/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved. * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" #include "av1/common/arm/convolve_neon.h" #include "av1/common/arm/convolve_neon_i8mm.h" #include "av1/common/convolve.h" #include "av1/common/filter.h" DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { // Shift left and insert new last column in transposed 4x4 block. 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, // Shift left and insert two new columns in transposed 4x4 block. 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, // Shift left and insert three new columns in transposed 4x4 block. 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 }; static inline int16x4_t convolve12_4_x(uint8x16_t samples[2], const int8x16_t filter[2], const uint8x16_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for matrix multiply. // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples[0], permute_tbl), vqtbl1q_u8(samples[1], permute_tbl) }; // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix // (filter), destructively accumulating into the destination register. int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]); sum = vusmmlaq_s32(sum, perm_samples[1], filter[1]); return vshrn_n_s32(sum, 1); } static inline uint8x8_t convolve12_8_x(uint8x16_t samples[2], const int8x16_t filter[2], const uint8x16x2_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for matrix multiply. // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } // { 6, 7, 8, 9, 10, 11, 12, 13, 8, 9, 10, 11, 12, 13, 14, 15 } // { 10, 11, 12, 13, 14, 15, 16, 17, 12, 13, 14, 15, 16, 17, 18, 19 } uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]), vqtbl1q_u8(samples[0], permute_tbl.val[1]), vqtbl1q_u8(samples[1], permute_tbl.val[0]), vqtbl1q_u8(samples[1], permute_tbl.val[1]) }; // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix // (filter), destructively accumulating into the destination register. int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]); int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter[0]); sum0123 = vusmmlaq_s32(sum0123, perm_samples[2], filter[1]); sum4567 = vusmmlaq_s32(sum4567, perm_samples[3], filter[1]); // Narrow and re-pack. int16x8_t sum_s16 = vcombine_s16(vshrn_n_s32(sum0123, 1), vshrn_n_s32(sum4567, 1)); return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1); } static inline void convolve_x_sr_12tap_neon_i8mm(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const int16_t *x_filter_ptr) { // The no-op filter should never be used here. assert(x_filter_ptr[5] != 128); // Split 12-tap filter into two 6-tap filters, masking the top two elements. // { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 } const int8x8_t mask = vcreate_s8(0x0000ffffffffffff); const int8x8_t filter_0 = vand_s8(vmovn_s16(vld1q_s16(x_filter_ptr)), mask); const int8x8_t filter_1 = vext_s8(vmovn_s16(vld1q_s16(x_filter_ptr + 4)), vdup_n_s8(0), 2); // Stagger each 6-tap filter to enable use of matrix multiply instructions. // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } const int8x16_t filter[2] = { vcombine_s8(filter_0, vext_s8(filter_0, filter_0, 7)), vcombine_s8(filter_1, vext_s8(filter_1, filter_1, 7)) }; // A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the // convolution kernels: Adding this shim enables us to use a single rounding // right shift by FILTER_BITS instead of two rounding right shifts: first by // ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS. const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1)); if (w <= 4) { const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl); do { uint8x16_t s0[2], s1[2], s2[2], s3[2]; load_u8_16x4(src, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); load_u8_16x4(src + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); int16x4_t d0 = convolve12_4_x(s0, filter, permute_tbl, horiz_const); int16x4_t d1 = convolve12_4_x(s1, filter, permute_tbl, horiz_const); int16x4_t d2 = convolve12_4_x(s2, filter, permute_tbl, horiz_const); int16x4_t d3 = convolve12_4_x(s3, filter, permute_tbl, horiz_const); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h != 0); } else { const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { uint8x16_t s0[2], s1[2], s2[2], s3[2]; load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); load_u8_16x4(s + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); uint8x8_t d0 = convolve12_8_x(s0, filter, permute_tbl, horiz_const); uint8x8_t d1 = convolve12_8_x(s1, filter, permute_tbl, horiz_const); uint8x8_t d2 = convolve12_8_x(s2, filter, permute_tbl, horiz_const); uint8x8_t d3 = convolve12_8_x(s3, filter, permute_tbl, horiz_const); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } } static inline uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter, const