/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* A variadic tuple class. */ #ifndef mozilla_Tuple_h #define mozilla_Tuple_h #include "mozilla/Move.h" #include "mozilla/Pair.h" #include "mozilla/TemplateLib.h" #include "mozilla/TypeTraits.h" #include #include namespace mozilla { namespace detail { /* * A helper class that allows passing around multiple variadic argument lists * by grouping them. */ template struct Group; /* * CheckConvertibility checks whether each type in a source pack of types * is convertible to the corresponding type in a target pack of types. * * It is intended to be invoked like this: * CheckConvertibility, Group> * 'Group' is used to separate types in the two packs (otherwise if we just * wrote 'CheckConvertibility struct CheckConvertibilityImpl; template struct CheckConvertibilityImpl : FalseType {}; template struct CheckConvertibilityImpl, Group, true> : IntegralConstant::value...>::value> { }; template struct CheckConvertibility; template struct CheckConvertibility, Group> : CheckConvertibilityImpl, Group, sizeof...(SourceTypes) == sizeof...(TargetTypes)> { }; /* * TupleImpl is a helper class used to implement mozilla::Tuple. * It represents one node in a recursive inheritance hierarchy. * 'Index' is the 0-based index of the tuple element stored in this node; * 'Elements...' are the types of the elements stored in this node and its * base classes. * * Example: * Tuple inherits from * TupleImpl<0, int, float, char>, which stores the 'int' and inherits from * TupleImpl<1, float, char>, which stores the 'float' and inherits from * TupleImpl<2, char>, which stores the 'char' and inherits from * TupleImpl<3>, which stores nothing and terminates the recursion. * * The purpose of the 'Index' parameter is to allow efficient index-based * access to a tuple element: given a tuple, and an index 'I' that we wish to * access, we can cast the tuple to the base which stores the I'th element * by performing template argument deduction against 'TupleImpl', * where 'I' is specified explicitly and 'E...' is deduced (this is what the * non-member 'Get(t)' function does). * * This implementation strategy is borrowed from libstdc++'s std::tuple * implementation. */ template struct TupleImpl; /* * The base case of the inheritance recursion (and also the implementation * of an empty tuple). */ template struct TupleImpl { bool operator==(const TupleImpl& aOther) const { return true; } }; /* * One node of the recursive inheritance hierarchy. It stores the element at * index 'Index' of a tuple, of type 'HeadT', and inherits from the nodes * that store the remaining elements, of types 'TailT...'. */ template struct TupleImpl : public TupleImpl { typedef TupleImpl Base; // Accessors for the head and the tail. // These are static, because the intended usage is for the caller to, // given a tuple, obtain the type B of the base class which stores the // element of interest, and then call B::Head(tuple) to access it. // (Tail() is mostly for internal use, but is exposed for consistency.) static HeadT& Head(TupleImpl& aTuple) { return aTuple.mHead; } static const HeadT& Head(const TupleImpl& aTuple) { return aTuple.mHead; } static Base& Tail(TupleImpl& aTuple) { return aTuple; } static const Base& Tail(const TupleImpl& aTuple) { return aTuple; } TupleImpl() : Base(), mHead() { } // Construct from const references to the elements. explicit TupleImpl(const HeadT& aHead, const TailT&... aTail) : Base(aTail...), mHead(aHead) { } // Construct from objects that are convertible to the elements. // This constructor is enabled only when the argument types are actually // convertible to the element types, otherwise it could become a better // match for certain invocations than the copy constructor. template , Group>::value>::Type> explicit