/* * (C) 1999-2011,2016,2018,2019,2020,2025 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include #include #include namespace Botan { namespace { BigInt inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod) { // Caller should assure these preconditions: BOTAN_ASSERT_NOMSG(n.is_positive()); BOTAN_ASSERT_NOMSG(mod.is_positive()); BOTAN_ASSERT_NOMSG(n < mod); BOTAN_ASSERT_NOMSG(mod >= 3 && mod.is_odd()); /* This uses a modular inversion algorithm designed by Niels Möller and implemented in Nettle. The same algorithm was later also adapted to GMP in mpn_sec_invert. It can be easily implemented in a way that does not depend on secret branches or memory lookups, providing resistance against some forms of side channel attack. There is also a description of the algorithm in Appendix 5 of "Fast Software Polynomial Multiplication on ARM Processors using the NEON Engine" by Danilo Câmara, Conrado P. L. Gouvêa, Julio López, and Ricardo Dahab in LNCS 8182 https://inria.hal.science/hal-01506572/document Thanks to Niels for creating the algorithm, explaining some things about it, and the reference to the paper. */ const size_t mod_words = mod.sig_words(); BOTAN_ASSERT(mod_words > 0, "Not empty"); secure_vector tmp_mem(5 * mod_words); word* v_w = &tmp_mem[0]; word* u_w = &tmp_mem[1 * mod_words]; word* b_w = &tmp_mem[2 * mod_words]; word* a_w = &tmp_mem[3 * mod_words]; word* mp1o2 = &tmp_mem[4 * mod_words]; CT::poison(tmp_mem.data(), tmp_mem.size()); copy_mem(a_w, n._data(), std::min(n.size(), mod_words)); copy_mem(b_w, mod._data(), std::min(mod.size(), mod_words)); u_w[0] = 1; // v_w = 0 // compute (mod + 1) / 2 which [because mod is odd] is equal to // (mod / 2) + 1 copy_mem(mp1o2, mod._data(), std::min(mod.size(), mod_words)); bigint_shr1(mp1o2, mod_words, 1); word carry = bigint_add2_nc(mp1o2, mod_words, u_w, 1); BOTAN_ASSERT_NOMSG(carry == 0); // Only n.bits() + mod.bits() iterations are required, but avoid leaking the size of n const size_t execs = 2 * mod.bits(); for(size_t i = 0; i != execs; ++i) { const word odd_a = a_w[0] & 1; //if(odd_a) a -= b word underflow = bigint_cnd_sub(odd_a, a_w, b_w, mod_words); //if(underflow) { b -= a; a = abs(a); swap(u, v); } bigint_cnd_add(underflow, b_w, a_w, mod_words); bigint_cnd_abs(underflow, a_w, mod_words); bigint_cnd_swap(underflow, u_w, v_w, mod_words); // a >>= 1 bigint_shr1(a_w, mod_words, 1); //if(odd_a) u -= v; word borrow = bigint_cnd_sub(odd_a, u_w, v_w, mod_words); // if(borrow) u += p bigint_cnd_add(borrow, u_w, mod._data(), mod_words); const word odd_u = u_w[0] & 1; // u >>= 1 bigint_shr1(u_w, mod_words, 1); //if(odd_u) u += mp1o2; bigint_cnd_add(odd_u, u_w, mp1o2, mod_words); } const auto a_is_0 = CT::all_zeros(a_w, mod_words); auto b_is_1 = CT::Mask::is_equal(b_w[0], 1); for(size_t i = 1; i != mod_words; ++i) { b_is_1 &= CT::Mask::is_zero(b_w[i]); } BOTAN_ASSERT(a_is_0.as_bool(), "A is zero"); // if b != 1 then gcd(n,mod) > 1 and inverse does not exist // in which case zero out the result to indicate this (~b_is_1).if_set_zero_out(v_w, mod_words); /* * We've placed the result in the lowest words of the temp buffer. * So just clear out the other values and then give that buffer to a * BigInt. */ clear_mem(&tmp_mem[mod_words], 4 * mod_words); CT::unpoison(tmp_mem.data(), tmp_mem.size()); BigInt r; r.swap_reg(tmp_mem); return r; } BigInt inverse_mod_pow2(const BigInt& a1, size_t k) { /* * From "A New Algorithm for Inversion mod