/** * @license * Copyright 2010-2021 Three.js Authors * SPDX-License-Identifier: MIT */ (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {})); }(this, (function (exports) { 'use strict'; const REVISION = '129'; const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const CullFaceFrontBack = 3; const BasicShadowMap = 0; const PCFShadowMap = 1; const PCFSoftShadowMap = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const FlatShading = 1; const SmoothShading = 2; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const CubeUVRefractionMapping = 307; const RepeatWrapping = 1000; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipMapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const NearestMipMapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipMapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const LinearMipMapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedShort565Type = 1019; const UnsignedInt248Type = 1020; const AlphaFormat = 1021; const RGBFormat = 1022; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const RGBEFormat = RGBAFormat; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBIntegerFormat = 1032; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const SRGB8_ALPHA8_ASTC_4x4_Format = 37840; const SRGB8_ALPHA8_ASTC_5x4_Format = 37841; const SRGB8_ALPHA8_ASTC_5x5_Format = 37842; const SRGB8_ALPHA8_ASTC_6x5_Format = 37843; const SRGB8_ALPHA8_ASTC_6x6_Format = 37844; const SRGB8_ALPHA8_ASTC_8x5_Format = 37845; const SRGB8_ALPHA8_ASTC_8x6_Format = 37846; const SRGB8_ALPHA8_ASTC_8x8_Format = 37847; const SRGB8_ALPHA8_ASTC_10x5_Format = 37848; const SRGB8_ALPHA8_ASTC_10x6_Format = 37849; const SRGB8_ALPHA8_ASTC_10x8_Format = 37850; const SRGB8_ALPHA8_ASTC_10x10_Format = 37851; const SRGB8_ALPHA8_ASTC_12x10_Format = 37852; const SRGB8_ALPHA8_ASTC_12x12_Format = 37853; const LoopOnce = 2200; const LoopRepeat = 2201; const LoopPingPong = 2202; const InterpolateDiscrete = 2300; const InterpolateLinear = 2301; const InterpolateSmooth = 2302; const ZeroCurvatureEnding = 2400; const ZeroSlopeEnding = 2401; const WrapAroundEnding = 2402; const NormalAnimationBlendMode = 2500; const AdditiveAnimationBlendMode = 2501; const TrianglesDrawMode = 0; const TriangleStripDrawMode = 1; const TriangleFanDrawMode = 2; const LinearEncoding = 3000; const sRGBEncoding = 3001; const GammaEncoding = 3007; const RGBEEncoding = 3002; const LogLuvEncoding = 3003; const RGBM7Encoding = 3004; const RGBM16Encoding = 3005; const RGBDEncoding = 3006; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; const ZeroStencilOp = 0; const KeepStencilOp = 7680; const ReplaceStencilOp = 7681; const IncrementStencilOp = 7682; const DecrementStencilOp = 7683; const IncrementWrapStencilOp = 34055; const DecrementWrapStencilOp = 34056; const InvertStencilOp = 5386; const NeverStencilFunc = 512; const LessStencilFunc = 513; const EqualStencilFunc = 514; const LessEqualStencilFunc = 515; const GreaterStencilFunc = 516; const NotEqualStencilFunc = 517; const GreaterEqualStencilFunc = 518; const AlwaysStencilFunc = 519; const StaticDrawUsage = 35044; const DynamicDrawUsage = 35048; const StreamDrawUsage = 35040; const StaticReadUsage = 35045; const DynamicReadUsage = 35049; const StreamReadUsage = 35041; const StaticCopyUsage = 35046; const DynamicCopyUsage = 35050; const StreamCopyUsage = 35042; const GLSL1 = '100'; const GLSL3 = '300 es'; /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener(type, listener) { if (this._listeners === undefined) this._listeners = {}; const listeners = this._listeners; if (listeners[type] === undefined) { listeners[type] = []; } if (listeners[type].indexOf(listener) === -1) { listeners[type].push(listener); } } hasEventListener(type, listener) { if (this._listeners === undefined) return false; const listeners = this._listeners; return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1; } removeEventListener(type, listener) { if (this._listeners === undefined) return; const listeners = this._listeners; const listenerArray = listeners[type]; if (listenerArray !== undefined) { const index = listenerArray.indexOf(listener); if (index !== -1) { listenerArray.splice(index, 1); } } } dispatchEvent(event) { if (this._listeners === undefined) return; const listeners = this._listeners; const listenerArray = listeners[event.type]; if (listenerArray !== undefined) { event.target = this; // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice(0); for (let i = 0, l = array.length; i < l; i++) { array[i].call(this, event); } event.target = null; } } } const _lut = []; for (let i = 0; i < 256; i++) { _lut[i] = (i < 16 ? '0' : '') + i.toString(16); } let _seed = 1234567; const DEG2RAD = Math.PI / 180; const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space. return uuid.toUpperCase(); } function clamp(value, min, max) { return Math.max(min, Math.min(max, value)); } // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo(n, m) { return (n % m + m) % m; } // Linear mapping from range to range function mapLinear(x, a1, a2, b1, b2) { return b1 + (x - a1) * (b2 - b1) / (a2 - a1); } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ function inverseLerp(x, y, value) { if (x !== y) { return (value - x) / (y - x); } else { return 0; } } // https://en.wikipedia.org/wiki/Linear_interpolation function lerp(x, y, t) { return (1 - t) * x + t * y; } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ function damp(x, y, lambda, dt) { return lerp(x, y, 1 - Math.exp(-lambda * dt)); } // https://www.desmos.com/calculator/vcsjnyz7x4 function pingpong(x, length = 1) { return length - Math.abs(euclideanModulo(x, length * 2) - length); } // http://en.wikipedia.org/wiki/Smoothstep function smoothstep(x, min, max) { if (x <= min) return 0; if (x >= max) return 1; x = (x - min) / (max - min); return x * x * (3 - 2 * x); } function smootherstep(x, min, max) { if (x <= min) return 0; if (x >= max) return 1; x = (x - min) / (max - min); return x * x * x * (x * (x * 6 - 15) + 10); } // Random integer from interval function randInt(low, high) { return low + Math.floor(Math.random() * (high - low + 1)); } // Random float from interval function randFloat(low, high) { return low + Math.random() * (high - low); } // Random float from <-range/2, range/2> interval function randFloatSpread(range) { return range * (0.5 - Math.random()); } // Deterministic pseudo-random float in the interval [ 0, 1 ] function seededRandom(s) { if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm _seed = _seed * 16807 % 2147483647; return (_seed - 1) / 2147483646; } function degToRad(degrees) { return degrees * DEG2RAD; } function radToDeg(radians) { return radians * RAD2DEG; } function isPowerOfTwo(value) { return (value & value - 1) === 0 && value !== 0; } function ceilPowerOfTwo(value) { return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2)); } function floorPowerOfTwo(value) { return Math.pow(2, Math.floor(Math.log(value) / Math.LN2)); } function setQuaternionFromProperEuler(q, a, b, c, order) { // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles // rotations are applied to the axes in the order specified by 'order' // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' // angles are in radians const cos = Math.cos; const sin = Math.sin; const c2 = cos(b / 2); const s2 = sin(b / 2); const c13 = cos((a + c) / 2); const s13 = sin((a + c) / 2); const c1_3 = cos((a - c) / 2); const s1_3 = sin((a - c) / 2); const c3_1 = cos((c - a) / 2); const s3_1 = sin((c - a) / 2); switch (order) { case 'XYX': q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13); break; case 'YZY': q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13); break; case 'ZXZ': q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13); break; case 'XZX': q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13); break; case 'YXY': q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13); break; case 'ZYZ': q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13); break; default: console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order); } } var MathUtils = /*#__PURE__*/Object.freeze({ __proto__: null, DEG2RAD: DEG2RAD, RAD2DEG: RAD2DEG, generateUUID: generateUUID, clamp: clamp, euclideanModulo: euclideanModulo, mapLinear: mapLinear, inverseLerp: inverseLerp, lerp: lerp, damp: damp, pingpong: pingpong, smoothstep: smoothstep, smootherstep: smootherstep, randInt: randInt, randFloat: randFloat, randFloatSpread: randFloatSpread, seededRandom: seededRandom, degToRad: degToRad, radToDeg: radToDeg, isPowerOfTwo: isPowerOfTwo, ceilPowerOfTwo: ceilPowerOfTwo, floorPowerOfTwo: floorPowerOfTwo, setQuaternionFromProperEuler: setQuaternionFromProperEuler }); class Vector2 { constructor(x = 0, y = 0) { this.x = x; this.y = y; } get width() { return this.x; } set width(value) { this.x = value; } get height() { return this.y; } set height(value) { this.y = value; } set(x, y) { this.x = x; this.y = y; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error('index is out of range: ' + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; default: throw new Error('index is out of range: ' + index); } } clone() { return new this.constructor(this.x, this.y); } copy(v) { this.x = v.x; this.y = v.y; return this; } add(v, w) { if (w !== undefined) { console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); return this.addVectors(v, w); } this.x += v.x; this.y += v.y; return this; } addScalar(s) { this.x += s; this.y += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; return this; } sub(v, w) { if (w !== undefined) { console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); return this.subVectors(v, w); } this.x -= v.x; this.y -= v.y; return this; } subScalar(s) { this.x -= s; this.y -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; return this; } multiply(v) { this.x *= v.x; this.y *= v.y; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; return this; } divide(v) { this.x /= v.x; this.y /= v.y; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } applyMatrix3(m) { const x = this.x, y = this.y; const e = m.elements; this.x = e[0] * x + e[3] * y + e[6]; this.y = e[1] * x + e[4] * y + e[7]; return this; } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); return this; } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)); this.y = Math.max(min.y, Math.min(max.y, this.y)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); return this; } clampLength(min, max) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); return this; } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); return this; } negate() { this.x = -this.x; this.y = -this.y; return this; } dot(v) { return this.x * v.x + this.y * v.y; } cross(v) { return this.x * v.y - this.y * v.x; } lengthSq() { return this.x * this.x + this.y * this.y; } length() { return Math.sqrt(this.x * this.x + this.y * this.y); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y); } normalize() { return this.divideScalar(this.length() || 1); } angle() { // computes the angle in radians with respect to the positive x-axis const angle = Math.atan2(-this.y, -this.x) + Math.PI; return angle; } distanceTo(v) { return Math.sqrt(this.distanceToSquared(v)); } distanceToSquared(v) { const dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; } manhattanDistanceTo(v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; return this; } equals(v) { return v.x === this.x && v.y === this.y; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; return array; } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().'); } this.x = attribute.getX(index); this.y = attribute.getY(index); return this; } rotateAround(center, angle) { const c = Math.cos(angle), s = Math.sin(angle); const x = this.x - center.x; const y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } random() { this.x = Math.random(); this.y = Math.random(); return this; } } Vector2.prototype.isVector2 = true; class Matrix3 { constructor() { this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1]; if (arguments.length > 0) { console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.'); } } set(n11, n12, n13, n21, n22, n23, n31, n32, n33) { const te = this.elements; te[0] = n11; te[1] = n21; te[2] = n31; te[3] = n12; te[4] = n22; te[5] = n32; te[6] = n13; te[7] = n23; te[8] = n33; return this; } identity() { this.set(1, 0, 0, 0, 1, 0, 0, 0, 1); return this; } copy(m) { const te = this.elements; const me = m.elements; te[0] = me[0]; te[1] = me[1]; te[2] = me[2]; te[3] = me[3]; te[4] = me[4]; te[5] = me[5]; te[6] = me[6]; te[7] = me[7]; te[8] = me[8]; return this; } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrix3Column(this, 0); yAxis.setFromMatrix3Column(this, 1); zAxis.setFromMatrix3Column(this, 2); return this; } setFromMatrix4(m) { const me = m.elements; this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]); return this; } multiply(m) { return this.multiplyMatrices(this, m); } premultiply(m) { return this.multiplyMatrices(m, this); } multiplyMatrices(a, b) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[0], a12 = ae[3], a13 = ae[6]; const a21 = ae[1], a22 = ae[4], a23 = ae[7]; const a31 = ae[2], a32 = ae[5], a33 = ae[8]; const b11 = be[0], b12 = be[3], b13 = be[6]; const b21 = be[1], b22 = be[4], b23 = be[7]; const b31 = be[2], b32 = be[5], b33 = be[8]; te[0] = a11 * b11 + a12 * b21 + a13 * b31; te[3] = a11 * b12 + a12 * b22 + a13 * b32; te[6] = a11 * b13 + a12 * b23 + a13 * b33; te[1] = a21 * b11 + a22 * b21 + a23 * b31; te[4] = a21 * b12 + a22 * b22 + a23 * b32; te[7] = a21 * b13 + a22 * b23 + a23 * b33; te[2] = a31 * b11 + a32 * b21 + a33 * b31; te[5] = a31 * b12 + a32 * b22 + a33 * b32; te[8] = a31 * b13 + a32 * b23 + a33 * b33; return this; } multiplyScalar(s) { const te = this.elements; te[0] *= s; te[3] *= s; te[6] *= s; te[1] *= s; te[4] *= s; te[7] *= s; te[2] *= s; te[5] *= s; te[8] *= s; return this; } determinant() { const te = this.elements; const a = te[0], b = te[1], c = te[2], d = te[3], e = te[4], f = te[5], g = te[6], h = te[7], i = te[8]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; } invert() { const te = this.elements, n11 = te[0], n21 = te[1], n31 = te[2], n12 = te[3], n22 = te[4], n32 = te[5], n13 = te[6], n23 = te[7], n33 = te[8], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0); const detInv = 1 / det; te[0] = t11 * detInv; te[1] = (n31 * n23 - n33 * n21) * detInv; te[2] = (n32 * n21 - n31 * n22) * detInv; te[3] = t12 * detInv; te[4] = (n33 * n11 - n31 * n13) * detInv; te[5] = (n31 * n12 - n32 * n11) * detInv; te[6] = t13 * detInv; te[7] = (n21 * n13 - n23 * n11) * detInv; te[8] = (n22 * n11 - n21 * n12) * detInv; return this; } transpose() { let tmp; const m = this.elements; tmp = m[1]; m[1] = m[3]; m[3] = tmp; tmp = m[2]; m[2] = m[6]; m[6] = tmp; tmp = m[5]; m[5] = m[7]; m[7] = tmp; return this; } getNormalMatrix(matrix4) { return this.setFromMatrix4(matrix4).invert().transpose(); } transposeIntoArray(r) { const m = this.elements; r[0] = m[0]; r[1] = m[3]; r[2] = m[6]; r[3] = m[1]; r[4] = m[4]; r[5] = m[7]; r[6] = m[2]; r[7] = m[5]; r[8] = m[8]; return this; } setUvTransform(tx, ty, sx, sy, rotation, cx, cy) { const c = Math.cos(rotation); const s = Math.sin(rotation); this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1); return this; } scale(sx, sy) { const te = this.elements; te[0] *= sx; te[3] *= sx; te[6] *= sx; te[1] *= sy; te[4] *= sy; te[7] *= sy; return this; } rotate(theta) { const c = Math.cos(theta); const s = Math.sin(theta); const te = this.elements; const a11 = te[0], a12 = te[3], a13 = te[6]; const a21 = te[1], a22 = te[4], a23 = te[7]; te[0] = c * a11 + s * a21; te[3] = c * a12 + s * a22; te[6] = c * a13 + s * a23; te[1] = -s * a11 + c * a21; te[4] = -s * a12 + c * a22; te[7] = -s * a13 + c * a23; return this; } translate(tx, ty) { const te = this.elements; te[0] += tx * te[2]; te[3] += tx * te[5]; te[6] += tx * te[8]; te[1] += ty * te[2]; te[4] += ty * te[5]; te[7] += ty * te[8]; return this; } equals(matrix) { const te = this.elements; const me = matrix.elements; for (let i = 0; i < 9; i++) { if (te[i] !== me[i]) return false; } return true; } fromArray(array, offset = 0) { for (let i = 0; i < 9; i++) { this.elements[i] = array[i + offset]; } return this; } toArray(array = [], offset = 0) { const te = this.elements; array[offset] = te[0]; array[offset + 1] = te[1]; array[offset + 2] = te[2]; array[offset + 3] = te[3]; array[offset + 4] = te[4]; array[offset + 5] = te[5]; array[offset + 6] = te[6]; array[offset + 7] = te[7]; array[offset + 8] = te[8]; return array; } clone() { return new this.constructor().fromArray(this.elements); } } Matrix3.prototype.isMatrix3 = true; let _canvas; class ImageUtils { static getDataURL(image) { if (/^data:/i.test(image.src)) { return image.src; } if (typeof HTMLCanvasElement == 'undefined') { return image.src; } let canvas; if (image instanceof HTMLCanvasElement) { canvas = image; } else { if (_canvas === undefined) _canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas'); _canvas.width = image.width; _canvas.height = image.height; const context = _canvas.getContext('2d'); if (image instanceof ImageData) { context.putImageData(image, 0, 0); } else { context.drawImage(image, 0, 0, image.width, image.height); } canvas = _canvas; } if (canvas.width > 2048 || canvas.height > 2048) { console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image); return canvas.toDataURL('image/jpeg', 0.6); } else { return canvas.toDataURL('image/png'); } } } let textureId = 0; class Texture extends EventDispatcher { constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) { super(); Object.defineProperty(this, 'id', { value: textureId++ }); this.uuid = generateUUID(); this.name = ''; this.image = image; this.mipmaps = []; this.mapping = mapping; this.wrapS = wrapS; this.wrapT = wrapT; this.magFilter = magFilter; this.minFilter = minFilter; this.anisotropy = anisotropy; this.format = format; this.internalFormat = null; this.type = type; this.offset = new Vector2(0, 0); this.repeat = new Vector2(1, 1); this.center = new Vector2(0, 0); this.rotation = 0; this.matrixAutoUpdate = true; this.matrix = new Matrix3(); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding; this.version = 0; this.onUpdate = null; } updateMatrix() { this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y); } clone() { return new this.constructor().copy(this); } copy(source) { this.name = source.name; this.image = source.image; this.mipmaps = source.mipmaps.slice(0); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.internalFormat = source.internalFormat; this.type = source.type; this.offset.copy(source.offset); this.repeat.copy(source.repeat); this.center.copy(source.center); this.rotation = source.rotation; this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy(source.matrix); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding; return this; } toJSON(meta) { const isRootObject = meta === undefined || typeof meta === 'string'; if (!isRootObject && meta.textures[this.uuid] !== undefined) { return meta.textures[this.uuid]; } const output = { metadata: { version: 4.5, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [this.repeat.x, this.repeat.y], offset: [this.offset.x, this.offset.y], center: [this.center.x, this.center.y], rotation: this.rotation, wrap: [this.wrapS, this.wrapT], format: this.format, type: this.type, encoding: this.encoding, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment }; if (this.image !== undefined) { // TODO: Move to THREE.Image const image = this.image; if (image.uuid === undefined) { image.uuid = generateUUID(); // UGH } if (!isRootObject && meta.images[image.uuid] === undefined) { let url; if (Array.isArray(image)) { // process array of images e.g. CubeTexture url = []; for (let i = 0, l = image.length; i < l; i++) { // check cube texture with data textures if (image[i].isDataTexture) { url.push(serializeImage(image[i].image)); } else { url.push(serializeImage(image[i])); } } } else { // process single image url = serializeImage(image); } meta.images[image.uuid] = { uuid: image.uuid, url: url }; } output.image = image.uuid; } if (!isRootObject) { meta.textures[this.uuid] = output; } return output; } dispose() { this.dispatchEvent({ type: 'dispose' }); } transformUv(uv) { if (this.mapping !== UVMapping) return uv; uv.applyMatrix3(this.matrix); if (uv.x < 0 || uv.x > 1) { switch (this.wrapS) { case RepeatWrapping: uv.x = uv.x - Math.floor(uv.x); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.x) % 2) === 1) { uv.x = Math.ceil(uv.x) - uv.x; } else { uv.x = uv.x - Math.floor(uv.x); } break; } } if (uv.y < 0 || uv.y > 1) { switch (this.wrapT) { case RepeatWrapping: uv.y = uv.y - Math.floor(uv.y); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.y) % 2) === 1) { uv.y = Math.ceil(uv.y) - uv.y; } else { uv.y = uv.y - Math.floor(uv.y); } break; } } if (this.flipY) { uv.y = 1 - uv.y; } return uv; } set needsUpdate(value) { if (value === true) this.version++; } } Texture.DEFAULT_IMAGE = undefined; Texture.DEFAULT_MAPPING = UVMapping; Texture.prototype.isTexture = true; function serializeImage(image) { if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) { // default images return ImageUtils.getDataURL(image); } else { if (image.data) { // images of DataTexture return { data: Array.prototype.slice.call(image.data), width: image.width, height: image.height, type: image.data.constructor.name }; } else { console.warn('THREE.Texture: Unable to serialize Texture.'); return {}; } } } class Vector4 { constructor(x = 0, y = 0, z = 0, w = 1) { this.x = x; this.y = y; this.z = z; this.w = w; } get width() { return this.z; } set width(value) { this.z = value; } get height() { return this.w; } set height(value) { this.w = value; } set(x, y, z, w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setZ(z) { this.z = z; return this; } setW(w) { this.w = w; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error('index is out of range: ' + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error('index is out of range: ' + index); } } clone() { return new this.constructor(this.x, this.y, this.z, this.w); } copy(v) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = v.w !== undefined ? v.w : 1; return this; } add(v, w) { if (w !== undefined) { console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); return this.addVectors(v, w); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } addScalar(s) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } sub(v, w) { if (w !== undefined) { console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); return this.subVectors(v, w); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } subScalar(s) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } multiply(v) { this.x *= v.x; this.y *= v.y; this.z *= v.z; this.w *= v.w; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } applyMatrix4(m) { const x = this.x, y = this.y, z = this.z, w = this.w; const e = m.elements; this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w; this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w; this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w; this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } setAxisAngleFromQuaternion(q) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos(q.w); const s = Math.sqrt(1 - q.w * q.w); if (s < 0.0001) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; } setAxisAngleFromRotationMatrix(m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) let angle, x, y, z; // variables for result const epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10]; if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) { // this singularity is identity matrix so angle = 0 this.set(1, 0, 0, 0); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; const xx = (m11 + 1) / 2; const yy = (m22 + 1) / 2; const zz = (m33 + 1) / 2; const xy = (m12 + m21) / 4; const xz = (m13 + m31) / 4; const yz = (m23 + m32) / 4; if (xx > yy && xx > zz) { // m11 is the largest diagonal term if (xx < epsilon) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt(xx); y = xy / x; z = xz / x; } } else if (yy > zz) { // m22 is the largest diagonal term if (yy < epsilon) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt(yy); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if (zz < epsilon) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt(zz); x = xz / z; y = yz / z; } } this.set(x, y, z, angle); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = (m32 - m23) / s; this.y = (m13 - m31) / s; this.z = (m21 - m12) / s; this.w = Math.acos((m11 + m22 + m33 - 1) / 2); return this; } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); this.z = Math.min(this.z, v.z); this.w = Math.min(this.w, v.w); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); this.z = Math.max(this.z, v.z); this.w = Math.max(this.w, v.w); return this; } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)); this.y = Math.max(min.y, Math.min(max.y, this.y)); this.z = Math.max(min.z, Math.min(max.z, this.z)); this.w = Math.max(min.w, Math.min(max.w, this.w)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); this.z = Math.max(minVal, Math.min(maxVal, this.z)); this.w = Math.max(minVal, Math.min(maxVal, this.w)); return this; } clampLength(min, max) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); this.z = Math.floor(this.z); this.w = Math.floor(this.w); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); this.z = Math.ceil(this.z); this.w = Math.ceil(this.w); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); this.z = Math.round(this.z); this.w = Math.round(this.w); return this; } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z); this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w); return this; } negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; this.w = -this.w; return this; } dot(v) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } length() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w); } normalize() { return this.divideScalar(this.length() || 1); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; this.z += (v.z - this.z) * alpha; this.w += (v.w - this.w) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; this.z = v1.z + (v2.z - v1.z) * alpha; this.w = v1.w + (v2.w - v1.w) * alpha; return this; } equals(v) { return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; this.z = array[offset + 2]; this.w = array[offset + 3]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; array[offset + 2] = this.z; array[offset + 3] = this.w; return array; } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().'); } this.x = attribute.getX(index); this.y = attribute.getY(index); this.z = attribute.getZ(index); this.w = attribute.getW(index); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; } } Vector4.prototype.isVector4 = true; /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ class WebGLRenderTarget extends EventDispatcher { constructor(width, height, options) { super(); this.width = width; this.height = height; this.depth = 1; this.scissor = new Vector4(0, 0, width, height); this.scissorTest = false; this.viewport = new Vector4(0, 0, width, height); options = options || {}; this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding); this.texture.image = {}; this.texture.image.width = width; this.texture.image.height = height; this.texture.image.depth = 1; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false; this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; } setTexture(texture) { texture.image = { width: this.width, height: this.height, depth: this.depth }; this.texture = texture; } setSize(width, height, depth = 1) { if (this.width !== width || this.height !== height || this.depth !== depth) { this.width = width; this.height = height; this.depth = depth; this.texture.image.width = width; this.texture.image.height = height; this.texture.image.depth = depth; this.dispose(); } this.viewport.set(0, 0, width, height); this.scissor.set(0, 0, width, height); } clone() { return new this.constructor().copy(this); } copy(source) { this.width = source.width; this.height = source.height; this.depth = source.depth; this.viewport.copy(source.viewport); this.texture = source.texture.clone(); this.texture.image = { ...this.texture.image }; // See #20328. this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; return this; } dispose() { this.dispatchEvent({ type: 'dispose' }); } } WebGLRenderTarget.prototype.isWebGLRenderTarget = true; class WebGLMultipleRenderTargets extends WebGLRenderTarget { constructor(width, height, count) { super(width, height); const texture = this.texture; this.texture = []; for (let i = 0; i < count; i++) { this.texture[i] = texture.clone(); } } setSize(width, height, depth = 1) { if (this.width !== width || this.height !== height || this.depth !== depth) { this.width = width; this.height = height; this.depth = depth; for (let i = 0, il = this.texture.length; i < il; i++) { this.texture[i].image.width = width; this.texture[i].image.height = height; this.texture[i].image.depth = depth; } this.dispose(); } this.viewport.set(0, 0, width, height); this.scissor.set(0, 0, width, height); return this; } copy(source) { this.dispose(); this.width = source.width; this.height = source.height; this.depth = source.depth; this.viewport.set(0, 0, this.width, this.height); this.scissor.set(0, 0, this.width, this.height); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; this.texture.length = 0; for (let i = 0, il = source.texture.length; i < il; i++) { this.texture[i] = source.texture[i].clone(); } return this; } } WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true; class WebGLMultisampleRenderTarget extends WebGLRenderTarget { constructor(width, height, options) { super(width, height, options); this.samples = 4; } copy(source) { super.copy.call(this, source); this.samples = source.samples; return this; } } WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true; class Quaternion { constructor(x = 0, y = 0, z = 0, w = 1) { this._x = x; this._y = y; this._z = z; this._w = w; } static slerp(qa, qb, qm, t) { console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.'); return qm.slerpQuaternions(qa, qb, t); } static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) { // fuzz-free, array-based Quaternion SLERP operation let x0 = src0[srcOffset0 + 0], y0 = src0[srcOffset0 + 1], z0 = src0[srcOffset0 + 2], w0 = src0[srcOffset0 + 3]; const x1 = src1[srcOffset1 + 0], y1 = src1[srcOffset1 + 1], z1 = src1[srcOffset1 + 2], w1 = src1[srcOffset1 + 3]; if (t === 0) { dst[dstOffset + 0] = x0; dst[dstOffset + 1] = y0; dst[dstOffset + 2] = z0; dst[dstOffset + 3] = w0; return; } if (t === 1) { dst[dstOffset + 0] = x1; dst[dstOffset + 1] = y1; dst[dstOffset + 2] = z1; dst[dstOffset + 3] = w1; return; } if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) { let s = 1 - t; const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = cos >= 0 ? 1 : -1, sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if (sqrSin > Number.EPSILON) { const sin = Math.sqrt(sqrSin), len = Math.atan2(sin, cos * dir); s = Math.sin(s * len) / sin; t = Math.sin(t * len) / sin; } const tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if (s === 1 - t) { const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[dstOffset] = x0; dst[dstOffset + 1] = y0; dst[dstOffset + 2] = z0; dst[dstOffset + 3] = w0; } static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) { const x0 = src0[srcOffset0]; const y0 = src0[srcOffset0 + 1]; const z0 = src0[srcOffset0 + 2]; const w0 = src0[srcOffset0 + 3]; const x1 = src1[srcOffset1]; const y1 = src1[srcOffset1 + 1]; const z1 = src1[srcOffset1 + 2]; const w1 = src1[srcOffset1 + 3]; dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; } get x() { return this._x; } set x(value) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y(value) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z(value) { this._z = value; this._onChangeCallback(); } get w() { return this._w; } set w(value) { this._w = value; this._onChangeCallback(); } set(x, y, z, w) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; } clone() { return new this.constructor(this._x, this._y, this._z, this._w); } copy(quaternion) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; } setFromEuler(euler, update) { if (!(euler && euler.isEuler)) { throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.'); } const x = euler._x, y = euler._y, z = euler._z, order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m const cos = Math.cos; const sin = Math.sin; const c1 = cos(x / 2); const c2 = cos(y / 2); const c3 = cos(z / 2); const s1 = sin(x / 2); const s2 = sin(y / 2); const s3 = sin(z / 2); switch (order) { case 'XYZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'YXZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'ZXY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'ZYX': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'YZX': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'XZY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order); } if (update !== false) this._onChangeCallback(); return this; } setFromAxisAngle(axis, angle) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized const halfAngle = angle / 2, s = Math.sin(halfAngle); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos(halfAngle); this._onChangeCallback(); return this; } setFromRotationMatrix(m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10], trace = m11 + m22 + m33; if (trace > 0) { const s = 0.5 / Math.sqrt(trace + 1.0); this._w = 0.25 / s; this._x = (m32 - m23) * s; this._y = (m13 - m31) * s; this._z = (m21 - m12) * s; } else if (m11 > m22 && m11 > m33) { const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33); this._w = (m32 - m23) / s; this._x = 0.25 * s; this._y = (m12 + m21) / s; this._z = (m13 + m31) / s; } else if (m22 > m33) { const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33); this._w = (m13 - m31) / s; this._x = (m12 + m21) / s; this._y = 0.25 * s; this._z = (m23 + m32) / s; } else { const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22); this._w = (m21 - m12) / s; this._x = (m13 + m31) / s; this._y = (m23 + m32) / s; this._z = 0.25 * s; } this._onChangeCallback(); return this; } setFromUnitVectors(vFrom, vTo) { // assumes direction vectors vFrom and vTo are normalized let r = vFrom.dot(vTo) + 1; if (r < Number.EPSILON) { // vFrom and vTo point in opposite directions r = 0; if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) { this._x = -vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = -vFrom.z; this._z = vFrom.y; this._w = r; } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); } angleTo(q) { return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1))); } rotateTowards(q, step) { const angle = this.angleTo(q); if (angle === 0) return this; const t = Math.min(1, step / angle); this.slerp(q, t); return this; } identity() { return this.set(0, 0, 0, 1); } invert() { // quaternion is assumed to have unit length return this.conjugate(); } conjugate() { this._x *= -1; this._y *= -1; this._z *= -1; this._onChangeCallback(); return this; } dot(v) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; } length() { return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w); } normalize() { let l = this.length(); if (l === 0) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; } multiply(q, p) { if (p !== undefined) { console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.'); return this.multiplyQuaternions(q, p); } return this.multiplyQuaternions(this, q); } premultiply(q) { return this.multiplyQuaternions(q, this); } multiplyQuaternions(a, b) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; } slerp(qb, t) { if (t === 0) return this; if (t === 1) return this.copy(qb); const x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if (cosHalfTheta < 0) { this._w = -qb._w; this._x = -qb._x; this._y = -qb._y; this._z = -qb._z; cosHalfTheta = -cosHalfTheta; } else { this.copy(qb); } if (cosHalfTheta >= 1.0) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; if (sqrSinHalfTheta <= Number.EPSILON) { const s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); this._onChangeCallback(); return this; } const sinHalfTheta = Math.sqrt(sqrSinHalfTheta); const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta); const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, ratioB = Math.sin(t * halfTheta) / sinHalfTheta; this._w = w * ratioA + this._w * ratioB; this._x = x * ratioA + this._x * ratioB; this._y = y * ratioA + this._y * ratioB; this._z = z * ratioA + this._z * ratioB; this._onChangeCallback(); return this; } slerpQuaternions(qa, qb, t) { this.copy(qa).slerp(qb, t); } equals(quaternion) { return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w; } fromArray(array, offset = 0) { this._x = array[offset]; this._y = array[offset + 1]; this._z = array[offset + 2]; this._w = array[offset + 3]; this._onChangeCallback(); return this; } toArray(array = [], offset = 0) { array[offset] = this._x; array[offset + 1] = this._y; array[offset + 2] = this._z; array[offset + 3] = this._w; return array; } fromBufferAttribute(attribute, index) { this._x = attribute.getX(index); this._y = attribute.getY(index); this._z = attribute.getZ(index); this._w = attribute.getW(index); return this; } _onChange(callback) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} } Quaternion.prototype.isQuaternion = true; class Vector3 { constructor(x = 0, y = 0, z = 0) { this.x = x; this.y = y; this.z = z; } set(x, y, z) { if (z === undefined) z = this.z; // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setZ(z) { this.z = z; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error('index is out of range: ' + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error('index is out of range: ' + index); } } clone() { return new this.constructor(this.x, this.y, this.z); } copy(v) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } add(v, w) { if (w !== undefined) { console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.'); return this.addVectors(v, w); } this.x += v.x; this.y += v.y; this.z += v.z; return this; } addScalar(s) { this.x += s; this.y += s; this.z += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } sub(v, w) { if (w !== undefined) { console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.'); return this.subVectors(v, w); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } subScalar(s) { this.x -= s; this.y -= s; this.z -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } multiply(v, w) { if (w !== undefined) { console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.'); return this.multiplyVectors(v, w); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } multiplyVectors(a, b) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } applyEuler(euler) { if (!(euler && euler.isEuler)) { console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.'); } return this.applyQuaternion(_quaternion$4.setFromEuler(euler)); } applyAxisAngle(axis, angle) { return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle)); } applyMatrix3(m) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[0] * x + e[3] * y + e[6] * z; this.y = e[1] * x + e[4] * y + e[7] * z; this.z = e[2] * x + e[5] * y + e[8] * z; return this; } applyNormalMatrix(m) { return this.applyMatrix3(m).normalize(); } applyMatrix4(m) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]); this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w; this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w; this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w; return this; } applyQuaternion(q) { const x = this.x, y = this.y, z = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; // calculate quat * vector const ix = qw * x + qy * z - qz * y; const iy = qw * y + qz * x - qx * z; const iz = qw * z + qx * y - qy * x; const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; return this; } project(camera) { return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix); } unproject(camera) { return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld); } transformDirection(m) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[0] * x + e[4] * y + e[8] * z; this.y = e[1] * x + e[5] * y + e[9] * z; this.z = e[2] * x + e[6] * y + e[10] * z; return this.normalize(); } divide(v) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); this.z = Math.min(this.z, v.z); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); this.z = Math.max(this.z, v.z); return this; } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)); this.y = Math.max(min.y, Math.min(max.y, this.y)); this.z = Math.max(min.z, Math.min(max.z, this.z)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); this.z = Math.max(minVal, Math.min(maxVal, this.z)); return this; } clampLength(min, max) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); this.z = Math.floor(this.z); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); this.z = Math.ceil(this.z); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); this.z = Math.round(this.z); return this; } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z); return this; } negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; return this; } dot(v) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } length() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z); } normalize() { return this.divideScalar(this.length() || 1); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; this.z += (v.z - this.z) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; this.z = v1.z + (v2.z - v1.z) * alpha; return this; } cross(v, w) { if (w !== undefined) { console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.'); return this.crossVectors(v, w); } return this.crossVectors(this, v); } crossVectors(a, b) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } projectOnVector(v) { const denominator = v.lengthSq(); if (denominator === 0) return this.set(0, 0, 0); const scalar = v.dot(this) / denominator; return this.copy(v).multiplyScalar(scalar); } projectOnPlane(planeNormal) { _vector$c.copy(this).projectOnVector(planeNormal); return this.sub(_vector$c); } reflect(normal) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal))); } angleTo(v) { const denominator = Math.sqrt(this.lengthSq() * v.lengthSq()); if (denominator === 0) return Math.PI / 2; const theta = this.dot(v) / denominator; // clamp, to handle numerical problems return Math.acos(clamp(theta, -1, 1)); } distanceTo(v) { return Math.sqrt(this.distanceToSquared(v)); } distanceToSquared(v) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } manhattanDistanceTo(v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z); } setFromSpherical(s) { return this.setFromSphericalCoords(s.radius, s.phi, s.theta); } setFromSphericalCoords(radius, phi, theta) { const sinPhiRadius = Math.sin(phi) * radius; this.x = sinPhiRadius * Math.sin(theta); this.y = Math.cos(phi) * radius; this.z = sinPhiRadius * Math.cos(theta); return this; } setFromCylindrical(c) { return this.setFromCylindricalCoords(c.radius, c.theta, c.y); } setFromCylindricalCoords(radius, theta, y) { this.x = radius * Math.sin(theta); this.y = y; this.z = radius * Math.cos(theta); return this; } setFromMatrixPosition(m) { const e = m.elements; this.x = e[12]; this.y = e[13]; this.z = e[14]; return this; } setFromMatrixScale(m) { const sx = this.setFromMatrixColumn(m, 0).length(); const sy = this.setFromMatrixColumn(m, 1).length(); const sz = this.setFromMatrixColumn(m, 2).length(); this.x = sx; this.y = sy; this.z = sz; return this; } setFromMatrixColumn(m, index) { return this.fromArray(m.elements, index * 4); } setFromMatrix3Column(m, index) { return this.fromArray(m.elements, index * 3); } equals(v) { return v.x === this.x && v.y === this.y && v.z === this.z; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; this.z = array[offset + 2]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; array[offset + 2] = this.z; return array; } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().'); } this.x = attribute.getX(index); this.y = attribute.getY(index); this.z = attribute.getZ(index); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } } Vector3.prototype.isVector3 = true; const _vector$c = /*@__PURE__*/new Vector3(); const _quaternion$4 = /*@__PURE__*/new Quaternion(); class Box3 { constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) { this.min = min; this.max = max; } set(min, max) { this.min.copy(min); this.max.copy(max); return this; } setFromArray(array) { let minX = +Infinity; let minY = +Infinity; let minZ = +Infinity; let maxX = -Infinity; let maxY = -Infinity; let maxZ = -Infinity; for (let i = 0, l = array.length; i < l; i += 3) { const x = array[i]; const y = array[i + 1]; const z = array[i + 2]; if (x < minX) minX = x; if (y < minY) minY = y; if (z < minZ) minZ = z; if (x > maxX) maxX = x; if (y > maxY) maxY = y; if (z > maxZ) maxZ = z; } this.min.set(minX, minY, minZ); this.max.set(maxX, maxY, maxZ); return this; } setFromBufferAttribute(attribute) { let minX = +Infinity; let minY = +Infinity; let minZ = +Infinity; let maxX = -Infinity; let maxY = -Infinity; let maxZ = -Infinity; for (let i = 0, l = attribute.count; i < l; i++) { const x = attribute.getX(i); const y = attribute.getY(i); const z = attribute.getZ(i); if (x < minX) minX = x; if (y < minY) minY = y; if (z < minZ) minZ = z; if (x > maxX) maxX = x; if (y > maxY) maxY = y; if (z > maxZ) maxZ = z; } this.min.set(minX, minY, minZ); this.max.set(maxX, maxY, maxZ); return this; } setFromPoints(points) { this.makeEmpty(); for (let i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]); } return this; } setFromCenterAndSize(center, size) { const halfSize = _vector$b.copy(size).multiplyScalar(0.5); this.min.copy(center).sub(halfSize); this.max.copy(center).add(halfSize); return this; } setFromObject(object) { this.makeEmpty(); return this.expandByObject(object); } clone() { return new this.constructor().copy(this); } copy(box) { this.min.copy(box.min); this.max.copy(box.max); return this; } makeEmpty() { this.min.x = this.min.y = this.min.z = +Infinity; this.max.x = this.max.y = this.max.z = -Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z; } getCenter(target) { if (target === undefined) { console.warn('THREE.Box3: .getCenter() target is now required'); target = new Vector3(); } return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); } getSize(target) { if (target === undefined) { console.warn('THREE.Box3: .getSize() target is now required'); target = new Vector3(); } return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min); } expandByPoint(point) { this.min.min(point); this.max.max(point); return this; } expandByVector(vector) { this.min.sub(vector); this.max.add(vector); return this; } expandByScalar(scalar) { this.min.addScalar(-scalar); this.max.addScalar(scalar); return this; } expandByObject(object) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix(false, false); const geometry = object.geometry; if (geometry !== undefined) { if (geometry.boundingBox === null) { geometry.computeBoundingBox(); } _box$3.copy(geometry.boundingBox); _box$3.applyMatrix4(object.matrixWorld); this.union(_box$3); } const children = object.children; for (let i = 0, l = children.length; i < l; i++) { this.expandByObject(children[i]); } return this; } containsPoint(point) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; } containsBox(box) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } getParameter(point, target) { // This can potentially have a divide by zero if the box // has a size dimension of 0. if (target === undefined) { console.warn('THREE.Box3: .getParameter() target is now required'); target = new Vector3(); } return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z)); } intersectsBox(box) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; } intersectsSphere(sphere) { // Find the point on the AABB closest to the sphere center. this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect. return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius; } intersectsPlane(plane) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max; if (plane.normal.x > 0) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if (plane.normal.y > 0) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if (plane.normal.z > 0) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return min <= -plane.constant && max >= -plane.constant; } intersectsTriangle(triangle) { if (this.isEmpty()) { return false; } // compute box center and extents this.getCenter(_center); _extents.subVectors(this.max, _center); // translate triangle to aabb origin _v0$2.subVectors(triangle.a, _center); _v1$7.subVectors(triangle.b, _center); _v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle _f0.subVectors(_v1$7, _v0$2); _f1.subVectors(_v2$3, _v1$7); _f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0]; if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { return false; } // test 3 face normals from the aabb axes = [1, 0, 0, 0, 1, 0, 0, 0, 1]; if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors(_f0, _f1); axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z]; return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents); } clampPoint(point, target) { if (target === undefined) { console.warn('THREE.Box3: .clampPoint() target is now required'); target = new Vector3(); } return target.copy(point).clamp(this.min, this.max); } distanceToPoint(point) { const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max); return clampedPoint.sub(point).length(); } getBoundingSphere(target) { if (target === undefined) { console.error('THREE.Box3: .getBoundingSphere() target is now required'); //target = new Sphere(); // removed to avoid cyclic dependency } this.getCenter(target.center); target.radius = this.getSize(_vector$b).length() * 0.5; return target; } intersect(box) { this.min.max(box.min); this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if (this.isEmpty()) this.makeEmpty(); return this; } union(box) { this.min.min(box.min); this.max.max(box.max); return this; } applyMatrix4(matrix) { // transform of empty box is an empty box. if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000 _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001 _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010 _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011 _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100 _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101 _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110 _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111 this.setFromPoints(_points); return this; } translate(offset) { this.min.add(offset); this.max.add(offset); return this; } equals(box) { return box.min.equals(this.min) && box.max.equals(this.max); } } Box3.prototype.isBox3 = true; const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()]; const _vector$b = /*@__PURE__*/new Vector3(); const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices const _v0$2 = /*@__PURE__*/new Vector3(); const _v1$7 = /*@__PURE__*/new Vector3(); const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors const _f0 = /*@__PURE__*/new Vector3(); const _f1 = /*@__PURE__*/new Vector3(); const _f2 = /*@__PURE__*/new Vector3(); const _center = /*@__PURE__*/new Vector3(); const _extents = /*@__PURE__*/new Vector3(); const _triangleNormal = /*@__PURE__*/new Vector3(); const _testAxis = /*@__PURE__*/new Vector3(); function satForAxes(axes, v0, v1, v2, extents) { for (let i = 0, j = axes.length - 3; i <= j; i += 3) { _testAxis.fromArray(axes, i); // project the aabb onto the seperating axis const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis const p0 = v0.dot(_testAxis); const p1 = v1.dot(_testAxis); const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is seperating and we can exit return false; } } return true; } const _box$2 = /*@__PURE__*/new Box3(); const _v1$6 = /*@__PURE__*/new Vector3(); const _toFarthestPoint = /*@__PURE__*/new Vector3(); const _toPoint = /*@__PURE__*/new Vector3(); class Sphere { constructor(center = new Vector3(), radius = -1) { this.center = center; this.radius = radius; } set(center, radius) { this.center.copy(center); this.radius = radius; return this; } setFromPoints(points, optionalCenter) { const center = this.center; if (optionalCenter !== undefined) { center.copy(optionalCenter); } else { _box$2.setFromPoints(points).getCenter(center); } let maxRadiusSq = 0; for (let i = 0, il = points.length; i < il; i++) { maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i])); } this.radius = Math.sqrt(maxRadiusSq); return this; } copy(sphere) { this.center.copy(sphere.center); this.radius = sphere.radius; return this; } isEmpty() { return this.radius < 0; } makeEmpty() { this.center.set(0, 0, 0); this.radius = -1; return this; } containsPoint(point) { return point.distanceToSquared(this.center) <= this.radius * this.radius; } distanceToPoint(point) { return point.distanceTo(this.center) - this.radius; } intersectsSphere(sphere) { const radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum; } intersectsBox(box) { return box.intersectsSphere(this); } intersectsPlane(plane) { return Math.abs(plane.distanceToPoint(this.center)) <= this.radius; } clampPoint(point, target) { const deltaLengthSq = this.center.distanceToSquared(point); if (target === undefined) { console.warn('THREE.Sphere: .clampPoint() target is now required'); target = new Vector3(); } target.copy(point); if (deltaLengthSq > this.radius * this.radius) { target.sub(this.center).normalize(); target.multiplyScalar(this.radius).add(this.center); } return target; } getBoundingBox(target) { if (target === undefined) { console.warn('THREE.Sphere: .getBoundingBox() target is now required'); target = new Box3(); } if (this.isEmpty()) { // Empty sphere produces empty bounding box target.makeEmpty(); return target; } target.set(this.center, this.center); target.expandByScalar(this.radius); return target; } applyMatrix4(matrix) { this.center.applyMatrix4(matrix); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; } translate(offset) { this.center.add(offset); return this; } expandByPoint(point) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671 _toPoint.subVectors(point, this.center); const lengthSq = _toPoint.lengthSq(); if (lengthSq > this.radius * this.radius) { const length = Math.sqrt(lengthSq); const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius, // and the other half to position. This gives a tighter enclosure, instead of if // the whole missing distance were just added to radius. this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length)); this.radius += missingRadiusHalf; } return this; } union(sphere) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769 // To enclose another sphere into this sphere, we only need to enclose two points: // 1) Enclose the farthest point on the other sphere into this sphere. // 2) Enclose the opposite point of the farthest point into this sphere. _toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius); this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint)); this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint)); return this; } equals(sphere) { return sphere.center.equals(this.center) && sphere.radius === this.radius; } clone() { return new this.constructor().copy(this); } } const _vector$a = /*@__PURE__*/new Vector3(); const _segCenter = /*@__PURE__*/new Vector3(); const _segDir = /*@__PURE__*/new Vector3(); const _diff = /*@__PURE__*/new Vector3(); const _edge1 = /*@__PURE__*/new Vector3(); const _edge2 = /*@__PURE__*/new Vector3(); const _normal$1 = /*@__PURE__*/new Vector3(); class Ray { constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) { this.origin = origin; this.direction = direction; } set(origin, direction) { this.origin.copy(origin); this.direction.copy(direction); return this; } copy(ray) { this.origin.copy(ray.origin); this.direction.copy(ray.direction); return this; } at(t, target) { if (target === undefined) { console.warn('THREE.Ray: .at() target is now required'); target = new Vector3(); } return target.copy(this.direction).multiplyScalar(t).add(this.origin); } lookAt(v) { this.direction.copy(v).sub(this.origin).normalize(); return this; } recast(t) { this.origin.copy(this.at(t, _vector$a)); return this; } closestPointToPoint(point, target) { if (target === undefined) { console.warn('THREE.Ray: .closestPointToPoint() target is now required'); target = new Vector3(); } target.subVectors(point, this.origin); const directionDistance = target.dot(this.direction); if (directionDistance < 0) { return target.copy(this.origin); } return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin); } distanceToPoint(point) { return Math.sqrt(this.distanceSqToPoint(point)); } distanceSqToPoint(point) { const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray if (directionDistance < 0) { return this.origin.distanceToSquared(point); } _vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin); return _vector$a.distanceToSquared(point); } distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment _segCenter.copy(v0).add(v1).multiplyScalar(0.5); _segDir.copy(v1).sub(v0).normalize(); _diff.copy(this.origin).sub(_segCenter); const segExtent = v0.distanceTo(v1) * 0.5; const a01 = -this.direction.dot(_segDir); const b0 = _diff.dot(this.direction); const b1 = -_diff.dot(_segDir); const c = _diff.lengthSq(); const det = Math.abs(1 - a01 * a01); let s0, s1, sqrDist, extDet; if (det > 0) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if (s0 >= 0) { if (s1 >= -extDet) { if (s1 <= extDet) { // region 0 // Minimum at interior points of ray and segment. const invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c; } else { // region 1 s1 = segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } else { // region 5 s1 = -segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } else { if (s1 <= -extDet) { // region 4 s0 = Math.max(0, -(-a01 * segExtent + b0)); s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } else if (s1 <= extDet) { // region 3 s0 = 0; s1 = Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = s1 * (s1 + 2 * b1) + c; } else { // region 2 s0 = Math.max(0, -(a01 * segExtent + b0)); s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } } else { // Ray and segment are parallel. s1 = a01 > 0 ? -segExtent : segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } if (optionalPointOnRay) { optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin); } if (optionalPointOnSegment) { optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter); } return sqrDist; } intersectSphere(sphere, target) { _vector$a.subVectors(sphere.center, this.origin); const tca = _vector$a.dot(this.direction); const d2 = _vector$a.dot(_vector$a) - tca * tca; const radius2 = sphere.radius * sphere.radius; if (d2 > radius2) return null; const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at(t0, target); } intersectsSphere(sphere) { return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius; } distanceToPlane(plane) { const denominator = plane.normal.dot(this.direction); if (denominator === 0) { // line is coplanar, return origin if (plane.distanceToPoint(this.origin) === 0) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; } intersectPlane(plane, target) { const t = this.distanceToPlane(plane); if (t === null) { return null; } return this.at(t, target); } intersectsPlane(plane) { // check if the ray lies on the plane first const distToPoint = plane.distanceToPoint(this.origin); if (distToPoint === 0) { return true; } const denominator = plane.normal.dot(this.direction); if (denominator * distToPoint < 0) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; } intersectBox(box, target) { let tmin, tmax, tymin, tymax, tzmin, tzmax; const invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; const origin = this.origin; if (invdirx >= 0) { tmin = (box.min.x - origin.x) * invdirx; tmax = (box.max.x - origin.x) * invdirx; } else { tmin = (box.max.x - origin.x) * invdirx; tmax = (box.min.x - origin.x) * invdirx; } if (invdiry >= 0) { tymin = (box.min.y - origin.y) * invdiry; tymax = (box.max.y - origin.y) * invdiry; } else { tymin = (box.max.y - origin.y) * invdiry; tymax = (box.min.y - origin.y) * invdiry; } if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if (tymin > tmin || tmin !== tmin) tmin = tymin; if (tymax < tmax || tmax !== tmax) tmax = tymax; if (invdirz >= 0) { tzmin = (box.min.z - origin.z) * invdirz; tzmax = (box.max.z - origin.z) * invdirz; } else { tzmin = (box.max.z - origin.z) * invdirz; tzmax = (box.min.z - origin.z) * invdirz; } if (tmin > tzmax || tzmin > tmax) return null; if (tzmin > tmin || tmin !== tmin) tmin = tzmin; if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side) if (tmax < 0) return null; return this.at(tmin >= 0 ? tmin : tmax, target); } intersectsBox(box) { return this.intersectBox(box, _vector$a) !== null; } intersectTriangle(a, b, c, backfaceCulling, target) { // Compute the offset origin, edges, and normal. // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h _edge1.subVectors(b, a); _edge2.subVectors(c, a); _normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) let DdN = this.direction.dot(_normal$1); let sign; if (DdN > 0) { if (backfaceCulling) return null; sign = 1; } else if (DdN < 0) { sign = -1; DdN = -DdN; } else { return null; } _diff.subVectors(this.origin, a); const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection if (DdQxE2 < 0) { return null; } const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection if (DdE1xQ < 0) { return null; } // b1+b2 > 1, no intersection if (DdQxE2 + DdE1xQ > DdN) { return null; } // Line intersects triangle, check if ray does. const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection if (QdN < 0) { return null; } // Ray intersects triangle. return this.at(QdN / DdN, target); } applyMatrix4(matrix4) { this.origin.applyMatrix4(matrix4); this.direction.transformDirection(matrix4); return this; } equals(ray) { return ray.origin.equals(this.origin) && ray.direction.equals(this.direction); } clone() { return new this.constructor().copy(this); } } class Matrix4 { constructor() { this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; if (arguments.length > 0) { console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.'); } } set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) { const te = this.elements; te[0] = n11; te[4] = n12; te[8] = n13; te[12] = n14; te[1] = n21; te[5] = n22; te[9] = n23; te[13] = n24; te[2] = n31; te[6] = n32; te[10] = n33; te[14] = n34; te[3] = n41; te[7] = n42; te[11] = n43; te[15] = n44; return this; } identity() { this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); return this; } clone() { return new Matrix4().fromArray(this.elements); } copy(m) { const te = this.elements; const me = m.elements; te[0] = me[0]; te[1] = me[1]; te[2] = me[2]; te[3] = me[3]; te[4] = me[4]; te[5] = me[5]; te[6] = me[6]; te[7] = me[7]; te[8] = me[8]; te[9] = me[9]; te[10] = me[10]; te[11] = me[11]; te[12] = me[12]; te[13] = me[13]; te[14] = me[14]; te[15] = me[15]; return this; } copyPosition(m) { const te = this.elements, me = m.elements; te[12] = me[12]; te[13] = me[13]; te[14] = me[14]; return this; } setFromMatrix3(m) { const me = m.elements; this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1); return this; } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrixColumn(this, 0); yAxis.setFromMatrixColumn(this, 1); zAxis.setFromMatrixColumn(this, 2); return this; } makeBasis(xAxis, yAxis, zAxis) { this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1); return this; } extractRotation(m) { // this method does not support reflection matrices const te = this.elements; const me = m.elements; const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length(); const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length(); const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length(); te[0] = me[0] * scaleX; te[1] = me[1] * scaleX; te[2] = me[2] * scaleX; te[3] = 0; te[4] = me[4] * scaleY; te[5] = me[5] * scaleY; te[6] = me[6] * scaleY; te[7] = 0; te[8] = me[8] * scaleZ; te[9] = me[9] * scaleZ; te[10] = me[10] * scaleZ; te[11] = 0; te[12] = 0; te[13] = 0; te[14] = 0; te[15] = 1; return this; } makeRotationFromEuler(euler) { if (!(euler && euler.isEuler)) { console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.'); } const te = this.elements; const x = euler.x, y = euler.y, z = euler.z; const a = Math.cos(x), b = Math.sin(x); const c = Math.cos(y), d = Math.sin(y); const e = Math.cos(z), f = Math.sin(z); if (euler.order === 'XYZ') { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[0] = c * e; te[4] = -c * f; te[8] = d; te[1] = af + be * d; te[5] = ae - bf * d; te[9] = -b * c; te[2] = bf - ae * d; te[6] = be + af * d; te[10] = a * c; } else if (euler.order === 'YXZ') { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[0] = ce + df * b; te[4] = de * b - cf; te[8] = a * d; te[1] = a * f; te[5] = a * e; te[9] = -b; te[2] = cf * b - de; te[6] = df + ce * b; te[10] = a * c; } else if (euler.order === 'ZXY') { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[0] = ce - df * b; te[4] = -a * f; te[8] = de + cf * b; te[1] = cf + de * b; te[5] = a * e; te[9] = df - ce * b; te[2] = -a * d; te[6] = b; te[10] = a * c; } else if (euler.order === 'ZYX') { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[0] = c * e; te[4] = be * d - af; te[8] = ae * d + bf; te[1] = c * f; te[5] = bf * d + ae; te[9] = af * d - be; te[2] = -d; te[6] = b * c; te[10] = a * c; } else if (euler.order === 'YZX') { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[0] = c * e; te[4] = bd - ac * f; te[8] = bc * f + ad; te[1] = f; te[5] = a * e; te[9] = -b * e; te[2] = -d * e; te[6] = ad * f + bc; te[10] = ac - bd * f; } else if (euler.order === 'XZY') { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[0] = c * e; te[4] = -f; te[8] = d * e; te[1] = ac * f + bd; te[5] = a * e; te[9] = ad * f - bc; te[2] = bc * f - ad; te[6] = b * e; te[10] = bd * f + ac; } // bottom row te[3] = 0; te[7] = 0; te[11] = 0; // last column te[12] = 0; te[13] = 0; te[14] = 0; te[15] = 1; return this; } makeRotationFromQuaternion(q) { return this.compose(_zero, q, _one); } lookAt(eye, target, up) { const te = this.elements; _z.subVectors(eye, target); if (_z.lengthSq() === 0) { // eye and target are in the same position _z.z = 1; } _z.normalize(); _x.crossVectors(up, _z); if (_x.lengthSq() === 0) { // up and z are parallel if (Math.abs(up.z) === 1) { _z.x += 0.0001; } else { _z.z += 0.0001; } _z.normalize(); _x.crossVectors(up, _z); } _x.normalize(); _y.crossVectors(_z, _x); te[0] = _x.x; te[4] = _y.x; te[8] = _z.x; te[1] = _x.y; te[5] = _y.y; te[9] = _z.y; te[2] = _x.z; te[6] = _y.z; te[10] = _z.z; return this; } multiply(m, n) { if (n !== undefined) { console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.'); return this.multiplyMatrices(m, n); } return this.multiplyMatrices(this, m); } premultiply(m) { return this.multiplyMatrices(m, this); } multiplyMatrices(a, b) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[0], a12 = ae[4], a13 = ae[8], a14 = ae[12]; const a21 = ae[1], a22 = ae[5], a23 = ae[9], a24 = ae[13]; const a31 = ae[2], a32 = ae[6], a33 = ae[10], a34 = ae[14]; const a41 = ae[3], a42 = ae[7], a43 = ae[11], a44 = ae[15]; const b11 = be[0], b12 = be[4], b13 = be[8], b14 = be[12]; const b21 = be[1], b22 = be[5], b23 = be[9], b24 = be[13]; const b31 = be[2], b32 = be[6], b33 = be[10], b34 = be[14]; const b41 = be[3], b42 = be[7], b43 = be[11], b44 = be[15]; te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; } multiplyScalar(s) { const te = this.elements; te[0] *= s; te[4] *= s; te[8] *= s; te[12] *= s; te[1] *= s; te[5] *= s; te[9] *= s; te[13] *= s; te[2] *= s; te[6] *= s; te[10] *= s; te[14] *= s; te[3] *= s; te[7] *= s; te[11] *= s; te[15] *= s; return this; } determinant() { const te = this.elements; const n11 = te[0], n12 = te[4], n13 = te[8], n14 = te[12]; const n21 = te[1], n22 = te[5], n23 = te[9], n24 = te[13]; const n31 = te[2], n32 = te[6], n33 = te[10], n34 = te[14]; const n41 = te[3], n42 = te[7], n43 = te[11], n44 = te[15]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31); } transpose() { const te = this.elements; let tmp; tmp = te[1]; te[1] = te[4]; te[4] = tmp; tmp = te[2]; te[2] = te[8]; te[8] = tmp; tmp = te[6]; te[6] = te[9]; te[9] = tmp; tmp = te[3]; te[3] = te[12]; te[12] = tmp; tmp = te[7]; te[7] = te[13]; te[13] = tmp; tmp = te[11]; te[11] = te[14]; te[14] = tmp; return this; } setPosition(x, y, z) { const te = this.elements; if (x.isVector3) { te[12] = x.x; te[13] = x.y; te[14] = x.z; } else { te[12] = x; te[13] = y; te[14] = z; } return this; } invert() { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm const te = this.elements, n11 = te[0], n21 = te[1], n31 = te[2], n41 = te[3], n12 = te[4], n22 = te[5], n32 = te[6], n42 = te[7], n13 = te[8], n23 = te[9], n33 = te[10], n43 = te[11], n14 = te[12], n24 = te[13], n34 = te[14], n44 = te[15], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); const detInv = 1 / det; te[0] = t11 * detInv; te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv; te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv; te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv; te[4] = t12 * detInv; te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv; te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv; te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv; te[8] = t13 * detInv; te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv; te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv; te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv; te[12] = t14 * detInv; te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv; te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv; te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv; return this; } scale(v) { const te = this.elements; const x = v.x, y = v.y, z = v.z; te[0] *= x; te[4] *= y; te[8] *= z; te[1] *= x; te[5] *= y; te[9] *= z; te[2] *= x; te[6] *= y; te[10] *= z; te[3] *= x; te[7] *= y; te[11] *= z; return this; } getMaxScaleOnAxis() { const te = this.elements; const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2]; const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6]; const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10]; return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)); } makeTranslation(x, y, z) { this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1); return this; } makeRotationX(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1); return this; } makeRotationY(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1); return this; } makeRotationZ(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); return this; } makeRotationAxis(axis, angle) { // Based on http://www.gamedev.net/reference/articles/article1199.asp const c = Math.cos(angle); const s = Math.sin(angle); const t = 1 - c; const x = axis.x, y = axis.y, z = axis.z; const tx = t * x, ty = t * y; this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1); return this; } makeScale(x, y, z) { this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1); return this; } makeShear(xy, xz, yx, yz, zx, zy) { this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1); return this; } compose(position, quaternion, scale) { const te = this.elements; const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const sx = scale.x, sy = scale.y, sz = scale.z; te[0] = (1 - (yy + zz)) * sx; te[1] = (xy + wz) * sx; te[2] = (xz - wy) * sx; te[3] = 0; te[4] = (xy - wz) * sy; te[5] = (1 - (xx + zz)) * sy; te[6] = (yz + wx) * sy; te[7] = 0; te[8] = (xz + wy) * sz; te[9] = (yz - wx) * sz; te[10] = (1 - (xx + yy)) * sz; te[11] = 0; te[12] = position.x; te[13] = position.y; te[14] = position.z; te[15] = 1; return this; } decompose(position, quaternion, scale) { const te = this.elements; let sx = _v1$5.set(te[0], te[1], te[2]).length(); const sy = _v1$5.set(te[4], te[5], te[6]).length(); const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale const det = this.determinant(); if (det < 0) sx = -sx; position.x = te[12]; position.y = te[13]; position.z = te[14]; // scale the rotation part _m1$2.copy(this); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m1$2.elements[0] *= invSX; _m1$2.elements[1] *= invSX; _m1$2.elements[2] *= invSX; _m1$2.elements[4] *= invSY; _m1$2.elements[5] *= invSY; _m1$2.elements[6] *= invSY; _m1$2.elements[8] *= invSZ; _m1$2.elements[9] *= invSZ; _m1$2.elements[10] *= invSZ; quaternion.setFromRotationMatrix(_m1$2); scale.x = sx; scale.y = sy; scale.z = sz; return this; } makePerspective(left, right, top, bottom, near, far) { if (far === undefined) { console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.'); } const te = this.elements; const x = 2 * near / (right - left); const y = 2 * near / (top - bottom); const a = (right + left) / (right - left); const b = (top + bottom) / (top - bottom); const c = -(far + near) / (far - near); const d = -2 * far * near / (far - near); te[0] = x; te[4] = 0; te[8] = a; te[12] = 0; te[1] = 0; te[5] = y; te[9] = b; te[13] = 0; te[2] = 0; te[6] = 0; te[10] = c; te[14] = d; te[3] = 0; te[7] = 0; te[11] = -1; te[15] = 0; return this; } makeOrthographic(left, right, top, bottom, near, far) { const te = this.elements; const w = 1.0 / (right - left); const h = 1.0 / (top - bottom); const p = 1.0 / (far - near); const x = (right + left) * w; const y = (top + bottom) * h; const z = (far + near) * p; te[0] = 2 * w; te[4] = 0; te[8] = 0; te[12] = -x; te[1] = 0; te[5] = 2 * h; te[9] = 0; te[13] = -y; te[2] = 0; te[6] = 0; te[10] = -2 * p; te[14] = -z; te[3] = 0; te[7] = 0; te[11] = 0; te[15] = 1; return this; } equals(matrix) { const te = this.elements; const me = matrix.elements; for (let i = 0; i < 16; i++) { if (te[i] !