/* * Copyright (c) 2024, Alliance for Open Media. All rights reserved. * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "av1/common/arm/convolve_scale_neon.h" #include "av1/common/convolve.h" #include "av1/common/filter.h" static inline int16x4_t convolve8_4_h(const int16x4_t s0, const int16x4_t s1, const int16x4_t s2, const int16x4_t s3, const int16x4_t s4, const int16x4_t s5, const int16x4_t s6, const int16x4_t s7, const int16x8_t filter, const int32x4_t horiz_const) { int16x4_t filter_lo = vget_low_s16(filter); int16x4_t filter_hi = vget_high_s16(filter); int32x4_t sum = horiz_const; sum = vmlal_lane_s16(sum, s0, filter_lo, 0); sum = vmlal_lane_s16(sum, s1, filter_lo, 1); sum = vmlal_lane_s16(sum, s2, filter_lo, 2); sum = vmlal_lane_s16(sum, s3, filter_lo, 3); sum = vmlal_lane_s16(sum, s4, filter_hi, 0); sum = vmlal_lane_s16(sum, s5, filter_hi, 1); sum = vmlal_lane_s16(sum, s6, filter_hi, 2); sum = vmlal_lane_s16(sum, s7, filter_hi, 3); return vshrn_n_s32(sum, ROUND0_BITS); } static inline int16x8_t convolve8_8_h(const int16x8_t s0, const int16x8_t s1, const int16x8_t s2, const int16x8_t s3, const int16x8_t s4, const int16x8_t s5, const int16x8_t s6, const int16x8_t s7, const int16x8_t filter, const int16x8_t horiz_const) { int16x4_t filter_lo = vget_low_s16(filter); int16x4_t filter_hi = vget_high_s16(filter); int16x8_t sum = horiz_const; sum = vmlaq_lane_s16(sum, s0, filter_lo, 0); sum = vmlaq_lane_s16(sum, s1, filter_lo, 1); sum = vmlaq_lane_s16(sum, s2, filter_lo, 2); sum = vmlaq_lane_s16(sum, s3, filter_lo, 3); sum = vmlaq_lane_s16(sum, s4, filter_hi, 0); sum = vmlaq_lane_s16(sum, s5, filter_hi, 1); sum = vmlaq_lane_s16(sum, s6, filter_hi, 2); sum = vmlaq_lane_s16(sum, s7, filter_hi, 3); return vshrq_n_s16(sum, ROUND0_BITS - 1); } static inline void convolve_horiz_scale_8tap_neon(const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, int h, const int16_t *x_filter, const int subpel_x_qn, const int x_step_qn) { DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); const int bd = 8; if (w == 4) { // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. const int32x4_t horiz_offset = vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); do { int x_qn = subpel_x_qn; // Process a 4x4 tile. for (int r = 0; r < 4; ++r) { const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; const ptrdiff_t filter_offset = SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); const int16x8_t filter = vld1q_s16(x_filter + filter_offset); uint8x8_t t0, t1, t2, t3; load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); int16x4_t s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); int16x4_t d0 = convolve8_4_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); vst1_s16(&temp[r * 4], d0); x_qn += x_step_qn; } // Transpose the 4x4 result tile and store. int16x4_t d0, d1, d2, d3; load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h > 0); } else { // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. // The additional -1 is needed because we are halving the filter values. const int16x8_t horiz_offset = vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); do { int x_qn = subpel_x_qn; int16_t *d = dst; int width = w; do { // Process an 8x8 tile. for (int r = 0; r < 8; ++r) { const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; const ptrdiff_t filter_offset = SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); int16x8_t filter = vld1q_s16(x_filter + filter_offset); // Filter values are all even so halve them to allow convolution // kernel computations to stay in 16-bit element types. filter = vshrq_n_s16(filter, 1); uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); int16x8_t d0 = convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); vst1q_s16(&temp[r * 8], d0); x_qn += x_step_qn; } // Transpose the 8x8 result tile and store. int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); d += 8; width -= 8; } while (width != 0); dst += 8 * dst_stride; src += 8 * src_stride; h -= 8; } while (h > 0); } } static inline int16x4_t convolve6_4_h(const int16x4_t s0, const int16x4_t s1, const int16x4_t s2, const int16x4_t s3, const int16x4_t s4, const int16x4_t s5, const int16x8_t filter, const int32x4_t horiz_const) { int16x4_t filter_lo = vget_low_s16(filter); int16x4_t filter_hi = vget_high_s16(filter); int32x4_t sum = horiz_const; // Filter values at indices 0 and 7 are 0. sum = vmlal_lane_s16(sum, s0, filter_lo, 1); sum = vmlal_lane_s16(sum, s1, filter_lo, 2); sum = vmlal_lane_s16(sum, s2, filter_lo, 3); sum = vmlal_lane_s16(sum, s3, filter_hi, 0); sum = vmlal_lane_s16(sum, s4, filter_hi, 1); sum = vmlal_lane_s16(sum, s5, filter_hi, 2); return vshrn_n_s32(sum, ROUND0_BITS); } static inline int16x8_t convolve6_8_h(const int16x8_t s0, const int16x8_t s1, const int16x8_t s2, const int16x8_t s3, const int16x8_t s4, const int16x8_t s5, const int16x8_t filter, const int16x8_t