TupleImpl(OtherHeadT&& aHead, OtherTailT&&... aTail) : Base(Forward(aTail)...), mHead(Forward(aHead)) { } // Copy and move constructors. // We'd like to use '= default' to implement these, but MSVC 2013's support // for '= default' is incomplete and this doesn't work. TupleImpl(const TupleImpl& aOther) : Base(Tail(aOther)) , mHead(Head(aOther)) {} TupleImpl(TupleImpl&& aOther) : Base(Move(Tail(aOther))) , mHead(Forward(Head(aOther))) {} // Assign from a tuple whose elements are convertible to the elements // of this tuple. template ::Type> TupleImpl& operator=(const TupleImpl& aOther) { typedef TupleImpl OtherT; Head(*this) = OtherT::Head(aOther); Tail(*this) = OtherT::Tail(aOther); return *this; } template ::Type> TupleImpl& operator=(TupleImpl&& aOther) { typedef TupleImpl OtherT; Head(*this) = Move(OtherT::Head(aOther)); Tail(*this) = Move(OtherT::Tail(aOther)); return *this; } // Copy and move assignment operators. TupleImpl& operator=(const TupleImpl& aOther) { Head(*this) = Head(aOther); Tail(*this) = Tail(aOther); return *this; } TupleImpl& operator=(TupleImpl&& aOther) { Head(*this) = Move(Head(aOther)); Tail(*this) = Move(Tail(aOther)); return *this; } bool operator==(const TupleImpl& aOther) const { return Head(*this) == Head(aOther) && Tail(*this) == Tail(aOther); } private: HeadT mHead; // The element stored at this index in the tuple. }; } // namespace detail /** * Tuple is a class that stores zero or more objects, whose types are specified * as template parameters. It can be thought of as a generalization of Pair, * (which can be thought of as a 2-tuple). * * Tuple allows index-based access to its elements (with the index having to be * known at compile time) via the non-member function 'Get(tuple)'. */ template class Tuple : public detail::TupleImpl<0, Elements...> { typedef detail::TupleImpl<0, Elements...> Impl; public: // The constructors and assignment operators here are simple wrappers // around those in TupleImpl. Tuple() : Impl() { } explicit Tuple(const Elements&... aElements) : Impl(aElements...) { } // Here, we can't just use 'typename... OtherElements' because MSVC will give // a warning "C4520: multiple default constructors specified" (even if no one // actually instantiates the constructor with an empty parameter pack - // that's probably a bug) and we compile with warnings-as-errors. template , detail::Group>::value>::Type> explicit Tuple(OtherHead&& aHead, OtherTail&&... aTail) : Impl(Forward(aHead), Forward(aTail)...) { } Tuple(const Tuple& aOther) : Impl(aOther) { } Tuple(Tuple&& aOther) : Impl(Move(aOther)) { } template ::Type> Tuple& operator=(const Tuple& aOther) { static_cast(*this) = aOther; return *this; } template ::Type> Tuple& operator=(Tuple&& aOther) { static_cast(*this) = Move(aOther); return *this; } Tuple& operator=(const Tuple& aOther) { static_cast(*this) = aOther; return *this; } Tuple& operator=(Tuple&& aOther) { static_cast(*this) = Move(aOther); return *this; } bool operator==(const Tuple& aOther) const { return static_cast(*this) == static_cast(aOther); } }; /** * Specialization of Tuple for two elements. * This is created to support construction and assignment from a Pair or std::pair. */ template class Tuple : public detail::TupleImpl<0, A, B> { typedef detail::TupleImpl<0, A, B> Impl; public: // The constructors and assignment operators here are simple wrappers // around those in TupleImpl. Tuple() : Impl() { } explicit Tuple(const A& aA, const B& aB) : Impl(aA, aB) { } template , detail::Group>::value>::Type> explicit Tuple(AArg&& aA, BArg&& aB) : Impl(Forward(aA), Forward(aB)) { } Tuple(const Tuple& aOther) : Impl(aOther) { } Tuple(Tuple&& aOther) : Impl(Move(aOther)) { } explicit Tuple(const Pair& aOther) : Impl(aOther.first(), aOther.second()) { } explicit