#![no_std] //! The `array-init` crate allows you to initialize arrays //! with an initializer closure that will be called //! once for each element until the array is filled. //! //! This way you do not need to default-fill an array //! before running initializers. Rust currently only //! lets you either specify all initializers at once, //! individually (`[a(), b(), c(), ...]`), or specify //! one initializer for a `Copy` type (`[a(); N]`), //! which will be called once with the result copied over. //! //! Care is taken not to leak memory shall the initialization //! fail. //! //! # Examples: //! ```rust //! # #![allow(unused)] //! # extern crate array_init; //! # //! // Initialize an array of length 50 containing //! // successive squares //! //! let arr: [u32; 50] = array_init::array_init(|i: usize| (i * i) as u32); //! //! // Initialize an array from an iterator //! // producing an array of [1,2,3,4] repeated //! //! let four = [1,2,3,4]; //! let mut iter = four.iter().copied().cycle(); //! let arr: [u32; 50] = array_init::from_iter(iter).unwrap(); //! //! // Closures can also mutate state. We guarantee that they will be called //! // in order from lower to higher indices. //! //! let mut last = 1u64; //! let mut secondlast = 0; //! let fibonacci: [u64; 50] = array_init::array_init(|_| { //! let this = last + secondlast; //! secondlast = last; //! last = this; //! this //! }); //! ``` use ::core::{ mem::{self, MaybeUninit}, ptr, slice, }; #[inline] /// Initialize an array given an initializer expression. /// /// The initializer is given the index of the element. It is allowed /// to mutate external state; we will always initialize the elements in order. /// /// # Examples /// /// ```rust /// # #![allow(unused)] /// # extern crate array_init; /// # /// // Initialize an array of length 50 containing /// // successive squares /// let arr: [usize; 50] = array_init::array_init(|i| i * i); /// /// assert!(arr.iter().enumerate().all(|(i, &x)| x == i * i)); /// ``` pub fn array_init(mut initializer: F) -> [T; N] where F: FnMut(usize) -> T, { enum Unreachable {} try_array_init( // monomorphise into an infallible version move |i| -> Result { Ok(initializer(i)) }, ) .unwrap_or_else( // zero-cost unwrap |unreachable| match unreachable { /* ! */ }, ) } #[inline] /// Initialize an array given an iterator /// /// We will iterate until the array is full or the iterator is exhausted. Returns /// `None` if the iterator is exhausted before we can fill the array. /// /// - Once the array is full, extra elements from the iterator (if any) /// won't be consumed. /// /// # Examples /// /// ```rust /// # #![allow(unused)] /// # extern crate array_init; /// # /// // Initialize an array from an iterator /// // producing an array of [1,2,3,4] repeated /// /// let four = [1,2,3,4]; /// let mut iter = four.iter().copied().cycle(); /// let arr: [u32; 10] = array_init::from_iter(iter).unwrap(); /// assert_eq!(arr, [1, 2, 3, 4, 1, 2, 3, 4, 1, 2]); /// ``` pub fn from_iter(iterable: Iterable) -> Option<[T; N]> where Iterable: IntoIterator, { try_array_init_impl::<_, _, T, N, 1>({ let mut iterator = iterable.into_iter(); move |_| iterator.next().ok_or(()) }) .ok() } #[inline] /// Initialize an array in reverse given an iterator /// /// We will iterate until the array is full or the iterator is exhausted. Returns /// `None` if the iterator is exhausted before we can fill the array. /// /// - Once the array is full, extra elements from the iterator (if any) /// won't be consumed. /// /// # Examples /// /// ```rust /// # #![allow(unused)] /// # extern crate array_init; /// # /// // Initialize an array from an iterator /// // producing an array of [4,3,2,1] repeated, finishing with 1. /// /// let four = [1,2,3,4]; /// let mut iter = four.iter().copied().cycle(); /// let arr: [u32; 10] = array_init::from_iter_reversed(iter).unwrap(); /// assert_eq!