/* -*- Mode: rust; rust-indent-offset: 4 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ pub mod error; use byteorder::{BigEndian, ReadBytesExt}; use crate::error::{Error, ErrorType}; // The following OID_BYTES_* consist of the contents of the bytes of an ASN.1 // OBJECT IDENTIFIER specifying the indicated OID (in other words, just the // value, and not the tag or length). pub const OID_BYTES_SHA_256: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01]; pub const OID_BYTES_SHA_384: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02]; pub const OID_BYTES_SHA_512: &[u8] = &[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03]; pub const OID_BYTES_SHA_1: &[u8] = &[0x2b, 0x0e, 0x03, 0x02, 0x1a]; const OID_BYTES_RSA_ENCRYPTION: &[u8] = &[0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01]; const OID_BYTES_EC_PUBLIC_KEY: &[u8] = &[0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01]; const OID_BYTES_SECP256R1: &[u8] = &[0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07]; /// Given a slice of DER bytes representing an RSA public key, extracts the bytes of the modulus /// as an unsigned integer. Also verifies that the public exponent is present (again as an /// unsigned integer). Finally verifies that reading these values consumes the entirety of the /// slice. /// RSAPublicKey ::= SEQUENCE { /// modulus INTEGER, -- n /// publicExponent INTEGER -- e /// } pub fn read_rsa_modulus(public_key: &[u8]) -> Result, Error> { let mut sequence = Sequence::new(public_key)?; let modulus_value = sequence.read_unsigned_integer()?; let _exponent = sequence.read_unsigned_integer()?; if !sequence.at_end() { return Err(error_here!(ErrorType::ExtraInput)); } Ok(modulus_value.to_vec()) } /// Given a slice of DER bytes representing a SubjectPublicKeyInfo, extracts /// the bytes of the parameters of the algorithm. Does not verify that all /// input is consumed. /// PublicKeyInfo ::= SEQUENCE { /// algorithm AlgorithmIdentifier, /// PublicKey BIT STRING /// } /// /// AlgorithmIdentifier ::= SEQUENCE { /// algorithm OBJECT IDENTIFIER, /// parameters ANY DEFINED BY algorithm OPTIONAL /// } pub fn read_spki_algorithm_parameters(spki: &[u8]) -> Result, Error> { let mut public_key_info = Sequence::new(spki)?; let mut algorithm_identifier = public_key_info.read_sequence()?; let _algorithm = algorithm_identifier.read_oid()?; Ok(algorithm_identifier.read_rest().to_vec()) } /// Given a slice of DER bytes representing a DigestInfo, extracts the bytes of /// the OID of the hash algorithm and the digest. /// DigestInfo ::= SEQUENCE { /// digestAlgorithm DigestAlgorithmIdentifier, /// digest Digest } /// /// DigestAlgorithmIdentifier ::= AlgorithmIdentifier /// /// AlgorithmIdentifier ::= SEQUENCE { /// algorithm OBJECT IDENTIFIER, /// parameters ANY DEFINED BY algorithm OPTIONAL } /// /// Digest ::= OCTET STRING pub fn read_digest_info(digest_info: &[u8]) -> Result<(&[u8], &[u8]), Error> { let mut sequence = Sequence::new(digest_info)?; let mut algorithm = sequence.read_sequence()?; let oid = algorithm.read_oid()?; algorithm.read_null()?; if !algorithm.at_end() { return Err(error_here!(ErrorType::ExtraInput)); } let digest = sequence.read_octet_string()?; if !sequence.at_end() { return Err(error_here!