== me[i]) return false; } return true; } fromArray(array, offset = 0) { for (let i = 0; i < 16; i++) { this.elements[i] = array[i + offset]; } return this; } toArray(array = [], offset = 0) { const te = this.elements; array[offset] = te[0]; array[offset + 1] = te[1]; array[offset + 2] = te[2]; array[offset + 3] = te[3]; array[offset + 4] = te[4]; array[offset + 5] = te[5]; array[offset + 6] = te[6]; array[offset + 7] = te[7]; array[offset + 8] = te[8]; array[offset + 9] = te[9]; array[offset + 10] = te[10]; array[offset + 11] = te[11]; array[offset + 12] = te[12]; array[offset + 13] = te[13]; array[offset + 14] = te[14]; array[offset + 15] = te[15]; return array; } } Matrix4.prototype.isMatrix4 = true; const _v1$5 = /*@__PURE__*/new Vector3(); const _m1$2 = /*@__PURE__*/new Matrix4(); const _zero = /*@__PURE__*/new Vector3(0, 0, 0); const _one = /*@__PURE__*/new Vector3(1, 1, 1); const _x = /*@__PURE__*/new Vector3(); const _y = /*@__PURE__*/new Vector3(); const _z = /*@__PURE__*/new Vector3(); const _matrix$1 = /*@__PURE__*/new Matrix4(); const _quaternion$3 = /*@__PURE__*/new Quaternion(); class Euler { constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) { this._x = x; this._y = y; this._z = z; this._order = order; } get x() { return this._x; } set x(value) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y(value) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z(value) { this._z = value; this._onChangeCallback(); } get order() { return this._order; } set order(value) { this._order = value; this._onChangeCallback(); } set(x, y, z, order) { this._x = x; this._y = y; this._z = z; this._order = order || this._order; this._onChangeCallback(); return this; } clone() { return new this.constructor(this._x, this._y, this._z, this._order); } copy(euler) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this._onChangeCallback(); return this; } setFromRotationMatrix(m, order, update) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements; const m11 = te[0], m12 = te[4], m13 = te[8]; const m21 = te[1], m22 = te[5], m23 = te[9]; const m31 = te[2], m32 = te[6], m33 = te[10]; order = order || this._order; switch (order) { case 'XYZ': this._y = Math.asin(clamp(m13, -1, 1)); if (Math.abs(m13) < 0.9999999) { this._x = Math.atan2(-m23, m33); this._z = Math.atan2(-m12, m11); } else { this._x = Math.atan2(m32, m22); this._z = 0; } break; case 'YXZ': this._x = Math.asin(-clamp(m23, -1, 1)); if (Math.abs(m23) < 0.9999999) { this._y = Math.atan2(m13, m33); this._z = Math.atan2(m21, m22); } else { this._y = Math.atan2(-m31, m11); this._z = 0; } break; case 'ZXY': this._x = Math.asin(clamp(m32, -1, 1)); if (Math.abs(m32) < 0.9999999) { this._y = Math.atan2(-m31, m33); this._z = Math.atan2(-m12, m22); } else { this._y = 0; this._z = Math.atan2(m21, m11); } break; case 'ZYX': this._y = Math.asin(-clamp(m31, -1, 1)); if (Math.abs(m31) < 0.9999999) { this._x = Math.atan2(m32, m33); this._z = Math.atan2(m21, m11); } else { this._x = 0; this._z = Math.atan2(-m12, m22); } break; case 'YZX': this._z = Math.asin(clamp(m21, -1, 1)); if (Math.abs(m21) < 0.9999999) { this._x = Math.atan2(-m23, m22); this._y = Math.atan2(-m31, m11); } else { this._x = 0; this._y = Math.atan2(m13, m33); } break; case 'XZY': this._z = Math.asin(-clamp(m12, -1, 1)); if (Math.abs(m12) < 0.9999999) { this._x = Math.atan2(m32, m22); this._y = Math.atan2(m13, m11); } else { this._x = Math.atan2(-m23, m33); this._y = 0; } break; default: console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order); } this._order = order; if (update !== false) this._onChangeCallback(); return this; } setFromQuaternion(q, order, update) { _matrix$1.makeRotationFromQuaternion(q); return this.setFromRotationMatrix(_matrix$1, order, update); } setFromVector3(v, order) { return this.set(v.x, v.y, v.z, order || this._order); } reorder(newOrder) { // WARNING: this discards revolution information -bhouston _quaternion$3.setFromEuler(this); return this.setFromQuaternion(_quaternion$3, newOrder); } equals(euler) { return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order; } fromArray(array) { this._x = array[0]; this._y = array[1]; this._z = array[2]; if (array[3] !== undefined) this._order = array[3]; this._onChangeCallback(); return this; } toArray(array = [], offset = 0) { array[offset] = this._x; array[offset + 1] = this._y; array[offset + 2] = this._z; array[offset + 3] = this._order; return array; } toVector3(optionalResult) { if (optionalResult) { return optionalResult.set(this._x, this._y, this._z); } else { return new Vector3(this._x, this._y, this._z); } } _onChange(callback) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} } Euler.prototype.isEuler = true; Euler.DefaultOrder = 'XYZ'; Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX']; class Layers { constructor() { this.mask = 1 | 0; } set(channel) { this.mask = 1 << channel | 0; } enable(channel) { this.mask |= 1 << channel | 0; } enableAll() { this.mask = 0xffffffff | 0; } toggle(channel) { this.mask ^= 1 << channel | 0; } disable(channel) { this.mask &= ~(1 << channel | 0); } disableAll() { this.mask = 0; } test(layers) { return (this.mask & layers.mask) !== 0; } } let _object3DId = 0; const _v1$4 = /*@__PURE__*/new Vector3(); const _q1 = /*@__PURE__*/new Quaternion(); const _m1$1 = /*@__PURE__*/new Matrix4(); const _target = /*@__PURE__*/new Vector3(); const _position$3 = /*@__PURE__*/new Vector3(); const _scale$2 = /*@__PURE__*/new Vector3(); const _quaternion$2 = /*@__PURE__*/new Quaternion(); const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0); const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0); const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1); const _addedEvent = { type: 'added' }; const _removedEvent = { type: 'removed' }; class Object3D extends EventDispatcher { constructor() { super(); Object.defineProperty(this, 'id', { value: _object3DId++ }); this.uuid = generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = Object3D.DefaultUp.clone(); const position = new Vector3(); const rotation = new Euler(); const quaternion = new Quaternion(); const scale = new Vector3(1, 1, 1); function onRotationChange() { quaternion.setFromEuler(rotation, false); } function onQuaternionChange() { rotation.setFromQuaternion(quaternion, undefined, false); } rotation._onChange(onRotationChange); quaternion._onChange(onQuaternionChange); Object.defineProperties(this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } }); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.animations = []; this.userData = {}; } onBeforeRender() {} onAfterRender() {} applyMatrix4(matrix) { if (this.matrixAutoUpdate) this.updateMatrix(); this.matrix.premultiply(matrix); this.matrix.decompose(this.position, this.quaternion, this.scale); } applyQuaternion(q) { this.quaternion.premultiply(q); return this; } setRotationFromAxisAngle(axis, angle) { // assumes axis is normalized this.quaternion.setFromAxisAngle(axis, angle); } setRotationFromEuler(euler) { this.quaternion.setFromEuler(euler, true); } setRotationFromMatrix(m) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix(m); } setRotationFromQuaternion(q) { // assumes q is normalized this.quaternion.copy(q); } rotateOnAxis(axis, angle) { // rotate object on axis in object space // axis is assumed to be normalized _q1.setFromAxisAngle(axis, angle); this.quaternion.multiply(_q1); return this; } rotateOnWorldAxis(axis, angle) { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent _q1.setFromAxisAngle(axis, angle); this.quaternion.premultiply(_q1); return this; } rotateX(angle) { return this.rotateOnAxis(_xAxis, angle); } rotateY(angle) { return this.rotateOnAxis(_yAxis, angle); } rotateZ(angle) { return this.rotateOnAxis(_zAxis, angle); } translateOnAxis(axis, distance) { // translate object by distance along axis in object space // axis is assumed to be normalized _v1$4.copy(axis).applyQuaternion(this.quaternion); this.position.add(_v1$4.multiplyScalar(distance)); return this; } translateX(distance) { return this.translateOnAxis(_xAxis, distance); } translateY(distance) { return this.translateOnAxis(_yAxis, distance); } translateZ(distance) { return this.translateOnAxis(_zAxis, distance); } localToWorld(vector) { return vector.applyMatrix4(this.matrixWorld); } worldToLocal(vector) { return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert()); } lookAt(x, y, z) { // This method does not support objects having non-uniformly-scaled parent(s) if (x.isVector3) { _target.copy(x); } else { _target.set(x, y, z); } const parent = this.parent; this.updateWorldMatrix(true, false); _position$3.setFromMatrixPosition(this.matrixWorld); if (this.isCamera || this.isLight) { _m1$1.lookAt(_position$3, _target, this.up); } else { _m1$1.lookAt(_target, _position$3, this.up); } this.quaternion.setFromRotationMatrix(_m1$1); if (parent) { _m1$1.extractRotation(parent.matrixWorld); _q1.setFromRotationMatrix(_m1$1); this.quaternion.premultiply(_q1.invert()); } } add(object) { if (arguments.length > 1) { for (let i = 0; i < arguments.length; i++) { this.add(arguments[i]); } return this; } if (object === this) { console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object); return this; } if (object && object.isObject3D) { if (object.parent !== null) { object.parent.remove(object); } object.parent = this; this.children.push(object); object.dispatchEvent(_addedEvent); } else { console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object); } return this; } remove(object) { if (arguments.length > 1) { for (let i = 0; i < arguments.length; i++) { this.remove(arguments[i]); } return this; } const index = this.children.indexOf(object); if (index !== -1) { object.parent = null; this.children.splice(index, 1); object.dispatchEvent(_removedEvent); } return this; } removeFromParent() { const parent = this.parent; if (parent !== null) { parent.remove(this); } return this; } clear() { for (let i = 0; i < this.children.length; i++) { const object = this.children[i]; object.parent = null; object.dispatchEvent(_removedEvent); } this.children.length = 0; return this; } attach(object) { // adds object as a child of this, while maintaining the object's world transform this.updateWorldMatrix(true, false); _m1$1.copy(this.matrixWorld).invert(); if (object.parent !== null) { object.parent.updateWorldMatrix(true, false); _m1$1.multiply(object.parent.matrixWorld); } object.applyMatrix4(_m1$1); this.add(object); object.updateWorldMatrix(false, true); return this; } getObjectById(id) { return this.getObjectByProperty('id', id); } getObjectByName(name) { return this.getObjectByProperty('name', name); } getObjectByProperty(name, value) { if (this[name] === value) return this; for (let i = 0, l = this.children.length; i < l; i++) { const child = this.children[i]; const object = child.getObjectByProperty(name, value); if (object !== undefined) { return object; } } return undefined; } getWorldPosition(target) { if (target === undefined) { console.warn('THREE.Object3D: .getWorldPosition() target is now required'); target = new Vector3(); } this.updateWorldMatrix(true, false); return target.setFromMatrixPosition(this.matrixWorld); } getWorldQuaternion(target) { if (target === undefined) { console.warn('THREE.Object3D: .getWorldQuaternion() target is now required'); target = new Quaternion(); } this.updateWorldMatrix(true, false); this.matrixWorld.decompose(_position$3, target, _scale$2); return target; } getWorldScale(target) { if (target === undefined) { console.warn('THREE.Object3D: .getWorldScale() target is now required'); target = new Vector3(); } this.updateWorldMatrix(true, false); this.matrixWorld.decompose(_position$3, _quaternion$2, target); return target; } getWorldDirection(target) { if (target === undefined) { console.warn('THREE.Object3D: .getWorldDirection() target is now required'); target = new Vector3(); } this.updateWorldMatrix(true, false); const e = this.matrixWorld.elements; return target.set(e[8], e[9], e[10]).normalize(); } raycast() {} traverse(callback) { callback(this); const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].traverse(callback); } } traverseVisible(callback) { if (this.visible === false) return; callback(this); const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].traverseVisible(callback); } } traverseAncestors(callback) { const parent = this.parent; if (parent !== null) { callback(parent); parent.traverseAncestors(callback); } } updateMatrix() { this.matrix.compose(this.position, this.quaternion, this.scale); this.matrixWorldNeedsUpdate = true; } updateMatrixWorld(force) { if (this.matrixAutoUpdate) this.updateMatrix(); if (this.matrixWorldNeedsUpdate || force) { if (this.parent === null) { this.matrixWorld.copy(this.matrix); } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); } this.matrixWorldNeedsUpdate = false; force = true; } // update children const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].updateMatrixWorld(force); } } updateWorldMatrix(updateParents, updateChildren) { const parent = this.parent; if (updateParents === true && parent !== null) { parent.updateWorldMatrix(true, false); } if (this.matrixAutoUpdate) this.updateMatrix(); if (this.parent === null) { this.matrixWorld.copy(this.matrix); } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); } // update children if (updateChildren === true) { const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].updateWorldMatrix(false, true); } } } toJSON(meta) { // meta is a string when called from JSON.stringify const isRootObject = meta === undefined || typeof meta === 'string'; const output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if (isRootObject) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {}, skeletons: {}, animations: {} }; output.metadata = { version: 4.5, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization const object = {}; object.uuid = this.uuid; object.type = this.type; if (this.name !== '') object.name = this.name; if (this.castShadow === true) object.castShadow = true; if (this.receiveShadow === true) object.receiveShadow = true; if (this.visible === false) object.visible = false; if (this.frustumCulled === false) object.frustumCulled = false; if (this.renderOrder !== 0) object.renderOrder = this.renderOrder; if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData; object.layers = this.layers.mask; object.matrix = this.matrix.toArray(); if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties if (this.isInstancedMesh) { object.type = 'InstancedMesh'; object.count = this.count; object.instanceMatrix = this.instanceMatrix.toJSON(); if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON(); } // function serialize(library, element) { if (library[element.uuid] === undefined) { library[element.uuid] = element.toJSON(meta); } return element.uuid; } if (this.isMesh || this.isLine || this.isPoints) { object.geometry = serialize(meta.geometries, this.geometry); const parameters = this.geometry.parameters; if (parameters !== undefined && parameters.shapes !== undefined) { const shapes = parameters.shapes; if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; serialize(meta.shapes, shape); } } else { serialize(meta.shapes, shapes); } } } if (this.isSkinnedMesh) { object.bindMode = this.bindMode; object.bindMatrix = this.bindMatrix.toArray(); if (this.skeleton !== undefined) { serialize(meta.skeletons, this.skeleton); object.skeleton = this.skeleton.uuid; } } if (this.material !== undefined) { if (Array.isArray(this.material)) { const uuids = []; for (let i = 0, l = this.material.length; i < l; i++) { uuids.push(serialize(meta.materials, this.material[i])); } object.material = uuids; } else { object.material = serialize(meta.materials, this.material); } } // if (this.children.length > 0) { object.children = []; for (let i = 0; i < this.children.length; i++) { object.children.push(this.children[i].toJSON(meta).object); } } // if (this.animations.length > 0) { object.animations = []; for (let i = 0; i < this.animations.length; i++) { const animation = this.animations[i]; object.animations.push(serialize(meta.animations, animation)); } } if (isRootObject) { const geometries = extractFromCache(meta.geometries); const materials = extractFromCache(meta.materials); const textures = extractFromCache(meta.textures); const images = extractFromCache(meta.images); const shapes = extractFromCache(meta.shapes); const skeletons = extractFromCache(meta.skeletons); const animations = extractFromCache(meta.animations); if (geometries.length > 0) output.geometries = geometries; if (materials.length > 0) output.materials = materials; if (textures.length > 0) output.textures = textures; if (images.length > 0) output.images = images; if (shapes.length > 0) output.shapes = shapes; if (skeletons.length > 0) output.skeletons = skeletons; if (animations.length > 0) output.animations = animations; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache(cache) { const values = []; for (const key in cache) { const data = cache[key]; delete data.metadata; values.push(data); } return values; } } clone(recursive) { return new this.constructor().copy(this, recursive); } copy(source, recursive = true) { this.name = source.name; this.up.copy(source.up); this.position.copy(source.position); this.rotation.order = source.rotation.order; this.quaternion.copy(source.quaternion); this.scale.copy(source.scale); this.matrix.copy(source.matrix); this.matrixWorld.copy(source.matrixWorld); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse(JSON.stringify(source.userData)); if (recursive === true) { for (let i = 0; i < source.children.length; i++) { const child = source.children[i]; this.add(child.clone()); } } return this; } } Object3D.DefaultUp = new Vector3(0, 1, 0); Object3D.DefaultMatrixAutoUpdate = true; Object3D.prototype.isObject3D = true; const _vector1 = /*@__PURE__*/new Vector3(); const _vector2$1 = /*@__PURE__*/new Vector3(); const _normalMatrix = /*@__PURE__*/new Matrix3(); class Plane { constructor(normal = new Vector3(1, 0, 0), constant = 0) { // normal is assumed to be normalized this.normal = normal; this.constant = constant; } set(normal, constant) { this.normal.copy(normal); this.constant = constant; return this; } setComponents(x, y, z, w) { this.normal.set(x, y, z); this.constant = w; return this; } setFromNormalAndCoplanarPoint(normal, point) { this.normal.copy(normal); this.constant = -point.dot(this.normal); return this; } setFromCoplanarPoints(a, b, c) { const normal = _vector1.subVectors(c, b).cross(_vector2$1.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint(normal, a); return this; } copy(plane) { this.normal.copy(plane.normal); this.constant = plane.constant; return this; } normalize() { // Note: will lead to a divide by zero if the plane is invalid. const inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar(inverseNormalLength); this.constant *= inverseNormalLength; return this; } negate() { this.constant *= -1; this.normal.negate(); return this; } distanceToPoint(point) { return this.normal.dot(point) + this.constant; } distanceToSphere(sphere) { return this.distanceToPoint(sphere.center) - sphere.radius; } projectPoint(point, target) { if (target === undefined) { console.warn('THREE.Plane: .projectPoint() target is now required'); target = new Vector3(); } return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point); } intersectLine(line, target) { if (target === undefined) { console.warn('THREE.Plane: .intersectLine() target is now required'); target = new Vector3(); } const direction = line.delta(_vector1); const denominator = this.normal.dot(direction); if (denominator === 0) { // line is coplanar, return origin if (this.distanceToPoint(line.start) === 0) { return target.copy(line.start); } // Unsure if this is the correct method to handle this case. return null; } const t = -(line.start.dot(this.normal) + this.constant) / denominator; if (t < 0 || t > 1) { return null; } return target.copy(direction).multiplyScalar(t).add(line.start); } intersectsLine(line) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. const startSign = this.distanceToPoint(line.start); const endSign = this.distanceToPoint(line.end); return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0; } intersectsBox(box) { return box.intersectsPlane(this); } intersectsSphere(sphere) { return sphere.intersectsPlane(this); } coplanarPoint(target) { if (target === undefined) { console.warn('THREE.Plane: .coplanarPoint() target is now required'); target = new Vector3(); } return target.copy(this.normal).multiplyScalar(-this.constant); } applyMatrix4(matrix, optionalNormalMatrix) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix); const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix); const normal = this.normal.applyMatrix3(normalMatrix).normalize(); this.constant = -referencePoint.dot(normal); return this; } translate(offset) { this.constant -= offset.dot(this.normal); return this; } equals(plane) { return plane.normal.equals(this.normal) && plane.constant === this.constant; } clone() { return new this.constructor().copy(this); } } Plane.prototype.isPlane = true; const _v0$1 = /*@__PURE__*/new Vector3(); const _v1$3 = /*@__PURE__*/new Vector3(); const _v2$2 = /*@__PURE__*/new Vector3(); const _v3$1 = /*@__PURE__*/new Vector3(); const _vab = /*@__PURE__*/new Vector3(); const _vac = /*@__PURE__*/new Vector3(); const _vbc = /*@__PURE__*/new Vector3(); const _vap = /*@__PURE__*/new Vector3(); const _vbp = /*@__PURE__*/new Vector3(); const _vcp = /*@__PURE__*/new Vector3(); class Triangle { constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) { this.a = a; this.b = b; this.c = c; } static getNormal(a, b, c, target) { if (target === undefined) { console.warn('THREE.Triangle: .getNormal() target is now required'); target = new Vector3(); } target.subVectors(c, b); _v0$1.subVectors(a, b); target.cross(_v0$1); const targetLengthSq = target.lengthSq(); if (targetLengthSq > 0) { return target.multiplyScalar(1 / Math.sqrt(targetLengthSq)); } return target.set(0, 0, 0); } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord(point, a, b, c, target) { _v0$1.subVectors(c, a); _v1$3.subVectors(b, a); _v2$2.subVectors(point, a); const dot00 = _v0$1.dot(_v0$1); const dot01 = _v0$1.dot(_v1$3); const dot02 = _v0$1.dot(_v2$2); const dot11 = _v1$3.dot(_v1$3); const dot12 = _v1$3.dot(_v2$2); const denom = dot00 * dot11 - dot01 * dot01; if (target === undefined) { console.warn('THREE.Triangle: .getBarycoord() target is now required'); target = new Vector3(); } // collinear or singular triangle if (denom === 0) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return target.set(-2, -1, -1); } const invDenom = 1 / denom; const u = (dot11 * dot02 - dot01 * dot12) * invDenom; const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1 return target.set(1 - u - v, v, u); } static containsPoint(point, a, b, c) { this.getBarycoord(point, a, b, c, _v3$1); return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1; } static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) { this.getBarycoord(point, p1, p2, p3, _v3$1); target.set(0, 0); target.addScaledVector(uv1, _v3$1.x); target.addScaledVector(uv2, _v3$1.y); target.addScaledVector(uv3, _v3$1.z); return target; } static isFrontFacing(a, b, c, direction) { _v0$1.subVectors(c, b); _v1$3.subVectors(a, b); // strictly front facing return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false; } set(a, b, c) { this.a.copy(a); this.b.copy(b); this.c.copy(c); return this; } setFromPointsAndIndices(points, i0, i1, i2) { this.a.copy(points[i0]); this.b.copy(points[i1]); this.c.copy(points[i2]); return this; } clone() { return new this.constructor().copy(this); } copy(triangle) { this.a.copy(triangle.a); this.b.copy(triangle.b); this.c.copy(triangle.c); return this; } getArea() { _v0$1.subVectors(this.c, this.b); _v1$3.subVectors(this.a, this.b); return _v0$1.cross(_v1$3).length() * 0.5; } getMidpoint(target) { if (target === undefined) { console.warn('THREE.Triangle: .getMidpoint() target is now required'); target = new Vector3(); } return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3); } getNormal(target) { return Triangle.getNormal(this.a, this.b, this.c, target); } getPlane(target) { if (target === undefined) { console.warn('THREE.Triangle: .getPlane() target is now required'); target = new Plane(); } return target.setFromCoplanarPoints(this.a, this.b, this.c); } getBarycoord(point, target) { return Triangle.getBarycoord(point, this.a, this.b, this.c, target); } getUV(point, uv1, uv2, uv3, target) { return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target); } containsPoint(point) { return Triangle.containsPoint(point, this.a, this.b, this.c); } isFrontFacing(direction) { return Triangle.isFrontFacing(this.a, this.b, this.c, direction); } intersectsBox(box) { return box.intersectsTriangle(this); } closestPointToPoint(p, target) { if (target === undefined) { console.warn('THREE.Triangle: .closestPointToPoint() target is now required'); target = new Vector3(); } const a = this.a, b = this.b, c = this.c; let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors(b, a); _vac.subVectors(c, a); _vap.subVectors(p, a); const d1 = _vab.dot(_vap); const d2 = _vac.dot(_vap); if (d1 <= 0 && d2 <= 0) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy(a); } _vbp.subVectors(p, b); const d3 = _vab.dot(_vbp); const d4 = _vac.dot(_vbp); if (d3 >= 0 && d4 <= d3) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy(b); } const vc = d1 * d4 - d3 * d2; if (vc <= 0 && d1 >= 0 && d3 <= 0) { v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy(a).addScaledVector(_vab, v); } _vcp.subVectors(p, c); const d5 = _vab.dot(_vcp); const d6 = _vac.dot(_vcp); if (d6 >= 0 && d5 <= d6) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy(c); } const vb = d5 * d2 - d1 * d6; if (vb <= 0 && d2 >= 0 && d6 <= 0) { w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy(a).addScaledVector(_vac, w); } const va = d3 * d6 - d5 * d4; if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) { _vbc.subVectors(c, b); w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy(b).addScaledVector(_vbc, w); // edge region of BC } // face region const denom = 1 / (va + vb + vc); // u = va * denom v = vb * denom; w = vc * denom; return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w); } equals(triangle) { return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c); } } let materialId = 0; class Material extends EventDispatcher { constructor() { super(); Object.defineProperty(this, 'id', { value: materialId++ }); this.uuid = generateUUID(); this.name = ''; this.type = 'Material'; this.fog = true; this.blending = NormalBlending; this.side = FrontSide; this.vertexColors = false; this.opacity = 1; this.transparent = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.stencilWriteMask = 0xff; this.stencilFunc = AlwaysStencilFunc; this.stencilRef = 0; this.stencilFuncMask = 0xff; this.stencilFail = KeepStencilOp; this.stencilZFail = KeepStencilOp; this.stencilZPass = KeepStencilOp; this.stencilWrite = false; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.shadowSide = null; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaTest = 0; this.alphaToCoverage = false; this.premultipliedAlpha = false; this.visible = true; this.toneMapped = true; this.userData = {}; this.version = 0; } onBuild() /* shaderobject, renderer */ {} onBeforeCompile() /* shaderobject, renderer */ {} customProgramCacheKey() { return this.onBeforeCompile.toString(); } setValues(values) { if (values === undefined) return; for (const key in values) { const newValue = values[key]; if (newValue === undefined) { console.warn('THREE.Material: \'' + key + '\' parameter is undefined.'); continue; } // for backward compatability if shading is set in the constructor if (key === 'shading') { console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); this.flatShading = newValue === FlatShading ? true : false; continue; } const currentValue = this[key]; if (currentValue === undefined) { console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.'); continue; } if (currentValue && currentValue.isColor) { currentValue.set(newValue); } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) { currentValue.copy(newValue); } else { this[key] = newValue; } } } toJSON(meta) { const isRoot = meta === undefined || typeof meta === 'string'; if (isRoot) { meta = { textures: {}, images: {} }; } const data = { metadata: { version: 4.5, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if (this.name !== '') data.name = this.name; if (this.color && this.color.isColor) data.color = this.color.getHex(); if (this.roughness !== undefined) data.roughness = this.roughness; if (this.metalness !== undefined) data.metalness = this.metalness; if (this.sheen && this.sheen.isColor) data.sheen = this.sheen.getHex(); if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex(); if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity; if (this.specular && this.specular.isColor) data.specular = this.specular.getHex(); if (this.shininess !== undefined) data.shininess = this.shininess; if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat; if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness; if (this.clearcoatMap && this.clearcoatMap.isTexture) { data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid; } if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid; } if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid; data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); } if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid; if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid; if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid; if (this.lightMap && this.lightMap.isTexture) { data.lightMap = this.lightMap.toJSON(meta).uuid; data.lightMapIntensity = this.lightMapIntensity; } if (this.aoMap && this.aoMap.isTexture) { data.aoMap = this.aoMap.toJSON(meta).uuid; data.aoMapIntensity = this.aoMapIntensity; } if (this.bumpMap && this.bumpMap.isTexture) { data.bumpMap = this.bumpMap.toJSON(meta).uuid; data.bumpScale = this.bumpScale; } if (this.normalMap && this.normalMap.isTexture) { data.normalMap = this.normalMap.toJSON(meta).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray(); } if (this.displacementMap && this.displacementMap.isTexture) { data.displacementMap = this.displacementMap.toJSON(meta).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid; if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid; if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid; if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid; if (this.envMap && this.envMap.isTexture) { data.envMap = this.envMap.toJSON(meta).uuid; if (this.combine !== undefined) data.combine = this.combine; } if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity; if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity; if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio; if (this.gradientMap && this.gradientMap.isTexture) { data.gradientMap = this.gradientMap.toJSON(meta).uuid; } if (this.transmission !== undefined) data.transmission = this.transmission; if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid; if (this.thickness !== undefined) data.thickness = this.thickness; if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid; if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance; if (this.attenuationColor !== undefined) data.attenuationColor = this.attenuationColor.getHex(); if (this.size !== undefined) data.size = this.size; if (this.shadowSide !== null) data.shadowSide = this.shadowSide; if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation; if (this.blending !== NormalBlending) data.blending = this.blending; if (this.side !== FrontSide) data.side = this.side; if (this.vertexColors) data.vertexColors = true; if (this.opacity < 1) data.opacity = this.opacity; if (this.transparent === true) data.transparent = this.transparent; data.depthFunc = this.depthFunc; data.depthTest = this.depthTest; data.depthWrite = this.depthWrite; data.colorWrite = this.colorWrite; data.stencilWrite = this.stencilWrite; data.stencilWriteMask = this.stencilWriteMask; data.stencilFunc = this.stencilFunc; data.stencilRef = this.stencilRef; data.stencilFuncMask = this.stencilFuncMask; data.stencilFail = this.stencilFail; data.stencilZFail = this.stencilZFail; data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial) if (this.rotation && this.rotation !== 0) data.rotation = this.rotation; if (this.polygonOffset === true) data.polygonOffset = true; if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor; if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits; if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth; if (this.dashSize !== undefined) data.dashSize = this.dashSize; if (this.gapSize !== undefined) data.gapSize = this.gapSize; if (this.scale !== undefined) data.scale = this.scale; if (this.dithering === true) data.dithering = true; if (this.alphaTest > 0) data.alphaTest = this.alphaTest; if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage; if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha; if (this.wireframe === true) data.wireframe = this.wireframe; if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth; if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap; if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin; if (this.morphTargets === true) data.morphTargets = true; if (this.morphNormals === true) data.morphNormals = true; if (this.flatShading === true) data.flatShading = this.flatShading; if (this.visible === false) data.visible = false; if (this.toneMapped === false) data.toneMapped = false; if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON function extractFromCache(cache) { const values = []; for (const key in cache) { const data = cache[key]; delete data.metadata; values.push(data); } return values; } if (isRoot) { const textures = extractFromCache(meta.textures); const images = extractFromCache(meta.images); if (textures.length > 0) data.textures = textures; if (images.length > 0) data.images = images; } return data; } clone() { return new this.constructor().copy(this); } copy(source) { this.name = source.name; this.fog = source.fog; this.blending = source.blending; this.side = source.side; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.stencilWriteMask = source.stencilWriteMask; this.stencilFunc = source.stencilFunc; this.stencilRef = source.stencilRef; this.stencilFuncMask = source.stencilFuncMask; this.stencilFail = source.stencilFail; this.stencilZFail = source.stencilZFail; this.stencilZPass = source.stencilZPass; this.stencilWrite = source.stencilWrite; const srcPlanes = source.clippingPlanes; let dstPlanes = null; if (srcPlanes !== null) { const n = srcPlanes.length; dstPlanes = new Array(n); for (let i = 0; i !== n; ++i) { dstPlanes[i] = srcPlanes[i].clone(); } } this.clippingPlanes = dstPlanes; this.clipIntersection = source.clipIntersection; this.clipShadows = source.clipShadows; this.shadowSide = source.shadowSide; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.alphaToCoverage = source.alphaToCoverage; this.premultipliedAlpha = source.premultipliedAlpha; this.visible = source.visible; this.toneMapped = source.toneMapped; this.userData = JSON.parse(JSON.stringify(source.userData)); return this; } dispose() { this.dispatchEvent({ type: 'dispose' }); } set needsUpdate(value) { if (value === true) this.version++; } } Material.prototype.isMaterial = true; const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; const _hslA = { h: 0, s: 0, l: 0 }; const _hslB = { h: 0, s: 0, l: 0 }; function hue2rgb(p, q, t) { if (t < 0) t += 1; if (t > 1) t -= 1; if (t < 1 / 6) return p + (q - p) * 6 * t; if (t < 1 / 2) return q; if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t); return p; } function SRGBToLinear(c) { return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4); } function LinearToSRGB(c) { return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055; } class Color { constructor(r, g, b) { if (g === undefined && b === undefined) { // r is THREE.Color, hex or string return this.set(r); } return this.setRGB(r, g, b); } set(value) { if (value && value.isColor) { this.copy(value); } else if (typeof value === 'number') { this.setHex(value); } else if (typeof value === 'string') { this.setStyle(value); } return this; } setScalar(scalar) { this.r = scalar; this.g = scalar; this.b = scalar; return this; } setHex(hex) { hex = Math.floor(hex); this.r = (hex >> 16 & 255) / 255; this.g = (hex >> 8 & 255) / 255; this.b = (hex & 255) / 255; return this; } setRGB(r, g, b) { this.r = r; this.g = g; this.b = b; return this; } setHSL(h, s, l) { // h,s,l ranges are in 0.0 - 1.0 h = euclideanModulo(h, 1); s = clamp(s, 0, 1); l = clamp(l, 0, 1); if (s === 0) { this.r = this.g = this.b = l; } else { const p = l <= 0.5 ? l * (1 + s) : l + s - l * s; const q = 2 * l - p; this.r = hue2rgb(q, p, h + 1 / 3); this.g = hue2rgb(q, p, h); this.b = hue2rgb(q, p, h - 1 / 3); } return this; } setStyle(style) { function handleAlpha(string) { if (string === undefined) return; if (parseFloat(string) < 1) { console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.'); } } let m; if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) { // rgb / hsl let color; const name = m[1]; const components = m[2]; switch (name) { case 'rgb': case 'rgba': if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min(255, parseInt(color[1], 10)) / 255; this.g = Math.min(255, parseInt(color[2], 10)) / 255; this.b = Math.min(255, parseInt(color[3], 10)) / 255; handleAlpha(color[4]); return this; } if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min(100, parseInt(color[1], 10)) / 100; this.g = Math.min(100, parseInt(color[2], 10)) / 100; this.b = Math.min(100, parseInt(color[3], 10)) / 100; handleAlpha(color[4]); return this; } break; case 'hsl': case 'hsla': if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) const h = parseFloat(color[1]) / 360; const s = parseInt(color[2], 10) / 100; const l = parseInt(color[3], 10) / 100; handleAlpha(color[4]); return this.setHSL(h, s, l); } break; } } else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) { // hex color const hex = m[1]; const size = hex.length; if (size === 3) { // #ff0 this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255; this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255; this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255; return this; } else if (size === 6) { // #ff0000 this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255; this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255; this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255; return this; } } if (style && style.length > 0) { return this.setColorName(style); } return this; } setColorName(style) { // color keywords const hex = _colorKeywords[style.toLowerCase()]; if (hex !== undefined) { // red this.setHex(hex); } else { // unknown color console.warn('THREE.Color: Unknown color ' + style); } return this; } clone() { return new this.constructor(this.r, this.g, this.b); } copy(color) { this.r = color.r; this.g = color.g; this.b = color.b; return this; } copyGammaToLinear(color, gammaFactor = 2.0) { this.r = Math.pow(color.r, gammaFactor); this.g = Math.pow(color.g, gammaFactor); this.b = Math.pow(color.b, gammaFactor); return this; } copyLinearToGamma(color, gammaFactor = 2.0) { const safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0; this.r = Math.pow(color.r, safeInverse); this.g = Math.pow(color.g, safeInverse); this.b = Math.pow(color.b, safeInverse); return this; } convertGammaToLinear(gammaFactor) { this.copyGammaToLinear(this, gammaFactor); return this; } convertLinearToGamma(gammaFactor) { this.copyLinearToGamma(this, gammaFactor); return this; } copySRGBToLinear(color) { this.r = SRGBToLinear(color.r); this.g = SRGBToLinear(color.g); this.b = SRGBToLinear(color.b); return this; } copyLinearToSRGB(color) { this.r = LinearToSRGB(color.r); this.g = LinearToSRGB(color.g); this.b = LinearToSRGB(color.b); return this; } convertSRGBToLinear() { this.copySRGBToLinear(this); return this; } convertLinearToSRGB() { this.copyLinearToSRGB(this); return this; } getHex() { return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0; } getHexString() { return ('000000' + this.getHex().toString(16)).slice(-6); } getHSL(target) { // h,s,l ranges are in 0.0 - 1.0 if (target === undefined) { console.warn('THREE.Color: .getHSL() target is now required'); target = { h: 0, s: 0, l: 0 }; } const r = this.r, g = this.g, b = this.b; const max = Math.max(r, g, b); const min = Math.min(r, g, b); let hue, saturation; const lightness = (min + max) / 2.0; if (min === max) { hue = 0; saturation = 0; } else { const delta = max - min; saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min); switch (max) { case r: hue = (g - b) / delta + (g < b ? 6 : 0); break; case g: hue = (b - r) / delta + 2; break; case b: hue = (r - g) / delta + 4; break; } hue /= 6; } target.h = hue; target.s = saturation; target.l = lightness; return target; } getStyle() { return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')'; } offsetHSL(h, s, l) { this.getHSL(_hslA); _hslA.h += h; _hslA.s += s; _hslA.l += l; this.setHSL(_hslA.h, _hslA.s, _hslA.l); return this; } add(color) { this.r += color.r; this.g += color.g; this.b += color.b; return this; } addColors(color1, color2) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; } addScalar(s) { this.r += s; this.g += s; this.b += s; return this; } sub(color) { this.r = Math.max(0, this.r - color.r); this.g = Math.max(0, this.g - color.g); this.b = Math.max(0, this.b - color.b); return this; } multiply(color) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; } multiplyScalar(s) { this.r *= s; this.g *= s; this.b *= s; return this; } lerp(color, alpha) { this.r += (color.r - this.r) * alpha; this.g += (color.g - this.g) * alpha; this.b += (color.b - this.b) * alpha; return this; } lerpColors(color1, color2, alpha) { this.r = color1.r + (color2.r - color1.r) * alpha; this.g = color1.g + (color2.g - color1.g) * alpha; this.b = color1.b + (color2.b - color1.b) * alpha; return this; } lerpHSL(color, alpha) { this.getHSL(_hslA); color.getHSL(_hslB); const h = lerp(_hslA.h, _hslB.h, alpha); const s = lerp(_hslA.s, _hslB.s, alpha); const l = lerp(_hslA.l, _hslB.l, alpha); this.setHSL(h, s, l); return this; } equals(c) { return c.r === this.r && c.g === this.g && c.b === this.b; } fromArray(array, offset = 0) { this.r = array[offset]; this.g = array[offset + 1]; this.b = array[offset + 2]; return this; } toArray(array = [], offset = 0) { array[offset] = this.r; array[offset + 1] = this.g; array[offset + 2] = this.b; return array; } fromBufferAttribute(attribute, index) { this.r = attribute.getX(index); this.g = attribute.getY(index); this.b = attribute.getZ(index); if (attribute.normalized === true) { // assuming Uint8Array this.r /= 255; this.g /= 255; this.b /= 255; } return this; } toJSON() { return this.getHex(); } } Color.NAMES = _colorKeywords; Color.prototype.isColor = true; Color.prototype.r = 1; Color.prototype.g = 1; Color.prototype.b = 1; /** * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * morphTargets: * } */ class MeshBasicMaterial extends Material { constructor(parameters) { super(); this.type = 'MeshBasicMaterial'; this.color = new Color(0xffffff); // emissive this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.morphTargets = false; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.morphTargets = source.morphTargets; return this; } } MeshBasicMaterial.prototype.isMeshBasicMaterial = true; const _vector$9 = /*@__PURE__*/new Vector3(); const _vector2 = /*@__PURE__*/new Vector2(); class BufferAttribute { constructor(array, itemSize, normalized) { if (Array.isArray(array)) { throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.'); } this.name = ''; this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized === true; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: -1 }; this.version = 0; } onUploadCallback() {} set needsUpdate(value) { if (value === true) this.version++; } setUsage(value) { this.usage = value; return this; } copy(source) { this.name = source.name; this.array = new source.array.constructor(source.array); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.usage = source.usage; return this; } copyAt(index1, attribute, index2) { index1 *= this.itemSize; index2 *= attribute.itemSize; for (let i = 0, l = this.itemSize; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i]; } return this; } copyArray(array) { this.array.set(array); return this; } copyColorsArray(colors) { const array = this.array; let offset = 0; for (let i = 0, l = colors.length; i < l; i++) { let color = colors[i]; if (color === undefined) { console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i); color = new Color(); } array[offset++] = color.r; array[offset++] = color.g; array[offset++] = color.b; } return this; } copyVector2sArray(vectors) { const array = this.array; let offset = 0; for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i]; if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i); vector = new Vector2(); } array[offset++] = vector.x; array[offset++] = vector.y; } return this; } copyVector3sArray(vectors) { const array = this.array; let offset = 0; for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i]; if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i); vector = new Vector3(); } array[offset++] = vector.x; array[offset++] = vector.y; array[offset++] = vector.z; } return this; } copyVector4sArray(vectors) { const array = this.array; let offset = 0; for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i]; if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i); vector = new Vector4(); } array[offset++] = vector.x; array[offset++] = vector.y; array[offset++] = vector.z; array[offset++] = vector.w; } return this; } applyMatrix3(m) { if (this.itemSize === 2) { for (let i = 0, l = this.count; i < l; i++) { _vector2.fromBufferAttribute(this, i); _vector2.applyMatrix3(m); this.setXY(i, _vector2.x, _vector2.y); } } else if (this.itemSize === 3) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i); _vector$9.applyMatrix3(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } } return this; } applyMatrix4(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.x = this.getX(i); _vector$9.y = this.getY(i); _vector$9.z = this.getZ(i); _vector$9.applyMatrix4(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } applyNormalMatrix(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.x = this.getX(i); _vector$9.y = this.getY(i); _vector$9.z = this.getZ(i); _vector$9.applyNormalMatrix(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } transformDirection(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.x = this.getX(i); _vector$9.y = this.getY(i); _vector$9.z = this.getZ(i); _vector$9.transformDirection(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } set(value, offset = 0) { this.array.set(value, offset); return this; } getX(index) { return this.array[index * this.itemSize]; } setX(index, x) { this.array[index * this.itemSize] = x; return this; } getY(index) { return this.array[index * this.itemSize + 1]; } setY(index, y) { this.array[index * this.itemSize + 1] = y; return this; } getZ(index) { return this.array[index * this.itemSize + 2]; } setZ(index, z) { this.array[index * this.itemSize + 2] = z; return this; } getW(index) { return this.array[index * this.itemSize + 3]; } setW(index, w) { this.array[index * this.itemSize + 3] = w; return this; } setXY(index, x, y) { index *= this.itemSize; this.array[index + 0] = x; this.array[index + 1] = y; return this; } setXYZ(index, x, y, z) { index *= this.itemSize; this.array[index + 0] = x; this.array[index + 1] = y; this.array[index + 2] = z; return this; } setXYZW(index, x, y, z, w) { index *= this.itemSize; this.array[index + 0] = x; this.array[index + 1] = y; this.array[index + 2] = z; this.array[index + 3] = w; return this; } onUpload(callback) { this.onUploadCallback = callback; return this; } clone() { return new this.constructor(this.array, this.itemSize).copy(this); } toJSON() { const data = { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.prototype.slice.call(this.array), normalized: this.normalized }; if (this.name !== '') data.name = this.name; if (this.usage !== StaticDrawUsage) data.usage = this.usage; if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange; return data; } } BufferAttribute.prototype.isBufferAttribute = true; // class Int8BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int8Array(array), itemSize, normalized); } } class Uint8BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint8Array(array), itemSize, normalized); } } class Uint8ClampedBufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint8ClampedArray(array), itemSize, normalized); } } class Int16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int16Array(array), itemSize, normalized); } } class Uint16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint16Array(array), itemSize, normalized); } } class Int32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int32Array(array), itemSize, normalized); } } class Uint32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint32Array(array), itemSize, normalized); } } class Float16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint16Array(array), itemSize, normalized); } } Float16BufferAttribute.prototype.isFloat16BufferAttribute = true; class Float32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Float32Array(array), itemSize, normalized); } } class Float64BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Float64Array(array), itemSize, normalized); } } // function arrayMax(array) { if (array.length === 0) return -Infinity; let max = array[0]; for (let i = 1, l = array.length; i < l; ++i) { if (array[i] > max) max = array[i]; } return max; } const TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, Uint8ClampedArray: Uint8ClampedArray, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array }; function getTypedArray(type, buffer) { return new TYPED_ARRAYS[type](buffer); } let _id = 0; const _m1 = /*@__PURE__*/new Matrix4(); const _obj = /*@__PURE__*/new Object3D(); const _offset = /*@__PURE__*/new Vector3(); const _box$1 = /*@__PURE__*/new Box3(); const _boxMorphTargets = /*@__PURE__*/new Box3(); const _vector$8 = /*@__PURE__*/new Vector3(); class BufferGeometry extends EventDispatcher { constructor() { super(); Object.defineProperty(this, 'id', { value: _id++ }); this.uuid = generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.morphTargetsRelative = false; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; this.userData = {}; } getIndex() { return this.index; } setIndex(index) { if (Array.isArray(index)) { this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1); } else { this.index = index; } return this; } getAttribute(name) { return this.attributes[name]; } setAttribute(name, attribute) { this.attributes[name] = attribute; return this; } deleteAttribute(name) { delete this.attributes[name]; return this; } hasAttribute(name) { return this.attributes[name] !== undefined; } addGroup(start, count, materialIndex = 0) { this.groups.push({ start: start, count: count, materialIndex: materialIndex }); } clearGroups() { this.groups = []; } setDrawRange(start, count) { this.drawRange.start = start; this.drawRange.count = count; } applyMatrix4(matrix) { const position = this.attributes.position; if (position !== undefined) { position.applyMatrix4(matrix); position.needsUpdate = true; } const normal = this.attributes.normal; if (normal !== undefined) { const normalMatrix = new Matrix3().getNormalMatrix(matrix); normal.applyNormalMatrix(normalMatrix); normal.needsUpdate = true; } const tangent = this.attributes.tangent; if (tangent !== undefined) { tangent.transformDirection(matrix); tangent.needsUpdate = true; } if (this.boundingBox !== null) { this.computeBoundingBox(); } if (this.boundingSphere !== null) { this.computeBoundingSphere(); } return this; } applyQuaternion(q) { _m1.makeRotationFromQuaternion(q); this.applyMatrix4(_m1); return this; } rotateX(angle) { // rotate geometry around world x-axis _m1.makeRotationX(angle); this.applyMatrix4(_m1); return this; } rotateY(angle) { // rotate geometry around world y-axis _m1.makeRotationY(angle); this.applyMatrix4(_m1); return this; } rotateZ(angle) { // rotate geometry around world z-axis _m1.makeRotationZ(angle); this.applyMatrix4(_m1); return this; } translate(x, y, z) { // translate geometry _m1.makeTranslation(x, y, z); this.applyMatrix4(_m1); return this; } scale(x, y, z) { // scale geometry _m1.makeScale(x, y, z); this.applyMatrix4(_m1); return this; } lookAt(vector) { _obj.lookAt(vector); _obj.updateMatrix(); this.applyMatrix4(_obj.matrix); return this; } center() { this.computeBoundingBox(); this.boundingBox.getCenter(_offset).negate(); this.translate(_offset.x, _offset.y, _offset.z); return this; } setFromPoints(points) { const position = []; for (let i = 0, l = points.length; i < l; i++) { const point = points[i]; position.push(point.x, point.y, point.z || 0); } this.setAttribute('position', new Float32BufferAttribute(position, 3)); return this; } computeBoundingBox() { if (this.boundingBox === null) { this.boundingBox = new Box3(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if (position && position.isGLBufferAttribute) { console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this); this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity)); return; } if (position !== undefined) { this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; _box$1.setFromBufferAttribute(morphAttribute); if (this.morphTargetsRelative) { _vector$8.addVectors(this.boundingBox.min, _box$1.min); this.boundingBox.expandByPoint(_vector$8); _vector$8.addVectors(this.boundingBox.max, _box$1.max); this.boundingBox.expandByPoint(_vector$8); } else { this.boundingBox.expandByPoint(_box$1.min); this.boundingBox.expandByPoint(_box$1.max); } } } } else { this.boundingBox.makeEmpty(); } if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) { console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this); } } computeBoundingSphere() { if (this.boundingSphere === null) { this.boundingSphere = new Sphere(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if (position && position.isGLBufferAttribute) { console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this); this.boundingSphere.set(new Vector3(), Infinity); return; } if (position) { // first, find the center of the bounding sphere const center = this.boundingSphere.center; _box$1.setFromBufferAttribute(position); // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; _boxMorphTargets.setFromBufferAttribute(morphAttribute); if (this.morphTargetsRelative) { _vector$8.addVectors(_box$1.min, _boxMorphTargets.min); _box$1.expandByPoint(_vector$8); _vector$8.addVectors(_box$1.max, _boxMorphTargets.max); _box$1.expandByPoint(_vector$8); } else { _box$1.expandByPoint(_boxMorphTargets.min); _box$1.expandByPoint(_boxMorphTargets.max); } } } _box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case let maxRadiusSq = 0; for (let i = 0, il = position.count; i < il; i++) { _vector$8.fromBufferAttribute(position, i); maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); } // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; const morphTargetsRelative = this.morphTargetsRelative; for (let j = 0, jl = morphAttribute.count; j < jl; j++) { _vector$8.fromBufferAttribute(morphAttribute, j); if (morphTargetsRelative) { _offset.fromBufferAttribute(position, j); _vector$8.add(_offset); } maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); } } } this.boundingSphere.radius = Math.sqrt(maxRadiusSq); if (isNaN(this.boundingSphere.radius)) { console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this); } } } computeFaceNormals() {// backwards compatibility } computeTangents() { const index = this.index; const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) { console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)'); return; } const indices = index.array; const positions = attributes.position.array; const normals = attributes.normal.array; const uvs = attributes.uv.array; const nVertices = positions.length / 3; if (attributes.tangent === undefined) { this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4)); } const tangents = attributes.tangent.array; const tan1 = [], tan2 = []; for (let i = 0; i < nVertices; i++) { tan1[i] = new Vector3(); tan2[i] = new Vector3(); } const vA = new Vector3(), vB = new Vector3(), vC = new Vector3(), uvA = new Vector2(), uvB = new Vector2(), uvC = new Vector2(), sdir = new Vector3(), tdir = new Vector3(); function handleTriangle(a, b, c) { vA.fromArray(positions, a * 3); vB.fromArray(positions, b * 3); vC.fromArray(positions, c * 3); uvA.fromArray(uvs, a * 2); uvB.fromArray(uvs, b * 2); uvC.fromArray(uvs, c * 2); vB.sub(vA); vC.sub(vA); uvB.sub(uvA); uvC.sub(uvA); const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices if (!isFinite(r)) return; sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r); tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r); tan1[a].add(sdir); tan1[b].add(sdir); tan1[c].add(sdir); tan2[a].add(tdir); tan2[b].add(tdir); tan2[c].add(tdir); } let groups = this.groups; if (groups.length === 0) { groups = [{ start: 0, count: indices.length }]; } for (let i = 0, il = groups.length; i < il; ++i) { const group = groups[i]; const start = group.start; const count = group.count; for (let j = start, jl = start + count; j < jl; j += 3) { handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]); } } const tmp = new Vector3(), tmp2 = new Vector3(); const n = new Vector3(), n2 = new Vector3(); function handleVertex(v) { n.fromArray(normals, v * 3); n2.copy(n); const t = tan1[v]; // Gram-Schmidt orthogonalize tmp.copy(t); tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness tmp2.crossVectors(n2, t); const test = tmp2.dot(tan2[v]); const w = test < 0.0 ? -1.0 : 1.0; tangents[v * 4] = tmp.x; tangents[v * 4 + 1] = tmp.y; tangents[v * 4 + 2] = tmp.z; tangents[v * 4 + 3] = w; } for (let i = 0, il = groups.length; i < il; ++i) { const group = groups[i]; const start = group.start; const count = group.count; for (let j = start, jl = start + count; j < jl; j += 3) { handleVertex(indices[j + 0]); handleVertex(indices[j + 1]); handleVertex(indices[j + 2]); } } } computeVertexNormals() { const index = this.index; const positionAttribute = this.getAttribute('position'); if (positionAttribute !== undefined) { let normalAttribute = this.getAttribute('normal'); if (normalAttribute === undefined) { normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3); this.setAttribute('normal', normalAttribute); } else { // reset existing normals to zero for (let i = 0, il = normalAttribute.count; i < il; i++) { normalAttribute.setXYZ(i, 0, 0, 0); } } const pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); const nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); const cb = new Vector3(), ab = new Vector3(); // indexed elements if (index) { for (let i = 0, il = index.count; i < il; i += 3) { const vA = index.getX(i + 0); const vB = index.getX(i + 1); const vC = index.getX(i + 2); pA.fromBufferAttribute(positionAttribute, vA); pB.fromBufferAttribute(positionAttribute, vB); pC.fromBufferAttribute(positionAttribute, vC); cb.subVectors(pC, pB); ab.subVectors(pA, pB); cb.cross(ab); nA.fromBufferAttribute(normalAttribute, vA); nB.fromBufferAttribute(normalAttribute, vB); nC.fromBufferAttribute(normalAttribute, vC); nA.add(cb); nB.add(cb); nC.add(cb); normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z); normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z); normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z); } } else { // non-indexed elements (unconnected triangle soup) for (let i = 0, il = positionAttribute.count; i < il; i += 3) { pA.fromBufferAttribute(positionAttribute, i + 0); pB.fromBufferAttribute(positionAttribute, i + 1); pC.fromBufferAttribute(positionAttribute, i + 2); cb.subVectors(pC, pB); ab.subVectors(pA, pB); cb.cross(ab); normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z); normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z); normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z); } } this.normalizeNormals(); normalAttribute.needsUpdate = true; } } merge(geometry, offset) { if (!(geometry && geometry.isBufferGeometry)) { console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry); return; } if (offset === undefined) { offset = 0; console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'); } const attributes = this.attributes; for (const key in attributes) { if (geometry.attributes[key] === undefined) continue; const attribute1 = attributes[key]; const attributeArray1 = attribute1.array; const attribute2 = geometry.attributes[key]; const attributeArray2 = attribute2.array; const attributeOffset = attribute2.itemSize * offset; const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset); for (let i = 0, j = attributeOffset; i < length; i++, j++) { attributeArray1[j] = attributeArray2[i]; } } return this; } normalizeNormals() { const normals = this.attributes.normal; for (let i = 0, il = normals.count; i < il; i++) { _vector$8.fromBufferAttribute(normals, i); _vector$8.normalize(); normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z); } } toNonIndexed() { function convertBufferAttribute(attribute, indices) { const array = attribute.array; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array2 = new array.constructor(indices.length * itemSize); let index = 0, index2 = 0; for (let i = 0, l = indices.length; i < l; i++) { index = indices[i] * itemSize; for (let j = 0; j < itemSize; j++) { array2[index2++] = array[index++]; } } return new BufferAttribute(array2, itemSize, normalized); } // if (this.index === null) { console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.'); return this; } const geometry2 = new BufferGeometry(); const indices = this.index.array; const attributes = this.attributes; // attributes for (const name in attributes) { const attribute = attributes[name]; const newAttribute = convertBufferAttribute(attribute, indices); geometry2.setAttribute(name, newAttribute); } // morph attributes const morphAttributes = this.morphAttributes; for (const name in morphAttributes) { const morphArray = []; const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes for (let i = 0, il = morphAttribute.length; i < il; i++) { const attribute = morphAttribute[i]; const newAttribute = convertBufferAttribute(attribute, indices); morphArray.push(newAttribute); } geometry2.morphAttributes[name] = morphArray; } geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups const groups = this.groups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; geometry2.addGroup(group.start, group.count, group.materialIndex); } return geometry2; } toJSON() { const data = { metadata: { version: 4.5, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if (this.name !== '') data.name = this.name; if (Object.keys(this.userData).length > 0) data.userData = this.userData; if (this.parameters !== undefined) { const parameters = this.parameters; for (const key in parameters) { if (parameters[key] !== undefined) data[key] = parameters[key]; } return data; } // for simplicity the code assumes attributes are not shared across geometries, see #15811 data.data = { attributes: {} }; const index = this.index; if (index !== null) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call(index.array) }; } const attributes = this.attributes; for (const key in attributes) { const attribute = attributes[key]; data.data.attributes[key] = attribute.toJSON(data.data); } const morphAttributes = {}; let hasMorphAttributes = false; for (const key in this.morphAttributes) { const attributeArray = this.morphAttributes[key]; const array = []; for (let i = 0, il = attributeArray.length; i < il; i++) { const attribute = attributeArray[i]; array.push(attribute.toJSON(data.data)); } if (array.length > 0) { morphAttributes[key] = array; hasMorphAttributes = true; } } if (hasMorphAttributes) { data.data.morphAttributes = morphAttributes; data.data.morphTargetsRelative = this.morphTargetsRelative; } const groups = this.groups; if (groups.length > 0) { data.data.groups = JSON.parse(JSON.stringify(groups)); } const boundingSphere = this.boundingSphere; if (boundingSphere !== null) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; } clone() { /* // Handle primitives const parameters = this.parameters; if ( parameters !== undefined ) { const values = []; for ( const key in parameters ) { values.push( parameters[ key ] ); } const geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new BufferGeometry().copy(this); } copy(source) { // reset this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; // used for storing cloned, shared data const data = {}; // name this.name = source.name; // index const index = source.index; if (index !== null) { this.setIndex(index.clone(data)); } // attributes const attributes = source.attributes; for (const name in attributes) { const attribute = attributes[name]; this.setAttribute(name, attribute.clone(data)); } // morph attributes const morphAttributes = source.morphAttributes; for (const name in morphAttributes) { const array = []; const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes for (let i = 0, l = morphAttribute.length; i < l; i++) { array.push(morphAttribute[i].clone(data)); } this.morphAttributes[name] = array; } this.morphTargetsRelative = source.morphTargetsRelative; // groups const groups = source.groups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; this.addGroup(group.start, group.count, group.materialIndex); } // bounding box const boundingBox = source.boundingBox; if (boundingBox !== null) { this.boundingBox = boundingBox.clone(); } // bounding sphere const boundingSphere = source.boundingSphere; if (boundingSphere !== null) { this.boundingSphere = boundingSphere.clone(); } // draw range this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; // user data this.userData = source.userData; return this; } dispose() { this.dispatchEvent({ type: 'dispose' }); } } BufferGeometry.prototype.isBufferGeometry = true; const _inverseMatrix$2 = /*@__PURE__*/new Matrix4(); const _ray$2 = /*@__PURE__*/new Ray(); const _sphere$3 = /*@__PURE__*/new Sphere(); const _vA$1 = /*@__PURE__*/new Vector3(); const _vB$1 = /*@__PURE__*/new Vector3(); const _vC$1 = /*@__PURE__*/new Vector3(); const _tempA = /*@__PURE__*/new Vector3(); const _tempB = /*@__PURE__*/new Vector3(); const _tempC = /*@__PURE__*/new Vector3(); const _morphA = /*@__PURE__*/new Vector3(); const _morphB = /*@__PURE__*/new Vector3(); const _morphC = /*@__PURE__*/new Vector3(); const _uvA$1 = /*@__PURE__*/new Vector2(); const _uvB$1 = /*@__PURE__*/new Vector2(); const _uvC$1 = /*@__PURE__*/new Vector2(); const _intersectionPoint = /*@__PURE__*/new Vector3(); const _intersectionPointWorld = /*@__PURE__*/new Vector3(); class Mesh extends Object3D { constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) { super(); this.type = 'Mesh'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy(source) { super.copy(source); if (source.morphTargetInfluences !== undefined) { this.morphTargetInfluences = source.morphTargetInfluences.slice(); } if (source.morphTargetDictionary !== undefined) { this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary); } this.material = source.material; this.geometry = source.geometry; return this; } updateMorphTargets() { const geometry = this.geometry; if (geometry.isBufferGeometry) { const morphAttributes = geometry.morphAttributes; const keys = Object.keys(morphAttributes); if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]]; if (morphAttribute !== undefined) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m); this.morphTargetInfluences.push(0); this.morphTargetDictionary[name] = m; } } } } else { const morphTargets = geometry.morphTargets; if (morphTargets !== undefined && morphTargets.length > 0) { console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); } } } raycast(raycaster, intersects) { const geometry = this.geometry; const material = this.material; const matrixWorld = this.matrixWorld; if (material === undefined) return; // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere$3.copy(geometry.boundingSphere); _sphere$3.applyMatrix4(matrixWorld); if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; // _inverseMatrix$2.copy(matrixWorld).invert(); _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing if (geometry.boundingBox !== null) { if (_ray$2.intersectsBox(geometry.boundingBox) === false) return; } let intersection; if (geometry.isBufferGeometry) { const index = geometry.index; const position = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const uv = geometry.attributes.uv; const uv2 = geometry.attributes.uv2; const groups = geometry.groups; const drawRange = geometry.drawRange; if (index !== null) { // indexed buffer geometry if (Array.isArray(material)) { for (let i = 0, il = groups.length; i < il; i++) { const group = groups[i]; const groupMaterial = material[group.materialIndex]; const start = Math.max(group.start, drawRange.start); const end = Math.min(group.start + group.count, drawRange.start + drawRange.count); for (let j = start, jl = end; j < jl; j += 3) { const a = index.getX(j); const b = index.getX(j + 1); const c = index.getX(j + 2); intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push(intersection); } } } } else { const start = Math.max(0, drawRange.start); const end = Math.min(index.count, drawRange.start + drawRange.count); for (let i = start, il = end; i < il; i += 3) { const a = index.getX(i); const b = index.getX(i + 1); const c = index.getX(i + 2); intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics intersects.push(intersection); } } } } else if (position !