uint8x16x3_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]), vqtbl1q_u8(samples, permute_tbl.val[1]), vqtbl1q_u8(samples, permute_tbl.val[2]) }; int32x4_t sum0123 = vusdotq_lane_s32(horiz_const, perm_samples[0], filter, 0); sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filter, 1); int32x4_t sum4567 = vusdotq_lane_s32(horiz_const, perm_samples[1], filter, 0); sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filter, 1); int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); // We halved the convolution filter values so - 1 from the right shift. return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1); } static inline void convolve_x_sr_8tap_neon_i8mm( const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x, const int32x4_t horiz_const) { // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(filter_x), 1); const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl); do { const uint8_t *s = src; uint8_t *d = dst; int w = width; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve8_8_x(s0, x_filter, permute_tbl, horiz_const); uint8x8_t d1 = convolve8_8_x(s1, x_filter, permute_tbl, horiz_const); uint8x8_t d2 = convolve8_8_x(s2, x_filter, permute_tbl, horiz_const); uint8x8_t d3 = convolve8_8_x(s3, x_filter, permute_tbl, horiz_const); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } static inline int16x4_t convolve6_4_x(uint8x16_t samples, const int8x16_t filter, const uint8x16_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for matrix multiply. // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix // (filter), destructively accumulating into the destination register. int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter); // Further narrowing and packing is performed by the caller. return vmovn_s32(sum); } static inline uint8x8_t convolve6_8_x(uint8x16_t samples, const int8x16_t filter, const uint8x16x2_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for matrix multiply. // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), vqtbl1q_u8(samples, permute_tbl.val[1]) }; // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix // (filter), destructively accumulating into the destination register. int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter); int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter); int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); // We halved the convolution filter values so - 1 from the right shift. return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static inline void convolve_x_sr_6tap_neon_i8mm( const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x, const int32x4_t horiz_const) { // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(filter_x), 1); // Stagger the filter for use with the matrix multiply instructions. // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } const int8x16_t x_filter = vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); if (width == 4) { const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl); do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t t0 = convolve6_4_x(s0, x_filter, permute_tbl, horiz_const); int16x4_t t1 = convolve6_4_x(s1, x_filter, permute_tbl, horiz_const); int16x4_t t2 = convolve6_4_x(s2, x_filter, permute_tbl, horiz_const); int16x4_t t3 = convolve6_4_x(s3, x_filter, permute_tbl, horiz_const); // We halved the filter values so -1 from right shift. uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); do { const uint8_t *s = src; uint8_t *d = dst; int w = width; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve6_8_x(s0, x_filter, permute_tbl, horiz_const); uint8x8_t d1 = convolve6_8_x(s1, x_filter, permute_tbl, horiz_const); uint8x8_t d2 = convolve6_8_x(s2, x_filter, permute_tbl, horiz_const); uint8x8_t d3 = convolve6_8_x(s3, x_filter, permute_tbl, horiz_const); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } } void av1_convolve_x_sr_neon_i8mm(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, ConvolveParams *conv_params) { if (w == 2 || h == 2) { av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, subpel_x_qn, conv_params); return; } const uint8_t horiz_offset = filter_params_x->taps / 2 - 1; src -= horiz_offset; const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); int filter_taps = get_filter_tap(filter_params_x, subpel_x_qn & SUBPEL_MASK); // A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the // convolution kernels: Adding this shim enables us to use a single rounding // right shift by FILTER_BITS instead of two rounding right shifts: first by // ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS. // Halve the total because we will halve the filter values. const int32x4_t horiz_const = vdupq_n_s32((1 << ((ROUND0_BITS - 1)) / 2)); if (filter_taps <= 6) { convolve_x_sr_6tap_neon_i8mm(src + 1, src_stride, dst, dst_stride, w, h, x_filter_ptr, horiz_const); return; } if (filter_taps > 