// Copyright 2023 The Fuchsia Authors // // Licensed under a BSD-style license , Apache License, Version 2.0 // , or the MIT // license , at your option. // This file may not be copied, modified, or distributed except according to // those terms. use core::{fmt, hash::Hash}; use super::*; /// A type with no alignment requirement. /// /// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign` /// has the same size and bit validity as `T`, but not necessarily the same /// alignment [or ABI]. This is useful if a type with an alignment requirement /// needs to be read from a chunk of memory which provides no alignment /// guarantees. /// /// Since `Unalign` has no alignment requirement, the inner `T` may not be /// properly aligned in memory. There are five ways to access the inner `T`: /// - by value, using [`get`] or [`into_inner`] /// - by reference inside of a callback, using [`update`] /// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can /// fail if the `Unalign` does not satisfy `T`'s alignment requirement at /// runtime /// - unsafely by reference, using [`deref_unchecked`] or /// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that /// the `Unalign` satisfies `T`'s alignment requirement /// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or /// [`DerefMut::deref_mut`] /// /// [or ABI]: https://github.com/google/zerocopy/issues/164 /// [`get`]: Unalign::get /// [`into_inner`]: Unalign::into_inner /// [`update`]: Unalign::update /// [`try_deref`]: Unalign::try_deref /// [`try_deref_mut`]: Unalign::try_deref_mut /// [`deref_unchecked`]: Unalign::deref_unchecked /// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked /// /// # Example /// /// In this example, we need `EthernetFrame` to have no alignment requirement - /// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so /// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s /// alignment requirement so that `EthernetFrame` has no alignment requirement /// and can implement `Unaligned`. /// /// ```rust /// use zerocopy::*; /// # use zerocopy_derive::*; /// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]); /// /// # #[derive(PartialEq, Copy, Clone, Debug)] /// #[derive(TryFromBytes, KnownLayout, Immutable)] /// #[repr(u16)] /// enum EtherType { /// Ipv4 = 0x0800u16.to_be(), /// Arp = 0x0806u16.to_be(), /// Ipv6 = 0x86DDu16.to_be(), /// # /* /// ... /// # */ /// } /// /// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)] /// #[repr(C)] /// struct EthernetFrame { /// src: Mac, /// dst: Mac, /// ethertype: Unalign, /// payload: [u8], /// } /// /// let bytes = &[ /// # 0, 1, 2, 3, 4, 5, /// # 6, 7, 8, 9, 10, 11, /// # /* /// ... /// # */ /// 0x86, 0xDD, // EtherType /// 0xDE, 0xAD, 0xBE, 0xEF // Payload /// ][..]; /// /// // PANICS: Guaranteed not to panic because `bytes` is of the right /// // length, has the right contents, and `EthernetFrame` has no /// // alignment requirement. /// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap(); /// /// assert_eq!(packet.ethertype.get(), EtherType::Ipv6); /// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]); /// ``` /// /// # Safety /// /// `Unalign` is guaranteed to have the same size and bit validity as `T`, /// and to have [`UnsafeCell`]s covering the same byte ranges as `T`. /// `Unalign` is guaranteed to have alignment 1. // NOTE: This type is sound to use with types that need to be dropped. The // reason is that the compiler-generated drop code automatically moves all // values to aligned memory slots before dropping them in-place. This is not // well-documented, but it's hinted at in places like [1] and [2]. However, this // also means that `T` must be `Sized`; unless something changes, we can never // support unsized `T`. [3] // // [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646 // [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323 // [3] https://github.com/google/zerocopy/issues/209 #[allow(missing_debug_implementations)] #[derive(Default, Copy)] #[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))] #[repr(C, packed)] pub struct Unalign(T); // We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not // smart enough to realize that `Unalign` is always sized and thus emits a // `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive. impl_known_layout!(T => Unalign); // SAFETY: // - `Unalign` promises to have alignment 1, and so we don't require that `T: // Unaligned`. // - `Unalign` has the same bit validity as `T`, and so it is `FromZeros`, // `FromBytes`, or `IntoBytes` exactly when `T` is as well. // - `Immutable`: `Unalign` has the same fields as `T`, so it contains // `UnsafeCell`s exactly when `T` does. // - `TryFromBytes`: `Unalign` has the same the same bit validity as `T`, so // `T::is_bit_valid` is a sound implementation of `is_bit_valid`. #[allow(unused_unsafe)] // Unused when `feature = "derive"`. const _: () = unsafe { impl_or_verify!(T => Unaligned for Unalign); impl_or_verify!