== undefined) { // non-indexed buffer geometry if (Array.isArray(material)) { for (let i = 0, il = groups.length; i < il; i++) { const group = groups[i]; const groupMaterial = material[group.materialIndex]; const start = Math.max(group.start, drawRange.start); const end = Math.min(group.start + group.count, drawRange.start + drawRange.count); for (let j = start, jl = end; j < jl; j += 3) { const a = j; const b = j + 1; const c = j + 2; intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push(intersection); } } } } else { const start = Math.max(0, drawRange.start); const end = Math.min(position.count, drawRange.start + drawRange.count); for (let i = start, il = end; i < il; i += 3) { const a = i; const b = i + 1; const c = i + 2; intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics intersects.push(intersection); } } } } } else if (geometry.isGeometry) { console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); } } } Mesh.prototype.isMesh = true; function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) { let intersect; if (material.side === BackSide) { intersect = ray.intersectTriangle(pC, pB, pA, true, point); } else { intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point); } if (intersect === null) return null; _intersectionPointWorld.copy(point); _intersectionPointWorld.applyMatrix4(object.matrixWorld); const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld); if (distance < raycaster.near || distance > raycaster.far) return null; return { distance: distance, point: _intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) { _vA$1.fromBufferAttribute(position, a); _vB$1.fromBufferAttribute(position, b); _vC$1.fromBufferAttribute(position, c); const morphInfluences = object.morphTargetInfluences; if (material.morphTargets && morphPosition && morphInfluences) { _morphA.set(0, 0, 0); _morphB.set(0, 0, 0); _morphC.set(0, 0, 0); for (let i = 0, il = morphPosition.length; i < il; i++) { const influence = morphInfluences[i]; const morphAttribute = morphPosition[i]; if (influence === 0) continue; _tempA.fromBufferAttribute(morphAttribute, a); _tempB.fromBufferAttribute(morphAttribute, b); _tempC.fromBufferAttribute(morphAttribute, c); if (morphTargetsRelative) { _morphA.addScaledVector(_tempA, influence); _morphB.addScaledVector(_tempB, influence); _morphC.addScaledVector(_tempC, influence); } else { _morphA.addScaledVector(_tempA.sub(_vA$1), influence); _morphB.addScaledVector(_tempB.sub(_vB$1), influence); _morphC.addScaledVector(_tempC.sub(_vC$1), influence); } } _vA$1.add(_morphA); _vB$1.add(_morphB); _vC$1.add(_morphC); } if (object.isSkinnedMesh) { object.boneTransform(a, _vA$1); object.boneTransform(b, _vB$1); object.boneTransform(c, _vC$1); } const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint); if (intersection) { if (uv) { _uvA$1.fromBufferAttribute(uv, a); _uvB$1.fromBufferAttribute(uv, b); _uvC$1.fromBufferAttribute(uv, c); intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()); } if (uv2) { _uvA$1.fromBufferAttribute(uv2, a); _uvB$1.fromBufferAttribute(uv2, b); _uvC$1.fromBufferAttribute(uv2, c); intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()); } const face = { a: a, b: b, c: c, normal: new Vector3(), materialIndex: 0 }; Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal); intersection.face = face; } return intersection; } class BoxGeometry extends BufferGeometry { constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) { super(); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; const scope = this; // segments widthSegments = Math.floor(widthSegments); heightSegments = Math.floor(heightSegments); depthSegments = Math.floor(depthSegments); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let numberOfVertices = 0; let groupStart = 0; // build each side of the box geometry buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) { const segmentWidth = width / gridX; const segmentHeight = height / gridY; const widthHalf = width / 2; const heightHalf = height / 2; const depthHalf = depth / 2; const gridX1 = gridX + 1; const gridY1 = gridY + 1; let vertexCounter = 0; let groupCount = 0; const vector = new Vector3(); // generate vertices, normals and uvs for (let iy = 0; iy < gridY1; iy++) { const y = iy * segmentHeight - heightHalf; for (let ix = 0; ix < gridX1; ix++) { const x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[u] = x * udir; vector[v] = y * vdir; vector[w] = depthHalf; // now apply vector to vertex buffer vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component vector[u] = 0; vector[v] = 0; vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer normals.push(vector.x, vector.y, vector.z); // uvs uvs.push(ix / gridX); uvs.push(1 - iy / gridY); // counters vertexCounter += 1; } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for (let iy = 0; iy < gridY; iy++) { for (let ix = 0; ix < gridX; ix++) { const a = numberOfVertices + ix + gridX1 * iy; const b = numberOfVertices + ix + gridX1 * (iy + 1); const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1); const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces indices.push(a, b, d); indices.push(b, c, d); // increase counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } } /** * Uniform Utilities */ function cloneUniforms(src) { const dst = {}; for (const u in src) { dst[u] = {}; for (const p in src[u]) { const property = src[u][p]; if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) { dst[u][p] = property.clone(); } else if (Array.isArray(property)) { dst[u][p] = property.slice(); } else { dst[u][p] = property; } } } return dst; } function mergeUniforms(uniforms) { const merged = {}; for (let u = 0; u < uniforms.length; u++) { const tmp = cloneUniforms(uniforms[u]); for (const p in tmp) { merged[p] = tmp[p]; } } return merged; } // Legacy const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; /** * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, * * fragmentShader: , * vertexShader: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * morphTargets: , * morphNormals: * } */ class ShaderMaterial extends Material { constructor(parameters) { super(); this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.vertexShader = default_vertex; this.fragmentShader = default_fragment; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.morphTargets = false; // set to use morph targets this.morphNormals = false; // set to use morph normals this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [1, 1, 1], 'uv': [0, 0], 'uv2': [0, 0] }; this.index0AttributeName = undefined; this.uniformsNeedUpdate = false; this.glslVersion = null; if (parameters !== undefined) { if (parameters.attributes !== undefined) { console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.'); } this.setValues(parameters); } } copy(source) { super.copy(source); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = cloneUniforms(source.uniforms); this.defines = Object.assign({}, source.defines); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.lights = source.lights; this.clipping = source.clipping; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.extensions = Object.assign({}, source.extensions); this.glslVersion = source.glslVersion; return this; } toJSON(meta) { const data = super.toJSON(meta); data.glslVersion = this.glslVersion; data.uniforms = {}; for (const name in this.uniforms) { const uniform = this.uniforms[name]; const value = uniform.value; if (value && value.isTexture) { data.uniforms[name] = { type: 't', value: value.toJSON(meta).uuid }; } else if (value && value.isColor) { data.uniforms[name] = { type: 'c', value: value.getHex() }; } else if (value && value.isVector2) { data.uniforms[name] = { type: 'v2', value: value.toArray() }; } else if (value && value.isVector3) { data.uniforms[name] = { type: 'v3', value: value.toArray() }; } else if (value && value.isVector4) { data.uniforms[name] = { type: 'v4', value: value.toArray() }; } else if (value && value.isMatrix3) { data.uniforms[name] = { type: 'm3', value: value.toArray() }; } else if (value && value.isMatrix4) { data.uniforms[name] = { type: 'm4', value: value.toArray() }; } else { data.uniforms[name] = { value: value }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far } } if (Object.keys(this.defines).length > 0) data.defines = this.defines; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; const extensions = {}; for (const key in this.extensions) { if (this.extensions[key] === true) extensions[key] = true; } if (Object.keys(extensions).length > 0) data.extensions = extensions; return data; } } ShaderMaterial.prototype.isShaderMaterial = true; class Camera extends Object3D { constructor() { super(); this.type = 'Camera'; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4(); } copy(source, recursive) { super.copy(source, recursive); this.matrixWorldInverse.copy(source.matrixWorldInverse); this.projectionMatrix.copy(source.projectionMatrix); this.projectionMatrixInverse.copy(source.projectionMatrixInverse); return this; } getWorldDirection(target) { if (target === undefined) { console.warn('THREE.Camera: .getWorldDirection() target is now required'); target = new Vector3(); } this.updateWorldMatrix(true, false); const e = this.matrixWorld.elements; return target.set(-e[8], -e[9], -e[10]).normalize(); } updateMatrixWorld(force) { super.updateMatrixWorld(force); this.matrixWorldInverse.copy(this.matrixWorld).invert(); } updateWorldMatrix(updateParents, updateChildren) { super.updateWorldMatrix(updateParents, updateChildren); this.matrixWorldInverse.copy(this.matrixWorld).invert(); } clone() { return new this.constructor().copy(this); } } Camera.prototype.isCamera = true; class PerspectiveCamera extends Camera { constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) { super(); this.type = 'PerspectiveCamera'; this.fov = fov; this.zoom = 1; this.near = near; this.far = far; this.focus = 10; this.aspect = aspect; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } copy(source, recursive) { super.copy(source, recursive); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign({}, source.view); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; } /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength(focalLength) { /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope); this.updateProjectionMatrix(); } /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength() { const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov); return 0.5 * this.getFilmHeight() / vExtentSlope; } getEffectiveFOV() { return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom); } getFilmWidth() { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min(this.aspect, 1); } getFilmHeight() { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max(this.aspect, 1); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset(fullWidth, fullHeight, x, y, width, height) { this.aspect = fullWidth / fullHeight; if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if (this.view !== null) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const near = this.near; let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom; let height = 2 * top; let width = this.aspect * height; let left = -0.5 * width; const view = this.view; if (this.view !== null && this.view.enabled) { const fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } const skew = this.filmOffset; if (skew !== 0) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far); this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); } toJSON(meta) { const data = super.toJSON(meta); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if (this.view !== null) data.object.view = Object.assign({}, this.view); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } PerspectiveCamera.prototype.isPerspectiveCamera = true; const fov = 90, aspect = 1; class CubeCamera extends Object3D { constructor(near, far, renderTarget) { super(); this.type = 'CubeCamera'; if (renderTarget.isWebGLCubeRenderTarget !== true) { console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.'); return; } this.renderTarget = renderTarget; const cameraPX = new PerspectiveCamera(fov, aspect, near, far); cameraPX.layers = this.layers; cameraPX.up.set(0, -1, 0); cameraPX.lookAt(new Vector3(1, 0, 0)); this.add(cameraPX); const cameraNX = new PerspectiveCamera(fov, aspect, near, far); cameraNX.layers = this.layers; cameraNX.up.set(0, -1, 0); cameraNX.lookAt(new Vector3(-1, 0, 0)); this.add(cameraNX); const cameraPY = new PerspectiveCamera(fov, aspect, near, far); cameraPY.layers = this.layers; cameraPY.up.set(0, 0, 1); cameraPY.lookAt(new Vector3(0, 1, 0)); this.add(cameraPY); const cameraNY = new PerspectiveCamera(fov, aspect, near, far); cameraNY.layers = this.layers; cameraNY.up.set(0, 0, -1); cameraNY.lookAt(new Vector3(0, -1, 0)); this.add(cameraNY); const cameraPZ = new PerspectiveCamera(fov, aspect, near, far); cameraPZ.layers = this.layers; cameraPZ.up.set(0, -1, 0); cameraPZ.lookAt(new Vector3(0, 0, 1)); this.add(cameraPZ); const cameraNZ = new PerspectiveCamera(fov, aspect, near, far); cameraNZ.layers = this.layers; cameraNZ.up.set(0, -1, 0); cameraNZ.lookAt(new Vector3(0, 0, -1)); this.add(cameraNZ); } update(renderer, scene) { if (this.parent === null) this.updateMatrixWorld(); const renderTarget = this.renderTarget; const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children; const currentXrEnabled = renderer.xr.enabled; const currentRenderTarget = renderer.getRenderTarget(); renderer.xr.enabled = false; const generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderer.setRenderTarget(renderTarget, 0); renderer.render(scene, cameraPX); renderer.setRenderTarget(renderTarget, 1); renderer.render(scene, cameraNX); renderer.setRenderTarget(renderTarget, 2); renderer.render(scene, cameraPY); renderer.setRenderTarget(renderTarget, 3); renderer.render(scene, cameraNY); renderer.setRenderTarget(renderTarget, 4); renderer.render(scene, cameraPZ); renderTarget.texture.generateMipmaps = generateMipmaps; renderer.setRenderTarget(renderTarget, 5); renderer.render(scene, cameraNZ); renderer.setRenderTarget(currentRenderTarget); renderer.xr.enabled = currentXrEnabled; } } class CubeTexture extends Texture { constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; format = format !== undefined ? format : RGBFormat; super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); // Why CubeTexture._needsFlipEnvMap is necessary: // // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped // and the flag _needsFlipEnvMap controls this conversion. The flip is not required (and thus _needsFlipEnvMap is set to false) // when using WebGLCubeRenderTarget.texture as a cube texture. this._needsFlipEnvMap = true; this.flipY = false; } get images() { return this.image; } set images(value) { this.image = value; } } CubeTexture.prototype.isCubeTexture = true; class WebGLCubeRenderTarget extends WebGLRenderTarget { constructor(size, options, dummy) { if (Number.isInteger(options)) { console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )'); options = dummy; } super(size, size, options); options = options || {}; this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding); this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; this.texture._needsFlipEnvMap = false; } fromEquirectangularTexture(renderer, texture) { this.texture.type = texture.type; this.texture.format = RGBAFormat; // see #18859 this.texture.encoding = texture.encoding; this.texture.generateMipmaps = texture.generateMipmaps; this.texture.minFilter = texture.minFilter; this.texture.magFilter = texture.magFilter; const shader = { uniforms: { tEquirect: { value: null } }, vertexShader: /* glsl */ ` varying vec3 vWorldDirection; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include } `, fragmentShader: /* glsl */ ` uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); } ` }; const geometry = new BoxGeometry(5, 5, 5); const material = new ShaderMaterial({ name: 'CubemapFromEquirect', uniforms: cloneUniforms(shader.uniforms), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending }); material.uniforms.tEquirect.value = texture; const mesh = new Mesh(geometry, material); const currentMinFilter = texture.minFilter; // Avoid blurred poles if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter; const camera = new CubeCamera(1, 10, this); camera.update(renderer, mesh); texture.minFilter = currentMinFilter; mesh.geometry.dispose(); mesh.material.dispose(); return this; } clear(renderer, color, depth, stencil) { const currentRenderTarget = renderer.getRenderTarget(); for (let i = 0; i < 6; i++) { renderer.setRenderTarget(this, i); renderer.clear(color, depth, stencil); } renderer.setRenderTarget(currentRenderTarget); } } WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true; const _sphere$2 = /*@__PURE__*/new Sphere(); const _vector$7 = /*@__PURE__*/new Vector3(); class Frustum { constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) { this.planes = [p0, p1, p2, p3, p4, p5]; } set(p0, p1, p2, p3, p4, p5) { const planes = this.planes; planes[0].copy(p0); planes[1].copy(p1); planes[2].copy(p2); planes[3].copy(p3); planes[4].copy(p4); planes[5].copy(p5); return this; } copy(frustum) { const planes = this.planes; for (let i = 0; i < 6; i++) { planes[i].copy(frustum.planes[i]); } return this; } setFromProjectionMatrix(m) { const planes = this.planes; const me = m.elements; const me0 = me[0], me1 = me[1], me2 = me[2], me3 = me[3]; const me4 = me[4], me5 = me[5], me6 = me[6], me7 = me[7]; const me8 = me[8], me9 = me[9], me10 = me[10], me11 = me[11]; const me12 = me[12], me13 = me[13], me14 = me[14], me15 = me[15]; planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize(); planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize(); planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize(); planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize(); planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize(); planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize(); return this; } intersectsObject(object) { const geometry = object.geometry; if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld); return this.intersectsSphere(_sphere$2); } intersectsSprite(sprite) { _sphere$2.center.set(0, 0, 0); _sphere$2.radius = 0.7071067811865476; _sphere$2.applyMatrix4(sprite.matrixWorld); return this.intersectsSphere(_sphere$2); } intersectsSphere(sphere) { const planes = this.planes; const center = sphere.center; const negRadius = -sphere.radius; for (let i = 0; i < 6; i++) { const distance = planes[i].distanceToPoint(center); if (distance < negRadius) { return false; } } return true; } intersectsBox(box) { const planes = this.planes; for (let i = 0; i < 6; i++) { const plane = planes[i]; // corner at max distance _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; if (plane.distanceToPoint(_vector$7) < 0) { return false; } } return true; } containsPoint(point) { const planes = this.planes; for (let i = 0; i < 6; i++) { if (planes[i].distanceToPoint(point) < 0) { return false; } } return true; } clone() { return new this.constructor().copy(this); } } function WebGLAnimation() { let context = null; let isAnimating = false; let animationLoop = null; let requestId = null; function onAnimationFrame(time, frame) { animationLoop(time, frame); requestId = context.requestAnimationFrame(onAnimationFrame); } return { start: function () { if (isAnimating === true) return; if (animationLoop === null) return; requestId = context.requestAnimationFrame(onAnimationFrame); isAnimating = true; }, stop: function () { context.cancelAnimationFrame(requestId); isAnimating = false; }, setAnimationLoop: function (callback) { animationLoop = callback; }, setContext: function (value) { context = value; } }; } function WebGLAttributes(gl, capabilities) { const isWebGL2 = capabilities.isWebGL2; const buffers = new WeakMap(); function createBuffer(attribute, bufferType) { const array = attribute.array; const usage = attribute.usage; const buffer = gl.createBuffer(); gl.bindBuffer(bufferType, buffer); gl.bufferData(bufferType, array, usage); attribute.onUploadCallback(); let type = gl.FLOAT; if (array instanceof Float32Array) { type = gl.FLOAT; } else if (array instanceof Float64Array) { console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.'); } else if (array instanceof Uint16Array) { if (attribute.isFloat16BufferAttribute) { if (isWebGL2) { type = gl.HALF_FLOAT; } else { console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.'); } } else { type = gl.UNSIGNED_SHORT; } } else if (array instanceof Int16Array) { type = gl.SHORT; } else if (array instanceof Uint32Array) { type = gl.UNSIGNED_INT; } else if (array instanceof Int32Array) { type = gl.INT; } else if (array instanceof Int8Array) { type = gl.BYTE; } else if (array instanceof Uint8Array) { type = gl.UNSIGNED_BYTE; } else if (array instanceof Uint8ClampedArray) { type = gl.UNSIGNED_BYTE; } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version }; } function updateBuffer(buffer, attribute, bufferType) { const array = attribute.array; const updateRange = attribute.updateRange; gl.bindBuffer(bufferType, buffer); if (updateRange.count === -1) { // Not using update ranges gl.bufferSubData(bufferType, 0, array); } else { if (isWebGL2) { gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count); } else { gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count)); } updateRange.count = -1; // reset range } } // function get(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; return buffers.get(attribute); } function remove(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; const data = buffers.get(attribute); if (data) { gl.deleteBuffer(data.buffer); buffers.delete(attribute); } } function update(attribute, bufferType) { if (attribute.isGLBufferAttribute) { const cached = buffers.get(attribute); if (!cached || cached.version < attribute.version) { buffers.set(attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version }); } return; } if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; const data = buffers.get(attribute); if (data === undefined) { buffers.set(attribute, createBuffer(attribute, bufferType)); } else if (data.version < attribute.version) { updateBuffer(data.buffer, attribute, bufferType); data.version = attribute.version; } } return { get: get, remove: remove, update: update }; } class PlaneGeometry extends BufferGeometry { constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) { super(); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; const width_half = width / 2; const height_half = height / 2; const gridX = Math.floor(widthSegments); const gridY = Math.floor(heightSegments); const gridX1 = gridX + 1; const gridY1 = gridY + 1; const segment_width = width / gridX; const segment_height = height / gridY; // const indices = []; const vertices = []; const normals = []; const uvs = []; for (let iy = 0; iy < gridY1; iy++) { const y = iy * segment_height - height_half; for (let ix = 0; ix < gridX1; ix++) { const x = ix * segment_width - width_half; vertices.push(x, -y, 0); normals.push(0, 0, 1); uvs.push(ix / gridX); uvs.push(1 - iy / gridY); } } for (let iy = 0; iy < gridY; iy++) { for (let ix = 0; ix < gridX; ix++) { const a = ix + gridX1 * iy; const b = ix + gridX1 * (iy + 1); const c = ix + 1 + gridX1 * (iy + 1); const d = ix + 1 + gridX1 * iy; indices.push(a, b, d); indices.push(b, c, d); } } this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); } } var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif"; var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif"; var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; var begin_vertex = "vec3 transformed = vec3( position );"; var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif"; var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif"; var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif"; var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}"; var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = - mvPosition.z;\n#endif"; var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif"; var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}"; var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif"; var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif"; var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif"; var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)"; var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)"; var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), rawDiffuseColor, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), rawDiffuseColor, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat specularRoughness;\n\tvec3 specularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif"; var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif"; var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif"; var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif"; var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif"; var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif"; var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;"; var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif"; var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif"; var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif"; var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif"; var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif"; var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif"; var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; var transmission_fragment = "#ifdef USE_TRANSMISSION\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttotalTransmission *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSNMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition.xyz / vWorldPosition.w;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n\tfloat ior = ( 1.0 + 0.4 * reflectivity ) / ( 1.0 - 0.4 * reflectivity );\n\tvec3 f0 = vec3( pow( ior - 1.0, 2.0 ) / pow( ior + 1.0, 2.0 ) );\n\tvec3 f90 = vec3( 1.0 );\n\tvec3 f_transmission = totalTransmission * getIBLVolumeRefraction(\n\t\tnormal, v, viewDir, roughnessFactor, diffuseColor.rgb, f0, f90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance);\n\tdiffuseColor.rgb = mix( diffuseColor.rgb, f_transmission, totalTransmission );\n#endif"; var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec4 vWorldPosition;\n\tvec3 getVolumeTransmissionRay(vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix) {\n\t\tvec3 refractionVector = refract(-v, normalize(n), 1.0 / ior);\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length(vec3(modelMatrix[0].xyz));\n\t\tmodelScale.y = length(vec3(modelMatrix[1].xyz));\n\t\tmodelScale.z = length(vec3(modelMatrix[2].xyz));\n\t\treturn normalize(refractionVector) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness(float roughness, float ior) {\n\t\treturn roughness * clamp(ior * 2.0 - 2.0, 0.0, 1.0);\n\t}\n\tvec3 getTransmissionSample(vec2 fragCoord, float roughness, float ior) {\n\t\tfloat framebufferLod = log2(transmissionSamplerSize.x) * applyIorToRoughness(roughness, ior);\n\t\treturn texture2DLodEXT(transmissionSamplerMap, fragCoord.xy, framebufferLod).rgb;\n\t}\n\tvec3 applyVolumeAttenuation(vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance) {\n\t\tif (attenuationDistance == 0.0) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log(attenuationColor) / attenuationDistance;\n\t\t\tvec3 transmittance = exp(-attenuationCoefficient * transmissionDistance);\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec3 getIBLVolumeRefraction(vec3 n, vec3 v, vec3 viewDir, float perceptualRoughness, vec3 baseColor, vec3 f0, vec3 f90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness, vec3 attenuationColor, float attenuationDistance) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay(n, v, thickness, ior, modelMatrix);\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4(refractedRayExit, 1.0);\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec3 transmittedLight = getTransmissionSample(refractionCoords, perceptualRoughness, ior);\n\t\tvec3 attenuatedColor = applyVolumeAttenuation(transmittedLight, length(transmissionRay), attenuationColor, attenuationDistance);\n\t\tfloat NdotV = saturate(dot(n, viewDir));\n\t\tvec2 brdf = integrateSpecularBRDF(NdotV, perceptualRoughness);\n\t\tvec3 specularColor = f0 * brdf.x + f90 * brdf.y;\n\t\treturn (1.0 - specularColor) * attenuatedColor * baseColor;\n\t}\n#endif"; var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif"; var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif"; var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif"; var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif"; var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif"; var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; var cube_frag = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; var cube_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}"; var depth_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; var equirect_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshbasic_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_ENVMAP\n\t#include \n\t#include \n\t#include \n\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform vec3 attenuationColor;\n\tuniform float attenuationDistance;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#ifdef USE_TRANSMISSION\n\t\tfloat totalTransmission = transmission;\n\t\tfloat thicknessFactor = thickness;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 rawDiffuseColor = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#ifdef USE_TRANSMISSION\n\tvarying vec4 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition;\n#endif\n}"; var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}"; var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var points_vert = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; var shadow_vert = "#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n}"; var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; const ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_common_pars_fragment: envmap_common_pars_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_physical_pars_fragment: envmap_physical_pars_fragment, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars_begin: lights_pars_begin, lights_toon_fragment: lights_toon_fragment, lights_toon_pars_fragment: lights_toon_pars_fragment, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_fragment_begin: lights_fragment_begin, lights_fragment_maps: lights_fragment_maps, lights_fragment_end: lights_fragment_end, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment_begin: normal_fragment_begin, normal_fragment_maps: normal_fragment_maps, normalmap_pars_fragment: normalmap_pars_fragment, clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, clearcoat_pars_fragment: clearcoat_pars_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, transmission_fragment: transmission_fragment, transmission_pars_fragment: transmission_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex, background_frag: background_frag, background_vert: background_vert, cube_frag: cube_frag, cube_vert: cube_vert, depth_frag: depth_frag, depth_vert: depth_vert, distanceRGBA_frag: distanceRGBA_frag, distanceRGBA_vert: distanceRGBA_vert, equirect_frag: equirect_frag, equirect_vert: equirect_vert, linedashed_frag: linedashed_frag, linedashed_vert: linedashed_vert, meshbasic_frag: meshbasic_frag, meshbasic_vert: meshbasic_vert, meshlambert_frag: meshlambert_frag, meshlambert_vert: meshlambert_vert, meshmatcap_frag: meshmatcap_frag, meshmatcap_vert: meshmatcap_vert, meshtoon_frag: meshtoon_frag, meshtoon_vert: meshtoon_vert, meshphong_frag: meshphong_frag, meshphong_vert: meshphong_vert, meshphysical_frag: meshphysical_frag, meshphysical_vert: meshphysical_vert, normal_frag: normal_frag, normal_vert: normal_vert, points_frag: points_frag, points_vert: points_vert, shadow_frag: shadow_frag, shadow_vert: shadow_vert, sprite_frag: sprite_frag, sprite_vert: sprite_vert }; /** * Uniforms library for shared webgl shaders */ const UniformsLib = { common: { diffuse: { value: new Color(0xffffff) }, opacity: { value: 1.0 }, map: { value: null }, uvTransform: { value: new Matrix3() }, uv2Transform: { value: new Matrix3() }, alphaMap: { value: null } }, specularmap: { specularMap: { value: null } }, envmap: { envMap: { value: null }, flipEnvMap: { value: -1 }, reflectivity: { value: 1.0 }, refractionRatio: { value: 0.98 }, maxMipLevel: { value: 0 } }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 } }, emissivemap: { emissiveMap: { value: null } }, bumpmap: { bumpMap: { value: null }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalScale: { value: new Vector2(1, 1) } }, displacementmap: { displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, roughnessmap: { roughnessMap: { value: null } }, metalnessmap: { metalnessMap: { value: null } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: new Color(0xffffff) } }, lights: { ambientLightColor: { value: [] }, lightProbe: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {} } }, directionalLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {} } }, spotLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {} } }, pointLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }, ltc_1: { value: null }, ltc_2: { value: null } }, points: { diffuse: { value: new Color(0xffffff) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, alphaMap: { value: null }, uvTransform: { value: new Matrix3() } }, sprite: { diffuse: { value: new Color(0xffffff) }, opacity: { value: 1.0 }, center: { value: new Vector2(0.5, 0.5) }, rotation: { value: 0.0 }, map: { value: null }, alphaMap: { value: null }, uvTransform: { value: new Matrix3() } } }; const ShaderLib = { basic: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) } }]), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) }, specular: { value: new Color(0x111111) }, shininess: { value: 30 } }]), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) }, roughness: { value: 1.0 }, metalness: { value: 0.0 }, envMapIntensity: { value: 1 } // temporary }]), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, toon: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) } }]), vertexShader: ShaderChunk.meshtoon_vert, fragmentShader: ShaderChunk.meshtoon_frag }, matcap: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } }]), vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag }, points: { uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } }]), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } }]), vertexShader: ShaderChunk.normal_vert, fragmentShader: ShaderChunk.normal_frag }, sprite: { uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]), vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag }, background: { uniforms: { uvTransform: { value: new Matrix3() }, t2D: { value: null } }, vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ cube: { uniforms: mergeUniforms([UniformsLib.envmap, { opacity: { value: 1.0 } }]), vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null } }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } }]), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, { color: { value: new Color(0x00000) }, opacity: { value: 1.0 } }]), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } }; ShaderLib.physical = { uniforms: mergeUniforms([ShaderLib.standard.uniforms, { clearcoat: { value: 0 }, clearcoatMap: { value: null }, clearcoatRoughness: { value: 0 }, clearcoatRoughnessMap: { value: null }, clearcoatNormalScale: { value: new Vector2(1, 1) }, clearcoatNormalMap: { value: null }, sheen: { value: new Color(0x000000) }, transmission: { value: 0 }, transmissionMap: { value: null }, transmissionSamplerSize: { value: new Vector2() }, transmissionSamplerMap: { value: null }, thickness: { value: 0 }, thicknessMap: { value: null }, attenuationDistance: { value: 0 }, attenuationColor: { value: new Color(0x000000) } }]), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) { const clearColor = new Color(0x000000); let clearAlpha = 0; let planeMesh; let boxMesh; let currentBackground = null; let currentBackgroundVersion = 0; let currentTonemapping = null; function render(renderList, scene) { let forceClear = false; let background = scene.isScene === true ? scene.background : null; if (background && background.isTexture) { background = cubemaps.get(background); } // Ignore background in AR // TODO: Reconsider this. const xr = renderer.xr; const session = xr.getSession && xr.getSession(); if (session && session.environmentBlendMode === 'additive') { background = null; } if (background === null) { setClear(clearColor, clearAlpha); } else if (background && background.isColor) { setClear(background, 1); forceClear = true; } if (renderer.autoClear || forceClear) { renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil); } if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) { if (boxMesh === undefined) { boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({ name: 'BackgroundCubeMaterial', uniforms: cloneUniforms(ShaderLib.cube.uniforms), vertexShader: ShaderLib.cube.vertexShader, fragmentShader: ShaderLib.cube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false })); boxMesh.geometry.deleteAttribute('normal'); boxMesh.geometry.deleteAttribute('uv'); boxMesh.onBeforeRender = function (renderer, scene, camera) { this.matrixWorld.copyPosition(camera.matrixWorld); }; // enable code injection for non-built-in material Object.defineProperty(boxMesh.material, 'envMap', { get: function () { return this.uniforms.envMap.value; } }); objects.update(boxMesh); } boxMesh.material.uniforms.envMap.value = background; boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background._needsFlipEnvMap ? -1 : 1; if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { boxMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } // push to the pre-sorted opaque render list renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null); } else if (background && background.isTexture) { if (planeMesh === undefined) { planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({ name: 'BackgroundMaterial', uniforms: cloneUniforms(ShaderLib.background.uniforms), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: false, depthWrite: false, fog: false })); planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material Object.defineProperty(planeMesh.material, 'map', { get: function () { return this.uniforms.t2D.value; } }); objects.update(planeMesh); } planeMesh.material.uniforms.t2D.value = background; if (background.matrixAutoUpdate === true) { background.updateMatrix(); } planeMesh.material.uniforms.uvTransform.value.copy(background.matrix); if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { planeMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } // push to the pre-sorted opaque render list renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null); } } function setClear(color, alpha) { state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha); } return { getClearColor: function () { return clearColor; }, setClearColor: function (color, alpha = 1) { clearColor.set(color); clearAlpha = alpha; setClear(clearColor, clearAlpha); }, getClearAlpha: function () { return clearAlpha; }, setClearAlpha: function (alpha) { clearAlpha = alpha; setClear(clearColor, clearAlpha); }, render: render }; } function WebGLBindingStates(gl, extensions, attributes, capabilities) { const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS); const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object'); const vaoAvailable = capabilities.isWebGL2 || extension !== null; const bindingStates = {}; const defaultState = createBindingState(null); let currentState = defaultState; function setup(object, material, program, geometry, index) { let updateBuffers = false; if (vaoAvailable) { const state = getBindingState(geometry, program, material); if (currentState !== state) { currentState = state; bindVertexArrayObject(currentState.object); } updateBuffers = needsUpdate(geometry, index); if (updateBuffers) saveCache(geometry, index); } else { const wireframe = material.wireframe === true; if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) { currentState.geometry = geometry.id; currentState.program = program.id; currentState.wireframe = wireframe; updateBuffers = true; } } if (object.isInstancedMesh === true) { updateBuffers = true; } if (index !== null) { attributes.update(index, gl.ELEMENT_ARRAY_BUFFER); } if (updateBuffers) { setupVertexAttributes(object, material, program, geometry); if (index !== null) { gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer); } } } function createVertexArrayObject() { if (capabilities.isWebGL2) return gl.createVertexArray(); return extension.createVertexArrayOES(); } function bindVertexArrayObject(vao) { if (capabilities.isWebGL2) return gl.bindVertexArray(vao); return extension.bindVertexArrayOES(vao); } function deleteVertexArrayObject(vao) { if (capabilities.isWebGL2) return gl.deleteVertexArray(vao); return extension.deleteVertexArrayOES(vao); } function getBindingState(geometry, program, material) { const wireframe = material.wireframe === true; let programMap = bindingStates[geometry.id]; if (programMap === undefined) { programMap = {}; bindingStates[geometry.id] = programMap; } let stateMap = programMap[program.id]; if (stateMap === undefined) { stateMap = {}; programMap[program.id] = stateMap; } let state = stateMap[wireframe]; if (state === undefined) { state = createBindingState(createVertexArrayObject()); stateMap[wireframe] = state; } return state; } function createBindingState(vao) { const newAttributes = []; const enabledAttributes = []; const attributeDivisors = []; for (let i = 0; i < maxVertexAttributes; i++) { newAttributes[i] = 0; enabledAttributes[i] = 0; attributeDivisors[i] = 0; } return { // for backward compatibility on non-VAO support browser geometry: null, program: null, wireframe: false, newAttributes: newAttributes, enabledAttributes: enabledAttributes, attributeDivisors: attributeDivisors, object: vao, attributes: {}, index: null }; } function needsUpdate(geometry, index) { const cachedAttributes = currentState.attributes; const geometryAttributes = geometry.attributes; let attributesNum = 0; for (const key in geometryAttributes) { const cachedAttribute = cachedAttributes[key]; const geometryAttribute = geometryAttributes[key]; if (cachedAttribute === undefined) return true; if (cachedAttribute.attribute !== geometryAttribute) return true; if (cachedAttribute.data !== geometryAttribute.data) return true; attributesNum++; } if (currentState.attributesNum !== attributesNum) return true; if (currentState.index !== index) return true; return false; } function saveCache(geometry, index) { const cache = {}; const attributes = geometry.attributes; let attributesNum = 0; for (const key in attributes) { const attribute = attributes[key]; const data = {}; data.attribute = attribute; if (attribute.data) { data.data = attribute.data; } cache[key] = data; attributesNum++; } currentState.attributes = cache; currentState.attributesNum = attributesNum; currentState.index = index; } function initAttributes() { const newAttributes = currentState.newAttributes; for (let i = 0, il = newAttributes.length; i < il; i++) { newAttributes[i] = 0; } } function enableAttribute(attribute) { enableAttributeAndDivisor(attribute, 0); } function enableAttributeAndDivisor(attribute, meshPerAttribute) { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; const attributeDivisors = currentState.attributeDivisors; newAttributes[attribute] = 1; if (enabledAttributes[attribute] === 0) { gl.enableVertexAttribArray(attribute); enabledAttributes[attribute] = 1; } if (attributeDivisors[attribute] !== meshPerAttribute) { const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays'); extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute); attributeDivisors[attribute] = meshPerAttribute; } } function disableUnusedAttributes() { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; for (let i = 0, il = enabledAttributes.length; i < il; i++) { if (enabledAttributes[i] !== newAttributes[i]) { gl.disableVertexAttribArray(i); enabledAttributes[i] = 0; } } } function vertexAttribPointer(index, size, type, normalized, stride, offset) { if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) { gl.vertexAttribIPointer(index, size, type, stride, offset); } else { gl.vertexAttribPointer(index, size, type, normalized, stride, offset); } } function setupVertexAttributes(object, material, program, geometry) { if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) { if (extensions.get('ANGLE_instanced_arrays') === null) return; } initAttributes(); const geometryAttributes = geometry.attributes; const programAttributes = program.getAttributes(); const materialDefaultAttributeValues = material.defaultAttributeValues; for (const name in programAttributes) { const programAttribute = programAttributes[name]; if (programAttribute >= 0) { const geometryAttribute = geometryAttributes[name]; if (geometryAttribute !== undefined) { const normalized = geometryAttribute.normalized; const size = geometryAttribute.itemSize; const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore if (attribute === undefined) continue; const buffer = attribute.buffer; const type = attribute.type; const bytesPerElement = attribute.bytesPerElement; if (geometryAttribute.isInterleavedBufferAttribute) { const data = geometryAttribute.data; const stride = data.stride; const offset = geometryAttribute.offset; if (data && data.isInstancedInterleavedBuffer) { enableAttributeAndDivisor(programAttribute, data.meshPerAttribute); if (geometry._maxInstanceCount === undefined) { geometry._maxInstanceCount = data.meshPerAttribute * data.count; } } else { enableAttribute(programAttribute); } gl.bindBuffer(gl.ARRAY_BUFFER, buffer); vertexAttribPointer(programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement); } else { if (geometryAttribute.isInstancedBufferAttribute) { enableAttributeAndDivisor(programAttribute, geometryAttribute.meshPerAttribute); if (geometry._maxInstanceCount === undefined) { geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { enableAttribute(programAttribute); } gl.bindBuffer(gl.ARRAY_BUFFER, buffer); vertexAttribPointer(programAttribute, size, type, normalized, 0, 0); } } else if (name === 'instanceMatrix') { const attribute = attributes.get(object.instanceMatrix); // TODO Attribute may not be available on context restore if (attribute === undefined) continue; const buffer = attribute.buffer; const type = attribute.type; enableAttributeAndDivisor(programAttribute + 0, 1); enableAttributeAndDivisor(programAttribute + 1, 1); enableAttributeAndDivisor(programAttribute + 2, 1); enableAttributeAndDivisor(programAttribute + 3, 1); gl.bindBuffer(gl.ARRAY_BUFFER, buffer); gl.vertexAttribPointer(programAttribute + 0, 4, type, false, 64, 0); gl.vertexAttribPointer(programAttribute + 1, 4, type, false, 64, 16); gl.vertexAttribPointer(programAttribute + 2, 4, type, false, 64, 32); gl.vertexAttribPointer(programAttribute + 3, 4, type, false, 64, 48); } else if (name === 'instanceColor') { const attribute = attributes.get(object.instanceColor); // TODO Attribute may not be available on context restore if (attribute === undefined) continue; const buffer = attribute.buffer; const type = attribute.type; enableAttributeAndDivisor(programAttribute, 1); gl.bindBuffer(gl.ARRAY_BUFFER, buffer); gl.vertexAttribPointer(programAttribute, 3, type, false, 12, 0); } else if (materialDefaultAttributeValues !== undefined) { const value = materialDefaultAttributeValues[name]; if (value !== undefined) { switch (value.length) { case 2: gl.vertexAttrib2fv(programAttribute, value); break; case 3: gl.vertexAttrib3fv(programAttribute, value); break; case 4: gl.vertexAttrib4fv(programAttribute, value); break; default: gl.vertexAttrib1fv(programAttribute, value); } } } } } disableUnusedAttributes(); } function dispose() { reset(); for (const geometryId in bindingStates) { const programMap = bindingStates[geometryId]; for (const programId in programMap) { const stateMap = programMap[programId]; for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object); delete stateMap[wireframe]; } delete programMap[programId]; } delete bindingStates[geometryId]; } } function releaseStatesOfGeometry(geometry) { if (bindingStates[geometry.id] === undefined) return; const programMap = bindingStates[geometry.id]; for (const programId in programMap) { const stateMap = programMap[programId]; for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object); delete stateMap[wireframe]; } delete programMap[programId]; } delete bindingStates[geometry.id]; } function releaseStatesOfProgram(program) { for (const geometryId in bindingStates) { const programMap = bindingStates[geometryId]; if (programMap[program.id] === undefined) continue; const stateMap = programMap[program.id]; for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object); delete stateMap[wireframe]; } delete programMap[program.id]; } } function reset() { resetDefaultState(); if (currentState === defaultState) return; currentState = defaultState; bindVertexArrayObject(currentState.object); } // for backward-compatilibity function resetDefaultState() { defaultState.geometry = null; defaultState.program = null; defaultState.wireframe = false; } return { setup: setup, reset: reset, resetDefaultState: resetDefaultState, dispose: dispose, releaseStatesOfGeometry: releaseStatesOfGeometry, releaseStatesOfProgram: releaseStatesOfProgram, initAttributes: initAttributes, enableAttribute: enableAttribute, disableUnusedAttributes: disableUnusedAttributes }; } function WebGLBufferRenderer(gl, extensions, info, capabilities) { const isWebGL2 = capabilities.isWebGL2; let mode; function setMode(value) { mode = value; } function render(start, count) { gl.drawArrays(mode, start, count); info.update(count, mode, 1); } function renderInstances(start, count, primcount) { if (primcount === 0) return; let extension, methodName; if (isWebGL2) { extension = gl; methodName = 'drawArraysInstanced'; } else { extension = extensions.get('ANGLE_instanced_arrays'); methodName = 'drawArraysInstancedANGLE'; if (extension === null) { console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.'); return; } } extension[methodName](mode, start, count, primcount); info.update(count, mode, primcount); } // this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; } function WebGLCapabilities(gl, extensions, parameters) { let maxAnisotropy; function getMaxAnisotropy() { if (maxAnisotropy !== undefined) return maxAnisotropy; if (extensions.has('EXT_texture_filter_anisotropic') === true) { const extension = extensions.get('EXT_texture_filter_anisotropic'); maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT); } else { maxAnisotropy = 0; } return maxAnisotropy; } function getMaxPrecision(precision) { if (precision === 'highp') { if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) { return 'highp'; } precision = 'mediump'; } if (precision === 'mediump') { if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) { return 'mediump'; } } return 'lowp'; } /* eslint-disable no-undef */ const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext; /* eslint-enable no-undef */ let precision = parameters.precision !== undefined ? parameters.precision : 'highp'; const maxPrecision = getMaxPrecision(precision); if (maxPrecision !== precision) { console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.'); precision = maxPrecision; } const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers'); const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS); const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS); const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE); const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE); const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS); const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS); const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS); const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS); const vertexTextures = maxVertexTextures > 0; const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float'); const floatVertexTextures = vertexTextures && floatFragmentTextures; const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0; return { isWebGL2: isWebGL2, drawBuffers: drawBuffers, getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures, maxSamples: maxSamples }; } function WebGLClipping(properties) { const scope = this; let globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false; const plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function (planes, enableLocalClipping, camera) { const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; globalState = projectPlanes(planes, camera, 0); numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function () { renderingShadows = true; projectPlanes(null); }; this.endShadows = function () { renderingShadows = false; resetGlobalState(); }; this.setState = function (material, camera, useCache) { const planes = material.clippingPlanes, clipIntersection = material.clipIntersection, clipShadows = material.clipShadows; const materialProperties = properties.get(material); if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) { // there's no local clipping if (renderingShadows) { // there's no global clipping projectPlanes(null); } else { resetGlobalState(); } } else { const nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4; let dstArray = materialProperties.clippingState || null; uniform.value = dstArray; // ensure unique state dstArray = projectPlanes(planes, camera, lGlobal, useCache); for (let i = 0; i !== lGlobal; ++i) { dstArray[i] = globalState[i]; } materialProperties.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if (uniform.value !== globalState) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } function projectPlanes(planes, camera, dstOffset, skipTransform) { const nPlanes = planes !== null ? planes.length : 0; let dstArray = null; if (nPlanes !== 0) { dstArray = uniform.value; if (skipTransform !== true || dstArray === null) { const flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix(viewMatrix); if (dstArray === null || dstArray.length < flatSize) { dstArray = new Float32Array(flatSize); } for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) { plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix); plane.normal.toArray(dstArray, i4); dstArray[i4 + 3] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; scope.numIntersection = 0; return dstArray; } } function WebGLCubeMaps(renderer) { let cubemaps = new WeakMap(); function mapTextureMapping(texture, mapping) { if (mapping === EquirectangularReflectionMapping) { texture.mapping = CubeReflectionMapping; } else if (mapping === EquirectangularRefractionMapping) { texture.mapping = CubeRefractionMapping; } return texture; } function get(texture) { if (texture && texture.isTexture) { const mapping = texture.mapping; if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) { if (cubemaps.has(texture)) { const cubemap = cubemaps.get(texture).texture; return mapTextureMapping(cubemap, texture.mapping); } else { const image = texture.image; if (image && image.height > 0) { const currentRenderTarget = renderer.getRenderTarget(); const renderTarget = new WebGLCubeRenderTarget(image.height / 2); renderTarget.fromEquirectangularTexture(renderer, texture); cubemaps.set(texture, renderTarget); renderer.setRenderTarget(currentRenderTarget); texture.addEventListener('dispose', onTextureDispose); return mapTextureMapping(renderTarget.texture, texture.mapping); } else { // image not yet ready. try the conversion next frame return null; } } } } return texture; } function onTextureDispose(event) { const texture = event.target; texture.removeEventListener('dispose', onTextureDispose); const cubemap = cubemaps.get(texture); if (cubemap !== undefined) { cubemaps.delete(texture); cubemap.dispose(); } } function dispose() { cubemaps = new WeakMap(); } return { get: get, dispose: dispose }; } function WebGLExtensions(gl) { const extensions = {}; function getExtension(name) { if (extensions[name] !== undefined) { return extensions[name]; } let extension; switch (name) { case 'WEBGL_depth_texture': extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture'); break; case 'EXT_texture_filter_anisotropic': extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic'); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc'); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc'); break; default: extension = gl.getExtension(name); } extensions[name] = extension; return extension; } return { has: function (name) { return getExtension(name) !== null; }, init: function (capabilities) { if (capabilities.isWebGL2) { getExtension('EXT_color_buffer_float'); } else { getExtension('WEBGL_depth_texture'); getExtension('OES_texture_float'); getExtension('OES_texture_half_float'); getExtension('OES_texture_half_float_linear'); getExtension('OES_standard_derivatives'); getExtension('OES_element_index_uint'); getExtension('OES_vertex_array_object'); getExtension('ANGLE_instanced_arrays'); } getExtension('OES_texture_float_linear'); getExtension('EXT_color_buffer_half_float'); }, get: function (name) { const extension = getExtension(name); if (extension === null) { console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.'); } return extension; } }; } function WebGLGeometries(gl, attributes, info, bindingStates) { const geometries = {}; const wireframeAttributes = new WeakMap(); function onGeometryDispose(event) { const geometry = event.target; if (geometry.index !== null) { attributes.remove(geometry.index); } for (const name in geometry.attributes) { attributes.remove(geometry.attributes[name]); } geometry.removeEventListener('dispose', onGeometryDispose); delete geometries[geometry.id]; const attribute = wireframeAttributes.get(geometry); if (attribute) { attributes.remove(attribute); wireframeAttributes.delete(geometry); } bindingStates.releaseStatesOfGeometry(geometry); if (geometry.isInstancedBufferGeometry === true) { delete geometry._maxInstanceCount; } // info.memory.geometries--; } function get(object, geometry) { if (geometries[geometry.id] === true) return geometry; geometry.addEventListener('dispose', onGeometryDispose); geometries[geometry.id] = true; info.memory.geometries++; return geometry; } function update(geometry) { const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates. for (const name in geometryAttributes) { attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER); } // morph targets const morphAttributes = geometry.morphAttributes; for (const name in morphAttributes) { const array = morphAttributes[name]; for (let i = 0, l = array.length; i < l; i++) { attributes.update(array[i], gl.ARRAY_BUFFER); } } } function updateWireframeAttribute(geometry) { const indices = []; const geometryIndex = geometry.index; const geometryPosition = geometry.attributes.position; let version = 0; if (geometryIndex !== null) { const array = geometryIndex.array; version = geometryIndex.version; for (let i = 0, l = array.length; i < l; i += 3) { const a = array[i + 0]; const b = array[i + 1]; const c = array[i + 2]; indices.push(a, b, b, c, c, a); } } else { const array = geometryPosition.array; version = geometryPosition.version; for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) { const a = i + 0; const b = i + 1; const c = i + 2; indices.push(a, b, b, c, c, a); } } const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1); attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates // const previousAttribute = wireframeAttributes.get(geometry); if (previousAttribute) attributes.remove(previousAttribute); // wireframeAttributes.set(geometry, attribute); } function getWireframeAttribute(geometry) { const currentAttribute = wireframeAttributes.get(geometry); if (currentAttribute) { const geometryIndex = geometry.index; if (geometryIndex !== null) { // if the attribute is obsolete, create a new one if (currentAttribute.version < geometryIndex.version) { updateWireframeAttribute(geometry); } } } else { updateWireframeAttribute(geometry); } return wireframeAttributes.get(geometry); } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute }; } function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) { const isWebGL2 = capabilities.isWebGL2; let mode; function setMode(value) { mode = value; } let type, bytesPerElement; function setIndex(value) { type = value.type; bytesPerElement = value.bytesPerElement; } function render(start, count) { gl.drawElements(mode, count, type, start * bytesPerElement); info.update(count, mode, 1); } function renderInstances(start, count, primcount) { if (primcount === 0) return; let extension, methodName; if (isWebGL2) { extension = gl; methodName = 'drawElementsInstanced'; } else { extension = extensions.get('ANGLE_instanced_arrays'); methodName = 'drawElementsInstancedANGLE'; if (extension === null) { console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.'); return; } } extension[methodName](mode, count, type, start * bytesPerElement, primcount); info.update(count, mode, primcount); } // this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; } function WebGLInfo(gl) { const memory = { geometries: 0, textures: 0 }; const render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 }; function update(count, mode, instanceCount) { render.calls++; switch (mode) { case gl.TRIANGLES: render.triangles += instanceCount * (count / 3); break; case gl.LINES: render.lines += instanceCount * (count / 2); break; case gl.LINE_STRIP: render.lines += instanceCount * (count - 1); break; case gl.LINE_LOOP: render.lines += instanceCount * count; break; case gl.POINTS: render.points += instanceCount * count; break; default: console.error('THREE.WebGLInfo: Unknown draw mode:', mode); break; } } function reset() { render.frame++; render.calls = 0; render.triangles = 0; render.points = 0; render.lines = 0; } return { memory: memory, render: render, programs: null, autoReset: true, reset: reset, update: update }; } function numericalSort(a, b) { return a[0] - b[0]; } function absNumericalSort(a, b) { return Math.abs(b[1]) - Math.abs(a[1]); } function WebGLMorphtargets(gl) { const influencesList = {}; const morphInfluences = new Float32Array(8); const workInfluences = []; for (let i = 0; i < 8; i++) { workInfluences[i] = [i, 0]; } function update(object, geometry, material, program) { const objectInfluences = object.morphTargetInfluences; // When object doesn't have morph target influences defined, we treat it as a 0-length array // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences const length = objectInfluences === undefined ? 0 : objectInfluences.length; let influences = influencesList[geometry.id]; if (influences === undefined) { // initialise list influences = []; for (let i = 0; i < length; i++) { influences[i] = [i, 0]; } influencesList[geometry.id] = influences; } // Collect influences for (let i = 0; i < length; i++) { const influence = influences[i]; influence[0] = i; influence[1] = objectInfluences[i]; } influences.sort(absNumericalSort); for (let i = 0; i < 8; i++) { if (i < length && influences[i][1]) { workInfluences[i][0] = influences[i][0]; workInfluences[i][1] = influences[i][1]; } else { workInfluences[i][0] = Number.MAX_SAFE_INTEGER; workInfluences[i][1] = 0; } } workInfluences.sort(numericalSort); const morphTargets = material.morphTargets && geometry.morphAttributes.position; const morphNormals = material.morphNormals && geometry.morphAttributes.normal; let morphInfluencesSum = 0; for (let i = 0; i < 8; i++) { const influence = workInfluences[i]; const index = influence[0]; const value = influence[1]; if (index !== Number.MAX_SAFE_INTEGER && value) { if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) { geometry.setAttribute('morphTarget' + i, morphTargets[index]); } if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) { geometry.setAttribute('morphNormal' + i, morphNormals[index]); } morphInfluences[i] = value; morphInfluencesSum += value; } else { if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) { geometry.deleteAttribute('morphTarget' + i); } if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) { geometry.deleteAttribute('morphNormal' + i); } morphInfluences[i] = 0; } } // GLSL shader uses formula baseinfluence * base + sum(target * influence) // This allows us to switch between absolute morphs and relative morphs without changing shader code // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence); program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences); } return { update: update }; } function WebGLObjects(gl, geometries, attributes, info) { let updateMap = new WeakMap(); function update(object) { const frame = info.render.frame; const geometry = object.geometry; const buffergeometry = geometries.get(object, geometry); // Update once per frame if (updateMap.get(buffergeometry) !== frame) { geometries.update(buffergeometry); updateMap.set(buffergeometry, frame); } if (object.isInstancedMesh) { if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) { object.addEventListener('dispose', onInstancedMeshDispose); } attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER); if (object.instanceColor !== null) { attributes.update(object.instanceColor, gl.ARRAY_BUFFER); } } return buffergeometry; } function dispose() { updateMap = new WeakMap(); } function onInstancedMeshDispose(event) { const instancedMesh = event.target; instancedMesh.removeEventListener('dispose', onInstancedMeshDispose); attributes.remove(instancedMesh.instanceMatrix); if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor); } return { update: update, dispose: dispose }; } class DataTexture2DArray extends Texture { constructor(data = null, width = 1, height = 1, depth = 1) { super(null); this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.needsUpdate = true; } } DataTexture2DArray.prototype.isDataTexture2DArray = true; class DataTexture3D extends Texture { constructor(data = null, width = 1, height = 1, depth = 1) { // We're going to add .setXXX() methods for setting properties later. // Users can still set in DataTexture3D directly. // // const texture = new THREE.DataTexture3D( data, width, height, depth ); // texture.anisotropy = 16; // // See #14839 super(null); this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.needsUpdate = true; } } DataTexture3D.prototype.isDataTexture3D = true; /** * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [textures] ) * * uploads a uniform value(s) * the 'textures' parameter is needed for sampler uniforms * * * Static methods of the top-level container (textures factorizations): * * .upload( gl, seq, values, textures ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (textures factorizations): * * .setValue( gl, name, value, textures ) * * sets uniform with name 'name' to 'value' * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ const emptyTexture = new Texture(); const emptyTexture2dArray = new DataTexture2DArray(); const emptyTexture3d = new DataTexture3D(); const emptyCubeTexture = new CubeTexture(); // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) const arrayCacheF32 = []; const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms const mat4array = new Float32Array(16); const mat3array = new Float32Array(9); const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices function flatten(array, nBlocks, blockSize) { const firstElem = array[0]; if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 const n = nBlocks * blockSize; let r = arrayCacheF32[n]; if (r === undefined) { r = new Float32Array(n); arrayCacheF32[n] = r; } if (nBlocks !== 0) { firstElem.toArray(r, 0); for (let i = 1, offset = 0; i !== nBlocks; ++i) { offset += blockSize; array[i].toArray(r, offset); } } return r; } function arraysEqual(a, b) { if (a.length !== b.length) return false; for (let i = 0, l = a.length; i < l; i++) { if (a[i] !== b[i]) return false; } return true; } function copyArray(a, b) { for (let i = 0, l = b.length; i < l; i++) { a[i] = b[i]; } } // Texture unit allocation function allocTexUnits(textures, n) { let r = arrayCacheI32[n]; if (r === undefined) { r = new Int32Array(n); arrayCacheI32[n] = r; } for (let i = 0; i !== n; ++i) { r[i] = textures.allocateTextureUnit(); } return r; } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValueV1f(gl, v) { const cache = this.cache; if (cache[0] === v) return; gl.uniform1f(this.addr, v); cache[0] = v; } // Single float vector (from flat array or THREE.VectorN) function setValueV2f(gl, v) { const cache = this.cache; if (v.x !== undefined) { if (cache[0] !== v.x || cache[1] !== v.y) { gl.uniform2f(this.addr, v.x, v.y); cache[0] = v.x; cache[1] = v.y; } } else { if (arraysEqual(cache, v)) return; gl.uniform2fv(this.addr, v); copyArray(cache, v); } } function setValueV3f(gl, v) { const cache = this.cache; if (v.x !== undefined) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) { gl.uniform3f(this.addr, v.x, v.y, v.z); cache[0] = v.x; cache[1] = v.y; cache[2] = v.z; } } else if (v.r !== undefined) { if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) { gl.uniform3f(this.addr, v.r, v.g, v.b); cache[0] = v.r; cache[1] = v.g; cache[2] = v.b; } } else { if (arraysEqual(cache, v)) return; gl.uniform3fv(this.addr, v); copyArray(cache, v); } } function setValueV4f(gl, v) { const cache = this.cache; if (v.x !== undefined) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) { gl.uniform4f(this.addr, v.x, v.y, v.z, v.w); cache[0] = v.x; cache[1] = v.y; cache[2] = v.z; cache[3] = v.w; } } else { if (arraysEqual(cache, v)) return; gl.uniform4fv(this.addr, v); copyArray(cache, v); } } // Single matrix (from flat array or THREE.MatrixN) function setValueM2(gl, v) { const cache = this.cache; const elements = v.elements; if (elements === undefined) { if (arraysEqual(cache, v)) return; gl.uniformMatrix2fv(this.addr, false, v); copyArray(cache, v); } else { if (arraysEqual(cache, elements)) return; mat2array.set(elements); gl.uniformMatrix2fv(this.addr, false, mat2array); copyArray(cache, elements); } } function setValueM3(gl, v) { const cache = this.cache; const elements = v.elements; if (elements === undefined) { if (arraysEqual(cache, v)) return; gl.uniformMatrix3fv(this.addr, false, v); copyArray(cache, v); } else { if (arraysEqual(cache, elements)) return; mat3array.set(elements); gl.uniformMatrix3fv(this.addr, false, mat3array); copyArray(cache, elements); } } function setValueM4(gl, v) { const cache = this.cache; const elements = v.elements; if (elements === undefined) { if (arraysEqual(cache, v)) return; gl.uniformMatrix4fv(this.addr, false, v); copyArray(cache, v); } else { if (arraysEqual(cache, elements)) return; mat4array.set(elements); gl.uniformMatrix4fv(this.addr, false, mat4array); copyArray(cache, elements); } } // Single integer / boolean function setValueV1i(gl, v) { const cache = this.cache; if (cache[0] === v) return; gl.uniform1i(this.addr, v); cache[0] = v; } // Single integer / boolean vector (from flat array) function setValueV2i(gl, v) { const cache = this.cache; if (arraysEqual(cache, v)) return; gl.uniform2iv(this.addr, v); copyArray(cache, v); } function setValueV3i(gl, v) { const cache = this.cache; if (arraysEqual(cache, v)) return; gl.uniform3iv(this.addr, v); copyArray(cache, v); } function setValueV4i(gl, v) { const cache = this.cache; if (arraysEqual(cache, v)) return; gl.uniform4iv(this.addr, v); copyArray(cache, v); } // Single unsigned integer function setValueV1ui(gl, v) { const cache = this.cache; if (cache[0] === v) return; gl.uniform1ui(this.addr, v); cache[0] = v; } // Single unsigned integer vector (from flat array) function setValueV2ui(gl, v) { const cache = this.cache; if (arraysEqual(cache, v)) return; gl.uniform2uiv(this.addr, v); copyArray(cache, v); } function setValueV3ui(gl, v) { const cache = this.cache; if (arraysEqual(cache, v)) return; gl.uniform3uiv(this.addr, v); copyArray(cache, v); } function setValueV4ui(gl, v) { const cache = this.cache; if (arraysEqual(cache, v)) return; gl.uniform4uiv(this.addr, v); copyArray(cache, v); } // Single texture (2D / Cube) function setValueT1(gl, v, textures) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if (cache[0] !