use { super::{ auxv::AuxvError, errors::{AndroidError, MapsReaderError}, serializers::*, }, crate::{ linux::{ auxv::AuxvDumpInfo, errors::{DumperError, ThreadInfoError}, maps_reader::MappingInfo, module_reader, thread_info::ThreadInfo, Pid, }, serializers::*, }, error_graph::{ErrorList, WriteErrorList}, failspot::failspot, nix::{ errno::Errno, sys::{ptrace, signal, wait}, }, procfs_core::{ process::{MMPermissions, ProcState, Stat}, FromRead, ProcError, }, std::{ ffi::OsString, path, result::Result, time::{Duration, Instant}, }, thiserror::Error, }; #[cfg(target_os = "android")] use crate::linux::android::late_process_mappings; #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] use crate::thread_info; #[derive(Debug, Clone)] pub struct Thread { pub tid: Pid, pub name: Option, } #[derive(Debug)] pub struct PtraceDumper { pub pid: Pid, threads_suspended: bool, pub threads: Vec, pub auxv: AuxvDumpInfo, pub mappings: Vec, pub page_size: usize, } #[cfg(target_pointer_width = "32")] pub const AT_SYSINFO_EHDR: u32 = 33; #[cfg(target_pointer_width = "64")] pub const AT_SYSINFO_EHDR: u64 = 33; impl Drop for PtraceDumper { fn drop(&mut self) { // Always try to resume all threads (e.g. in case of error) self.resume_threads(error_graph::strategy::DontCare); // Always allow the process to continue. let _ = self.continue_process(); } } #[derive(Debug, Error, serde::Serialize)] pub enum InitError { #[error("failed to read auxv")] ReadAuxvFailed(#[source] crate::auxv::AuxvError), #[error("IO error for file {0}")] IOError( String, #[source] #[serde(serialize_with = "serialize_io_error")] std::io::Error, ), #[error("Failed Android specific late init")] AndroidLateInitError(#[from] AndroidError), #[error("Failed to read the page size")] PageSizeError( #[from] #[serde(serialize_with = "serialize_nix_error")] nix::Error, ), #[error("Ptrace does not function within the same process")] CannotPtraceSameProcess, #[error("Failed to stop the target process")] StopProcessFailed(#[source] StopProcessError), #[error("Errors occurred while filling missing Auxv info")] FillMissingAuxvInfoErrors(#[source] ErrorList), #[error("Failed filling missing Auxv info")] FillMissingAuxvInfoFailed(#[source] AuxvError), #[error("Failed reading proc/pid/task entry for process")] ReadProcessThreadEntryFailed( #[source] #[serde(serialize_with = "serialize_io_error")] std::io::Error, ), #[error("Process task entry `{0:?}` could not be parsed as a TID")] ProcessTaskEntryNotTid(OsString), #[error("Failed to read thread name")] ReadThreadNameFailed( #[source] #[serde(serialize_with = "serialize_io_error")] std::io::Error, ), #[error("Proc task directory `{0:?}` is not a directory")] ProcPidTaskNotDirectory(String), #[error("Errors while enumerating threads")] EnumerateThreadsErrors(#[source] ErrorList), #[error("Failed to enumerate threads")] EnumerateThreadsFailed(#[source] Box), #[error("Failed to read process map file")] ReadProcessMapFileFailed( #[source] #[serde(serialize_with = "serialize_proc_error")] ProcError, ), #[error("Failed to aggregate process mappings")] AggregateMappingsFailed(#[source] MapsReaderError), #[error("Failed to enumerate process mappings")] EnumerateMappingsFailed(#[source] Box), } #[derive(Debug, thiserror::Error, serde::Serialize)] pub enum StopProcessError { #[error("Failed to stop the process")] Stop( #[from] #[serde(serialize_with = "serialize_nix_error")] nix::Error, ), #[error("Failed to get the process state")] State( #[from] #[serde(serialize_with = "serialize_proc_error")] ProcError, ), #[error("Timeout waiting for process to stop")] Timeout, } #[derive(Debug, thiserror::Error)] pub enum ContinueProcessError { #[error("Failed to continue the process")] Continue(#[from] Errno), } /// PTRACE_DETACH the given pid. /// /// This handles special errno cases (ESRCH) which we won't consider errors. fn ptrace_detach(child: Pid) -> Result<(), DumperError> { let pid = nix::unistd::Pid::from_raw(child); ptrace::detach(pid, None).or_else(|e| { // errno