p^k" by Çetin Kaya Koç * https://eprint.iacr.org/2017/411.pdf sections 5 and 7. */ if(a1.is_even() || k == 0) { return BigInt::zero(); } if(k == 1) { return BigInt::one(); } BigInt a = a1; a.mask_bits(k); BigInt b = BigInt::one(); BigInt X = BigInt::zero(); BigInt newb; const size_t a_words = a.sig_words(); X.grow_to(round_up(k, WordInfo::bits) / WordInfo::bits); b.grow_to(a_words); /* Hide the exact value of k. k is anyway known to word length granularity because of the length of a, so no point in doing more than this. */ const size_t iter = round_up(k, WordInfo::bits); for(size_t i = 0; i != iter; ++i) { const bool b0 = b.get_bit(0); X.conditionally_set_bit(i, b0); newb = b - a; b.ct_cond_assign(b0, newb); b >>= 1; } X.mask_bits(k); CT::unpoison(X); return X; } } // namespace std::optional inverse_mod_general(const BigInt& x, const BigInt& mod) { BOTAN_ARG_CHECK(x > 0, "x must be greater than zero"); BOTAN_ARG_CHECK(mod > 0, "mod must be greater than zero"); BOTAN_ARG_CHECK(x < mod, "x must be less than m"); // Easy case where gcd > 1 so no inverse exists if(x.is_even() && mod.is_even()) { return std::nullopt; } if(mod.is_odd()) { BigInt z = inverse_mod_odd_modulus(x, mod); if(z.is_zero()) { return std::nullopt; } else { return z; } } // If x is even and mod is even we already returned 0 // If x is even and mod is odd we jumped directly to odd-modulus algo BOTAN_ASSERT_NOMSG(x.is_odd()); const size_t mod_lz = low_zero_bits(mod); BOTAN_ASSERT_NOMSG(mod_lz > 0); const size_t mod_bits = mod.bits(); BOTAN_ASSERT_NOMSG(mod_bits > mod_lz); if(mod_lz == mod_bits - 1) { // In this case we are performing an inversion modulo 2^k auto z = inverse_mod_pow2(x, mod_lz); if(z.is_zero()) { return std::nullopt; } else { return z; } } if(mod_lz == 1) { /* Inversion modulo 2*o is an easier special case of CRT This is exactly the main CRT flow below but taking advantage of the fact that any odd number ^-1 modulo 2 is 1. As a result both inv_2k and c can be taken to be 1, m2k is 2, and h is always either 0 or 1, and its value depends only on the low bit of inv_o. This is worth special casing because we generate RSA primes such that phi(n) is of this form. However this only works for keys that we generated in this way; pre-existing keys will typically fall back to the general algorithm below. */ const BigInt o = mod >> 1; const BigInt inv_o = inverse_mod_odd_modulus(ct_modulo(x, o), o); // No modular inverse in this case: if(inv_o == 0) { return std::nullopt; } BigInt h = inv_o; h.ct_cond_add(!inv_o.get_bit(0), o); return h; } /* * In this case we are performing an inversion modulo 2^k*o for * some k >= 2 and some odd (not necessarily prime) integer. * Compute the inversions modulo 2^k and modulo o, then combine them * using CRT, which is possible because 2^k and o are relatively prime. */ const BigInt o = mod >> mod_lz; const BigInt inv_o = inverse_mod_odd_modulus(ct_modulo(x, o), o); const BigInt inv_2k = inverse_mod_pow2(x, mod_lz); // No modular inverse in this case: if(inv_o == 0 || inv_2k == 0) { return std::nullopt; } const BigInt m2k = BigInt::power_of_2(mod_lz); // Compute the CRT parameter const BigInt c = inverse_mod_pow2(o, mod_lz); // This should never happen; o is odd so gcd is 1 and inverse mod 2^k exists BOTAN_ASSERT_NOMSG(!c.is_zero()); // Compute h = c*(inv_2k-inv_o) mod 2^k BigInt h = c * (inv_2k - inv_o); const bool h_neg = h.is_negative(); h.set_sign(BigInt::Positive); h.mask_bits(mod_lz); const