== unit) { gl.uniform1i(this.addr, unit); cache[0] = unit; } textures.safeSetTexture2D(v || emptyTexture, unit); } function setValueT3D1(gl, v, textures) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if (cache[0] !== unit) { gl.uniform1i(this.addr, unit); cache[0] = unit; } textures.setTexture3D(v || emptyTexture3d, unit); } function setValueT6(gl, v, textures) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if (cache[0] !== unit) { gl.uniform1i(this.addr, unit); cache[0] = unit; } textures.safeSetTextureCube(v || emptyCubeTexture, unit); } function setValueT2DArray1(gl, v, textures) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if (cache[0] !== unit) { gl.uniform1i(this.addr, unit); cache[0] = unit; } textures.setTexture2DArray(v || emptyTexture2dArray, unit); } // Helper to pick the right setter for the singular case function getSingularSetter(type) { switch (type) { case 0x1406: return setValueV1f; // FLOAT case 0x8b50: return setValueV2f; // _VEC2 case 0x8b51: return setValueV3f; // _VEC3 case 0x8b52: return setValueV4f; // _VEC4 case 0x8b5a: return setValueM2; // _MAT2 case 0x8b5b: return setValueM3; // _MAT3 case 0x8b5c: return setValueM4; // _MAT4 case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4 case 0x1405: return setValueV1ui; // UINT case 0x8dc6: return setValueV2ui; // _VEC2 case 0x8dc7: return setValueV3ui; // _VEC3 case 0x8dc8: return setValueV4ui; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3D1; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArray1; } } // Array of scalars function setValueV1fArray(gl, v) { gl.uniform1fv(this.addr, v); } // Array of vectors (from flat array or array of THREE.VectorN) function setValueV2fArray(gl, v) { const data = flatten(v, this.size, 2); gl.uniform2fv(this.addr, data); } function setValueV3fArray(gl, v) { const data = flatten(v, this.size, 3); gl.uniform3fv(this.addr, data); } function setValueV4fArray(gl, v) { const data = flatten(v, this.size, 4); gl.uniform4fv(this.addr, data); } // Array of matrices (from flat array or array of THREE.MatrixN) function setValueM2Array(gl, v) { const data = flatten(v, this.size, 4); gl.uniformMatrix2fv(this.addr, false, data); } function setValueM3Array(gl, v) { const data = flatten(v, this.size, 9); gl.uniformMatrix3fv(this.addr, false, data); } function setValueM4Array(gl, v) { const data = flatten(v, this.size, 16); gl.uniformMatrix4fv(this.addr, false, data); } // Array of integer / boolean function setValueV1iArray(gl, v) { gl.uniform1iv(this.addr, v); } // Array of integer / boolean vectors (from flat array) function setValueV2iArray(gl, v) { gl.uniform2iv(this.addr, v); } function setValueV3iArray(gl, v) { gl.uniform3iv(this.addr, v); } function setValueV4iArray(gl, v) { gl.uniform4iv(this.addr, v); } // Array of unsigned integer function setValueV1uiArray(gl, v) { gl.uniform1uiv(this.addr, v); } // Array of unsigned integer vectors (from flat array) function setValueV2uiArray(gl, v) { gl.uniform2uiv(this.addr, v); } function setValueV3uiArray(gl, v) { gl.uniform3uiv(this.addr, v); } function setValueV4uiArray(gl, v) { gl.uniform4uiv(this.addr, v); } // Array of textures (2D / Cube) function setValueT1Array(gl, v, textures) { const n = v.length; const units = allocTexUnits(textures, n); gl.uniform1iv(this.addr, units); for (let i = 0; i !== n; ++i) { textures.safeSetTexture2D(v[i] || emptyTexture, units[i]); } } function setValueT6Array(gl, v, textures) { const n = v.length; const units = allocTexUnits(textures, n); gl.uniform1iv(this.addr, units); for (let i = 0; i !== n; ++i) { textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]); } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter(type) { switch (type) { case 0x1406: return setValueV1fArray; // FLOAT case 0x8b50: return setValueV2fArray; // _VEC2 case 0x8b51: return setValueV3fArray; // _VEC3 case 0x8b52: return setValueV4fArray; // _VEC4 case 0x8b5a: return setValueM2Array; // _MAT2 case 0x8b5b: return setValueM3Array; // _MAT3 case 0x8b5c: return setValueM4Array; // _MAT4 case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4 case 0x1405: return setValueV1uiArray; // UINT case 0x8dc6: return setValueV2uiArray; // _VEC2 case 0x8dc7: return setValueV3uiArray; // _VEC3 case 0x8dc8: return setValueV4uiArray; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1Array; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6Array; } } // --- Uniform Classes --- function SingleUniform(id, activeInfo, addr) { this.id = id; this.addr = addr; this.cache = []; this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG } function PureArrayUniform(id, activeInfo, addr) { this.id = id; this.addr = addr; this.cache = []; this.size = activeInfo.size; this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG } PureArrayUniform.prototype.updateCache = function (data) { const cache = this.cache; if (data instanceof Float32Array && cache.length !== data.length) { this.cache = new Float32Array(data.length); } copyArray(cache, data); }; function StructuredUniform(id) { this.id = id; this.seq = []; this.map = {}; } StructuredUniform.prototype.setValue = function (gl, value, textures) { const seq = this.seq; for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i]; u.setValue(gl, value[u.id], textures); } }; // --- Top-level --- // Parser - builds up the property tree from the path strings const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform(container, uniformObject) { container.seq.push(uniformObject); container.map[uniformObject.id] = uniformObject; } function parseUniform(activeInfo, addr, container) { const path = activeInfo.name, pathLength = path.length; // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0; while (true) { const match = RePathPart.exec(path), matchEnd = RePathPart.lastIndex; let id = match[1]; const idIsIndex = match[2] === ']', subscript = match[3]; if (idIsIndex) id = id | 0; // convert to integer if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) { // bare name or "pure" bottom-level array "[0]" suffix addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr)); break; } else { // step into inner node / create it in case it doesn't exist const map = container.map; let next = map[id]; if (next === undefined) { next = new StructuredUniform(id); addUniform(container, next); } container = next; } } } // Root Container function WebGLUniforms(gl, program) { this.seq = []; this.map = {}; const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS); for (let i = 0; i < n; ++i) { const info = gl.getActiveUniform(program, i), addr = gl.getUniformLocation(program, info.name); parseUniform(info, addr, this); } } WebGLUniforms.prototype.setValue = function (gl, name, value, textures) { const u = this.map[name]; if (u !== undefined) u.setValue(gl, value, textures); }; WebGLUniforms.prototype.setOptional = function (gl, object, name) { const v = object[name]; if (v !== undefined) this.setValue(gl, name, v); }; // Static interface WebGLUniforms.upload = function (gl, seq, values, textures) { for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i], v = values[u.id]; if (v.needsUpdate !== false) { // note: always updating when .needsUpdate is undefined u.setValue(gl, v.value, textures); } } }; WebGLUniforms.seqWithValue = function (seq, values) { const r = []; for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i]; if (u.id in values) r.push(u); } return r; }; function WebGLShader(gl, type, string) { const shader = gl.createShader(type); gl.shaderSource(shader, string); gl.compileShader(shader); return shader; } let programIdCount = 0; function addLineNumbers(string) { const lines = string.split('\n'); for (let i = 0; i < lines.length; i++) { lines[i] = i + 1 + ': ' + lines[i]; } return lines.join('\n'); } function getEncodingComponents(encoding) { switch (encoding) { case LinearEncoding: return ['Linear', '( value )']; case sRGBEncoding: return ['sRGB', '( value )']; case RGBEEncoding: return ['RGBE', '( value )']; case RGBM7Encoding: return ['RGBM', '( value, 7.0 )']; case RGBM16Encoding: return ['RGBM', '( value, 16.0 )']; case RGBDEncoding: return ['RGBD', '( value, 256.0 )']; case GammaEncoding: return ['Gamma', '( value, float( GAMMA_FACTOR ) )']; case LogLuvEncoding: return ['LogLuv', '( value )']; default: console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding); return ['Linear', '( value )']; } } function getShaderErrors(gl, shader, type) { const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS); const log = gl.getShaderInfoLog(shader).trim(); if (status && log === '') return ''; // --enable-privileged-webgl-extension // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); const source = gl.getShaderSource(shader); return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers(source); } function getTexelDecodingFunction(functionName, encoding) { const components = getEncodingComponents(encoding); return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }'; } function getTexelEncodingFunction(functionName, encoding) { const components = getEncodingComponents(encoding); return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }'; } function getToneMappingFunction(functionName, toneMapping) { let toneMappingName; switch (toneMapping) { case LinearToneMapping: toneMappingName = 'Linear'; break; case ReinhardToneMapping: toneMappingName = 'Reinhard'; break; case CineonToneMapping: toneMappingName = 'OptimizedCineon'; break; case ACESFilmicToneMapping: toneMappingName = 'ACESFilmic'; break; case CustomToneMapping: toneMappingName = 'Custom'; break; default: console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping); toneMappingName = 'Linear'; } return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; } function generateExtensions(parameters) { const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission > 0.0) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '']; return chunks.filter(filterEmptyLine).join('\n'); } function generateDefines(defines) { const chunks = []; for (const name in defines) { const value = defines[name]; if (value === false) continue; chunks.push('#define ' + name + ' ' + value); } return chunks.join('\n'); } function fetchAttributeLocations(gl, program) { const attributes = {}; const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES); for (let i = 0; i < n; i++) { const info = gl.getActiveAttrib(program, i); const name = info.name; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); attributes[name] = gl.getAttribLocation(program, name); } return attributes; } function filterEmptyLine(string) { return string !== ''; } function replaceLightNums(string, parameters) { return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows); } function replaceClippingPlaneNums(string, parameters) { return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection); } // Resolve Includes const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; function resolveIncludes(string) { return string.replace(includePattern, includeReplacer); } function includeReplacer(match, include) { const string = ShaderChunk[include]; if (string === undefined) { throw new Error('Can not resolve #include <' + include + '>'); } return resolveIncludes(string); } // Unroll Loops const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; function unrollLoops(string) { return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer); } function deprecatedLoopReplacer(match, start, end, snippet) { console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.'); return loopReplacer(match, start, end, snippet); } function loopReplacer(match, start, end, snippet) { let string = ''; for (let i = parseInt(start); i < parseInt(end); i++) { string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i); } return string; } // function generatePrecision(parameters) { let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;'; if (parameters.precision === 'highp') { precisionstring += '\n#define HIGH_PRECISION'; } else if (parameters.precision === 'mediump') { precisionstring += '\n#define MEDIUM_PRECISION'; } else if (parameters.precision === 'lowp') { precisionstring += '\n#define LOW_PRECISION'; } return precisionstring; } function generateShadowMapTypeDefine(parameters) { let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if (parameters.shadowMapType === PCFShadowMap) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if (parameters.shadowMapType === PCFSoftShadowMap) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } else if (parameters.shadowMapType === VSMShadowMap) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; } return shadowMapTypeDefine; } function generateEnvMapTypeDefine(parameters) { let envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; if (parameters.envMap) { switch (parameters.envMapMode) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case CubeUVReflectionMapping: case CubeUVRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; } } return envMapTypeDefine; } function generateEnvMapModeDefine(parameters) { let envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; if (parameters.envMap) { switch (parameters.envMapMode) { case CubeRefractionMapping: case CubeUVRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } } return envMapModeDefine; } function generateEnvMapBlendingDefine(parameters) { let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; if (parameters.envMap) { switch (parameters.combine) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } return envMapBlendingDefine; } function WebGLProgram(renderer, cacheKey, parameters, bindingStates) { const gl = renderer.getContext(); const defines = parameters.defines; let vertexShader = parameters.vertexShader; let fragmentShader = parameters.fragmentShader; const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters); const envMapTypeDefine = generateEnvMapTypeDefine(parameters); const envMapModeDefine = generateEnvMapModeDefine(parameters); const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters); const gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0; const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters); const customDefines = generateDefines(defines); const program = gl.createProgram(); let prefixVertex, prefixFragment; let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : ''; if (parameters.isRawShaderMaterial) { prefixVertex = [customDefines].filter(filterEmptyLine).join('\n'); if (prefixVertex.length > 0) { prefixVertex += '\n'; } prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n'); if (prefixFragment.length > 0) { prefixFragment += '\n'; } } else { prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n'); prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + (parameters.alphaTest % 1 ? '' : '.0') : '', // add '.0' if integer '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n'); } vertexShader = resolveIncludes(vertexShader); vertexShader = replaceLightNums(vertexShader, parameters); vertexShader = replaceClippingPlaneNums(vertexShader, parameters); fragmentShader = resolveIncludes(fragmentShader); fragmentShader = replaceLightNums(fragmentShader, parameters); fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters); vertexShader = unrollLoops(vertexShader); fragmentShader = unrollLoops(fragmentShader); if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) { // GLSL 3.0 conversion for built-in materials and ShaderMaterial versionString = '#version 300 es\n'; prefixVertex = ['#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex; prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment; } const vertexGlsl = versionString + prefixVertex + vertexShader; const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl); const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl); gl.attachShader(program, glVertexShader); gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0. if (parameters.index0AttributeName !== undefined) { gl.bindAttribLocation(program, 0, parameters.index0AttributeName); } else if (parameters.morphTargets === true) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation(program, 0, 'position'); } gl.linkProgram(program); // check for link errors if (renderer.debug.checkShaderErrors) { const programLog = gl.getProgramInfoLog(program).trim(); const vertexLog = gl.getShaderInfoLog(glVertexShader).trim(); const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim(); let runnable = true; let haveDiagnostics = true; if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) { runnable = false; const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex'); const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment'); console.error('THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter(program, gl.VALIDATE_STATUS), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors); } else if (programLog !== '') { console.warn('THREE.WebGLProgram: gl.getProgramInfoLog()', programLog); } else if (vertexLog === '' || fragmentLog === '') { haveDiagnostics = false; } if (haveDiagnostics) { this.diagnostics = { runnable: runnable, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } } // Clean up // Crashes in iOS9 and iOS10. #18402 // gl.detachShader( program, glVertexShader ); // gl.detachShader( program, glFragmentShader ); gl.deleteShader(glVertexShader); gl.deleteShader(glFragmentShader); // set up caching for uniform locations let cachedUniforms; this.getUniforms = function () { if (cachedUniforms === undefined) { cachedUniforms = new WebGLUniforms(gl, program); } return cachedUniforms; }; // set up caching for attribute locations let cachedAttributes; this.getAttributes = function () { if (cachedAttributes === undefined) { cachedAttributes = fetchAttributeLocations(gl, program); } return cachedAttributes; }; // free resource this.destroy = function () { bindingStates.releaseStatesOfProgram(this); gl.deleteProgram(program); this.program = undefined; }; // this.name = parameters.shaderName; this.id = programIdCount++; this.cacheKey = cacheKey; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } function WebGLPrograms(renderer, cubemaps, extensions, capabilities, bindingStates, clipping) { const programs = []; const isWebGL2 = capabilities.isWebGL2; const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; const floatVertexTextures = capabilities.floatVertexTextures; const maxVertexUniforms = capabilities.maxVertexUniforms; const vertexTextures = capabilities.vertexTextures; let precision = capabilities.precision; const shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'toon', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', MeshMatcapMaterial: 'matcap', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow', SpriteMaterial: 'sprite' }; const parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'alphaTest', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'sheen', 'transmission', 'transmissionMap', 'thicknessMap']; function getMaxBones(object) { const skeleton = object.skeleton; const bones = skeleton.bones; if (floatVertexTextures) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) const nVertexUniforms = maxVertexUniforms; const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4); const maxBones = Math.min(nVertexMatrices, bones.length); if (maxBones < bones.length) { console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.'); return 0; } return maxBones; } } function getTextureEncodingFromMap(map) { let encoding; if (map && map.isTexture) { encoding = map.encoding; } else if (map && map.isWebGLRenderTarget) { console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.'); encoding = map.texture.encoding; } else { encoding = LinearEncoding; } return encoding; } function getParameters(material, lights, shadows, scene, object) { const fog = scene.fog; const environment = material.isMeshStandardMaterial ? scene.environment : null; const envMap = cubemaps.get(material.envMap || environment); const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0; if (material.precision !== null) { precision = capabilities.getMaxPrecision(material.precision); if (precision !== material.precision) { console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.'); } } let vertexShader, fragmentShader; if (shaderID) { const shader = ShaderLib[shaderID]; vertexShader = shader.vertexShader; fragmentShader = shader.fragmentShader; } else { vertexShader = material.vertexShader; fragmentShader = material.fragmentShader; } const currentRenderTarget = renderer.getRenderTarget(); const parameters = { isWebGL2: isWebGL2, shaderID: shaderID, shaderName: material.type, vertexShader: vertexShader, fragmentShader: fragmentShader, defines: material.defines, isRawShaderMaterial: material.isRawShaderMaterial === true, glslVersion: material.glslVersion, precision: precision, instancing: object.isInstancedMesh === true, instancingColor: object.isInstancedMesh === true && object.instanceColor !== null, supportsVertexTextures: vertexTextures, outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding, map: !!material.map, mapEncoding: getTextureEncodingFromMap(material.map), matcap: !!material.matcap, matcapEncoding: getTextureEncodingFromMap(material.matcap), envMap: !!envMap, envMapMode: envMap && envMap.mapping, envMapEncoding: getTextureEncodingFromMap(envMap), envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping), lightMap: !!material.lightMap, lightMapEncoding: getTextureEncodingFromMap(material.lightMap), aoMap: !!material.aoMap, emissiveMap: !!material.emissiveMap, emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap), bumpMap: !!material.bumpMap, normalMap: !!material.normalMap, objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap, clearcoatMap: !!material.clearcoatMap, clearcoatRoughnessMap: !!material.clearcoatRoughnessMap, clearcoatNormalMap: !!material.clearcoatNormalMap, displacementMap: !!material.displacementMap, roughnessMap: !!material.roughnessMap, metalnessMap: !!material.metalnessMap, specularMap: !!material.specularMap, alphaMap: !!material.alphaMap, gradientMap: !!material.gradientMap, sheen: !!material.sheen, transmission: !!material.transmission, transmissionMap: !!material.transmissionMap, thicknessMap: !!material.thicknessMap, combine: material.combine, vertexTangents: material.normalMap && material.vertexTangents, vertexColors: material.vertexColors, vertexAlphas: material.vertexColors === true && object.geometry && object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4, vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmission || !!material.transmissionMap || !!material.thicknessMap, uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || !!material.transmission || !!material.transmissionMap || !!material.thicknessMap) && !!material.displacementMap, fog: !!fog, useFog: material.fog, fogExp2: fog && fog.isFogExp2, flatShading: !!material.flatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: logarithmicDepthBuffer, skinning: object.isSkinnedMesh === true && maxBones > 0, maxBones: maxBones, useVertexTexture: floatVertexTextures, morphTargets: material.morphTargets, morphNormals: material.morphNormals, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numDirLightShadows: lights.directionalShadowMap.length, numPointLightShadows: lights.pointShadowMap.length, numSpotLightShadows: lights.spotShadowMap.length, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, alphaTest: material.alphaTest, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, depthPacking: material.depthPacking !== undefined ? material.depthPacking : false, index0AttributeName: material.index0AttributeName, extensionDerivatives: material.extensions && material.extensions.derivatives, extensionFragDepth: material.extensions && material.extensions.fragDepth, extensionDrawBuffers: material.extensions && material.extensions.drawBuffers, extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD, rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'), rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'), rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'), customProgramCacheKey: material.customProgramCacheKey() }; return parameters; } function getProgramCacheKey(parameters) { const array = []; if (parameters.shaderID) { array.push(parameters.shaderID); } else { array.push(parameters.fragmentShader); array.push(parameters.vertexShader); } if (parameters.defines !== undefined) { for (const name in parameters.defines) { array.push(name); array.push(parameters.defines[name]); } } if (parameters.isRawShaderMaterial === false) { for (let i = 0; i < parameterNames.length; i++) { array.push(parameters[parameterNames[i]]); } array.push(renderer.outputEncoding); array.push(renderer.gammaFactor); } array.push(parameters.customProgramCacheKey); return array.join(); } function getUniforms(material) { const shaderID = shaderIDs[material.type]; let uniforms; if (shaderID) { const shader = ShaderLib[shaderID]; uniforms = UniformsUtils.clone(shader.uniforms); } else { uniforms = material.uniforms; } return uniforms; } function acquireProgram(parameters, cacheKey) { let program; // Check if code has been already compiled for (let p = 0, pl = programs.length; p < pl; p++) { const preexistingProgram = programs[p]; if (preexistingProgram.cacheKey === cacheKey) { program = preexistingProgram; ++program.usedTimes; break; } } if (program === undefined) { program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates); programs.push(program); } return program; } function releaseProgram(program) { if (--program.usedTimes === 0) { // Remove from unordered set const i = programs.indexOf(program); programs[i] = programs[programs.length - 1]; programs.pop(); // Free WebGL resources program.destroy(); } } return { getParameters: getParameters, getProgramCacheKey: getProgramCacheKey, getUniforms: getUniforms, acquireProgram: acquireProgram, releaseProgram: releaseProgram, // Exposed for resource monitoring & error feedback via renderer.info: programs: programs }; } function WebGLProperties() { let properties = new WeakMap(); function get(object) { let map = properties.get(object); if (map === undefined) { map = {}; properties.set(object, map); } return map; } function remove(object) { properties.delete(object); } function update(object, key, value) { properties.get(object)[key] = value; } function dispose() { properties = new WeakMap(); } return { get: get, remove: remove, update: update, dispose: dispose }; } function painterSortStable(a, b) { if (a.groupOrder !== b.groupOrder) { return a.groupOrder - b.groupOrder; } else if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder; } else if (a.program !== b.program) { return a.program.id - b.program.id; } else if (a.material.id !== b.material.id) { return a.material.id - b.material.id; } else if (a.z !== b.z) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable(a, b) { if (a.groupOrder !== b.groupOrder) { return a.groupOrder - b.groupOrder; } else if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder; } else if (a.z !== b.z) { return b.z - a.z; } else { return a.id - b.id; } } function WebGLRenderList(properties) { const renderItems = []; let renderItemsIndex = 0; const opaque = []; const transmissive = []; const transparent = []; const defaultProgram = { id: -1 }; function init() { renderItemsIndex = 0; opaque.length = 0; transmissive.length = 0; transparent.length = 0; } function getNextRenderItem(object, geometry, material, groupOrder, z, group) { let renderItem = renderItems[renderItemsIndex]; const materialProperties = properties.get(material); if (renderItem === undefined) { renderItem = { id: object.id, object: object, geometry: geometry, material: material, program: materialProperties.program || defaultProgram, groupOrder: groupOrder, renderOrder: object.renderOrder, z: z, group: group }; renderItems[renderItemsIndex] = renderItem; } else { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.program = materialProperties.program || defaultProgram; renderItem.groupOrder = groupOrder; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group; } renderItemsIndex++; return renderItem; } function push(object, geometry, material, groupOrder, z, group) { const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group); if (material.transmission > 0.0) { transmissive.push(renderItem); } else if (material.transparent === true) { transparent.push(renderItem); } else { opaque.push(renderItem); } } function unshift(object, geometry, material, groupOrder, z, group) { const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group); if (material.transmission > 0.0) { transmissive.unshift(renderItem); } else if (material.transparent === true) { transparent.unshift(renderItem); } else { opaque.unshift(renderItem); } } function sort(customOpaqueSort, customTransparentSort) { if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable); if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable); if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable); } function finish() { // Clear references from inactive renderItems in the list for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) { const renderItem = renderItems[i]; if (renderItem.id === null) break; renderItem.id = null; renderItem.object = null; renderItem.geometry = null; renderItem.material = null; renderItem.program = null; renderItem.group = null; } } return { opaque: opaque, transmissive: transmissive, transparent: transparent, init: init, push: push, unshift: unshift, finish: finish, sort: sort }; } function WebGLRenderLists(properties) { let lists = new WeakMap(); function get(scene, renderCallDepth) { let list; if (lists.has(scene) === false) { list = new WebGLRenderList(properties); lists.set(scene, [list]); } else { if (renderCallDepth >= lists.get(scene).length) { list = new WebGLRenderList(properties); lists.get(scene).push(list); } else { list = lists.get(scene)[renderCallDepth]; } } return list; } function dispose() { lists = new WeakMap(); } return { get: get, dispose: dispose }; } function UniformsCache() { const lights = {}; return { get: function (light) { if (lights[light.id] !== undefined) { return lights[light.id]; } let uniforms; switch (light.type) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color() }; break; case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0 }; break; case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0 }; break; case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break; case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() }; break; } lights[light.id] = uniforms; return uniforms; } }; } function ShadowUniformsCache() { const lights = {}; return { get: function (light) { if (lights[light.id] !== undefined) { return lights[light.id]; } let uniforms; switch (light.type) { case 'DirectionalLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'SpotLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'PointLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 }; break; // TODO (abelnation): set RectAreaLight shadow uniforms } lights[light.id] = uniforms; return uniforms; } }; } let nextVersion = 0; function shadowCastingLightsFirst(lightA, lightB) { return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0); } function WebGLLights(extensions, capabilities) { const cache = new UniformsCache(); const shadowCache = ShadowUniformsCache(); const state = { version: 0, hash: { directionalLength: -1, pointLength: -1, spotLength: -1, rectAreaLength: -1, hemiLength: -1, numDirectionalShadows: -1, numPointShadows: -1, numSpotShadows: -1 }, ambient: [0, 0, 0], probe: [], directional: [], directionalShadow: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadow: [], spotShadowMap: [], spotShadowMatrix: [], rectArea: [], rectAreaLTC1: null, rectAreaLTC2: null, point: [], pointShadow: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [] }; for (let i = 0; i < 9; i++) state.probe.push(new Vector3()); const vector3 = new Vector3(); const matrix4 = new Matrix4(); const matrix42 = new Matrix4(); function setup(lights) { let r = 0, g = 0, b = 0; for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0); let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; let numDirectionalShadows = 0; let numPointShadows = 0; let numSpotShadows = 0; lights.sort(shadowCastingLightsFirst); for (let i = 0, l = lights.length; i < l; i++) { const light = lights[i]; const color = light.color; const intensity = light.intensity; const distance = light.distance; const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null; if (light.isAmbientLight) { r += color.r * intensity; g += color.g * intensity; b += color.b * intensity; } else if (light.isLightProbe) { for (let j = 0; j < 9; j++) { state.probe[j].addScaledVector(light.sh.coefficients[j], intensity); } } else if (light.isDirectionalLight) { const uniforms = cache.get(light); uniforms.color.copy(light.color).multiplyScalar(light.intensity); if (light.castShadow) { const shadow = light.shadow; const shadowUniforms = shadowCache.get(light); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.directionalShadow[directionalLength] = shadowUniforms; state.directionalShadowMap[directionalLength] = shadowMap; state.directionalShadowMatrix[directionalLength] = light.shadow.matrix; numDirectionalShadows++; } state.directional[directionalLength] = uniforms; directionalLength++; } else if (light.isSpotLight) { const uniforms = cache.get(light); uniforms.position.setFromMatrixPosition(light.matrixWorld); uniforms.color.copy(color).multiplyScalar(intensity); uniforms.distance = distance; uniforms.coneCos = Math.cos(light.angle); uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra)); uniforms.decay = light.decay; if (light.castShadow) { const shadow = light.shadow; const shadowUniforms = shadowCache.get(light); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.spotShadow[spotLength] = shadowUniforms; state.spotShadowMap[spotLength] = shadowMap; state.spotShadowMatrix[spotLength] = light.shadow.matrix; numSpotShadows++; } state.spot[spotLength] = uniforms; spotLength++; } else if (light.isRectAreaLight) { const uniforms = cache.get(light); // (a) intensity is the total visible light emitted //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); // (b) intensity is the brightness of the light uniforms.color.copy(color).multiplyScalar(intensity); uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0); uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0); state.rectArea[rectAreaLength] = uniforms; rectAreaLength++; } else if (light.isPointLight) { const uniforms = cache.get(light); uniforms.color.copy(light.color).multiplyScalar(light.intensity); uniforms.distance = light.distance; uniforms.decay = light.decay; if (light.castShadow) { const shadow = light.shadow; const shadowUniforms = shadowCache.get(light); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; shadowUniforms.shadowCameraNear = shadow.camera.near; shadowUniforms.shadowCameraFar = shadow.camera.far; state.pointShadow[pointLength] = shadowUniforms; state.pointShadowMap[pointLength] = shadowMap; state.pointShadowMatrix[pointLength] = light.shadow.matrix; numPointShadows++; } state.point[pointLength] = uniforms; pointLength++; } else if (light.isHemisphereLight) { const uniforms = cache.get(light); uniforms.skyColor.copy(light.color).multiplyScalar(intensity); uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity); state.hemi[hemiLength] = uniforms; hemiLength++; } } if (rectAreaLength > 0) { if (capabilities.isWebGL2) { // WebGL 2 state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else { // WebGL 1 if (extensions.has('OES_texture_float_linear') === true) { state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else if (extensions.has('OES_texture_half_float_linear') === true) { state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; } else { console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.'); } } } state.ambient[0] = r; state.ambient[1] = g; state.ambient[2] = b; const hash = state.hash; if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) { state.directional.length = directionalLength; state.spot.length = spotLength; state.rectArea.length = rectAreaLength; state.point.length = pointLength; state.hemi.length = hemiLength; state.directionalShadow.length = numDirectionalShadows; state.directionalShadowMap.length = numDirectionalShadows; state.pointShadow.length = numPointShadows; state.pointShadowMap.length = numPointShadows; state.spotShadow.length = numSpotShadows; state.spotShadowMap.length = numSpotShadows; state.directionalShadowMatrix.length = numDirectionalShadows; state.pointShadowMatrix.length = numPointShadows; state.spotShadowMatrix.length = numSpotShadows; hash.directionalLength = directionalLength; hash.pointLength = pointLength; hash.spotLength = spotLength; hash.rectAreaLength = rectAreaLength; hash.hemiLength = hemiLength; hash.numDirectionalShadows = numDirectionalShadows; hash.numPointShadows = numPointShadows; hash.numSpotShadows = numSpotShadows; state.version = nextVersion++; } } function setupView(lights, camera) { let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; const viewMatrix = camera.matrixWorldInverse; for (let i = 0, l = lights.length; i < l; i++) { const light = lights[i]; if (light.isDirectionalLight) { const uniforms = state.directional[directionalLength]; uniforms.direction.setFromMatrixPosition(light.matrixWorld); vector3.setFromMatrixPosition(light.target.matrixWorld); uniforms.direction.sub(vector3); uniforms.direction.transformDirection(viewMatrix); directionalLength++; } else if (light.isSpotLight) { const uniforms = state.spot[spotLength]; uniforms.position.setFromMatrixPosition(light.matrixWorld); uniforms.position.applyMatrix4(viewMatrix); uniforms.direction.setFromMatrixPosition(light.matrixWorld); vector3.setFromMatrixPosition(light.target.matrixWorld); uniforms.direction.sub(vector3); uniforms.direction.transformDirection(viewMatrix); spotLength++; } else if (light.isRectAreaLight) { const uniforms = state.rectArea[rectAreaLength]; uniforms.position.setFromMatrixPosition(light.matrixWorld); uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors matrix42.identity(); matrix4.copy(light.matrixWorld); matrix4.premultiply(viewMatrix); matrix42.extractRotation(matrix4); uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0); uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0); uniforms.halfWidth.applyMatrix4(matrix42); uniforms.halfHeight.applyMatrix4(matrix42); rectAreaLength++; } else if (light.isPointLight) { const uniforms = state.point[pointLength]; uniforms.position.setFromMatrixPosition(light.matrixWorld); uniforms.position.applyMatrix4(viewMatrix); pointLength++; } else if (light.isHemisphereLight) { const uniforms = state.hemi[hemiLength]; uniforms.direction.setFromMatrixPosition(light.matrixWorld); uniforms.direction.transformDirection(viewMatrix); uniforms.direction.normalize(); hemiLength++; } } } return { setup: setup, setupView: setupView, state: state }; } function WebGLRenderState(extensions, capabilities) { const lights = new WebGLLights(extensions, capabilities); const lightsArray = []; const shadowsArray = []; function init() { lightsArray.length = 0; shadowsArray.length = 0; } function pushLight(light) { lightsArray.push(light); } function pushShadow(shadowLight) { shadowsArray.push(shadowLight); } function setupLights() { lights.setup(lightsArray); } function setupLightsView(camera) { lights.setupView(lightsArray, camera); } const state = { lightsArray: lightsArray, shadowsArray: shadowsArray, lights: lights }; return { init: init, state: state, setupLights: setupLights, setupLightsView: setupLightsView, pushLight: pushLight, pushShadow: pushShadow }; } function WebGLRenderStates(extensions, capabilities) { let renderStates = new WeakMap(); function get(scene, renderCallDepth = 0) { let renderState; if (renderStates.has(scene) === false) { renderState = new WebGLRenderState(extensions, capabilities); renderStates.set(scene, [renderState]); } else { if (renderCallDepth >= renderStates.get(scene).length) { renderState = new WebGLRenderState(extensions, capabilities); renderStates.get(scene).push(renderState); } else { renderState = renderStates.get(scene)[renderCallDepth]; } } return renderState; } function dispose() { renderStates = new WeakMap(); } return { get: get, dispose: dispose }; } /** * parameters = { * * opacity: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * } */ class MeshDepthMaterial extends Material { constructor(parameters) { super(); this.type = 'MeshDepthMaterial'; this.depthPacking = BasicDepthPacking; this.morphTargets = false; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.setValues(parameters); } copy(source) { super.copy(source); this.depthPacking = source.depthPacking; this.morphTargets = source.morphTargets; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; } } MeshDepthMaterial.prototype.isMeshDepthMaterial = true; /** * parameters = { * * referencePosition: , * nearDistance: , * farDistance: , * * morphTargets: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: * * } */ class MeshDistanceMaterial extends Material { constructor(parameters) { super(); this.type = 'MeshDistanceMaterial'; this.referencePosition = new Vector3(); this.nearDistance = 1; this.farDistance = 1000; this.morphTargets = false; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.fog = false; this.setValues(parameters); } copy(source) { super.copy(source); this.referencePosition.copy(source.referencePosition); this.nearDistance = source.nearDistance; this.farDistance = source.farDistance; this.morphTargets = source.morphTargets; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; return this; } } MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true; var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy ) / resolution ) );\n\tfor ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean * HALF_SAMPLE_RATE;\n\tsquared_mean = squared_mean * HALF_SAMPLE_RATE;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; function WebGLShadowMap(_renderer, _objects, _capabilities) { let _frustum = new Frustum(); const _shadowMapSize = new Vector2(), _viewportSize = new Vector2(), _viewport = new Vector4(), _depthMaterials = [], _distanceMaterials = [], _materialCache = {}, _maxTextureSize = _capabilities.maxTextureSize; const shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide }; const shadowMaterialVertical = new ShaderMaterial({ defines: { SAMPLE_RATE: 2.0 / 8.0, HALF_SAMPLE_RATE: 1.0 / 8.0 }, uniforms: { shadow_pass: { value: null }, resolution: { value: new Vector2() }, radius: { value: 4.0 } }, vertexShader: vsm_vert, fragmentShader: vsm_frag }); const shadowMaterialHorizontal = shadowMaterialVertical.clone(); shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; const fullScreenTri = new BufferGeometry(); fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3)); const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical); const scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap; this.render = function (lights, scene, camera) { if (scope.enabled === false) return; if (scope.autoUpdate === false && scope.needsUpdate === false) return; if (lights.length === 0) return; const currentRenderTarget = _renderer.getRenderTarget(); const activeCubeFace = _renderer.getActiveCubeFace(); const activeMipmapLevel = _renderer.getActiveMipmapLevel(); const _state = _renderer.state; // Set GL state for depth map. _state.setBlending(NoBlending); _state.buffers.color.setClear(1, 1, 1, 1); _state.buffers.depth.setTest(true); _state.setScissorTest(false); // render depth map for (let i = 0, il = lights.length; i < il; i++) { const light = lights[i]; const shadow = light.shadow; if (shadow === undefined) { console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.'); continue; } if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue; _shadowMapSize.copy(shadow.mapSize); const shadowFrameExtents = shadow.getFrameExtents(); _shadowMapSize.multiply(shadowFrameExtents); _viewportSize.copy(shadow.mapSize); if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) { if (_shadowMapSize.x > _maxTextureSize) { _viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x); _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; shadow.mapSize.x = _viewportSize.x; } if (_shadowMapSize.y > _maxTextureSize) { _viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y); _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; shadow.mapSize.y = _viewportSize.y; } } if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) { const pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat }; shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); shadow.map.texture.name = light.name + '.shadowMap'; shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); shadow.camera.updateProjectionMatrix(); } if (shadow.map === null) { const pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat }; shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); shadow.map.texture.name = light.name + '.shadowMap'; shadow.camera.updateProjectionMatrix(); } _renderer.setRenderTarget(shadow.map); _renderer.clear(); const viewportCount = shadow.getViewportCount(); for (let vp = 0; vp < viewportCount; vp++) { const viewport = shadow.getViewport(vp); _viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w); _state.viewport(_viewport); shadow.updateMatrices(light, vp); _frustum = shadow.getFrustum(); renderObject(scene, camera, shadow.camera, light, this.type); } // do blur pass for VSM if (!shadow.isPointLightShadow && this.type === VSMShadowMap) { VSMPass(shadow, camera); } shadow.needsUpdate = false; } scope.needsUpdate = false; _renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel); }; function VSMPass(shadow, camera) { const geometry = _objects.update(fullScreenMesh); // vertical pass shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; shadowMaterialVertical.uniforms.radius.value = shadow.radius; _renderer.setRenderTarget(shadow.mapPass); _renderer.clear(); _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; _renderer.setRenderTarget(shadow.map); _renderer.clear(); _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null); } function getDepthMaterialVariant(useMorphing) { const index = useMorphing << 0; let material = _depthMaterials[index]; if (material === undefined) { material = new MeshDepthMaterial({ depthPacking: RGBADepthPacking, morphTargets: useMorphing }); _depthMaterials[index] = material; } return material; } function getDistanceMaterialVariant(useMorphing) { const index = useMorphing << 0; let material = _distanceMaterials[index]; if (material === undefined) { material = new MeshDistanceMaterial({ morphTargets: useMorphing }); _distanceMaterials[index] = material; } return material; } function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) { let result = null; let getMaterialVariant = getDepthMaterialVariant; let customMaterial = object.customDepthMaterial; if (light.isPointLight === true) { getMaterialVariant = getDistanceMaterialVariant; customMaterial = object.customDistanceMaterial; } if (customMaterial === undefined) { let useMorphing = false; if (material.morphTargets === true) { useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0; } result = getMaterialVariant(useMorphing); } else { result = customMaterial; } if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0) { // in this case we need a unique material instance reflecting the // appropriate state const keyA = result.uuid, keyB = material.uuid; let materialsForVariant = _materialCache[keyA]; if (materialsForVariant === undefined) { materialsForVariant = {}; _materialCache[keyA] = materialsForVariant; } let cachedMaterial = materialsForVariant[keyB]; if (cachedMaterial === undefined) { cachedMaterial = result.clone(); materialsForVariant[keyB] = cachedMaterial; } result = cachedMaterial; } result.visible = material.visible; result.wireframe = material.wireframe; if (type === VSMShadowMap) { result.side = material.shadowSide !== null ? material.shadowSide : material.side; } else { result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side]; } result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.clipIntersection = material.clipIntersection; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if (light.isPointLight === true && result.isMeshDistanceMaterial === true) { result.referencePosition.setFromMatrixPosition(light.matrixWorld); result.nearDistance = shadowCameraNear; result.farDistance = shadowCameraFar; } return result; } function renderObject(object, camera, shadowCamera, light, type) { if (object.visible === false) return; const visible = object.layers.test(camera.layers); if (visible && (object.isMesh || object.isLine || object.isPoints)) { if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) { object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld); const geometry = _objects.update(object); const material = object.material; if (Array.isArray(material)) { const groups = geometry.groups; for (let k = 0, kl = groups.length; k < kl; k++) { const group = groups[k]; const groupMaterial = material[group.materialIndex]; if (groupMaterial && groupMaterial.visible) { const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type); _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group); } } } else if (material.visible) { const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type); _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null); } } } const children = object.children; for (let i = 0, l = children.length; i < l; i++) { renderObject(children[i], camera, shadowCamera, light, type); } } } function WebGLState(gl, extensions, capabilities) { const isWebGL2 = capabilities.isWebGL2; function ColorBuffer() { let locked = false; const color = new Vector4(); let currentColorMask = null; const currentColorClear = new Vector4(0, 0, 0, 0); return { setMask: function (colorMask) { if (currentColorMask !== colorMask && !locked) { gl.colorMask(colorMask, colorMask, colorMask, colorMask); currentColorMask = colorMask; } }, setLocked: function (lock) { locked = lock; }, setClear: function (r, g, b, a, premultipliedAlpha) { if (premultipliedAlpha === true) { r *= a; g *= a; b *= a; } color.set(r, g, b, a); if (currentColorClear.equals(color) === false) { gl.clearColor(r, g, b, a); currentColorClear.copy(color); } }, reset: function () { locked = false; currentColorMask = null; currentColorClear.set(-1, 0, 0, 0); // set to invalid state } }; } function DepthBuffer() { let locked = false; let currentDepthMask = null; let currentDepthFunc = null; let currentDepthClear = null; return { setTest: function (depthTest) { if (depthTest) { enable(gl.DEPTH_TEST); } else { disable(gl.DEPTH_TEST); } }, setMask: function (depthMask) { if (currentDepthMask !== depthMask && !locked) { gl.depthMask(depthMask); currentDepthMask = depthMask; } }, setFunc: function (depthFunc) { if (currentDepthFunc !== depthFunc) { if (depthFunc) { switch (depthFunc) { case NeverDepth: gl.depthFunc(gl.NEVER); break; case AlwaysDepth: gl.depthFunc(gl.ALWAYS); break; case LessDepth: gl.depthFunc(gl.LESS); break; case LessEqualDepth: gl.depthFunc(gl.LEQUAL); break; case EqualDepth: gl.depthFunc(gl.EQUAL); break; case GreaterEqualDepth: gl.depthFunc(gl.GEQUAL); break; case GreaterDepth: gl.depthFunc(gl.GREATER); break; case NotEqualDepth: gl.depthFunc(gl.NOTEQUAL); break; default: gl.depthFunc(gl.LEQUAL); } } else { gl.depthFunc(gl.LEQUAL); } currentDepthFunc = depthFunc; } }, setLocked: function (lock) { locked = lock; }, setClear: function (depth) { if (currentDepthClear !== depth) { gl.clearDepth(depth); currentDepthClear = depth; } }, reset: function () { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; } }; } function StencilBuffer() { let locked = false; let currentStencilMask = null; let currentStencilFunc = null; let currentStencilRef = null; let currentStencilFuncMask = null; let currentStencilFail = null; let currentStencilZFail = null; let currentStencilZPass = null; let currentStencilClear = null; return { setTest: function (stencilTest) { if (!locked) { if (stencilTest) { enable(gl.STENCIL_TEST); } else { disable(gl.STENCIL_TEST); } } }, setMask: function (stencilMask) { if (currentStencilMask !== stencilMask && !locked) { gl.stencilMask(stencilMask); currentStencilMask = stencilMask; } }, setFunc: function (stencilFunc, stencilRef, stencilMask) { if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) { gl.stencilFunc(stencilFunc, stencilRef, stencilMask); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, setOp: function (stencilFail, stencilZFail, stencilZPass) { if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) { gl.stencilOp(stencilFail, stencilZFail, stencilZPass); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, setLocked: function (lock) { locked = lock; }, setClear: function (stencil) { if (currentStencilClear !== stencil) { gl.clearStencil(stencil); currentStencilClear = stencil; } }, reset: function () { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; } }; } // const colorBuffer = new ColorBuffer(); const depthBuffer = new DepthBuffer(); const stencilBuffer = new StencilBuffer(); let enabledCapabilities = {}; let xrFramebuffer = null; let currentBoundFramebuffers = {}; let currentProgram = null; let currentBlendingEnabled = false; let currentBlending = null; let currentBlendEquation = null; let currentBlendSrc = null; let currentBlendDst = null; let currentBlendEquationAlpha = null; let currentBlendSrcAlpha = null; let currentBlendDstAlpha = null; let currentPremultipledAlpha = false; let currentFlipSided = null; let currentCullFace = null; let currentLineWidth = null; let currentPolygonOffsetFactor = null; let currentPolygonOffsetUnits = null; const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS); let lineWidthAvailable = false; let version = 0; const glVersion = gl.getParameter(gl.VERSION); if (glVersion.indexOf('WebGL') !== -1) { version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]); lineWidthAvailable = version >= 1.0; } else if (glVersion.indexOf('OpenGL ES') !== -1) { version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]); lineWidthAvailable = version >= 2.0; } let currentTextureSlot = null; let currentBoundTextures = {}; const scissorParam = gl.getParameter(gl.SCISSOR_BOX); const viewportParam = gl.getParameter(gl.VIEWPORT); const currentScissor = new Vector4().fromArray(scissorParam); const currentViewport = new Vector4().fromArray(viewportParam); function createTexture(type, target, count) { const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4. const texture = gl.createTexture(); gl.bindTexture(type, texture); gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST); for (let i = 0; i < count; i++) { gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data); } return texture; } const emptyTextures = {}; emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1); emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init colorBuffer.setClear(0, 0, 0, 1); depthBuffer.setClear(1); stencilBuffer.setClear(0); enable(gl.DEPTH_TEST); depthBuffer.setFunc(LessEqualDepth); setFlipSided(false); setCullFace(CullFaceBack); enable(gl.CULL_FACE); setBlending(NoBlending); // function enable(id) { if (enabledCapabilities[id] !== true) { gl.enable(id); enabledCapabilities[id] = true; } } function disable(id) { if (enabledCapabilities[id] !== false) { gl.disable(id); enabledCapabilities[id] = false; } } function bindXRFramebuffer(framebuffer) { if (framebuffer !== xrFramebuffer) { gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer); xrFramebuffer = framebuffer; } } function bindFramebuffer(target, framebuffer) { if (framebuffer === null && xrFramebuffer !== null) framebuffer = xrFramebuffer; // use active XR framebuffer if available if (currentBoundFramebuffers[target] !== framebuffer) { gl.bindFramebuffer(target, framebuffer); currentBoundFramebuffers[target] = framebuffer; if (isWebGL2) { // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER if (target === gl.DRAW_FRAMEBUFFER) { currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer; } if (target === gl.FRAMEBUFFER) { currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer; } } return true; } return false; } function useProgram(program) { if (currentProgram !== program) { gl.useProgram(program); currentProgram = program; return true; } return false; } const equationToGL = { [AddEquation]: gl.FUNC_ADD, [SubtractEquation]: gl.FUNC_SUBTRACT, [ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT }; if (isWebGL2) { equationToGL[MinEquation] = gl.MIN; equationToGL[MaxEquation] = gl.MAX; } else { const extension = extensions.get('EXT_blend_minmax'); if (extension !== null) { equationToGL[MinEquation] = extension.MIN_EXT; equationToGL[MaxEquation] = extension.MAX_EXT; } } const factorToGL = { [ZeroFactor]: gl.ZERO, [OneFactor]: gl.ONE, [SrcColorFactor]: gl.SRC_COLOR, [SrcAlphaFactor]: gl.SRC_ALPHA, [SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE, [DstColorFactor]: gl.DST_COLOR, [DstAlphaFactor]: gl.DST_ALPHA, [OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR, [OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA, [OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR, [OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA }; function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) { if (blending === NoBlending) { if (currentBlendingEnabled === true) { disable(gl.BLEND); currentBlendingEnabled = false; } return; } if (currentBlendingEnabled === false) { enable(gl.BLEND); currentBlendingEnabled = true; } if (blending !== CustomBlending) { if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) { if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) { gl.blendEquation(gl.FUNC_ADD); currentBlendEquation = AddEquation; currentBlendEquationAlpha = AddEquation; } if (premultipliedAlpha) { switch (blending) { case NormalBlending: gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA); break; case AdditiveBlending: gl.blendFunc(gl.ONE, gl.ONE); break; case SubtractiveBlending: gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA); break; case MultiplyBlending: gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA); break; default: console.error('THREE.WebGLState: Invalid blending: ', blending); break; } } else { switch (blending) { case NormalBlending: gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA); break; case AdditiveBlending: gl.blendFunc(gl.SRC_ALPHA, gl.ONE); break; case SubtractiveBlending: gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR); break; case MultiplyBlending: gl.blendFunc(gl.ZERO, gl.SRC_COLOR); break; default: console.error('THREE.WebGLState: Invalid blending: ', blending); break; } } currentBlendSrc = null; currentBlendDst = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } return; } // custom blending blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) { gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) { gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } currentBlending = blending; currentPremultipledAlpha = null; } function setMaterial(material, frontFaceCW) { material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE); let flipSided = material.side === BackSide; if (frontFaceCW) flipSided = !flipSided; setFlipSided(flipSided); material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha); depthBuffer.setFunc(material.depthFunc); depthBuffer.setTest(material.depthTest); depthBuffer.setMask(material.depthWrite); colorBuffer.setMask(material.colorWrite); const stencilWrite = material.stencilWrite; stencilBuffer.setTest(stencilWrite); if (stencilWrite) { stencilBuffer.setMask(material.stencilWriteMask); stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask); stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass); } setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits); material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE); } // function setFlipSided(flipSided) { if (currentFlipSided !== flipSided) { if (flipSided) { gl.frontFace(gl.CW); } else { gl.frontFace(gl.CCW); } currentFlipSided = flipSided; } } function setCullFace(cullFace) { if (cullFace !== CullFaceNone) { enable(gl.CULL_FACE); if (cullFace !== currentCullFace) { if (cullFace === CullFaceBack) { gl.cullFace(gl.BACK); } else if (cullFace === CullFaceFront) { gl.cullFace(gl.FRONT); } else { gl.cullFace(gl.FRONT_AND_BACK); } } } else { disable(gl.CULL_FACE); } currentCullFace = cullFace; } function setLineWidth(width) { if (width !== currentLineWidth) { if (lineWidthAvailable) gl.lineWidth(width); currentLineWidth = width; } } function setPolygonOffset(polygonOffset, factor, units) { if (polygonOffset) { enable(gl.POLYGON_OFFSET_FILL); if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) { gl.polygonOffset(factor, units); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable(gl.POLYGON_OFFSET_FILL); } } function setScissorTest(scissorTest) { if (scissorTest) { enable(gl.SCISSOR_TEST); } else { disable(gl.SCISSOR_TEST); } } // texture function activeTexture(webglSlot) { if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1; if (currentTextureSlot !== webglSlot) { gl.activeTexture(webglSlot); currentTextureSlot = webglSlot; } } function bindTexture(webglType, webglTexture) { if (currentTextureSlot === null) { activeTexture(); } let boundTexture = currentBoundTextures[currentTextureSlot]; if (boundTexture === undefined) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[currentTextureSlot] = boundTexture; } if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) { gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } function unbindTexture() { const boundTexture = currentBoundTextures[currentTextureSlot]; if (boundTexture !== undefined && boundTexture.type !== undefined) { gl.bindTexture(boundTexture.type, null); boundTexture.type = undefined; boundTexture.texture = undefined; } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply(gl, arguments); } catch (error) { console.error('THREE.WebGLState:', error); } } function texImage2D() { try { gl.texImage2D.apply(gl, arguments); } catch (error) { console.error('THREE.WebGLState:', error); } } function texImage3D() { try { gl.texImage3D.apply(gl, arguments); } catch (error) { console.error('THREE.WebGLState:', error); } } // function scissor(scissor) { if (currentScissor.equals(scissor) === false) { gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w); currentScissor.copy(scissor); } } function viewport(viewport) { if (currentViewport.equals(viewport) === false) { gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w); currentViewport.copy(viewport); } } // function reset() { // reset state gl.disable(gl.BLEND); gl.disable(gl.CULL_FACE); gl.disable(gl.DEPTH_TEST); gl.disable(gl.POLYGON_OFFSET_FILL); gl.disable(gl.SCISSOR_TEST); gl.disable(gl.STENCIL_TEST); gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE); gl.blendEquation(gl.FUNC_ADD); gl.blendFunc(gl.ONE, gl.ZERO); gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO); gl.colorMask(true, true, true, true); gl.clearColor(0, 0, 0, 0); gl.depthMask(true); gl.depthFunc(gl.LESS); gl.clearDepth(1); gl.stencilMask(0xffffffff); gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff); gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP); gl.clearStencil(0); gl.cullFace(gl.BACK); gl.frontFace(gl.CCW); gl.polygonOffset(0, 0); gl.activeTexture(gl.TEXTURE0); gl.bindFramebuffer(gl.FRAMEBUFFER, null); if (isWebGL2 === true) { gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null); gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null); } gl.useProgram(null); gl.lineWidth(1); gl.scissor(0, 0, gl.canvas.width, gl.canvas.height); gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals enabledCapabilities = {}; currentTextureSlot = null; currentBoundTextures = {}; xrFramebuffer = null; currentBoundFramebuffers = {}; currentProgram = null; currentBlendingEnabled = false; currentBlending = null; currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentPremultipledAlpha = false; currentFlipSided = null; currentCullFace = null; currentLineWidth = null; currentPolygonOffsetFactor = null; currentPolygonOffsetUnits = null; currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height); currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height); colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, enable: enable, disable: disable, bindFramebuffer: bindFramebuffer, bindXRFramebuffer: bindXRFramebuffer, useProgram: useProgram, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, unbindTexture: unbindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, texImage3D: texImage3D, scissor: scissor, viewport: viewport, reset: reset }; } function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) { const isWebGL2 = capabilities.isWebGL2; const maxTextures = capabilities.maxTextures; const maxCubemapSize = capabilities.maxCubemapSize; const maxTextureSize = capabilities.maxTextureSize; const maxSamples = capabilities.maxSamples; const _videoTextures = new WeakMap(); let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). let useOffscreenCanvas = false; try { useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null; } catch (err) {// Ignore any errors } function createCanvas(width, height) { // Use OffscreenCanvas when available. Specially needed in web workers return useOffscreenCanvas ? new OffscreenCanvas(width, height) : document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas'); } function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) { let scale = 1; // handle case if texture exceeds max size if (image.width > maxSize || image.height > maxSize) { scale = maxSize / Math.max(image.width, image.height); } // only perform resize if necessary if (scale < 1 || needsPowerOfTwo === true) { // only perform resize for certain image types if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) { const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor; const width = floor(scale * image.width); const height = floor(scale * image.height); if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas; canvas.width = width; canvas.height = height; const context = canvas.getContext('2d'); context.drawImage(image, 0, 0, width, height); console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').'); return canvas; } else { if ('data' in image) { console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').'); } return image; } } return image; } function isPowerOfTwo$1(image) { return isPowerOfTwo(image.width) && isPowerOfTwo(image.height); } function textureNeedsPowerOfTwo(texture) { if (isWebGL2) return false; return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; } function textureNeedsGenerateMipmaps(texture, supportsMips) { return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; } function generateMipmap(target, texture, width, height) { _gl.generateMipmap(target); const textureProperties = properties.get(texture); textureProperties.__maxMipLevel = Math.log2(Math.max(width, height)); } function getInternalFormat(internalFormatName, glFormat, glType) { if (isWebGL2 === false) return glFormat; if (internalFormatName !== null) { if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName]; console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\''); } let internalFormat = glFormat; if (glFormat === _gl.RED) { if (glType === _gl.FLOAT) internalFormat = _gl.R32F; if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F; if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8; } if (glFormat === _gl.RGB) { if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F; if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F; if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8; } if (glFormat === _gl.RGBA) { if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F; if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F; if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGBA8; } if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) { extensions.get('EXT_color_buffer_float'); } return internalFormat; } // Fallback filters for non-power-of-2 textures function filterFallback(f) { if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) { return _gl.NEAREST; } return _gl.LINEAR; } // function onTextureDispose(event) { const texture = event.target; texture.removeEventListener('dispose', onTextureDispose); deallocateTexture(texture); if (texture.isVideoTexture) { _videoTextures.delete(texture); } info.memory.textures--; } function onRenderTargetDispose(event) { const renderTarget = event.target; renderTarget.removeEventListener('dispose', onRenderTargetDispose); deallocateRenderTarget(renderTarget); } // function deallocateTexture(texture) { const textureProperties = properties.get(texture); if (textureProperties.__webglInit === undefined) return; _gl.deleteTexture(textureProperties.__webglTexture); properties.remove(texture); } function deallocateRenderTarget(renderTarget) { const texture = renderTarget.texture; const renderTargetProperties = properties.get(renderTarget); const textureProperties = properties.get(texture); if (!renderTarget) return; if (textureProperties.__webglTexture !== undefined) { _gl.deleteTexture(textureProperties.__webglTexture); info.memory.textures--; } if (renderTarget.depthTexture) { renderTarget.depthTexture.dispose(); } if (renderTarget.isWebGLCubeRenderTarget) { for (let i = 0; i < 6; i++) { _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]); if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]); } } else { _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer); if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer); if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer); if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer); if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer); } if (renderTarget.isWebGLMultipleRenderTargets) { for (let i = 0, il = texture.length; i < il; i++) { const attachmentProperties = properties.get(texture[i]); if (attachmentProperties.__webglTexture) { _gl.deleteTexture(attachmentProperties.__webglTexture); info.memory.textures--; } properties.remove(texture[i]); } } properties.remove(texture); properties.remove(renderTarget); } // let textureUnits = 0; function resetTextureUnits() { textureUnits = 0; } function allocateTextureUnit() { const textureUnit = textureUnits; if (textureUnit >= maxTextures) { console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures); } textureUnits += 1; return textureUnit; } // function setTexture2D(texture, slot) { const textureProperties = properties.get(texture); if (texture.isVideoTexture) updateVideoTexture(texture); if (texture.version > 0 && textureProperties.__version !