_FUNCTION