(ErrorType::ExtraInput)); } Ok((oid, digest)) } /// Converts a slice of DER bytes representing an ECDSA signature to the concatenation of the bytes /// of `r` and `s`, each 0-padded to `coordinate_width`. Also verifies that this consumes the /// entirety of the slice. /// Ecdsa-Sig-Value ::= SEQUENCE { /// r INTEGER, /// s INTEGER } pub fn der_ec_sig_to_raw(encoded: &[u8], coordinate_width: usize) -> Result, Error> { let (r, s) = read_ec_sig_point(encoded)?; if r.len() > coordinate_width || s.len() > coordinate_width { return Err(error_here!(ErrorType::InvalidInput)); } let mut raw_signature = Vec::with_capacity(2 * coordinate_width); raw_signature.resize(coordinate_width - r.len(), 0); raw_signature.extend_from_slice(r); raw_signature.resize((2 * coordinate_width) - s.len(), 0); raw_signature.extend_from_slice(s); Ok(raw_signature) } /// Given a slice of DER bytes representing an ECDSA signature, extracts the bytes of `r` and `s` /// as unsigned integers. Also verifies that this consumes the entirety of the slice. /// Ecdsa-Sig-Value ::= SEQUENCE { /// r INTEGER, /// s INTEGER } fn read_ec_sig_point(signature: &[u8]) -> Result<(&[u8], &[u8]), Error> { let mut sequence = Sequence::new(signature)?; let r = sequence.read_unsigned_integer()?; let s = sequence.read_unsigned_integer()?; if !sequence.at_end() { return Err(error_here!(ErrorType::ExtraInput)); } Ok((r, s)) } /// Given a slice of DER bytes representing an X.509 certificate, extracts the encoded serial /// number, issuer, and subject. Does not verify that the remainder of the certificate is in any /// way well-formed. /// Certificate ::= SEQUENCE { /// tbsCertificate TBSCertificate, /// signatureAlgorithm AlgorithmIdentifier, /// signatureValue BIT STRING } /// /// TBSCertificate ::= SEQUENCE { /// version [0] EXPLICIT Version DEFAULT v1, /// serialNumber CertificateSerialNumber, /// signature AlgorithmIdentifier, /// issuer Name, /// validity Validity, /// subject Name, /// ... /// /// CertificateSerialNumber ::= INTEGER /// /// Name ::= CHOICE { -- only one possibility for now -- /// rdnSequence RDNSequence } /// /// RDNSequence ::= SEQUENCE OF RelativeDistinguishedName /// /// Validity ::= SEQUENCE { /// notBefore Time, /// notAfter Time } #[allow(clippy::type_complexity)] pub fn read_encoded_certificate_identifiers( certificate: &[u8], ) -> Result<(Vec, Vec, Vec), Error> { let mut certificate_sequence = Sequence::new(certificate)?; let mut tbs_certificate_sequence = certificate_sequence.read_sequence()?; let _version = tbs_certificate_sequence.read_optional_tagged_value(0)?; let serial_number = tbs_certificate_sequence.read_encoded_sequence_component(INTEGER)?; let _signature = tbs_certificate_sequence.read_sequence()?; let issuer = tbs_certificate_sequence.read_encoded_sequence_component(SEQUENCE | CONSTRUCTED)?; let _validity = tbs_certificate_sequence.read_sequence()?; let subject = tbs_certificate_sequence.read_encoded_sequence_component(SEQUENCE | CONSTRUCTED)?; Ok((serial_number, issuer, subject)) } pub struct RSAPrivateKey { pub modulus: Vec, pub private_exponent: Vec, } pub struct ECPrivateKey { pub private_key: Vec, } pub enum PrivateKeyInfo { RSA(RSAPrivateKey), EC(ECPrivateKey), } /// PrivateKeyInfo ::= SEQUENCE { /// version Version, /// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, /// privateKey PrivateKey, /// attributes [0] IMPLICIT Attributes OPTIONAL } /// /// Version ::= INTEGER /// /// PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier /// /// PrivateKey ::= OCTET STRING /// /// Attributes ::= SET OF Attribute /// /// RSAPrivateKey ::= SEQUENCE { /// version Version, /// modulus INTEGER, -- n /// publicExponent INTEGER, -- e /// privateExponent INTEGER, -- d /// prime1 INTEGER, -- p /// prime2 INTEGER, -- q /// exponent1 INTEGER, -- d mod (p-1) /// exponent2 INTEGER, -- d mod (q-1) /// coefficient INTEGER, -- (inverse of q) mod p /// otherPrimeInfos OtherPrimeInfos OPTIONAL /// } /// /// ECPrivateKey ::= SEQUENCE { /// version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1), /// privateKey OCTET STRING, /// parameters [0] ECParameters {{ NamedCurve }} OPTIONAL, /// publicKey [1] BIT STRING OPTIONAL /// } pub fn read_private_key_info(private_key_info: &[u8]) -> Result { let mut private_key_info = Sequence::new(private_key_info)?; let _version = private_key_info.read_unsigned_integer()?; let mut algorithm_identifier = private_key_info.read_sequence()?; let algorithm = algorithm_identifier.read_oid()?; let private_key_bytes = private_key_info.read_octet_string()?; let mut private_key = Sequence::new(private_key_bytes)?; if algorithm == OID_BYTES_RSA_ENCRYPTION { let _version = private_key.read_unsigned_integer()?; let modulus = private_key.read_unsigned_integer()?; let _public_exponent = private_key.read_unsigned_integer()?; let private_exponent = private_key.read_unsigned_integer()?; return Ok(PrivateKeyInfo::RSA(RSAPrivateKey { modulus: modulus.to_vec(), private_exponent: private_exponent.to_vec(), })); } if algorithm == OID_BYTES_EC_PUBLIC_KEY { let algorithm_parameters = algorithm_identifier.read_oid()?; // Currently, only secp256r1 is supported. if algorithm_parameters != OID_BYTES_SECP256R1 { return Err(error_here!(ErrorType::UnsupportedInput)); } let _version = private_key.read_unsigned_integer()?; let private_key_bytes = private_key.read_octet_string()?; return Ok(PrivateKeyInfo::EC(ECPrivateKey { private_key: private_key_bytes.to_vec(), })); } Err(error_here!(ErrorType::UnsupportedInput)) } /// Helper macro for reading some bytes from a slice while checking the slice is long enough. /// Returns a pair consisting of a slice of the bytes read and a slice of the rest of the bytes /// from the original slice. macro_rules! try_read_bytes { ($data:ident, $len:expr) => {{ if $data.len() < $len { return Err(error_here!(ErrorType::TruncatedInput)); } $data.split_at($len) }}; } /// ASN.1 tag identifying an integer. const INTEGER: u8 = 0x02; /// ASN.1 tag identifying an octet string. const OCTET_STRING: u8 = 0x04; /// ASN.1 tag identifying a null value. const NULL: u8 = 0x05; /// ASN.1 tag identifying an object identifier (OID). const OBJECT_IDENTIFIER: u8 = 0x06; /// ASN.1 tag identifying a sequence. const SEQUENCE: u8 = 0x10; /// ASN.1 tag modifier identifying an item as constructed. const CONSTRUCTED: u8 = 0x20; /// ASN.1 tag modifier identifying an item as context-specific. const CONTEXT_SPECIFIC: u8 = 0x80; /// A helper struct for reading items from a DER SEQUENCE (in this case, all sequences are /// assumed to be CONSTRUCTED). struct Sequence<'a> { /// The contents of the SEQUENCE. contents: Der<'a>, } impl<'a> Sequence<'a> { fn new(input: &'a [u8]) -> Result, Error> { let mut der = Der::new(input); let (_, _, sequence_bytes) = der.read_tlv(SEQUENCE | CONSTRUCTED)?; // We're assuming we want to consume the entire input for now. if !der.at_end() { return Err(error_here!(ErrorType::ExtraInput)); } Ok(Sequence { contents: Der::new(sequence_bytes), }) } // TODO: we're not exhaustively validating this integer fn read_unsigned_integer(&mut self) -> Result<&'a [u8], Error> { let (_, _, bytes) = self.contents.read_tlv(INTEGER)?; if bytes.is_empty() { return Err(error_here!