== texture.version) { const image = texture.image; if (image === undefined) { console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined'); } else if (image.complete === false) { console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete'); } else { uploadTexture(textureProperties, texture, slot); return; } } state.activeTexture(_gl.TEXTURE0 + slot); state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture); } function setTexture2DArray(texture, slot) { const textureProperties = properties.get(texture); if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadTexture(textureProperties, texture, slot); return; } state.activeTexture(_gl.TEXTURE0 + slot); state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture); } function setTexture3D(texture, slot) { const textureProperties = properties.get(texture); if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadTexture(textureProperties, texture, slot); return; } state.activeTexture(_gl.TEXTURE0 + slot); state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture); } function setTextureCube(texture, slot) { const textureProperties = properties.get(texture); if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadCubeTexture(textureProperties, texture, slot); return; } state.activeTexture(_gl.TEXTURE0 + slot); state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); } const wrappingToGL = { [RepeatWrapping]: _gl.REPEAT, [ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE, [MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT }; const filterToGL = { [NearestFilter]: _gl.NEAREST, [NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST, [NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR, [LinearFilter]: _gl.LINEAR, [LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST, [LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR }; function setTextureParameters(textureType, texture, supportsMips) { if (supportsMips) { _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]); _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]); if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) { _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]); } _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]); _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]); } else { _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE); _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE); if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) { _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE); } if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) { console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.'); } _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter)); _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter)); if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) { console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.'); } } if (extensions.has('EXT_texture_filter_anisotropic') === true) { const extension = extensions.get('EXT_texture_filter_anisotropic'); if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2 if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) { _gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy())); properties.get(texture).__currentAnisotropy = texture.anisotropy; } } } function initTexture(textureProperties, texture) { if (textureProperties.__webglInit === undefined) { textureProperties.__webglInit = true; texture.addEventListener('dispose', onTextureDispose); textureProperties.__webglTexture = _gl.createTexture(); info.memory.textures++; } } function uploadTexture(textureProperties, texture, slot) { let textureType = _gl.TEXTURE_2D; if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY; if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D; initTexture(textureProperties, texture); state.activeTexture(_gl.TEXTURE0 + slot); state.bindTexture(textureType, textureProperties.__webglTexture); _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY); _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha); _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment); _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE); const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false; const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize); const supportsMips = isPowerOfTwo$1(image) || isWebGL2, glFormat = utils.convert(texture.format); let glType = utils.convert(texture.type), glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType); setTextureParameters(textureType, texture, supportsMips); let mipmap; const mipmaps = texture.mipmaps; if (texture.isDepthTexture) { // populate depth texture with dummy data glInternalFormat = _gl.DEPTH_COMPONENT; if (isWebGL2) { if (texture.type === FloatType) { glInternalFormat = _gl.DEPTH_COMPONENT32F; } else if (texture.type === UnsignedIntType) { glInternalFormat = _gl.DEPTH_COMPONENT24; } else if (texture.type === UnsignedInt248Type) { glInternalFormat = _gl.DEPTH24_STENCIL8; } else { glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D } } else { if (texture.type === FloatType) { console.error('WebGLRenderer: Floating point depth texture requires WebGL2.'); } } // validation checks for WebGL 1 if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) { // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) { console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.'); texture.type = UnsignedShortType; glType = utils.convert(texture.type); } } if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) { // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if (texture.type !== UnsignedInt248Type) { console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.'); texture.type = UnsignedInt248Type; glType = utils.convert(texture.type); } } // state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null); } else if (texture.isDataTexture) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if (mipmaps.length > 0 && supportsMips) { for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i]; state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); } texture.generateMipmaps = false; textureProperties.__maxMipLevel = mipmaps.length - 1; } else { state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data); textureProperties.__maxMipLevel = 0; } } else if (texture.isCompressedTexture) { for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i]; if (texture.format !== RGBAFormat && texture.format !== RGBFormat) { if (glFormat !== null) { state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data); } else { console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()'); } } else { state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); } } textureProperties.__maxMipLevel = mipmaps.length - 1; } else if (texture.isDataTexture2DArray) { state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data); textureProperties.__maxMipLevel = 0; } else if (texture.isDataTexture3D) { state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data); textureProperties.__maxMipLevel = 0; } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if (mipmaps.length > 0 && supportsMips) { for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i]; state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap); } texture.generateMipmaps = false; textureProperties.__maxMipLevel = mipmaps.length - 1; } else { state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image); textureProperties.__maxMipLevel = 0; } } if (textureNeedsGenerateMipmaps(texture, supportsMips)) { generateMipmap(textureType, texture, image.width, image.height); } textureProperties.__version = texture.version; if (texture.onUpdate) texture.onUpdate(texture); } function uploadCubeTexture(textureProperties, texture, slot) { if (texture.image.length !== 6) return; initTexture(textureProperties, texture); state.activeTexture(_gl.TEXTURE0 + slot); state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY); _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha); _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment); _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE); const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture); const isDataTexture = texture.image[0] && texture.image[0].isDataTexture; const cubeImage = []; for (let i = 0; i < 6; i++) { if (!isCompressed && !isDataTexture) { cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize); } else { cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i]; } } const image = cubeImage[0], supportsMips = isPowerOfTwo$1(image) || isWebGL2, glFormat = utils.convert(texture.format), glType = utils.convert(texture.type), glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType); setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips); let mipmaps; if (isCompressed) { for (let i = 0; i < 6; i++) { mipmaps = cubeImage[i].mipmaps; for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j]; if (texture.format !== RGBAFormat && texture.format !== RGBFormat) { if (glFormat !== null) { state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data); } else { console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()'); } } else { state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); } } } textureProperties.__maxMipLevel = mipmaps.length - 1; } else { mipmaps = texture.mipmaps; for (let i = 0; i < 6; i++) { if (isDataTexture) { state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data); for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j]; const mipmapImage = mipmap.image[i].image; state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data); } } else { state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]); for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j]; state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]); } } } textureProperties.__maxMipLevel = mipmaps.length; } if (textureNeedsGenerateMipmaps(texture, supportsMips)) { // We assume images for cube map have the same size. generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, image.width, image.height); } textureProperties.__version = texture.version; if (texture.onUpdate) texture.onUpdate(texture); } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) { const glFormat = utils.convert(texture.format); const glType = utils.convert(texture.type); const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType); if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) { state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null); } else { state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null); } state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); _gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0); state.bindFramebuffer(_gl.FRAMEBUFFER, null); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) { _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer); if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) { let glInternalFormat = _gl.DEPTH_COMPONENT16; if (isMultisample) { const depthTexture = renderTarget.depthTexture; if (depthTexture && depthTexture.isDepthTexture) { if (depthTexture.type === FloatType) { glInternalFormat = _gl.DEPTH_COMPONENT32F; } else if (depthTexture.type === UnsignedIntType) { glInternalFormat = _gl.DEPTH_COMPONENT24; } } const samples = getRenderTargetSamples(renderTarget); _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); } else { _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height); } _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer); } else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) { if (isMultisample) { const samples = getRenderTargetSamples(renderTarget); _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height); } else { _gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height); } _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer); } else { // Use the first texture for MRT so far const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture; const glFormat = utils.convert(texture.format); const glType = utils.convert(texture.type); const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType); if (isMultisample) { const samples = getRenderTargetSamples(renderTarget); _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); } else { _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height); } } _gl.bindRenderbuffer(_gl.RENDERBUFFER, null); } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture(framebuffer, renderTarget) { const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget; if (isCube) throw new Error('Depth Texture with cube render targets is not supported'); state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) { throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture'); } // upload an empty depth texture with framebuffer size if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D(renderTarget.depthTexture, 0); const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture; if (renderTarget.depthTexture.format === DepthFormat) { _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0); } else if (renderTarget.depthTexture.format === DepthStencilFormat) { _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0); } else { throw new Error('Unknown depthTexture format'); } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer(renderTarget) { const renderTargetProperties = properties.get(renderTarget); const isCube = renderTarget.isWebGLCubeRenderTarget === true; if (renderTarget.depthTexture) { if (isCube) throw new Error('target.depthTexture not supported in Cube render targets'); setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget); } else { if (isCube) { renderTargetProperties.__webglDepthbuffer = []; for (let i = 0; i < 6; i++) { state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]); renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer(); setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false); } } else { state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false); } } state.bindFramebuffer(_gl.FRAMEBUFFER, null); } // Set up GL resources for the render target function setupRenderTarget(renderTarget) { const texture = renderTarget.texture; const renderTargetProperties = properties.get(renderTarget); const textureProperties = properties.get(texture); renderTarget.addEventListener('dispose', onRenderTargetDispose); if (renderTarget.isWebGLMultipleRenderTargets !== true) { textureProperties.__webglTexture = _gl.createTexture(); textureProperties.__version = texture.version; info.memory.textures++; } const isCube = renderTarget.isWebGLCubeRenderTarget === true; const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true; const isMultisample = renderTarget.isWebGLMultisampleRenderTarget === true; const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray; const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858 if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) { texture.format = RGBAFormat; console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.'); } // Setup framebuffer if (isCube) { renderTargetProperties.__webglFramebuffer = []; for (let i = 0; i < 6; i++) { renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); if (isMultipleRenderTargets) { if (capabilities.drawBuffers) { const textures = renderTarget.texture; for (let i = 0, il = textures.length; i < il; i++) { const attachmentProperties = properties.get(textures[i]); if (attachmentProperties.__webglTexture === undefined) { attachmentProperties.__webglTexture = _gl.createTexture(); info.memory.textures++; } } } else { console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.'); } } else if (isMultisample) { if (isWebGL2) { renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer(); _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer); const glFormat = utils.convert(texture.format); const glType = utils.convert(texture.type); const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType); const samples = getRenderTargetSamples(renderTarget); _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer); _gl.bindRenderbuffer(_gl.RENDERBUFFER, null); if (renderTarget.depthBuffer) { renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true); } state.bindFramebuffer(_gl.FRAMEBUFFER, null); } else { console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.'); } } } // Setup color buffer if (isCube) { state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips); for (let i = 0; i < 6; i++) { setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i); } if (textureNeedsGenerateMipmaps(texture, supportsMips)) { generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, renderTarget.width, renderTarget.height); } state.bindTexture(_gl.TEXTURE_CUBE_MAP, null); } else if (isMultipleRenderTargets) { const textures = renderTarget.texture; for (let i = 0, il = textures.length; i < il; i++) { const attachment = textures[i]; const attachmentProperties = properties.get(attachment); state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture); setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips); setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D); if (textureNeedsGenerateMipmaps(attachment, supportsMips)) { generateMipmap(_gl.TEXTURE_2D, attachment, renderTarget.width, renderTarget.height); } } state.bindTexture(_gl.TEXTURE_2D, null); } else { let glTextureType = _gl.TEXTURE_2D; if (isRenderTarget3D) { // Render targets containing layers, i.e: Texture 3D and 2d arrays if (isWebGL2) { const isTexture3D = texture.isDataTexture3D; glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY; } else { console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.'); } } state.bindTexture(glTextureType, textureProperties.__webglTexture); setTextureParameters(glTextureType, texture, supportsMips); setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType); if (textureNeedsGenerateMipmaps(texture, supportsMips)) { generateMipmap(_gl.TEXTURE_2D, texture, renderTarget.width, renderTarget.height); } state.bindTexture(_gl.TEXTURE_2D, null); } // Setup depth and stencil buffers if (renderTarget.depthBuffer) { setupDepthRenderbuffer(renderTarget); } } function updateRenderTargetMipmap(renderTarget) { const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture]; for (let i = 0, il = textures.length; i < il; i++) { const texture = textures[i]; if (textureNeedsGenerateMipmaps(texture, supportsMips)) { const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; const webglTexture = properties.get(texture).__webglTexture; state.bindTexture(target, webglTexture); generateMipmap(target, texture, renderTarget.width, renderTarget.height); state.bindTexture(target, null); } } } function updateMultisampleRenderTarget(renderTarget) { if (renderTarget.isWebGLMultisampleRenderTarget) { if (isWebGL2) { const width = renderTarget.width; const height = renderTarget.height; let mask = _gl.COLOR_BUFFER_BIT; if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT; if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT; const renderTargetProperties = properties.get(renderTarget); state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); _gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST); state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null); state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); } else { console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.'); } } } function getRenderTargetSamples(renderTarget) { return isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ? Math.min(maxSamples, renderTarget.samples) : 0; } function updateVideoTexture(texture) { const frame = info.render.frame; // Check the last frame we updated the VideoTexture if (_videoTextures.get(texture) !== frame) { _videoTextures.set(texture, frame); texture.update(); } } // backwards compatibility let warnedTexture2D = false; let warnedTextureCube = false; function safeSetTexture2D(texture, slot) { if (texture && texture.isWebGLRenderTarget) { if (warnedTexture2D === false) { console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.'); warnedTexture2D = true; } texture = texture.texture; } setTexture2D(texture, slot); } function safeSetTextureCube(texture, slot) { if (texture && texture.isWebGLCubeRenderTarget) { if (warnedTextureCube === false) { console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.'); warnedTextureCube = true; } texture = texture.texture; } setTextureCube(texture, slot); } // this.allocateTextureUnit = allocateTextureUnit; this.resetTextureUnits = resetTextureUnits; this.setTexture2D = setTexture2D; this.setTexture2DArray = setTexture2DArray; this.setTexture3D = setTexture3D; this.setTextureCube = setTextureCube; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; this.safeSetTexture2D = safeSetTexture2D; this.safeSetTextureCube = safeSetTextureCube; } function WebGLUtils(gl, extensions, capabilities) { const isWebGL2 = capabilities.isWebGL2; function convert(p) { let extension; if (p === UnsignedByteType) return gl.UNSIGNED_BYTE; if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4; if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1; if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5; if (p === ByteType) return gl.BYTE; if (p === ShortType) return gl.SHORT; if (p === UnsignedShortType) return gl.UNSIGNED_SHORT; if (p === IntType) return gl.INT; if (p === UnsignedIntType) return gl.UNSIGNED_INT; if (p === FloatType) return gl.FLOAT; if (p === HalfFloatType) { if (isWebGL2) return gl.HALF_FLOAT; extension = extensions.get('OES_texture_half_float'); if (extension !== null) { return extension.HALF_FLOAT_OES; } else { return null; } } if (p === AlphaFormat) return gl.ALPHA; if (p === RGBFormat) return gl.RGB; if (p === RGBAFormat) return gl.RGBA; if (p === LuminanceFormat) return gl.LUMINANCE; if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA; if (p === DepthFormat) return gl.DEPTH_COMPONENT; if (p === DepthStencilFormat) return gl.DEPTH_STENCIL; if (p === RedFormat) return gl.RED; // WebGL2 formats. if (p === RedIntegerFormat) return gl.RED_INTEGER; if (p === RGFormat) return gl.RG; if (p === RGIntegerFormat) return gl.RG_INTEGER; if (p === RGBIntegerFormat) return gl.RGB_INTEGER; if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER; if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) { extension = extensions.get('WEBGL_compressed_texture_s3tc'); if (extension !== null) { if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } else { return null; } } if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) { extension = extensions.get('WEBGL_compressed_texture_pvrtc'); if (extension !== null) { if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } else { return null; } } if (p === RGB_ETC1_Format) { extension = extensions.get('WEBGL_compressed_texture_etc1'); if (extension !== null) { return extension.COMPRESSED_RGB_ETC1_WEBGL; } else { return null; } } if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) { extension = extensions.get('WEBGL_compressed_texture_etc'); if (extension !== null) { if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2; if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC; } } if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) { extension = extensions.get('WEBGL_compressed_texture_astc'); if (extension !== null) { // TODO Complete? return p; } else { return null; } } if (p === RGBA_BPTC_Format) { extension = extensions.get('EXT_texture_compression_bptc'); if (extension !== null) { // TODO Complete? return p; } else { return null; } } if (p === UnsignedInt248Type) { if (isWebGL2) return gl.UNSIGNED_INT_24_8; extension = extensions.get('WEBGL_depth_texture'); if (extension !== null) { return extension.UNSIGNED_INT_24_8_WEBGL; } else { return null; } } } return { convert: convert }; } class ArrayCamera extends PerspectiveCamera { constructor(array = []) { super(); this.cameras = array; } } ArrayCamera.prototype.isArrayCamera = true; class Group extends Object3D { constructor() { super(); this.type = 'Group'; } } Group.prototype.isGroup = true; const _moveEvent = { type: 'move' }; class WebXRController { constructor() { this._targetRay = null; this._grip = null; this._hand = null; } getHandSpace() { if (this._hand === null) { this._hand = new Group(); this._hand.matrixAutoUpdate = false; this._hand.visible = false; this._hand.joints = {}; this._hand.inputState = { pinching: false }; } return this._hand; } getTargetRaySpace() { if (this._targetRay === null) { this._targetRay = new Group(); this._targetRay.matrixAutoUpdate = false; this._targetRay.visible = false; this._targetRay.hasLinearVelocity = false; this._targetRay.linearVelocity = new Vector3(); this._targetRay.hasAngularVelocity = false; this._targetRay.angularVelocity = new Vector3(); } return this._targetRay; } getGripSpace() { if (this._grip === null) { this._grip = new Group(); this._grip.matrixAutoUpdate = false; this._grip.visible = false; this._grip.hasLinearVelocity = false; this._grip.linearVelocity = new Vector3(); this._grip.hasAngularVelocity = false; this._grip.angularVelocity = new Vector3(); } return this._grip; } dispatchEvent(event) { if (this._targetRay !== null) { this._targetRay.dispatchEvent(event); } if (this._grip !== null) { this._grip.dispatchEvent(event); } if (this._hand !== null) { this._hand.dispatchEvent(event); } return this; } disconnect(inputSource) { this.dispatchEvent({ type: 'disconnected', data: inputSource }); if (this._targetRay !== null) { this._targetRay.visible = false; } if (this._grip !== null) { this._grip.visible = false; } if (this._hand !== null) { this._hand.visible = false; } return this; } update(inputSource, frame, referenceSpace) { let inputPose = null; let gripPose = null; let handPose = null; const targetRay = this._targetRay; const grip = this._grip; const hand = this._hand; if (inputSource && frame.session.visibilityState !== 'visible-blurred') { if (targetRay !== null) { inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace); if (inputPose !== null) { targetRay.matrix.fromArray(inputPose.transform.matrix); targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale); if (inputPose.linearVelocity) { targetRay.hasLinearVelocity = true; targetRay.linearVelocity.copy(inputPose.linearVelocity); } else { targetRay.hasLinearVelocity = false; } if (inputPose.angularVelocity) { targetRay.hasAngularVelocity = true; targetRay.angularVelocity.copy(inputPose.angularVelocity); } else { targetRay.hasAngularVelocity = false; } this.dispatchEvent(_moveEvent); } } if (hand && inputSource.hand) { handPose = true; for (const inputjoint of inputSource.hand.values()) { // Update the joints groups with the XRJoint poses const jointPose = frame.getJointPose(inputjoint, referenceSpace); if (hand.joints[inputjoint.jointName] === undefined) { // The transform of this joint will be updated with the joint pose on each frame const joint = new Group(); joint.matrixAutoUpdate = false; joint.visible = false; hand.joints[inputjoint.jointName] = joint; // ?? hand.add(joint); } const joint = hand.joints[inputjoint.jointName]; if (jointPose !== null) { joint.matrix.fromArray(jointPose.transform.matrix); joint.matrix.decompose(joint.position, joint.rotation, joint.scale); joint.jointRadius = jointPose.radius; } joint.visible = jointPose !== null; } // Custom events // Check pinchz const indexTip = hand.joints['index-finger-tip']; const thumbTip = hand.joints['thumb-tip']; const distance = indexTip.position.distanceTo(thumbTip.position); const distanceToPinch = 0.02; const threshold = 0.005; if (hand.inputState.pinching && distance > distanceToPinch + threshold) { hand.inputState.pinching = false; this.dispatchEvent({ type: 'pinchend', handedness: inputSource.handedness, target: this }); } else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) { hand.inputState.pinching = true; this.dispatchEvent({ type: 'pinchstart', handedness: inputSource.handedness, target: this }); } } else { if (grip !== null && inputSource.gripSpace) { gripPose = frame.getPose(inputSource.gripSpace, referenceSpace); if (gripPose !== null) { grip.matrix.fromArray(gripPose.transform.matrix); grip.matrix.decompose(grip.position, grip.rotation, grip.scale); if (gripPose.linearVelocity) { grip.hasLinearVelocity = true; grip.linearVelocity.copy(gripPose.linearVelocity); } else { grip.hasLinearVelocity = false; } if (gripPose.angularVelocity) { grip.hasAngularVelocity = true; grip.angularVelocity.copy(gripPose.angularVelocity); } else { grip.hasAngularVelocity = false; } } } } } if (targetRay !== null) { targetRay.visible = inputPose !== null; } if (grip !== null) { grip.visible = gripPose !== null; } if (hand !== null) { hand.visible = handPose !== null; } return this; } } class WebXRManager extends EventDispatcher { constructor(renderer, gl) { super(); const scope = this; const state = renderer.state; let session = null; let framebufferScaleFactor = 1.0; let referenceSpace = null; let referenceSpaceType = 'local-floor'; let pose = null; const controllers = []; const inputSourcesMap = new Map(); // const cameraL = new PerspectiveCamera(); cameraL.layers.enable(1); cameraL.viewport = new Vector4(); const cameraR = new PerspectiveCamera(); cameraR.layers.enable(2); cameraR.viewport = new Vector4(); const cameras = [cameraL, cameraR]; const cameraVR = new ArrayCamera(); cameraVR.layers.enable(1); cameraVR.layers.enable(2); let _currentDepthNear = null; let _currentDepthFar = null; // this.cameraAutoUpdate = true; this.enabled = false; this.isPresenting = false; this.getController = function (index) { let controller = controllers[index]; if (controller === undefined) { controller = new WebXRController(); controllers[index] = controller; } return controller.getTargetRaySpace(); }; this.getControllerGrip = function (index) { let controller = controllers[index]; if (controller === undefined) { controller = new WebXRController(); controllers[index] = controller; } return controller.getGripSpace(); }; this.getHand = function (index) { let controller = controllers[index]; if (controller === undefined) { controller = new WebXRController(); controllers[index] = controller; } return controller.getHandSpace(); }; // function onSessionEvent(event) { const controller = inputSourcesMap.get(event.inputSource); if (controller) { controller.dispatchEvent({ type: event.type, data: event.inputSource }); } } function onSessionEnd() { inputSourcesMap.forEach(function (controller, inputSource) { controller.disconnect(inputSource); }); inputSourcesMap.clear(); _currentDepthNear = null; _currentDepthFar = null; // restore framebuffer/rendering state state.bindXRFramebuffer(null); renderer.setRenderTarget(renderer.getRenderTarget()); // animation.stop(); scope.isPresenting = false; scope.dispatchEvent({ type: 'sessionend' }); } this.setFramebufferScaleFactor = function (value) { framebufferScaleFactor = value; if (scope.isPresenting === true) { console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.'); } }; this.setReferenceSpaceType = function (value) { referenceSpaceType = value; if (scope.isPresenting === true) { console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.'); } }; this.getReferenceSpace = function () { return referenceSpace; }; this.getSession = function () { return session; }; this.setSession = async function (value) { session = value; if (session !== null) { session.addEventListener('select', onSessionEvent); session.addEventListener('selectstart', onSessionEvent); session.addEventListener('selectend', onSessionEvent); session.addEventListener('squeeze', onSessionEvent); session.addEventListener('squeezestart', onSessionEvent); session.addEventListener('squeezeend', onSessionEvent); session.addEventListener('end', onSessionEnd); session.addEventListener('inputsourceschange', onInputSourcesChange); const attributes = gl.getContextAttributes(); if (attributes.xrCompatible !== true) { await gl.makeXRCompatible(); } const layerInit = { antialias: attributes.antialias, alpha: attributes.alpha, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor: framebufferScaleFactor }; // eslint-disable-next-line no-undef const baseLayer = new XRWebGLLayer(session, gl, layerInit); session.updateRenderState({ baseLayer: baseLayer }); referenceSpace = await session.requestReferenceSpace(referenceSpaceType); animation.setContext(session); animation.start(); scope.isPresenting = true; scope.dispatchEvent({ type: 'sessionstart' }); } }; function onInputSourcesChange(event) { const inputSources = session.inputSources; // Assign inputSources to available controllers for (let i = 0; i < controllers.length; i++) { inputSourcesMap.set(inputSources[i], controllers[i]); } // Notify disconnected for (let i = 0; i < event.removed.length; i++) { const inputSource = event.removed[i]; const controller = inputSourcesMap.get(inputSource); if (controller) { controller.dispatchEvent({ type: 'disconnected', data: inputSource }); inputSourcesMap.delete(inputSource); } } // Notify connected for (let i = 0; i < event.added.length; i++) { const inputSource = event.added[i]; const controller = inputSourcesMap.get(inputSource); if (controller) { controller.dispatchEvent({ type: 'connected', data: inputSource }); } } } // const cameraLPos = new Vector3(); const cameraRPos = new Vector3(); /** * Assumes 2 cameras that are parallel and share an X-axis, and that * the cameras' projection and world matrices have already been set. * And that near and far planes are identical for both cameras. * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 */ function setProjectionFromUnion(camera, cameraL, cameraR) { cameraLPos.setFromMatrixPosition(cameraL.matrixWorld); cameraRPos.setFromMatrixPosition(cameraR.matrixWorld); const ipd = cameraLPos.distanceTo(cameraRPos); const projL = cameraL.projectionMatrix.elements; const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and // most likely identical top and bottom frustum extents. // Use the left camera for these values. const near = projL[14] / (projL[10] - 1); const far = projL[14] / (projL[10] + 1); const topFov = (projL[9] + 1) / projL[5]; const bottomFov = (projL[9] - 1) / projL[5]; const leftFov = (projL[8] - 1) / projL[0]; const rightFov = (projR[8] + 1) / projR[0]; const left = near * leftFov; const right = near * rightFov; // Calculate the new camera's position offset from the // left camera. xOffset should be roughly half `ipd`. const zOffset = ipd / (-leftFov + rightFov); const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset? cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale); camera.translateX(xOffset); camera.translateZ(zOffset); camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale); camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale // the values so that the near plane's position does not change in world space, // although must now be relative to the new union camera. const near2 = near + zOffset; const far2 = far + zOffset; const left2 = left - xOffset; const right2 = right + (ipd - xOffset); const top2 = topFov * far / far2 * near2; const bottom2 = bottomFov * far / far2 * near2; camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2); } function updateCamera(camera, parent) { if (parent === null) { camera.matrixWorld.copy(camera.matrix); } else { camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix); } camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); } this.updateCamera = function (camera) { if (session === null) return; cameraVR.near = cameraR.near = cameraL.near = camera.near; cameraVR.far = cameraR.far = cameraL.far = camera.far; if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) { // Note that the new renderState won't apply until the next frame. See #18320 session.updateRenderState({ depthNear: cameraVR.near, depthFar: cameraVR.far }); _currentDepthNear = cameraVR.near; _currentDepthFar = cameraVR.far; } const parent = camera.parent; const cameras = cameraVR.cameras; updateCamera(cameraVR, parent); for (let i = 0; i < cameras.length; i++) { updateCamera(cameras[i], parent); } // update camera and its children camera.matrixWorld.copy(cameraVR.matrixWorld); camera.matrix.copy(cameraVR.matrix); camera.matrix.decompose(camera.position, camera.quaternion, camera.scale); const children = camera.children; for (let i = 0, l = children.length; i < l; i++) { children[i].updateMatrixWorld(true); } // update projection matrix for proper view frustum culling if (cameras.length === 2) { setProjectionFromUnion(cameraVR, cameraL, cameraR); } else { // assume single camera setup (AR) cameraVR.projectionMatrix.copy(cameraL.projectionMatrix); } }; this.getCamera = function () { return cameraVR; }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame(time, frame) { pose = frame.getViewerPose(referenceSpace); if (pose !== null) { const views = pose.views; const baseLayer = session.renderState.baseLayer; state.bindXRFramebuffer(baseLayer.framebuffer); let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list if (views.length !== cameraVR.cameras.length) { cameraVR.cameras.length = 0; cameraVRNeedsUpdate = true; } for (let i = 0; i < views.length; i++) { const view = views[i]; const viewport = baseLayer.getViewport(view); const camera = cameras[i]; camera.matrix.fromArray(view.transform.matrix); camera.projectionMatrix.fromArray(view.projectionMatrix); camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height); if (i === 0) { cameraVR.matrix.copy(camera.matrix); } if (cameraVRNeedsUpdate === true) { cameraVR.cameras.push(camera); } } } // const inputSources = session.inputSources; for (let i = 0; i < controllers.length; i++) { const controller = controllers[i]; const inputSource = inputSources[i]; controller.update(inputSource, frame, referenceSpace); } if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame); } const animation = new WebGLAnimation(); animation.setAnimationLoop(onAnimationFrame); this.setAnimationLoop = function (callback) { onAnimationFrameCallback = callback; }; this.dispose = function () {}; } } function WebGLMaterials(properties) { function refreshFogUniforms(uniforms, fog) { uniforms.fogColor.value.copy(fog.color); if (fog.isFog) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if (fog.isFogExp2) { uniforms.fogDensity.value = fog.density; } } function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) { if (material.isMeshBasicMaterial) { refreshUniformsCommon(uniforms, material); } else if (material.isMeshLambertMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsLambert(uniforms, material); } else if (material.isMeshToonMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsToon(uniforms, material); } else if (material.isMeshPhongMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsPhong(uniforms, material); } else if (material.isMeshStandardMaterial) { refreshUniformsCommon(uniforms, material); if (material.isMeshPhysicalMaterial) { refreshUniformsPhysical(uniforms, material, transmissionRenderTarget); } else { refreshUniformsStandard(uniforms, material); } } else if (material.isMeshMatcapMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsMatcap(uniforms, material); } else if (material.isMeshDepthMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsDepth(uniforms, material); } else if (material.isMeshDistanceMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsDistance(uniforms, material); } else if (material.isMeshNormalMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsNormal(uniforms, material); } else if (material.isLineBasicMaterial) { refreshUniformsLine(uniforms, material); if (material.isLineDashedMaterial) { refreshUniformsDash(uniforms, material); } } else if (material.isPointsMaterial) { refreshUniformsPoints(uniforms, material, pixelRatio, height); } else if (material.isSpriteMaterial) { refreshUniformsSprites(uniforms, material); } else if (material.isShadowMaterial) { uniforms.color.value.copy(material.color); uniforms.opacity.value = material.opacity; } else if (material.isShaderMaterial) { material.uniformsNeedUpdate = false; // #15581 } } function refreshUniformsCommon(uniforms, material) { uniforms.opacity.value = material.opacity; if (material.color) { uniforms.diffuse.value.copy(material.color); } if (material.emissive) { uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity); } if (material.map) { uniforms.map.value = material.map; } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap; } if (material.specularMap) { uniforms.specularMap.value = material.specularMap; } const envMap = properties.get(material).envMap; if (envMap) { uniforms.envMap.value = envMap; uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap._needsFlipEnvMap ? -1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio; const maxMipLevel = properties.get(envMap).__maxMipLevel; if (maxMipLevel !== undefined) { uniforms.maxMipLevel.value = maxMipLevel; } } if (material.lightMap) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if (material.aoMap) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. displacementMap map // 4. normal map // 5. bump map // 6. roughnessMap map // 7. metalnessMap map // 8. alphaMap map // 9. emissiveMap map // 10. clearcoat map // 11. clearcoat normal map // 12. clearcoat roughnessMap map let uvScaleMap; if (material.map) { uvScaleMap = material.map; } else if (material.specularMap) { uvScaleMap = material.specularMap; } else if (material.displacementMap) { uvScaleMap = material.displacementMap; } else if (material.normalMap) { uvScaleMap = material.normalMap; } else if (material.bumpMap) { uvScaleMap = material.bumpMap; } else if (material.roughnessMap) { uvScaleMap = material.roughnessMap; } else if (material.metalnessMap) { uvScaleMap = material.metalnessMap; } else if (material.alphaMap) { uvScaleMap = material.alphaMap; } else if (material.emissiveMap) { uvScaleMap = material.emissiveMap; } else if (material.clearcoatMap) { uvScaleMap = material.clearcoatMap; } else if (material.clearcoatNormalMap) { uvScaleMap = material.clearcoatNormalMap; } else if (material.clearcoatRoughnessMap) { uvScaleMap = material.clearcoatRoughnessMap; } if (uvScaleMap !== undefined) { // backwards compatibility if (uvScaleMap.isWebGLRenderTarget) { uvScaleMap = uvScaleMap.texture; } if (uvScaleMap.matrixAutoUpdate === true) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy(uvScaleMap.matrix); } // uv repeat and offset setting priorities for uv2 // 1. ao map // 2. light map let uv2ScaleMap; if (material.aoMap) { uv2ScaleMap = material.aoMap; } else if (material.lightMap) { uv2ScaleMap = material.lightMap; } if (uv2ScaleMap !== undefined) { // backwards compatibility if (uv2ScaleMap.isWebGLRenderTarget) { uv2ScaleMap = uv2ScaleMap.texture; } if (uv2ScaleMap.matrixAutoUpdate === true) { uv2ScaleMap.updateMatrix(); } uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix); } } function refreshUniformsLine(uniforms, material) { uniforms.diffuse.value.copy(material.color); uniforms.opacity.value = material.opacity; } function refreshUniformsDash(uniforms, material) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints(uniforms, material, pixelRatio, height) { uniforms.diffuse.value.copy(material.color); uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * pixelRatio; uniforms.scale.value = height * 0.5; if (material.map) { uniforms.map.value = material.map; } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap; } // uv repeat and offset setting priorities // 1. color map // 2. alpha map let uvScaleMap; if (material.map) { uvScaleMap = material.map; } else if (material.alphaMap) { uvScaleMap = material.alphaMap; } if (uvScaleMap !== undefined) { if (uvScaleMap.matrixAutoUpdate === true) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy(uvScaleMap.matrix); } } function refreshUniformsSprites(uniforms, material) { uniforms.diffuse.value.copy(material.color); uniforms.opacity.value = material.opacity; uniforms.rotation.value = material.rotation; if (material.map) { uniforms.map.value = material.map; } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap; } // uv repeat and offset setting priorities // 1. color map // 2. alpha map let uvScaleMap; if (material.map) { uvScaleMap = material.map; } else if (material.alphaMap) { uvScaleMap = material.alphaMap; } if (uvScaleMap !== undefined) { if (uvScaleMap.matrixAutoUpdate === true) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy(uvScaleMap.matrix); } } function refreshUniformsLambert(uniforms, material) { if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap; } } function refreshUniformsPhong(uniforms, material) { uniforms.specular.value.copy(material.specular); uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 ) if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap; } if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if (material.side === BackSide) uniforms.bumpScale.value *= -1; } if (material.normalMap) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy(material.normalScale); if (material.side === BackSide) uniforms.normalScale.value.negate(); } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsToon(uniforms, material) { if (material.gradientMap) { uniforms.gradientMap.value = material.gradientMap; } if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap; } if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if (material.side === BackSide) uniforms.bumpScale.value *= -1; } if (material.normalMap) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy(material.normalScale); if (material.side === BackSide) uniforms.normalScale.value.negate(); } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsStandard(uniforms, material) { uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness; if (material.roughnessMap) { uniforms.roughnessMap.value = material.roughnessMap; } if (material.metalnessMap) { uniforms.metalnessMap.value = material.metalnessMap; } if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap; } if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if (material.side === BackSide) uniforms.bumpScale.value *= -1; } if (material.normalMap) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy(material.normalScale); if (material.side === BackSide) uniforms.normalScale.value.negate(); } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } const envMap = properties.get(material).envMap; if (envMap) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) { refreshUniformsStandard(uniforms, material); uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common uniforms.clearcoat.value = material.clearcoat; uniforms.clearcoatRoughness.value = material.clearcoatRoughness; if (material.sheen) uniforms.sheen.value.copy(material.sheen); if (material.clearcoatMap) { uniforms.clearcoatMap.value = material.clearcoatMap; } if (material.clearcoatRoughnessMap) { uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; } if (material.clearcoatNormalMap) { uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale); uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; if (material.side === BackSide) { uniforms.clearcoatNormalScale.value.negate(); } } uniforms.transmission.value = material.transmission; if (material.transmissionMap) { uniforms.transmissionMap.value = material.transmissionMap; } if (material.transmission > 0.0) { uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height); } uniforms.thickness.value = material.thickness; if (material.thicknessMap) { uniforms.thicknessMap.value = material.thicknessMap; } uniforms.attenuationDistance.value = material.attenuationDistance; uniforms.attenuationColor.value.copy(material.attenuationColor); } function refreshUniformsMatcap(uniforms, material) { if (material.matcap) { uniforms.matcap.value = material.matcap; } if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if (material.side === BackSide) uniforms.bumpScale.value *= -1; } if (material.normalMap) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy(material.normalScale); if (material.side === BackSide) uniforms.normalScale.value.negate(); } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsDepth(uniforms, material) { if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsDistance(uniforms, material) { if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } uniforms.referencePosition.value.copy(material.referencePosition); uniforms.nearDistance.value = material.nearDistance; uniforms.farDistance.value = material.farDistance; } function refreshUniformsNormal(uniforms, material) { if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if (material.side === BackSide) uniforms.bumpScale.value *= -1; } if (material.normalMap) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy(material.normalScale); if (material.side === BackSide) uniforms.normalScale.value.negate(); } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } return { refreshFogUniforms: refreshFogUniforms, refreshMaterialUniforms: refreshMaterialUniforms }; } function createCanvasElement() { const canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas'); canvas.style.display = 'block'; return canvas; } function WebGLRenderer(parameters) { parameters = parameters || {}; const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(), _context = parameters.context !== undefined ? parameters.context : null, _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default', _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false; let currentRenderList = null; let currentRenderState = null; // render() can be called from within a callback triggered by another render. // We track this so that the nested render call gets its list and state isolated from the parent render call. const renderListStack = []; const renderStateStack = []; // public properties this.domElement = _canvas; // Debug configuration container this.debug = { /** * Enables error checking and reporting when shader programs are being compiled * @type {boolean} */ checkShaderErrors: true }; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // user-defined clipping this.clippingPlanes = []; this.localClippingEnabled = false; // physically based shading this.gammaFactor = 2.0; // for backwards compatibility this.outputEncoding = LinearEncoding; // physical lights this.physicallyCorrectLights = false; // tone mapping this.toneMapping = NoToneMapping; this.toneMappingExposure = 1.0; // internal properties const _this = this; let _isContextLost = false; // internal state cache let _currentActiveCubeFace = 0; let _currentActiveMipmapLevel = 0; let _currentRenderTarget = null; let _currentMaterialId = -1; let _currentCamera = null; const _currentViewport = new Vector4(); const _currentScissor = new Vector4(); let _currentScissorTest = null; // let _width = _canvas.width; let _height = _canvas.height; let _pixelRatio = 1; let _opaqueSort = null; let _transparentSort = null; const _viewport = new Vector4(0, 0, _width, _height); const _scissor = new Vector4(0, 0, _width, _height); let _scissorTest = false; // const _currentDrawBuffers = []; // frustum const _frustum = new Frustum(); // clipping let _clippingEnabled = false; let _localClippingEnabled = false; // transmission let _transmissionRenderTarget = null; // camera matrices cache const _projScreenMatrix = new Matrix4(); const _vector3 = new Vector3(); const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } // initialize let _gl = _context; function getContext(contextNames, contextAttributes) { for (let i = 0; i < contextNames.length; i++) { const contextName = contextNames[i]; const context = _canvas.getContext(contextName, contextAttributes); if (context !== null) return context; } return null; } try { const contextAttributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer, powerPreference: _powerPreference, failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat }; // event listeners must be registered before WebGL context is created, see #12753 _canvas.addEventListener('webglcontextlost', onContextLost, false); _canvas.addEventListener('webglcontextrestored', onContextRestore, false); if (_gl === null) { const contextNames = ['webgl2', 'webgl', 'experimental-webgl']; if (_this.isWebGL1Renderer === true) { contextNames.shift(); } _gl = getContext(contextNames, contextAttributes); if (_gl === null) { if (getContext(contextNames)) { throw new Error('Error creating WebGL context with your selected attributes.'); } else { throw new Error('Error creating WebGL context.'); } } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if (_gl.getShaderPrecisionFormat === undefined) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; }; } } catch (error) { console.error('THREE.WebGLRenderer: ' + error.message); throw error; } let extensions, capabilities, state, info; let properties, textures, cubemaps, attributes, geometries, objects; let programCache, materials, renderLists, renderStates, clipping, shadowMap; let background, morphtargets, bufferRenderer, indexedBufferRenderer; let utils, bindingStates; function initGLContext() { extensions = new WebGLExtensions(_gl); capabilities = new WebGLCapabilities(_gl, extensions, parameters); extensions.init(capabilities); utils = new WebGLUtils(_gl, extensions, capabilities); state = new WebGLState(_gl, extensions, capabilities); _currentDrawBuffers[0] = _gl.BACK; info = new WebGLInfo(_gl); properties = new WebGLProperties(); textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info); cubemaps = new WebGLCubeMaps(_this); attributes = new WebGLAttributes(_gl, capabilities); bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities); geometries = new WebGLGeometries(_gl, attributes, info, bindingStates); objects = new WebGLObjects(_gl, geometries, attributes, info); morphtargets = new WebGLMorphtargets(_gl); clipping = new WebGLClipping(properties); programCache = new WebGLPrograms(_this, cubemaps, extensions, capabilities, bindingStates, clipping); materials = new WebGLMaterials(properties); renderLists = new WebGLRenderLists(properties); renderStates = new WebGLRenderStates(extensions, capabilities); background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha); shadowMap = new WebGLShadowMap(_this, objects, capabilities); bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities); indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities); info.programs = programCache.programs; _this.capabilities = capabilities; _this.extensions = extensions; _this.properties = properties; _this.renderLists = renderLists; _this.shadowMap = shadowMap; _this.state = state; _this.info = info; } initGLContext(); // xr const xr = new WebXRManager(_this, _gl); this.xr = xr; // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { const extension = extensions.get('WEBGL_lose_context'); if (extension) extension.loseContext(); }; this.forceContextRestore = function () { const extension = extensions.get('WEBGL_lose_context'); if (extension) extension.restoreContext(); }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function (value) { if (value === undefined) return; _pixelRatio = value; this.setSize(_width, _height, false); }; this.getSize = function (target) { if (target === undefined) { console.warn('WebGLRenderer: .getsize() now requires a Vector2 as an argument'); target = new Vector2(); } return target.set(_width, _height); }; this.setSize = function (width, height, updateStyle) { if (xr.isPresenting) { console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.'); return; } _width = width; _height = height; _canvas.width = Math.floor(width * _pixelRatio); _canvas.height = Math.floor(height * _pixelRatio); if (updateStyle !== false) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } this.setViewport(0, 0, width, height); }; this.getDrawingBufferSize = function (target) { if (target === undefined) { console.warn('WebGLRenderer: .getdrawingBufferSize() now requires a Vector2 as an argument'); target = new Vector2(); } return target.set(_width * _pixelRatio, _height * _pixelRatio).floor(); }; this.setDrawingBufferSize = function (width, height, pixelRatio) { _width = width; _height = height; _pixelRatio = pixelRatio; _canvas.width = Math.floor(width * pixelRatio); _canvas.height = Math.floor(height * pixelRatio); this.setViewport(0, 0, width, height); }; this.getCurrentViewport = function (target) { if (target === undefined) { console.warn('WebGLRenderer: .getCurrentViewport() now requires a Vector4 as an argument'); target = new Vector4(); } return target.copy(_currentViewport); }; this.getViewport = function (target) { return target.copy(_viewport); }; this.setViewport = function (x, y, width, height) { if (x.isVector4) { _viewport.set(x.x, x.y, x.z, x.w); } else { _viewport.set(x, y, width, height); } state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor()); }; this.getScissor = function (target) { return target.copy(_scissor); }; this.setScissor = function (x, y, width, height) { if (x.isVector4) { _scissor.set(x.x, x.y, x.z, x.w); } else { _scissor.set(x, y, width, height); } state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor()); }; this.getScissorTest = function () { return _scissorTest; }; this.setScissorTest = function (boolean) { state.setScissorTest(_scissorTest = boolean); }; this.setOpaqueSort = function (method) { _opaqueSort = method; }; this.setTransparentSort = function (method) { _transparentSort = method; }; // Clearing this.getClearColor = function (target) { if (target === undefined) { console.warn('WebGLRenderer: .getClearColor() now requires a Color as an argument'); target = new Color(); } return target.copy(background.getClearColor()); }; this.setClearColor = function () { background.setClearColor.apply(background, arguments); }; this.getClearAlpha = function () { return background.getClearAlpha(); }; this.setClearAlpha = function () { background.setClearAlpha.apply(background, arguments); }; this.clear = function (color, depth, stencil) { let bits = 0; if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT; if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT; if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT; _gl.clear(bits); }; this.clearColor = function () { this.clear(true, false, false); }; this.clearDepth = function () { this.clear(false, true, false); }; this.clearStencil = function () { this.clear(false, false, true); }; // this.dispose = function () { _canvas.removeEventListener('webglcontextlost', onContextLost, false); _canvas.removeEventListener('webglcontextrestored', onContextRestore, false); renderLists.dispose(); renderStates.dispose(); properties.dispose(); cubemaps.dispose(); objects.dispose(); bindingStates.dispose(); xr.dispose(); xr.removeEventListener('sessionstart', onXRSessionStart); xr.removeEventListener('sessionend', onXRSessionEnd); if (_transmissionRenderTarget) { _transmissionRenderTarget.dispose(); _transmissionRenderTarget = null; } animation.stop(); }; // Events function onContextLost(event) { event.preventDefault(); console.log('THREE.WebGLRenderer: Context Lost.'); _isContextLost = true; } function onContextRestore() /* event */ { console.log('THREE.WebGLRenderer: Context Restored.'); _isContextLost = false; const infoAutoReset = info.autoReset; const shadowMapEnabled = shadowMap.enabled; const shadowMapAutoUpdate = shadowMap.autoUpdate; const shadowMapNeedsUpdate = shadowMap.needsUpdate; const shadowMapType = shadowMap.type; initGLContext(); info.autoReset = infoAutoReset; shadowMap.enabled = shadowMapEnabled; shadowMap.autoUpdate = shadowMapAutoUpdate; shadowMap.needsUpdate = shadowMapNeedsUpdate; shadowMap.type = shadowMapType; } function onMaterialDispose(event) { const material = event.target; material.removeEventListener('dispose', onMaterialDispose); deallocateMaterial(material); } // Buffer deallocation function deallocateMaterial(material) { releaseMaterialProgramReferences(material); properties.remove(material); } function releaseMaterialProgramReferences(material) { const programs = properties.get(material).programs; if (programs !== undefined) { programs.forEach(function (program) { programCache.releaseProgram(program); }); } } // Buffer rendering function renderObjectImmediate(object, program) { object.render(function (object) { _this.renderBufferImmediate(object, program); }); } this.renderBufferImmediate = function (object, program) { bindingStates.initAttributes(); const buffers = properties.get(object); if (object.hasPositions && !buffers.position) buffers.position = _gl.createBuffer(); if (object.hasNormals && !buffers.normal) buffers.normal = _gl.createBuffer(); if (object.hasUvs && !buffers.uv) buffers.uv = _gl.createBuffer(); if (object.hasColors && !buffers.color) buffers.color = _gl.createBuffer(); const programAttributes = program.getAttributes(); if (object.hasPositions) { _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.position); _gl.bufferData(_gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW); bindingStates.enableAttribute(programAttributes.position); _gl.vertexAttribPointer(programAttributes.position, 3, _gl.FLOAT, false, 0, 0); } if (object.hasNormals) { _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.normal); _gl.bufferData(_gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW); bindingStates.enableAttribute(programAttributes.normal); _gl.vertexAttribPointer(programAttributes.normal, 3, _gl.FLOAT, false, 0, 0); } if (object.hasUvs) { _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.uv); _gl.bufferData(_gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW); bindingStates.enableAttribute(programAttributes.uv); _gl.vertexAttribPointer(programAttributes.uv, 2, _gl.FLOAT, false, 0, 0); } if (object.hasColors) { _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.color); _gl.bufferData(_gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW); bindingStates.enableAttribute(programAttributes.color); _gl.vertexAttribPointer(programAttributes.color, 3, _gl.FLOAT, false, 0, 0); } bindingStates.disableUnusedAttributes(); _gl.drawArrays(_gl.TRIANGLES, 0, object.count); object.count = 0; }; this.renderBufferDirect = function (camera, scene, geometry, material, object, group) { if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null) const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0; const program = setProgram(camera, scene, material, object); state.setMaterial(material, frontFaceCW); // let index = geometry.index; const position = geometry.attributes.position; // if (index === null) { if (position === undefined || position.count === 0) return; } else if (index.count === 0) { return; } // let rangeFactor = 1; if (material.wireframe === true) { index = geometries.getWireframeAttribute(geometry); rangeFactor = 2; } if (material.morphTargets || material.morphNormals) { morphtargets.update(object, geometry, material, program); } bindingStates.setup(object, material, program, geometry, index); let attribute; let renderer = bufferRenderer; if (index !== null) { attribute = attributes.get(index); renderer = indexedBufferRenderer; renderer.setIndex(attribute); } // const dataCount = index !== null ? index.count : position.count; const rangeStart = geometry.drawRange.start * rangeFactor; const rangeCount = geometry.drawRange.count * rangeFactor; const groupStart = group !== null ? group.start * rangeFactor : 0; const groupCount = group !== null ? group.count * rangeFactor : Infinity; const drawStart = Math.max(rangeStart, groupStart); const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1; const drawCount = Math.max(0, drawEnd - drawStart + 1); if (drawCount === 0) return; // if (object.isMesh) { if (material.wireframe === true) { state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio()); renderer.setMode(_gl.LINES); } else { renderer.setMode(_gl.TRIANGLES); } } else if (object.isLine) { let lineWidth = material.linewidth; if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material state.setLineWidth(lineWidth * getTargetPixelRatio()); if (object.isLineSegments) { renderer.setMode(_gl.LINES); } else if (object.isLineLoop) { renderer.setMode(_gl.LINE_LOOP); } else { renderer.setMode(_gl.LINE_STRIP); } } else if (object.isPoints) { renderer.setMode(_gl.POINTS); } else if (object.isSprite) { renderer.setMode(_gl.TRIANGLES); } if (object.isInstancedMesh) { renderer.renderInstances(drawStart, drawCount, object.count); } else if (geometry.isInstancedBufferGeometry) { const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount); renderer.renderInstances(drawStart, drawCount, instanceCount); } else { renderer.render(drawStart, drawCount); } }; // Compile this.compile = function (scene, camera) { currentRenderState = renderStates.get(scene); currentRenderState.init(); scene.traverseVisible(function (object) { if (object.isLight && object.layers.test(camera.layers)) { currentRenderState.pushLight(object); if (object.castShadow) { currentRenderState.pushShadow(object); } } }); currentRenderState.setupLights(); scene.traverse(function (object) { const material = object.material; if (material) { if (Array.isArray(material)) { for (let i = 0; i < material.length; i++) { const material2 = material[i]; getProgram(material2, scene, object); } } else { getProgram(material, scene, object); } } }); }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame(time) { if (onAnimationFrameCallback) onAnimationFrameCallback(time); } function onXRSessionStart() { animation.stop(); } function onXRSessionEnd() { animation.start(); } const animation = new WebGLAnimation(); animation.setAnimationLoop(onAnimationFrame); if (typeof window !== 'undefined') animation.setContext(window); this.setAnimationLoop = function (callback) { onAnimationFrameCallback = callback; xr.setAnimationLoop(callback); callback === null ? animation.stop() : animation.start(); }; xr.addEventListener('sessionstart', onXRSessionStart); xr.addEventListener('sessionend', onXRSessionEnd); // Rendering this.render = function (scene, camera) { if (camera !== undefined && camera.isCamera !== true) { console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.'); return; } if (_isContextLost === true) return; // update scene graph if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum if (camera.parent === null) camera.updateMatrixWorld(); if (xr.enabled === true && xr.isPresenting === true) { if (xr.cameraAutoUpdate === true) xr.updateCamera(camera); camera = xr.getCamera(); // use XR camera for rendering } // if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget); currentRenderState = renderStates.get(scene, renderStateStack.length); currentRenderState.init(); renderStateStack.push(currentRenderState); _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse); _frustum.setFromProjectionMatrix(_projScreenMatrix); _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera); currentRenderList = renderLists.get(scene, renderListStack.length); currentRenderList.init(); renderListStack.push(currentRenderList); projectObject(scene, camera, 0, _this.sortObjects); currentRenderList.finish(); if (_this.sortObjects === true) { currentRenderList.sort(_opaqueSort, _transparentSort); } // if (_clippingEnabled === true) clipping.beginShadows(); const shadowsArray = currentRenderState.state.shadowsArray; shadowMap.render(shadowsArray, scene, camera); currentRenderState.setupLights(); currentRenderState.setupLightsView(camera); if (_clippingEnabled === true) clipping.endShadows(); // if (this.info.autoReset === true) this.info.reset(); // background.render(currentRenderList, scene); // render scene const opaqueObjects = currentRenderList.opaque; const transmissiveObjects = currentRenderList.transmissive; const transparentObjects = currentRenderList.transparent; if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera); if (transmissiveObjects.length > 0) renderTransmissiveObjects(opaqueObjects, transmissiveObjects, scene, camera); if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera); // if (_currentRenderTarget !== null) { // Generate mipmap if we're using any kind of mipmap filtering textures.updateRenderTargetMipmap(_currentRenderTarget); // resolve multisample renderbuffers to a single-sample texture if necessary textures.updateMultisampleRenderTarget(_currentRenderTarget); } // if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest(true); state.buffers.depth.setMask(true); state.buffers.color.setMask(true); state.setPolygonOffset(false); // _gl.finish(); bindingStates.resetDefaultState(); _currentMaterialId = -1; _currentCamera = null; renderStateStack.pop(); if (renderStateStack.length > 0) { currentRenderState = renderStateStack[renderStateStack.length - 1]; } else { currentRenderState = null; } renderListStack.pop(); if (renderListStack.length > 0) { currentRenderList = renderListStack[renderListStack.length - 1]; } else { currentRenderList = null; } }; function projectObject(object, camera, groupOrder, sortObjects) { if (object.visible === false) return; const visible = object.layers.test(camera.layers); if (visible) { if (object.isGroup) { groupOrder = object.renderOrder; } else if (object.isLOD) { if (object.autoUpdate === true) object.update(camera); } else if (object.isLight) { currentRenderState.pushLight(object); if (object.castShadow) { currentRenderState.pushShadow(object); } } else if (object.isSprite) { if (!object.frustumCulled || _frustum.intersectsSprite(object)) { if (sortObjects) { _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix); } const geometry = objects.update(object); const material = object.material; if (material.visible) { currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null); } } } else if (object.isImmediateRenderObject) { if (sortObjects) { _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix); } currentRenderList.push(object, null, object.material, groupOrder, _vector3.z, null); } else if (object.isMesh || object.isLine || object.isPoints) { if (object.isSkinnedMesh) { // update skeleton only once in a frame if (object.skeleton.frame !== info.render.frame) { object.skeleton.update(); object.skeleton.frame = info.render.frame; } } if (!object.frustumCulled || _frustum.intersectsObject(object)) { if (sortObjects) { _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix); } const geometry = objects.update(object); const material = object.material; if (Array.isArray(material)) { const groups = geometry.groups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; const groupMaterial = material[group.materialIndex]; if (groupMaterial && groupMaterial.visible) { currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group); } } } else if (material.visible) { currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null); } } } } const children = object.children; for (let i = 0, l = children.length; i < l; i++) { projectObject(children[i], camera, groupOrder, sortObjects); } } function renderTransmissiveObjects(opaqueObjects, transmissiveObjects, scene, camera) { if (_transmissionRenderTarget === null) { _transmissionRenderTarget = new WebGLRenderTarget(1024, 1024, { generateMipmaps: true, minFilter: LinearMipmapLinearFilter, magFilter: NearestFilter, wrapS: ClampToEdgeWrapping, wrapT: ClampToEdgeWrapping }); } const currentRenderTarget = _this.getRenderTarget(); _this.setRenderTarget(_transmissionRenderTarget); _this.clear(); renderObjects(opaqueObjects, scene, camera); textures.updateRenderTargetMipmap(_transmissionRenderTarget); _this.setRenderTarget(currentRenderTarget); renderObjects(transmissiveObjects, scene, camera); } function renderObjects(renderList, scene, camera) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; for (let i = 0, l = renderList.length; i < l; i++) { const renderItem = renderList[i]; const object = renderItem.object; const geometry = renderItem.geometry; const material = overrideMaterial === null ? renderItem.material : overrideMaterial; const group = renderItem.group; if (camera.isArrayCamera) { const cameras = camera.cameras; for (let j = 0, jl = cameras.length; j < jl; j++) { const camera2 = cameras[j]; if (object.layers.test(camera2.layers)) { state.viewport(_currentViewport.copy(camera2.viewport)); currentRenderState.setupLightsView(camera2); renderObject(object, scene, camera2, geometry, material, group); } } } else { renderObject(object, scene, camera, geometry, material, group); } } } function renderObject(object, scene, camera, geometry, material, group) { object.onBeforeRender(_this, scene, camera, geometry, material, group); object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld); object.normalMatrix.getNormalMatrix(object.modelViewMatrix); if (object.isImmediateRenderObject) { const program = setProgram(camera, scene, material, object); state.setMaterial(material); bindingStates.reset(); renderObjectImmediate(object, program); } else { _this.renderBufferDirect(camera, scene, geometry, material, object, group); } object.onAfterRender(_this, scene, camera, geometry, material, group); } function getProgram(material, scene, object) { if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... const materialProperties = properties.get(material); const lights = currentRenderState.state.lights; const shadowsArray = currentRenderState.state.shadowsArray; const lightsStateVersion = lights.state.version; const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object); const programCacheKey = programCache.getProgramCacheKey(parameters); let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; materialProperties.fog = scene.fog; materialProperties.envMap = cubemaps.get(material.envMap || materialProperties.environment); if (programs === undefined) { // new material material.addEventListener('dispose', onMaterialDispose); programs = new Map(); materialProperties.programs = programs; } let program = programs.get(programCacheKey); if (program !