// META: title=test input with special character names // META: global=window // META: variant=?cpu // META: variant=?gpu // META: variant=?npu // META: script=../resources/utils.js // META: timeout=long 'use strict'; // https://www.w3.org/TR/webnn/#dom-mloperatoroptions-label let mlContext; // Skip tests if WebNN is unimplemented. promise_setup(async () => { assert_implements(navigator.ml, 'missing navigator.ml'); mlContext = await navigator.ml.createContext(contextOptions); }); const specialNameArray = [ ['12-L#!.☺', '🤦🏼‍♂️124DS#!F'], // Escape Sequence ['\0node_a', '\0node_b'], ['node\0a', 'node\0b'], // Hexadecimal Escape Sequences // '\x41'→ 'A' ['\x41\x41\x41', '\x42\x42\x42'], // Unicode & Hexadecimal Characters // "\u00A9" → "©" // "\xA9" → "©" // "\u2665" → "♥" // "\u2026" → "…" // "\U0001F600" → 😀 (Grinning Face Emoji) ['\u00A9\xA9\u2665\u2026', '\U0001F600'] ]; specialNameArray.forEach((name) => { promise_test(async () => { // The following code builds a graph as: // constant1 ---+ // +--- Add (label_0) ---> intermediateOutput1 ---+ // input1 ---+ | // +--- Mul---> output // constant2 ---+ | // +--- Add (label_1) ---> intermediateOutput2 ---+ // input2 ---+ const TENSOR_DIMS = [1, 2, 2, 2]; const TENSOR_SIZE = 8; const builder = new MLGraphBuilder(mlContext); const desc = { dataType: 'float32', shape: TENSOR_DIMS }; const constantBuffer1 = new Float32Array(TENSOR_SIZE).fill(0.5); const constant1 = builder.constant(desc, constantBuffer1); const input1 = builder.input('input1', desc); const constantBuffer2 = new Float32Array(TENSOR_SIZE).fill(0.5); const constant2 = builder.constant(desc, constantBuffer2); const input2 = builder.input('input2', desc); const intermediateOutput1 = builder.add(constant1, input1, {label: name[0]}); const intermediateOutput2 = builder.add(constant2, input2, {label: name[1]}); const output = builder.mul(intermediateOutput1, intermediateOutput2); const graph = await builder.build({'output': output}); const inputBuffer1 = new Float32Array(TENSOR_SIZE).fill(1); const inputBuffer2 = new Float32Array(TENSOR_SIZE).fill(1); desc.writable = true; const inputTensor1 = await mlContext.createTensor(desc); const inputTensor2 = await mlContext.createTensor(desc); mlContext.writeTensor(inputTensor1, inputBuffer1); mlContext.writeTensor(inputTensor2, inputBuffer2); const outputTensor = await mlContext.createTensor({ ...desc, readable: true, writable: false, }); const inputs = { 'input1': inputTensor1, 'input2': inputTensor2, }; const outputs = {'output': outputTensor}; mlContext.dispatch(graph, inputs, outputs); assert_array_equals( new Float32Array(await mlContext.readTensor(outputTensor)), Float32Array.from([2.25, 2.25, 2.25, 2.25, 2.25, 2.25, 2.25, 2.25])); }, `'add' nodes with special character name '${name[0]}' and '${name[1]}'`); });