(ErrorType::InvalidInput)); } // There may be a leading zero (we should also check that the first bit // of the rest of the integer is set). if bytes[0] == 0 && bytes.len() > 1 { let (_, integer) = bytes.split_at(1); Ok(integer) } else { Ok(bytes) } } fn read_octet_string(&mut self) -> Result<&'a [u8], Error> { let (_, _, bytes) = self.contents.read_tlv(OCTET_STRING)?; Ok(bytes) } fn read_oid(&mut self) -> Result<&'a [u8], Error> { let (_, _, bytes) = self.contents.read_tlv(OBJECT_IDENTIFIER)?; Ok(bytes) } fn read_null(&mut self) -> Result<(), Error> { let (_, _, bytes) = self.contents.read_tlv(NULL)?; if bytes.is_empty() { Ok(()) } else { Err(error_here!(ErrorType::InvalidInput)) } } fn read_sequence(&mut self) -> Result, Error> { let (_, _, sequence_bytes) = self.contents.read_tlv(SEQUENCE | CONSTRUCTED)?; Ok(Sequence { contents: Der::new(sequence_bytes), }) } fn read_optional_tagged_value(&mut self, tag: u8) -> Result, Error> { let expected = CONTEXT_SPECIFIC | CONSTRUCTED | tag; if self.contents.peek(expected) { let (_, _, tagged_value_bytes) = self.contents.read_tlv(expected)?; Ok(Some(tagged_value_bytes)) } else { Ok(None) } } fn read_encoded_sequence_component(&mut self, tag: u8) -> Result, Error> { let (tag, length, value) = self.contents.read_tlv(tag)?; let mut encoded_component_bytes = length; encoded_component_bytes.insert(0, tag); encoded_component_bytes.extend_from_slice(value); Ok(encoded_component_bytes) } fn at_end(&self) -> bool { self.contents.at_end() } fn read_rest(&mut self) -> &[u8] { self.contents.read_rest() } } /// A helper struct for reading DER data. The contents are treated like a cursor, so its position /// is updated as data is read. struct Der<'a> { contents: &'a [u8], } impl<'a> Der<'a> { fn new(contents: &'a [u8]) -> Der<'a> { Der { contents } } // In theory, a caller could encounter an error and try another operation, in which case we may // be in an inconsistent state. As long as this implementation isn't exposed to code that would // use it incorrectly (i.e. it stays in this module and we only expose a stateless API), it // should be safe. /// Given an expected tag, reads the next (tag, lengh, value) from the contents. Most /// consumers will only be interested in the value, but some may want the entire encoded /// contents, in which case the returned tuple can be concatenated. fn read_tlv(&mut self, tag: u8) -> Result<(u8, Vec, &'a [u8]), Error> { let contents = self.contents; let (tag_read, rest) = try_read_bytes!(contents, 1); if tag_read[0] != tag { return Err(error_here!(ErrorType::InvalidInput)); } let mut accumulated_length_bytes = Vec::with_capacity(4); let (length1, rest) = try_read_bytes!(rest, 1); accumulated_length_bytes.extend_from_slice(length1); let (length, to_read_from) = if length1[0] < 0x80 { (length1[0] as usize, rest) } else if length1[0] == 0x81 { let (length, rest) = try_read_bytes!(rest, 1); accumulated_length_bytes.extend_from_slice(length); if length[0] < 0x80 { return Err(error_here!(ErrorType::InvalidInput)); } (length[0] as usize, rest) } else if length1[0] == 0x82 { let (mut lengths, rest) = try_read_bytes!(rest, 2); accumulated_length_bytes.extend_from_slice(lengths); let length = lengths .read_u16::() .map_err(|_| error_here!(ErrorType::LibraryFailure))?; if length < 256 { return Err(error_here!(ErrorType::InvalidInput)); } (length as usize, rest) } else { return Err(error_here!(ErrorType::UnsupportedInput)); }; let (contents, rest) = try_read_bytes!