/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved. * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_dsp/txfm_common.h" #include "aom_ports/mem.h" #include "av1/common/common.h" #include "av1/common/restoration.h" static inline uint16x8_t wiener_convolve5_8_2d_h( const uint8x8_t t0, const uint8x8_t t1, const uint8x8_t t2, const uint8x8_t t3, const uint8x8_t t4, const int16x4_t x_filter, const int32x4_t round_vec, const uint16x8_t im_max_val) { // Since the Wiener filter is symmetric about the middle tap (tap 2) add // mirrored source elements before multiplying filter coefficients. int16x8_t s04 = vreinterpretq_s16_u16(vaddl_u8(t0, t4)); int16x8_t s13 = vreinterpretq_s16_u16(vaddl_u8(t1, t3)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); // x_filter[0] = 0. (5-tap filters are 0-padded to 7 taps.) int32x4_t sum_lo = vmlal_lane_s16(round_vec, vget_low_s16(s04), x_filter, 1); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s13), x_filter, 2); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s2), x_filter, 3); int32x4_t sum_hi = vmlal_lane_s16(round_vec, vget_high_s16(s04), x_filter, 1); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s13), x_filter, 2); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s2), x_filter, 3); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum_lo, WIENER_ROUND0_BITS), vqrshrun_n_s32(sum_hi, WIENER_ROUND0_BITS)); return vminq_u16(res, im_max_val); } static inline void convolve_add_src_horiz_5tap_neon( const uint8_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr, ptrdiff_t dst_stride, int w, int h, const int16x4_t x_filter, const int32x4_t round_vec, const uint16x8_t im_max_val) { do { const uint8_t *s = src_ptr; uint16_t *d = dst_ptr; int width = w; do { uint8x8_t s0, s1, s2, s3, s4; load_u8_8x5(s, 1, &s0, &s1, &s2, &s3, &s4); uint16x8_t d0 = wiener_convolve5_8_2d_h(s0, s1, s2, s3, s4, x_filter, round_vec, im_max_val); vst1q_u16(d, d0); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--h != 0); } static inline uint16x8_t wiener_convolve7_8_2d_h( const uint8x8_t t0, const uint8x8_t t1, const uint8x8_t t2, const uint8x8_t t3, const uint8x8_t t4, const uint8x8_t t5, const uint8x8_t t6, const int16x4_t x_filter, const int32x4_t round_vec, const uint16x8_t im_max_val) { // Since the Wiener filter is symmetric about the middle tap (tap 3) add // mirrored source elements before multiplying by filter coefficients. int16x8_t s06 = vreinterpretq_s16_u16(vaddl_u8(t0, t6)); int16x8_t s15 = vreinterpretq_s16_u16(vaddl_u8(t1, t5)); int16x8_t s24 = vreinterpretq_s16_u16(vaddl_u8(t2, t4)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); int32x4_t sum_lo = vmlal_lane_s16(round_vec, vget_low_s16(s06), x_filter, 0); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s15), x_filter, 1); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s24), x_filter, 2); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s3), x_filter, 3); int32x4_t sum_hi = vmlal_lane_s16(round_vec, vget_high_s16(s06), x_filter, 0); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s15), x_filter, 1); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s24), x_filter, 2); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s3), x_filter, 3); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum_lo, WIENER_ROUND0_BITS), vqrshrun_n_s32(sum_hi, WIENER_ROUND0_BITS)); return vminq_u16(res, im_max_val); } static inline void convolve_add_src_horiz_7tap_neon( const uint8_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr, ptrdiff_t dst_stride, int w, int h, const int16x4_t x_filter, const int32x4_t round_vec, const uint16x8_t im_max_val) { do { const uint8_t *s = src_ptr; uint16_t *d = dst_ptr; int