is set to ESRCH if the pid no longer exists, but we don't want to error in that // case. if e == nix::Error::ESRCH { Ok(()) } else { Err(DumperError::PtraceDetachError(child, e)) } }) } impl PtraceDumper { /// Constructs a dumper for extracting information from the specified process id pub fn new_report_soft_errors( pid: Pid, stop_timeout: Duration, auxv: AuxvDumpInfo, soft_errors: impl WriteErrorList, ) -> Result { if pid == std::process::id() as i32 { return Err(InitError::CannotPtraceSameProcess); } let mut dumper = Self { pid, threads_suspended: false, threads: Vec::new(), auxv, mappings: Vec::new(), page_size: 0, }; dumper.init(stop_timeout, soft_errors)?; Ok(dumper) } // TODO: late_init for chromeos and android pub fn init( &mut self, stop_timeout: Duration, mut soft_errors: impl WriteErrorList, ) -> Result<(), InitError> { // Stopping the process is best-effort. if let Err(e) = self.stop_process(stop_timeout) { soft_errors.push(InitError::StopProcessFailed(e)); } // Even if we completely fail to fill in any additional Auxv info, we can still press // forward. if let Err(e) = self.auxv.try_filling_missing_info( self.pid, soft_errors.subwriter(InitError::FillMissingAuxvInfoErrors), ) { soft_errors.push(InitError::FillMissingAuxvInfoFailed(e)); } // If we completely fail to enumerate any threads... Some information is still better than // no information! if let Err(e) = self.enumerate_threads(soft_errors.subwriter(InitError::EnumerateThreadsErrors)) { soft_errors.push(InitError::EnumerateThreadsFailed(Box::new(e))); } // Same with mappings -- Some information is still better than no information! if let Err(e) = self.enumerate_mappings() { soft_errors.push(InitError::EnumerateMappingsFailed(Box::new(e))); } self.page_size = nix::unistd::sysconf(nix::unistd::SysconfVar::PAGE_SIZE)? .expect("page size apparently unlimited: doesn't make sense.") as usize; Ok(()) } #[cfg_attr(not(target_os = "android"), allow(clippy::unused_self))] pub fn late_init(&mut self) -> Result<(), InitError> { #[cfg(target_os = "android")] { late_process_mappings(self.pid, &mut self.mappings)?; } Ok(()) } /// Suspends a thread by attaching to it. pub fn suspend_thread(child: Pid) -> Result<(), DumperError> { use DumperError::PtraceAttachError as AttachErr; let pid = nix::unistd::Pid::from_raw(child); // This may fail if the thread has just died or debugged. ptrace::attach(pid).map_err(|e| AttachErr(child, e))?; loop { match wait::waitpid(pid, Some(wait::WaitPidFlag::__WALL)) { Ok(status) => { let wait::WaitStatus::Stopped(_, status) = status else { return Err(DumperError::WaitPidError( child, nix::errno::Errno::UnknownErrno, )); }; // Any signal will stop the thread, make sure it is SIGSTOP. Otherwise, this // signal will be delivered after PTRACE_DETACH, and the thread will enter // the "T (stopped)" state. if status == nix::sys::signal::SIGSTOP { break; } // Signals other than SIGSTOP that are received need to be reinjected, // or they will otherwise get lost. if let Err(err) = ptrace::cont(pid, status) { return Err(DumperError::WaitPidError(child, err)); } } Err(Errno::EINTR) => continue, Err(e) => { ptrace_detach(child)?; return Err(DumperError::WaitPidError(child, e)); } } } #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] { // On x86, the stack pointer is NULL or -1, when executing trusted code in // the seccomp sandbox. Not only does this cause difficulties down the line // when trying to dump the thread's stack, it also results in the minidumps // containing information about the trusted threads. This information is // generally completely meaningless and just pollutes the minidumps. // We thus test the stack pointer and exclude any threads that are part of // the seccomp sandbox's trusted code. let skip_thread; let regs = thread_info::ThreadInfo::getregs(pid.into()); if let Ok(regs) = regs { #[cfg(target_arch = "x86_64")] { skip_thread = regs.rsp == 0; } #[cfg(target_arch = "x86")] { skip_thread = regs.esp == 0; } } else { skip_thread = true; } if skip_thread { ptrace_detach(child)?; return Err(DumperError::DetachSkippedThread(child)); } } Ok(()) } /// Resumes a thread by detaching from it. pub fn resume_thread(child: Pid) -> Result<(), DumperError> { ptrace_detach(child) } pub fn suspend_threads(&mut self, mut soft_errors: impl WriteErrorList) { // Iterate over all threads and try to suspend them. // If the thread either disappeared before we could attach to it, or if // it was part of the seccomp sandbox's trusted code, it is OK to // silently drop it from the minidump. self.threads.retain(|x| match Self::suspend_thread(x.tid) { Ok(()) => true, Err(e) => { soft_errors.push(e); false } }); self.threads_suspended = true; failspot::failspot!(::SuspendThreads soft_errors.push(DumperError::PtraceAttachError(1234, nix::Error::EPERM))) } pub fn resume_threads(&mut self, mut soft_errors: impl WriteErrorList) { if self.threads_suspended { for thread in &self.threads { match Self::resume_thread(thread.tid) { Ok(()) => (), Err(e) => { soft_errors.push(e); } } } } self.threads_suspended = false; } /// Send SIGSTOP to the process so that we can get a consistent state. /// /// This will block waiting for the process to stop until `timeout` has passed. fn stop_process(&mut self, timeout: Duration) -> Result<(), StopProcessError> { failspot!(StopProcess bail(nix::Error::EPERM)); signal::kill(nix::unistd::Pid::from_raw(self.pid), Some(signal::SIGSTOP))?; // Something like waitpid for non-child processes would be better, but we have no such // tool, so we poll the status. const POLL_INTERVAL: Duration = Duration::from_millis(1); let proc_file = format!("/proc/{}/stat", self.pid); let end = Instant::now() + timeout; loop { if let Ok(ProcState::Stopped) = Stat::from_file(&proc_file)?.state() { return Ok(()); } std::thread::sleep(POLL_INTERVAL); if Instant::now() > end { return Err(StopProcessError::Timeout); } } } /// Send SIGCONT to the process to continue. /// /// Unlike `stop_process`, this function does not wait for the process to continue. fn continue_process(&mut self) -> Result<(), ContinueProcessError> { signal::kill(nix::unistd::Pid::from_raw(self.pid), Some(signal::SIGCONT))?; Ok(()) } /// Parse /proc/$pid/task to list all the threads of the process identified by /// pid. fn enumerate_threads( &mut self, mut soft_errors: impl WriteErrorList, ) -> Result<(), InitError> { let pid = self.pid; let filename = format!("/proc/{}/task", pid); let task_path = path::PathBuf::from(&filename); if !task_path.is_dir() { return Err(InitError::ProcPidTaskNotDirectory(filename)); } for entry in std::fs::read_dir(task_path).map_err(|e| InitError::IOError(filename, e))? { let entry = match entry { Ok(entry) => entry, Err(e) => { soft_errors.push(InitError::ReadProcessThreadEntryFailed(e)); continue; } }; let file_name = entry.file_name(); let tid = match file_name.to_str().and_then(|name| name.parse::().ok()) { Some(tid) => tid, None => { soft_errors.push(InitError::ProcessTaskEntryNotTid(file_name)); continue; } }; // Read the thread-name (if there is any) let name_result = failspot!(if ThreadName { Err(std::io::Error::other( "testing requested failure reading thread name", )) } else { std::fs::read_to_string(format!("/proc/{}/task/{}/comm", pid, tid)) }); let name = match name_result { Ok(name) => Some(name.trim_end().to_string()), Err(e) => { soft_errors.push(InitError::ReadThreadNameFailed(e)); None } }; self.threads.push(Thread { tid, name }); } Ok(()) } fn enumerate_mappings(&mut self) -> Result<(), InitError> { // linux_gate_loc is the beginning of the kernel's mapping of // linux-gate.so in the process. It doesn't actually show up in the // maps list as a filename, but it can be found using the AT_SYSINFO_EHDR // aux vector entry, which gives the information necessary to special // case its entry when creating the list of mappings. // See http://www.trilithium.com/johan/2005/08/linux-gate/ for more // information. let maps_path = format!