/* * Copyright (c) 2025, Alliance for Open Media. All rights reserved. * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_SELFGUIDED_HWY_H_ #define AV1_COMMON_SELFGUIDED_HWY_H_ #include "av1/common/restoration.h" #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "third_party/highway/hwy/highway.h" HWY_BEFORE_NAMESPACE(); namespace { namespace HWY_NAMESPACE { namespace hn = hwy::HWY_NAMESPACE; template struct ScanTraits {}; template <> struct ScanTraits<1> { template HWY_ATTR HWY_INLINE static hn::VFromD AddBlocks(D int32_tag, hn::VFromD v) { (void)int32_tag; return v; } }; template <> struct ScanTraits<2> { template HWY_ATTR HWY_INLINE static hn::VFromD AddBlocks(D int32_tag, hn::VFromD v) { constexpr hn::Half half_tag; const int32_t s = hn::ExtractLane(v, 3); const auto s01 = hn::Set(half_tag, s); const auto s02 = hn::InsertBlock<1>(hn::Zero(int32_tag), s01); return hn::Add(v, s02); } }; template <> struct ScanTraits<4> { template HWY_ATTR HWY_INLINE static hn::VFromD AddBlocks(D int32_tag, hn::VFromD v) { HWY_ALIGN static const int32_t kA[] = { 0, 0, 0, 0, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, }; HWY_ALIGN static const int32_t kB[] = { 0, 0, 0, 0, 0, 0, 0, 0, 23, 23, 23, 23, 23, 23, 23, 23, }; HWY_ALIGN static const int32_t kC[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 27, 27, 27, }; const auto a = hn::SetTableIndices(int32_tag, kA); const auto b = hn::SetTableIndices(int32_tag, kB); const auto c = hn::SetTableIndices(int32_tag, kC); const auto s01 = hn::TwoTablesLookupLanes(int32_tag, hn::Zero(int32_tag), v, a); const auto s02 = hn::TwoTablesLookupLanes(int32_tag, hn::Zero(int32_tag), v, b); const auto s03 = hn::TwoTablesLookupLanes(int32_tag, hn::Zero(int32_tag), v, c); v = hn::Add(v, s01); v = hn::Add(v, s02); v = hn::Add(v, s03); return v; } }; // Compute the scan of a register holding 32-bit integers. If the register holds // x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ..., x0+x1+...+x7 // // For the AVX2 example below, let [...] represent a 128-bit block, and let a, // ..., h be 32-bit integers (assumed small enough to be able to add them // without overflow). // // Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a. // // x = [h g f e][d c b a] // x01 = [g f e 0][c b a 0] // x02 = [g+h f+g e+f e][c+d b+c a+b a] // x03 = [e+f e 0 0][a+b a 0 0] // x04 = [e->h e->g e->f e][a->d a->c a->b a] // s = a->d // s01 = [a->d a->d a->d a->d] // s02 = [a->d a->d a->d a->d][0 0 0 0] // ret = [a->h a->g a->f a->e][a->d a->c a->b a] template HWY_ATTR HWY_INLINE hn::VFromD Scan32(D int32_tag, hn::VFromD x) { const auto x01 = hn::ShiftLeftBytes<4>(x); const auto x02 = hn::Add(x, x01); const auto x03 = hn::ShiftLeftBytes<8>(x02); const auto x04 = hn::Add(x02, x03); return ScanTraits::AddBlocks(int32_tag, x04); } // Compute two integral images from src. B sums elements; A sums their // squares. The images are offset by one pixel, so will have width and height // equal to width + 1, height + 1 and the first row and column will be zero. // // A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple // of 8. template HWY_ATTR HWY_INLINE void IntegralImages(D int32_tag, const T *HWY_RESTRICT src, int src_stride, int width, int height, int32_t *HWY_RESTRICT A, int32_t *HWY_RESTRICT B, int buf_stride) { constexpr hn::Rebind uint_tag; constexpr hn::Repartition int16_tag; // Write out the zero top row hwy::ZeroBytes(A, 4 * (width + 8)); hwy::ZeroBytes(B, 4 * (width + 8)); for (int i = 0; i < height; ++i) { // Zero the left column. A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; // ldiff is the difference H - D where H is the output sample immediately // to the left and D is the output sample above it. These are scalars, // replicated across the eight lanes. auto ldiff1 = hn::Zero(int32_tag); auto ldiff2 = hn::Zero(int32_tag); for (int j = 0; j < width; j += hn::MaxLanes(int32_tag)) { const int ABj = 1 + j; const auto above1 = hn::Load(int32_tag, B + ABj + i * buf_stride); const auto above2 = hn::Load(int32_tag, A + ABj + i * buf_stride); const auto x1 = hn::PromoteTo( int32_tag, hn::LoadU(uint_tag, src + j + i * src_stride)); const auto x2 = hn::WidenMulPairwiseAdd( int32_tag, hn::BitCast(int16_tag, x1), hn::BitCast(int16_tag, x1)); const auto sc1 = Scan32(int32_tag, x1); const auto sc2 = Scan32(int32_tag, x2); const auto row1 = hn::Add(hn::Add(sc1, above1), ldiff1); const auto row2 = hn::Add(hn::Add(sc2, above2), ldiff2); hn::Store(row1, int32_tag, B + ABj + (i + 1) * buf_stride); hn::Store(row2, int32_tag, A + ABj + (i + 1) * buf_stride); // Calculate the new H - D. ldiff1 = hn::Set(int32_tag, hn::ExtractLane(hn::Sub(row1, above1), hn::MaxLanes(int32_tag) - 1)); ldiff2 = hn::Set(int32_tag, hn::ExtractLane(hn::Sub(row2, above2), hn::MaxLanes(int32_tag) - 1)); } } } template HWY_ATTR HWY_INLINE hn::VFromD BoxSumFromII(D int32_tag, const int32_t *HWY_RESTRICT ii, int stride, int r) { const auto tl = hn::LoadU(int32_tag, ii - (r + 1) - (r + 1) * stride); const auto tr = hn::LoadU(int32_tag, ii + (r + 0) - (r + 1) * stride); const auto bl = hn::LoadU(int32_tag, ii - (r + 1) + r * stride); const auto br = hn::LoadU(int32_tag, ii + (r + 0) + r * stride); const auto u = hn::Sub(tr, tl); const auto v = hn::Sub(br, bl); return hn::Sub(v, u); } template HWY_ATTR HWY_INLINE hn::VFromD RoundForShift(D int32_tag, unsigned int shift) { return hn::Set(int32_tag, (1 << shift) >> 1); } template HWY_ATTR HWY_INLINE hn::VFromD ComputeP(D int32_tag, hn::VFromD sum1, hn::VFromD sum2, int bit_depth, int n) { constexpr hn::Repartition int16_tag; if (bit_depth > 8) { const auto rounding_a = RoundForShift(int32_tag, 2 * (bit_depth - 8)); const auto rounding_b = RoundForShift(int32_tag, bit_depth - 8); const auto a = hn::ShiftRightSame(hn::Add(sum2, rounding_a), 2 * (bit_depth - 8)); const auto b = hn::ShiftRightSame(hn::Add(sum1, rounding_b), bit_depth - 8); // b < 2^14, so we can use a 16-bit madd rather than a 32-bit // mullo to square it const auto b_16 = hn::BitCast(int16_tag, b); const auto bb = hn::WidenMulPairwiseAdd(int32_tag, b_16, b_16); const auto an = hn::Max(hn::Mul(a, hn::Set(int32_tag, n)), bb); return hn::Sub(an, bb); } const auto sum1_16 = hn::BitCast(int16_tag, sum1); const auto bb = hn::WidenMulPairwiseAdd(int32_tag, sum1_16, sum1_16); const auto an = hn::Mul(sum2, hn::Set(int32_tag, n)); return hn::Sub(an, bb); } // Calculate 8 values of the "cross sum" starting at buf. This is a 3x3 filter // where the outer four corners have weight 3 and all other pixels have weight // 4. // // Pixels are indexed as follows: // xtl xt xtr // xl x xr // xbl xb xbr // // buf points to x // // fours = xl + xt + xr + xb + x // threes = xtl + xtr + xbr + xbl // cross_sum = 4 * fours + 3 * threes // = 4 * (fours + threes) - threes // = (fours + threes) << 2 - threes template HWY_ATTR HWY_INLINE hn::VFromD CrossSum(D int32_tag, const int32_t *HWY_RESTRICT buf, int stride) { const auto xtl = hn::LoadU(int32_tag, buf - 1 - stride); const auto xt = hn::LoadU(int32_tag, buf - stride); const auto xtr = hn::LoadU(int32_tag, buf + 1 - stride); const auto xl = hn::LoadU(int32_tag, buf - 1); const auto x = hn::LoadU(int32_tag, buf); const auto xr = hn::LoadU(int32_tag, buf + 1); const auto xbl = hn::LoadU(int32_tag, buf - 1 + stride); const auto xb = hn::LoadU(int32_tag, buf + stride); const auto xbr = hn::LoadU(int32_tag, buf + 1 + stride); const auto fours = hn::Add(xl, hn::Add(xt, hn::Add(xr, hn::Add(xb, x)))); const auto threes = hn::Add(xtl, hn::Add(xtr, hn::Add(xbr, xbl))); return hn::Sub(hn::ShiftLeft<2>(hn::Add(fours, threes)), threes); } // The final filter for self-guided restoration. Computes a weighted average // across A, B with "cross sums" (see CrossSum implementation above). template HWY_ATTR HWY_INLINE void FinalFilter( DL int32_tag, int32_t *HWY_RESTRICT dst, int dst_stride, const int32_t *HWY_RESTRICT A, const int32_t *HWY_RESTRICT B, int buf_stride, const void *HWY_RESTRICT dgd8, int dgd_stride, int width, int height, int highbd) { constexpr hn::Repartition> uint8_half_tag; constexpr hn::Repartition int16_tag; constexpr int nb = 5; constexpr int kShift = SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS; const auto rounding = RoundForShift(int32_tag, kShift); const uint8_t *HWY_RESTRICT dgd_real = highbd ? reinterpret_cast(CONVERT_TO_SHORTPTR(dgd8)) : reinterpret_cast(dgd8); for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += hn::MaxLanes(int32_tag)) { const auto a = CrossSum(int32_tag, A + i * buf_stride + j, buf_stride); const auto b = CrossSum(int32_tag, B + i * buf_stride + j, buf_stride); const auto raw = hn::LoadU(uint8_half_tag, dgd_real + ((i * dgd_stride + j) << highbd)); const auto src = highbd ? hn::PromoteTo( int32_tag, hn::BitCast( hn::Repartition(), raw)) : hn::PromoteTo(int32_tag, hn::LowerHalf(raw)); auto v = hn::Add(hn::WidenMulPairwiseAdd(int32_tag, hn::BitCast(int16_tag, a), hn::BitCast(int16_tag, src)), b); auto w = hn::ShiftRight(hn::Add(v, rounding)); hn::StoreU(w, int32_tag, dst + i * dst_stride + j); } } } // Assumes that C, D are integral images for the original buffer which has been // extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels // on the sides. A, B, C, D point at logical position (0, 0). template HWY_ATTR HWY_INLINE void CalcAB(DL int32_tag, int32_t *HWY_RESTRICT A, int32_t *HWY_RESTRICT B, const int32_t *HWY_RESTRICT C, const int32_t *HWY_RESTRICT D, int width, int height, int buf_stride, int bit_depth, int sgr_params_idx, int radius_idx) { constexpr hn::Repartition int16_tag; constexpr hn::Repartition uint32_tag; const sgr_params_type *HWY_RESTRICT const params = &av1_sgr_params[sgr_params_idx]; const int r = params->r[radius_idx]; const int n = (2 * r + 1) * (2 * r + 1); const auto s = hn::Set(int32_tag, params->s[radius_idx]); // one_over_n[n-1] is 2^12/n, so easily fits in an int16 const auto one_over_n = hn::BitCast(int16_tag, hn::Set(int32_tag, av1_one_by_x[n - 1])); const auto rnd_z = RoundForShift(int32_tag, SGRPROJ_MTABLE_BITS); const auto rnd_res = RoundForShift(int32_tag, SGRPROJ_RECIP_BITS); // Set up masks const int max_lanes = static_cast(hn::MaxLanes(int32_tag)); HWY_ALIGN hn::Mask mask[max_lanes]; for (int idx = 0; idx < max_lanes; idx++) { mask[idx] = hn::FirstN(int32_tag, idx); } for (int i = -1; i < height + 1; i += Step) { for (int j = -1; j < width + 1; j += max_lanes) { const int32_t *HWY_RESTRICT Cij = C + i * buf_stride + j; const int32_t *HWY_RESTRICT