(T: Immutable => Immutable for Unalign); impl_or_verify!( T: TryFromBytes => TryFromBytes for Unalign; |c| T::is_bit_valid(c.transmute()) ); impl_or_verify!(T: FromZeros => FromZeros for Unalign); impl_or_verify!(T: FromBytes => FromBytes for Unalign); impl_or_verify!(T: IntoBytes => IntoBytes for Unalign); }; // Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be // aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound // is not sufficient to implement `Clone` for `Unalign`. impl Clone for Unalign { #[inline(always)] fn clone(&self) -> Unalign { *self } } impl Unalign { /// Constructs a new `Unalign`. #[inline(always)] pub const fn new(val: T) -> Unalign { Unalign(val) } /// Consumes `self`, returning the inner `T`. #[inline(always)] pub const fn into_inner(self) -> T { // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size // and bit validity as `T`. // // We do this instead of just destructuring in order to prevent // `Unalign`'s `Drop::drop` from being run, since dropping is not // supported in `const fn`s. // // FIXME(https://github.com/rust-lang/rust/issues/73255): Destructure // instead of using unsafe. unsafe { crate::util::transmute_unchecked(self) } } /// Attempts to return a reference to the wrapped `T`, failing if `self` is /// not properly aligned. /// /// If `self` does not satisfy `align_of::()`, then `try_deref` returns /// `Err`. /// /// If `T: Unaligned`, then `Unalign` implements [`Deref`], and callers /// may prefer [`Deref::deref`], which is infallible. #[inline(always)] pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> { let inner = Ptr::from_ref(self).transmute(); match inner.try_into_aligned() { Ok(aligned) => Ok(aligned.as_ref()), Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())), } } /// Attempts to return a mutable reference to the wrapped `T`, failing if /// `self` is not properly aligned. /// /// If `self` does not satisfy `align_of::()`, then `try_deref` returns /// `Err`. /// /// If `T: Unaligned`, then `Unalign` implements [`DerefMut`], and /// callers may prefer [`DerefMut::deref_mut`], which is infallible. #[inline(always)] pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> { let inner = Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>(); match inner.try_into_aligned() { Ok(aligned) => Ok(aligned.as_mut()), Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())), } } /// Returns a reference to the wrapped `T` without checking alignment. /// /// If `T: Unaligned`, then `Unalign` implements[ `Deref`], and callers /// may prefer [`Deref::deref`], which is safe. /// /// # Safety /// /// The caller must guarantee that `self` satisfies `align_of::()`. #[inline(always)] pub const unsafe fn deref_unchecked(&self) -> &T { // SAFETY: `Unalign` is `repr(transparent)`, so there is a valid `T` // at the same memory location as `self`. It has no alignment guarantee, // but the caller has promised that `self` is properly aligned, so we // know that it is sound to create a reference to `T` at this memory // location. // // We use `mem::transmute` instead of `&*self.get_ptr()` because // dereferencing pointers is not stable in `const` on our current MSRV // (1.56 as of this writing). unsafe { mem::transmute(self) } } /// Returns a mutable reference to the wrapped `T` without checking /// alignment. /// /// If `T: Unaligned`, then `Unalign` implements[ `DerefMut`], and /// callers may prefer [`DerefMut::deref_mut`], which is safe. /// /// # Safety /// /// The caller must guarantee that `self` satisfies `align_of::()`. #[inline(always)] pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T { // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at // the same memory location as `self`. It has no alignment guarantee, // but the caller has promised that `self` is properly aligned, so we // know that the pointer itself is aligned, and thus that it is sound to // create a reference to a `T` at this memory location. unsafe { &mut *self.get_mut_ptr() } } /// Gets an unaligned raw pointer to the inner `T`. /// /// # Safety /// /// The returned raw pointer is not necessarily aligned to /// `align_of::()`. Most functions which operate on raw pointers require /// those pointers to be aligned, so calling those functions with the result /// of `get_ptr` will result in undefined behavior if alignment is not /// guaranteed using some out-of-band mechanism. In general, the only /// functions which are safe to call with this pointer are those which are /// explicitly documented as being sound to use with an unaligned pointer, /// such as [`read_unaligned`]. /// /// Even if the caller is permitted to mutate `self` (e.g. they have /// ownership or a mutable borrow), it is not guaranteed to be sound to /// write through the returned pointer. If writing is required, prefer /// [`get_mut_ptr`] instead. /// /// [`read_unaligned`]: core::ptr::read_unaligned /// [`get_mut_ptr`]: Unalign::get_mut_ptr #[inline(always)] pub const fn get_ptr(&self) -> *const T { ptr::addr_of!