(to_read_from, length); self.contents = rest; Ok((tag, accumulated_length_bytes, contents)) } fn at_end(&self) -> bool { self.contents.is_empty() } fn peek(&self, expected: u8) -> bool { Some(&expected) == self.contents.first() } fn read_rest(&mut self) -> &'a [u8] { let contents = self.contents; self.contents = &[]; contents } } #[cfg(test)] mod tests { use super::*; #[test] fn der_test_empty_input() { let input = Vec::new(); let mut der = Der::new(&input); assert!(der.read_tlv(INTEGER).is_err()); } #[test] fn der_test_no_length() { let input = vec![INTEGER]; let mut der = Der::new(&input); assert!(der.read_tlv(INTEGER).is_err()); } #[test] fn der_test_empty_sequence() { let input = vec![SEQUENCE, 0]; let mut der = Der::new(&input); let read_result = der.read_tlv(SEQUENCE); assert!(read_result.is_ok()); let (tag, length, sequence_bytes) = read_result.unwrap(); assert_eq!(tag, SEQUENCE); assert_eq!(length, vec![0]); assert_eq!(sequence_bytes.len(), 0); assert!(der.at_end()); } #[test] fn der_test_not_at_end() { let input = vec![SEQUENCE, 0, 1]; let mut der = Der::new(&input); let read_result = der.read_tlv(SEQUENCE); assert!(read_result.is_ok()); let (tag, length, sequence_bytes) = read_result.unwrap(); assert_eq!(tag, SEQUENCE); assert_eq!(length, vec![0]); assert_eq!(sequence_bytes.len(), 0); assert!(!der.at_end()); } #[test] fn der_test_wrong_tag() { let input = vec![SEQUENCE, 0]; let mut der = Der::new(&input); assert!(der.read_tlv(INTEGER).is_err()); } #[test] fn der_test_truncated_two_byte_length() { let input = vec![SEQUENCE, 0x81]; let mut der = Der::new(&input); assert!(der.read_tlv(SEQUENCE).is_err()); } #[test] fn der_test_truncated_three_byte_length() { let input = vec![SEQUENCE, 0x82, 1]; let mut der = Der::new(&input); assert!(der.read_tlv(SEQUENCE).is_err()); } #[test] fn der_test_truncated_data() { let input = vec![SEQUENCE, 20, 1]; let mut der = Der::new(&input); assert!(der.read_tlv(SEQUENCE).is_err()); } #[test] fn der_test_sequence() { let input = vec![ SEQUENCE, 20, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 0, 0, ]; let mut der = Der::new(&input); let result = der.read_tlv(SEQUENCE); assert!(result.is_ok()); let (tag, length, value) = result.unwrap(); assert_eq!(tag, SEQUENCE); assert_eq!(length, vec![20]); assert_eq!( value, [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 0, 0] ); assert!(der.at_end()); } #[test] fn der_test_not_shortest_two_byte_length_encoding() { let input = vec![SEQUENCE, 0x81, 1, 1]; let mut der = Der::new(&input); assert!(der.read_tlv(SEQUENCE).is_err()); } #[test] fn der_test_not_shortest_three_byte_length_encoding() { let input = vec![SEQUENCE, 0x82, 0, 1, 1]; let mut der = Der::new(&input); assert!(der.read_tlv(SEQUENCE).is_err()); } #[test] fn der_test_indefinite_length_unsupported() { let input = vec![SEQUENCE, 0x80, 1, 2, 3, 0x00, 0x00]; let mut der = Der::new(&input); assert!(der.read_tlv(SEQUENCE).is_err()); } #[test] fn der_test_input_too_long() { // This isn't valid DER (the contents of the SEQUENCE are truncated), but it demonstrates // that we don't try to read too much if we're given a long length (and also that we don't // support lengths 2^16 and up). let input = vec![SEQUENCE, 0x83, 0x01, 0x00, 0x01, 1, 1, 1, 1]; let mut der = Der::new(&input); assert!(der.read_tlv(SEQUENCE).is_err()); } #[test] fn empty_input_fails() { let empty = Vec::new(); assert!(read_rsa_modulus(&empty).is_err()); assert!(read_ec_sig_point(&empty).is_err()); assert!(read_encoded_certificate_identifiers(&empty).is_err()); } #[test] fn empty_sequence_fails() { let empty = vec![SEQUENCE | CONSTRUCTED]; assert!