Dij = D + i * buf_stride + j; auto sum1 = BoxSumFromII(int32_tag, Dij, buf_stride, r); auto sum2 = BoxSumFromII(int32_tag, Cij, buf_stride, r); // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain // some uninitialised data in their upper words. We use a mask to // ensure that these bits are set to 0. int idx = AOMMIN(max_lanes, width + 1 - j); assert(idx >= 1); if (idx < max_lanes) { sum1 = hn::IfThenElseZero(mask[idx], sum1); sum2 = hn::IfThenElseZero(mask[idx], sum2); } const auto p = ComputeP(int32_tag, sum1, sum2, bit_depth, n); const auto z = hn::BitCast( int32_tag, hn::Min(hn::ShiftRight(hn::BitCast( uint32_tag, hn::MulAdd(p, s, rnd_z))), hn::Set(uint32_tag, 255))); const auto a_res = hn::GatherIndex(int32_tag, av1_x_by_xplus1, z); hn::StoreU(a_res, int32_tag, A + i * buf_stride + j); const auto a_complement = hn::Sub(hn::Set(int32_tag, SGRPROJ_SGR), a_res); // sum1 might have lanes greater than 2^15, so we can't use madd to do // multiplication involving sum1. However, a_complement and one_over_n // are both less than 256, so we can multiply them first. const auto a_comp_over_n = hn::WidenMulPairwiseAdd( int32_tag, hn::BitCast(int16_tag, a_complement), one_over_n); const auto b_int = hn::Mul(a_comp_over_n, sum1); const auto b_res = hn::ShiftRight(hn::Add(b_int, rnd_res)); hn::StoreU(b_res, int32_tag, B + i * buf_stride + j); } } } // Calculate 8 values of the "cross sum" starting at buf. // // Pixels are indexed like this: // xtl xt xtr // - buf - // xbl xb xbr // // Pixels are weighted like this: // 5 6 5 // 0 0 0 // 5 6 5 // // fives = xtl + xtr + xbl + xbr // sixes = xt + xb // cross_sum = 6 * sixes + 5 * fives // = 5 * (fives + sixes) - sixes // = (fives + sixes) << 2 + (fives + sixes) + sixes template HWY_ATTR HWY_INLINE hn::VFromD CrossSumFastEvenRow( D int32_tag, const int32_t *HWY_RESTRICT buf, int stride) { const auto xtl = hn::LoadU(int32_tag, buf - 1 - stride); const auto xt = hn::LoadU(int32_tag, buf - stride); const auto xtr = hn::LoadU(int32_tag, buf + 1 - stride); const auto xbl = hn::LoadU(int32_tag, buf - 1 + stride); const auto xb = hn::LoadU(int32_tag, buf + stride); const auto xbr = hn::LoadU(int32_tag, buf + 1 + stride); const auto fives = hn::Add(xtl, hn::Add(xtr, hn::Add(xbr, xbl))); const auto sixes = hn::Add(xt, xb); const auto fives_plus_sixes = hn::Add(fives, sixes); return hn::Add(hn::Add(hn::ShiftLeft<2>(fives_plus_sixes), fives_plus_sixes), sixes); } // Calculate 8 values of the "cross sum" starting at buf. // // Pixels are indexed like this: // xl x xr // // Pixels are weighted like this: // 5 6 5 // // buf points to x // // fives = xl + xr // sixes = x // cross_sum = 5 * fives + 6 * sixes // = 4 * (fives + sixes) + (fives + sixes) + sixes // = (fives + sixes) << 2 + (fives + sixes) + sixes template HWY_ATTR HWY_INLINE hn::VFromD CrossSumFastOddRow( D int32_tag, const int32_t *HWY_RESTRICT buf) { const auto xl = hn::LoadU(int32_tag, buf - 1); const auto x = hn::LoadU(int32_tag, buf); const auto xr = hn::LoadU(int32_tag, buf + 1); const auto fives = hn::Add(xl, xr); const auto sixes = x; const auto fives_plus_sixes = hn::Add(fives, sixes); return hn::Add(hn::Add(hn::ShiftLeft<2>(fives_plus_sixes), fives_plus_sixes), sixes); } // The final filter for the self-guided restoration. Computes a // weighted average across A, B with "cross sums" (see cross_sum_... // implementations above). template HWY_ATTR HWY_INLINE void FinalFilterFast( DL int32_tag, int32_t *HWY_RESTRICT