width = w; do { uint8x8_t s0, s1, s2, s3, s4, s5, s6; load_u8_8x7(s, 1, &s0, &s1, &s2, &s3, &s4, &s5, &s6); uint16x8_t d0 = wiener_convolve7_8_2d_h(s0, s1, s2, s3, s4, s5, s6, x_filter, round_vec, im_max_val); vst1q_u16(d, d0); s += 8; d += 8; width -= 8; } while (width != 0); src_ptr += src_stride; dst_ptr += dst_stride; } while (--h != 0); } static inline uint8x8_t wiener_convolve5_8_2d_v( const int16x8_t s0, const int16x8_t s1, const int16x8_t s2, const int16x8_t s3, const int16x8_t s4, const int16x4_t y_filter, const int32x4_t round_vec) { // Since the Wiener filter is symmetric about the middle tap (tap 2) add // mirrored source elements before multiplying by filter coefficients. int16x8_t s04 = vaddq_s16(s0, s4); int16x8_t s13 = vaddq_s16(s1, s3); int32x4_t sum_lo = vmlal_lane_s16(round_vec, vget_low_s16(s04), y_filter, 1); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s13), y_filter, 2); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s2), y_filter, 3); int32x4_t sum_hi = vmlal_lane_s16(round_vec, vget_high_s16(s04), y_filter, 1); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s13), y_filter, 2); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s2), y_filter, 3); int16x4_t res_lo = vshrn_n_s32(sum_lo, 2 * FILTER_BITS - WIENER_ROUND0_BITS); int16x4_t res_hi = vshrn_n_s32(sum_hi, 2 * FILTER_BITS - WIENER_ROUND0_BITS); return vqmovun_s16(vcombine_s16(res_lo, res_hi)); } static inline void convolve_add_src_vert_5tap_neon( const uint16_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int w, int h, const int16x4_t y_filter, const int32x4_t round_vec) { do { const int16_t *s = (int16_t *)src; uint8_t *d = dst; int height = h; while (height > 3) { int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; load_s16_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); uint8x8_t d0 = wiener_convolve5_8_2d_v(s0, s1, s2, s3, s4, y_filter, round_vec); uint8x8_t d1 = wiener_convolve5_8_2d_v(s1, s2, s3, s4, s5, y_filter, round_vec); uint8x8_t d2 = wiener_convolve5_8_2d_v(s2, s3, s4, s5, s6, y_filter, round_vec); uint8x8_t d3 = wiener_convolve5_8_2d_v(s3, s4, s5, s6, s7, y_filter, round_vec); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height-- != 0) { int16x8_t s0, s1, s2, s3, s4; load_s16_8x5(s, src_stride, &s0, &s1, &s2, &s3, &s4); uint8x8_t d0 = wiener_convolve5_8_2d_v(s0, s1, s2, s3, s4, y_filter, round_vec); vst1_u8(d, d0); d += dst_stride; s += src_stride; } src += 8; dst += 8; w -= 8; } while (w != 0); } static inline uint8x8_t wiener_convolve7_8_2d_v( const int16x8_t s0, const int16x8_t s1, const int16x8_t s2, const int16x8_t s3, const int16x8_t s4, const int16x8_t s5, const int16x8_t s6, const int16x4_t y_filter, const int32x4_t round_vec) { // Since the Wiener filter is symmetric about the middle tap (tap 3) add // mirrored source elements before multiplying by filter coefficients. int16x8_t s06 = vaddq_s16(s0, s6); int16x8_t s15 = vaddq_s16(s1, s5); int16x8_t s24 = vaddq_s16(s2, s4); int32x4_t sum_lo = vmlal_lane_s16(round_vec, vget_low_s16(s06), y_filter, 0); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s15), y_filter, 1); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s24), y_filter, 2); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(s3), y_filter, 3); int32x4_t sum_hi = vmlal_lane_s16(round_vec, vget_high_s16(s06), y_filter, 0); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s15), y_filter, 1); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s24), y_filter, 2); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(s3), y_filter, 3); int16x4_t res_lo = vshrn_n_s32(sum_lo, 2 * FILTER_BITS - WIENER_ROUND0_BITS); int16x4_t res_hi = vshrn_n_s32(sum_hi, 2 * FILTER_BITS - WIENER_ROUND0_BITS); return vqmovun_s16(vcombine_s16(res_lo, res_hi)); } static inline void convolve_add_src_vert_7tap_neon( const uint16_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, int w, int h, const int16x4_t y_filter, const int32x4_t round_vec) { do { const int16_t *s = (int16_t *)src; uint8_t *d = dst; int height = h; while (height > 3) { int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9; load_s16_8x10(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9); uint8x8_t d0 = wiener_convolve7_8_2d_v(s0, s1, s2, s3, s4, s5, s6, y_filter, round_vec); uint8x8_t d1 = wiener_convolve7_8_2d_v(s1, s2, s3, s4, s5, s6, s7, y_filter, round_vec); uint8x8_t d2 = wiener_convolve7_8_2d_v(s2, s3, s4, s5, s6, s7, s8, y_filter, round_vec); uint8x8_t d3 = wiener_convolve7_8_2d_v(s3, s4, s5, s6, s7, s8, s9, y_filter, round_vec); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height-- != 0) { int16x8_t s0, s1, s2, s3, s4, s5, s6; load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); uint8x8_t d0 = wiener_convolve7_8_2d_v(s0, s1, s2, s3, s4, s5, s6, y_filter, round_vec); vst1_u8(d, d0); d += dst_stride; s += src_stride; } src += 8; dst += 8; w -= 8; } while (w != 0); } static inline int get_wiener_filter_taps(const int16_t *filter) { assert(filter[7] == 0); if (filter[0] == 0 && filter[6] == 0) { return WIENER_WIN_REDUCED; } return WIENER_WIN; } // Wiener filter 2D // Apply horizontal filter and store in a temporary buffer. When applying // vertical filter, overwrite the original pixel values. void av1_wiener_convolve_add_src_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *x_filter, int x_step_q4, const int16_t *y_filter, int y_step_q4, int w, int h, const WienerConvolveParams *conv_params) { (void)x_step_q4; (void)y_step_q4; (void)conv_params; assert(w % 8 == 0); assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE); assert(x_step_q4 == 16 && y_step_q4 == 16); assert(x_filter[7] == 0 && y_filter[7] == 0); // For bd == 8, assert horizontal filtering output will not exceed 15-bit: assert(8 + 1 + FILTER_BITS - conv_params->round_0 <= 15); DECLARE_ALIGNED(16, uint16_t, im_block[(MAX_SB_SIZE + WIENER_WIN - 1) * MAX_SB_SIZE]); const int x_filter_taps = get_wiener_filter_taps(x_filter); const int y_filter_taps = get_wiener_filter_taps(y_filter); int16x4_t x_filter_s16 = vld1_s16(x_filter); int16x4_t y_filter_s16 = vld1_s16(y_filter); // Add 128 to tap 3. (Needed for rounding.) x_filter_s16 = vadd_s16(x_filter_s16, vcreate_s16(128ULL << 48)); y_filter_s16 = vadd_s16(y_filter_s16, vcreate_s16(128ULL << 48)); const int im_stride = MAX_SB_SIZE; const int im_h = h + y_filter_taps - 1; const int horiz_offset = x_filter_taps / 2; const int vert_offset = (y_filter_taps / 2) * (int)src_stride; const int bd = 8; const uint16x8_t im_max_val = vdupq_n_u16((1 << (bd + 1 + FILTER_BITS - WIENER_ROUND0_BITS)) - 1); const int32x4_t horiz_round_vec = vdupq_n_s32(1 << (bd + FILTER_BITS - 1)); const int32x4_t vert_round_vec = vdupq_n_s32((1 << (2 * FILTER_BITS - WIENER_ROUND0_BITS - 1)) - (1 << (bd + (2 * FILTER_BITS - WIENER_ROUND0_BITS) - 1))); if (x_filter_taps == WIENER_WIN_REDUCED) { convolve_add_src_horiz_5tap_neon(src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_h, x_filter_s16, horiz_round_vec, im_max_val); } else { convolve_add_src_horiz_7tap_neon(src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_h, x_filter_s16, horiz_round_vec, im_max_val); } if (y_filter_taps == WIENER_WIN_REDUCED) { convolve_add_src_vert_5tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter_s16, vert_round_vec); } else { convolve_add_src_vert_7tap_neon(im_block, im_stride, dst, dst_stride, w, h, y_filter_s16, vert_round_vec); } }