== undefined) { // early out if program and light state is identical if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) { updateCommonMaterialProperties(material, parameters); return program; } } else { parameters.uniforms = programCache.getUniforms(material); material.onBuild(parameters, _this); material.onBeforeCompile(parameters, _this); program = programCache.acquireProgram(parameters, programCacheKey); programs.set(programCacheKey, program); materialProperties.uniforms = parameters.uniforms; } const uniforms = materialProperties.uniforms; if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) { uniforms.clippingPlanes = clipping.uniform; } updateCommonMaterialProperties(material, parameters); // store the light setup it was created for materialProperties.needsLights = materialNeedsLights(material); materialProperties.lightsStateVersion = lightsStateVersion; if (materialProperties.needsLights) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = lights.state.ambient; uniforms.lightProbe.value = lights.state.probe; uniforms.directionalLights.value = lights.state.directional; uniforms.directionalLightShadows.value = lights.state.directionalShadow; uniforms.spotLights.value = lights.state.spot; uniforms.spotLightShadows.value = lights.state.spotShadow; uniforms.rectAreaLights.value = lights.state.rectArea; uniforms.ltc_1.value = lights.state.rectAreaLTC1; uniforms.ltc_2.value = lights.state.rectAreaLTC2; uniforms.pointLights.value = lights.state.point; uniforms.pointLightShadows.value = lights.state.pointShadow; uniforms.hemisphereLights.value = lights.state.hemi; uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; uniforms.spotShadowMap.value = lights.state.spotShadowMap; uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix; uniforms.pointShadowMap.value = lights.state.pointShadowMap; uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms } const progUniforms = program.getUniforms(); const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms); materialProperties.currentProgram = program; materialProperties.uniformsList = uniformsList; return program; } function updateCommonMaterialProperties(material, parameters) { const materialProperties = properties.get(material); materialProperties.outputEncoding = parameters.outputEncoding; materialProperties.instancing = parameters.instancing; materialProperties.skinning = parameters.skinning; materialProperties.numClippingPlanes = parameters.numClippingPlanes; materialProperties.numIntersection = parameters.numClipIntersection; materialProperties.vertexAlphas = parameters.vertexAlphas; } function setProgram(camera, scene, material, object) { if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... textures.resetTextureUnits(); const fog = scene.fog; const environment = material.isMeshStandardMaterial ? scene.environment : null; const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding; const envMap = cubemaps.get(material.envMap || environment); const vertexAlphas = material.vertexColors === true && object.geometry && object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4; const materialProperties = properties.get(material); const lights = currentRenderState.state.lights; if (_clippingEnabled === true) { if (_localClippingEnabled === true || camera !== _currentCamera) { const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) clipping.setState(material, camera, useCache); } } // let needsProgramChange = false; if (material.version === materialProperties.__version) { if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) { needsProgramChange = true; } else if (materialProperties.outputEncoding !== encoding) { needsProgramChange = true; } else if (object.isInstancedMesh && materialProperties.instancing === false) { needsProgramChange = true; } else if (!object.isInstancedMesh && materialProperties.instancing === true) { needsProgramChange = true; } else if (object.isSkinnedMesh && materialProperties.skinning === false) { needsProgramChange = true; } else if (!object.isSkinnedMesh && materialProperties.skinning === true) { needsProgramChange = true; } else if (materialProperties.envMap !== envMap) { needsProgramChange = true; } else if (material.fog && materialProperties.fog !== fog) { needsProgramChange = true; } else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) { needsProgramChange = true; } else if (materialProperties.vertexAlphas !== vertexAlphas) { needsProgramChange = true; } } else { needsProgramChange = true; materialProperties.__version = material.version; } // let program = materialProperties.currentProgram; if (needsProgramChange === true) { program = getProgram(material, scene, object); } let refreshProgram = false; let refreshMaterial = false; let refreshLights = false; const p_uniforms = program.getUniforms(), m_uniforms = materialProperties.uniforms; if (state.useProgram(program.program)) { refreshProgram = true; refreshMaterial = true; refreshLights = true; } if (material.id !== _currentMaterialId) { _currentMaterialId = material.id; refreshMaterial = true; } if (refreshProgram || _currentCamera !== camera) { p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix); if (capabilities.logarithmicDepthBuffer) { p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2)); } if (_currentCamera !== camera) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) { const uCamPos = p_uniforms.map.cameraPosition; if (uCamPos !== undefined) { uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld)); } } if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) { p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true); } if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) { p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse); } } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // otherwise textures used for skinning can take over texture units reserved for other material textures if (object.isSkinnedMesh) { p_uniforms.setOptional(_gl, object, 'bindMatrix'); p_uniforms.setOptional(_gl, object, 'bindMatrixInverse'); const skeleton = object.skeleton; if (skeleton) { if (capabilities.floatVertexTextures) { if (skeleton.boneTexture === null) skeleton.computeBoneTexture(); p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures); p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize); } else { p_uniforms.setOptional(_gl, skeleton, 'boneMatrices'); } } } if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) { materialProperties.receiveShadow = object.receiveShadow; p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow); } if (refreshMaterial) { p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure); if (materialProperties.needsLights) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate(m_uniforms, refreshLights); } // refresh uniforms common to several materials if (fog && material.fog) { materials.refreshFogUniforms(m_uniforms, fog); } materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget); WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures); } if (material.isShaderMaterial && material.uniformsNeedUpdate === true) { WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures); material.uniformsNeedUpdate = false; } if (material.isSpriteMaterial) { p_uniforms.setValue(_gl, 'center', object.center); } // common matrices p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix); p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix); p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld); return program; } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate(uniforms, value) { uniforms.ambientLightColor.needsUpdate = value; uniforms.lightProbe.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.directionalLightShadows.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.pointLightShadows.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.spotLightShadows.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } function materialNeedsLights(material) { return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true; } this.getActiveCubeFace = function () { return _currentActiveCubeFace; }; this.getActiveMipmapLevel = function () { return _currentActiveMipmapLevel; }; this.getRenderTarget = function () { return _currentRenderTarget; }; this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) { _currentRenderTarget = renderTarget; _currentActiveCubeFace = activeCubeFace; _currentActiveMipmapLevel = activeMipmapLevel; if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) { textures.setupRenderTarget(renderTarget); } let framebuffer = null; let isCube = false; let isRenderTarget3D = false; if (renderTarget) { const texture = renderTarget.texture; if (texture.isDataTexture3D || texture.isDataTexture2DArray) { isRenderTarget3D = true; } const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer; if (renderTarget.isWebGLCubeRenderTarget) { framebuffer = __webglFramebuffer[activeCubeFace]; isCube = true; } else if (renderTarget.isWebGLMultisampleRenderTarget) { framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer; } else { framebuffer = __webglFramebuffer; } _currentViewport.copy(renderTarget.viewport); _currentScissor.copy(renderTarget.scissor); _currentScissorTest = renderTarget.scissorTest; } else { _currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor(); _currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor(); _currentScissorTest = _scissorTest; } const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); if (framebufferBound && capabilities.drawBuffers) { let needsUpdate = false; if (renderTarget) { if (renderTarget.isWebGLMultipleRenderTargets) { const textures = renderTarget.texture; if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) { for (let i = 0, il = textures.length; i < il; i++) { _currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i; } _currentDrawBuffers.length = textures.length; needsUpdate = true; } } else { if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) { _currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0; _currentDrawBuffers.length = 1; needsUpdate = true; } } } else { if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) { _currentDrawBuffers[0] = _gl.BACK; _currentDrawBuffers.length = 1; needsUpdate = true; } } if (needsUpdate) { if (capabilities.isWebGL2) { _gl.drawBuffers(_currentDrawBuffers); } else { extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers); } } } state.viewport(_currentViewport); state.scissor(_currentScissor); state.setScissorTest(_currentScissorTest); if (isCube) { const textureProperties = properties.get(renderTarget.texture); _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel); } else if (isRenderTarget3D) { const textureProperties = properties.get(renderTarget.texture); const layer = activeCubeFace || 0; _gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer); } }; this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) { if (!(renderTarget && renderTarget.isWebGLRenderTarget)) { console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.'); return; } let framebuffer = properties.get(renderTarget).__webglFramebuffer; if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) { framebuffer = framebuffer[activeCubeFaceIndex]; } if (framebuffer) { state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); try { const texture = renderTarget.texture; const textureFormat = texture.format; const textureType = texture.type; if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) { console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.'); return; } const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float')); if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513) !(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox !halfFloatSupportedByExt) { console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.'); return; } if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) { // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) { _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer); } } else { console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.'); } } finally { // restore framebuffer of current render target if necessary const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null; state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); } } }; this.copyFramebufferToTexture = function (position, texture, level = 0) { const levelScale = Math.pow(2, -level); const width = Math.floor(texture.image.width * levelScale); const height = Math.floor(texture.image.height * levelScale); let glFormat = utils.convert(texture.format); if (capabilities.isWebGL2) { // Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100 if (glFormat === _gl.RGB) glFormat = _gl.RGB8; if (glFormat === _gl.RGBA) glFormat = _gl.RGBA8; } textures.setTexture2D(texture, 0); _gl.copyTexImage2D(_gl.TEXTURE_2D, level, glFormat, position.x, position.y, width, height, 0); state.unbindTexture(); }; this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) { const width = srcTexture.image.width; const height = srcTexture.image.height; const glFormat = utils.convert(dstTexture.format); const glType = utils.convert(dstTexture.type); textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei // parameters, make sure they are correct for the dstTexture _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY); _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha); _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment); if (srcTexture.isDataTexture) { _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data); } else { if (srcTexture.isCompressedTexture) { _gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data); } else { _gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image); } } // Generate mipmaps only when copying level 0 if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D); state.unbindTexture(); }; this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) { if (_this.isWebGL1Renderer) { console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.'); return; } const { width, height, data } = srcTexture.image; const glFormat = utils.convert(dstTexture.format); const glType = utils.convert(dstTexture.type); let glTarget; if (dstTexture.isDataTexture3D) { textures.setTexture3D(dstTexture, 0); glTarget = _gl.TEXTURE_3D; } else if (dstTexture.isDataTexture2DArray) { textures.setTexture2DArray(dstTexture, 0); glTarget = _gl.TEXTURE_2D_ARRAY; } else { console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.'); return; } _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY); _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha); _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment); const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH); const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT); const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS); const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS); const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES); _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, width); _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, height); _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x); _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y); _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z); _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, sourceBox.max.x - sourceBox.min.x + 1, sourceBox.max.y - sourceBox.min.y + 1, sourceBox.max.z - sourceBox.min.z + 1, glFormat, glType, data); _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen); _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight); _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels); _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows); _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0 if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget); state.unbindTexture(); }; this.initTexture = function (texture) { textures.setTexture2D(texture, 0); state.unbindTexture(); }; this.resetState = function () { _currentActiveCubeFace = 0; _currentActiveMipmapLevel = 0; _currentRenderTarget = null; state.reset(); bindingStates.reset(); }; if (typeof __THREE_DEVTOOLS__ !== 'undefined') { __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', { detail: this })); // eslint-disable-line no-undef } } class WebGL1Renderer extends WebGLRenderer {} WebGL1Renderer.prototype.isWebGL1Renderer = true; class FogExp2 { constructor(color, density = 0.00025) { this.name = ''; this.color = new Color(color); this.density = density; } clone() { return new FogExp2(this.color, this.density); } toJSON() /* meta */ { return { type: 'FogExp2', color: this.color.getHex(), density: this.density }; } } FogExp2.prototype.isFogExp2 = true; class Fog { constructor(color, near = 1, far = 1000) { this.name = ''; this.color = new Color(color); this.near = near; this.far = far; } clone() { return new Fog(this.color, this.near, this.far); } toJSON() /* meta */ { return { type: 'Fog', color: this.color.getHex(), near: this.near, far: this.far }; } } Fog.prototype.isFog = true; class Scene extends Object3D { constructor() { super(); this.type = 'Scene'; this.background = null; this.environment = null; this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer if (typeof __THREE_DEVTOOLS__ !== 'undefined') { __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', { detail: this })); // eslint-disable-line no-undef } } copy(source, recursive) { super.copy(source, recursive); if (source.background !== null) this.background = source.background.clone(); if (source.environment !== null) this.environment = source.environment.clone(); if (source.fog !== null) this.fog = source.fog.clone(); if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone(); this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate; return this; } toJSON(meta) { const data = super.toJSON(meta); if (this.background !== null) data.object.background = this.background.toJSON(meta); if (this.environment !== null) data.object.environment = this.environment.toJSON(meta); if (this.fog !== null) data.object.fog = this.fog.toJSON(); return data; } } Scene.prototype.isScene = true; class InterleavedBuffer { constructor(array, stride) { this.array = array; this.stride = stride; this.count = array !== undefined ? array.length / stride : 0; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: -1 }; this.version = 0; this.uuid = generateUUID(); } onUploadCallback() {} set needsUpdate(value) { if (value === true) this.version++; } setUsage(value) { this.usage = value; return this; } copy(source) { this.array = new source.array.constructor(source.array); this.count = source.count; this.stride = source.stride; this.usage = source.usage; return this; } copyAt(index1, attribute, index2) { index1 *= this.stride; index2 *= attribute.stride; for (let i = 0, l = this.stride; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i]; } return this; } set(value, offset = 0) { this.array.set(value, offset); return this; } clone(data) { if (data.arrayBuffers === undefined) { data.arrayBuffers = {}; } if (this.array.buffer._uuid === undefined) { this.array.buffer._uuid = generateUUID(); } if (data.arrayBuffers[this.array.buffer._uuid] === undefined) { data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer; } const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]); const ib = new this.constructor(array, this.stride); ib.setUsage(this.usage); return ib; } onUpload(callback) { this.onUploadCallback = callback; return this; } toJSON(data) { if (data.arrayBuffers === undefined) { data.arrayBuffers = {}; } // generate UUID for array buffer if necessary if (this.array.buffer._uuid === undefined) { this.array.buffer._uuid = generateUUID(); } if (data.arrayBuffers[this.array.buffer._uuid] === undefined) { data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer)); } // return { uuid: this.uuid, buffer: this.array.buffer._uuid, type: this.array.constructor.name, stride: this.stride }; } } InterleavedBuffer.prototype.isInterleavedBuffer = true; const _vector$6 = /*@__PURE__*/new Vector3(); class InterleavedBufferAttribute { constructor(interleavedBuffer, itemSize, offset, normalized) { this.name = ''; this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; this.normalized = normalized === true; } get count() { return this.data.count; } get array() { return this.data.array; } set needsUpdate(value) { this.data.needsUpdate = value; } applyMatrix4(m) { for (let i = 0, l = this.data.count; i < l; i++) { _vector$6.x = this.getX(i); _vector$6.y = this.getY(i); _vector$6.z = this.getZ(i); _vector$6.applyMatrix4(m); this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); } return this; } applyNormalMatrix(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$6.x = this.getX(i); _vector$6.y = this.getY(i); _vector$6.z = this.getZ(i); _vector$6.applyNormalMatrix(m); this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); } return this; } transformDirection(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$6.x = this.getX(i); _vector$6.y = this.getY(i); _vector$6.z = this.getZ(i); _vector$6.transformDirection(m); this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); } return this; } setX(index, x) { this.data.array[index * this.data.stride + this.offset] = x; return this; } setY(index, y) { this.data.array[index * this.data.stride + this.offset + 1] = y; return this; } setZ(index, z) { this.data.array[index * this.data.stride + this.offset + 2] = z; return this; } setW(index, w) { this.data.array[index * this.data.stride + this.offset + 3] = w; return this; } getX(index) { return this.data.array[index * this.data.stride + this.offset]; } getY(index) { return this.data.array[index * this.data.stride + this.offset + 1]; } getZ(index) { return this.data.array[index * this.data.stride + this.offset + 2]; } getW(index) { return this.data.array[index * this.data.stride + this.offset + 3]; } setXY(index, x, y) { index = index * this.data.stride + this.offset; this.data.array[index + 0] = x; this.data.array[index + 1] = y; return this; } setXYZ(index, x, y, z) { index = index * this.data.stride + this.offset; this.data.array[index + 0] = x; this.data.array[index + 1] = y; this.data.array[index + 2] = z; return this; } setXYZW(index, x, y, z, w) { index = index * this.data.stride + this.offset; this.data.array[index + 0] = x; this.data.array[index + 1] = y; this.data.array[index + 2] = z; this.data.array[index + 3] = w; return this; } clone(data) { if (data === undefined) { console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.'); const array = []; for (let i = 0; i < this.count; i++) { const index = i * this.data.stride + this.offset; for (let j = 0; j < this.itemSize; j++) { array.push(this.data.array[index + j]); } } return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized); } else { if (data.interleavedBuffers === undefined) { data.interleavedBuffers = {}; } if (data.interleavedBuffers[this.data.uuid] === undefined) { data.interleavedBuffers[this.data.uuid] = this.data.clone(data); } return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized); } } toJSON(data) { if (data === undefined) { console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.'); const array = []; for (let i = 0; i < this.count; i++) { const index = i * this.data.stride + this.offset; for (let j = 0; j < this.itemSize; j++) { array.push(this.data.array[index + j]); } } // deinterleave data and save it as an ordinary buffer attribute for now return { itemSize: this.itemSize, type: this.array.constructor.name, array: array, normalized: this.normalized }; } else { // save as true interlaved attribtue if (data.interleavedBuffers === undefined) { data.interleavedBuffers = {}; } if (data.interleavedBuffers[this.data.uuid] === undefined) { data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data); } return { isInterleavedBufferAttribute: true, itemSize: this.itemSize, data: this.data.uuid, offset: this.offset, normalized: this.normalized }; } } } InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true; /** * parameters = { * color: , * map: new THREE.Texture( ), * alphaMap: new THREE.Texture( ), * rotation: , * sizeAttenuation: * } */ class SpriteMaterial extends Material { constructor(parameters) { super(); this.type = 'SpriteMaterial'; this.color = new Color(0xffffff); this.map = null; this.alphaMap = null; this.rotation = 0; this.sizeAttenuation = true; this.transparent = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.alphaMap = source.alphaMap; this.rotation = source.rotation; this.sizeAttenuation = source.sizeAttenuation; return this; } } SpriteMaterial.prototype.isSpriteMaterial = true; let _geometry; const _intersectPoint = /*@__PURE__*/new Vector3(); const _worldScale = /*@__PURE__*/new Vector3(); const _mvPosition = /*@__PURE__*/new Vector3(); const _alignedPosition = /*@__PURE__*/new Vector2(); const _rotatedPosition = /*@__PURE__*/new Vector2(); const _viewWorldMatrix = /*@__PURE__*/new Matrix4(); const _vA = /*@__PURE__*/new Vector3(); const _vB = /*@__PURE__*/new Vector3(); const _vC = /*@__PURE__*/new Vector3(); const _uvA = /*@__PURE__*/new Vector2(); const _uvB = /*@__PURE__*/new Vector2(); const _uvC = /*@__PURE__*/new Vector2(); class Sprite extends Object3D { constructor(material) { super(); this.type = 'Sprite'; if (_geometry === undefined) { _geometry = new BufferGeometry(); const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]); const interleavedBuffer = new InterleavedBuffer(float32Array, 5); _geometry.setIndex([0, 1, 2, 0, 2, 3]); _geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false)); _geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false)); } this.geometry = _geometry; this.material = material !== undefined ? material : new SpriteMaterial(); this.center = new Vector2(0.5, 0.5); } raycast(raycaster, intersects) { if (raycaster.camera === null) { console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.'); } _worldScale.setFromMatrixScale(this.matrixWorld); _viewWorldMatrix.copy(raycaster.camera.matrixWorld); this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld); _mvPosition.setFromMatrixPosition(this.modelViewMatrix); if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) { _worldScale.multiplyScalar(-_mvPosition.z); } const rotation = this.material.rotation; let sin, cos; if (rotation !== 0) { cos = Math.cos(rotation); sin = Math.sin(rotation); } const center = this.center; transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos); transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos); transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos); _uvA.set(0, 0); _uvB.set(1, 0); _uvC.set(1, 1); // check first triangle let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint); if (intersect === null) { // check second triangle transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos); _uvB.set(0, 1); intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint); if (intersect === null) { return; } } const distance = raycaster.ray.origin.distanceTo(_intersectPoint); if (distance < raycaster.near || distance > raycaster.far) return; intersects.push({ distance: distance, point: _intersectPoint.clone(), uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()), face: null, object: this }); } copy(source) { super.copy(source); if (source.center !== undefined) this.center.copy(source.center); this.material = source.material; return this; } } Sprite.prototype.isSprite = true; function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) { // compute position in camera space _alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero if (sin !== undefined) { _rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y; _rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y; } else { _rotatedPosition.copy(_alignedPosition); } vertexPosition.copy(mvPosition); vertexPosition.x += _rotatedPosition.x; vertexPosition.y += _rotatedPosition.y; // transform to world space vertexPosition.applyMatrix4(_viewWorldMatrix); } const _v1$2 = /*@__PURE__*/new Vector3(); const _v2$1 = /*@__PURE__*/new Vector3(); class LOD extends Object3D { constructor() { super(); this._currentLevel = 0; this.type = 'LOD'; Object.defineProperties(this, { levels: { enumerable: true, value: [] }, isLOD: { value: true } }); this.autoUpdate = true; } copy(source) { super.copy(source, false); const levels = source.levels; for (let i = 0, l = levels.length; i < l; i++) { const level = levels[i]; this.addLevel(level.object.clone(), level.distance); } this.autoUpdate = source.autoUpdate; return this; } addLevel(object, distance = 0) { distance = Math.abs(distance); const levels = this.levels; let l; for (l = 0; l < levels.length; l++) { if (distance < levels[l].distance) { break; } } levels.splice(l, 0, { distance: distance, object: object }); this.add(object); return this; } getCurrentLevel() { return this._currentLevel; } getObjectForDistance(distance) { const levels = this.levels; if (levels.length > 0) { let i, l; for (i = 1, l = levels.length; i < l; i++) { if (distance < levels[i].distance) { break; } } return levels[i - 1].object; } return null; } raycast(raycaster, intersects) { const levels = this.levels; if (levels.length > 0) { _v1$2.setFromMatrixPosition(this.matrixWorld); const distance = raycaster.ray.origin.distanceTo(_v1$2); this.getObjectForDistance(distance).raycast(raycaster, intersects); } } update(camera) { const levels = this.levels; if (levels.length > 1) { _v1$2.setFromMatrixPosition(camera.matrixWorld); _v2$1.setFromMatrixPosition(this.matrixWorld); const distance = _v1$2.distanceTo(_v2$1) / camera.zoom; levels[0].object.visible = true; let i, l; for (i = 1, l = levels.length; i < l; i++) { if (distance >= levels[i].distance) { levels[i - 1].object.visible = false; levels[i].object.visible = true; } else { break; } } this._currentLevel = i - 1; for (; i < l; i++) { levels[i].object.visible = false; } } } toJSON(meta) { const data = super.toJSON(meta); if (this.autoUpdate === false) data.object.autoUpdate = false; data.object.levels = []; const levels = this.levels; for (let i = 0, l = levels.length; i < l; i++) { const level = levels[i]; data.object.levels.push({ object: level.object.uuid, distance: level.distance }); } return data; } } const _basePosition = /*@__PURE__*/new Vector3(); const _skinIndex = /*@__PURE__*/new Vector4(); const _skinWeight = /*@__PURE__*/new Vector4(); const _vector$5 = /*@__PURE__*/new Vector3(); const _matrix = /*@__PURE__*/new Matrix4(); class SkinnedMesh extends Mesh { constructor(geometry, material) { super(geometry, material); this.type = 'SkinnedMesh'; this.bindMode = 'attached'; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4(); } copy(source) { super.copy(source); this.bindMode = source.bindMode; this.bindMatrix.copy(source.bindMatrix); this.bindMatrixInverse.copy(source.bindMatrixInverse); this.skeleton = source.skeleton; return this; } bind(skeleton, bindMatrix) { this.skeleton = skeleton; if (bindMatrix === undefined) { this.updateMatrixWorld(true); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy(bindMatrix); this.bindMatrixInverse.copy(bindMatrix).invert(); } pose() { this.skeleton.pose(); } normalizeSkinWeights() { const vector = new Vector4(); const skinWeight = this.geometry.attributes.skinWeight; for (let i = 0, l = skinWeight.count; i < l; i++) { vector.x = skinWeight.getX(i); vector.y = skinWeight.getY(i); vector.z = skinWeight.getZ(i); vector.w = skinWeight.getW(i); const scale = 1.0 / vector.manhattanLength(); if (scale !== Infinity) { vector.multiplyScalar(scale); } else { vector.set(1, 0, 0, 0); // do something reasonable } skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w); } } updateMatrixWorld(force) { super.updateMatrixWorld(force); if (this.bindMode === 'attached') { this.bindMatrixInverse.copy(this.matrixWorld).invert(); } else if (this.bindMode === 'detached') { this.bindMatrixInverse.copy(this.bindMatrix).invert(); } else { console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode); } } boneTransform(index, target) { const skeleton = this.skeleton; const geometry = this.geometry; _skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index); _skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index); _basePosition.fromBufferAttribute(geometry.attributes.position, index).applyMatrix4(this.bindMatrix); target.set(0, 0, 0); for (let i = 0; i < 4; i++) { const weight = _skinWeight.getComponent(i); if (weight !== 0) { const boneIndex = _skinIndex.getComponent(i); _matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]); target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight); } } return target.applyMatrix4(this.bindMatrixInverse); } } SkinnedMesh.prototype.isSkinnedMesh = true; class Bone extends Object3D { constructor() { super(); this.type = 'Bone'; } } Bone.prototype.isBone = true; class DataTexture extends Texture { constructor(data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) { super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); this.image = { data: data || null, width: width || 1, height: height || 1 }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.needsUpdate = true; } } DataTexture.prototype.isDataTexture = true; const _offsetMatrix = /*@__PURE__*/new Matrix4(); const _identityMatrix = /*@__PURE__*/new Matrix4(); class Skeleton { constructor(bones = [], boneInverses = []) { this.uuid = generateUUID(); this.bones = bones.slice(0); this.boneInverses = boneInverses; this.boneMatrices = null; this.boneTexture = null; this.boneTextureSize = 0; this.frame = -1; this.init(); } init() { const bones = this.bones; const boneInverses = this.boneInverses; this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary if (boneInverses.length === 0) { this.calculateInverses(); } else { // handle special case if (bones.length !== boneInverses.length) { console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.'); this.boneInverses = []; for (let i = 0, il = this.bones.length; i < il; i++) { this.boneInverses.push(new Matrix4()); } } } } calculateInverses() { this.boneInverses.length = 0; for (let i = 0, il = this.bones.length; i < il; i++) { const inverse = new Matrix4(); if (this.bones[i]) { inverse.copy(this.bones[i].matrixWorld).invert(); } this.boneInverses.push(inverse); } } pose() { // recover the bind-time world matrices for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i]; if (bone) { bone.matrixWorld.copy(this.boneInverses[i]).invert(); } } // compute the local matrices, positions, rotations and scales for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i]; if (bone) { if (bone.parent && bone.parent.isBone) { bone.matrix.copy(bone.parent.matrixWorld).invert(); bone.matrix.multiply(bone.matrixWorld); } else { bone.matrix.copy(bone.matrixWorld); } bone.matrix.decompose(bone.position, bone.quaternion, bone.scale); } } } update() { const bones = this.bones; const boneInverses = this.boneInverses; const boneMatrices = this.boneMatrices; const boneTexture = this.boneTexture; // flatten bone matrices to array for (let i = 0, il = bones.length; i < il; i++) { // compute the offset between the current and the original transform const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix; _offsetMatrix.multiplyMatrices(matrix, boneInverses[i]); _offsetMatrix.toArray(boneMatrices, i * 16); } if (boneTexture !== null) { boneTexture.needsUpdate = true; } } clone() { return new Skeleton(this.bones, this.boneInverses); } computeBoneTexture() { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix size = ceilPowerOfTwo(size); size = Math.max(size, 4); const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel boneMatrices.set(this.boneMatrices); // copy current values const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType); this.boneMatrices = boneMatrices; this.boneTexture = boneTexture; this.boneTextureSize = size; return this; } getBoneByName(name) { for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i]; if (bone.name === name) { return bone; } } return undefined; } dispose() { if (this.boneTexture !== null) { this.boneTexture.dispose(); this.boneTexture = null; } } fromJSON(json, bones) { this.uuid = json.uuid; for (let i = 0, l = json.bones.length; i < l; i++) { const uuid = json.bones[i]; let bone = bones[uuid]; if (bone === undefined) { console.warn('THREE.Skeleton: No bone found with UUID:', uuid); bone = new Bone(); } this.bones.push(bone); this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i])); } this.init(); return this; } toJSON() { const data = { metadata: { version: 4.5, type: 'Skeleton', generator: 'Skeleton.toJSON' }, bones: [], boneInverses: [] }; data.uuid = this.uuid; const bones = this.bones; const boneInverses = this.boneInverses; for (let i = 0, l = bones.length; i < l; i++) { const bone = bones[i]; data.bones.push(bone.uuid); const boneInverse = boneInverses[i]; data.boneInverses.push(boneInverse.toArray()); } return data; } } const _instanceLocalMatrix = /*@__PURE__*/new Matrix4(); const _instanceWorldMatrix = /*@__PURE__*/new Matrix4(); const _instanceIntersects = []; const _mesh = /*@__PURE__*/new Mesh(); class InstancedMesh extends Mesh { constructor(geometry, material, count) { super(geometry, material); this.instanceMatrix = new BufferAttribute(new Float32Array(count * 16), 16); this.instanceColor = null; this.count = count; this.frustumCulled = false; } copy(source) { super.copy(source); this.instanceMatrix.copy(source.instanceMatrix); if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone(); this.count = source.count; return this; } getColorAt(index, color) { color.fromArray(this.instanceColor.array, index * 3); } getMatrixAt(index, matrix) { matrix.fromArray(this.instanceMatrix.array, index * 16); } raycast(raycaster, intersects) { const matrixWorld = this.matrixWorld; const raycastTimes = this.count; _mesh.geometry = this.geometry; _mesh.material = this.material; if (_mesh.material === undefined) return; for (let instanceId = 0; instanceId < raycastTimes; instanceId++) { // calculate the world matrix for each instance this.getMatrixAt(instanceId, _instanceLocalMatrix); _instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance _mesh.matrixWorld = _instanceWorldMatrix; _mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast for (let i = 0, l = _instanceIntersects.length; i < l; i++) { const intersect = _instanceIntersects[i]; intersect.instanceId = instanceId; intersect.object = this; intersects.push(intersect); } _instanceIntersects.length = 0; } } setColorAt(index, color) { if (this.instanceColor === null) { this.instanceColor = new BufferAttribute(new Float32Array(this.count * 3), 3); } color.toArray(this.instanceColor.array, index * 3); } setMatrixAt(index, matrix) { matrix.toArray(this.instanceMatrix.array, index * 16); } updateMorphTargets() {} dispose() { this.dispatchEvent({ type: 'dispose' }); } } InstancedMesh.prototype.isInstancedMesh = true; /** * parameters = { * color: , * opacity: , * * linewidth: , * linecap: "round", * linejoin: "round" * } */ class LineBasicMaterial extends Material { constructor(parameters) { super(); this.type = 'LineBasicMaterial'; this.color = new Color(0xffffff); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.morphTargets = false; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; this.morphTargets = source.morphTargets; return this; } } LineBasicMaterial.prototype.isLineBasicMaterial = true; const _start$1 = /*@__PURE__*/new Vector3(); const _end$1 = /*@__PURE__*/new Vector3(); const _inverseMatrix$1 = /*@__PURE__*/new Matrix4(); const _ray$1 = /*@__PURE__*/new Ray(); const _sphere$1 = /*@__PURE__*/new Sphere(); class Line extends Object3D { constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) { super(); this.type = 'Line'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy(source) { super.copy(source); this.material = source.material; this.geometry = source.geometry; return this; } computeLineDistances() { const geometry = this.geometry; if (geometry.isBufferGeometry) { // we assume non-indexed geometry if (geometry.index === null) { const positionAttribute = geometry.attributes.position; const lineDistances = [0]; for (let i = 1, l = positionAttribute.count; i < l; i++) { _start$1.fromBufferAttribute(positionAttribute, i - 1); _end$1.fromBufferAttribute(positionAttribute, i); lineDistances[i] = lineDistances[i - 1]; lineDistances[i] += _start$1.distanceTo(_end$1); } geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1)); } else { console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.'); } } else if (geometry.isGeometry) { console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); } return this; } raycast(raycaster, intersects) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Line.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere$1.copy(geometry.boundingSphere); _sphere$1.applyMatrix4(matrixWorld); _sphere$1.radius += threshold; if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; // _inverseMatrix$1.copy(matrixWorld).invert(); _ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1); const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3); const localThresholdSq = localThreshold * localThreshold; const vStart = new Vector3(); const vEnd = new Vector3(); const interSegment = new Vector3(); const interRay = new Vector3(); const step = this.isLineSegments ? 2 : 1; if (geometry.isBufferGeometry) { const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if (index !== null) { const start = Math.max(0, drawRange.start); const end = Math.min(index.count, drawRange.start + drawRange.count); for (let i = start, l = end - 1; i < l; i += step) { const a = index.getX(i); const b = index.getX(i + 1); vStart.fromBufferAttribute(positionAttribute, a); vEnd.fromBufferAttribute(positionAttribute, b); const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment); if (distSq > localThresholdSq) continue; interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo(interRay); if (distance < raycaster.near || distance > raycaster.far) continue; intersects.push({ distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4(this.matrixWorld), index: i, face: null, faceIndex: null, object: this }); } } else { const start = Math.max(0, drawRange.start); const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); for (let i = start, l = end - 1; i < l; i += step) { vStart.fromBufferAttribute(positionAttribute, i); vEnd.fromBufferAttribute(positionAttribute, i + 1); const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment); if (distSq > localThresholdSq) continue; interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo(interRay); if (distance < raycaster.near || distance > raycaster.far) continue; intersects.push({ distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4(this.matrixWorld), index: i, face: null, faceIndex: null, object: this }); } } } else if (geometry.isGeometry) { console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); } } updateMorphTargets() { const geometry = this.geometry; if (geometry.isBufferGeometry) { const morphAttributes = geometry.morphAttributes; const keys = Object.keys(morphAttributes); if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]]; if (morphAttribute !== undefined) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m); this.morphTargetInfluences.push(0); this.morphTargetDictionary[name] = m; } } } } else { const morphTargets = geometry.morphTargets; if (morphTargets !== undefined && morphTargets.length > 0) { console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.'); } } } } Line.prototype.isLine = true; const _start = /*@__PURE__*/new Vector3(); const _end = /*@__PURE__*/new Vector3(); class LineSegments extends Line { constructor(geometry, material) { super(geometry, material); this.type = 'LineSegments'; } computeLineDistances() { const geometry = this.geometry; if (geometry.isBufferGeometry) { // we assume non-indexed geometry if (geometry.index === null) { const positionAttribute = geometry.attributes.position; const lineDistances = []; for (let i = 0, l = positionAttribute.count; i < l; i += 2) { _start.fromBufferAttribute(positionAttribute, i); _end.fromBufferAttribute(positionAttribute, i + 1); lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1]; lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end); } geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1)); } else { console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.'); } } else if (geometry.isGeometry) { console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); } return this; } } LineSegments.prototype.isLineSegments = true; class LineLoop extends Line { constructor(geometry, material) { super(geometry, material); this.type = 'LineLoop'; } } LineLoop.prototype.isLineLoop = true; /** * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * alphaMap: new THREE.Texture( ), * * size: , * sizeAttenuation: * * morphTargets: * } */ class PointsMaterial extends Material { constructor(parameters) { super(); this.type = 'PointsMaterial'; this.color = new Color(0xffffff); this.map = null; this.alphaMap = null; this.size = 1; this.sizeAttenuation = true; this.morphTargets = false; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.alphaMap = source.alphaMap; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; this.morphTargets = source.morphTargets; return this; } } PointsMaterial.prototype.isPointsMaterial = true; const _inverseMatrix = /*@__PURE__*/new Matrix4(); const _ray = /*@__PURE__*/new Ray(); const _sphere = /*@__PURE__*/new Sphere(); const _position$2 = /*@__PURE__*/new Vector3(); class Points extends Object3D { constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) { super(); this.type = 'Points'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy(source) { super.copy(source); this.material = source.material; this.geometry = source.geometry; return this; } raycast(raycaster, intersects) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Points.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere.copy(geometry.boundingSphere); _sphere.applyMatrix4(matrixWorld); _sphere.radius += threshold; if (raycaster.ray.intersectsSphere(_sphere) === false) return; // _inverseMatrix.copy(matrixWorld).invert(); _ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix); const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3); const localThresholdSq = localThreshold * localThreshold; if (geometry.isBufferGeometry) { const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if (index !== null) { const start = Math.max(0, drawRange.start); const end = Math.min(index.count, drawRange.start + drawRange.count); for (let i = start, il = end; i < il; i++) { const a = index.getX(i); _position$2.fromBufferAttribute(positionAttribute, a); testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this); } } else { const start = Math.max(0, drawRange.start); const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); for (let i = start, l = end; i < l; i++) { _position$2.fromBufferAttribute(positionAttribute, i); testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this); } } } else { console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); } } updateMorphTargets() { const geometry = this.geometry; if (geometry.isBufferGeometry) { const morphAttributes = geometry.morphAttributes; const keys = Object.keys(morphAttributes); if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]]; if (morphAttribute !== undefined) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m); this.morphTargetInfluences.push(0); this.morphTargetDictionary[name] = m; } } } } else { const morphTargets = geometry.morphTargets; if (morphTargets !== undefined && morphTargets.length > 0) { console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.'); } } } } Points.prototype.isPoints = true; function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) { const rayPointDistanceSq = _ray.distanceSqToPoint(point); if (rayPointDistanceSq < localThresholdSq) { const intersectPoint = new Vector3(); _ray.closestPointToPoint(point, intersectPoint); intersectPoint.applyMatrix4(matrixWorld); const distance = raycaster.ray.origin.distanceTo(intersectPoint); if (distance < raycaster.near || distance > raycaster.far) return; intersects.push({ distance: distance, distanceToRay: Math.sqrt(rayPointDistanceSq), point: intersectPoint, index: index, face: null, object: object }); } } class VideoTexture extends Texture { constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); this.format = format !== undefined ? format : RGBFormat; this.minFilter = minFilter !== undefined ? minFilter : LinearFilter; this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.generateMipmaps = false; const scope = this; function updateVideo() { scope.needsUpdate = true; video.requestVideoFrameCallback(updateVideo); } if ('requestVideoFrameCallback' in video) { video.requestVideoFrameCallback(updateVideo); } } clone() { return new this.constructor(this.image).copy(this); } update() { const video = this.image; const hasVideoFrameCallback = ('requestVideoFrameCallback' in video); if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) { this.needsUpdate = true; } } } VideoTexture.prototype.isVideoTexture = true; class CompressedTexture extends Texture { constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) { super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); this.image = { width: width, height: height }; this.mipmaps = mipmaps; // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false; // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false; } } CompressedTexture.prototype.isCompressedTexture = true; class CanvasTexture extends Texture { constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); this.needsUpdate = true; } } CanvasTexture.prototype.isCanvasTexture = true; class DepthTexture extends Texture { constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) { format = format !== undefined ? format : DepthFormat; if (format !== DepthFormat && format !== DepthStencilFormat) { throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat'); } if (type === undefined && format === DepthFormat) type = UnsignedShortType; if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type; super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); this.image = { width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.flipY = false; this.generateMipmaps = false; } } DepthTexture.prototype.isDepthTexture = true; class CircleGeometry extends BufferGeometry { constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) { super(); this.type = 'CircleGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; segments = Math.max(3, segments); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const vertex = new Vector3(); const uv = new Vector2(); // center point vertices.push(0, 0, 0); normals.push(0, 0, 1); uvs.push(0.5, 0.5); for (let s = 0, i = 3; s <= segments; s++, i += 3) { const segment = thetaStart + s / segments * thetaLength; // vertex vertex.x = radius * Math.cos(segment); vertex.y = radius * Math.sin(segment); vertices.push(vertex.x, vertex.y, vertex.z); // normal normals.push(0, 0, 1); // uvs uv.x = (vertices[i] / radius + 1) / 2; uv.y = (vertices[i + 1] / radius + 1) / 2; uvs.push(uv.x, uv.y); } // indices for (let i = 1; i <= segments; i++) { indices.push(i, i + 1, 0); } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); } } class CylinderGeometry extends BufferGeometry { constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { super(); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; const scope = this; radialSegments = Math.floor(radialSegments); heightSegments = Math.floor(heightSegments); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let index = 0; const indexArray = []; const halfHeight = height / 2; let groupStart = 0; // generate geometry generateTorso(); if (openEnded === false) { if (radiusTop > 0) generateCap(true); if (radiusBottom > 0) generateCap(false); } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); function generateTorso() { const normal = new Vector3(); const vertex = new Vector3(); let groupCount = 0; // this will be used to calculate the normal const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs for (let y = 0; y <= heightSegments; y++) { const indexRow = []; const v = y / heightSegments; // calculate the radius of the current row const radius = v * (radiusBottom - radiusTop) + radiusTop; for (let x = 0; x <= radialSegments; x++) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const sinTheta = Math.sin(theta); const cosTheta = Math.cos(theta); // vertex vertex.x = radius * sinTheta; vertex.y = -v * height + halfHeight; vertex.z = radius * cosTheta; vertices.push(vertex.x, vertex.y, vertex.z); // normal normal.set(sinTheta, slope, cosTheta).normalize(); normals.push(normal.x, normal.y, normal.z); // uv uvs.push(u, 1 - v); // save index of vertex in respective row indexRow.push(index++); } // now save vertices of the row in our index array indexArray.push(indexRow); } // generate indices for (let x = 0; x < radialSegments; x++) { for (let y = 0; y < heightSegments; y++) { // we use the index array to access the correct indices const a = indexArray[y][x]; const b = indexArray[y + 1][x]; const c = indexArray[y + 1][x + 1]; const d = indexArray[y][x + 1]; // faces indices.push(a, b, d); indices.push(b, c, d); // update group counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups groupStart += groupCount; } function generateCap(top) { // save the index of the first center vertex const centerIndexStart = index; const uv = new Vector2(); const vertex = new Vector3(); let groupCount = 0; const radius = top === true ? radiusTop : radiusBottom; const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for (let x = 1; x <= radialSegments; x++) { // vertex vertices.push(0, halfHeight * sign, 0); // normal normals.push(0, sign, 0); // uv uvs.push(0.5, 0.5); // increase index index++; } // save the index of the last center vertex const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs for (let x = 0; x <= radialSegments; x++) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const cosTheta = Math.cos(theta); const sinTheta = Math.sin(theta); // vertex vertex.x = radius * sinTheta; vertex.y = halfHeight * sign; vertex.z = radius * cosTheta; vertices.push(vertex.x, vertex.y, vertex.z); // normal normals.push(0, sign, 0); // uv uv.x = cosTheta * 0.5 + 0.5; uv.y = sinTheta * 0.5 * sign + 0.5; uvs.push(uv.x, uv.y); // increase index index++; } // generate indices for (let x = 0; x < radialSegments; x++) { const c = centerIndexStart + x; const i = centerIndexEnd + x; if (top === true) { // face top indices.push(i, i + 1, c); } else { // face bottom indices.push(i + 1, i, c); } groupCount += 3; } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups groupStart += groupCount; } } } class ConeGeometry extends CylinderGeometry { constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength); this.type = 'ConeGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } } class PolyhedronGeometry extends BufferGeometry { constructor(vertices, indices, radius = 1, detail = 0) { super(); this.type = 'PolyhedronGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; // default buffer data const vertexBuffer = []; const uvBuffer = []; // the subdivision creates the vertex buffer data subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius applyRadius(radius); // finally, create the uv data generateUVs(); // build non-indexed geometry this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3)); this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3)); this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2)); if (detail === 0) { this.computeVertexNormals(); // flat normals } else { this.normalizeNormals(); // smooth normals } // helper functions function subdivide(detail) { const a = new Vector3(); const b = new Vector3(); const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value for (let i = 0; i < indices.length; i += 3) { // get the vertices of the face getVertexByIndex(indices[i + 0], a); getVertexByIndex(indices[i + 1], b); getVertexByIndex(indices[i + 2], c); // perform subdivision subdivideFace(a, b, c, detail); } } function subdivideFace(a, b, c, detail) { const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision const v = []; // construct all of the vertices for this subdivision for (let i = 0; i <= cols; i++) { v[i] = []; const aj = a.clone().lerp(c, i / cols); const bj = b.clone().lerp(c, i / cols); const rows = cols - i; for (let j = 0; j <= rows; j++) { if (j === 0 && i === cols) { v[i][j] = aj; } else { v[i][j] = aj.clone().lerp(bj, j / rows); } } } // construct all of the faces for (let i = 0; i < cols; i++) { for (let j = 0; j < 2 * (cols - i) - 1; j++) { const k = Math.floor(j / 2); if (j % 2 === 0) { pushVertex(v[i][k + 1]); pushVertex(v[i + 1][k]); pushVertex(v[i][k]); } else { pushVertex(v[i][k + 1]); pushVertex(v[i + 1][k + 1]); pushVertex(v[i + 1][k]); } } } } function applyRadius(radius) { const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex for (let i = 0; i < vertexBuffer.length; i += 3) { vertex.x = vertexBuffer[i + 0]; vertex.y = vertexBuffer[i + 1]; vertex.z = vertexBuffer[i + 2]; vertex.normalize().multiplyScalar(radius); vertexBuffer[i + 0] = vertex.x; vertexBuffer[i + 1] = vertex.y; vertexBuffer[i + 2] = vertex.z; } } function generateUVs() { const vertex = new Vector3(); for (let i = 0; i < vertexBuffer.length; i += 3) { vertex.x = vertexBuffer[i + 0]; vertex.y = vertexBuffer[i + 1]; vertex.z = vertexBuffer[i + 2]; const u = azimuth(vertex) / 2 / Math.PI + 0.5; const v = inclination(vertex) / Math.PI + 0.5; uvBuffer.push(u, 1 - v); } correctUVs(); correctSeam(); } function correctSeam() { // handle case when face straddles the seam, see #3269 for (let i = 0; i < uvBuffer.length; i += 6) { // uv data of a single face const x0 = uvBuffer[i + 0]; const x1 = uvBuffer[i + 2]; const x2 = uvBuffer[i + 4]; const max = Math.max(x0, x1, x2); const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary if (max > 0.9 && min < 0.1) { if (x0 < 0.2) uvBuffer[i + 0] += 1; if (x1 < 0.2) uvBuffer[i + 2] += 1; if (x2 < 0.2) uvBuffer[i + 4] += 1; } } } function pushVertex(vertex) { vertexBuffer.push(vertex.x, vertex.y, vertex.z); } function getVertexByIndex(index, vertex) { const stride = index * 3; vertex.x = vertices[stride + 0]; vertex.y = vertices[stride + 1]; vertex.z = vertices[stride + 2]; } function correctUVs() { const a = new Vector3(); const b = new Vector3(); const c = new Vector3(); const centroid = new Vector3(); const uvA = new Vector2(); const uvB = new Vector2(); const uvC = new Vector2(); for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) { a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]); b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]); c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]); uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]); uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]); uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]); centroid.copy(a).add(b).add(c).divideScalar(3); const azi = azimuth(centroid); correctUV(uvA, j + 0, a, azi); correctUV(uvB, j + 2, b, azi); correctUV(uvC, j + 4, c, azi); } } function correctUV(uv, stride, vector, azimuth) { if (azimuth < 0 && uv.x === 1) { uvBuffer[stride] = uv.x - 1; } if (vector.x === 0 && vector.z === 0) { uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5; } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth(vector) { return Math.atan2(vector.z, -vector.x); } // Angle above the XZ plane. function inclination(vector) { return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z)); } } } class DodecahedronGeometry extends PolyhedronGeometry { constructor(radius = 1, detail = 0) { const t = (1 + Math.sqrt(5)) / 2; const r = 1 / t; const vertices = [// (±1, ±1, ±1) -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0) -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ) -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r]; const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9]; super(vertices, indices, radius, detail); this.type = 'DodecahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } } const _v0 = new Vector3(); const _v1$1 = new Vector3(); const _normal = new Vector3(); const _triangle = new Triangle(); class EdgesGeometry extends BufferGeometry { constructor(geometry, thresholdAngle) { super(); this.type = 'EdgesGeometry'; this.parameters = { thresholdAngle: thresholdAngle }; thresholdAngle = thresholdAngle !== undefined ? thresholdAngle : 1; if (geometry.isGeometry === true) { console.error('THREE.EdgesGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); return; } const precisionPoints = 4; const precision = Math.pow(10, precisionPoints); const thresholdDot = Math.cos(DEG2RAD * thresholdAngle); const indexAttr = geometry.getIndex(); const positionAttr = geometry.getAttribute('position'); const indexCount = indexAttr ? indexAttr.count : positionAttr.count; const indexArr = [0, 0, 0]; const vertKeys = ['a', 'b', 'c']; const hashes = new Array(3); const edgeData = {}; const vertices = []; for (let i = 0; i < indexCount; i += 3) { if (indexAttr) { indexArr[0] = indexAttr.getX(i); indexArr[1] = indexAttr.getX(i + 1); indexArr[2] = indexAttr.getX(i + 2); } else { indexArr[0] = i; indexArr[1] = i + 1; indexArr[2] = i + 2; } const { a, b, c } = _triangle; a.fromBufferAttribute(positionAttr, indexArr[0]); b.fromBufferAttribute(positionAttr, indexArr[1]); c.fromBufferAttribute(positionAttr, indexArr[2]); _triangle.getNormal(_normal); // create hashes for the edge from the vertices hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`; hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`; hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) { continue; } // iterate over every edge for (let j = 0; j < 3; j++) { // get the first and next vertex making up the edge const jNext = (j + 1) % 3; const vecHash0 = hashes[j]; const vecHash1 = hashes[jNext]; const v0 = _triangle[vertKeys[j]]; const v1 = _triangle[vertKeys[jNext]]; const hash = `${vecHash0}_${vecHash1}`; const reverseHash = `${vecHash1}_${vecHash0}`; if (reverseHash in edgeData && edgeData[reverseHash]) { // if we found a sibling edge add it into the vertex array if // it meets the angle threshold and delete the edge from the map. if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) { vertices.push(v0.x, v0.y, v0.z); vertices.push(v1.x, v1.y, v1.z); } edgeData[reverseHash] = null; } else if (!(hash in edgeData)) { // if we've already got an edge here then skip adding a new one edgeData[hash] = { index0: indexArr[j], index1: indexArr[jNext], normal: _normal.clone() }; } } } // iterate over all remaining, unmatched edges and add them to the vertex array for (const key in edgeData) { if (edgeData[key]) { const { index0, index1 } = edgeData[key]; _v0.fromBufferAttribute(positionAttr, index0); _v1$1.fromBufferAttribute(positionAttr, index1); vertices.push(_v0.x, _v0.y, _v0.z); vertices.push(_v1$1.x, _v1$1.y, _v1$1.z); } } this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); } } /** * Port from https://github.com/mapbox/earcut (v2.2.2) */ const Earcut = { triangulate: function (data, holeIndices, dim) { dim = dim || 2; const hasHoles = holeIndices && holeIndices.length; const outerLen = hasHoles ? holeIndices[0] * dim : data.length; let outerNode = linkedList(data, 0, outerLen, dim, true); const triangles = []; if (!outerNode || outerNode.next === outerNode.prev) return triangles; let minX, minY, maxX, maxY, x, y, invSize; if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if (data.length > 80 * dim) { minX = maxX = data[0]; minY = maxY = data[1]; for (let i = dim; i < outerLen; i += dim) { x = data[i]; y = data[i + 1]; if (x < minX) minX = x; if (y < minY) minY = y; if (x > maxX) maxX = x; if (y > maxY) maxY = y; } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max(maxX - minX, maxY - minY); invSize = invSize !== 0 ? 1 / invSize : 0; } earcutLinked(outerNode, triangles, dim, minX, minY, invSize); return triangles; } }; // create a circular doubly linked list from polygon points in the specified winding order function linkedList(data, start, end, dim, clockwise) { let i, last; if (clockwise === signedArea(data, start, end, dim) > 0) { for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last); } else { for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last); } if (last && equals(last, last.next)) { removeNode(last); last = last.next; } return last; } // eliminate colinear or duplicate points function filterPoints(start, end) { if (!start) return start; if (!end) end = start; let p = start, again; do { again = false; if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { removeNode(p); p = end = p.prev; if (p === p.next) break; again = true; } else { p = p.next; } } while (again || p !== end); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { if (!ear) return; // interlink polygon nodes in z-order if (!pass && invSize) indexCurve(ear, minX, minY, invSize); let stop = ear, prev, next; // iterate through ears, slicing them one by one while (ear.prev !== ear.next) { prev = ear.prev; next = ear.next; if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { // cut off the triangle triangles.push(prev.i / dim); triangles.push(ear.i / dim); triangles.push(next.i / dim); removeNode(ear); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if (ear === stop) { // try filtering points and slicing again if (!pass) { earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally } else if (pass === 1) { ear = cureLocalIntersections(filterPoints(ear), triangles, dim); earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two } else if (pass === 2) { splitEarcut(ear, triangles, dim, minX, minY, invSize); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar(ear) { const a = ear.prev, b = ear, c = ear.next; if (area(a, b, c) >= 0) return false; // reflex, can't be an ear // now make sure we don't have other points inside the potential ear let p = ear.next.next; while (p !== ear.prev) { if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.next; } return true; } function isEarHashed(ear, minX, minY, invSize) { const a = ear.prev, b = ear, c = ear.next; if (area(a, b, c) >= 0) return false; // reflex, can't be an ear // triangle bbox; min & max are calculated like this for speed const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x, minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y, maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x, maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox; const minZ = zOrder(minTX, minTY, minX, minY, invSize), maxZ = zOrder(maxTX, maxTY, minX, minY, invSize); let p = ear.prevZ, n = ear.nextZ; // look for points inside the triangle in both directions while (p && p.z >= minZ && n && n.z <= maxZ) { if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; n = n.nextZ; } // look for remaining points in decreasing z-order while (p && p.z >= minZ) { if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; } // look for remaining points in increasing z-order while (n && n.z <= maxZ) { if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections(start, triangles, dim) { let p = start; do { const a = p.prev, b = p.next.next; if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { triangles.push(a.i / dim); triangles.push(p.i / dim); triangles.push(b.i / dim); // remove two nodes involved removeNode(p); removeNode(p.next); p = start = b; } p = p.next; } while (p !== start); return filterPoints(p); } // try splitting polygon into two and triangulate them independently function splitEarcut(start, triangles, dim, minX, minY, invSize) { // look for a valid diagonal that divides the polygon into two let a = start; do { let b = a.next.next; while (b !== a.prev) { if (a.i !== b.i && isValidDiagonal(a, b)) { // split the polygon in two by the diagonal let c = splitPolygon(a, b); // filter colinear points around the cuts a = filterPoints(a, a.next); c = filterPoints(c, c.next); // run earcut on each half earcutLinked(a, triangles, dim, minX, minY, invSize); earcutLinked(c, triangles, dim, minX, minY, invSize); return; } b = b.next; } a = a.next; } while (a !== start); } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles(data, holeIndices, outerNode, dim) { const queue = []; let i, len, start, end, list; for (i = 0, len = holeIndices.length; i < len; i++) { start = holeIndices[i] * dim; end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; list = linkedList(data, start, end, dim, false); if (list === list.next) list.steiner = true; queue.push(getLeftmost(list)); } queue.sort(compareX); // process holes from left to right for (i = 0; i < queue.length; i++) { eliminateHole(queue[i], outerNode); outerNode = filterPoints(outerNode, outerNode.next); } return outerNode; } function compareX(a, b) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and and link it function eliminateHole(hole, outerNode) { outerNode = findHoleBridge(hole, outerNode); if (outerNode) { const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts filterPoints(outerNode, outerNode.next); filterPoints(b, b.next); } } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge(hole, outerNode) { let p = outerNode; const hx = hole.x; const hy = hole.y; let qx = -Infinity, m; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); if (x <= hx && x > qx) { qx = x; if (x === hx) { if (hy === p.y) return p; if (hy === p.next.y) return p.next; } m = p.x < p.next.x ? p : p.next; } } p = p.next; } while (p !== outerNode); if (!m) return null; if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point const stop = m, mx = m.x, my = m.y; let tanMin = Infinity, tan; p = m; do { if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { tan = Math.abs(hy - p.y) / (hx - p.x); // tangential if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) { m = p; tanMin = tan; } } p = p.next; } while (p !== stop); return m; } // whether sector in vertex m contains sector in vertex p in the same coordinates function sectorContainsSector(m, p) { return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; } // interlink polygon nodes in z-order function indexCurve(start, minX, minY, invSize) { let p = start; do { if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while (p !