dst, int dst_stride, const int32_t *HWY_RESTRICT A, const int32_t *HWY_RESTRICT B, int buf_stride, const void *HWY_RESTRICT dgd8, int dgd_stride, int width, int height, int highbd) { constexpr hn::Repartition> uint8_half_tag; constexpr hn::Repartition int16_tag; constexpr int nb0 = 5; constexpr int nb1 = 4; constexpr int kShift0 = SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS; constexpr int kShift1 = SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS; const auto rounding0 = RoundForShift(int32_tag, kShift0); const auto rounding1 = RoundForShift(int32_tag, kShift1); const uint8_t *HWY_RESTRICT dgd_real = highbd ? reinterpret_cast(CONVERT_TO_SHORTPTR(dgd8)) : reinterpret_cast(dgd8); for (int i = 0; i < height; ++i) { if (!(i & 1)) { // even row for (int j = 0; j < width; j += hn::MaxLanes(int32_tag)) { const auto a = CrossSumFastEvenRow(int32_tag, A + i * buf_stride + j, buf_stride); const auto b = CrossSumFastEvenRow(int32_tag, B + i * buf_stride + j, buf_stride); const auto raw = hn::LoadU(uint8_half_tag, dgd_real + ((i * dgd_stride + j) << highbd)); const auto src = highbd ? hn::PromoteTo( int32_tag, hn::BitCast( hn::Repartition(), raw)) : hn::PromoteTo(int32_tag, hn::LowerHalf(raw)); auto v = hn::Add( hn::WidenMulPairwiseAdd(int32_tag, hn::BitCast(int16_tag, a), hn::BitCast(int16_tag, src)), b); auto w = hn::ShiftRight(hn::Add(v, rounding0)); hn::StoreU(w, int32_tag, dst + i * dst_stride + j); } } else { // odd row for (int j = 0; j < width; j += hn::MaxLanes(int32_tag)) { const auto a = CrossSumFastOddRow(int32_tag, A + i * buf_stride + j); const auto b = CrossSumFastOddRow(int32_tag, B + i * buf_stride + j); const auto raw = hn::LoadU(uint8_half_tag, dgd_real + ((i * dgd_stride + j) << highbd)); const auto src = highbd ? hn::PromoteTo( int32_tag, hn::BitCast( hn::Repartition(), raw)) : hn::PromoteTo(int32_tag, hn::LowerHalf(raw)); auto v = hn::Add( hn::WidenMulPairwiseAdd(int32_tag, hn::BitCast(int16_tag, a), hn::BitCast(int16_tag, src)), b); auto w = hn::ShiftRight(hn::Add(v, rounding1)); hn::StoreU(w, int32_tag, dst + i * dst_stride + j); } } } } HWY_ATTR HWY_INLINE int SelfGuidedRestoration( const uint8_t *dgd8, int width, int height, int dgd_stride, int32_t *HWY_RESTRICT flt0, int32_t *HWY_RESTRICT flt1, int flt_stride, int sgr_params_idx, int bit_depth, int highbd) { constexpr hn::ScalableTag int32_tag; constexpr int kAlignment32Log2 = hwy::CeilLog2(hn::MaxLanes(int32_tag)); // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl, Ctl // and Dtl is vector aligned. const int buf_elts = ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, kAlignment32Log2); int32_t *buf = reinterpret_cast( aom_memalign(4 << kAlignment32Log2, 4 * sizeof(*buf) * buf_elts)); if (!buf) { return -1; } const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; // Adjusting the stride of A and B here appears to avoid bad cache effects, // leading to a significant speed improvement. // We also align the stride to a multiple of the vector size for efficiency. int buf_stride = ALIGN_POWER_OF_TWO(width_ext + (2 << kAlignment32Log2), kAlignment32Log2); // The "tl" pointers point at the top-left of the initialised data for the // array. int32_t *Atl = buf + 0 * buf_elts + (1 << kAlignment32Log2) - 1; int32_t *Btl = buf + 1 * buf_elts + (1 << kAlignment32Log2) - 1; int32_t *Ctl = buf + 2 * buf_elts + (1 << kAlignment32Log2) - 1; int32_t *Dtl = buf + 3 * buf_elts + (1 << kAlignment32Log2) - 1; // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note // there's a zero row and column in A, B (integral images), so we move down // and right one for them. const int buf_diag_border = SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT; int32_t *A0 = Atl + 1 + buf_stride; int32_t *B0 = Btl + 1 + buf_stride; int32_t *C0 = Ctl + 1 + buf_stride; int32_t *D0 = Dtl + 1 + buf_stride; // Finally, A, B, C, D point at position (0, 0). int32_t *A = A0 + buf_diag_border; int32_t *B = B0 + buf_diag_border; int32_t *C = C0 + buf_diag_border; int32_t *D = D0 + buf_diag_border; const int dgd_diag_border = SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT; const uint8_t *dgd0 = dgd8 - dgd_diag_border; // Generate integral images from the input. C will contain sums of squares; D // will contain just sums if (highbd) { IntegralImages(int32_tag, CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext, height_ext, Ctl, Dtl, buf_stride); } else { IntegralImages(int32_tag, dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl, buf_stride); } const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx]; // Write to flt0 and flt1 // If params->r == 0 we skip the corresponding filter. We only allow one of // the radii to be 0, as having both equal to 0 would be equivalent to // skipping SGR entirely. assert(!(params->r[0] == 0 && params->r[1] == 0)); assert(params->r[0] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); assert(params->r[1] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); if (params->r[0] > 0) { CalcAB<2>(int32_tag, A, B, C, D, width, height, buf_stride, bit_depth, sgr_params_idx, 0); FinalFilterFast(int32_tag, flt0, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width, height, highbd); } if (params->r[1] > 0) { CalcAB<1>(int32_tag, A, B, C, D, width, height, buf_stride, bit_depth, sgr_params_idx, 1); FinalFilter(int32_tag, flt1, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width, height, highbd); } aom_free(buf); return 0; } HWY_ATTR HWY_INLINE int ApplySelfGuidedRestoration( const uint8_t *HWY_RESTRICT dat8, int width, int height, int stride, int eps, const int *HWY_RESTRICT xqd, uint8_t *HWY_RESTRICT dst8, int dst_stride, int32_t *HWY_RESTRICT tmpbuf, int bit_depth, int highbd) { constexpr hn::CappedTag int32_tag; constexpr size_t kBatchSize = hn::MaxLanes(int32_tag) * 2; int32_t *flt0 = tmpbuf; int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; assert(width * height <= RESTORATION_UNITPELS_MAX); #if HWY_TARGET == HWY_SSE4 const int ret = av1_selfguided_restoration_sse4_1( dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); #elif HWY_TARGET == HWY_AVX2 const int ret = av1_selfguided_restoration_avx2( dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); #elif HWY_TARGET <= HWY_AVX3 const int ret = av1_selfguided_restoration_avx512( dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); #else #error "HWY_TARGET is not supported." const int ret = -1; #endif if (ret != 0) { return ret; } const sgr_params_type *const params = &av1_sgr_params[eps]; int xq[2]; av1_decode_xq(xqd, xq, params); auto xq0 = hn::Set(int32_tag, xq[0]); auto xq1 = hn::Set(int32_tag, xq[1]); for (int i = 0; i < height; ++i) { // Calculate output in batches of pixels for (int j = 0; j < width; j += kBatchSize) { const int k = i * width + j; const int m = i * dst_stride + j; const uint8_t *dat8ij = dat8 + i * stride + j; auto ep_0 = hn::Undefined(int32_tag); auto ep_1 = hn::Undefined(int32_tag); if (highbd) { constexpr