/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_dsp/arm/aom_convolve8_neon.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "config/aom_dsp_rtcd.h" static inline void scaled_convolve_horiz_neon( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const x_filter, const int x0_q4, const int x_step_q4, int w, int h) { DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); if (w == 4) { do { int x_q4 = x0_q4; // Process a 4x4 tile. for (int r = 0; r < 4; ++r) { const uint8_t *s = &src[x_q4 >> SUBPEL_BITS]; if (x_q4 & SUBPEL_MASK) { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int16x8_t filter = vshrq_n_s16(vld1q_s16(x_filter[x_q4 & SUBPEL_MASK]), 1); uint8x8_t t0, t1, t2, t3; load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); int16x4_t s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); int16x4_t dd0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter); // We halved the filter values so -1 from right shift. uint8x8_t d0 = vqrshrun_n_s16(vcombine_s16(dd0, vdup_n_s16(0)), FILTER_BITS - 1); store_u8_4x1(&temp[4 * r], d0); } else { // Memcpy for non-subpel locations. s += SUBPEL_TAPS / 2 - 1; for (int c = 0; c < 4; ++c) { temp[r * 4 + c] = s[c * src_stride]; } } x_q4 += x_step_q4; } // Transpose the 4x4 result tile and store. uint8x8_t d01 = vld1_u8(temp + 0); uint8x8_t d23 = vld1_u8(temp + 8); transpose_elems_inplace_u8_4x4(&d01, &d23); store_u8x4_strided_x2(dst + 0 * dst_stride, 2 * dst_stride, d01); store_u8x4_strided_x2(dst + 1 * dst_stride, 2 * dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h > 0); return; } // w >= 8 do { int x_q4 = x0_q4; uint8_t *d = dst; int width = w; do { // Process an 8x8 tile. for (int r = 0; r < 8; ++r) { const uint8_t *s = &src[x_q4 >> SUBPEL_BITS]; if (x_q4 & SUBPEL_MASK) { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int16x8_t filter = vshrq_n_s16(vld1q_s16(x_filter[x_q4 & SUBPEL_MASK]), 1); uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_inplace_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); vst1_u8(&temp[r * 8], d0); } else { // Memcpy for non-subpel locations. s += SUBPEL_TAPS / 2 - 1; for (int c = 0; c < 8; ++c) { temp[r * 8 + c] = s[c * src_stride]; } } x_q4 += x_step_q4; } // Transpose the 8x8 result tile and store. uint8x8_t d0, d1, d2, d3, d4, d5, d6, d7; load_u8_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); transpose_elems_inplace_u8_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); store_u8_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); d += 8; width -= 8; } while (width != 0); src += 8 * src_stride; dst += 8 * dst_stride; h -= 8; } while (h > 0); } static inline void scaled_convolve_vert_neon( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filter, const int y0_q4, const int y_step_q4, int w, int h) { int y_q4 = y0_q4; if (w == 4) { do { const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; if (y_q4 & SUBPEL_MASK) { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int16x8_t filter = vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1); uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); int16x4_t s4 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t4))); int16x4_t s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5))); int16x4_t s6 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t6))); int16x4_t s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t7))); int16x4_t dd0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter); // We halved the filter values so -1 from right shift. uint8x8_t d0 = vqrshrun_n_s16(vcombine_s16(dd0, vdup_n_s16(0)), FILTER_BITS - 1); store_u8_4x1(dst, d0); } else { // Memcpy for non-subpel locations. memcpy(dst, &s[(SUBPEL_TAPS / 2 - 1) * src_stride], 4); } y_q4 += y_step_q4; dst += dst_stride; } while (--h != 0); return; } if (w == 8) { do { const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; if (y_q4 & SUBPEL_MASK) { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int16x8_t filter = vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1); uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); vst1_u8(dst, d0); } else { // Memcpy for non-subpel locations. memcpy(dst, &s[(SUBPEL_TAPS / 2 - 1) * src_stride], 8); } y_q4 += y_step_q4; dst += dst_stride; } while (--h != 0); return; } // w >= 16 do { const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; uint8_t *d = dst; int width = w; if (y_q4 & SUBPEL_MASK) { do { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int16x8_t filter = vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1); uint8x16_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_16x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); int16x8_t s0[2], s1[2], s2[2], s3[2], s4[2], s5[2], s6[2], s7[2]; s0[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0))); s1[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1))); s2[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2))); s3[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3))); s4[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t4))); s5[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t5))); s6[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t6))); s7[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t7))); s0[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0))); s1[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1))); s2[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2))); s3[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3))); s4[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t4))); s5[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t5))); s6[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t6))); s7[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t7))); uint8x8_t d0 = convolve8_8(s0[0], s1[0], s2[0], s3[0], s4[0], s5[0], s6[0], s7[0], filter); uint8x8_t d1 = convolve8_8(s0[1], s1[1], s2[1], s3[1], s4[1], s5[1], s6[1], s7[1], filter); vst1q_u8(d, vcombine_u8(d0, d1)); s += 16; d += 16; width -= 16; } while (width != 0); } else { // Memcpy for non-subpel locations. s += (SUBPEL_TAPS / 2 - 1) * src_stride; do { uint8x16_t s0 = vld1q_u8(s); vst1q_u8(d, s0); s += 16; d += 16; width -= 16; } while (width != 0); } y_q4 += y_step_q4; dst += dst_stride; } while (--h != 0); } void aom_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { // Fixed size intermediate buffer, im_block, places limits on parameters. // 2d filtering proceeds in 2 steps: // (1) Interpolate horizontally into an intermediate buffer, temp. // (2) Interpolate temp vertically to derive the sub-pixel result. // Deriving the maximum number of rows in the im_block buffer (135): // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). // --Largest block size is 64x64 pixels. // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the // original frame (in 1/16th pixel units). // --Must round-up because block may be located at sub-pixel position. // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. // --Require an additional 8 rows for the horiz_w8 transpose tail. // When calling in frame scaling function, the smallest scaling factor is x1/4 // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still // big enough. DECLARE_ALIGNED(16, uint8_t, im_block[(135 + 8) * 64]); const int im_height = (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; const ptrdiff_t im_stride = 64; assert(w <= 64); assert(h <= 64); assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); assert(x_step_q4 <= 64); // Account for needing SUBPEL_TAPS / 2 - 1 lines prior and SUBPEL_TAPS / 2 // lines post both horizontally and vertically. const ptrdiff_t horiz_offset = SUBPEL_TAPS / 2 - 1; const ptrdiff_t vert_offset = (SUBPEL_TAPS / 2 - 1) * src_stride; scaled_convolve_horiz_neon(src - horiz_offset - vert_offset, src_stride, im_block, im_stride, filter, x0_q4, x_step_q4, w, im_height); scaled_convolve_vert_neon(im_block, im_stride, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); }