horiz_const) { int16x4_t filter_lo = vget_low_s16(filter); int16x4_t filter_hi = vget_high_s16(filter); int16x8_t sum = horiz_const; // Filter values at indices 0 and 7 are 0. sum = vmlaq_lane_s16(sum, s0, filter_lo, 1); sum = vmlaq_lane_s16(sum, s1, filter_lo, 2); sum = vmlaq_lane_s16(sum, s2, filter_lo, 3); sum = vmlaq_lane_s16(sum, s3, filter_hi, 0); sum = vmlaq_lane_s16(sum, s4, filter_hi, 1); sum = vmlaq_lane_s16(sum, s5, filter_hi, 2); // We halved the filter values so -1 from right shift. return vshrq_n_s16(sum, ROUND0_BITS - 1); } static inline void convolve_horiz_scale_6tap_neon(const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, int h, const int16_t *x_filter, const int subpel_x_qn, const int x_step_qn) { DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); const int bd = 8; if (w == 4) { // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. const int32x4_t horiz_offset = vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); do { int x_qn = subpel_x_qn; // Process a 4x4 tile. for (int r = 0; r < 4; ++r) { const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; const ptrdiff_t filter_offset = SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); const int16x8_t filter = vld1q_s16(x_filter + filter_offset); uint8x8_t t0, t1, t2, t3; load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); int16x4_t s3 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); int16x4_t d0 = convolve6_4_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); vst1_s16(&temp[r * 4], d0); x_qn += x_step_qn; } // Transpose the 4x4 result tile and store. int16x4_t d0, d1, d2, d3; load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h > 0); } else { // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. // The additional -1 is needed because we are halving the filter values. const int16x8_t horiz_offset = vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); do { int x_qn = subpel_x_qn; int16_t *d = dst; int width = w; do { // Process an 8x8 tile. for (int r = 0; r < 8; ++r) { const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; const ptrdiff_t filter_offset = SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); int16x8_t filter = vld1q_s16(x_filter + filter_offset); // Filter values are all even so halve them to allow convolution // kernel computations to stay in 16-bit element types. filter = vshrq_n_s16(filter, 1); uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t1)); int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t2)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t3)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t4)); int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t5)); int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t6)); int16x8_t d0 = convolve6_8_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); vst1q_s16(&temp[r * 8], d0); x_qn += x_step_qn; } // Transpose the 8x8 result tile and store. int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); d += 8; width -= 8; } while (width != 0); dst += 8 * dst_stride; src += 8 * src_stride; h -= 8; } while (h > 0); } } static inline void convolve_horiz_scale_2_8tap_neon( const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, int h, const int16_t *x_filter) { const int bd = 8; if (w == 4) { // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. const int32x4_t horiz_offset = vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); const int16x8_t filter = vld1q_s16(x_filter); do { uint8x16_t t0, t1, t2, t3; load_u8_16x4(src, src_stride, &t0, &t1, &t2, &t3); transpose_elems_inplace_u8_16x4(&t0, &t1, &t2, &t3); int16x8_t tt0 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0))); int16x8_t tt1 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1))); int16x8_t tt2 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2))); int16x8_t tt3 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3))); int16x8_t tt4 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0))); int16x8_t tt5 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1))); int16x8_t tt6 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2))); int16x8_t tt7 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3))); int16x4_t s0 = vget_low_s16(tt0); int16x4_t s1 = vget_low_s16(tt1); int16x4_t s2 = vget_low_s16(tt2); int16x4_t s3 = vget_low_s16(tt3); int16x4_t s4 = vget_high_s16(tt0); int16x4_t s5 = vget_high_s16(tt1); int16x4_t s6 = vget_high_s16(tt2); int16x4_t s7 = vget_high_s16(tt3); int16x4_t s8 = vget_low_s16(tt4); int16x4_t s9 = vget_low_s16(tt5); int16x4_t s10 = vget_low_s16(tt6); int16x4_t s11 = vget_low_s16(tt7); int16x4_t s12 = vget_high_s16(tt4); int16x4_t s13 = vget_high_s16(tt5); int16x4_t d0 = convolve8_4_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); int16x4_t d1 = convolve8_4_h(s2, s3, s4, s5, s6, s7, s8, s9, filter, horiz_offset); int16x4_t d2 = convolve8_4_h(s4, s5, s6, s7, s8, s9, s10, s11, filter, horiz_offset); int16x4_t