(read_rsa_modulus(&empty).is_err()); assert!(read_ec_sig_point(&empty).is_err()); assert!(read_encoded_certificate_identifiers(&empty).is_err()); } #[test] fn test_der_ec_sig_to_raw() { let ec_sig_point = vec![ 0x30, 0x45, 0x02, 0x20, 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a, 0xde, 0x20, 0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64, 0xec, 0xfd, 0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x02, 0x21, 0x00, 0x85, 0xfb, 0xb4, 0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67, 0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f, 0xf2, ]; let result = der_ec_sig_to_raw(&ec_sig_point, 32); assert!(result.is_ok()); let expected = vec![ 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a, 0xde, 0x20, 0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64, 0xec, 0xfd, 0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x85, 0xfb, 0xb4, 0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67, 0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f, 0xf2, ]; assert_eq!(result.unwrap(), expected); } #[test] fn test_der_ec_sig_to_raw_long() { let ec_sig = vec![ 0x30, 0x45, 0x02, 0x20, 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a, 0xde, 0x20, 0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64, 0xec, 0xfd, 0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x02, 0x21, 0x00, 0x85, 0xfb, 0xb4, 0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67, 0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f, 0xf2, ]; let result = der_ec_sig_to_raw(&ec_sig, 16); assert!(result.is_err()); } #[test] fn test_der_ec_sig_to_raw_short() { let ec_sig_point = vec![ 0x30, 0x45, 0x02, 0x20, 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a, 0xde, 0x20, 0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64, 0xec, 0xfd, 0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x02, 0x21, 0x00, 0x85, 0xfb, 0xb4, 0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67, 0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f, 0xf2, ]; let result = der_ec_sig_to_raw(&ec_sig_point, 48); assert!(result.is_ok()); let expected = vec![ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x5c, 0x75, 0x51, 0x9f, 0x13, 0x11, 0x50, 0xcd, 0x5d, 0x8a, 0xde, 0x20, 0xa3, 0xbc, 0x06, 0x30, 0x91, 0xff, 0xb2, 0x73, 0x75, 0x5f, 0x31, 0x64, 0xec, 0xfd, 0xcb, 0x42, 0x80, 0x0a, 0x70, 0xe6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x85, 0xfb, 0xb4, 0x75, 0x5d, 0xb5, 0x1c, 0x5f, 0x97, 0x52, 0x27, 0xd9, 0x71, 0x14, 0xc0, 0xbc, 0x67, 0x10, 0x4f, 0x72, 0x2e, 0x37, 0xb2, 0x78, 0x54, 0xfd, 0xd0, 0x9d, 0x51, 0xd4, 0x9f, 0xf2, ]; assert_eq!(result.unwrap(), expected); } #[test] fn test_read_rsa_modulus() { let rsa_key = include_bytes!("../test/rsa.bin"); let result = read_rsa_modulus(rsa_key); assert!(result.is_ok()); let modulus = result.unwrap(); assert_eq!(modulus, include_bytes!("../test/modulus.bin").to_vec()); } #[test] fn test_read_certificate_identifiers() { let certificate = include_bytes!("../test/certificate.bin"); let result = read_encoded_certificate_identifiers(certificate); assert!(result.is_ok()); let (serial_number, issuer, subject) = result.unwrap(); assert_eq!( serial_number, &[ 0x02, 0x14, 0x3f, 0xed, 0x7b, 0x43, 0x47, 0x8a, 0x53, 0x42, 0x5b, 0x0d, 0x50, 0xe1, 0x37, 0x88, 0x2a, 0x20, 0x3f, 0x31, 0x17, 0x20 ] ); assert_eq!( issuer, &[ 0x30, 0x12, 0x31, 0x10, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x07, 0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x41 ] ); assert_eq!