/* * Copyright (c) 2024, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_dsp/arm/aom_convolve8_neon.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "config/aom_dsp_rtcd.h" static inline uint8x8_t convolve8_4_h(uint8x8_t s0, uint8x8_t s1, uint8x8_t s2, uint8x8_t s3, int8x8_t filter) { int8x16_t filter_x2 = vcombine_s8(filter, filter); uint8x16_t s01 = vcombine_u8(s0, s1); uint8x16_t s23 = vcombine_u8(s2, s3); // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128))); int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128))); // Accumulate into 128 << (FILTER_BITS - 1) / 2 to account for range // transform. const int32x4_t acc = vdupq_n_s32((128 << (FILTER_BITS - 1)) / 2); int32x4_t sum01 = vdotq_s32(acc, s01_128, filter_x2); int32x4_t sum23 = vdotq_s32(acc, s23_128, filter_x2); int32x4_t sum0123 = vpaddq_s32(sum01, sum23); int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vdup_n_s16(0)); // We halved the filter values so -1 from right shift. return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static inline uint8x8_t convolve8_8_h(uint8x8_t s0, uint8x8_t s1, uint8x8_t s2, uint8x8_t s3, uint8x8_t s4, uint8x8_t s5, uint8x8_t s6, uint8x8_t s7, int8x8_t filter) { int8x16_t filter_x2 = vcombine_s8(filter, filter); uint8x16_t s01 = vcombine_u8(s0, s1); uint8x16_t s23 = vcombine_u8(s2, s3); uint8x16_t s45 = vcombine_u8(s4, s5); uint8x16_t s67 = vcombine_u8(s6, s7); // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128))); int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128))); int8x16_t s45_128 = vreinterpretq_s8_u8(vsubq_u8(s45, vdupq_n_u8(128))); int8x16_t s67_128 = vreinterpretq_s8_u8(vsubq_u8(s67, vdupq_n_u8(128))); // Accumulate into 128 << (FILTER_BITS - 1) / 2 to account for range // transform. const int32x4_t acc = vdupq_n_s32((128 << (FILTER_BITS - 1)) / 2); int32x4_t sum01 = vdotq_s32(acc, s01_128, filter_x2); int32x4_t sum23 = vdotq_s32(acc, s23_128, filter_x2); int32x4_t sum45 = vdotq_s32(acc, s45_128, filter_x2); int32x4_t sum67 = vdotq_s32(acc, s67_128, filter_x2); int32x4_t sum0123 = vpaddq_s32(sum01, sum23); int32x4_t sum4567 = vpaddq_s32(sum45, sum67); int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); // We halved the filter values so -1 from right shift. return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static inline void scaled_convolve_horiz_neon_dotprod( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const x_filter, const int x0_q4, const int x_step_q4, int w, int h) { DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); if (w == 4) { do { int x_q4 = x0_q4; // Process a 4x4 tile. for (int r = 0; r < 4; ++r) { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter[x_q4 & SUBPEL_MASK]), 1); const uint8_t *s = &src[x_q4 >> SUBPEL_BITS]; uint8x8_t s0, s1, s2, s3; load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve8_4_h(s0, s1, s2, s3, filter); store_u8_4x1(&temp[4 * r], d0); x_q4 += x_step_q4; } // Transpose the 4x4 result tile and store. uint8x8_t d01 = vld1_u8(temp + 0); uint8x8_t d23 = vld1_u8(temp + 8); transpose_elems_inplace_u8_4x4(&d01, &d23); store_u8x4_strided_x2(dst + 0 * dst_stride, 2 * dst_stride, d01); store_u8x4_strided_x2(dst + 1 * dst_stride, 2 * dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h > 0); return; } // w >= 8 do { int x_q4 = x0_q4; uint8_t *d = dst; int width = w; do { // Process an 8x8 tile. for (int r = 0; r < 8; ++r) { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter[x_q4 & SUBPEL_MASK]), 1); const uint8_t *s = &src[x_q4 >> SUBPEL_BITS]; uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7; load_u8_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); uint8x8_t d0 = convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter); vst1_u8(&temp[r * 8], d0); x_q4 += x_step_q4; } // Transpose the 8x8 result tile and store. uint8x8_t d0, d1, d2, d3, d4, d5, d6, d7; load_u8_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); transpose_elems_inplace_u8_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); store_u8_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); d += 8; width -= 8; } while (width != 0); src += 8 * src_stride; dst += 8 * dst_stride; h -= 8; } while (h > 0); } static inline uint8x8_t convolve8_4_v(uint8x8_t s0, uint8x8_t s1, uint8x8_t s2, uint8x8_t s3, uint8x8_t s4, uint8x8_t s5, uint8x8_t s6, uint8x8_t s7, int8x8_t filter) { uint8x16_t s01 = vcombine_u8(vzip1_u8(s0, s1), vdup_n_u8(0)); uint8x16_t s23 = vcombine_u8(vzip1_u8(s2, s3), vdup_n_u8(0)); uint8x16_t s45 = vcombine_u8(vzip1_u8(s4, s5), vdup_n_u8(0)); uint8x16_t s67 = vcombine_u8(vzip1_u8(s6, s7), vdup_n_u8(0)); uint8x16_t s0123 = vreinterpretq_u8_u16( vzip1q_u16(vreinterpretq_u16_u8(s01), vreinterpretq_u16_u8(s23))); uint8x16_t s4567 = vreinterpretq_u8_u16( vzip1q_u16(vreinterpretq_u16_u8(s45), vreinterpretq_u16_u8(s67))); // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t s0123_128 = vreinterpretq_s8_u8(vsubq_u8(s0123, vdupq_n_u8(128))); int8x16_t s4567_128 = vreinterpretq_s8_u8(vsubq_u8(s4567, vdupq_n_u8(128))); // Accumulate into 128 << (FILTER_BITS - 1) to account for range transform. int32x4_t sum = vdupq_n_s32(128 << (FILTER_BITS - 1)); sum = vdotq_lane_s32(sum, s0123_128, filter, 0); sum = vdotq_lane_s32(sum, s4567_128, filter, 1); // We halved the filter values so -1 from right shift. return vqrshrun_n_s16(vcombine_s16(vmovn_s32(sum), vdup_n_s16(0)), FILTER_BITS - 1); } static inline uint8x8_t convolve8_8_v(uint8x8_t s0, uint8x8_t s1, uint8x8_t s2, uint8x8_t s3, uint8x8_t s4, uint8x8_t s5, uint8x8_t s6, uint8x8_t s7, int8x8_t filter) { uint8x16_t s01 = vzip1q_u8(vcombine_u8(s0, vdup_n_u8(0)), vcombine_u8(s1, vdup_n_u8(0))); uint8x16_t s23 = vzip1q_u8(vcombine_u8(s2, vdup_n_u8(0)), vcombine_u8(s3, vdup_n_u8(0))); uint8x16_t s45 = vzip1q_u8(vcombine_u8(s4, vdup_n_u8(0)), vcombine_u8(s5, vdup_n_u8(0))); uint8x16_t s67 = vzip1q_u8(vcombine_u8(s6, vdup_n_u8(0)), vcombine_u8(s7, vdup_n_u8(0))); uint8x16_t s0123[2] = { vreinterpretq_u8_u16( vzip1q_u16(vreinterpretq_u16_u8(s01), vreinterpretq_u16_u8(s23))), vreinterpretq_u8_u16( vzip2q_u16(vreinterpretq_u16_u8(s01), vreinterpretq_u16_u8(s23))) }; uint8x16_t s4567[2] = { vreinterpretq_u8_u16( vzip1q_u16(vreinterpretq_u16_u8(s45), vreinterpretq_u16_u8(s67))), vreinterpretq_u8_u16( vzip2q_u16(vreinterpretq_u16_u8(s45), vreinterpretq_u16_u8(s67))) }; // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t s0123_128[2] = { vreinterpretq_s8_u8(vsubq_u8(s0123[0], vdupq_n_u8(128))), vreinterpretq_s8_u8(vsubq_u8(s0123[1], vdupq_n_u8(128))) }; int8x16_t s4567_128[2] = { vreinterpretq_s8_u8(vsubq_u8(s4567[0], vdupq_n_u8(128))), vreinterpretq_s8_u8(vsubq_u8(s4567[1], vdupq_n_u8(128))) }; // Accumulate into 128 << (FILTER_BITS - 1) to account for range transform. const int32x4_t acc = vdupq_n_s32(128 << (FILTER_BITS - 1)); int32x4_t sum0123 = vdotq_lane_s32(acc, s0123_128[0], filter, 0); sum0123 = vdotq_lane_s32(sum0123, s4567_128[0], filter, 1); int32x4_t sum4567 = vdotq_lane_s32(acc, s0123_128[1], filter, 