/* * Copyright (c) 2021 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/arm/mem_neon.h" #include "vpx_dsp/arm/transpose_neon.h" #include "vpx_dsp/arm/vpx_convolve8_neon.h" #include "vpx_dsp/vpx_filter.h" #include "vpx_ports/mem.h" // Filter values always sum to 128. #define FILTER_SUM 128 DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }; DECLARE_ALIGNED(16, static const uint8_t, dot_prod_merge_block_tbl[48]) = { // Shift left and insert new last column in transposed 4x4 block. 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, // Shift left and insert two new columns in transposed 4x4 block. 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, // Shift left and insert three new columns in transposed 4x4 block. 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 }; static INLINE int16x4_t convolve4_4_h(const uint8x16_t samples, const int8x8_t filters, const uint8x16_t permute_tbl) { // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t samples_128 = vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } int8x16_t perm_samples = vqtbl1q_s8(samples_128, permute_tbl); // Accumulate into 128 * FILTER_SUM to account for range transform. (Divide // by 2 since we halved the filter values.) int32x4_t acc = vdupq_n_s32(128 * FILTER_SUM / 2); int32x4_t sum = vdotq_lane_s32(acc, perm_samples, filters, 0); // Further narrowing and packing is performed by the caller. return vmovn_s32(sum); } static INLINE uint8x8_t convolve4_8_h(const uint8x16_t samples, const int8x8_t filters, const uint8x16x2_t permute_tbl) { // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t samples_128 = vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), vqtbl1q_s8(samples_128, permute_tbl.val[1]) }; // Accumulate into 128 * FILTER_SUM to account for range transform. (Divide // by 2 since we halved the filter values.) int32x4_t acc = vdupq_n_s32(128 * FILTER_SUM / 2); // First 4 output values. int32x4_t sum0 = vdotq_lane_s32(acc, perm_samples[0], filters, 0); // Second 4 output values. int32x4_t sum1 = vdotq_lane_s32(acc, perm_samples[1], filters, 0); // Narrow and re-pack. int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1)); // We halved the filter values so -1 from right shift. return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static INLINE int16x4_t convolve8_4_h(const uint8x16_t samples, const int8x8_t filters, const uint8x16x2_t permute_tbl) { // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t samples_128 = vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), vqtbl1q_s8(samples_128, permute_tbl.val[1]) }; // Accumulate into 128 * FILTER_SUM to account for range transform. int32x4_t acc = vdupq_n_s32(128 * FILTER_SUM); int32x4_t sum = vdotq_lane_s32(acc, perm_samples[0], filters, 0); sum = vdotq_lane_s32(sum, perm_samples[1], filters, 1); // Further narrowing and packing is performed by the caller. return vshrn_n_s32(sum, 1); } static INLINE uint8x8_t convolve8_8_h(const uint8x16_t samples, const int8x8_t filters, const uint8x16x3_t permute_tbl) { // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t samples_128 = vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } int8x16_t perm_samples[3] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), vqtbl1q_s8(samples_128, permute_tbl.val[1]), vqtbl1q_s8(samples_128, permute_tbl.val[2]) }; // Accumulate into 128 * FILTER_SUM to account for range transform. int32x4_t acc = vdupq_n_s32(128 * FILTER_SUM); // First 4 output values. int32x4_t sum0 = vdotq_lane_s32(acc, perm_samples[0], filters, 0); sum0 = vdotq_lane_s32(sum0, perm_samples[1], filters, 1); // Second 4 output values. int32x4_t sum1 = vdotq_lane_s32(acc, perm_samples[1], filters, 0); sum1 = vdotq_lane_s32(sum1, perm_samples[2], filters, 1); // Narrow and re-pack. int16x8_t sum = vcombine_s16(vshrn_n_s32(sum0, 