( subject, &[ 0x30, 0x1a, 0x31, 0x18, 0x30, 0x16, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x0f, 0x54, 0x65, 0x73, 0x74, 0x20, 0x45, 0x6e, 0x64, 0x2d, 0x65, 0x6e, 0x74, 0x69, 0x74, 0x79 ] ); } #[test] fn test_read_v1_certificate_identifiers() { let certificate = include_bytes!("../test/v1certificate.bin"); let result = read_encoded_certificate_identifiers(certificate); assert!(result.is_ok()); let (serial_number, issuer, subject) = result.unwrap(); assert_eq!( serial_number, &[ 0x02, 0x14, 0x51, 0x6b, 0x24, 0xaa, 0xf2, 0x7f, 0x56, 0x13, 0x5f, 0xc3, 0x8b, 0x5c, 0xa7, 0x00, 0x83, 0xa8, 0xee, 0xca, 0xad, 0xa0 ] ); assert_eq!( issuer, &[ 0x30, 0x12, 0x31, 0x10, 0x30, 0x0E, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0C, 0x07, 0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x41 ] ); assert_eq!( subject, &[ 0x30, 0x12, 0x31, 0x10, 0x30, 0x0E, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0C, 0x07, 0x56, 0x31, 0x20, 0x43, 0x65, 0x72, 0x74 ] ); } #[test] fn test_read_digest() { // SEQUENCE // SEQUENCE // OBJECT IDENTIFIER 2.16.840.1.101.3.4.2.1 sha-256 // NULL // OCTET STRING 1A7FCDB9A5F649F954885CFE145F3E93F0D1FA72BE980CC6EC82C70E1407C7D2 let digest_info = [ 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x1, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20, 0x1a, 0x7f, 0xcd, 0xb9, 0xa5, 0xf6, 0x49, 0xf9, 0x54, 0x88, 0x5c, 0xfe, 0x14, 0x5f, 0x3e, 0x93, 0xf0, 0xd1, 0xfa, 0x72, 0xbe, 0x98, 0x0c, 0xc6, 0xec, 0x82, 0xc7, 0x0e, 0x14, 0x07, 0xc7, 0xd2, ]; let result = read_digest_info(&digest_info); assert!(result.is_ok()); let (oid, digest) = result.unwrap(); assert_eq!(oid, &[0x60, 0x86, 0x48, 0x1, 0x65, 0x03, 0x04, 0x02, 0x01]); assert_eq!( digest, &[ 0x1a, 0x7f, 0xcd, 0xb9, 0xa5, 0xf6, 0x49, 0xf9, 0x54, 0x88, 0x5c, 0xfe, 0x14, 0x5f, 0x3e, 0x93, 0xf0, 0xd1, 0xfa, 0x72, 0xbe, 0x98, 0x0c, 0xc6, 0xec, 0x82, 0xc7, 0x0e, 0x14, 0x07, 0xc7, 0xd2 ] ); } #[test] fn test_read_spki_algorithm_parameters() { let spki = [ 0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0x03, 0x42, 0x00, 0x04, 0x4f, 0xbf, 0xbb, 0xbb, 0x61, 0xe0, 0xf8, 0xf9, 0xb1, 0xa6, 0x0a, 0x59, 0xac, 0x87, 0x04, 0xe2, 0xec, 0x05, 0x0b, 0x42, 0x3e, 0x3c, 0xf7, 0x2e, 0x92, 0x3f, 0x2c, 0x4f, 0x79, 0x4b, 0x45, 0x5c, 0x2a, 0x69, 0xd2, 0x33, 0x45, 0x6c, 0x36, 0xc4, 0x11, 0x9d, 0x07, 0x06, 0xe0, 0x0e, 0xed, 0xc8, 0xd1, 0x93, 0x90, 0xd7, 0x99, 0x1b, 0x7b, 0x2d, 0x07, 0xa3, 0x04, 0xea, 0xa0, 0x4a, 0xa6, 0xc0, ]; let result = read_spki_algorithm_parameters(&spki); assert!(result.is_ok()); let parameters = result.unwrap(); const ENCODED_OID_BYTES_SECP256R1: &[u8] = &[0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07]; assert_eq!(¶meters, ENCODED_OID_BYTES_SECP256R1); } #[test] fn test_read_private_key_info_rsa() { let private_key_info_rsa = include_bytes!("../test/private-key-info-rsa.bin"); let result = read_private_key_info(private_key_info_rsa); assert!(result.is_ok()); let private_key = result.unwrap(); assert!(matches!(private_key, PrivateKeyInfo::RSA(_))); let PrivateKeyInfo::RSA(private_key_rsa) = private_key else { unreachable!