(self.0) } /// Gets an unaligned mutable raw pointer to the inner `T`. /// /// # Safety /// /// The returned raw pointer is not necessarily aligned to /// `align_of::()`. Most functions which operate on raw pointers require /// those pointers to be aligned, so calling those functions with the result /// of `get_ptr` will result in undefined behavior if alignment is not /// guaranteed using some out-of-band mechanism. In general, the only /// functions which are safe to call with this pointer are those which are /// explicitly documented as being sound to use with an unaligned pointer, /// such as [`read_unaligned`]. /// /// [`read_unaligned`]: core::ptr::read_unaligned // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`. #[inline(always)] pub fn get_mut_ptr(&mut self) -> *mut T { ptr::addr_of_mut!(self.0) } /// Sets the inner `T`, dropping the previous value. // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`. #[inline(always)] pub fn set(&mut self, t: T) { *self = Unalign::new(t); } /// Updates the inner `T` by calling a function on it. /// /// If [`T: Unaligned`], then `Unalign` implements [`DerefMut`], and that /// impl should be preferred over this method when performing updates, as it /// will usually be faster and more ergonomic. /// /// For large types, this method may be expensive, as it requires copying /// `2 * size_of::()` bytes. \[1\] /// /// \[1\] Since the inner `T` may not be aligned, it would not be sound to /// invoke `f` on it directly. Instead, `update` moves it into a /// properly-aligned location in the local stack frame, calls `f` on it, and /// then moves it back to its original location in `self`. /// /// [`T: Unaligned`]: Unaligned #[inline] pub fn update O>(&mut self, f: F) -> O { if mem::align_of::() == 1 { // While we advise callers to use `DerefMut` when `T: Unaligned`, // not all callers will be able to guarantee `T: Unaligned` in all // cases. In particular, callers who are themselves providing an API // which is generic over `T` may sometimes be called by *their* // callers with `T` such that `align_of::() == 1`, but cannot // guarantee this in the general case. Thus, this optimization may // sometimes be helpful. // SAFETY: Since `T`'s alignment is 1, `self` satisfies its // alignment by definition. let t = unsafe { self.deref_mut_unchecked() }; return f(t); } // On drop, this moves `copy` out of itself and uses `ptr::write` to // overwrite `slf`. struct WriteBackOnDrop { copy: ManuallyDrop, slf: *mut Unalign, } impl Drop for WriteBackOnDrop { fn drop(&mut self) { // SAFETY: We never use `copy` again as required by // `ManuallyDrop::take`. let copy = unsafe { ManuallyDrop::take(&mut self.copy) }; // SAFETY: `slf` is the raw pointer value of `self`. We know it // is valid for writes and properly aligned because `self` is a // mutable reference, which guarantees both of these properties. unsafe { ptr::write(self.slf, Unalign::new(copy)) }; } } // SAFETY: We know that `self` is valid for reads, properly aligned, and // points to an initialized `Unalign` because it is a mutable // reference, which guarantees all of these properties. // // Since `T: !Copy`, it would be unsound in the general case to allow // both the original `Unalign` and the copy to be used by safe code. // We guarantee that the copy is used to overwrite the original in the // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is // called before any other safe code executes, soundness is upheld. // While this method can terminate in two ways (by returning normally or // by unwinding due to a panic in `f`), in both cases, `write_back` is // dropped - and its `drop` called - before any other safe code can // execute. let copy = unsafe { ptr::read(self) }.into_inner(); let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self }; let ret = f(&mut write_back.copy); drop(write_back); ret } } impl Unalign { /// Gets a copy of the inner `T`. // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`. #[inline(always)] pub fn get(&self) -> T { let Unalign(val) = *self; val } } impl Deref for Unalign { type Target = T; #[inline(always)] fn deref(&self) -> &T { Ptr::from_ref(self).transmute().bikeshed_recall_aligned().as_ref() } } impl DerefMut for Unalign { #[inline(always)] fn deref_mut(&mut self) -> &mut T { Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>().bikeshed_recall_aligned().as_mut() } } impl PartialOrd> for Unalign { #[inline(always)] fn partial_cmp(&self, other: &Unalign) -> Option { PartialOrd::partial_cmp(self.deref(), other.deref()) } } impl Ord for Unalign { #[inline(always)] fn cmp(&self, other: &Unalign) -> Ordering { Ord::cmp(self.deref(), other.deref()) } } impl PartialEq> for Unalign { #[inline(always)] fn eq(&self, other: &Unalign) -> bool { PartialEq::eq(self.deref(), other.deref()) } } impl Eq for Unalign {} impl Hash for Unalign { #[inline(always)] fn hash(&self, state: &mut H) where H: Hasher, { self.deref().hash(state); } } impl Debug for Unalign { #[inline(always)] fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { Debug::fmt(self.deref(), f) } } impl Display for Unalign { #[inline(always)] fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { Display::fmt(self.deref(), f) } } /// A wrapper type to construct uninitialized instances of `T`. /// /// `MaybeUninit` is identical to the [standard library /// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized /// types. /// /// # Layout /// /// The same layout guarantees and caveats apply to `MaybeUninit` as apply to /// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception: /// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such /// types, the following are guaranteed: /// - Every [valid size][valid-size] for `T` is a valid size for /// `MaybeUninit` and vice versa /// - Given `t: *const T` and `m: *const MaybeUninit` with identical fat /// pointer metadata, `t` and `m` address the same number of bytes (and /// likewise for `*mut`) /// /// [core-maybe-uninit]: core::mem::MaybeUninit /// [valid-size]: crate::KnownLayout#what-is-a-valid-size #[repr(transparent)] #[doc(hidden)] pub struct MaybeUninit( // SAFETY: `MaybeUninit` has the same size as `T`, because (by invariant // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`, // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT` // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`, // it admits uninitialized bytes in all positions. Because `MaybeUninit` is // marked `repr(transparent)`, these properties additionally hold true for // `Self`. T::MaybeUninit, ); #[doc(hidden)] impl MaybeUninit { /// Constructs a `MaybeUninit` initialized with the given value. #[inline(always)] pub fn new(val: T) -> Self where T: Sized, Self: Sized, { // SAFETY: It is valid to transmute `val` to `MaybeUninit` because it // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid // to transmute from `T::MaybeUninit` to `MaybeUninit`. // // First, it is valid to transmute `val` to `T::MaybeUninit` because, by // invariant on `T::MaybeUninit`: // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size. // - All byte sequences of the correct size are valid values of // `T::MaybeUninit`. // // Second, it is additionally valid to transmute from `T::MaybeUninit` // to `MaybeUninit`, because `MaybeUninit` is a // `repr(transparent)` wrapper around `T::MaybeUninit`. // // These two transmutes are collapsed into one so we don't need to add a // `T::MaybeUninit: Sized` bound to this function's `where` clause. unsafe { crate::util::transmute_unchecked(val) } } /// Constructs an uninitialized `MaybeUninit`. #[must_use] #[inline(always)] pub fn uninit() -> Self where T: Sized, Self: Sized, { let uninit = CoreMaybeUninit::::uninit(); // SAFETY: It is valid to transmute from `CoreMaybeUninit` to // `MaybeUninit` since they both admit uninitialized bytes in all // positions, and they have the same size (i.e., that of `T`). // // `MaybeUninit` has the same size as `T`, because (by invariant on // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`, // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT` // accurately reflects the layout of `T`. // // `CoreMaybeUninit` has the same size as `T` [1] and admits // uninitialized bytes in all positions. // // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1: // // `MaybeUninit` is guaranteed to have the same size, alignment, // and ABI as `T` unsafe { crate::util::transmute_unchecked(uninit) } } /// Creates a `Box>`. /// /// This function is useful for allocating large, uninit values on the heap /// without ever creating a temporary instance of `Self` on the stack. /// /// # Errors /// /// Returns an error on allocation failure. Allocation failure is guaranteed /// never to cause a panic or an abort. #[cfg(feature = "alloc")] #[inline] pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result, AllocError> { // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of // `new_box`. The referent of the pointer returned by `alloc` (and, // consequently, the `Box` derived from it) is a valid instance of // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary // (un)initialized bytes. unsafe { crate::util::new_box(meta, alloc::alloc::alloc) } } /// Extracts the value from the `MaybeUninit` container. /// /// # Safety /// /// The caller must ensure that `self` is in an bit-valid state. Depending /// on subsequent use, it may also need to be in a library-valid state. #[inline(always)] pub unsafe fn assume_init(self) -> T where T: Sized, Self: Sized, { // SAFETY: The caller guarantees that `self` is in an bit-valid state. unsafe { crate::util::transmute_unchecked(self) } } } impl fmt::Debug for MaybeUninit { #[inline] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.pad(core::any::type_name::()) } } #[cfg(test)] mod tests { use core::panic::AssertUnwindSafe; use super::*; use crate::util::testutil::*; #[test] fn test_unalign() { // Test methods that don't depend on alignment. let mut u = Unalign::new(AU64(123)); assert_eq!(u.get(), AU64(123)); assert_eq!(u.into_inner(), AU64(123)); assert_eq!(u.get_ptr(), <*const _>::cast::(&u)); assert_eq!(u.get_mut_ptr(), <*mut _>::cast::(&mut u)); u.set(AU64(321)); assert_eq!(u.get(), AU64(321)); // Test methods that depend on alignment (when alignment is satisfied). let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); assert_eq!(u.t.try_deref().unwrap(), &AU64(123)); assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123)); // SAFETY: The `Align<_, AU64>` guarantees proper alignment. assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123)); // SAFETY: The `Align<_, AU64>` guarantees proper alignment. assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123)); *u.t.try_deref_mut().unwrap() = AU64(321); assert_eq!(u.t.get(), AU64(321)); // Test methods that depend on alignment (when alignment is not // satisfied). let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123))); assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. }))); assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. }))); // Test methods that depend on `T: Unaligned`. let mut u = Unalign::new(123u8); assert_eq!(u.try_deref(), Ok(&123)); assert_eq!(u.try_deref_mut(), Ok(&mut 123)); assert_eq!(u.deref(), &123); assert_eq!(u.deref_mut(), &mut 123); *u = 21; assert_eq!(u.get(), 21); // Test that some `Unalign` functions and methods are `const`. const _UNALIGN: Unalign = Unalign::new(0); const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr(); const _U64: u64 = _UNALIGN.into_inner(); // Make sure all code is considered "used". // // FIXME(https://github.com/rust-lang/rust/issues/104084): Remove this // attribute. #[allow(dead_code)] const _: () = { let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); // Make sure that `deref_unchecked` is `const`. // // SAFETY: The `Align<_, AU64>` guarantees proper alignment. let au64 = unsafe { x.t.deref_unchecked() }; match au64 { AU64(123) => {} _ => const_unreachable!(), } }; } #[test] fn test_unalign_update() { let mut u = Unalign::new(AU64(123)); u.update(|a| a.0 += 1); assert_eq!(u.get(), AU64(124)); // Test that, even if the callback panics, the original is still // correctly overwritten. Use a `Box` so that Miri is more likely to // catch any unsoundness (which would likely result in two `Box`es for // the same heap object, which is the sort of thing that Miri would // probably catch). let mut u = Unalign::new(Box::new(AU64(123))); let res = std::panic::catch_unwind(AssertUnwindSafe(|| { u.update(|a| { a.0 += 1; panic!(); }) })); assert!(res.is_err()); assert_eq!(u.into_inner(), Box::new(AU64(124))); // Test the align_of::() == 1 optimization. let mut u = Unalign::new([0u8, 1]); u.update(|a| a[0] += 1); assert_eq!(u.get(), [1u8, 1]); } #[test] fn test_unalign_copy_clone() { // Test that `Copy` and `Clone` do not cause soundness issues. This test // is mainly meant to exercise UB that would be caught by Miri. // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8. let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123))); #[allow(clippy::clone_on_copy)] let v = u.t.clone(); let w = u.t; assert_eq!(u.t.get(), v.get()); assert_eq!(u.t.get(), w.get()); assert_eq!(v.get(), w.get()); } #[test] fn test_unalign_trait_impls() { let zero = Unalign::new(0u8); let one = Unalign::new(1u8); assert!(zero < one); assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less)); assert_eq!(Ord::cmp(&zero, &one), Ordering::Less); assert_ne!(zero, one); assert_eq!(zero, zero); assert!(!PartialEq::eq(&zero, &one)); assert!(PartialEq::eq(&zero, &zero)); fn hash(t: &T) -> u64 { let mut h = std::collections::hash_map::DefaultHasher::new(); t.hash(&mut h); h.finish() } assert_eq!(hash(&zero), hash(&0u8)); assert_eq!(hash(&one), hash(&1u8)); assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8)); assert_eq!(format!("{:?}", one), format!("{:?}", 1u8)); assert_eq!(format!("{}", zero), format!("{}", 0u8)); assert_eq!(format!("{}", one), format!("{}", 1u8)); } #[test] #[allow(clippy::as_conversions)] fn test_maybe_uninit() { // int { let input = 42; let uninit = MaybeUninit::new(input); // SAFETY: `uninit` is in an initialized state let output = unsafe { uninit.assume_init() }; assert_eq!(input, output); } // thin ref { let input = 42; let uninit = MaybeUninit::new(&input); // SAFETY: `uninit` is in an initialized state let output = unsafe { uninit.assume_init() }; assert_eq!(&input as *const _, output as *const _); assert_eq!(input, *output); } // wide ref { let input = [1, 2, 3, 4]; let uninit = MaybeUninit::new(&input[..]); // SAFETY: `uninit` is in an initialized state let output = unsafe { uninit.assume_init() }; assert_eq!(&input[..] as *const _, output as *const _); assert_eq!(input, *output); } } }