d3 = convolve8_4_h(s6, s7, s8, s9, s10, s11, s12, s13, filter, horiz_offset); transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h > 0); } else { // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // The additional -1 is needed because we are halving the filter values. const int16x8_t horiz_offset = vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); // Filter values are all even so halve them to allow convolution // kernel computations to stay in 16-bit element types. const int16x8_t filter = vshrq_n_s16(vld1q_s16(x_filter), 1); do { const uint8_t *s = src; int16_t *d = dst; int width = w; uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); s += 8; int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); do { uint8x8_t t8, t9, t10, t11, t12, t13, t14, t15; load_u8_8x8(s, src_stride, &t8, &t9, &t10, &t11, &t12, &t13, &t14, &t15); transpose_elems_u8_8x8(t8, t9, t10, t11, t12, t13, t14, t15, &t8, &t9, &t10, &t11, &t12, &t13, &t14, &t15); int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t8)); int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t9)); int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t10)); int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t11)); int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t12)); int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t13)); int16x8_t s14 = vreinterpretq_s16_u16(vmovl_u8(t14)); int16x8_t s15 = vreinterpretq_s16_u16(vmovl_u8(t15)); int16x8_t d0 = convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); int16x8_t d1 = convolve8_8_h(s2, s3, s4, s5, s6, s7, s8, s9, filter, horiz_offset); int16x8_t d2 = convolve8_8_h(s4, s5, s6, s7, s8, s9, s10, s11, filter, horiz_offset); int16x8_t d3 = convolve8_8_h(s6, s7, s8, s9, s10, s11, s12, s13, filter, horiz_offset); transpose_elems_inplace_s16_8x4(&d0, &d1, &d2, &d3); store_s16_4x8(d, dst_stride, vget_low_s16(d0), vget_low_s16(d1), vget_low_s16(d2), vget_low_s16(d3), vget_high_s16(d0), vget_high_s16(d1), vget_high_s16(d2), vget_high_s16(d3)); s0 = s8; s1 = s9; s2 = s10; s3 = s11; s4 = s12; s5 = s13; s6 = s14; s7 = s15; s += 8; d += 4; width -= 4; } while (width != 0); dst += 8 * dst_stride; src += 8 * src_stride; h -= 8; } while (h > 0); } } static inline void convolve_horiz_scale_2_6tap_neon( const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, int h, const int16_t *x_filter) { const int bd = 8; if (w == 4) { // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. const int32x4_t horiz_offset = vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); const int16x8_t filter = vld1q_s16(x_filter); do { uint8x16_t t0, t1, t2, t3; load_u8_16x4(src, src_stride, &t0, &t1, &t2, &t3); transpose_elems_inplace_u8_16x4(&t0, &t1, &t2, &t3); int16x8_t tt0 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1))); int16x8_t tt1 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2))); int16x8_t tt2 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3))); int16x8_t tt3 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0))); int16x8_t tt4 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0))); int16x8_t tt5 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1))); int16x8_t tt6 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2))); int16x8_t tt7 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3))); int16x4_t s0 = vget_low_s16(tt0); int16x4_t s1 = vget_low_s16(tt1); int16x4_t s2 = vget_low_s16(tt2); int16x4_t s3 = vget_high_s16(tt3); int16x4_t s4 = vget_high_s16(tt0); int16x4_t s5 = vget_high_s16(tt1); int16x4_t s6 = vget_high_s16(tt2); int16x4_t s7 = vget_low_s16(tt4); int16x4_t s8 = vget_low_s16(tt5); int16x4_t s9 = vget_low_s16(tt6); int16x4_t s10 = vget_low_s16(tt7); int16x4_t s11 = vget_high_s16(tt4); int16x4_t d0 = convolve6_4_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); int16x4_t d1 = convolve6_4_h(s2, s3, s4, s5, s6, s7, filter, horiz_offset); int16x4_t d2 = convolve6_4_h(s4, s5, s6, s7, s8, s9, filter, horiz_offset); int16x4_t d3 = convolve6_4_h(s6, s7, s8, s9, s10, s11, filter, horiz_offset); transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h > 0); } else { // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // The additional -1 is needed because we are halving the filter values. const int16x8_t horiz_offset = vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); // Filter values are all even so halve them to allow convolution // kernel computations to stay in 16-bit element types. const int16x8_t filter = vshrq_n_s16(vld1q_s16(x_filter), 1); do { const uint8_t *s = src; int16_t *d = dst; int width = w; uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); s += 8; int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t1)); int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t2)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t3)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t4)); int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t5)); int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t6)); int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t7)); do { uint8x8_t t8, t9, t10, t11, t12, t13, t14, t15; load_u8_8x8(s, src_stride, &t8, &t9, &t10, &t11, &t12, &t13, &t14, &t15); transpose_elems_u8_8x8(t8, t9, t10, t11, t12, t13, t14, t15, &t8, &t9, &t10, &t11, &t12, &t13, &t14, &t15); int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t8)); int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t9)); int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t10)); int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t11)); int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t12)); int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t13)); int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t14)); int16x8_t s14 = vreinterpretq_s16_u16(vmovl_u8(t15)); int16x8_t d0 = convolve6_8_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); int16x8_t d1 = convolve6_8_h(s2, s3, s4, s5, s6, s7, filter, horiz_offset); int16x8_t d2 = convolve6_8_h(s4, s5, s6, s7, s8, s9, filter, horiz_offset); int16x8_t d3 = convolve6_8_h(s6, s7, s8, s9, s10, s11, filter, horiz_offset); transpose_elems_inplace_s16_8x4(&d0, &d1, &d2, &d3); store_s16_4x8(d, dst_stride, vget_low_s16(d0), vget_low_s16(d1), vget_low_s16(d2), vget_low_s16(d3), vget_high_s16(d0), vget_high_s16(d1), vget_high_s16(d2), vget_high_s16(d3)); s0 = s8; s1 = s9; s2 = s10; s3 = s11; s4 = s12; s5 = s13; s6 = s14; s += 8; d += 4; width -= 4; } while (width != 0); dst += 8 * dst_stride; src += 8 * src_stride; h -= 8; } while (h > 0); } } void av1_convolve_2d_scale_neon(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params) { if (w < 4 || h < 4) { av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, x_step_qn, subpel_y_qn, y_step_qn, conv_params); return; } // For the interpolation 8-tap filters are used. assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8); DECLARE_ALIGNED(32, int16_t, im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + filter_params_y->taps; int im_stride = MAX_SB_SIZE; CONV_BUF_TYPE *dst16 = conv_params->dst; const int dst16_stride = conv_params->dst_stride; // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 // lines post both horizontally and vertically. const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1; const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride; // Horizontal filter if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) { if (filter_params_x->interp_filter == MULTITAP_SHARP) { convolve_horiz_scale_8tap_neon( src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); } else { convolve_horiz_scale_6tap_neon( src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); } } else { assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS)); // The filter index is calculated using the // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS // equation, where the values of x are from 0 to w. If x_step_qn is a // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation. const ptrdiff_t filter_offset = SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset; // The source index is calculated using the (subpel_x_qn + x * x_step_qn) // >> SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If // subpel_x_qn < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << // SCALE_SUBPEL_BITS) == 0, the source index can be determined using the // value x * (x_step_qn / (1 << SCALE_SUBPEL_BITS)). if (filter_params_x->interp_filter == MULTITAP_SHARP) { convolve_horiz_scale_2_8tap_neon(src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_h, x_filter); } else { convolve_horiz_scale_2_6tap_neon(src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_h, x_filter); } } // Vertical filter if (filter_params_y->interp_filter == MULTITAP_SHARP) { if (UNLIKELY(conv_params->is_compound)) { if (conv_params->do_average) { if (conv_params->use_dist_wtd_comp_avg) { compound_dist_wtd_convolve_vert_scale_8tap_neon( im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); } else { compound_avg_convolve_vert_scale_8tap_neon( im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { compound_convolve_vert_scale_8tap_neon( im_block, im_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { if (UNLIKELY(conv_params->is_compound)) { if (conv_params->do_average) { if (conv_params->use_dist_wtd_comp_avg) { compound_dist_wtd_convolve_vert_scale_6tap_neon( im_block + im_stride, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); } else { compound_avg_convolve_vert_scale_6tap_neon( im_block + im_stride, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { compound_convolve_vert_scale_6tap_neon( im_block + im_stride, im_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { convolve_vert_scale_6tap_neon( im_block + im_stride, im_stride, dst, dst_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } }