// Copyright 2018 Developers of the Rand project. // Copyright 2013 The Rust Project Developers. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The normal and derived distributions. use crate::utils::ziggurat; use num_traits::Float; use crate::{ziggurat_tables, Distribution, Open01}; use rand::Rng; use core::fmt; /// Samples floating-point numbers according to the normal distribution /// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to /// `Normal::new(0.0, 1.0)` but faster. /// /// See `Normal` for the general normal distribution. /// /// Implemented via the ZIGNOR variant[^1] of the Ziggurat method. /// /// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to /// Generate Normal Random Samples*]( /// https://www.doornik.com/research/ziggurat.pdf). /// Nuffield College, Oxford /// /// # Example /// ``` /// use rand::prelude::*; /// use rand_distr::StandardNormal; /// /// let val: f64 = thread_rng().sample(StandardNormal); /// println!("{}", val); /// ``` #[derive(Clone, Copy, Debug)] #[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))] pub struct StandardNormal; impl Distribution for StandardNormal { #[inline] fn sample(&self, rng: &mut R) -> f32 { // TODO: use optimal 32-bit implementation let x: f64 = self.sample(rng); x as f32 } } impl Distribution for StandardNormal { fn sample(&self, rng: &mut R) -> f64 { #[inline] fn pdf(x: f64) -> f64 { (-x * x / 2.0).exp() } #[inline] fn zero_case(rng: &mut R, u: f64) -> f64 { // compute a random number in the tail by hand // strange initial conditions, because the loop is not // do-while, so the condition should be true on the first // run, they get overwritten anyway (0 < 1, so these are // good). let mut x = 1.0f64; let mut y = 0.0f64; while -2.0 * y < x * x { let x_: f64 = rng.sample(Open01); let y_: f64 = rng.sample(Open01); x = x_.ln() / ziggurat_tables::ZIG_NORM_R; y = y_.ln(); } if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x } } ziggurat( rng, true, // this is symmetric &ziggurat_tables::ZIG_NORM_X, &ziggurat_tables::ZIG_NORM_F, pdf, zero_case, ) } } /// The normal distribution `N(mean, std_dev**2)`. /// /// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`] /// for more details. /// /// Note that [`StandardNormal`] is an optimised implementation for mean 0, and /// standard deviation 1. /// /// # Example /// /// ``` /// use rand_distr::{Normal, Distribution}; /// /// // mean 2, standard deviation 3 /// let normal = Normal::new(2.0, 3.0).unwrap(); /// let v = normal.sample(&mut rand::thread_rng()); /// println!("{} is from a N(2, 9) distribution", v) /// ``` /// /// [`StandardNormal`]: crate::StandardNormal #[derive(Clone, Copy, Debug)] #[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))] pub struct Normal where F: Float, StandardNormal: Distribution { mean: F, std_dev: F, } /// Error type returned from `Normal::new` and `LogNormal::new`. #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum Error { /// The mean value is too small (log-normal samples must be positive) MeanTooSmall, /// The standard deviation or other dispersion parameter is not finite. BadVariance, } impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match self { Error::MeanTooSmall => "mean < 0 or NaN in log-normal distribution", Error::BadVariance => "variation parameter is non-finite in (log)normal distribution", }) } } #[cfg(feature = "std")] #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))] impl std::error::Error for Error {} impl Normal where F: Float, StandardNormal: Distribution { /// Construct, from mean and standard deviation /// /// Parameters: /// /// - mean (`μ`, unrestricted) /// - standard deviation (`σ`, must be finite) #[inline] pub fn new(mean: F, std_dev: F) -> Result, Error> { if !std_dev.is_finite() { return Err(Error::BadVariance); } Ok(Normal { mean, std_dev }) } /// Construct, from mean and coefficient of variation /// /// Parameters: /// /// - mean (`μ`, unrestricted) /// - coefficient of variation (`cv = abs(σ / μ)`) #[inline] pub fn from_mean_cv(mean: F, cv: F) -> Result, Error> { if !cv.is_finite() || cv < F::zero() { return Err(Error::BadVariance); } let std_dev = cv * mean; Ok(Normal { mean, std_dev }) } /// Sample from a z-score /// /// This may be useful for generating correlated samples `x1` and `x2` /// from two different distributions, as follows. /// ``` /// # use rand::prelude::*; /// # use rand_distr::{Normal, StandardNormal}; /// let mut rng = thread_rng(); /// let z = StandardNormal.sample(&mut rng); /// let x1 = Normal::new(0.0, 1.0).unwrap().from_zscore(z); /// let x2 = Normal::new(2.0, -3.0).unwrap().from_zscore(z); /// ``` #[inline] pub fn from_zscore(&self, zscore: F) -> F { self.mean + self.std_dev * zscore } /// Returns the mean (`μ`) of the distribution. pub fn mean(&self) -> F { self.mean } /// Returns the standard deviation (`σ`) of the distribution. pub fn std_dev(&self) -> F { self.std_dev } } impl Distribution for Normal where F: Float, StandardNormal: Distribution { fn sample(&self, rng: &mut R) -> F { self.from_zscore(rng.sample(StandardNormal)) } } /// The log-normal distribution `ln N(mean, std_dev**2)`. /// /// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)` /// distributed. /// /// # Example /// /// ``` /// use rand_distr::{LogNormal, Distribution}; /// /// // mean 2, standard deviation 3 /// let log_normal = LogNormal::new(2.0, 3.0).unwrap(); /// let v = log_normal.sample(&mut rand::thread_rng()); /// println!("{} is from an ln N(2, 9) distribution", v) /// ``` #[derive(Clone, Copy, Debug)] #[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))] pub struct LogNormal where F: Float, StandardNormal: Distribution { norm: Normal, } impl LogNormal where F: Float, StandardNormal: Distribution { /// Construct, from (log-space) mean and standard deviation /// /// Parameters are the "standard" log-space measures (these are the mean /// and standard deviation of the logarithm of samples): /// /// - `mu` (`μ`, unrestricted) is the mean of the underlying distribution /// - `sigma` (`σ`, must be finite) is the standard deviation of the /// underlying Normal distribution #[inline] pub fn new(mu: F, sigma: F) -> Result, Error> { let norm = Normal::new(mu, sigma)?; Ok(LogNormal { norm }) } /// Construct, from (linear-space) mean and coefficient of variation /// /// Parameters are linear-space measures: /// /// - mean (`μ > 0`) is the (real) mean of the distribution /// - coefficient of variation (`cv = σ / μ`, requiring `cv ≥ 0`) is a /// standardized measure of dispersion /// /// As a special exception, `μ = 0, cv = 0` is allowed (samples are `-inf`). #[inline] pub fn from_mean_cv(mean: F, cv: F) -> Result, Error> { if cv == F::zero() { let mu = mean.ln(); let norm = Normal::new(mu, F::zero()).unwrap(); return Ok(LogNormal { norm }); } if !(mean > F::zero()) { return Err(Error::MeanTooSmall); } if !(cv >= F::zero()) { return Err(Error::BadVariance); } // Using X ~ lognormal(μ, σ), CV² = Var(X) / E(X)² // E(X) = exp(μ + σ² / 2) = exp(μ) × exp(σ² / 2) // Var(X) = exp(2μ + σ²)(exp(σ²) - 1) = E(X)² × (exp(σ²) - 1) // but Var(X) = (CV × E(X))² so CV² = exp(σ²) - 1 // thus σ² = log(CV² + 1) // and exp(μ) = E(X) / exp(σ² / 2) = E(X) / sqrt(CV² + 1) let a = F::one() + cv * cv; // e let mu = F::from(0.5).unwrap() * (mean * mean / a).ln(); let sigma = a.ln().sqrt(); let norm = Normal::new(mu, sigma)?; Ok(LogNormal { norm }) } /// Sample from a z-score /// /// This may be useful for generating correlated samples `x1` and `x2` /// from two different distributions, as follows. /// ``` /// # use rand::prelude::*; /// # use rand_distr::{LogNormal, StandardNormal}; /// let mut rng = thread_rng(); /// let z = StandardNormal.sample(&mut rng); /// let x1 = LogNormal::from_mean_cv(3.0, 1.0).unwrap().from_zscore(z); /// let x2 = LogNormal::from_mean_cv(2.0, 4.0).unwrap().from_zscore(z); /// ``` #[inline] pub fn from_zscore(&self, zscore: F) -> F { self.norm.from_zscore(zscore).exp() } } impl Distribution for LogNormal where F: Float, StandardNormal: Distribution { #[inline] fn sample(&self, rng: &mut R) -> F { self.norm.sample(rng).exp() } } #[cfg(test)] mod tests { use super::*; #[test] fn test_normal() { let norm = Normal::new(10.0, 10.0).unwrap(); let mut rng = crate::test::rng(210); for _ in 0..1000 { norm.sample(&mut rng); } } #[test] fn test_normal_cv() { let norm = Normal::from_mean_cv(1024.0, 1.0 / 256.0).unwrap(); assert_eq!((norm.mean, norm.std_dev), (1024.0, 4.0)); } #[test] fn test_normal_invalid_sd() { assert!(Normal::from_mean_cv(10.0, -1.0).is_err()); } #[test] fn test_log_normal() { let lnorm = LogNormal::new(10.0, 10.0).unwrap(); let mut rng = crate::test::rng(211); for _ in 0..1000 { lnorm.sample(&mut rng); } } #[test] fn test_log_normal_cv() { let lnorm = LogNormal::from_mean_cv(0.0, 0.0).unwrap(); assert_eq!((lnorm.norm.mean, lnorm.norm.std_dev), (-core::f64::INFINITY, 0.0)); let lnorm = LogNormal::from_mean_cv(1.0, 0.0).unwrap(); assert_eq!((lnorm.norm.mean, lnorm.norm.std_dev), (0.0, 0.0)); let e = core::f64::consts::E; let lnorm = LogNormal::from_mean_cv(e.sqrt(), (e - 1.0).sqrt()).unwrap(); assert_almost_eq!(lnorm.norm.mean, 0.0, 2e-16); assert_almost_eq!(lnorm.norm.std_dev, 1.0, 2e-16); let lnorm = LogNormal::from_mean_cv(e.powf(1.5), (e - 1.0).sqrt()).unwrap(); assert_almost_eq!(lnorm.norm.mean, 1.0, 1e-15); assert_eq!(lnorm.norm.std_dev, 1.0); } #[test] fn test_log_normal_invalid_sd() { assert!(LogNormal::from_mean_cv(-1.0, 1.0).is_err()); assert!(LogNormal::from_mean_cv(0.0, 1.0).is_err()); assert!(LogNormal::from_mean_cv(1.0, -1.0).is_err()); } }