("/proc/{}/maps", self.pid); let maps_file = std::fs::File::open(&maps_path).map_err(|e| InitError::IOError(maps_path, e))?; let maps = procfs_core::process::MemoryMaps::from_read(maps_file) .map_err(InitError::ReadProcessMapFileFailed)?; self.mappings = MappingInfo::aggregate(maps, self.auxv.get_linux_gate_address()) .map_err(InitError::AggregateMappingsFailed)?; // Although the initial executable is usually the first mapping, it's not // guaranteed (see http://crosbug.com/25355); therefore, try to use the // actual entry point to find the mapping. if let Some(entry_point_loc) = self .auxv .get_entry_address() .map(|u| usize::try_from(u).unwrap()) { // If this module contains the entry-point, and it's not already the first // one, then we need to make it be first. This is because the minidump // format assumes the first module is the one that corresponds to the main // executable (as codified in // processor/minidump.cc:MinidumpModuleList::GetMainModule()). if let Some(entry_mapping_idx) = self.mappings.iter().position(|mapping| { (mapping.start_address..mapping.start_address + mapping.size) .contains(&entry_point_loc) }) { self.mappings.swap(0, entry_mapping_idx); } } Ok(()) } /// Read thread info from /proc/$pid/status. /// Fill out the |tgid|, |ppid| and |pid| members of |info|. If unavailable, /// these members are set to -1. Returns true if all three members are /// available. pub fn get_thread_info_by_index(&self, index: usize) -> Result { if index > self.threads.len() { return Err(ThreadInfoError::IndexOutOfBounds(index, self.threads.len())); } ThreadInfo::create(self.pid, self.threads[index].tid) } // Returns a valid stack pointer and the mapping that contains the stack. // The stack pointer will usually point within this mapping, but it might // not in case of stack overflows, hence the returned pointer might be // different from the one that was passed in. pub fn get_stack_info(&self, int_stack_pointer: usize) -> Result<(usize, usize), DumperError> { // Round the stack pointer to the nearest page, this will cause us to // capture data below the stack pointer which might still be relevant. let mut stack_pointer = int_stack_pointer & !(self.page_size - 1); let mut mapping = self.find_mapping(stack_pointer); // The guard page has been 1 MiB in size since kernel 4.12, older // kernels used a 4 KiB one instead. Note the saturating add, as 32-bit // processes can have a stack pointer within 1MiB of usize::MAX let guard_page_max_addr = stack_pointer.saturating_add(1024 * 1024); // If we found no mapping, or the mapping we found has no permissions // then we might have hit a guard page, try looking for a mapping in // addresses past the stack pointer. Stack grows towards lower addresses // on the platforms we care about so the stack should appear after the // guard page. while !Self::may_be_stack(mapping) && (stack_pointer <= guard_page_max_addr) { stack_pointer += self.page_size; mapping = self.find_mapping(stack_pointer); } mapping .map(|mapping| { let valid_stack_pointer = if mapping.contains_address(stack_pointer) { stack_pointer } else { mapping.start_address }; let stack_len = mapping.size - (valid_stack_pointer - mapping.start_address); (valid_stack_pointer, stack_len) }) .ok_or(DumperError::NoStackPointerMapping) } fn may_be_stack(mapping: Option<&MappingInfo>) -> bool { if let Some(mapping) = mapping { return mapping .permissions .intersects(MMPermissions::READ | MMPermissions::WRITE); } false } pub fn sanitize_stack_copy( &self, stack_copy: &mut [u8], stack_pointer: usize, sp_offset: usize, ) -> Result<(), DumperError> { // We optimize the search for containing mappings in three ways: // 1) We expect that pointers into the stack mapping will be common, so // we cache that address range. // 2) The last referenced mapping is a reasonable predictor for the next // referenced mapping, so we test that first. // 3) We precompute a bitfield based upon bits 32:32-n of the start and // stop addresses, and use that to short circuit any values that can // not be pointers. (n=11) let defaced; #[cfg(target_pointer_width = "64")] { defaced = 0x0defaced0defacedusize.to_ne_bytes(); } #[cfg(target_pointer_width = "32")] { defaced = 0x0defacedusize.to_ne_bytes(); }; // the bitfield length is 2^test_bits long. let test_bits = 11; // byte length of the corresponding array. let array_size: usize = 1 << (test_bits - 3); let array_mask = array_size - 1; // The amount to right shift pointers by. This captures the top bits // on 32 bit architectures. On 64 bit architectures this would be // uninformative so we take the same range of bits. let shift = 32 - 11; // let MappingInfo* last_hit_mapping = nullptr; // let MappingInfo* hit_mapping = nullptr; let stack_mapping = self.find_mapping_no_bias(stack_pointer); let mut last_hit_mapping: Option<&MappingInfo> = None; // The magnitude below which integers are considered to be to be // 'small', and not constitute a PII risk. These are included to // avoid eliding useful register values. let small_int_magnitude: isize = 4096; let mut could_hit_mapping = vec![0; array_size]; // Initialize the bitfield such that if the (pointer >> shift)'th // bit, modulo the bitfield size, is not set then there does not // exist a mapping in mappings that would contain that pointer. for mapping in &self.mappings { if !mapping.is_executable() { continue; } // For each mapping, work out the (unmodulo'ed) range of bits to // set. let mut start = mapping.start_address; let mut end = start + mapping.size; start >>= shift; end >>= shift; for bit in start..=end { // Set each bit in the range, applying the modulus. could_hit_mapping[(bit >> 3) & array_mask] |= 1 << (bit & 7); } } // Zero memory that is below the current stack pointer. let offset = (sp_offset + std::mem::size_of::() - 1) & !(std::mem::size_of::() - 1); for x in &mut stack_copy[0..offset] { *x = 0; } let mut chunks = stack_copy[offset..].chunks_exact_mut(std::mem::size_of::()); // Apply sanitization to each complete pointer-aligned word in the // stack. for sp in &mut chunks { let addr = usize::from_ne_bytes(sp.to_vec().as_slice().try_into()?); let addr_signed = isize::from_ne_bytes(sp.to_vec().as_slice().try_into()?); if addr <= small_int_magnitude as usize && addr_signed >= -small_int_magnitude { continue; } if let Some(stack_map) = stack_mapping { if stack_map.contains_address(addr) { continue; } } if let Some(last_hit) = last_hit_mapping { if last_hit.contains_address(addr) { continue; } } let test = addr >> shift; if could_hit_mapping[(test >> 3) & array_mask] & (1 << (test & 7)) != 0 { if let Some(hit_mapping) = self.find_mapping_no_bias(addr) { if hit_mapping.is_executable() { last_hit_mapping = Some(hit_mapping); continue; } } } sp.copy_from_slice(&defaced); } // Zero any partial word at the top of the stack, if alignment is // such that that is required. for sp in chunks.into_remainder() { *sp = 0; } Ok(()) } // Find the mapping which the given memory address falls in. pub fn find_mapping(&self, address: usize) -> Option<&MappingInfo> { self.mappings .iter() .find(|map| address >= map.start_address && address - map.start_address < map.size) } // Find the mapping which the given memory address falls in. Uses the // unadjusted mapping address range from the kernel, rather than the // biased range. pub fn find_mapping_no_bias(&self, address: usize) -> Option<&MappingInfo> { self.mappings.iter().find(|map| { address >= map.system_mapping_info.start_address && address < map.system_mapping_info.end_address }) } pub fn from_process_memory_for_index( &mut self, idx: usize, ) -> Result { assert!(idx < self.mappings.len()); Self::from_process_memory_for_mapping(&self.mappings[idx], self.pid) } pub fn from_process_memory_for_mapping( mapping: &MappingInfo, pid: Pid, ) -> Result { Ok(T::read_from_module( module_reader::ProcessReader::new(pid, mapping.start_address).into(), )?) } }