== start); p.prevZ.nextZ = null; p.prevZ = null; sortLinked(p); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked(list) { let i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while (p) { numMerges++; q = p; pSize = 0; for (i = 0; i < inSize; i++) { pSize++; q = q.nextZ; if (!q) break; } qSize = inSize; while (pSize > 0 || qSize > 0 && q) { if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { e = p; p = p.nextZ; pSize--; } else { e = q; q = q.nextZ; qSize--; } if (tail) tail.nextZ = e;else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while (numMerges > 1); return list; } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder(x, y, minX, minY, invSize) { // coords are transformed into non-negative 15-bit integer range x = 32767 * (x - minX) * invSize; y = 32767 * (y - minY) * invSize; x = (x | x << 8) & 0x00FF00FF; x = (x | x << 4) & 0x0F0F0F0F; x = (x | x << 2) & 0x33333333; x = (x | x << 1) & 0x55555555; y = (y | y << 8) & 0x00FF00FF; y = (y | y << 4) & 0x0F0F0F0F; y = (y | y << 2) & 0x33333333; y = (y | y << 1) & 0x55555555; return x | y << 1; } // find the leftmost node of a polygon ring function getLeftmost(start) { let p = start, leftmost = start; do { if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p; p = p.next; } while (p !== start); return leftmost; } // check if a point lies within a convex triangle function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal(a, b) { return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && ( // dones't intersect other edges locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && ( // locally visible area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case } // signed area of a triangle function area(p, q, r) { return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); } // check if two points are equal function equals(p1, p2) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect function intersects(p1, q1, p2, q2) { const o1 = sign(area(p1, q1, p2)); const o2 = sign(area(p1, q1, q2)); const o3 = sign(area(p2, q2, p1)); const o4 = sign(area(p2, q2, q1)); if (o1 !== o2 && o3 !== o4) return true; // general case if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 return false; } // for collinear points p, q, r, check if point q lies on segment pr function onSegment(p, q, r) { return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y); } function sign(num) { return num > 0 ? 1 : num < 0 ? -1 : 0; } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon(a, b) { let p = a; do { if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true; p = p.next; } while (p !== a); return false; } // check if a polygon diagonal is locally inside the polygon function locallyInside(a, b) { return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; } // check if the middle point of a polygon diagonal is inside the polygon function middleInside(a, b) { let p = a, inside = false; const px = (a.x + b.x) / 2, py = (a.y + b.y) / 2; do { if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside; p = p.next; } while (p !== a); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon(a, b) { const a2 = new Node(a.i, a.x, a.y), b2 = new Node(b.i, b.x, b.y), an = a.next, bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode(i, x, y, last) { const p = new Node(i, x, y); if (!last) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } function removeNode(p) { p.next.prev = p.prev; p.prev.next = p.next; if (p.prevZ) p.prevZ.nextZ = p.nextZ; if (p.nextZ) p.nextZ.prevZ = p.prevZ; } function Node(i, x, y) { // vertex index in coordinates array this.i = i; // vertex coordinates this.x = x; this.y = y; // previous and next vertex nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = null; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; } function signedArea(data, start, end, dim) { let sum = 0; for (let i = start, j = end - dim; i < end; i += dim) { sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); j = i; } return sum; } class ShapeUtils { // calculate area of the contour polygon static area(contour) { const n = contour.length; let a = 0.0; for (let p = n - 1, q = 0; q < n; p = q++) { a += contour[p].x * contour[q].y - contour[q].x * contour[p].y; } return a * 0.5; } static isClockWise(pts) { return ShapeUtils.area(pts) < 0; } static triangulateShape(contour, holes) { const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] const holeIndices = []; // array of hole indices const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] removeDupEndPts(contour); addContour(vertices, contour); // let holeIndex = contour.length; holes.forEach(removeDupEndPts); for (let i = 0; i < holes.length; i++) { holeIndices.push(holeIndex); holeIndex += holes[i].length; addContour(vertices, holes[i]); } // const triangles = Earcut.triangulate(vertices, holeIndices); // for (let i = 0; i < triangles.length; i += 3) { faces.push(triangles.slice(i, i + 3)); } return faces; } } function removeDupEndPts(points) { const l = points.length; if (l > 2 && points[l - 1].equals(points[0])) { points.pop(); } } function addContour(vertices, contour) { for (let i = 0; i < contour.length; i++) { vertices.push(contour[i].x); vertices.push(contour[i].y); } } /** * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * depth: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline (including bevelOffset) is bevel * bevelOffset: , // how far from shape outline does bevel start * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * * UVGenerator: // object that provides UV generator functions * * } */ class ExtrudeGeometry extends BufferGeometry { constructor(shapes, options) { super(); this.type = 'ExtrudeGeometry'; this.parameters = { shapes: shapes, options: options }; shapes = Array.isArray(shapes) ? shapes : [shapes]; const scope = this; const verticesArray = []; const uvArray = []; for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; addShape(shape); } // build geometry this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2)); this.computeVertexNormals(); // functions function addShape(shape) { const placeholder = []; // options const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; const steps = options.steps !== undefined ? options.steps : 1; let depth = options.depth !== undefined ? options.depth : 100; let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; const extrudePath = options.extrudePath; const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options if (options.amount !== undefined) { console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.'); depth = options.amount; } // let extrudePts, extrudeByPath = false; let splineTube, binormal, normal, position2; if (extrudePath) { extrudePts = extrudePath.getSpacedPoints(steps); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } // Safeguards if bevels are not enabled if (!bevelEnabled) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; bevelOffset = 0; } // Variables initialization const shapePoints = shape.extractPoints(curveSegments); let vertices = shapePoints.shape; const holes = shapePoints.holes; const reverse = !ShapeUtils.isClockWise(vertices); if (reverse) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; if (ShapeUtils.isClockWise(ahole)) { holes[h] = ahole.reverse(); } } } const faces = ShapeUtils.triangulateShape(vertices, holes); /* Vertices */ const contour = vertices; // vertices has all points but contour has only points of circumference for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; vertices = vertices.concat(ahole); } function scalePt2(pt, vec, size) { if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist'); return vec.clone().multiplyScalar(size).add(pt); } const vlen = vertices.length, flen = faces.length; // Find directions for point movement function getBevelVec(inPt, inPrev, inNext) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html const v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; const v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x; if (Math.abs(collinear0) > Number.EPSILON) { // not collinear // length of vectors for normalizing const v_prev_len = Math.sqrt(v_prev_lensq); const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len; const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len; const ptNextShift_x = inNext.x - v_next_y / v_next_len; const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x; v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y; if (v_trans_lensq <= 2) { return new Vector2(v_trans_x, v_trans_y); } else { shrink_by = Math.sqrt(v_trans_lensq / 2); } } else { // handle special case of collinear edges let direction_eq = false; // assumes: opposite if (v_prev_x > Number.EPSILON) { if (v_next_x > Number.EPSILON) { direction_eq = true; } } else { if (v_prev_x < -Number.EPSILON) { if (v_next_x < -Number.EPSILON) { direction_eq = true; } } else { if (Math.sign(v_prev_y) === Math.sign(v_next_y)) { direction_eq = true; } } } if (direction_eq) { // console.log("Warning: lines are a straight sequence"); v_trans_x = -v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt(v_prev_lensq); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt(v_prev_lensq / 2); } } return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by); } const contourMovements = []; for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { if (j === il) j = 0; if (k === il) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]); } const holesMovements = []; let oneHoleMovements, verticesMovements = contourMovements.concat(); for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; oneHoleMovements = []; for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { if (j === il) j = 0; if (k === il) k = 0; // (j)---(i)---(k) oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]); } holesMovements.push(oneHoleMovements); verticesMovements = verticesMovements.concat(oneHoleMovements); } // Loop bevelSegments, 1 for the front, 1 for the back for (let b = 0; b < bevelSegments; b++) { //for ( b = bevelSegments; b > 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos(t * Math.PI / 2); const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape for (let i = 0, il = contour.length; i < il; i++) { const vert = scalePt2(contour[i], contourMovements[i], bs); v(vert.x, vert.y, -z); } // expand holes for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; oneHoleMovements = holesMovements[h]; for (let i = 0, il = ahole.length; i < il; i++) { const vert = scalePt2(ahole[i], oneHoleMovements[i], bs); v(vert.x, vert.y, -z); } } } const bs = bevelSize + bevelOffset; // Back facing vertices for (let i = 0; i < vlen; i++) { const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i]; if (!extrudeByPath) { v(vert.x, vert.y, 0); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy(splineTube.normals[0]).multiplyScalar(vert.x); binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y); position2.copy(extrudePts[0]).add(normal).add(binormal); v(position2.x, position2.y, position2.z); } } // Add stepped vertices... // Including front facing vertices for (let s = 1; s <= steps; s++) { for (let i = 0; i < vlen; i++) { const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i]; if (!extrudeByPath) { v(vert.x, vert.y, depth / steps * s); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy(splineTube.normals[s]).multiplyScalar(vert.x); binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y); position2.copy(extrudePts[s]).add(normal).add(binormal); v(position2.x, position2.y, position2.z); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for (let b = bevelSegments - 1; b >= 0; b--) { const t = b / bevelSegments; const z = bevelThickness * Math.cos(t * Math.PI / 2); const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape for (let i = 0, il = contour.length; i < il; i++) { const vert = scalePt2(contour[i], contourMovements[i], bs); v(vert.x, vert.y, depth + z); } // expand holes for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; oneHoleMovements = holesMovements[h]; for (let i = 0, il = ahole.length; i < il; i++) { const vert = scalePt2(ahole[i], oneHoleMovements[i], bs); if (!extrudeByPath) { v(vert.x, vert.y, depth + z); } else { v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { const start = verticesArray.length / 3; if (bevelEnabled) { let layer = 0; // steps + 1 let offset = vlen * layer; // Bottom faces for (let i = 0; i < flen; i++) { const face = faces[i]; f3(face[2] + offset, face[1] + offset, face[0] + offset); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for (let i = 0; i < flen; i++) { const face = faces[i]; f3(face[0] + offset, face[1] + offset, face[2] + offset); } } else { // Bottom faces for (let i = 0; i < flen; i++) { const face = faces[i]; f3(face[2], face[1], face[0]); } // Top faces for (let i = 0; i < flen; i++) { const face = faces[i]; f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps); } } scope.addGroup(start, verticesArray.length / 3 - start, 0); } // Create faces for the z-sides of the shape function buildSideFaces() { const start = verticesArray.length / 3; let layeroffset = 0; sidewalls(contour, layeroffset); layeroffset += contour.length; for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; sidewalls(ahole, layeroffset); //, true layeroffset += ahole.length; } scope.addGroup(start, verticesArray.length / 3 - start, 1); } function sidewalls(contour, layeroffset) { let i = contour.length; while (--i >= 0) { const j = i; let k = i - 1; if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) { const slen1 = vlen * s; const slen2 = vlen * (s + 1); const a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4(a, b, c, d); } } } function v(x, y, z) { placeholder.push(x); placeholder.push(y); placeholder.push(z); } function f3(a, b, c) { addVertex(a); addVertex(b); addVertex(c); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1); addUV(uvs[0]); addUV(uvs[1]); addUV(uvs[2]); } function f4(a, b, c, d) { addVertex(a); addVertex(b); addVertex(d); addVertex(b); addVertex(c); addVertex(d); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1); addUV(uvs[0]); addUV(uvs[1]); addUV(uvs[3]); addUV(uvs[1]); addUV(uvs[2]); addUV(uvs[3]); } function addVertex(index) { verticesArray.push(placeholder[index * 3 + 0]); verticesArray.push(placeholder[index * 3 + 1]); verticesArray.push(placeholder[index * 3 + 2]); } function addUV(vector2) { uvArray.push(vector2.x); uvArray.push(vector2.y); } } } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; const options = this.parameters.options; return toJSON$1(shapes, options, data); } } const WorldUVGenerator = { generateTopUV: function (geometry, vertices, indexA, indexB, indexC) { const a_x = vertices[indexA * 3]; const a_y = vertices[indexA * 3 + 1]; const b_x = vertices[indexB * 3]; const b_y = vertices[indexB * 3 + 1]; const c_x = vertices[indexC * 3]; const c_y = vertices[indexC * 3 + 1]; return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)]; }, generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) { const a_x = vertices[indexA * 3]; const a_y = vertices[indexA * 3 + 1]; const a_z = vertices[indexA * 3 + 2]; const b_x = vertices[indexB * 3]; const b_y = vertices[indexB * 3 + 1]; const b_z = vertices[indexB * 3 + 2]; const c_x = vertices[indexC * 3]; const c_y = vertices[indexC * 3 + 1]; const c_z = vertices[indexC * 3 + 2]; const d_x = vertices[indexD * 3]; const d_y = vertices[indexD * 3 + 1]; const d_z = vertices[indexD * 3 + 2]; if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) { return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)]; } else { return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)]; } } }; function toJSON$1(shapes, options, data) { data.shapes = []; if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; data.shapes.push(shape.uuid); } } else { data.shapes.push(shapes.uuid); } if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON(); return data; } class IcosahedronGeometry extends PolyhedronGeometry { constructor(radius = 1, detail = 0) { const t = (1 + Math.sqrt(5)) / 2; const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1]; const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1]; super(vertices, indices, radius, detail); this.type = 'IcosahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } } class LatheGeometry extends BufferGeometry { constructor(points, segments = 12, phiStart = 0, phiLength = Math.PI * 2) { super(); this.type = 'LatheGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers const indices = []; const vertices = []; const uvs = []; // helper variables const inverseSegments = 1.0 / segments; const vertex = new Vector3(); const uv = new Vector2(); // generate vertices and uvs for (let i = 0; i <= segments; i++) { const phi = phiStart + i * inverseSegments * phiLength; const sin = Math.sin(phi); const cos = Math.cos(phi); for (let j = 0; j <= points.length - 1; j++) { // vertex vertex.x = points[j].x * sin; vertex.y = points[j].y; vertex.z = points[j].x * cos; vertices.push(vertex.x, vertex.y, vertex.z); // uv uv.x = i / segments; uv.y = j / (points.length - 1); uvs.push(uv.x, uv.y); } } // indices for (let i = 0; i < segments; i++) { for (let j = 0; j < points.length - 1; j++) { const base = j + i * points.length; const a = base; const b = base + points.length; const c = base + points.length + 1; const d = base + 1; // faces indices.push(a, b, d); indices.push(b, c, d); } } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam. // because the corresponding vertices are identical (but still have different UVs). if (phiLength === Math.PI * 2) { const normals = this.attributes.normal.array; const n1 = new Vector3(); const n2 = new Vector3(); const n = new Vector3(); // this is the buffer offset for the last line of vertices const base = segments * points.length * 3; for (let i = 0, j = 0; i < points.length; i++, j += 3) { // select the normal of the vertex in the first line n1.x = normals[j + 0]; n1.y = normals[j + 1]; n1.z = normals[j + 2]; // select the normal of the vertex in the last line n2.x = normals[base + j + 0]; n2.y = normals[base + j + 1]; n2.z = normals[base + j + 2]; // average normals n.addVectors(n1, n2).normalize(); // assign the new values to both normals normals[j + 0] = normals[base + j + 0] = n.x; normals[j + 1] = normals[base + j + 1] = n.y; normals[j + 2] = normals[base + j + 2] = n.z; } } } } class OctahedronGeometry extends PolyhedronGeometry { constructor(radius = 1, detail = 0) { const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1]; const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2]; super(vertices, indices, radius, detail); this.type = 'OctahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } } /** * Parametric Surfaces Geometry * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html */ class ParametricGeometry extends BufferGeometry { constructor(func, slices, stacks) { super(); this.type = 'ParametricGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; const EPS = 0.00001; const normal = new Vector3(); const p0 = new Vector3(), p1 = new Vector3(); const pu = new Vector3(), pv = new Vector3(); if (func.length < 3) { console.error('THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.'); } // generate vertices, normals and uvs const sliceCount = slices + 1; for (let i = 0; i <= stacks; i++) { const v = i / stacks; for (let j = 0; j <= slices; j++) { const u = j / slices; // vertex func(u, v, p0); vertices.push(p0.x, p0.y, p0.z); // normal // approximate tangent vectors via finite differences if (u - EPS >= 0) { func(u - EPS, v, p1); pu.subVectors(p0, p1); } else { func(u + EPS, v, p1); pu.subVectors(p1, p0); } if (v - EPS >= 0) { func(u, v - EPS, p1); pv.subVectors(p0, p1); } else { func(u, v + EPS, p1); pv.subVectors(p1, p0); } // cross product of tangent vectors returns surface normal normal.crossVectors(pu, pv).normalize(); normals.push(normal.x, normal.y, normal.z); // uv uvs.push(u, v); } } // generate indices for (let i = 0; i < stacks; i++) { for (let j = 0; j < slices; j++) { const a = i * sliceCount + j; const b = i * sliceCount + j + 1; const c = (i + 1) * sliceCount + j + 1; const d = (i + 1) * sliceCount + j; // faces one and two indices.push(a, b, d); indices.push(b, c, d); } } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); } } class RingGeometry extends BufferGeometry { constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) { super(); this.type = 'RingGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; thetaSegments = Math.max(3, thetaSegments); phiSegments = Math.max(1, phiSegments); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // some helper variables let radius = innerRadius; const radiusStep = (outerRadius - innerRadius) / phiSegments; const vertex = new Vector3(); const uv = new Vector2(); // generate vertices, normals and uvs for (let j = 0; j <= phiSegments; j++) { for (let i = 0; i <= thetaSegments; i++) { // values are generate from the inside of the ring to the outside const segment = thetaStart + i / thetaSegments * thetaLength; // vertex vertex.x = radius * Math.cos(segment); vertex.y = radius * Math.sin(segment); vertices.push(vertex.x, vertex.y, vertex.z); // normal normals.push(0, 0, 1); // uv uv.x = (vertex.x / outerRadius + 1) / 2; uv.y = (vertex.y / outerRadius + 1) / 2; uvs.push(uv.x, uv.y); } // increase the radius for next row of vertices radius += radiusStep; } // indices for (let j = 0; j < phiSegments; j++) { const thetaSegmentLevel = j * (thetaSegments + 1); for (let i = 0; i < thetaSegments; i++) { const segment = i + thetaSegmentLevel; const a = segment; const b = segment + thetaSegments + 1; const c = segment + thetaSegments + 2; const d = segment + 1; // faces indices.push(a, b, d); indices.push(b, c, d); } } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); } } class ShapeGeometry extends BufferGeometry { constructor(shapes, curveSegments = 12) { super(); this.type = 'ShapeGeometry'; this.parameters = { shapes: shapes, curveSegments: curveSegments }; // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let groupStart = 0; let groupCount = 0; // allow single and array values for "shapes" parameter if (Array.isArray(shapes) === false) { addShape(shapes); } else { for (let i = 0; i < shapes.length; i++) { addShape(shapes[i]); this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support groupStart += groupCount; groupCount = 0; } } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions function addShape(shape) { const indexOffset = vertices.length / 3; const points = shape.extractPoints(curveSegments); let shapeVertices = points.shape; const shapeHoles = points.holes; // check direction of vertices if (ShapeUtils.isClockWise(shapeVertices) === false) { shapeVertices = shapeVertices.reverse(); } for (let i = 0, l = shapeHoles.length; i < l; i++) { const shapeHole = shapeHoles[i]; if (ShapeUtils.isClockWise(shapeHole) === true) { shapeHoles[i] = shapeHole.reverse(); } } const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array for (let i = 0, l = shapeHoles.length; i < l; i++) { const shapeHole = shapeHoles[i]; shapeVertices = shapeVertices.concat(shapeHole); } // vertices, normals, uvs for (let i = 0, l = shapeVertices.length; i < l; i++) { const vertex = shapeVertices[i]; vertices.push(vertex.x, vertex.y, 0); normals.push(0, 0, 1); uvs.push(vertex.x, vertex.y); // world uvs } // incides for (let i = 0, l = faces.length; i < l; i++) { const face = faces[i]; const a = face[0] + indexOffset; const b = face[1] + indexOffset; const c = face[2] + indexOffset; indices.push(a, b, c); groupCount += 3; } } } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; return toJSON(shapes, data); } } function toJSON(shapes, data) { data.shapes = []; if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; data.shapes.push(shape.uuid); } } else { data.shapes.push(shapes.uuid); } return data; } class SphereGeometry extends BufferGeometry { constructor(radius = 1, widthSegments = 8, heightSegments = 6, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) { super(); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; widthSegments = Math.max(3, Math.floor(widthSegments)); heightSegments = Math.max(2, Math.floor(heightSegments)); const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI); let index = 0; const grid = []; const vertex = new Vector3(); const normal = new Vector3(); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // generate vertices, normals and uvs for (let iy = 0; iy <= heightSegments; iy++) { const verticesRow = []; const v = iy / heightSegments; // special case for the poles let uOffset = 0; if (iy == 0 && thetaStart == 0) { uOffset = 0.5 / widthSegments; } else if (iy == heightSegments && thetaEnd == Math.PI) { uOffset = -0.5 / widthSegments; } for (let ix = 0; ix <= widthSegments; ix++) { const u = ix / widthSegments; // vertex vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength); vertex.y = radius * Math.cos(thetaStart + v * thetaLength); vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength); vertices.push(vertex.x, vertex.y, vertex.z); // normal normal.copy(vertex).normalize(); normals.push(normal.x, normal.y, normal.z); // uv uvs.push(u + uOffset, 1 - v); verticesRow.push(index++); } grid.push(verticesRow); } // indices for (let iy = 0; iy < heightSegments; iy++) { for (let ix = 0; ix < widthSegments; ix++) { const a = grid[iy][ix + 1]; const b = grid[iy][ix]; const c = grid[iy + 1][ix]; const d = grid[iy + 1][ix + 1]; if (iy !== 0 || thetaStart > 0) indices.push(a, b, d); if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d); } } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); } } class TetrahedronGeometry extends PolyhedronGeometry { constructor(radius = 1, detail = 0) { const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1]; const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1]; super(vertices, indices, radius, detail); this.type = 'TetrahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } } /** * Text = 3D Text * * parameters = { * font: , // font * * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: , // how far from text outline (including bevelOffset) is bevel * bevelOffset: // how far from text outline does bevel start * } */ class TextGeometry extends ExtrudeGeometry { constructor(text, parameters = {}) { const font = parameters.font; if (!(font && font.isFont)) { console.error('THREE.TextGeometry: font parameter is not an instance of THREE.Font.'); return new BufferGeometry(); } const shapes = font.generateShapes(text, parameters.size); // translate parameters to ExtrudeGeometry API parameters.depth = parameters.height !== undefined ? parameters.height : 50; // defaults if (parameters.bevelThickness === undefined) parameters.bevelThickness = 10; if (parameters.bevelSize === undefined) parameters.bevelSize = 8; if (parameters.bevelEnabled === undefined) parameters.bevelEnabled = false; super(shapes, parameters); this.type = 'TextGeometry'; } } class TorusGeometry extends BufferGeometry { constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) { super(); this.type = 'TorusGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radialSegments = Math.floor(radialSegments); tubularSegments = Math.floor(tubularSegments); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const center = new Vector3(); const vertex = new Vector3(); const normal = new Vector3(); // generate vertices, normals and uvs for (let j = 0; j <= radialSegments; j++) { for (let i = 0; i <= tubularSegments; i++) { const u = i / tubularSegments * arc; const v = j / radialSegments * Math.PI * 2; // vertex vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u); vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u); vertex.z = tube * Math.sin(v); vertices.push(vertex.x, vertex.y, vertex.z); // normal center.x = radius * Math.cos(u); center.y = radius * Math.sin(u); normal.subVectors(vertex, center).normalize(); normals.push(normal.x, normal.y, normal.z); // uv uvs.push(i / tubularSegments); uvs.push(j / radialSegments); } } // generate indices for (let j = 1; j <= radialSegments; j++) { for (let i = 1; i <= tubularSegments; i++) { // indices const a = (tubularSegments + 1) * j + i - 1; const b = (tubularSegments + 1) * (j - 1) + i - 1; const c = (tubularSegments + 1) * (j - 1) + i; const d = (tubularSegments + 1) * j + i; // faces indices.push(a, b, d); indices.push(b, c, d); } } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); } } class TorusKnotGeometry extends BufferGeometry { constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) { super(); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; tubularSegments = Math.floor(tubularSegments); radialSegments = Math.floor(radialSegments); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const vertex = new Vector3(); const normal = new Vector3(); const P1 = new Vector3(); const P2 = new Vector3(); const B = new Vector3(); const T = new Vector3(); const N = new Vector3(); // generate vertices, normals and uvs for (let i = 0; i <= tubularSegments; ++i) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segement const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve(u, p, q, radius, P1); calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis T.subVectors(P2, P1); N.addVectors(P2, P1); B.crossVectors(T, N); N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for (let j = 0; j <= radialSegments; ++j) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. const v = j / radialSegments * Math.PI * 2; const cx = -tube * Math.cos(v); const cy = tube * Math.sin(v); // now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve vertex.x = P1.x + (cx * N.x + cy * B.x); vertex.y = P1.y + (cx * N.y + cy * B.y); vertex.z = P1.z + (cx * N.z + cy * B.z); vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors(vertex, P1).normalize(); normals.push(normal.x, normal.y, normal.z); // uv uvs.push(i / tubularSegments); uvs.push(j / radialSegments); } } // generate indices for (let j = 1; j <= tubularSegments; j++) { for (let i = 1; i <= radialSegments; i++) { // indices const a = (radialSegments + 1) * (j - 1) + (i - 1); const b = (radialSegments + 1) * j + (i - 1); const c = (radialSegments + 1) * j + i; const d = (radialSegments + 1) * (j - 1) + i; // faces indices.push(a, b, d); indices.push(b, c, d); } } // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve function calculatePositionOnCurve(u, p, q, radius, position) { const cu = Math.cos(u); const su = Math.sin(u); const quOverP = q / p * u; const cs = Math.cos(quOverP); position.x = radius * (2 + cs) * 0.5 * cu; position.y = radius * (2 + cs) * su * 0.5; position.z = radius * Math.sin(quOverP) * 0.5; } } } class TubeGeometry extends BufferGeometry { constructor(path, tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) { super(); this.type = 'TubeGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals; // helper variables const vertex = new Vector3(); const normal = new Vector3(); const uv = new Vector2(); let P = new Vector3(); // buffer const vertices = []; const normals = []; const uvs = []; const indices = []; // create buffer data generateBufferData(); // build geometry this.setIndex(indices); this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions function generateBufferData() { for (let i = 0; i < tubularSegments; i++) { generateSegment(i); } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs(); // finally create faces generateIndices(); } function generateSegment(i) { // we use getPointAt to sample evenly distributed points from the given path P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal const N = frames.normals[i]; const B = frames.binormals[i]; // generate normals and vertices for the current segment for (let j = 0; j <= radialSegments; j++) { const v = j / radialSegments * Math.PI * 2; const sin = Math.sin(v); const cos = -Math.cos(v); // normal normal.x = cos * N.x + sin * B.x; normal.y = cos * N.y + sin * B.y; normal.z = cos * N.z + sin * B.z; normal.normalize(); normals.push(normal.x, normal.y, normal.z); // vertex vertex.x = P.x + radius * normal.x; vertex.y = P.y + radius * normal.y; vertex.z = P.z + radius * normal.z; vertices.push(vertex.x, vertex.y, vertex.z); } } function generateIndices() { for (let j = 1; j <= tubularSegments; j++) { for (let i = 1; i <= radialSegments; i++) { const a = (radialSegments + 1) * (j - 1) + (i - 1); const b = (radialSegments + 1) * j + (i - 1); const c = (radialSegments + 1) * j + i; const d = (radialSegments + 1) * (j - 1) + i; // faces indices.push(a, b, d); indices.push(b, c, d); } } } function generateUVs() { for (let i = 0; i <= tubularSegments; i++) { for (let j = 0; j <= radialSegments; j++) { uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.push(uv.x, uv.y); } } } } toJSON() { const data = super.toJSON(); data.path = this.parameters.path.toJSON(); return data; } } class WireframeGeometry extends BufferGeometry { constructor(geometry) { super(); this.type = 'WireframeGeometry'; if (geometry.isGeometry === true) { console.error('THREE.WireframeGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.'); return; } // buffer const vertices = []; // helper variables const edge = [0, 0], edges = {}; const vertex = new Vector3(); if (geometry.index !== null) { // indexed BufferGeometry const position = geometry.attributes.position; const indices = geometry.index; let groups = geometry.groups; if (groups.length === 0) { groups = [{ start: 0, count: indices.count, materialIndex: 0 }]; } // create a data structure that contains all eges without duplicates for (let o = 0, ol = groups.length; o < ol; ++o) { const group = groups[o]; const start = group.start; const count = group.count; for (let i = start, l = start + count; i < l; i += 3) { for (let j = 0; j < 3; j++) { const edge1 = indices.getX(i + j); const edge2 = indices.getX(i + (j + 1) % 3); edge[0] = Math.min(edge1, edge2); // sorting prevents duplicates edge[1] = Math.max(edge1, edge2); const key = edge[0] + ',' + edge[1]; if (edges[key] === undefined) { edges[key] = { index1: edge[0], index2: edge[1] }; } } } } // generate vertices for (const key in edges) { const e = edges[key]; vertex.fromBufferAttribute(position, e.index1); vertices.push(vertex.x, vertex.y, vertex.z); vertex.fromBufferAttribute(position, e.index2); vertices.push(vertex.x, vertex.y, vertex.z); } } else { // non-indexed BufferGeometry const position = geometry.attributes.position; for (let i = 0, l = position.count / 3; i < l; i++) { for (let j = 0; j < 3; j++) { // three edges per triangle, an edge is represented as (index1, index2) // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) const index1 = 3 * i + j; vertex.fromBufferAttribute(position, index1); vertices.push(vertex.x, vertex.y, vertex.z); const index2 = 3 * i + (j + 1) % 3; vertex.fromBufferAttribute(position, index2); vertices.push(vertex.x, vertex.y, vertex.z); } } } // build geometry this.setAttribute('position', new Float32BufferAttribute(vertices, 3)); } } var Geometries = /*#__PURE__*/Object.freeze({ __proto__: null, BoxGeometry: BoxGeometry, BoxBufferGeometry: BoxGeometry, CircleGeometry: CircleGeometry, CircleBufferGeometry: CircleGeometry, ConeGeometry: ConeGeometry, ConeBufferGeometry: ConeGeometry, CylinderGeometry: CylinderGeometry, CylinderBufferGeometry: CylinderGeometry, DodecahedronGeometry: DodecahedronGeometry, DodecahedronBufferGeometry: DodecahedronGeometry, EdgesGeometry: EdgesGeometry, ExtrudeGeometry: ExtrudeGeometry, ExtrudeBufferGeometry: ExtrudeGeometry, IcosahedronGeometry: IcosahedronGeometry, IcosahedronBufferGeometry: IcosahedronGeometry, LatheGeometry: LatheGeometry, LatheBufferGeometry: LatheGeometry, OctahedronGeometry: OctahedronGeometry, OctahedronBufferGeometry: OctahedronGeometry, ParametricGeometry: ParametricGeometry, ParametricBufferGeometry: ParametricGeometry, PlaneGeometry: PlaneGeometry, PlaneBufferGeometry: PlaneGeometry, PolyhedronGeometry: PolyhedronGeometry, PolyhedronBufferGeometry: PolyhedronGeometry, RingGeometry: RingGeometry, RingBufferGeometry: RingGeometry, ShapeGeometry: ShapeGeometry, ShapeBufferGeometry: ShapeGeometry, SphereGeometry: SphereGeometry, SphereBufferGeometry: SphereGeometry, TetrahedronGeometry: TetrahedronGeometry, TetrahedronBufferGeometry: TetrahedronGeometry, TextGeometry: TextGeometry, TextBufferGeometry: TextGeometry, TorusGeometry: TorusGeometry, TorusBufferGeometry: TorusGeometry, TorusKnotGeometry: TorusKnotGeometry, TorusKnotBufferGeometry: TorusKnotGeometry, TubeGeometry: TubeGeometry, TubeBufferGeometry: TubeGeometry, WireframeGeometry: WireframeGeometry }); /** * parameters = { * color: * } */ class ShadowMaterial extends Material { constructor(parameters) { super(); this.type = 'ShadowMaterial'; this.color = new Color(0x000000); this.transparent = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); return this; } } ShadowMaterial.prototype.isShadowMaterial = true; class RawShaderMaterial extends ShaderMaterial { constructor(parameters) { super(parameters); this.type = 'RawShaderMaterial'; } } RawShaderMaterial.prototype.isRawShaderMaterial = true; /** * parameters = { * color: , * roughness: , * metalness: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * roughnessMap: new THREE.Texture( ), * * metalnessMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: * * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * morphTargets: , * morphNormals: , * * flatShading: * } */ class MeshStandardMaterial extends Material { constructor(parameters) { super(); this.defines = { 'STANDARD': '' }; this.type = 'MeshStandardMaterial'; this.color = new Color(0xffffff); // diffuse this.roughness = 1.0; this.metalness = 0.0; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color(0x000000); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapIntensity = 1.0; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.morphTargets = false; this.morphNormals = false; this.flatShading = false; this.vertexTangents = false; this.setValues(parameters); } copy(source) { super.copy(source); this.defines = { 'STANDARD': '' }; this.color.copy(source.color); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy(source.emissive); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.flatShading = source.flatShading; this.vertexTangents = source.vertexTangents; return this; } } MeshStandardMaterial.prototype.isMeshStandardMaterial = true; /** * parameters = { * clearcoat: , * clearcoatMap: new THREE.Texture( ), * clearcoatRoughness: , * clearcoatRoughnessMap: new THREE.Texture( ), * clearcoatNormalScale: , * clearcoatNormalMap: new THREE.Texture( ), * * reflectivity: , * ior: , * * sheen: , * * transmission: , * transmissionMap: new THREE.Texture( ), * * thickness: , * thicknessMap: new THREE.Texture( ), * attenuationDistance: , * attenuationColor: * } */ class MeshPhysicalMaterial extends MeshStandardMaterial { constructor(parameters) { super(); this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.type = 'MeshPhysicalMaterial'; this.clearcoat = 0.0; this.clearcoatMap = null; this.clearcoatRoughness = 0.0; this.clearcoatRoughnessMap = null; this.clearcoatNormalScale = new Vector2(1, 1); this.clearcoatNormalMap = null; this.reflectivity = 0.5; // maps to F0 = 0.04 Object.defineProperty(this, 'ior', { get: function () { return (1 + 0.4 * this.reflectivity) / (1 - 0.4 * this.reflectivity); }, set: function (ior) { this.reflectivity = clamp(2.5 * (ior - 1) / (ior + 1), 0, 1); } }); this.sheen = null; // null will disable sheen bsdf this.transmission = 0.0; this.transmissionMap = null; this.thickness = 0.01; this.thicknessMap = null; this.attenuationDistance = 0.0; this.attenuationColor = new Color(1, 1, 1); this.setValues(parameters); } copy(source) { super.copy(source); this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.clearcoat = source.clearcoat; this.clearcoatMap = source.clearcoatMap; this.clearcoatRoughness = source.clearcoatRoughness; this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; this.clearcoatNormalMap = source.clearcoatNormalMap; this.clearcoatNormalScale.copy(source.clearcoatNormalScale); this.reflectivity = source.reflectivity; if (source.sheen) { this.sheen = (this.sheen || new Color()).copy(source.sheen); } else { this.sheen = null; } this.transmission = source.transmission; this.transmissionMap = source.transmissionMap; this.thickness = source.thickness; this.thicknessMap = source.thicknessMap; this.attenuationDistance = source.attenuationDistance; this.attenuationColor.copy(source.attenuationColor); return this; } } MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true; /** * parameters = { * color: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.MultiplyOperation, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * morphTargets: , * morphNormals: , * * flatShading: * } */ class MeshPhongMaterial extends Material { constructor(parameters) { super(); this.type = 'MeshPhongMaterial'; this.color = new Color(0xffffff); // diffuse this.specular = new Color(0x111111); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color(0x000000); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.morphTargets = false; this.morphNormals = false; this.flatShading = false; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.specular.copy(source.specular); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy(source.emissive); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.flatShading = source.flatShading; return this; } } MeshPhongMaterial.prototype.isMeshPhongMaterial = true; /** * parameters = { * color: , * * map: new THREE.Texture( ), * gradientMap: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * alphaMap: new THREE.Texture( ), * * wireframe: , * wireframeLinewidth: , * * morphTargets: , * morphNormals: * } */ class MeshToonMaterial extends Material { constructor(parameters) { super(); this.defines = { 'TOON': '' }; this.type = 'MeshToonMaterial'; this.color = new Color(0xffffff); this.map = null; this.gradientMap = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color(0x000000); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.morphTargets = false; this.morphNormals = false; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.gradientMap = source.gradientMap; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy(source.emissive); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; } } MeshToonMaterial.prototype.isMeshToonMaterial = true; /** * parameters = { * opacity: , * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * * morphTargets: , * morphNormals: , * * flatShading: * } */ class MeshNormalMaterial extends Material { constructor(parameters) { super(); this.type = 'MeshNormalMaterial'; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.morphTargets = false; this.morphNormals = false; this.flatShading = false; this.setValues(parameters); } copy(source) { super.copy(source); this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.flatShading = source.flatShading; return this; } } MeshNormalMaterial.prototype.isMeshNormalMaterial = true; /** * parameters = { * color: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * morphTargets: , * morphNormals: * } */ class MeshLambertMaterial extends Material { constructor(parameters) { super(); this.type = 'MeshLambertMaterial'; this.color = new Color(0xffffff); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color(0x000000); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.morphTargets = false; this.morphNormals = false; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy(source.emissive); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; } } MeshLambertMaterial.prototype.isMeshLambertMaterial = true; /** * parameters = { * color: , * opacity: , * * matcap: new THREE.Texture( ), * * map: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * alphaMap: new THREE.Texture( ), * * morphTargets: , * morphNormals: * * flatShading: * } */ class MeshMatcapMaterial extends Material { constructor(parameters) { super(); this.defines = { 'MATCAP': '' }; this.type = 'MeshMatcapMaterial'; this.color = new Color(0xffffff); // diffuse this.matcap = null; this.map = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.morphTargets = false; this.morphNormals = false; this.flatShading = false; this.setValues(parameters); } copy(source) { super.copy(source); this.defines = { 'MATCAP': '' }; this.color.copy(source.color); this.matcap = source.matcap; this.map = source.map; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.flatShading = source.flatShading; return this; } } MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true; /** * parameters = { * color: , * opacity: , * * linewidth: , * * scale: , * dashSize: , * gapSize: * } */ class LineDashedMaterial extends LineBasicMaterial { constructor(parameters) { super(); this.type = 'LineDashedMaterial'; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.setValues(parameters); } copy(source) { super.copy(source); this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; return this; } } LineDashedMaterial.prototype.isLineDashedMaterial = true; var Materials = /*#__PURE__*/Object.freeze({ __proto__: null, ShadowMaterial: ShadowMaterial, SpriteMaterial: SpriteMaterial, RawShaderMaterial: RawShaderMaterial, ShaderMaterial: ShaderMaterial, PointsMaterial: PointsMaterial, MeshPhysicalMaterial: MeshPhysicalMaterial, MeshStandardMaterial: MeshStandardMaterial, MeshPhongMaterial: MeshPhongMaterial, MeshToonMaterial: MeshToonMaterial, MeshNormalMaterial: MeshNormalMaterial, MeshLambertMaterial: MeshLambertMaterial, MeshDepthMaterial: MeshDepthMaterial, MeshDistanceMaterial: MeshDistanceMaterial, MeshBasicMaterial: MeshBasicMaterial, MeshMatcapMaterial: MeshMatcapMaterial, LineDashedMaterial: LineDashedMaterial, LineBasicMaterial: LineBasicMaterial, Material: Material }); const AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function (array, from, to) { if (AnimationUtils.isTypedArray(array)) { // in ios9 array.subarray(from, undefined) will return empty array // but array.subarray(from) or array.subarray(from, len) is correct return new array.constructor(array.subarray(from, to !== undefined ? to : array.length)); } return array.slice(from, to); }, // converts an array to a specific type convertArray: function (array, type, forceClone) { if (!array || // let 'undefined' and 'null' pass !forceClone && array.constructor === type) return array; if (typeof type.BYTES_PER_ELEMENT === 'number') { return new type(array); // create typed array } return Array.prototype.slice.call(array); // create Array }, isTypedArray: function (object) { return ArrayBuffer.isView(object) && !(object instanceof DataView); }, // returns an array by which times and values can be sorted getKeyframeOrder: function (times) { function compareTime(i, j) { return times[i] - times[j]; } const n = times.length; const result = new Array(n); for (let i = 0; i !== n; ++i) result[i] = i; result.sort(compareTime); return result; }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function (values, stride, order) { const nValues = values.length; const result = new values.constructor(nValues); for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) { const srcOffset = order[i] * stride; for (let j = 0; j !== stride; ++j) { result[dstOffset++] = values[srcOffset + j]; } } return result; }, // function for parsing AOS keyframe formats flattenJSON: function (jsonKeys, times, values, valuePropertyName) { let i = 1, key = jsonKeys[0]; while (key !== undefined && key[valuePropertyName] === undefined) { key = jsonKeys[i++]; } if (key === undefined) return; // no data let value = key[valuePropertyName]; if (value === undefined) return; // no data if (Array.isArray(value)) { do { value = key[valuePropertyName]; if (value !== undefined) { times.push(key.time); values.push.apply(values, value); // push all elements } key = jsonKeys[i++]; } while (key !== undefined); } else if (value.toArray !== undefined) { // ...assume THREE.Math-ish do { value = key[valuePropertyName]; if (value !== undefined) { times.push(key.time); value.toArray(values, values.length); } key = jsonKeys[i++]; } while (key !== undefined); } else { // otherwise push as-is do { value = key[valuePropertyName]; if (value !== undefined) { times.push(key.time); values.push(value); } key = jsonKeys[i++]; } while (key !== undefined); } }, subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) { const clip = sourceClip.clone(); clip.name = name; const tracks = []; for (let i = 0; i < clip.tracks.length; ++i) { const track = clip.tracks[i]; const valueSize = track.getValueSize(); const times = []; const values = []; for (let j = 0; j < track.times.length; ++j) { const frame = track.times[j] * fps; if (frame < startFrame || frame >= endFrame) continue; times.push(track.times[j]); for (let k = 0; k < valueSize; ++k) { values.push(track.values[j * valueSize + k]); } } if (times.length === 0) continue; track.times = AnimationUtils.convertArray(times, track.times.constructor); track.values = AnimationUtils.convertArray(values, track.values.constructor); tracks.push(track); } clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip let minStartTime = Infinity; for (let i = 0; i < clip.tracks.length; ++i) { if (minStartTime > clip.tracks[i].times[0]) { minStartTime = clip.tracks[i].times[0]; } } // shift all tracks such that clip begins at t=0 for (let i = 0; i < clip.tracks.length; ++i) { clip.tracks[i].shift(-1 * minStartTime); } clip.resetDuration(); return clip; }, makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) { if (fps <= 0) fps = 30; const numTracks = referenceClip.tracks.length; const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame for (let i = 0; i < numTracks; ++i) { const referenceTrack = referenceClip.tracks[i]; const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track const targetTrack = targetClip.tracks.find(function (track) { return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType; }); if (targetTrack === undefined) continue; let referenceOffset = 0; const referenceValueSize = referenceTrack.getValueSize(); if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { referenceOffset = referenceValueSize / 3; } let targetOffset = 0; const targetValueSize = targetTrack.getValueSize(); if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { targetOffset = targetValueSize / 3; } const lastIndex = referenceTrack.times.length - 1; let referenceValue; // Find the value to subtract out of the track if (referenceTime <= referenceTrack.times[0]) { // Reference frame is earlier than the first keyframe, so just use the first keyframe const startIndex = referenceOffset; const endIndex = referenceValueSize - referenceOffset; referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex); } else if (referenceTime >= referenceTrack.times[lastIndex]) { // Reference frame is after the last keyframe, so just use the last keyframe const startIndex = lastIndex * referenceValueSize + referenceOffset; const endIndex = startIndex + referenceValueSize - referenceOffset; referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex); } else { // Interpolate to the reference value const interpolant = referenceTrack.createInterpolant(); const startIndex = referenceOffset; const endIndex = referenceValueSize - referenceOffset; interpolant.evaluate(referenceTime); referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex); } // Conjugate the quaternion if (referenceTrackType === 'quaternion') { const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate(); referenceQuat.toArray(referenceValue); } // Subtract the reference value from all of the track values const numTimes = targetTrack.times.length; for (let j = 0; j < numTimes; ++j) { const valueStart = j * targetValueSize + targetOffset; if (referenceTrackType === 'quaternion') { // Multiply the conjugate for quaternion track types Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart); } else { const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types for (let k = 0; k < valueEnd; ++k) { targetTrack.values[valueStart + k] -= referenceValue[k]; } } } } targetClip.blendMode = AdditiveAnimationBlendMode; return targetClip; } }; /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * */ class Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize); this.sampleValues = sampleValues; this.valueSize = sampleSize; this.settings = null; this.DefaultSettings_ = {}; } evaluate(t) { const pp = this.parameterPositions; let i1 = this._cachedIndex, t1 = pp[i1], t0 = pp[i1 - 1]; validate_interval: { seek: { let right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if (!(t < t1)) { for (let giveUpAt = i1 + 2;;) { if (t1 === undefined) { if (t < t0) break forward_scan; // after end i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_(i1 - 1, t, t0); } if (i1 === giveUpAt) break; // this loop t0 = t1; t1 = pp[++i1]; if (t < t1) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if (!(t >= t0)) { // looping? const t1global = pp[1]; if (t < t1global) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for (let giveUpAt = i1 - 2;;) { if (t0 === undefined) { // before start this._cachedIndex = 0; return this.beforeStart_(0, t, t1); } if (i1 === giveUpAt) break; // this loop t1 = t0; t0 = pp[--i1 - 1]; if (t >= t0) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while (i1 < right) { const mid = i1 + right >>> 1; if (t < pp[mid]) { right = mid; } else { i1 = mid + 1; } } t1 = pp[i1]; t0 = pp[i1 - 1]; // check boundary cases, again if (t0 === undefined) { this._cachedIndex = 0; return this.beforeStart_(0, t, t1); } if (t1 === undefined) { i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_(i1 - 1, t0, t); } } // seek this._cachedIndex = i1; this.intervalChanged_(i1, t0, t1); } // validate_interval return this.interpolate_(i1, t0, t, t1); } getSettings_() { return this.settings || this.DefaultSettings_; } copySampleValue_(index) { // copies a sample value to the result buffer const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for (let i = 0; i !== stride; ++i) { result[i] = values[offset + i]; } return result; } // Template methods for derived classes: interpolate_() /* i1, t0, t, t1 */ { throw new Error('call to abstract method'); // implementations shall return this.resultBuffer } intervalChanged_() /* i1, t0, t1 */ {// empty } } // ALIAS DEFINITIONS Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_; Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_; /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. */ class CubicInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); this._weightPrev = -0; this._offsetPrev = -0; this._weightNext = -0; this._offsetNext = -0; this.DefaultSettings_ = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; } intervalChanged_(i1, t0, t1) { const pp = this.parameterPositions; let iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[iPrev], tNext = pp[iNext]; if (tPrev === undefined) { switch (this.getSettings_().endingStart) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[iPrev] - pp[iPrev + 1]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if (tNext === undefined) { switch (this.getSettings_().endingEnd) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[1] - pp[0]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } const halfDt = (t1 - t0) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / (t0 - tPrev); this._weightNext = halfDt / (tNext - t1); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = (t - t0) / (t1 - t0), pp = p * p, ppp = pp * p; // evaluate polynomials const sP = -wP * ppp + 2 * wP * pp - wP * p; const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1; const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p; const sN = wN * ppp - wN * pp; // combine data linearly for (let i = 0; i !== stride; ++i) { result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i]; } return result; } } class LinearInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = (t - t0) / (t1 - t0), weight0 = 1 - weight1; for (let i = 0; i !== stride; ++i) { result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1; } return result; } } /** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. */ class DiscreteInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } interpolate_(i1 /*, t0, t, t1 */ ) { return this.copySampleValue_(i1 - 1); } } class KeyframeTrack { constructor(name, times, values, interpolation) { if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined'); if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name); this.name = name; this.times = AnimationUtils.convertArray(times, this.TimeBufferType); this.values = AnimationUtils.convertArray(values, this.ValueBufferType); this.setInterpolation(interpolation || this.DefaultInterpolation); } // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): static toJSON(track) { const trackType = track.constructor; let json; // derived classes can define a static toJSON method if (trackType.toJSON !== this.toJSON) { json = trackType.toJSON(track); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': AnimationUtils.convertArray(track.times, Array), 'values': AnimationUtils.convertArray(track.values, Array) }; const interpolation = track.getInterpolation(); if (interpolation !== track.DefaultInterpolation) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; } InterpolantFactoryMethodDiscrete(result) { return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result); } InterpolantFactoryMethodLinear(result) { return new LinearInterpolant(this.times, this.values, this.getValueSize(), result); } InterpolantFactoryMethodSmooth(result) { return new CubicInterpolant(this.times, this.values, this.getValueSize(), result); } setInterpolation(interpolation) { let factoryMethod; switch (interpolation) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if (factoryMethod === undefined) { const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name; if (this.createInterpolant === undefined) { // fall back to default, unless the default itself is messed up if (interpolation !== this.DefaultInterpolation) { this.setInterpolation(this.DefaultInterpolation); } else { throw new Error(message); // fatal, in this case } } console.warn('THREE.KeyframeTrack:', message); return this; } this.createInterpolant = factoryMethod; return this; } getInterpolation() { switch (this.createInterpolant) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth; } } getValueSize() { return this.values.length / this.times.length; } // move all keyframes either forwards or backwards in time shift(timeOffset) { if (timeOffset !== 0.0) { const times = this.times; for (let i = 0, n = times.length; i !== n; ++i) { times[i] += timeOffset; } } return this; } // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale(timeScale) { if (timeScale !== 1.0) { const times = this.times; for (let i = 0, n = times.length; i !== n; ++i) { times[i] *= timeScale; } } return this; } // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim(startTime, endTime) { const times = this.times, nKeys = times.length; let from = 0, to = nKeys - 1; while (from !== nKeys && times[from] < startTime) { ++from; } while (to !== -1 && times[to] > endTime) { --to; } ++to; // inclusive -> exclusive bound if (from !== 0 || to !== nKeys) { // empty tracks are forbidden, so keep at least one keyframe if (from >= to) { to = Math.max(to, 1); from = to - 1; } const stride = this.getValueSize(); this.times = AnimationUtils.arraySlice(times, from, to); this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride); } return this; } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate() { let valid = true; const valueSize = this.getValueSize(); if (valueSize - Math.floor(valueSize) !== 0) { console.error('THREE.KeyframeTrack: Invalid value size in track.', this); valid = false; } const times = this.times, values = this.values, nKeys = times.length; if (nKeys === 0) { console.error('THREE.KeyframeTrack: Track is empty.', this); valid = false; } let prevTime = null; for (let i = 0; i !== nKeys; i++) { const currTime = times[i]; if (typeof currTime === 'number' && isNaN(currTime)) { console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime); valid = false; break; } if (prevTime !== null && prevTime > currTime) { console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime); valid = false; break; } prevTime = currTime; } if (values !== undefined) { if (AnimationUtils.isTypedArray(values)) { for (let i = 0, n = values.length; i !== n; ++i) { const value = values[i]; if (isNaN(value)) { console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value); valid = false; break; } } } } return valid; } // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize() { // times or values may be shared with other tracks, so overwriting is unsafe const times = AnimationUtils.arraySlice(this.times), values = AnimationUtils.arraySlice(this.values), stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, lastIndex = times.length - 1; let writeIndex = 1; for (let i = 1; i < lastIndex; ++i) { let keep = false; const time = times[i]; const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time if (time !== timeNext && (i !== 1 || time !== times[0])) { if (!smoothInterpolation) { // remove unnecessary keyframes same as their neighbors const offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for (let j = 0; j !== stride; ++j) { const value = values[offset + j]; if (value !== values[offsetP + j] || value !== values[offsetN + j]) { keep = true; break; } } } else { keep = true; } } // in-place compaction if (keep) { if (i !== writeIndex) { times[writeIndex] = times[i]; const readOffset = i * stride, writeOffset = writeIndex * stride; for (let j = 0; j !== stride; ++j) { values[writeOffset + j] = values[readOffset + j]; } } ++writeIndex; } } // flush last keyframe (compaction looks ahead) if (lastIndex > 0) { times[writeIndex] = times[lastIndex]; for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) { values[writeOffset + j] = values[readOffset + j]; } ++writeIndex; } if (writeIndex !== times.length) { this.times = AnimationUtils.arraySlice(times, 0, writeIndex); this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride); } else { this.times = times; this.values = values; } return this; } clone() { const times = AnimationUtils.arraySlice(this.times, 0); const values = AnimationUtils.arraySlice(this.values, 0); const TypedKeyframeTrack = this.constructor; const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly. track.createInterpolant = this.createInterpolant; return track; } } KeyframeTrack.prototype.TimeBufferType = Float32Array; KeyframeTrack.prototype.ValueBufferType = Float32Array; KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; /** * A Track of Boolean keyframe values. */ class BooleanKeyframeTrack extends KeyframeTrack {} BooleanKeyframeTrack.prototype.ValueTypeName = 'bool'; BooleanKeyframeTrack.prototype.ValueBufferType = Array; BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed /** * A Track of keyframe values that represent color. */ class ColorKeyframeTrack extends KeyframeTrack {} ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited /** * A Track of numeric keyframe values. */ class NumberKeyframeTrack extends KeyframeTrack {} NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited /** * Spherical linear unit quaternion interpolant. */ class QuaternionLinearInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, alpha = (t - t0) / (t1 - t0); let offset = i1 * stride; for (let end = offset + stride; offset !== end; offset += 4) { Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha); } return result; } } /** * A Track of quaternion keyframe values. */ class QuaternionKeyframeTrack extends KeyframeTrack { InterpolantFactoryMethodLinear(result) { return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result); } } QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track that interpolates Strings */ class StringKeyframeTrack extends KeyframeTrack {} StringKeyframeTrack.prototype.ValueTypeName = 'string'; StringKeyframeTrack.prototype.ValueBufferType = Array; StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track of vectored keyframe values. */ class VectorKeyframeTrack extends KeyframeTrack {} VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited class AnimationClip { constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) { this.name = name; this.tracks = tracks; this.duration = duration; this.blendMode = blendMode; this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks if (this.duration < 0) { this.resetDuration(); } } static parse(json) { const tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / (json.fps || 1.0); for (let i = 0, n = jsonTracks.length; i !== n; ++i) { tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime)); } const clip = new this(json.name, json.duration, tracks, json.blendMode); clip.uuid = json.uuid; return clip; } static toJSON(clip) { const tracks = [], clipTracks = clip.tracks; const json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks, 'uuid': clip.uuid, 'blendMode': clip.blendMode }; for (let i = 0, n = clipTracks.length; i !== n; ++i) { tracks.push(KeyframeTrack.toJSON(clipTracks[i])); } return json; } static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) { const numMorphTargets = morphTargetSequence.length; const tracks = []; for (let i = 0; i < numMorphTargets; i++) { let times = []; let values = []; times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets); values.push(0, 1, 0); const order = AnimationUtils.getKeyframeOrder(times); times = AnimationUtils.sortedArray(times, 1, order); values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if (!noLoop && times[0] === 0) { times.push(numMorphTargets); values.push(values[0]); } tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps)); } return new this(name, -1, tracks); } static findByName(objectOrClipArray, name) { let clipArray = objectOrClipArray; if (!Array.isArray(objectOrClipArray)) { const o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations; } for (let i = 0; i < clipArray.length; i++) { if (clipArray[i].name === name) { return clipArray[i]; } } return null; } static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) { const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for (let i = 0, il = morphTargets.length; i < il; i++) { const morphTarget = morphTargets[i]; const parts = morphTarget.name.match(pattern); if (parts && parts.length > 1) { const name = parts[1]; let animationMorphTargets = animationToMorphTargets[name]; if (!animationMorphTargets) { animationToMorphTargets[name] = animationMorphTargets = []; } animationMorphTargets.push(morphTarget); } } const clips = []; for (const name in animationToMorphTargets) { clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop)); } return clips; } // parse the animation.hierarchy format static parseAnimation(animation, bones) { if (!animation) { console.error('THREE.AnimationClip: No animation in JSONLoader data.'); return null; } const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) { // only return track if there are actually keys. if (animationKeys.length !== 0) { const times = []; const values = []; AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again if (times.length !== 0) { destTracks.push(new trackType(trackName, times, values)); } } }; const tracks = []; const clipName = animation.name || 'default'; const fps = animation.fps || 30; const blendMode = animation.blendMode; // automatic length determination in AnimationClip. let duration = animation.length || -1; const hierarchyTracks = animation.hierarchy || []; for (let h = 0; h < hierarchyTracks.length; h++) { const animationKeys = hierarchyTracks[h].keys; // skip empty tracks if (!animationKeys || animationKeys.length === 0) continue; // process morph targets if (animationKeys[0].morphTargets) { // figure out all morph targets used in this track const morphTargetNames = {}; let k; for (k = 0; k < animationKeys.length; k++) { if (animationKeys[k].morphTargets) { for (let m = 0; m < animationKeys[k].morphTargets.length; m++) { morphTargetNames[animationKeys[k].morphTargets[m]] = -1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for (const morphTargetName in morphTargetNames) { const times = []; const values = []; for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) { const animationKey = animationKeys[k]; times.push(animationKey.time); values.push(animationKey.morphTarget === morphTargetName ? 1 : 0); } tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values)); } duration = morphTargetNames.length * (fps || 1.0); } else { // ...assume skeletal animation const boneName = '.bones[' + bones[h].name + ']'; addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks); addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks); addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks); } } if (tracks.length === 0) { return null; } const clip = new this(clipName, duration, tracks, blendMode); return clip; } resetDuration() { const tracks = this.tracks; let duration = 0; for (let i = 0, n = tracks.length; i !== n; ++i) { const track = this.tracks[i]; duration = Math.max(duration, track.times[track.times.length - 1]); } this.duration = duration; return this; } trim() { for (let i = 0; i < this.tracks.length; i++) { this.tracks[i].trim(0, this.duration); } return this; } validate() { let valid = true; for (let i = 0; i < this.tracks.length; i++) { valid = valid && this.tracks[i].validate(); } return valid; } optimize() { for (let i = 0; i < this.tracks.length; i++) { this.tracks[i].optimize(); } return this; } clone() { const tracks = []; for (let i = 0; i < this.tracks.length; i++) { tracks.push(this.tracks[i].clone()); } return new this.constructor(this.name, this.duration, tracks, this.blendMode); } toJSON() { return this.constructor.toJSON(this); } } function getTrackTypeForValueTypeName(typeName) { switch (typeName.toLowerCase()) { case 'scalar': case 'double': case 'float': case 'number': case 'integer': return NumberKeyframeTrack; case 'vector': case 'vector2': case 'vector3': case 'vector4': return VectorKeyframeTrack; case 'color': return ColorKeyframeTrack; case 'quaternion': return QuaternionKeyframeTrack; case 'bool': case 'boolean': return BooleanKeyframeTrack; case 'string': return StringKeyframeTrack; } throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName); } function parseKeyframeTrack(json) { if (json.type === undefined) { throw new Error('THREE.KeyframeTrack: track type undefined, can not parse'); } const trackType = getTrackTypeForValueTypeName(json.type); if (json.times === undefined) { const times = [], values = []; AnimationUtils.flattenJSON(json.keys, times, values, 'value'); json.times = times; json.values = values; } // derived classes can define a static parse method if (trackType.parse !== undefined) { return trackType.parse(json); } else { // by default, we assume a constructor compatible with the base return new trackType(json.name, json.times, json.values, json.interpolation); } } const Cache = { enabled: false, files: {}, add: function (key, file) { if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[key] = file; }, get: function (key) { if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[key]; }, remove: function (key) { delete this.files[key]; }, clear: function () { this.files = {}; } }; class LoadingManager { constructor(onLoad, onProgress, onError) { const scope = this; let isLoading = false; let itemsLoaded = 0; let itemsTotal = 0; let urlModifier = undefined; const handlers = []; // Refer to #5689 for the reason why we don't set .onStart // in the constructor this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function (url) { itemsTotal++; if (isLoading === false) { if (scope.onStart !== undefined) { scope.onStart(url, itemsLoaded, itemsTotal); } } isLoading = true; }; this.itemEnd = function (url) { itemsLoaded++; if (scope.onProgress !== undefined) { scope.onProgress(url, itemsLoaded, itemsTotal); } if (itemsLoaded === itemsTotal) { isLoading = false; if (scope.onLoad !== undefined) { scope.onLoad(); } } }; this.itemError = function (url) { if (scope.onError !== undefined) { scope.onError(url); } }; this.resolveURL = function (url) { if (urlModifier) { return urlModifier(url); } return url; }; this.setURLModifier = function (transform) { urlModifier = transform; return this; }; this.addHandler = function (regex, loader) { handlers.push(regex, loader); return this; }; this.removeHandler = function (regex) { const index = handlers.indexOf(regex); if (index !