1), vshrn_n_s32(sum1, 1)); return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static INLINE void convolve_4tap_horiz_neon_dotprod( const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int w, int h, const int8x8_t filter) { if (w == 4) { const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t t0 = convolve4_4_h(s0, filter, permute_tbl); int16x4_t t1 = convolve4_4_h(s1, filter, permute_tbl); int16x4_t t2 = convolve4_4_h(s2, filter, permute_tbl); int16x4_t t3 = convolve4_4_h(s3, filter, permute_tbl); // We halved the filter values so -1 from right shift. uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1); store_u8(dst + 0 * dst_stride, dst_stride, d01); store_u8(dst + 2 * dst_stride, dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve4_8_h(s0, filter, permute_tbl); uint8x8_t d1 = convolve4_8_h(s1, filter, permute_tbl); uint8x8_t d2 = convolve4_8_h(s2, filter, permute_tbl); uint8x8_t d3 = convolve4_8_h(s3, filter, permute_tbl); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } } static INLINE void convolve_8tap_horiz_neon_dotprod( const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int w, int h, const int8x8_t filter) { if (w == 4) { const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl); do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t t0 = convolve8_4_h(s0, filter, permute_tbl); int16x4_t t1 = convolve8_4_h(s1, filter, permute_tbl); int16x4_t t2 = convolve8_4_h(s2, filter, permute_tbl); int16x4_t t3 = convolve8_4_h(s3, filter, permute_tbl); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1); store_u8(dst + 0 * dst_stride, dst_stride, d01); store_u8(dst + 2 * dst_stride, dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve8_8_h(s0, filter, permute_tbl); uint8x8_t d1 = convolve8_8_h(s1, filter, permute_tbl); uint8x8_t d2 = convolve8_8_h(s2, filter, permute_tbl); uint8x8_t d3 = convolve8_8_h(s3, filter, permute_tbl); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } } void vpx_convolve8_horiz_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { assert((intptr_t)dst % 4 == 0); assert(dst_stride % 4 == 0); assert(x_step_q4 == 16); (void)x_step_q4; (void)y0_q4; (void)y_step_q4; if (vpx_get_filter_taps(filter[x0_q4]) <= 4) { // Load 4-tap filter into first 4 elements of the vector. // All 4-tap and bilinear filter values are even, so halve them to reduce // intermediate precision requirements. const int16x4_t x_filter = vld1_s16(filter[x0_q4] + 2); const int8x8_t x_filter_4tap = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1); convolve_4tap_horiz_neon_dotprod(src - 1, src_stride, dst, dst_stride, w, h, x_filter_4tap); } else { const int8x8_t x_filter_8tap = vmovn_s16(vld1q_s16(filter[x0_q4])); convolve_8tap_horiz_neon_dotprod(src - 3, src_stride, dst, dst_stride, w, h, x_filter_8tap); } } void vpx_convolve8_avg_horiz_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { const int8x8_t filters = vmovn_s16(vld1q_s16(filter[x0_q4])); assert((intptr_t)dst % 4 == 0); assert(dst_stride % 4 == 0); assert(x_step_q4 == 16); (void)x_step_q4; (void)y0_q4; (void)y_step_q4; src -= 3; if (w == 4) { const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl); do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t t0 = convolve8_4_h(s0, filters, permute_tbl); int16x4_t t1 = convolve8_4_h(s1, filters, permute_tbl); int16x4_t t2 = convolve8_4_h(s2, filters, permute_tbl); int16x4_t t3 = convolve8_4_h(s3, filters, permute_tbl); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1); uint8x8_t dd01 = load_u8(dst + 0 * dst_stride, dst_stride); uint8x8_t dd23 = load_u8(dst + 2 * dst_stride, dst_stride); d01 = vrhadd_u8(d01, dd01); d23 = vrhadd_u8(d23, dd23); store_u8(dst + 0 * dst_stride, dst_stride, d01); store_u8(dst + 2 * dst_stride, dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve8_8_h(s0, filters, permute_tbl); uint8x8_t