bool h_nonzero = h.is_nonzero(); h.ct_cond_assign(h_nonzero && h_neg, m2k - h); // Return result inv_o + h * o h *= o; h += inv_o; return h; } BigInt inverse_mod_secret_prime(const BigInt& x, const BigInt& p) { BOTAN_ARG_CHECK(x.is_positive() && p.is_positive(), "Parameters must be positive"); BOTAN_ARG_CHECK(x < p, "x must be less than p"); BOTAN_ARG_CHECK(p.is_odd() and p > 1, "Primes are odd integers greater than 1"); // TODO possibly use FLT, or the algorithm presented for this case in // Handbook of Elliptic and Hyperelliptic Curve Cryptography return inverse_mod_odd_modulus(x, p); } BigInt inverse_mod_public_prime(const BigInt& x, const BigInt& p) { return inverse_mod_secret_prime(x, p); } BigInt inverse_mod_rsa_public_modulus(const BigInt& x, const BigInt& n) { BOTAN_ARG_CHECK(n.is_positive() && n.is_odd(), "RSA public modulus must be odd and positive"); BOTAN_ARG_CHECK(x.is_positive() && x < n, "Input must be positive and less than RSA modulus"); BigInt z = inverse_mod_odd_modulus(x, n); BOTAN_ASSERT(!z.is_zero(), "Accidentally factored the public modulus"); // whoops return z; } namespace { uint64_t barrett_mod_65537(uint64_t x) { constexpr uint64_t mod = 65537; constexpr size_t s = 32; constexpr uint64_t c = (static_cast(1) << s) / mod; uint64_t q = (x * c) >> s; uint64_t r = x - q * mod; auto r_gt_mod = CT::Mask::is_gte(r, mod); return r - r_gt_mod.if_set_return(mod); } word inverse_mod_65537(word x) { // Need 64-bit here as accum*accum exceeds 32-bit if accum=0x10000 uint64_t accum = 1; // Basic square and multiply, with all bits of exponent set for(size_t i = 0; i != 16; ++i) { accum = barrett_mod_65537(accum * accum); accum = barrett_mod_65537(accum * x); } return static_cast(accum); } } // namespace BigInt compute_rsa_secret_exponent(const BigInt& e, const BigInt& phi_n, const BigInt& p, const BigInt& q) { /* * Both p - 1 and q - 1 are chosen to be relatively prime to e. Thus * phi(n), the least common multiple of p - 1 and q - 1, is also * relatively prime to e. */ BOTAN_DEBUG_ASSERT(gcd(e, phi_n) == 1); if(e == 65537) { /* Arazi's algorithm for inversion of prime x modulo a non-prime "GCD-Free Algorithms for Computing Modular Inverses" Marc Joye and Pascal Paillier, CHES 2003 (LNCS 2779) https://marcjoye.github.io/papers/JP03gcdfree.pdf This could be extended to cover other cases such as e=3 or e=17 but these days 65537 is the standard RSA public exponent */ constexpr word e_w = 65537; const word phi_mod_e = ct_mod_word(phi_n, e_w); const word inv_phi_mod_e = inverse_mod_65537(phi_mod_e); BOTAN_DEBUG_ASSERT((inv_phi_mod_e * phi_mod_e) % e_w == 1); const word neg_inv_phi_mod_e = (e_w - inv_phi_mod_e); return ct_divide_word((phi_n * neg_inv_phi_mod_e) + 1, e_w); } else { // TODO possibly do something else taking advantage of the special structure here BOTAN_UNUSED(p, q); if(auto d = inverse_mod_general(e, phi_n)) { return *d; } else { throw Internal_Error("Failed to compute RSA secret exponent"); } } } BigInt inverse_mod(const BigInt& n, const BigInt& mod) { BOTAN_ARG_CHECK(!mod.is_zero(), "modulus cannot be zero"); BOTAN_ARG_CHECK(!mod.is_negative(), "modulus cannot be negative"); BOTAN_ARG_CHECK(!n.is_negative(), "value cannot be negative"); if(n.is_zero() || (n.is_even() && mod.is_even())) { return BigInt::zero(); } if(n >= mod) { return inverse_mod(ct_modulo(n, mod), mod); } return inverse_mod_general(n, mod).value_or(BigInt::zero()); } } // namespace Botan