8) { convolve_x_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, x_filter_ptr); return; } convolve_x_sr_8tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, x_filter_ptr, horiz_const); } static inline int16x4_t convolve12_4_y(const uint8x16_t s0, const uint8x16_t s1, const uint8x16_t s2, const int8x8_t filters_0_7, const int8x8_t filters_4_11) { int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters_0_7, 0); sum = vusdotq_lane_s32(sum, s1, filters_0_7, 1); sum = vusdotq_lane_s32(sum, s2, filters_4_11, 1); // Further narrowing and packing is performed by the caller. return vshrn_n_s32(sum, 1); } static inline uint8x8_t convolve12_8_y( const uint8x16_t s0_lo, const uint8x16_t s0_hi, const uint8x16_t s1_lo, const uint8x16_t s1_hi, const uint8x16_t s2_lo, const uint8x16_t s2_hi, const int8x8_t filters_0_7, const int8x8_t filters_4_11) { int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters_0_7, 0); sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters_0_7, 1); sum0123 = vusdotq_lane_s32(sum0123, s2_lo, filters_4_11, 1); int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters_0_7, 0); sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters_0_7, 1); sum4567 = vusdotq_lane_s32(sum4567, s2_hi, filters_4_11, 1); // Narrow and re-pack. int16x8_t sum = vcombine_s16(vshrn_n_s32(sum0123, 1), vshrn_n_s32(sum4567, 1)); return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static inline void convolve_y_sr_12tap_neon_i8mm(const uint8_t *src_ptr, int src_stride, uint8_t *dst_ptr, int dst_stride, int w, int h, const int16_t *y_filter_ptr) { // The no-op filter should never be used here. assert(y_filter_ptr[5] != 128); const int8x8_t filter_0_7 = vmovn_s16(vld1q_s16(y_filter_ptr)); const int8x8_t filter_4_11 = vmovn_s16(vld1q_s16(y_filter_ptr + 4)); const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); if (w == 4) { uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; load_u8_8x11(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9, &sA); src_ptr += 11 * src_stride; // This operation combines a conventional transpose and the sample permute // (see horizontal case) required before computing the dot product. uint8x16_t s0123, s1234, s2345, s3456, s4567, s5678, s6789, s789A; transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234); transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345); transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456); transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567); transpose_concat_elems_u8_4x4(s5, s6, s7, s8, &s5678); transpose_concat_elems_u8_4x4(s6, s7, s8, s9, &s6789); transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A); do { uint8x8_t sB, sC, sD, sE; load_u8_8x4(src_ptr, src_stride, &sB, &sC, &sD, &sE); uint8x16_t s89AB, s9ABC, sABCD, sBCDE; transpose_concat_elems_u8_4x4(sB, sC, sD, sE, &sBCDE); // Merge new data into block from previous iteration. uint8x16x2_t samples_LUT = { { s789A, sBCDE } }; s89AB = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); s9ABC = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); sABCD = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); int16x4_t d0 = convolve12_4_y(s0123, s4567, s89AB, filter_0_7, filter_4_11); int16x4_t d1 = convolve12_4_y(s1234, s5678, s9ABC, filter_0_7, filter_4_11); int16x4_t d2 = convolve12_4_y(s2345, s6789, sABCD, filter_0_7, filter_4_11); int16x4_t d3 = convolve12_4_y(s3456, s789A, sBCDE, filter_0_7, filter_4_11); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123 = s4567; s1234 = s5678; s2345 = s6789; s3456 = s789A; s4567 = s89AB; s5678 = s9ABC; s6789 = sABCD; s789A = sBCDE; src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; h -= 4; } while (h != 0); } else { do { int height = h; const uint8_t *s = src_ptr; uint8_t *d = dst_ptr; uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; load_u8_8x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9, &sA); s += 11 * src_stride; // This operation combines a conventional transpose and the sample // permute (see horizontal case) required before computing the dot // product. uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, s3456_lo, s3456_hi, s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, s789A_lo, s789A_hi; transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi); transpose_concat_elems_u8_8x4(s5, s6, s7, s8, &s5678_lo, &s5678_hi); transpose_concat_elems_u8_8x4(s6, s7, s8, s9, &s6789_lo, &s6789_hi); transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi); do { uint8x8_t sB, sC, sD, sE; load_u8_8x4(s, src_stride, &sB, &sC, &sD, &sE); uint8x16_t s89AB_lo, s89AB_hi, s9ABC_lo, s9ABC_hi, sABCD_lo, sABCD_hi, sBCDE_lo, sBCDE_hi; transpose_concat_elems_u8_8x4(sB, sC, sD, sE, &sBCDE_lo, &sBCDE_hi); // Merge new data into block from previous iteration. uint8x16x2_t samples_LUT_lo = { { s789A_lo, sBCDE_lo } }; s89AB_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); s9ABC_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); sABCD_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); uint8x16x2_t samples_LUT_hi = { { s789A_hi, sBCDE_hi } }; s89AB_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); s9ABC_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); sABCD_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); uint8x8_t d0 = convolve12_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, s89AB_lo, s89AB_hi, filter_0_7, filter_4_11); uint8x8_t d1 = convolve12_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, s9ABC_lo, s9ABC_hi, filter_0_7, filter_4_11); uint8x8_t d2 = convolve12_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, sABCD_lo, sABCD_hi, filter_0_7, filter_4_11); uint8x8_t d3 = convolve12_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, sBCDE_lo, sBCDE_hi, filter_0_7, filter_4_11); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123_lo = s4567_lo; s0123_hi = s4567_hi; s1234_lo = s5678_lo; s1234_hi = s5678_hi; s2345_lo = s6789_lo; s2345_hi = s6789_hi; s3456_lo = s789A_lo; s3456_hi = s789A_hi; s4567_lo = s89AB_lo; s4567_hi = s89AB_hi; s5678_lo = s9ABC_lo; s5678_hi = s9ABC_hi; s6789_lo = sABCD_lo; s6789_hi = sABCD_hi; s789A_lo = sBCDE_lo; s789A_hi = sBCDE_hi; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src_ptr += 8; dst_ptr += 8; w -= 8; } while (w != 0); } } static inline int16x4_t convolve8_4_y(const uint8x16_t s0, const uint8x16_t s1, const int8x8_t filters) { int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); sum = vusdotq_lane_s32(sum, s1, filters, 1); // Further narrowing and packing is performed by the caller. return vmovn_s32(sum); } static inline uint8x8_t convolve8_8_y(const uint8x16_t s0_lo, const uint8x16_t s0_hi, const uint8x16_t s1_lo, const uint8x16_t s1_hi, const int8x8_t filters) { int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters, 0); sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters, 1); int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters, 0); sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters, 1); // Narrow and re-pack. int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); // We halved the filter values so -1 from right shift. return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static inline void convolve_y_sr_8tap_neon_i8mm(const uint8_t *src_ptr, int src_stride, uint8_t *dst_ptr, int dst_stride, int w, int h, const int16_t *y_filter_ptr) { // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter_ptr), 1); const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); if (w == 4) { uint8x8_t s0, s1, s2, s3, s4, s5, s6; load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); src_ptr += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // (see horizontal case) required before computing the dot product. uint8x16_t s0123, s1234, s2345, s3456; transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234); transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345); transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456); do { uint8x8_t s7, s8, s9, sA; load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &sA); uint8x16_t s4567, s5678, s6789, s789A; transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A); // Merge new data into block from previous iteration. uint8x16x2_t samples_LUT = { { s3456, s789A } }; s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); int16x4_t d0 = convolve8_4_y(s0123, s4567, filter); int16x4_t d1 = convolve8_4_y(s1234, s5678, filter); int16x4_t d2 = convolve8_4_y(s2345, s6789, filter); int16x4_t d3 = convolve8_4_y(s3456, s789A, filter); // We halved the filter values so -1 from right shift. uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123 = s4567; s1234 = s5678; s2345 = s6789; s3456 = s789A; src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; h -= 4; } while (h != 0); } else { do { int height = h; const uint8_t *s = src_ptr; uint8_t *d = dst_ptr; uint8x8_t s0, s1, s2, s3, s4, s5, s6; load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; // This operation combines a conventional transpose and the sample // permute (see horizontal case) required before computing the dot // product. uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, s3456_lo, s3456_hi; transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); do { uint8x8_t s7, s8, s9, sA; load_u8_8x4(s, src_stride, &s7, &s8, &s9, &sA); uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, s789A_lo, s789A_hi; transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi); // Merge new data into block from previous iteration. uint8x16x2_t samples_LUT_lo = { { s3456_lo, s789A_lo } }; s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); uint8x16x2_t samples_LUT_hi = { { s3456_hi, s789A_hi } }; s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); uint8x8_t d0 = convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, filter); uint8x8_t d1 = convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, filter); uint8x8_t d2 = convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, filter); uint8x8_t d3 = convolve8_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, filter); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123_lo = s4567_lo; s0123_hi = s4567_hi; s1234_lo = s5678_lo; s1234_hi = s5678_hi; s2345_lo = s6789_lo; s2345_hi = s6789_hi; s3456_lo = s789A_lo; s3456_hi = s789A_hi; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src_ptr += 8; dst_ptr += 8; w -= 8; } while (w != 0); } } static inline int16x4_t convolve4_4_y(const uint8x16_t s0, const int8x8_t filters) { int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); // Further narrowing and packing is performed by the caller. return vmovn_s32(sum); } static inline uint8x8_t convolve4_8_y(const uint8x16_t s0, const uint8x16_t s1, const int8x8_t filters) { int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s1, filters, 0); // Narrow and re-pack. int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); // We halved the filter values so -1 from right shift. return vqrshrun_n_s16(sum, FILTER_BITS - 1); } static inline void convolve_y_sr_4tap_neon_i8mm(const uint8_t *src_ptr, int src_stride, uint8_t *dst_ptr, int dst_stride, int w, int h, const int16_t *y_filter_ptr) { // Filter values are even, so halve to reduce intermediate precision reqs. const int16x8_t filter_s16 = vcombine_s16(vld1_s16(y_filter_ptr + 2), vdup_n_s16(0)); const int8x8_t filter = vshrn_n_s16(filter_s16, 1); const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); uint8x16x2_t samples_LUT; if (w == 4) { uint8x8_t s0, s1, s2, s3; load_u8_8x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); src_ptr += 4 * src_stride; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. uint8x16_t s0123; transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); do { uint8x8_t s4, s5, s6, s7; load_u8_8x4(src_ptr, src_stride, &s4, &s5, &s6, &s7); uint8x16_t s4567; transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567); // Merge new data into block from previous iteration. samples_LUT.val[0] = s0123; samples_LUT.val[1] = s4567; uint8x16_t s1234 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); uint8x16_t s2345 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); uint8x16_t s3456 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); int16x4_t d0 = convolve4_4_y(s0123, filter); int16x4_t d1 = convolve4_4_y(s1234, filter); int16x4_t d2 = convolve4_4_y(s2345, filter); int16x4_t d3 = convolve4_4_y(s3456, filter); // We halved the filter values so -1 from right shift. uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123 = s4567; src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; h -= 4; } while (h != 0); } else { do { int height = h; const uint8_t *s = src_ptr; uint8_t *d = dst_ptr; uint8x8_t s0, s1, s2, s3; load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3); s += 4 * src_stride; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. uint8x16_t s0123_lo, s0123_hi; transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); do { uint8x8_t s4, s5, s6, s7; load_u8_8x4(s, src_stride, &s4, &s5, &s6, &s7); uint8x16_t s4567_lo, s4567_hi; transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi); // Merge new data into block from previous iteration. samples_LUT.val[0] = s0123_lo; samples_LUT.val[1] = s4567_lo; uint8x16_t s1234_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); uint8x16_t s2345_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); uint8x16_t s3456_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); samples_LUT.val[0] = s0123_hi; samples_LUT.val[1] = s4567_hi; uint8x16_t s1234_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); uint8x16_t s2345_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); uint8x16_t s3456_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); uint8x8_t d0 = convolve4_8_y(s0123_lo, s0123_hi, filter); uint8x8_t d1 = convolve4_8_y(s1234_lo, s1234_hi, filter); uint8x8_t d2 = convolve4_8_y(s2345_lo, s2345_hi, filter); uint8x8_t d3 = convolve4_8_y(s3456_lo, s3456_hi, filter); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123_lo = s4567_lo; s0123_hi = s4567_hi; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src_ptr += 8; dst_ptr += 8; w -= 8; } while (w != 0); } } void av1_convolve_y_sr_neon_i8mm(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn) { if (w == 2 || h == 2) { av1_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_y, subpel_y_qn); return; } const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); if (y_filter_taps <= 4) { convolve_y_sr_4tap_neon_i8mm(src - src_stride, src_stride, dst, dst_stride, w, h, y_filter_ptr); } else if (y_filter_taps == 12) { convolve_y_sr_12tap_neon_i8mm(src - 5 * src_stride, src_stride, dst, dst_stride, w, h, y_filter_ptr); } else { // 6-tap or 8-tap. convolve_y_sr_8tap_neon_i8mm(src - 3 * src_stride, src_stride, dst, dst_stride, w, h, y_filter_ptr); } } static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples, const int8x8_t filters, const uint8x16x3_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]), vqtbl1q_u8(samples, permute_tbl.val[1]), vqtbl1q_u8(samples, permute_tbl.val[2]) }; int32x4_t sum0123 = vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filters, 1); int32x4_t sum4567 = vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0); sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filters, 1); // Narrow and re-pack. // We halved the convolution filter values so -1 from the right shift. return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), vshrn_n_s32(sum4567, ROUND0_BITS - 1)); } static inline void convolve_2d_sr_horiz_8tap_neon_i8mm( const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w, int im_h, const int16_t *x_filter_ptr) { // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); const int bd = 8; // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // The outermost -1 is needed because we halved the filter values. const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + (1 << ((ROUND0_BITS - 1) - 1))); const uint8_t *src_ptr = src; int16_t *dst_ptr = im_block; int dst_stride = im_stride; int height = im_h; const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl); do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const); int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, permute_tbl, horiz_const); int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, permute_tbl, horiz_const); int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, permute_tbl, horiz_const); store_s16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += 4 * src_stride; dst_ptr += 4 * dst_stride; height -= 4; } while (height > 4); do { const uint8_t *s = src_ptr; int16_t *d = dst_ptr; int width = w; do { uint8x16_t s0 = vld1q_u8(s); int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const); vst1q_s16(d, d0); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--height != 0); } static inline int16x4_t convolve4_4_2d_h(const uint8x16_t samples, const int8x8_t filters, const uint8x16_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); int32x4_t sum = vusdotq_lane_s32(horiz_const, perm_samples, filters, 0); // We halved the convolution filter values so -1 from the right shift. return vshrn_n_s32(sum, ROUND0_BITS - 1); } static inline int16x8_t convolve4_8_2d_h(const uint8x16_t samples, const int8x8_t filters, const uint8x16x2_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), vqtbl1q_u8(samples, permute_tbl.val[1]) }; int32x4_t sum0123 = vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); int32x4_t sum4567 = vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0); // Narrow and re-pack. // We halved the filter values so -1 from right shift. return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), vshrn_n_s32(sum4567, ROUND0_BITS - 1)); } static inline void convolve_2d_sr_horiz_4tap_neon_i8mm( const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int width, int height, const int16_t *filter_x) { const int bd = 8; const int16x4_t x_filter = vld1_s16(filter_x + 2); // All 4-tap and bilinear filter values are even, so halve them to reduce // intermediate precision requirements. const int8x8_t filter = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1); // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // Halve the total because we halved the filter values. const int32x4_t horiz_const = vdupq_n_s32( (((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2)); if (width == 4) { const uint8x16_t perm_tbl = vld1q_u8(kDotProdPermuteTbl); do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const); int16x4_t d1 = convolve4_4_2d_h(s1, filter, perm_tbl, horiz_const); int16x4_t d2 = convolve4_4_2d_h(s2, filter, perm_tbl, horiz_const); int16x4_t d3 = convolve4_4_2d_h(s3, filter, perm_tbl, horiz_const); store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height > 4); do { uint8x16_t s0 = vld1q_u8(src); int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const); vst1_s16(dst, d0); src += src_stride; dst += dst_stride; } while (--height != 0); } else { const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); do { int w = width; const uint8_t *s = src; int16_t *d = dst; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const); int16x8_t d1 = convolve4_8_2d_h(s1, filter, perm_tbl, horiz_const); int16x8_t d2 = convolve4_8_2d_h(s2, filter, perm_tbl, horiz_const); int16x8_t d3 = convolve4_8_2d_h(s3, filter, perm_tbl, horiz_const); store_s16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height > 4); do { const uint8_t *s = src; int16_t *d = dst; int w = width; do { uint8x16_t s0 = vld1q_u8(s); int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const); vst1q_s16(d, d0); s += 8; d += 8; w -= 8; } while (w != 0); src += src_stride; dst += dst_stride; } while (--height != 0); } } static inline int16x4_t convolve6_4_2d_h(uint8x16_t samples, const int8x16_t filter, const uint8x16_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for matrix multiply. // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix // (filter), destructively accumulating into the destination register. int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter); // We halved the convolution filter values so -1 from the right shift. return vshrn_n_s32(sum, ROUND0_BITS - 1); } static inline int16x8_t convolve6_8_2d_h(uint8x16_t samples, const int8x16_t filter, const uint8x16x2_t permute_tbl, const int32x4_t horiz_const) { // Permute samples ready for matrix multiply. // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), vqtbl1q_u8(samples, permute_tbl.val[1]) }; // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix // (filter), destructively accumulating into the destination register. int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter); int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter); // Narrow and re-pack. // We halved the convolution filter values so -1 from the right shift. return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), vshrn_n_s32(sum4567, ROUND0_BITS - 1)); } static inline void convolve_2d_sr_6tap_neon_i8mm(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const int16_t *x_filter_ptr, const int16_t *y_filter_ptr) { const int16x8_t y_filter = vld1q_s16(y_filter_ptr); // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); // Stagger the filter for use with the matrix multiply instructions. // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } const int8x16_t x_filter = vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); const int bd = 8; // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding // shifts in convolution kernels - which are generally faster than rounding // shifts on modern CPUs. The outermost -1 is needed because we halved the // filter values. const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + (1 << ((ROUND0_BITS - 1) - 1))); const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1)); const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); do { const uint8_t *s = src; uint8_t *d = dst; int height = h; uint8x16_t h_s0, h_s1, h_s2, h_s3, h_s4; load_u8_16x5(s, src_stride, &h_s0, &h_s1, &h_s2, &h_s3, &h_s4); s += 5 * src_stride; int16x8_t v_s0 = convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const); int16x8_t v_s1 = convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const); int16x8_t v_s2 = convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const); int16x8_t v_s3 = convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const); int16x8_t v_s4 = convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const); do { uint8x16_t h_s5, h_s6, h_s7, h_s8; load_u8_16x4(s, src_stride, &h_s5, &h_s6, &h_s7, &h_s8); int16x8_t v_s5 = convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const); int16x8_t v_s6 = convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const); int16x8_t v_s7 = convolve6_8_2d_h(h_s7, x_filter, permute_tbl, horiz_const); int16x8_t v_s8 = convolve6_8_2d_h(h_s8, x_filter, permute_tbl, horiz_const); uint8x8_t d0 = convolve6_8_2d_v(v_s0, v_s1, v_s2, v_s3, v_s4, v_s5, y_filter, vert_const); uint8x8_t d1 = convolve6_8_2d_v(v_s1, v_s2, v_s3, v_s4, v_s5, v_s6, y_filter, vert_const); uint8x8_t d2 = convolve6_8_2d_v(v_s2, v_s3, v_s4, v_s5, v_s6, v_s7, y_filter, vert_const); uint8x8_t d3 = convolve6_8_2d_v(v_s3, v_s4, v_s5, v_s6, v_s7, v_s8, y_filter, vert_const); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); v_s0 = v_s4; v_s1 = v_s5; v_s2 = v_s6; v_s3 = v_s7; v_s4 = v_s8; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src += 8; dst += 8; w -= 8; } while (w != 0); } static inline void convolve_2d_sr_6tap_4tap_neon_i8mm( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const int16_t *x_filter_ptr, const int16_t *y_filter_ptr) { const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2); // Filter values are even, so halve to reduce intermediate precision reqs. const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); // Stagger the filter for use with the matrix multiply instructions. // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } const int8x16_t x_filter = vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); const int bd = 8; // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. // Halve the total because we halved the filter values. const int32x4_t horiz_const = vdupq_n_s32( ((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2); const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1)); if (w == 4) { const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl); uint8x16_t h_s0, h_s1, h_s2; load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2); int16x4_t v_s0 = convolve6_4_2d_h(h_s0, x_filter, permute_tbl, horiz_const); int16x4_t v_s1 = convolve6_4_2d_h(h_s1, x_filter, permute_tbl, horiz_const); int16x4_t v_s2 = convolve6_4_2d_h(h_s2, x_filter, permute_tbl, horiz_const); src += 3 * src_stride; do { uint8x16_t h_s3, h_s4, h_s5, h_s6; load_u8_16x4(src, src_stride, &h_s3, &h_s4, &h_s5, &h_s6); int16x4_t v_s3 = convolve6_4_2d_h(h_s3, x_filter, permute_tbl, horiz_const); int16x4_t v_s4 = convolve6_4_2d_h(h_s4, x_filter, permute_tbl, horiz_const); int16x4_t v_s5 = convolve6_4_2d_h(h_s5, x_filter, permute_tbl, horiz_const); int16x4_t v_s6 = convolve6_4_2d_h(h_s6, x_filter, permute_tbl, horiz_const); int16x4_t d0 = convolve4_4_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter); int16x4_t d1 = convolve4_4_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter); int16x4_t d2 = convolve4_4_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter); int16x4_t d3 = convolve4_4_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter); uint8x8_t d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, d1), vert_const)); uint8x8_t d23 = vqmovun_s16(vsubq_s16(vcombine_s16(d2, d3), vert_const)); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); v_s0 = v_s4; v_s1 = v_s5; v_s2 = v_s6; src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); do { int height = h; const uint8_t *s = src; uint8_t *d = dst; uint8x16_t h_s0, h_s1, h_s2; load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2); int16x8_t v_s0 = convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const); int16x8_t v_s1 = convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const); int16x8_t v_s2 = convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const); s += 3 * src_stride; do { uint8x16_t h_s3, h_s4, h_s5, h_s6; load_u8_16x4(s, src_stride, &h_s3, &h_s4, &h_s5, &h_s6); int16x8_t v_s3 = convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const); int16x8_t v_s4 = convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const); int16x8_t v_s5 = convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const); int16x8_t v_s6 = convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const); uint8x8_t d0 = convolve4_8_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter, vert_const); uint8x8_t d1 = convolve4_8_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter, vert_const); uint8x8_t d2 = convolve4_8_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter, vert_const); uint8x8_t d3 = convolve4_8_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter, vert_const); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); v_s0 = v_s4; v_s1 = v_s5; v_s2 = v_s6; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src += 8; dst += 8; w -= 8; } while (w != 0); } } void av1_convolve_2d_sr_neon_i8mm(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { if (w == 2 || h == 2) { av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); return; } const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn); const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps; const int im_h = h + clamped_y_taps - 1; const int im_stride = MAX_SB_SIZE; const int vert_offset = clamped_y_taps / 2 - 1; const int horiz_offset = filter_params_x->taps / 2 - 1; const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); if (filter_params_x->taps > 8) { DECLARE_ALIGNED(16, int16_t, im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8); convolve_2d_sr_horiz_12tap_neon_i8mm(src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr); convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter_0_7, y_filter_8_11); } else { DECLARE_ALIGNED(16, int16_t, im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]); if (x_filter_taps == 6 && y_filter_taps == 6) { convolve_2d_sr_6tap_neon_i8mm(src_ptr + 1, src_stride, dst, dst_stride, w, h, x_filter_ptr, y_filter_ptr); return; } // Used for both 6, 4 and 4, 4 horiz, vert filter tap combinations. if (x_filter_taps <= 6 && y_filter_taps <= 4) { convolve_2d_sr_6tap_4tap_neon_i8mm(src_ptr + 1, src_stride, dst, dst_stride, w, h, x_filter_ptr, y_filter_ptr); return; } if (x_filter_taps <= 4) { convolve_2d_sr_horiz_4tap_neon_i8mm(src_ptr + 2, src_stride, im_block, im_stride, w, im_h, x_filter_ptr); } else { convolve_2d_sr_horiz_8tap_neon_i8mm(src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr); } const int16x8_t y_filter = vld1q_s16(y_filter_ptr); if (clamped_y_taps <= 4) { convolve_2d_sr_vert_4tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter_ptr); } else if (clamped_y_taps == 6) { convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter); } else { convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter); } } }