d1 = convolve8_8_h(s1, filters, permute_tbl); uint8x8_t d2 = convolve8_8_h(s2, filters, permute_tbl); uint8x8_t d3 = convolve8_8_h(s3, filters, permute_tbl); uint8x8_t dd0, dd1, dd2, dd3; load_u8_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); d0 = vrhadd_u8(d0, dd0); d1 = vrhadd_u8(d1, dd1); d2 = vrhadd_u8(d2, dd2); d3 = vrhadd_u8(d3, dd3); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } } static INLINE void transpose_concat_4x4(int8x8_t a0, int8x8_t a1, int8x8_t a2, int8x8_t a3, int8x16_t *b) { // Transpose 8-bit elements and concatenate result rows as follows: // a0: 00, 01, 02, 03, XX, XX, XX, XX // a1: 10, 11, 12, 13, XX, XX, XX, XX // a2: 20, 21, 22, 23, XX, XX, XX, XX // a3: 30, 31, 32, 33, XX, XX, XX, XX // // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 int8x16_t a0q = vcombine_s8(a0, vdup_n_s8(0)); int8x16_t a1q = vcombine_s8(a1, vdup_n_s8(0)); int8x16_t a2q = vcombine_s8(a2, vdup_n_s8(0)); int8x16_t a3q = vcombine_s8(a3, vdup_n_s8(0)); int8x16_t a02 = vzipq_s8(a0q, a2q).val[0]; int8x16_t a13 = vzipq_s8(a1q, a3q).val[0]; *b = vzipq_s8(a02, a13).val[0]; } static INLINE void transpose_concat_8x4(int8x8_t a0, int8x8_t a1, int8x8_t a2, int8x8_t a3, int8x16_t *b0, int8x16_t *b1) { // Transpose 8-bit elements and concatenate result rows as follows: // a0: 00, 01, 02, 03, 04, 05, 06, 07 // a1: 10, 11, 12, 13, 14, 15, 16, 17 // a2: 20, 21, 22, 23, 24, 25, 26, 27 // a3: 30, 31, 32, 33, 34, 35, 36, 37 // // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 int8x16_t a0q = vcombine_s8(a0, vdup_n_s8(0)); int8x16_t a1q = vcombine_s8(a1, vdup_n_s8(0)); int8x16_t a2q = vcombine_s8(a2, vdup_n_s8(0)); int8x16_t a3q = vcombine_s8(a3, vdup_n_s8(0)); int8x16_t a02 = vzipq_s8(a0q, a2q).val[0]; int8x16_t a13 = vzipq_s8(a1q, a3q).val[0]; int8x16x2_t a0123 = vzipq_s8(a02, a13); *b0 = a0123.val[0]; *b1 = a0123.val[1]; } static INLINE int16x4_t convolve8_4_v(const int8x16_t samples_lo, const int8x16_t samples_hi, const int8x8_t filters) { // The sample range transform and permutation are performed by the caller. // Accumulate into 128 * FILTER_SUM to account for range transform. int32x4_t acc = vdupq_n_s32(128 * FILTER_SUM); int32x4_t sum = vdotq_lane_s32(acc, samples_lo, filters, 0); sum = vdotq_lane_s32(sum, samples_hi, filters, 1); // Further narrowing and packing is performed by the caller. return vshrn_n_s32(sum, 1); } static INLINE uint8x8_t convolve8_8_v(const int8x16_t samples0_lo, const int8x16_t samples0_hi, const int8x16_t samples1_lo, const int8x16_t samples1_hi, const int8x8_t filters) { // The sample range transform and permutation are performed by the caller. // Accumulate into 128 * FILTER_SUM to account for range transform. int32x4_t acc = vdupq_n_s32(128 * FILTER_SUM); // First 4 output values. int32x4_t sum0 = vdotq_lane_s32(acc, samples0_lo, filters, 0); sum0 = vdotq_lane_s32(sum0, samples0_hi, filters, 1); // Second 4 output values. int32x4_t sum1 = vdotq_lane_s32(acc, samples1_lo, filters, 0); sum1 = vdotq_lane_s32(sum1, samples1_hi, filters, 1); // Narrow and re-pack. int16x8_t sum = vcombine_s16(vshrn_n_s32(sum0, 1), vshrn_n_s32(sum1, 1)); return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static INLINE void convolve_8tap_vert_neon_dotprod( const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int w, int h, const int8x8_t filter) { const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(dot_prod_merge_block_tbl); if (w == 4) { uint8x8_t t0, t1, t2, t3, t4, t5, t6; load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); src += 7 * src_stride; // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, vdup_n_u8(128))); int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, vdup_n_u8(128))); int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, vdup_n_u8(128))); int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, vdup_n_u8(128))); int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, vdup_n_u8(128))); int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, vdup_n_u8(128))); int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, vdup_n_u8(128))); // This operation combines a conventional transpose and the sample permute // (see horizontal case) required before computing the dot product. int8x16_t s0123, s1234, s2345, s3456; transpose_concat_4x4(s0, s1, s2, s3, &s0123); transpose_concat_4x4(s1, s2, s3, s4, &s1234); transpose_concat_4x4(s2, s3, s4, s5, &s2345); transpose_concat_4x4(s3, s4, s5, s6, &s3456); do { uint8x8_t t7, t8, t9, t10; load_u8_8x4(src, src_stride, &t7, &t8, &t9, &t10); int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, vdup_n_u8(128))); int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, vdup_n_u8(128))); int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, vdup_n_u8(128))); int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, vdup_n_u8(128))); int8x16_t s78910; transpose_concat_4x4(s7, s8, s9, s10, &s78910); // Merge new data into block from previous iteration. int8x16x2_t samples_LUT = { { s3456, s78910 } }; int8x16_t s4567 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); int8x16_t s5678 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); int8x16_t s6789 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); int16x4_t d0 = convolve8_4_v(s0123, s4567, filter); int16x4_t d1 = convolve8_4_v(s1234, s5678, filter); int16x4_t d2 = convolve8_4_v(s2345, s6789, filter); int16x4_t d3 = convolve8_4_v(s3456, s78910, filter); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); store_u8(dst + 0 * dst_stride, dst_stride, d01); store_u8(dst + 2 * dst_stride, dst_stride, d23); /* Prepare block for next iteration - re-using as much as possible. */ /* Shuffle everything up four rows. */ s0123 = s4567; s1234 = s5678; s2345 = s6789; s3456 = s78910; src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { do { const uint8_t *s = src; uint8_t *d = dst; int height = h; uint8x8_t t0, t1, t2, t3, t4, t5, t6; load_u8_8x7(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); s += 7 * src_stride; // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, vdup_n_u8(128))); int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, vdup_n_u8(128))); int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, vdup_n_u8(128))); int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, vdup_n_u8(128))); int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, vdup_n_u8(128))); int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, vdup_n_u8(128))); int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, vdup_n_u8(128))); // This operation combines a conventional transpose and the sample permute // (see horizontal case) required before computing the dot product. int8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, s3456_lo, s3456_hi; transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); do { uint8x8_t t7, t8, t9, t10; load_u8_8x4(s, src_stride, &t7, &t8, &t9, &t10); int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, vdup_n_u8(128))); int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, vdup_n_u8(128))); int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, vdup_n_u8(128))); int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, vdup_n_u8(128))); int8x16_t s78910_lo, s78910_hi; transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi); // Merge new data into block from previous iteration. int8x16x2_t samples_LUT = { { s3456_lo, s78910_lo } }; int8x16_t s4567_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); int8x16_t s5678_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); int8x16_t s6789_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); samples_LUT.val[0] = s3456_hi; samples_LUT.val[1] = s78910_hi; int8x16_t s4567_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); int8x16_t s5678_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); int8x16_t s6789_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); uint8x8_t d0 = convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filter); uint8x8_t d1 = convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filter); uint8x8_t d2 = convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filter); uint8x8_t d3 = convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filter); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123_lo = s4567_lo; s0123_hi = s4567_hi; s1234_lo = s5678_lo; s1234_hi = s5678_hi; s2345_lo = s6789_lo; s2345_hi = s6789_hi; s3456_lo = s78910_lo; s3456_hi = s78910_hi; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src += 8; dst += 8; w -= 8; } while (w != 0); } } void vpx_convolve8_vert_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { assert((intptr_t)dst % 4 == 0); assert(dst_stride % 4 == 0); assert(y_step_q4 == 16); (void)x0_q4; (void)x_step_q4; (void)y_step_q4; if (vpx_get_filter_taps(filter[y0_q4]) <= 4) { const int16x8_t y_filter = vld1q_s16(filter[y0_q4]); convolve_4tap_vert_neon(src - src_stride, src_stride, dst, dst_stride, w, h, y_filter); } else { const int8x8_t y_filter = vmovn_s16(vld1q_s16(filter[y0_q4])); convolve_8tap_vert_neon_dotprod(src - 3 * src_stride, src_stride, dst, dst_stride, w, h, y_filter); } } void vpx_convolve8_avg_vert_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { const int8x8_t filters = vmovn_s16(vld1q_s16(filter[y0_q4])); const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(dot_prod_merge_block_tbl); assert((intptr_t)dst % 4 == 0); assert(dst_stride % 4 == 0); assert(y_step_q4 == 16); (void)x0_q4; (void)x_step_q4; (void)y_step_q4; src -= 3 * src_stride; if (w == 4) { uint8x8_t t0, t1, t2, t3, t4, t5, t6; load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); src += 7 * src_stride; // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, vdup_n_u8(128))); int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, vdup_n_u8(128))); int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, vdup_n_u8(128))); int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, vdup_n_u8(128))); int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, vdup_n_u8(128))); int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, vdup_n_u8(128))); int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, vdup_n_u8(128))); // This operation combines a conventional transpose and the sample permute // (see horizontal case) required before computing the dot product. int8x16_t s0123, s1234, s2345, s3456; transpose_concat_4x4(s0, s1, s2, s3, &s0123); transpose_concat_4x4(s1, s2, s3, s4, &s1234); transpose_concat_4x4(s2, s3, s4, s5, &s2345); transpose_concat_4x4(s3, s4, s5, s6, &s3456); do { uint8x8_t t7, t8, t9, t10; load_u8_8x4(src, src_stride, &t7, &t8, &t9, &t10); int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, vdup_n_u8(128))); int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, vdup_n_u8(128))); int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, vdup_n_u8(128))); int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, vdup_n_u8(128))); int8x16_t s78910; transpose_concat_4x4(s7, s8, s9, s10, &s78910); // Merge new data into block from previous iteration. int8x16x2_t samples_LUT = { { s3456, s78910 } }; int8x16_t s4567 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); int8x16_t s5678 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); int8x16_t s6789 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); int16x4_t d0 = convolve8_4_v(s0123, s4567, filters); int16x4_t d1 = convolve8_4_v(s1234, s5678, filters); int16x4_t d2 = convolve8_4_v(s2345, s6789, filters); int16x4_t d3 = convolve8_4_v(s3456, s78910, filters); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); uint8x8_t dd01 = load_u8(dst + 0 * dst_stride, dst_stride); uint8x8_t dd23 = load_u8(dst + 2 * dst_stride, dst_stride); d01 = vrhadd_u8(d01, dd01); d23 = vrhadd_u8(d23, dd23); store_u8(dst + 0 * dst_stride, dst_stride, d01); store_u8(dst + 2 * dst_stride, dst_stride, d23); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123 = s4567; s1234 = s5678; s2345 = s6789; s3456 = s78910; src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { do { const uint8_t *s = src; uint8_t *d = dst; int height = h; uint8x8_t t0, t1, t2, t3, t4, t5, t6; load_u8_8x7(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); s += 7 * src_stride; // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, vdup_n_u8(128))); int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, vdup_n_u8(128))); int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, vdup_n_u8(128))); int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, vdup_n_u8(128))); int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, vdup_n_u8(128))); int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, vdup_n_u8(128))); int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, vdup_n_u8(128))); // This operation combines a conventional transpose and the sample permute // (see horizontal case) required before computing the dot product. int8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, s3456_lo, s3456_hi; transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); do { uint8x8_t t7, t8, t9, t10; load_u8_8x4(s, src_stride, &t7, &t8, &t9, &t10); int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, vdup_n_u8(128))); int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, vdup_n_u8(128))); int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, vdup_n_u8(128))); int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, vdup_n_u8(128))); int8x16_t s78910_lo, s78910_hi; transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi); // Merge new data into block from previous iteration. int8x16x2_t samples_LUT = { { s3456_lo, s78910_lo } }; int8x16_t s4567_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); int8x16_t s5678_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); int8x16_t s6789_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); samples_LUT.val[0] = s3456_hi; samples_LUT.val[1] = s78910_hi; int8x16_t s4567_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); int8x16_t s5678_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); int8x16_t s6789_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); uint8x8_t d0 = convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filters); uint8x8_t d1 = convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filters); uint8x8_t d2 = convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filters); uint8x8_t d3 = convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filters); uint8x8_t dd0, dd1, dd2, dd3; load_u8_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); d0 = vrhadd_u8(d0, dd0); d1 = vrhadd_u8(d1, dd1); d2 = vrhadd_u8(d2, dd2); d3 = vrhadd_u8(d3, dd3); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123_lo = s4567_lo; s0123_hi = s4567_hi; s1234_lo = s5678_lo; s1234_hi = s5678_hi; s2345_lo = s6789_lo; s2345_hi = s6789_hi; s3456_lo = s78910_lo; s3456_hi = s78910_hi; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src += 8; dst += 8; w -= 8; } while (w != 0); } } static INLINE void convolve_4tap_2d_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int w, int h, const int8x8_t x_filter, const uint8x8_t y_filter) { // Neon does not have lane-referencing multiply or multiply-accumulate // instructions that operate on vectors of 8-bit elements. This means we have // to duplicate filter taps into a whole vector and use standard multiply / // multiply-accumulate instructions. const uint8x8_t y_filter_taps[4] = { vdup_lane_u8(y_filter, 2), vdup_lane_u8(y_filter, 3), vdup_lane_u8(y_filter, 4), vdup_lane_u8(y_filter, 5) }; if (w == 4) { const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); uint8x16_t h_s0, h_s1, h_s2; load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2); int16x4_t t0 = convolve4_4_h(h_s0, x_filter, permute_tbl); int16x4_t t1 = convolve4_4_h(h_s1, x_filter, permute_tbl); int16x4_t t2 = convolve4_4_h(h_s2, x_filter, permute_tbl); // We halved the filter values so -1 from right shift. uint8x8_t v_s01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); uint8x8_t v_s12 = vqrshrun_n_s16(vcombine_s16(t1, t2), FILTER_BITS - 1); src += 3 * src_stride; do { uint8x16_t h_s3, h_s4, h_s5, h_s6; load_u8_16x4(src, src_stride, &h_s3, &h_s4, &h_s5, &h_s6); int16x4_t t3 = convolve4_4_h(h_s3, x_filter, permute_tbl); int16x4_t t4 = convolve4_4_h(h_s4, x_filter, permute_tbl); int16x4_t t5 = convolve4_4_h(h_s5, x_filter, permute_tbl); int16x4_t t6 = convolve4_4_h(h_s6, x_filter, permute_tbl); // We halved the filter values so -1 from right shift. uint8x8_t v_s34 = vqrshrun_n_s16(vcombine_s16(t3, t4), FILTER_BITS - 1); uint8x8_t v_s56 = vqrshrun_n_s16(vcombine_s16(t5, t6), FILTER_BITS - 1); uint8x8_t v_s23 = vext_u8(v_s12, v_s34, 4); uint8x8_t v_s45 = vext_u8(v_s34, v_s56, 4); uint8x8_t d01 = convolve4_8(v_s01, v_s12, v_s23, v_s34, y_filter_taps); uint8x8_t d23 = convolve4_8(v_s23, v_s34, v_s45, v_s56, y_filter_taps); store_unaligned_u8(dst + 0 * dst_stride, dst_stride, d01); store_unaligned_u8(dst + 2 * dst_stride, dst_stride, d23); v_s01 = v_s45; v_s12 = v_s56; src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl); do { const uint8_t *s = src; uint8_t *d = dst; int height = h; uint8x16_t h_s0, h_s1, h_s2; load_u8_16x3(s, src_stride, &h_s0, &h_s1, &h_s2); uint8x8_t v_s0 = convolve4_8_h(h_s0, x_filter, permute_tbl); uint8x8_t v_s1 = convolve4_8_h(h_s1, x_filter, permute_tbl); uint8x8_t v_s2 = convolve4_8_h(h_s2, x_filter, permute_tbl); s += 3 * src_stride; do { uint8x16_t h_s3, h_s4, h_s5, h_s6; load_u8_16x4(s, src_stride, &h_s3, &h_s4, &h_s5, &h_s6); uint8x8_t v_s3 = convolve4_8_h(h_s3, x_filter, permute_tbl); uint8x8_t v_s4 = convolve4_8_h(h_s4, x_filter, permute_tbl); uint8x8_t v_s5 = convolve4_8_h(h_s5, x_filter, permute_tbl); uint8x8_t v_s6 = convolve4_8_h(h_s6, x_filter, permute_tbl); uint8x8_t d0 = convolve4_8(v_s0, v_s1, v_s2, v_s3, y_filter_taps); uint8x8_t d1 = convolve4_8(v_s1, v_s2, v_s3, v_s4, y_filter_taps); uint8x8_t d2 = convolve4_8(v_s2, v_s3, v_s4, v_s5, y_filter_taps); uint8x8_t d3 = convolve4_8(v_s3, v_s4, v_s5, v_s6, y_filter_taps); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); v_s0 = v_s4; v_s1 = v_s5; v_s2 = v_s6; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src += 8; dst += 8; w -= 8; } while (w != 0); } } static INLINE void convolve_8tap_2d_horiz_neon_dotprod( const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int w, int h, const int8x8_t filter) { if (w == 4) { const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl); do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve8_4_h(s0, filter, permute_tbl); int16x4_t d1 = convolve8_4_h(s1, filter, permute_tbl); int16x4_t d2 = convolve8_4_h(s2, filter, permute_tbl); int16x4_t d3 = convolve8_4_h(s3, filter, permute_tbl); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); store_u8(dst + 0 * dst_stride, dst_stride, d01); store_u8(dst + 2 * dst_stride, dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h > 3); // Process final three rows (h % 4 == 3). See vpx_convolve_neon_i8mm() // below for further details on possible values of block height. uint8x16_t s0, s1, s2; load_u8_16x3(src, src_stride, &s0, &s1, &s2); int16x4_t d0 = convolve8_4_h(s0, filter, permute_tbl); int16x4_t d1 = convolve8_4_h(s1, filter, permute_tbl); int16x4_t d2 = convolve8_4_h(s2, filter, permute_tbl); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, vdup_n_s16(0)), FILTER_BITS - 1); store_u8(dst + 0 * dst_stride, dst_stride, d01); store_u8_4x1(dst + 2 * dst_stride, d23); } else { const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve8_8_h(s0, filter, permute_tbl); uint8x8_t d1 = convolve8_8_h(s1, filter, permute_tbl); uint8x8_t d2 = convolve8_8_h(s2, filter, permute_tbl); uint8x8_t d3 = convolve8_8_h(s3, filter, permute_tbl); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width > 0); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h > 3); // Process final three rows (h % 4 == 3). See vpx_convolve_neon_i8mm() // below for further details on possible values of block height. const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x16_t s0, s1, s2; load_u8_16x3(s, src_stride, &s0, &s1, &s2); uint8x8_t d0 = convolve8_8_h(s0, filter, permute_tbl); uint8x8_t d1 = convolve8_8_h(s1, filter, permute_tbl); uint8x8_t d2 = convolve8_8_h(s2, filter, permute_tbl); store_u8_8x3(d, dst_stride, d0, d1, d2); s += 8; d += 8; width -= 8; } while (width > 0); } } void vpx_convolve8_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { assert(x_step_q4 == 16); assert(y_step_q4 == 16); (void)x_step_q4; (void)y_step_q4; const int x_filter_taps = vpx_get_filter_taps(filter[x0_q4]) <= 4 ? 4 : 8; const int y_filter_taps = vpx_get_filter_taps(filter[y0_q4]) <= 4 ? 4 : 8; // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 // lines post both horizontally and vertically. const ptrdiff_t horiz_offset = x_filter_taps / 2 - 1; const ptrdiff_t vert_offset = (y_filter_taps / 2 - 1) * src_stride; if (x_filter_taps == 4 && y_filter_taps == 4) { const int16x4_t x_filter = vld1_s16(filter[x0_q4] + 2); const int16x8_t y_filter = vld1q_s16(filter[y0_q4]); // 4-tap and bilinear filter values are even, so halve them to reduce // intermediate precision requirements. const int8x8_t x_filter_4tap = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1); const uint8x8_t y_filter_4tap = vshrn_n_u16(vreinterpretq_u16_s16(vabsq_s16(y_filter)), 1); convolve_4tap_2d_neon_dotprod(src - horiz_offset - vert_offset, src_stride, dst, dst_stride, w, h, x_filter_4tap, y_filter_4tap); return; } // Given our constraints: w <= 64, h <= 64, taps <= 8 we can reduce the // maximum buffer size to 64 * (64 + 7). DECLARE_ALIGNED(32, uint8_t, im_block[64 * 71]); const int im_stride = 64; const int im_height = h + SUBPEL_TAPS - 1; const int8x8_t x_filter_8tap = vmovn_s16(vld1q_s16(filter[x0_q4])); const int8x8_t y_filter_8tap = vmovn_s16(vld1q_s16(filter[y0_q4])); convolve_8tap_2d_horiz_neon_dotprod(src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_height, x_filter_8tap); convolve_8tap_vert_neon_dotprod(im_block, im_stride, dst, dst_stride, w, h, y_filter_8tap); } void vpx_convolve8_avg_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { DECLARE_ALIGNED(32, uint8_t, im_block[64 * 71]); const int im_stride = 64; // Averaging convolution always uses an 8-tap filter. // Account for the vertical phase needing 3 lines prior and 4 lines post. const int im_height = h + SUBPEL_TAPS - 1; const ptrdiff_t offset = SUBPEL_TAPS / 2 - 1; assert(y_step_q4 == 16); assert(x_step_q4 == 16); const int8x8_t x_filter_8tap = vmovn_s16(vld1q_s16(filter[x0_q4])); convolve_8tap_2d_horiz_neon_dotprod(src - offset - offset * src_stride, src_stride, im_block, im_stride, w, im_height, x_filter_8tap); vpx_convolve8_avg_vert_neon_dotprod(im_block + offset * im_stride, im_stride, dst, dst_stride, filter, x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); }