0); sum4567 = vdotq_lane_s32(sum4567, s4567_128[1], filter, 1); int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); // We halved the filter values so -1 from right shift. return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static inline void scaled_convolve_vert_neon_dotprod( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filter, const int y0_q4, const int y_step_q4, int w, int h) { int y_q4 = y0_q4; if (w == 4) { do { const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; if (y_q4 & SUBPEL_MASK) { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1); uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7; load_u8_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); uint8x8_t d0 = convolve8_4_v(s0, s1, s2, s3, s4, s5, s6, s7, filter); store_u8_4x1(dst, d0); } else { // Memcpy for non-subpel locations. memcpy(dst, &s[(SUBPEL_TAPS / 2 - 1) * src_stride], 4); } y_q4 += y_step_q4; dst += dst_stride; } while (--h != 0); return; } // w >= 8 do { const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; uint8_t *d = dst; int width = w; if (y_q4 & SUBPEL_MASK) { // Halve filter values (all even) to avoid the need for saturating // arithmetic in convolution kernels. const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1); do { uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7; load_u8_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); uint8x8_t d0 = convolve8_8_v(s0, s1, s2, s3, s4, s5, s6, s7, filter); vst1_u8(d, d0); s += 8; d += 8; width -= 8; } while (width != 0); } else { // Memcpy for non-subpel locations. s += (SUBPEL_TAPS / 2 - 1) * src_stride; do { uint8x8_t s0 = vld1_u8(s); vst1_u8(d, s0); s += 8; d += 8; width -= 8; } while (width != 0); } y_q4 += y_step_q4; dst += dst_stride; } while (--h != 0); } void aom_scaled_2d_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { // Fixed size intermediate buffer, im_block, places limits on parameters. // 2d filtering proceeds in 2 steps: // (1) Interpolate horizontally into an intermediate buffer, temp. // (2) Interpolate temp vertically to derive the sub-pixel result. // Deriving the maximum number of rows in the im_block buffer (135): // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). // --Largest block size is 64x64 pixels. // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the // original frame (in 1/16th pixel units). // --Must round-up because block may be located at sub-pixel position. // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. // --Require an additional 8 rows for the horiz_w8 transpose tail. // When calling in frame scaling function, the smallest scaling factor is x1/4 // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still // big enough. DECLARE_ALIGNED(16, uint8_t, im_block[(135 + 8) * 64]); const int im_height = (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; const ptrdiff_t im_stride = 64; assert(w <= 64); assert(h <= 64); assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); assert(x_step_q4 <= 64); // Account for needing SUBPEL_TAPS / 2 - 1 lines prior and SUBPEL_TAPS / 2 // lines post both horizontally and vertically. const ptrdiff_t horiz_offset = SUBPEL_TAPS / 2 - 1; const ptrdiff_t vert_offset = (SUBPEL_TAPS / 2 - 1) * src_stride; scaled_convolve_horiz_neon_dotprod(src - horiz_offset - vert_offset, src_stride, im_block, im_stride, filter, x0_q4, x_step_q4, w, im_height); scaled_convolve_vert_neon_dotprod(im_block, im_stride, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); }