() }; let expected_modulus = [ 0xba, 0x88, 0x51, 0xa8, 0x44, 0x8e, 0x16, 0xd6, 0x41, 0xfd, 0x6e, 0xb6, 0x88, 0x06, 0x36, 0x10, 0x3d, 0x3c, 0x13, 0xd9, 0xea, 0xe4, 0x35, 0x4a, 0xb4, 0xec, 0xf5, 0x68, 0x57, 0x6c, 0x24, 0x7b, 0xc1, 0xc7, 0x25, 0xa8, 0xe0, 0xd8, 0x1f, 0xbd, 0xb1, 0x9c, 0x06, 0x9b, 0x6e, 0x1a, 0x86, 0xf2, 0x6b, 0xe2, 0xaf, 0x5a, 0x75, 0x6b, 0x6a, 0x64, 0x71, 0x08, 0x7a, 0xa5, 0x5a, 0xa7, 0x45, 0x87, 0xf7, 0x1c, 0xd5, 0x24, 0x9c, 0x02, 0x7e, 0xcd, 0x43, 0xfc, 0x1e, 0x69, 0xd0, 0x38, 0x20, 0x29, 0x93, 0xab, 0x20, 0xc3, 0x49, 0xe4, 0xdb, 0xb9, 0x4c, 0xc2, 0x6b, 0x6c, 0x0e, 0xed, 0x15, 0x82, 0x0f, 0xf1, 0x7e, 0xad, 0x69, 0x1a, 0xb1, 0xd3, 0x02, 0x3a, 0x8b, 0x2a, 0x41, 0xee, 0xa7, 0x70, 0xe0, 0x0f, 0x0d, 0x8d, 0xfd, 0x66, 0x0b, 0x2b, 0xb0, 0x24, 0x92, 0xa4, 0x7d, 0xb9, 0x88, 0x61, 0x79, 0x90, 0xb1, 0x57, 0x90, 0x3d, 0xd2, 0x3b, 0xc5, 0xe0, 0xb8, 0x48, 0x1f, 0xa8, 0x37, 0xd3, 0x88, 0x43, 0xef, 0x27, 0x16, 0xd8, 0x55, 0xb7, 0x66, 0x5a, 0xaa, 0x7e, 0x02, 0x90, 0x2f, 0x3a, 0x7b, 0x10, 0x80, 0x06, 0x24, 0xcc, 0x1c, 0x6c, 0x97, 0xad, 0x96, 0x61, 0x5b, 0xb7, 0xe2, 0x96, 0x12, 0xc0, 0x75, 0x31, 0xa3, 0x0c, 0x91, 0xdd, 0xb4, 0xca, 0xf7, 0xfc, 0xad, 0x1d, 0x25, 0xd3, 0x09, 0xef, 0xb9, 0x17, 0x0e, 0xa7, 0x68, 0xe1, 0xb3, 0x7b, 0x2f, 0x22, 0x6f, 0x69, 0xe3, 0xb4, 0x8a, 0x95, 0x61, 0x1d, 0xee, 0x26, 0xd6, 0x25, 0x9d, 0xab, 0x91, 0x08, 0x4e, 0x36, 0xcb, 0x1c, 0x24, 0x04, 0x2c, 0xbf, 0x16, 0x8b, 0x2f, 0xe5, 0xf1, 0x8f, 0x99, 0x17, 0x31, 0xb8, 0xb3, 0xfe, 0x49, 0x23, 0xfa, 0x72, 0x51, 0xc4, 0x31, 0xd5, 0x03, 0xac, 0xda, 0x18, 0x0a, 0x35, 0xed, 0x8d, ]; assert_eq!(private_key_rsa.modulus, expected_modulus); let expected_private_exponent = [ 0x9e, 0xcb, 0xce, 0x38, 0x61, 0xa4, 0x54, 0xec, 0xb1, 0xe0, 0xfe, 0x8f, 0x85, 0xdd, 0x43, 0xc9, 0x2f, 0x58, 0x25, 0xce, 0x2e, 0x99, 0x78, 0x84, 0xd0, 0xe1, 0xa9, 0x49, 0xda, 0xa2, 0xc5, 0xac, 0x55, 0x9b, 0x24, 0x04, 0x50, 0xe5, 0xac, 0x9f, 0xe0, 0xc3, 0xe3, 0x1c, 0x0e, 0xef, 0xa6, 0x52, 0x5a, 0x65, 0xf0, 0xc2, 0x21, 0x94, 0x00, 0x4e, 0xe1, 0xab, 0x46, 0x3d, 0xde, 0x9e, 0xe8, 0x22, 0x87, 0xcc, 0x93, 0xe7, 0x46, 0xa9, 0x19, 0x29, 0xc5, 0xe6, 0xac, 0x3d, 0x88, 0x75, 0x3f, 0x6c, 0x25, 0xba, 0x59, 0x79, 0xe7, 0x3e, 0x5d, 0x8f, 0xb2, 0x39, 0x11, 0x1a, 0x3c, 0xda, 0xb8, 0xa4, 0xb0, 0xcd, 0xf5, 0xf9, 0xca, 0xb0, 0x5f, 0x12, 0x33, 0xa3, 0x83, 0x35, 0xc6, 0x4b, 0x55, 0x60, 0x52, 0x5e, 0x7e, 0x3b, 0x92, 0xad, 0x7c, 0x75, 0x04, 0xcf, 0x1d, 0xc7, 0xcb, 0x00, 0x57, 0x88, 0xaf, 0xcb, 0xe1, 0xe8, 0xf9, 0x5d, 0xf7, 0x40, 0x2a, 0x15, 0x15, 0x30, 0xd5, 0x80, 0x83, 0x46, 0x86, 0x4e, 0xb3, 0x70, 0xaa, 0x79, 0x95, 0x6a, 0x58, 0x78, 0x62, 0xcb, 0x53, 0x37, 0x91, 0x30, 0x7f, 0x70, 0xd9, 0x1c, 0x96, 0xd2, 0x2d, 0x00, 0x1a, 0x69, 0x00, 0x9b, 0x92, 0x3c, 0x68, 0x33, 0x88, 0xc9, 0xf3, 0x6c, 0xb9, 0xb5, 0xeb, 0xe6, 0x43, 0x02, 0x04, 0x1c, 0x78, 0xd9, 0x08, 0x20, 0x6b, 0x87, 0x00, 0x9c, 0xb8, 0xca, 0xba, 0xca, 0xd3, 0xdb, 0xdb, 0x27, 0x92, 0xfb, 0x91, 0x1b, 0x2c, 0xf4, 0xdb, 0x66, 0x03, 0x58, 0x5b, 0xe9, 0xae, 0x0c, 0xa3, 0xb8, 0xe6, 0x41, 0x7a, 0xa0, 0x4b, 0x06, 0xe4, 0x70, 0xea, 0x1a, 0x3b, 0x58, 0x1c, 0xa0, 0x3a, 0x67, 0x81, 0xc9, 0x31, 0x5b, 0x62, 0xb3, 0x0e, 0x60, 0x11, 0xf2, 0x24, 0x72, 0x59, 0x46, 0xee, 0xc5, 0x7c, 0x6d, 0x94, 0x41, ]; assert_eq!(private_key_rsa.private_exponent, expected_private_exponent); } #[test] fn test_read_private_key_info_ecdsa() { let private_key_info_ecdsa = include_bytes!("../test/private-key-info-ecdsa.bin"); let result = read_private_key_info(private_key_info_ecdsa); assert!(result.is_ok()); let private_key = result.unwrap(); assert!(matches!(private_key, PrivateKeyInfo::EC(_))); let PrivateKeyInfo::EC(private_key_ec) = private_key else { unreachable!() }; let expected_private_key = [ 0x21, 0x91, 0x40, 0x3d, 0x57, 0x10, 0xbf, 0x15, 0xa2, 0x65, 0x81, 0x8c, 0xd4, 0x2e, 0xd6, 0xfe, 0xdf, 0x09, 0xad, 0xd9, 0x2d, 0x78, 0xb1, 0x8e, 0x7a, 0x1e, 0x9f, 0xeb, 0x95, 0x52, 0x47, 0x02, ]; assert_eq!(private_key_ec.private_key, expected_private_key); } }