(arr, [2, 1, 4, 3, 2, 1, 4, 3, 2, 1]); /// ``` pub fn from_iter_reversed(iterable: Iterable) -> Option<[T; N]> where Iterable: IntoIterator, { try_array_init_impl::<_, _, T, N, -1>({ let mut iterator = iterable.into_iter(); move |_| iterator.next().ok_or(()) }) .ok() } #[inline] /// Initialize an array given an initializer expression that may fail. /// /// The initializer is given the index (between 0 and `N - 1` included) of the element, and returns a `Result,`. It is allowed /// to mutate external state; we will always initialize from lower to higher indices. /// /// # Examples /// /// ```rust /// # #![allow(unused)] /// # extern crate array_init; /// # /// #[derive(PartialEq,Eq,Debug)] /// struct DivideByZero; /// /// fn inv(i : usize) -> Result { /// if i == 0 { /// Err(DivideByZero) /// } else { /// Ok(1./(i as f64)) /// } /// } /// /// // If the initializer does not fail, we get an initialized array /// let arr: [f64; 3] = array_init::try_array_init(|i| inv(3-i)).unwrap(); /// assert_eq!(arr,[1./3., 1./2., 1./1.]); /// /// // The initializer fails /// let res : Result<[f64;4], DivideByZero> = array_init::try_array_init(|i| inv(3-i)); /// assert_eq!(res,Err(DivideByZero)); /// ``` pub fn try_array_init(initializer: F) -> Result<[T; N], Err> where F: FnMut(usize) -> Result, { try_array_init_impl::(initializer) } #[inline] /// Initialize an array given a source array and a mapping expression. The size of the source array /// is the same as the size of the returned array. /// /// The mapper is given an element from the source array and maps it to an element in the /// destination. /// /// # Examples /// /// ```rust /// # #![allow(unused)] /// # extern crate array_init; /// # /// // Initialize an array of length 50 containing successive squares /// let arr: [usize; 50] = array_init::array_init(|i| i * i); /// /// // Map each usize element to a u64 element. /// let u64_arr: [u64; 50] = array_init::map_array_init(&arr, |element| *element as u64); /// /// assert!(u64_arr.iter().enumerate().all(|(i, &x)| x == (i * i) as u64)); /// ``` pub fn map_array_init(source: &[U; N], mut mapper: M) -> [T; N] where M: FnMut(&U) -> T, { // # Safety // - The array size is known at compile time so we are certain that both the source and // desitination have the same size. If the two arrays are of the same size we know that a // valid index for one would be a valid index for the other. array_init(|index| unsafe { mapper(source.get_unchecked(index)) }) } #[inline] fn try_array_init_impl( mut initializer: F, ) -> Result<[T; N], Err> where F: FnMut(usize) -> Result, { // The implementation differentiates two cases: // A) `T` does not need to be dropped. Even if the initializer panics // or returns `Err` we will not leak memory. // B) `T` needs to be dropped. We must keep track of which elements have // been initialized so far, and drop them if we encounter a panic or `Err` midway. if !mem::needs_drop::() { let mut array: MaybeUninit<[T; N]> = MaybeUninit::uninit(); // pointer to array = *mut [T; N] <-> *mut T = pointer to first element let mut ptr_i = array.as_mut_ptr() as *mut T; // # Safety // // - for D > 0, we are within the array since we start from the // beginning of the array, and we have `0 <= i < N`. // - for D < 0, we start at the end of the array and go back one // place before writing, going back N times in total, finishing // at the start of the array. unsafe { if D < 0 { ptr_i = ptr_i.add(N); } for i in 0..N { let value_i = initializer(i)?; // We overwrite *ptr_i previously undefined value without reading or dropping it. if D < 0 { ptr_i = ptr_i.sub(1); } ptr_i.write(value_i); if D > 0 { ptr_i = ptr_i.add(1); } } Ok(array.assume_init()) } } else { // else: `mem::needs_drop::()` /// # Safety /// /// - `base_ptr[.. initialized_count]` must be a slice of init elements... /// /// - ... that must be sound to `ptr::drop_in_place` if/when /// `UnsafeDropSliceGuard` is dropped: "symbolic ownership" struct UnsafeDropSliceGuard { base_ptr: *mut Item, initialized_count: usize, } impl Drop for UnsafeDropSliceGuard { fn drop(self: &'_ mut Self) { unsafe { // # Safety // // - the contract of the struct guarantees that this is sound ptr::drop_in_place(slice::from_raw_parts_mut( self.base_ptr, self.initialized_count, )); } } } // If the `initializer(i)` call panics, `panic_guard` is dropped, // dropping `array[.. initialized_count]` => no memory leak! // // # Safety // // 1. - For D > 0, by construction, array[.. initiliazed_count] only // contains init elements, thus there is no risk of dropping // uninit data; // - For D < 0, by construction, array[N - initialized_count..] only // contains init elements. // // 2. - for D > 0, we are within the array since we start from the // beginning of the array, and we have `0 <= i < N`. // - for D < 0, we start at the end of the array and go back one // place before writing, going back N times in total, finishing // at the start of the array. // unsafe { let mut array: MaybeUninit<[T; N]> = MaybeUninit::uninit(); // pointer to array = *mut [T; N] <-> *mut T = pointer to first element let mut ptr_i = array.as_mut_ptr() as *mut T; if D < 0 { ptr_i = ptr_i.add(N); } let mut panic_guard = UnsafeDropSliceGuard { base_ptr: ptr_i, initialized_count: 0, }; for i in 0..N { // Invariant: `i` elements have already been initialized panic_guard.initialized_count = i; // If this panics or fails, `panic_guard` is dropped, thus // dropping the elements in `base_ptr[.. i]` for D > 0 or // `base_ptr[N - i..]` for D < 0. let value_i = initializer(i)?; // this cannot panic // the previously uninit value is overwritten without being read or dropped if D < 0 { ptr_i = ptr_i.sub(1); panic_guard.base_ptr = ptr_i; } ptr_i.write(value_i); if D > 0 { ptr_i = ptr_i.add(1); } } // From now on, the code can no longer `panic!`, let's take the // symbolic ownership back mem::forget(panic_guard); Ok(array.assume_init()) } } } #[cfg(test)] mod tests { use super::*; #[test] fn seq() { let seq: [usize; 5] = array_init(|i| i); assert_eq!(&[0, 1, 2, 3, 4], &seq); } #[test] fn array_from_iter() { let array = [0, 1, 2, 3, 4]; let seq: [usize; 5] = from_iter(array.iter().copied()).unwrap(); assert_eq!(array, seq,); } #[test] fn array_init_no_drop() { DropChecker::with(|drop_checker| { let result: Result<[_; 5], ()> = try_array_init(|i| { if i < 3 { Ok(drop_checker.new_element()) } else { Err(()) } }); assert!(result.is_err()); }); } #[test] fn from_iter_no_drop() { DropChecker::with(|drop_checker| { let iterator = (0..3).map(|_| drop_checker.new_element()); let result: Option<[_; 5]> = from_iter(iterator); assert!(result.is_none()); }); } #[test] fn from_iter_reversed_no_drop() { DropChecker::with(|drop_checker| { let iterator = (0..3).map(|_| drop_checker.new_element()); let result: Option<[_; 5]> = from_iter_reversed(iterator); assert!(result.is_none()); }); } #[test] fn test_513_seq() { let seq: [usize; 513] = array_init(|i| i); assert_eq!( [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512 ], seq ); } use self::drop_checker::DropChecker; mod drop_checker { use ::core::cell::Cell; pub(super) struct DropChecker { slots: [Cell; 512], next_uninit_slot: Cell, } pub(super) struct Element<'drop_checker> { slot: &'drop_checker Cell, } impl Drop for Element<'_> { fn drop(self: &'_ mut Self) { assert!(self.slot.replace(false), "Double free!"); } } impl DropChecker { pub(super) fn with(f: impl FnOnce(&Self)) { let drop_checker = Self::new(); f(&drop_checker); drop_checker.assert_no_leaks(); } pub(super) fn new_element(self: &'_ Self) -> Element<'_> { let i = self.next_uninit_slot.get(); self.next_uninit_slot.set(i + 1); self.slots[i].set(true); Element { slot: &self.slots[i], } } fn new() -> Self { Self { slots: crate::array_init(|_| Cell::new(false)), next_uninit_slot: Cell::new(0), } } fn assert_no_leaks(self: Self) { let leak_count: usize = self.slots[..self.next_uninit_slot.get()] .iter() .map(|slot| usize::from(slot.get() as u8)) .sum(); assert_eq!(leak_count, 0, "{} elements leaked", leak_count); } } } }