hn::Repartition> uint16_tag; const auto src_0 = hn::LoadU(uint16_tag, CONVERT_TO_SHORTPTR(dat8ij)); const auto src_1 = hn::LoadU( uint16_tag, CONVERT_TO_SHORTPTR(dat8ij) + hn::MaxLanes(int32_tag)); ep_0 = hn::PromoteTo(int32_tag, src_0); ep_1 = hn::PromoteTo(int32_tag, src_1); } else { constexpr hn::Repartition> uint8_tag; const auto src_0 = hn::LoadU(uint8_tag, dat8ij); ep_0 = hn::PromoteLowerTo(int32_tag, src_0); ep_1 = hn::PromoteUpperTo(int32_tag, src_0); } const auto u_0 = hn::ShiftLeft(ep_0); const auto u_1 = hn::ShiftLeft(ep_1); auto v_0 = hn::ShiftLeft(u_0); auto v_1 = hn::ShiftLeft(u_1); if (params->r[0] > 0) { const auto f1_0 = hn::Sub(hn::LoadU(int32_tag, &flt0[k]), u_0); v_0 = hn::Add(v_0, hn::Mul(xq0, f1_0)); const auto f1_1 = hn::Sub( hn::LoadU(int32_tag, &flt0[k + hn::MaxLanes(int32_tag)]), u_1); v_1 = hn::Add(v_1, hn::Mul(xq0, f1_1)); } if (params->r[1] > 0) { const auto f2_0 = hn::Sub(hn::LoadU(int32_tag, &flt1[k]), u_0); v_0 = hn::Add(v_0, hn::Mul(xq1, f2_0)); const auto f2_1 = hn::Sub( hn::LoadU(int32_tag, &flt1[k + hn::MaxLanes(int32_tag)]), u_1); v_1 = hn::Add(v_1, hn::Mul(xq1, f2_1)); } const auto rounding = RoundForShift(int32_tag, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); const auto w_0 = hn::ShiftRight( hn::Add(v_0, rounding)); const auto w_1 = hn::ShiftRight( hn::Add(v_1, rounding)); if (highbd) { // Pack into 16 bits and clamp to [0, 2^bit_depth) // Note that packing into 16 bits messes up the order of the bits, // so we use a permute function to correct this constexpr hn::Repartition uint16_tag; const auto tmp = hn::OrderedDemote2To(uint16_tag, w_0, w_1); const auto max = hn::Set(uint16_tag, (1 << bit_depth) - 1); const auto res = hn::Min(tmp, max); hn::StoreU(res, uint16_tag, CONVERT_TO_SHORTPTR(dst8 + m)); } else { // Pack into 8 bits and clamp to [0, 256) // Note that each pack messes up the order of the bits, // so we use a permute function to correct this constexpr hn::Repartition int16_tag; constexpr hn::Repartition> uint8_tag; const auto tmp = hn::OrderedDemote2To(int16_tag, w_0, w_1); const auto res = hn::DemoteTo(uint8_tag, tmp); hn::StoreU(res, uint8_tag, dst8 + m); } } } return 0; } } // namespace HWY_NAMESPACE } // namespace HWY_AFTER_NAMESPACE(); #define MAKE_SELFGUIDED_RESTORATION(suffix) \ extern "C" int av1_selfguided_restoration_##suffix( \ const uint8_t *dgd8, int width, int height, int dgd_stride, \ int32_t *flt0, int32_t *flt1, int flt_stride, int sgr_params_idx, \ int bit_depth, int highbd); \ HWY_ATTR HWY_NOINLINE int av1_selfguided_restoration_##suffix( \ const uint8_t *dgd8, int width, int height, int dgd_stride, \ int32_t *flt0, int32_t *flt1, int flt_stride, int sgr_params_idx, \ int bit_depth, int highbd) { \ return HWY_NAMESPACE::SelfGuidedRestoration( \ dgd8, width, height, dgd_stride, flt0, flt1, flt_stride, \ sgr_params_idx, bit_depth, highbd); \ } \ extern "C" int av1_apply_selfguided_restoration_##suffix( \ const uint8_t *dat8, int width, int height, int stride, int eps, \ const int *xqd, uint8_t *dst8, int dst_stride, int32_t *tmpbuf, \ int bit_depth, int highbd); \ HWY_ATTR int av1_apply_selfguided_restoration_##suffix( \ const uint8_t *dat8, int width, int height, int stride, int eps, \ const int *xqd, uint8_t *dst8, int dst_stride, int32_t *tmpbuf, \ int bit_depth, int highbd) { \ return HWY_NAMESPACE::ApplySelfGuidedRestoration( \ dat8, width, height, stride, eps, xqd, dst8, dst_stride, tmpbuf, \ bit_depth, highbd); \ } #endif // AV1_COMMON_SELFGUIDED_HWY_H_