Tuple(Pair&& aOther) : Impl(Forward(aOther.first()), Forward(aOther.second())) { } explicit Tuple(const std::pair& aOther) : Impl(aOther.first, aOther.second) { } explicit Tuple(std::pair&& aOther) : Impl(Forward(aOther.first), Forward(aOther.second)) { } template Tuple& operator=(const Tuple& aOther) { static_cast(*this) = aOther; return *this; } template Tuple& operator=(Tuple&& aOther) { static_cast(*this) = Move(aOther); return *this; } Tuple& operator=(const Tuple& aOther) { static_cast(*this) = aOther; return *this; } Tuple& operator=(Tuple&& aOther) { static_cast(*this) = Move(aOther); return *this; } template Tuple& operator=(const Pair& aOther) { Impl::Head(*this) = aOther.first(); Impl::Tail(*this).Head(*this) = aOther.second(); return *this; } template Tuple& operator=(Pair&& aOther) { Impl::Head(*this) = Forward(aOther.first()); Impl::Tail(*this).Head(*this) = Forward(aOther.second()); return *this; } template Tuple& operator=(const std::pair& aOther) { Impl::Head(*this) = aOther.first; Impl::Tail(*this).Head(*this) = aOther.second; return *this; } template Tuple& operator=(std::pair&& aOther) { Impl::Head(*this) = Forward(aOther.first); Impl::Tail(*this).Head(*this) = Forward(aOther.second); return *this; } }; /** * Specialization of Tuple for zero arguments. * This is necessary because if the primary template were instantiated with * an empty parameter pack, the 'Tuple(Elements...)' constructors would * become illegal overloads of the default constructor. */ template <> class Tuple<> {}; namespace detail { /* * Helper functions for implementing Get(tuple). * These functions take a TupleImpl, with Index being * explicitly specified, and Elements being deduced. By passing a Tuple * object as argument, template argument deduction will do its magic and * cast the tuple to the base class which stores the element at Index. */ // Const reference version. template auto TupleGetHelper(TupleImpl& aTuple) -> decltype(TupleImpl::Head(aTuple)) { return TupleImpl::Head(aTuple); } // Non-const reference version. template auto TupleGetHelper(const TupleImpl& aTuple) -> decltype(TupleImpl::Head(aTuple)) { return TupleImpl::Head(aTuple); } } // namespace detail /** * Index-based access to an element of a tuple. * The syntax is Get(tuple). The index is zero-based. * * Example: * * Tuple t; * ... * float f = Get<1>(t); */ // Non-const reference version. template auto Get(Tuple& aTuple) -> decltype(detail::TupleGetHelper(aTuple)) { return detail::TupleGetHelper(aTuple); } // Const reference version. template auto Get(const Tuple& aTuple) -> decltype(detail::TupleGetHelper(aTuple)) { return detail::TupleGetHelper(aTuple); } // Rvalue reference version. template auto Get(Tuple&& aTuple) -> decltype(Move(mozilla::Get(aTuple))) { // We need a 'mozilla::' qualification here to avoid // name lookup only finding the current function. return Move(mozilla::Get(aTuple)); } /** * A convenience function for constructing a tuple out of a sequence of * values without specifying the type of the tuple. * The type of the tuple is deduced from the types of its elements. * * Example: * * auto tuple = MakeTuple(42, 0.5f, 'c'); // has type Tuple */ template inline Tuple::Type...> MakeTuple(Elements&&... aElements) { return Tuple::Type...>(Forward(aElements)...); } /** * A convenience function for constructing a tuple of references to a * sequence of variables. Since assignments to the elements of the tuple * "go through" to the referenced variables, this can be used to "unpack" * a tuple into individual variables. * * Example: * * int i; * float f; * char c; * Tie(i, f, c) = FunctionThatReturnsATuple(); */ template inline Tuple Tie(Elements&... aVariables) { return Tuple(aVariables...); } } // namespace mozilla #endif /* mozilla_Tuple_h */