== -1) { handlers.splice(index, 2); } return this; }; this.getHandler = function (file) { for (let i = 0, l = handlers.length; i < l; i += 2) { const regex = handlers[i]; const loader = handlers[i + 1]; if (regex.global) regex.lastIndex = 0; // see #17920 if (regex.test(file)) { return loader; } } return null; }; } } const DefaultLoadingManager = new LoadingManager(); class Loader { constructor(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager; this.crossOrigin = 'anonymous'; this.withCredentials = false; this.path = ''; this.resourcePath = ''; this.requestHeader = {}; } load() /* url, onLoad, onProgress, onError */ {} loadAsync(url, onProgress) { const scope = this; return new Promise(function (resolve, reject) { scope.load(url, resolve, onProgress, reject); }); } parse() /* data */ {} setCrossOrigin(crossOrigin) { this.crossOrigin = crossOrigin; return this; } setWithCredentials(value) { this.withCredentials = value; return this; } setPath(path) { this.path = path; return this; } setResourcePath(resourcePath) { this.resourcePath = resourcePath; return this; } setRequestHeader(requestHeader) { this.requestHeader = requestHeader; return this; } } const loading = {}; class FileLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { if (url === undefined) url = ''; if (this.path !== undefined) url = this.path + url; url = this.manager.resolveURL(url); const scope = this; const cached = Cache.get(url); if (cached !== undefined) { scope.manager.itemStart(url); setTimeout(function () { if (onLoad) onLoad(cached); scope.manager.itemEnd(url); }, 0); return cached; } // Check if request is duplicate if (loading[url] !== undefined) { loading[url].push({ onLoad: onLoad, onProgress: onProgress, onError: onError }); return; } // Check for data: URI const dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; const dataUriRegexResult = url.match(dataUriRegex); let request; // Safari can not handle Data URIs through XMLHttpRequest so process manually if (dataUriRegexResult) { const mimeType = dataUriRegexResult[1]; const isBase64 = !!dataUriRegexResult[2]; let data = dataUriRegexResult[3]; data = decodeURIComponent(data); if (isBase64) data = atob(data); try { let response; const responseType = (this.responseType || '').toLowerCase(); switch (responseType) { case 'arraybuffer': case 'blob': const view = new Uint8Array(data.length); for (let i = 0; i < data.length; i++) { view[i] = data.charCodeAt(i); } if (responseType === 'blob') { response = new Blob([view.buffer], { type: mimeType }); } else { response = view.buffer; } break; case 'document': const parser = new DOMParser(); response = parser.parseFromString(data, mimeType); break; case 'json': response = JSON.parse(data); break; default: // 'text' or other response = data; break; } // Wait for next browser tick like standard XMLHttpRequest event dispatching does setTimeout(function () { if (onLoad) onLoad(response); scope.manager.itemEnd(url); }, 0); } catch (error) { // Wait for next browser tick like standard XMLHttpRequest event dispatching does setTimeout(function () { if (onError) onError(error); scope.manager.itemError(url); scope.manager.itemEnd(url); }, 0); } } else { // Initialise array for duplicate requests loading[url] = []; loading[url].push({ onLoad: onLoad, onProgress: onProgress, onError: onError }); request = new XMLHttpRequest(); request.open('GET', url, true); request.addEventListener('load', function (event) { const response = this.response; const callbacks = loading[url]; delete loading[url]; if (this.status === 200 || this.status === 0) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. if (this.status === 0) console.warn('THREE.FileLoader: HTTP Status 0 received.'); // Add to cache only on HTTP success, so that we do not cache // error response bodies as proper responses to requests. Cache.add(url, response); for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i]; if (callback.onLoad) callback.onLoad(response); } scope.manager.itemEnd(url); } else { for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i]; if (callback.onError) callback.onError(event); } scope.manager.itemError(url); scope.manager.itemEnd(url); } }, false); request.addEventListener('progress', function (event) { const callbacks = loading[url]; for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i]; if (callback.onProgress) callback.onProgress(event); } }, false); request.addEventListener('error', function (event) { const callbacks = loading[url]; delete loading[url]; for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i]; if (callback.onError) callback.onError(event); } scope.manager.itemError(url); scope.manager.itemEnd(url); }, false); request.addEventListener('abort', function (event) { const callbacks = loading[url]; delete loading[url]; for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i]; if (callback.onError) callback.onError(event); } scope.manager.itemError(url); scope.manager.itemEnd(url); }, false); if (this.responseType !== undefined) request.responseType = this.responseType; if (this.withCredentials !== undefined) request.withCredentials = this.withCredentials; if (request.overrideMimeType) request.overrideMimeType(this.mimeType !== undefined ? this.mimeType : 'text/plain'); for (const header in this.requestHeader) { request.setRequestHeader(header, this.requestHeader[header]); } request.send(null); } scope.manager.itemStart(url); return request; } setResponseType(value) { this.responseType = value; return this; } setMimeType(value) { this.mimeType = value; return this; } } class AnimationLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function (text) { try { onLoad(scope.parse(JSON.parse(text))); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } parse(json) { const animations = []; for (let i = 0; i < json.length; i++) { const clip = AnimationClip.parse(json[i]); animations.push(clip); } return animations; } } /** * Abstract Base class to block based textures loader (dds, pvr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class CompressedTextureLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const images = []; const texture = new CompressedTexture(); const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setResponseType('arraybuffer'); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(scope.withCredentials); let loaded = 0; function loadTexture(i) { loader.load(url[i], function (buffer) { const texDatas = scope.parse(buffer, true); images[i] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if (loaded === 6) { if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter; texture.image = images; texture.format = texDatas.format; texture.needsUpdate = true; if (onLoad) onLoad(texture); } }, onProgress, onError); } if (Array.isArray(url)) { for (let i = 0, il = url.length; i < il; ++i) { loadTexture(i); } } else { // compressed cubemap texture stored in a single DDS file loader.load(url, function (buffer) { const texDatas = scope.parse(buffer, true); if (texDatas.isCubemap) { const faces = texDatas.mipmaps.length / texDatas.mipmapCount; for (let f = 0; f < faces; f++) { images[f] = { mipmaps: [] }; for (let i = 0; i < texDatas.mipmapCount; i++) { images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]); images[f].format = texDatas.format; images[f].width = texDatas.width; images[f].height = texDatas.height; } } texture.image = images; } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if (texDatas.mipmapCount === 1) { texture.minFilter = LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if (onLoad) onLoad(texture); }, onProgress, onError); } return texture; } } class ImageLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { if (this.path !== undefined) url = this.path + url; url = this.manager.resolveURL(url); const scope = this; const cached = Cache.get(url); if (cached !== undefined) { scope.manager.itemStart(url); setTimeout(function () { if (onLoad) onLoad(cached); scope.manager.itemEnd(url); }, 0); return cached; } const image = document.createElementNS('http://www.w3.org/1999/xhtml', 'img'); function onImageLoad() { image.removeEventListener('load', onImageLoad, false); image.removeEventListener('error', onImageError, false); Cache.add(url, this); if (onLoad) onLoad(this); scope.manager.itemEnd(url); } function onImageError(event) { image.removeEventListener('load', onImageLoad, false); image.removeEventListener('error', onImageError, false); if (onError) onError(event); scope.manager.itemError(url); scope.manager.itemEnd(url); } image.addEventListener('load', onImageLoad, false); image.addEventListener('error', onImageError, false); if (url.substr(0, 5) !== 'data:') { if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin; } scope.manager.itemStart(url); image.src = url; return image; } } class CubeTextureLoader extends Loader { constructor(manager) { super(manager); } load(urls, onLoad, onProgress, onError) { const texture = new CubeTexture(); const loader = new ImageLoader(this.manager); loader.setCrossOrigin(this.crossOrigin); loader.setPath(this.path); let loaded = 0; function loadTexture(i) { loader.load(urls[i], function (image) { texture.images[i] = image; loaded++; if (loaded === 6) { texture.needsUpdate = true; if (onLoad) onLoad(texture); } }, undefined, onError); } for (let i = 0; i < urls.length; ++i) { loadTexture(i); } return texture; } } /** * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class DataTextureLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const texture = new DataTexture(); const loader = new FileLoader(this.manager); loader.setResponseType('arraybuffer'); loader.setRequestHeader(this.requestHeader); loader.setPath(this.path); loader.setWithCredentials(scope.withCredentials); loader.load(url, function (buffer) { const texData = scope.parse(buffer); if (!texData) return; if (texData.image !== undefined) { texture.image = texData.image; } else if (texData.data !== undefined) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; if (texData.encoding !== undefined) { texture.encoding = texData.encoding; } if (texData.flipY !== undefined) { texture.flipY = texData.flipY; } if (texData.format !== undefined) { texture.format = texData.format; } if (texData.type !== undefined) { texture.type = texData.type; } if (texData.mipmaps !== undefined) { texture.mipmaps = texData.mipmaps; texture.minFilter = LinearMipmapLinearFilter; // presumably... } if (texData.mipmapCount === 1) { texture.minFilter = LinearFilter; } if (texData.generateMipmaps !== undefined) { texture.generateMipmaps = texData.generateMipmaps; } texture.needsUpdate = true; if (onLoad) onLoad(texture, texData); }, onProgress, onError); return texture; } } class TextureLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const texture = new Texture(); const loader = new ImageLoader(this.manager); loader.setCrossOrigin(this.crossOrigin); loader.setPath(this.path); loader.load(url, function (image) { texture.image = image; // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB. const isJPEG = url.search(/\.jpe?g($|\?)/i) > 0 || url.search(/^data\:image\/jpeg/) === 0; texture.format = isJPEG ? RGBFormat : RGBAFormat; texture.needsUpdate = true; if (onLoad !== undefined) { onLoad(texture); } }, onProgress, onError); return texture; } } /** * Extensible curve object. * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ class Curve { constructor() { this.type = 'Curve'; this.arcLengthDivisions = 200; } // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint() /* t, optionalTarget */ { console.warn('THREE.Curve: .getPoint() not implemented.'); return null; } // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt(u, optionalTarget) { const t = this.getUtoTmapping(u); return this.getPoint(t, optionalTarget); } // Get sequence of points using getPoint( t ) getPoints(divisions = 5) { const points = []; for (let d = 0; d <= divisions; d++) { points.push(this.getPoint(d / divisions)); } return points; } // Get sequence of points using getPointAt( u ) getSpacedPoints(divisions = 5) { const points = []; for (let d = 0; d <= divisions; d++) { points.push(this.getPointAt(d / divisions)); } return points; } // Get total curve arc length getLength() { const lengths = this.getLengths(); return lengths[lengths.length - 1]; } // Get list of cumulative segment lengths getLengths(divisions = this.arcLengthDivisions) { if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) { return this.cacheArcLengths; } this.needsUpdate = false; const cache = []; let current, last = this.getPoint(0); let sum = 0; cache.push(0); for (let p = 1; p <= divisions; p++) { current = this.getPoint(p / divisions); sum += current.distanceTo(last); cache.push(sum); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum: sum }; Sum is in the last element. } updateArcLengths() { this.needsUpdate = true; this.getLengths(); } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping(u, distance) { const arcLengths = this.getLengths(); let i = 0; const il = arcLengths.length; let targetArcLength; // The targeted u distance value to get if (distance) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[il - 1]; } // binary search for the index with largest value smaller than target u distance let low = 0, high = il - 1, comparison; while (low <= high) { i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[i] - targetArcLength; if (comparison < 0) { low = i + 1; } else if (comparison > 0) { high = i - 1; } else { high = i; break; // DONE } } i = high; if (arcLengths[i] === targetArcLength) { return i / (il - 1); } // we could get finer grain at lengths, or use simple interpolation between two points const lengthBefore = arcLengths[i]; const lengthAfter = arcLengths[i + 1]; const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t const t = (i + segmentFraction) / (il - 1); return t; } // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent(t, optionalTarget) { const delta = 0.0001; let t1 = t - delta; let t2 = t + delta; // Capping in case of danger if (t1 < 0) t1 = 0; if (t2 > 1) t2 = 1; const pt1 = this.getPoint(t1); const pt2 = this.getPoint(t2); const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3()); tangent.copy(pt2).sub(pt1).normalize(); return tangent; } getTangentAt(u, optionalTarget) { const t = this.getUtoTmapping(u); return this.getTangent(t, optionalTarget); } computeFrenetFrames(segments, closed) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf const normal = new Vector3(); const tangents = []; const normals = []; const binormals = []; const vec = new Vector3(); const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve for (let i = 0; i <= segments; i++) { const u = i / segments; tangents[i] = this.getTangentAt(u, new Vector3()); tangents[i].normalize(); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[0] = new Vector3(); binormals[0] = new Vector3(); let min = Number.MAX_VALUE; const tx = Math.abs(tangents[0].x); const ty = Math.abs(tangents[0].y); const tz = Math.abs(tangents[0].z); if (tx <= min) { min = tx; normal.set(1, 0, 0); } if (ty <= min) { min = ty; normal.set(0, 1, 0); } if (tz <= min) { normal.set(0, 0, 1); } vec.crossVectors(tangents[0], normal).normalize(); normals[0].crossVectors(tangents[0], vec); binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve for (let i = 1; i <= segments; i++) { normals[i] = normals[i - 1].clone(); binormals[i] = binormals[i - 1].clone(); vec.crossVectors(tangents[i - 1], tangents[i]); if (vec.length() > Number.EPSILON) { vec.normalize(); const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta)); } binormals[i].crossVectors(tangents[i], normals[i]); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if (closed === true) { let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1)); theta /= segments; if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) { theta = -theta; } for (let i = 1; i <= segments; i++) { // twist a little... normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i)); binormals[i].crossVectors(tangents[i], normals[i]); } } return { tangents: tangents, normals: normals, binormals: binormals }; } clone() { return new this.constructor().copy(this); } copy(source) { this.arcLengthDivisions = source.arcLengthDivisions; return this; } toJSON() { const data = { metadata: { version: 4.5, type: 'Curve', generator: 'Curve.toJSON' } }; data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type; return data; } fromJSON(json) { this.arcLengthDivisions = json.arcLengthDivisions; return this; } } class EllipseCurve extends Curve { constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) { super(); this.type = 'EllipseCurve'; this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation; } getPoint(t, optionalTarget) { const point = optionalTarget || new Vector2(); const twoPi = Math.PI * 2; let deltaAngle = this.aEndAngle - this.aStartAngle; const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI while (deltaAngle < 0) deltaAngle += twoPi; while (deltaAngle > twoPi) deltaAngle -= twoPi; if (deltaAngle < Number.EPSILON) { if (samePoints) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if (this.aClockwise === true && !samePoints) { if (deltaAngle === twoPi) { deltaAngle = -twoPi; } else { deltaAngle = deltaAngle - twoPi; } } const angle = this.aStartAngle + t * deltaAngle; let x = this.aX + this.xRadius * Math.cos(angle); let y = this.aY + this.yRadius * Math.sin(angle); if (this.aRotation !== 0) { const cos = Math.cos(this.aRotation); const sin = Math.sin(this.aRotation); const tx = x - this.aX; const ty = y - this.aY; // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return point.set(x, y); } copy(source) { super.copy(source); this.aX = source.aX; this.aY = source.aY; this.xRadius = source.xRadius; this.yRadius = source.yRadius; this.aStartAngle = source.aStartAngle; this.aEndAngle = source.aEndAngle; this.aClockwise = source.aClockwise; this.aRotation = source.aRotation; return this; } toJSON() { const data = super.toJSON(); data.aX = this.aX; data.aY = this.aY; data.xRadius = this.xRadius; data.yRadius = this.yRadius; data.aStartAngle = this.aStartAngle; data.aEndAngle = this.aEndAngle; data.aClockwise = this.aClockwise; data.aRotation = this.aRotation; return data; } fromJSON(json) { super.fromJSON(json); this.aX = json.aX; this.aY = json.aY; this.xRadius = json.xRadius; this.yRadius = json.yRadius; this.aStartAngle = json.aStartAngle; this.aEndAngle = json.aEndAngle; this.aClockwise = json.aClockwise; this.aRotation = json.aRotation; return this; } } EllipseCurve.prototype.isEllipseCurve = true; class ArcCurve extends EllipseCurve { constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); this.type = 'ArcCurve'; } } ArcCurve.prototype.isArcCurve = true; /** * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { let c0 = 0, c1 = 0, c2 = 0, c3 = 0; /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init(x0, x1, t0, t1) { c0 = x0; c1 = t0; c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1; } return { initCatmullRom: function (x0, x1, x2, x3, tension) { init(x1, x2, tension * (x2 - x0), tension * (x3 - x1)); }, initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) { // compute tangents when parameterized in [t1,t2] let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1; let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; init(x1, x2, t1, t2); }, calc: function (t) { const t2 = t * t; const t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3; } }; } // const tmp = new Vector3(); const px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly(); class CatmullRomCurve3 extends Curve { constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) { super(); this.type = 'CatmullRomCurve3'; this.points = points; this.closed = closed; this.curveType = curveType; this.tension = tension; } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; const points = this.points; const l = points.length; const p = (l - (this.closed ? 0 : 1)) * t; let intPoint = Math.floor(p); let weight = p - intPoint; if (this.closed) { intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l; } else if (weight === 0 && intPoint === l - 1) { intPoint = l - 2; weight = 1; } let p0, p3; // 4 points (p1 & p2 defined below) if (this.closed || intPoint > 0) { p0 = points[(intPoint - 1) % l]; } else { // extrapolate first point tmp.subVectors(points[0], points[1]).add(points[0]); p0 = tmp; } const p1 = points[intPoint % l]; const p2 = points[(intPoint + 1) % l]; if (this.closed || intPoint + 2 < l) { p3 = points[(intPoint + 2) % l]; } else { // extrapolate last point tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]); p3 = tmp; } if (this.curveType === 'centripetal' || this.curveType === 'chordal') { // init Centripetal / Chordal Catmull-Rom const pow = this.curveType === 'chordal' ? 0.5 : 0.25; let dt0 = Math.pow(p0.distanceToSquared(p1), pow); let dt1 = Math.pow(p1.distanceToSquared(p2), pow); let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points if (dt1 < 1e-4) dt1 = 1.0; if (dt0 < 1e-4) dt0 = dt1; if (dt2 < 1e-4) dt2 = dt1; px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2); py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2); pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2); } else if (this.curveType === 'catmullrom') { px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension); py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension); pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension); } point.set(px.calc(weight), py.calc(weight), pz.calc(weight)); return point; } copy(source) { super.copy(source); this.points = []; for (let i = 0, l = source.points.length; i < l; i++) { const point = source.points[i]; this.points.push(point.clone()); } this.closed = source.closed; this.curveType = source.curveType; this.tension = source.tension; return this; } toJSON() { const data = super.toJSON(); data.points = []; for (let i = 0, l = this.points.length; i < l; i++) { const point = this.points[i]; data.points.push(point.toArray()); } data.closed = this.closed; data.curveType = this.curveType; data.tension = this.tension; return data; } fromJSON(json) { super.fromJSON(json); this.points = []; for (let i = 0, l = json.points.length; i < l; i++) { const point = json.points[i]; this.points.push(new Vector3().fromArray(point)); } this.closed = json.closed; this.curveType = json.curveType; this.tension = json.tension; return this; } } CatmullRomCurve3.prototype.isCatmullRomCurve3 = true; /** * Bezier Curves formulas obtained from * http://en.wikipedia.org/wiki/Bézier_curve */ function CatmullRom(t, p0, p1, p2, p3) { const v0 = (p2 - p0) * 0.5; const v1 = (p3 - p1) * 0.5; const t2 = t * t; const t3 = t * t2; return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; } // function QuadraticBezierP0(t, p) { const k = 1 - t; return k * k * p; } function QuadraticBezierP1(t, p) { return 2 * (1 - t) * t * p; } function QuadraticBezierP2(t, p) { return t * t * p; } function QuadraticBezier(t, p0, p1, p2) { return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2); } // function CubicBezierP0(t, p) { const k = 1 - t; return k * k * k * p; } function CubicBezierP1(t, p) { const k = 1 - t; return 3 * k * k * t * p; } function CubicBezierP2(t, p) { return 3 * (1 - t) * t * t * p; } function CubicBezierP3(t, p) { return t * t * t * p; } function CubicBezier(t, p0, p1, p2, p3) { return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3); } class CubicBezierCurve extends Curve { constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) { super(); this.type = 'CubicBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y)); return point; } copy(source) { super.copy(source); this.v0.copy(source.v0); this.v1.copy(source.v1); this.v2.copy(source.v2); this.v3.copy(source.v3); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v0.fromArray(json.v0); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); this.v3.fromArray(json.v3); return this; } } CubicBezierCurve.prototype.isCubicBezierCurve = true; class CubicBezierCurve3 extends Curve { constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) { super(); this.type = 'CubicBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z)); return point; } copy(source) { super.copy(source); this.v0.copy(source.v0); this.v1.copy(source.v1); this.v2.copy(source.v2); this.v3.copy(source.v3); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v0.fromArray(json.v0); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); this.v3.fromArray(json.v3); return this; } } CubicBezierCurve3.prototype.isCubicBezierCurve3 = true; class LineCurve extends Curve { constructor(v1 = new Vector2(), v2 = new Vector2()) { super(); this.type = 'LineCurve'; this.v1 = v1; this.v2 = v2; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; if (t === 1) { point.copy(this.v2); } else { point.copy(this.v2).sub(this.v1); point.multiplyScalar(t).add(this.v1); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt(u, optionalTarget) { return this.getPoint(u, optionalTarget); } getTangent(t, optionalTarget) { const tangent = optionalTarget || new Vector2(); tangent.copy(this.v2).sub(this.v1).normalize(); return tangent; } copy(source) { super.copy(source); this.v1.copy(source.v1); this.v2.copy(source.v2); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); return this; } } LineCurve.prototype.isLineCurve = true; class LineCurve3 extends Curve { constructor(v1 = new Vector3(), v2 = new Vector3()) { super(); this.type = 'LineCurve3'; this.isLineCurve3 = true; this.v1 = v1; this.v2 = v2; } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; if (t === 1) { point.copy(this.v2); } else { point.copy(this.v2).sub(this.v1); point.multiplyScalar(t).add(this.v1); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt(u, optionalTarget) { return this.getPoint(u, optionalTarget); } copy(source) { super.copy(source); this.v1.copy(source.v1); this.v2.copy(source.v2); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); return this; } } class QuadraticBezierCurve extends Curve { constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) { super(); this.type = 'QuadraticBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y)); return point; } copy(source) { super.copy(source); this.v0.copy(source.v0); this.v1.copy(source.v1); this.v2.copy(source.v2); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v0.fromArray(json.v0); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); return this; } } QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true; class QuadraticBezierCurve3 extends Curve { constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) { super(); this.type = 'QuadraticBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z)); return point; } copy(source) { super.copy(source); this.v0.copy(source.v0); this.v1.copy(source.v1); this.v2.copy(source.v2); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v0.fromArray(json.v0); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); return this; } } QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true; class SplineCurve extends Curve { constructor(points = []) { super(); this.type = 'SplineCurve'; this.points = points; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; const points = this.points; const p = (points.length - 1) * t; const intPoint = Math.floor(p); const weight = p - intPoint; const p0 = points[intPoint === 0 ? intPoint : intPoint - 1]; const p1 = points[intPoint]; const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1]; const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2]; point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y)); return point; } copy(source) { super.copy(source); this.points = []; for (let i = 0, l = source.points.length; i < l; i++) { const point = source.points[i]; this.points.push(point.clone()); } return this; } toJSON() { const data = super.toJSON(); data.points = []; for (let i = 0, l = this.points.length; i < l; i++) { const point = this.points[i]; data.points.push(point.toArray()); } return data; } fromJSON(json) { super.fromJSON(json); this.points = []; for (let i = 0, l = json.points.length; i < l; i++) { const point = json.points[i]; this.points.push(new Vector2().fromArray(point)); } return this; } } SplineCurve.prototype.isSplineCurve = true; var Curves = /*#__PURE__*/Object.freeze({ __proto__: null, ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve }); /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ class CurvePath extends Curve { constructor() { super(); this.type = 'CurvePath'; this.curves = []; this.autoClose = false; // Automatically closes the path } add(curve) { this.curves.push(curve); } closePath() { // Add a line curve if start and end of lines are not connected const startPoint = this.curves[0].getPoint(0); const endPoint = this.curves[this.curves.length - 1].getPoint(1); if (!startPoint.equals(endPoint)) { this.curves.push(new LineCurve(endPoint, startPoint)); } } // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint(t) { const d = t * this.getLength(); const curveLengths = this.getCurveLengths(); let i = 0; // To think about boundaries points. while (i < curveLengths.length) { if (curveLengths[i] >= d) { const diff = curveLengths[i] - d; const curve = this.curves[i]; const segmentLength = curve.getLength(); const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; return curve.getPointAt(u); } i++; } return null; // loop where sum != 0, sum > d , sum+1 1 && !points[points.length - 1].equals(points[0])) { points.push(points[0]); } return points; } copy(source) { super.copy(source); this.curves = []; for (let i = 0, l = source.curves.length; i < l; i++) { const curve = source.curves[i]; this.curves.push(curve.clone()); } this.autoClose = source.autoClose; return this; } toJSON() { const data = super.toJSON(); data.autoClose = this.autoClose; data.curves = []; for (let i = 0, l = this.curves.length; i < l; i++) { const curve = this.curves[i]; data.curves.push(curve.toJSON()); } return data; } fromJSON(json) { super.fromJSON(json); this.autoClose = json.autoClose; this.curves = []; for (let i = 0, l = json.curves.length; i < l; i++) { const curve = json.curves[i]; this.curves.push(new Curves[curve.type]().fromJSON(curve)); } return this; } } class Path extends CurvePath { constructor(points) { super(); this.type = 'Path'; this.currentPoint = new Vector2(); if (points) { this.setFromPoints(points); } } setFromPoints(points) { this.moveTo(points[0].x, points[0].y); for (let i = 1, l = points.length; i < l; i++) { this.lineTo(points[i].x, points[i].y); } return this; } moveTo(x, y) { this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying? return this; } lineTo(x, y) { const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y)); this.curves.push(curve); this.currentPoint.set(x, y); return this; } quadraticCurveTo(aCPx, aCPy, aX, aY) { const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY)); this.curves.push(curve); this.currentPoint.set(aX, aY); return this; } bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY)); this.curves.push(curve); this.currentPoint.set(aX, aY); return this; } splineThru(pts /*Array of Vector*/ ) { const npts = [this.currentPoint.clone()].concat(pts); const curve = new SplineCurve(npts); this.curves.push(curve); this.currentPoint.copy(pts[pts.length - 1]); return this; } arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise); return this; } absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); return this; } ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation); return this; } absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation); if (this.curves.length > 0) { // if a previous curve is present, attempt to join const firstPoint = curve.getPoint(0); if (!firstPoint.equals(this.currentPoint)) { this.lineTo(firstPoint.x, firstPoint.y); } } this.curves.push(curve); const lastPoint = curve.getPoint(1); this.currentPoint.copy(lastPoint); return this; } copy(source) { super.copy(source); this.currentPoint.copy(source.currentPoint); return this; } toJSON() { const data = super.toJSON(); data.currentPoint = this.currentPoint.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.currentPoint.fromArray(json.currentPoint); return this; } } class Shape extends Path { constructor(points) { super(points); this.uuid = generateUUID(); this.type = 'Shape'; this.holes = []; } getPointsHoles(divisions) { const holesPts = []; for (let i = 0, l = this.holes.length; i < l; i++) { holesPts[i] = this.holes[i].getPoints(divisions); } return holesPts; } // get points of shape and holes (keypoints based on segments parameter) extractPoints(divisions) { return { shape: this.getPoints(divisions), holes: this.getPointsHoles(divisions) }; } copy(source) { super.copy(source); this.holes = []; for (let i = 0, l = source.holes.length; i < l; i++) { const hole = source.holes[i]; this.holes.push(hole.clone()); } return this; } toJSON() { const data = super.toJSON(); data.uuid = this.uuid; data.holes = []; for (let i = 0, l = this.holes.length; i < l; i++) { const hole = this.holes[i]; data.holes.push(hole.toJSON()); } return data; } fromJSON(json) { super.fromJSON(json); this.uuid = json.uuid; this.holes = []; for (let i = 0, l = json.holes.length; i < l; i++) { const hole = json.holes[i]; this.holes.push(new Path().fromJSON(hole)); } return this; } } class Light extends Object3D { constructor(color, intensity = 1) { super(); this.type = 'Light'; this.color = new Color(color); this.intensity = intensity; } dispose() {// Empty here in base class; some subclasses override. } copy(source) { super.copy(source); this.color.copy(source.color); this.intensity = source.intensity; return this; } toJSON(meta) { const data = super.toJSON(meta); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex(); if (this.distance !== undefined) data.object.distance = this.distance; if (this.angle !== undefined) data.object.angle = this.angle; if (this.decay !== undefined) data.object.decay = this.decay; if (this.penumbra !== undefined) data.object.penumbra = this.penumbra; if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON(); return data; } } Light.prototype.isLight = true; class HemisphereLight extends Light { constructor(skyColor, groundColor, intensity) { super(skyColor, intensity); this.type = 'HemisphereLight'; this.position.copy(Object3D.DefaultUp); this.updateMatrix(); this.groundColor = new Color(groundColor); } copy(source) { Light.prototype.copy.call(this, source); this.groundColor.copy(source.groundColor); return this; } } HemisphereLight.prototype.isHemisphereLight = true; const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4(); const _lightPositionWorld$1 = /*@__PURE__*/new Vector3(); const _lookTarget$1 = /*@__PURE__*/new Vector3(); class LightShadow { constructor(camera) { this.camera = camera; this.bias = 0; this.normalBias = 0; this.radius = 1; this.mapSize = new Vector2(512, 512); this.map = null; this.mapPass = null; this.matrix = new Matrix4(); this.autoUpdate = true; this.needsUpdate = false; this._frustum = new Frustum(); this._frameExtents = new Vector2(1, 1); this._viewportCount = 1; this._viewports = [new Vector4(0, 0, 1, 1)]; } getViewportCount() { return this._viewportCount; } getFrustum() { return this._frustum; } updateMatrices(light) { const shadowCamera = this.camera; const shadowMatrix = this.matrix; _lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld); shadowCamera.position.copy(_lightPositionWorld$1); _lookTarget$1.setFromMatrixPosition(light.target.matrixWorld); shadowCamera.lookAt(_lookTarget$1); shadowCamera.updateMatrixWorld(); _projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse); this._frustum.setFromProjectionMatrix(_projScreenMatrix$1); shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0); shadowMatrix.multiply(shadowCamera.projectionMatrix); shadowMatrix.multiply(shadowCamera.matrixWorldInverse); } getViewport(viewportIndex) { return this._viewports[viewportIndex]; } getFrameExtents() { return this._frameExtents; } dispose() { if (this.map) { this.map.dispose(); } if (this.mapPass) { this.mapPass.dispose(); } } copy(source) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy(source.mapSize); return this; } clone() { return new this.constructor().copy(this); } toJSON() { const object = {}; if (this.bias !== 0) object.bias = this.bias; if (this.normalBias !== 0) object.normalBias = this.normalBias; if (this.radius !== 1) object.radius = this.radius; if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray(); object.camera = this.camera.toJSON(false).object; delete object.camera.matrix; return object; } } class SpotLightShadow extends LightShadow { constructor() { super(new PerspectiveCamera(50, 1, 0.5, 500)); this.focus = 1; } updateMatrices(light) { const camera = this.camera; const fov = RAD2DEG * 2 * light.angle * this.focus; const aspect = this.mapSize.width / this.mapSize.height; const far = light.distance || camera.far; if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) { camera.fov = fov; camera.aspect = aspect; camera.far = far; camera.updateProjectionMatrix(); } super.updateMatrices(light); } copy(source) { super.copy(source); this.focus = source.focus; return this; } } SpotLightShadow.prototype.isSpotLightShadow = true; class SpotLight extends Light { constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) { super(color, intensity); this.type = 'SpotLight'; this.position.copy(Object3D.DefaultUp); this.updateMatrix(); this.target = new Object3D(); this.distance = distance; this.angle = angle; this.penumbra = penumbra; this.decay = decay; // for physically correct lights, should be 2. this.shadow = new SpotLightShadow(); } get power() { // intensity = power per solid angle. // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf return this.intensity * Math.PI; } set power(power) { // intensity = power per solid angle. // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf this.intensity = power / Math.PI; } dispose() { this.shadow.dispose(); } copy(source) { super.copy(source); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } SpotLight.prototype.isSpotLight = true; const _projScreenMatrix = /*@__PURE__*/new Matrix4(); const _lightPositionWorld = /*@__PURE__*/new Vector3(); const _lookTarget = /*@__PURE__*/new Vector3(); class PointLightShadow extends LightShadow { constructor() { super(new PerspectiveCamera(90, 1, 0.5, 500)); this._frameExtents = new Vector2(4, 2); this._viewportCount = 6; this._viewports = [// These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X new Vector4(2, 1, 1, 1), // negative X new Vector4(0, 1, 1, 1), // positive Z new Vector4(3, 1, 1, 1), // negative Z new Vector4(1, 1, 1, 1), // positive Y new Vector4(3, 0, 1, 1), // negative Y new Vector4(1, 0, 1, 1)]; this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)]; this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)]; } updateMatrices(light, viewportIndex = 0) { const camera = this.camera; const shadowMatrix = this.matrix; const far = light.distance || camera.far; if (far !== camera.far) { camera.far = far; camera.updateProjectionMatrix(); } _lightPositionWorld.setFromMatrixPosition(light.matrixWorld); camera.position.copy(_lightPositionWorld); _lookTarget.copy(camera.position); _lookTarget.add(this._cubeDirections[viewportIndex]); camera.up.copy(this._cubeUps[viewportIndex]); camera.lookAt(_lookTarget); camera.updateMatrixWorld(); shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z); _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse); this._frustum.setFromProjectionMatrix(_projScreenMatrix); } } PointLightShadow.prototype.isPointLightShadow = true; class PointLight extends Light { constructor(color, intensity, distance = 0, decay = 1) { super(color, intensity); this.type = 'PointLight'; this.distance = distance; this.decay = decay; // for physically correct lights, should be 2. this.shadow = new PointLightShadow(); } get power() { // intensity = power per solid angle. // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf return this.intensity * 4 * Math.PI; } set power(power) { // intensity = power per solid angle. // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf this.intensity = power / (4 * Math.PI); } dispose() { this.shadow.dispose(); } copy(source) { super.copy(source); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; } } PointLight.prototype.isPointLight = true; class OrthographicCamera extends Camera { constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) { super(); this.type = 'OrthographicCamera'; this.zoom = 1; this.view = null; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = near; this.far = far; this.updateProjectionMatrix(); } copy(source, recursive) { super.copy(source, recursive); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign({}, source.view); return this; } setViewOffset(fullWidth, fullHeight, x, y, width, height) { if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if (this.view !== null) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const dx = (this.right - this.left) / (2 * this.zoom); const dy = (this.top - this.bottom) / (2 * this.zoom); const cx = (this.right + this.left) / 2; const cy = (this.top + this.bottom) / 2; let left = cx - dx; let right = cx + dx; let top = cy + dy; let bottom = cy - dy; if (this.view !== null && this.view.enabled) { const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom; const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom; left += scaleW * this.view.offsetX; right = left + scaleW * this.view.width; top -= scaleH * this.view.offsetY; bottom = top - scaleH * this.view.height; } this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far); this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); } toJSON(meta) { const data = super.toJSON(meta); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if (this.view !== null) data.object.view = Object.assign({}, this.view); return data; } } OrthographicCamera.prototype.isOrthographicCamera = true; class DirectionalLightShadow extends LightShadow { constructor() { super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500)); } } DirectionalLightShadow.prototype.isDirectionalLightShadow = true; class DirectionalLight extends Light { constructor(color, intensity) { super(color, intensity); this.type = 'DirectionalLight'; this.position.copy(Object3D.DefaultUp); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } dispose() { this.shadow.dispose(); } copy(source) { super.copy(source); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } DirectionalLight.prototype.isDirectionalLight = true; class AmbientLight extends Light { constructor(color, intensity) { super(color, intensity); this.type = 'AmbientLight'; } } AmbientLight.prototype.isAmbientLight = true; class RectAreaLight extends Light { constructor(color, intensity, width = 10, height = 10) { super(color, intensity); this.type = 'RectAreaLight'; this.width = width; this.height = height; } copy(source) { super.copy(source); this.width = source.width; this.height = source.height; return this; } toJSON(meta) { const data = super.toJSON(meta); data.object.width = this.width; data.object.height = this.height; return data; } } RectAreaLight.prototype.isRectAreaLight = true; /** * Primary reference: * https://graphics.stanford.edu/papers/envmap/envmap.pdf * * Secondary reference: * https://www.ppsloan.org/publications/StupidSH36.pdf */ // 3-band SH defined by 9 coefficients class SphericalHarmonics3 { constructor() { this.coefficients = []; for (let i = 0; i < 9; i++) { this.coefficients.push(new Vector3()); } } set(coefficients) { for (let i = 0; i < 9; i++) { this.coefficients[i].copy(coefficients[i]); } return this; } zero() { for (let i = 0; i < 9; i++) { this.coefficients[i].set(0, 0, 0); } return this; } // get the radiance in the direction of the normal // target is a Vector3 getAt(normal, target) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; // band 0 target.copy(coeff[0]).multiplyScalar(0.282095); // band 1 target.addScaledVector(coeff[1], 0.488603 * y); target.addScaledVector(coeff[2], 0.488603 * z); target.addScaledVector(coeff[3], 0.488603 * x); // band 2 target.addScaledVector(coeff[4], 1.092548 * (x * y)); target.addScaledVector(coeff[5], 1.092548 * (y * z)); target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0)); target.addScaledVector(coeff[7], 1.092548 * (x * z)); target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y)); return target; } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal // target is a Vector3 // https://graphics.stanford.edu/papers/envmap/envmap.pdf getIrradianceAt(normal, target) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; // band 0 target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095 // band 1 target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603 target.addScaledVector(coeff[2], 2.0 * 0.511664 * z); target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2 target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548 target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z); target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3 target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z); target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274 return target; } add(sh) { for (let i = 0; i < 9; i++) { this.coefficients[i].add(sh.coefficients[i]); } return this; } addScaledSH(sh, s) { for (let i = 0; i < 9; i++) { this.coefficients[i].addScaledVector(sh.coefficients[i], s); } return this; } scale(s) { for (let i = 0; i < 9; i++) { this.coefficients[i].multiplyScalar(s); } return this; } lerp(sh, alpha) { for (let i = 0; i < 9; i++) { this.coefficients[i].lerp(sh.coefficients[i], alpha); } return this; } equals(sh) { for (let i = 0; i < 9; i++) { if (!this.coefficients[i].equals(sh.coefficients[i])) { return false; } } return true; } copy(sh) { return this.set(sh.coefficients); } clone() { return new this.constructor().copy(this); } fromArray(array, offset = 0) { const coefficients = this.coefficients; for (let i = 0; i < 9; i++) { coefficients[i].fromArray(array, offset + i * 3); } return this; } toArray(array = [], offset = 0) { const coefficients = this.coefficients; for (let i = 0; i < 9; i++) { coefficients[i].toArray(array, offset + i * 3); } return array; } // evaluate the basis functions // shBasis is an Array[ 9 ] static getBasisAt(normal, shBasis) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; // band 0 shBasis[0] = 0.282095; // band 1 shBasis[1] = 0.488603 * y; shBasis[2] = 0.488603 * z; shBasis[3] = 0.488603 * x; // band 2 shBasis[4] = 1.092548 * x * y; shBasis[5] = 1.092548 * y * z; shBasis[6] = 0.315392 * (3 * z * z - 1); shBasis[7] = 1.092548 * x * z; shBasis[8] = 0.546274 * (x * x - y * y); } } SphericalHarmonics3.prototype.isSphericalHarmonics3 = true; class LightProbe extends Light { constructor(sh = new SphericalHarmonics3(), intensity = 1) { super(undefined, intensity); this.sh = sh; } copy(source) { super.copy(source); this.sh.copy(source.sh); return this; } fromJSON(json) { this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON(); this.sh.fromArray(json.sh); return this; } toJSON(meta) { const data = super.toJSON(meta); data.object.sh = this.sh.toArray(); return data; } } LightProbe.prototype.isLightProbe = true; class MaterialLoader extends Loader { constructor(manager) { super(manager); this.textures = {}; } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(scope.manager); loader.setPath(scope.path); loader.setRequestHeader(scope.requestHeader); loader.setWithCredentials(scope.withCredentials); loader.load(url, function (text) { try { onLoad(scope.parse(JSON.parse(text))); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } parse(json) { const textures = this.textures; function getTexture(name) { if (textures[name] === undefined) { console.warn('THREE.MaterialLoader: Undefined texture', name); } return textures[name]; } const material = new Materials[json.type](); if (json.uuid !== undefined) material.uuid = json.uuid; if (json.name !== undefined) material.name = json.name; if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color); if (json.roughness !== undefined) material.roughness = json.roughness; if (json.metalness !== undefined) material.metalness = json.metalness; if (json.sheen !== undefined) material.sheen = new Color().setHex(json.sheen); if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive); if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular); if (json.shininess !== undefined) material.shininess = json.shininess; if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat; if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness; if (json.transmission !== undefined) material.transmission = json.transmission; if (json.thickness !== undefined) material.thickness = json.thickness; if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance; if (json.attenuationColor !== undefined && material.attenuationColor !== undefined) material.attenuationColor.setHex(json.attenuationColor); if (json.fog !== undefined) material.fog = json.fog; if (json.flatShading !== undefined) material.flatShading = json.flatShading; if (json.blending !== undefined) material.blending = json.blending; if (json.combine !== undefined) material.combine = json.combine; if (json.side !== undefined) material.side = json.side; if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide; if (json.opacity !== undefined) material.opacity = json.opacity; if (json.transparent !== undefined) material.transparent = json.transparent; if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest; if (json.depthTest !== undefined) material.depthTest = json.depthTest; if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite; if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite; if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite; if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask; if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc; if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef; if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask; if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail; if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail; if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass; if (json.wireframe !== undefined) material.wireframe = json.wireframe; if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth; if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap; if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin; if (json.rotation !== undefined) material.rotation = json.rotation; if (json.linewidth !== 1) material.linewidth = json.linewidth; if (json.dashSize !== undefined) material.dashSize = json.dashSize; if (json.gapSize !== undefined) material.gapSize = json.gapSize; if (json.scale !== undefined) material.scale = json.scale; if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset; if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor; if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits; if (json.morphTargets !== undefined) material.morphTargets = json.morphTargets; if (json.morphNormals !== undefined) material.morphNormals = json.morphNormals; if (json.dithering !== undefined) material.dithering = json.dithering; if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage; if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha; if (json.vertexTangents !== undefined) material.vertexTangents = json.vertexTangents; if (json.visible !== undefined) material.visible = json.visible; if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped; if (json.userData !== undefined) material.userData = json.userData; if (json.vertexColors !== undefined) { if (typeof json.vertexColors === 'number') { material.vertexColors = json.vertexColors > 0 ? true : false; } else { material.vertexColors = json.vertexColors; } } // Shader Material if (json.uniforms !== undefined) { for (const name in json.uniforms) { const uniform = json.uniforms[name]; material.uniforms[name] = {}; switch (uniform.type) { case 't': material.uniforms[name].value = getTexture(uniform.value); break; case 'c': material.uniforms[name].value = new Color().setHex(uniform.value); break; case 'v2': material.uniforms[name].value = new Vector2().fromArray(uniform.value); break; case 'v3': material.uniforms[name].value = new Vector3().fromArray(uniform.value); break; case 'v4': material.uniforms[name].value = new Vector4().fromArray(uniform.value); break; case 'm3': material.uniforms[name].value = new Matrix3().fromArray(uniform.value); break; case 'm4': material.uniforms[name].value = new Matrix4().fromArray(uniform.value); break; default: material.uniforms[name].value = uniform.value; } } } if (json.defines !== undefined) material.defines = json.defines; if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader; if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader; if (json.extensions !== undefined) { for (const key in json.extensions) { material.extensions[key] = json.extensions[key]; } } // Deprecated if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading // for PointsMaterial if (json.size !== undefined) material.size = json.size; if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps if (json.map !== undefined) material.map = getTexture(json.map); if (json.matcap !== undefined) material.matcap = getTexture(json.matcap); if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap); if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap); if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale; if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap); if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType; if (json.normalScale !== undefined) { let normalScale = json.normalScale; if (Array.isArray(normalScale) === false) { // Blender exporter used to export a scalar. See #7459 normalScale = [normalScale, normalScale]; } material.normalScale = new Vector2().fromArray(normalScale); } if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap); if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale; if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias; if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap); if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap); if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap); if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity; if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap); if (json.envMap !== undefined) material.envMap = getTexture(json.envMap); if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity; if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity; if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio; if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap); if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity; if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap); if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity; if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap); if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap); if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap); if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap); if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale); if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap); if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap); return material; } setTextures(value) { this.textures = value; return this; } } class LoaderUtils { static decodeText(array) { if (typeof TextDecoder !== 'undefined') { return new TextDecoder().decode(array); } // Avoid the String.fromCharCode.apply(null, array) shortcut, which // throws a "maximum call stack size exceeded" error for large arrays. let s = ''; for (let i = 0, il = array.length; i < il; i++) { // Implicitly assumes little-endian. s += String.fromCharCode(array[i]); } try { // merges multi-byte utf-8 characters. return decodeURIComponent(escape(s)); } catch (e) { // see #16358 return s; } } static extractUrlBase(url) { const index = url.lastIndexOf('/'); if (index === -1) return './'; return url.substr(0, index + 1); } } class InstancedBufferGeometry extends BufferGeometry { constructor() { super(); this.type = 'InstancedBufferGeometry'; this.instanceCount = Infinity; } copy(source) { super.copy(source); this.instanceCount = source.instanceCount; return this; } clone() { return new this.constructor().copy(this); } toJSON() { const data = super.toJSON(this); data.instanceCount = this.instanceCount; data.isInstancedBufferGeometry = true; return data; } } InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true; class InstancedBufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized, meshPerAttribute) { if (typeof normalized === 'number') { meshPerAttribute = normalized; normalized = false; console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.'); } super(array, itemSize, normalized); this.meshPerAttribute = meshPerAttribute || 1; } copy(source) { super.copy(source); this.meshPerAttribute = source.meshPerAttribute; return this; } toJSON() { const data = super.toJSON(); data.meshPerAttribute = this.meshPerAttribute; data.isInstancedBufferAttribute = true; return data; } } InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true; class BufferGeometryLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(scope.manager); loader.setPath(scope.path); loader.setRequestHeader(scope.requestHeader); loader.setWithCredentials(scope.withCredentials); loader.load(url, function (text) { try { onLoad(scope.parse(JSON.parse(text))); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } parse(json) { const interleavedBufferMap = {}; const arrayBufferMap = {}; function getInterleavedBuffer(json, uuid) { if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid]; const interleavedBuffers = json.interleavedBuffers; const interleavedBuffer = interleavedBuffers[uuid]; const buffer = getArrayBuffer(json, interleavedBuffer.buffer); const array = getTypedArray(interleavedBuffer.type, buffer); const ib = new InterleavedBuffer(array, interleavedBuffer.stride); ib.uuid = interleavedBuffer.uuid; interleavedBufferMap[uuid] = ib; return ib; } function getArrayBuffer(json, uuid) { if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid]; const arrayBuffers = json.arrayBuffers; const arrayBuffer = arrayBuffers[uuid]; const ab = new Uint32Array(arrayBuffer).buffer; arrayBufferMap[uuid] = ab; return ab; } const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); const index = json.data.index; if (index !== undefined) { const typedArray = getTypedArray(index.type, index.array); geometry.setIndex(new BufferAttribute(typedArray, 1)); } const attributes = json.data.attributes; for (const key in attributes) { const attribute = attributes[key]; let bufferAttribute; if (attribute.isInterleavedBufferAttribute) { const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data); bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized); } else { const typedArray = getTypedArray(attribute.type, attribute.array); const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized); } if (attribute.name !== undefined) bufferAttribute.name = attribute.name; if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage); if (attribute.updateRange !== undefined) { bufferAttribute.updateRange.offset = attribute.updateRange.offset; bufferAttribute.updateRange.count = attribute.updateRange.count; } geometry.setAttribute(key, bufferAttribute); } const morphAttributes = json.data.morphAttributes; if (morphAttributes) { for (const key in morphAttributes) { const attributeArray = morphAttributes[key]; const array = []; for (let i = 0, il = attributeArray.length; i < il; i++) { const attribute = attributeArray[i]; let bufferAttribute; if (attribute.isInterleavedBufferAttribute) { const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data); bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized); } else { const typedArray = getTypedArray(attribute.type, attribute.array); bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized); } if (attribute.name !== undefined) bufferAttribute.name = attribute.name; array.push(bufferAttribute); } geometry.morphAttributes[key] = array; } } const morphTargetsRelative = json.data.morphTargetsRelative; if (morphTargetsRelative) { geometry.morphTargetsRelative = true; } const groups = json.data.groups || json.data.drawcalls || json.data.offsets; if (groups !== undefined) { for (let i = 0, n = groups.length; i !== n; ++i) { const group = groups[i]; geometry.addGroup(group.start, group.count, group.materialIndex); } } const boundingSphere = json.data.boundingSphere; if (boundingSphere !== undefined) { const center = new Vector3(); if (boundingSphere.center !== undefined) { center.fromArray(boundingSphere.center); } geometry.boundingSphere = new Sphere(center, boundingSphere.radius); } if (json.name) geometry.name = json.name; if (json.userData) geometry.userData = json.userData; return geometry; } } class ObjectLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path; this.resourcePath = this.resourcePath || path; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function (text) { let json = null; try { json = JSON.parse(text); } catch (error) { if (onError !== undefined) onError(error); console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message); return; } const metadata = json.metadata; if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') { console.error('THREE.ObjectLoader: Can\'t load ' + url); return; } scope.parse(json, onLoad); }, onProgress, onError); } parse(json, onLoad) { const animations = this.parseAnimations(json.animations); const shapes = this.parseShapes(json.shapes); const geometries = this.parseGeometries(json.geometries, shapes); const images = this.parseImages(json.images, function () { if (onLoad !== undefined) onLoad(object); }); const textures = this.parseTextures(json.textures, images); const materials = this.parseMaterials(json.materials, textures); const object = this.parseObject(json.object, geometries, materials, animations); const skeletons = this.parseSkeletons(json.skeletons, object); this.bindSkeletons(object, skeletons); // if (onLoad !== undefined) { let hasImages = false; for (const uuid in images) { if (images[uuid] instanceof HTMLImageElement) { hasImages = true; break; } } if (hasImages === false) onLoad(object); } return object; } parseShapes(json) { const shapes = {}; if (json !== undefined) { for (let i = 0, l = json.length; i < l; i++) { const shape = new Shape().fromJSON(json[i]); shapes[shape.uuid] = shape; } } return shapes; } parseSkeletons(json, object) { const skeletons = {}; const bones = {}; // generate bone lookup table object.traverse(function (child) { if (child.isBone) bones[child.uuid] = child; }); // create skeletons if (json !== undefined) { for (let i = 0, l = json.length; i < l; i++) { const skeleton = new Skeleton().fromJSON(json[i], bones); skeletons[skeleton.uuid] = skeleton; } } return skeletons; } parseGeometries(json, shapes) { const geometries = {}; let geometryShapes; if (json !== undefined) { const bufferGeometryLoader = new BufferGeometryLoader(); for (let i = 0, l = json.length; i < l; i++) { let geometry; const data = json[i]; switch (data.type) { case 'PlaneGeometry': case 'PlaneBufferGeometry': geometry = new Geometries[data.type](data.width, data.height, data.widthSegments, data.heightSegments); break; case 'BoxGeometry': case 'BoxBufferGeometry': geometry = new Geometries[data.type](data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments); break; case 'CircleGeometry': case 'CircleBufferGeometry': geometry = new Geometries[data.type](data.radius, data.segments, data.thetaStart, data.thetaLength); break; case 'CylinderGeometry': case 'CylinderBufferGeometry': geometry = new Geometries[data.type](data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength); break; case 'ConeGeometry': case 'ConeBufferGeometry': geometry = new Geometries[data.type](data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength); break; case 'SphereGeometry': case 'SphereBufferGeometry': geometry = new Geometries[data.type](data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength); break; case 'DodecahedronGeometry': case 'DodecahedronBufferGeometry': case 'IcosahedronGeometry': case 'IcosahedronBufferGeometry': case 'OctahedronGeometry': case 'OctahedronBufferGeometry': case 'TetrahedronGeometry': case 'TetrahedronBufferGeometry': geometry = new Geometries[data.type](data.radius, data.detail); break; case 'RingGeometry': case 'RingBufferGeometry': geometry = new Geometries[data.type](data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength); break; case 'TorusGeometry': case 'TorusBufferGeometry': geometry = new Geometries[data.type](data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc); break; case 'TorusKnotGeometry': case 'TorusKnotBufferGeometry': geometry = new Geometries[data.type](data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q); break; case 'TubeGeometry': case 'TubeBufferGeometry': // This only works for built-in curves (e.g. CatmullRomCurve3). // User defined curves or instances of CurvePath will not be deserialized. geometry = new Geometries[data.type](new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed); break; case 'LatheGeometry': case 'LatheBufferGeometry': geometry = new Geometries[data.type](data.points, data.segments, data.phiStart, data.phiLength); break; case 'PolyhedronGeometry': case 'PolyhedronBufferGeometry': geometry = new Geometries[data.type](data.vertices, data.indices, data.radius, data.details); break; case 'ShapeGeometry': case 'ShapeBufferGeometry': geometryShapes = []; for (let j = 0, jl = data.shapes.length; j < jl; j++) { const shape = shapes[data.shapes[j]]; geometryShapes.push(shape); } geometry = new Geometries[data.type](geometryShapes, data.curveSegments); break; case 'ExtrudeGeometry': case 'ExtrudeBufferGeometry': geometryShapes = []; for (let j = 0, jl = data.shapes.length; j < jl; j++) { const shape = shapes[data.shapes[j]]; geometryShapes.push(shape); } const extrudePath = data.options.extrudePath; if (extrudePath !== undefined) { data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath); } geometry = new Geometries[data.type](geometryShapes, data.options); break; case 'BufferGeometry': case 'InstancedBufferGeometry': geometry = bufferGeometryLoader.parse(data); break; case 'Geometry': console.error('THREE.ObjectLoader: Loading "Geometry" is not supported anymore.'); break; default: console.warn('THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"'); continue; } geometry.uuid = data.uuid; if (data.name !== undefined) geometry.name = data.name; if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData; geometries[data.uuid] = geometry; } } return geometries; } parseMaterials(json, textures) { const cache = {}; // MultiMaterial const materials = {}; if (json !== undefined) { const loader = new MaterialLoader(); loader.setTextures(textures); for (let i = 0, l = json.length; i < l; i++) { const data = json[i]; if (data.type === 'MultiMaterial') { // Deprecated const array = []; for (let j = 0; j < data.materials.length; j++) { const material = data.materials[j]; if (cache[material.uuid] === undefined) { cache[material.uuid] = loader.parse(material); } array.push(cache[material.uuid]); } materials[data.uuid] = array; } else { if (cache[data.uuid] === undefined) { cache[data.uuid] = loader.parse(data); } materials[data.uuid] = cache[data.uuid]; } } } return materials; } parseAnimations(json) { const animations = {}; if (json !== undefined) { for (let i = 0; i < json.length; i++) { const data = json[i]; const clip = AnimationClip.parse(data); animations[clip.uuid] = clip; } } return animations; } parseImages(json, onLoad) { const scope = this; const images = {}; let loader; function loadImage(url) { scope.manager.itemStart(url); return loader.load(url, function () { scope.manager.itemEnd(url); }, undefined, function () { scope.manager.itemError(url); scope.manager.itemEnd(url); }); } function deserializeImage(image) { if (typeof image === 'string') { const url = image; const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url; return loadImage(path); } else { if (image.data) { return { data: getTypedArray(image.type, image.data), width: image.width, height: image.height }; } else { return null; } } } if (json !== undefined && json.length > 0) { const manager = new LoadingManager(onLoad); loader = new ImageLoader(manager); loader.setCrossOrigin(this.crossOrigin); for (let i = 0, il = json.length; i < il; i++) { const image = json[i]; const url = image.url; if (Array.isArray(url)) { // load array of images e.g CubeTexture images[image.uuid] = []; for (let j = 0, jl = url.length; j < jl; j++) { const currentUrl = url[j]; const deserializedImage = deserializeImage(currentUrl); if (deserializedImage !== null) { if (deserializedImage instanceof HTMLImageElement) { images[image.uuid].push(deserializedImage); } else { // special case: handle array of data textures for cube textures images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)); } } } } else { // load single image const deserializedImage = deserializeImage(image.url); if (deserializedImage !== null) { images[image.uuid] = deserializedImage; } } } } return images; } parseTextures(json, images) { function parseConstant(value, type) { if (typeof value === 'number') return value; console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value); return type[value]; } const textures = {}; if (json !== undefined) { for (let i = 0, l = json.length; i < l; i++) { const data = json[i]; if (data.image === undefined) { console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid); } if (images[data.image] === undefined) { console.warn('THREE.ObjectLoader: Undefined image', data.image); } let texture; const image = images[data.image]; if (Array.isArray(image)) { texture = new CubeTexture(image); if (image.length === 6) texture.needsUpdate = true; } else { if (image && image.data) { texture = new DataTexture(image.data, image.width, image.height); } else { texture = new Texture(image); } if (image) texture.needsUpdate = true; // textures can have undefined image data } texture.uuid = data.uuid; if (data.name !== undefined) texture.name = data.name; if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING); if (data.offset !== undefined) texture.offset.fromArray(data.offset); if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat); if (data.center !== undefined) texture.center.fromArray(data.center); if (data.rotation !== undefined) texture.rotation = data.rotation; if (data.wrap !== undefined) { texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING); texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING); } if (data.format !== undefined) texture.format = data.format; if (data.type !== undefined) texture.type = data.type; if (data.encoding !== undefined) texture.encoding = data.encoding; if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER); if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER); if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy; if (data.flipY !== undefined) texture.flipY = data.flipY; if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha; if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment; textures[data.uuid] = texture; } } return textures; } parseObject(data, geometries, materials, animations) { let object; function getGeometry(name) { if (geometries[name] === undefined) { console.warn('THREE.ObjectLoader: Undefined geometry', name); } return geometries[name]; } function getMaterial(name) { if (name === undefined) return undefined; if (Array.isArray(name)) { const array = []; for (let i = 0, l = name.length; i < l; i++) { const uuid = name[i]; if (materials[uuid] === undefined) { console.warn('THREE.ObjectLoader: Undefined material', uuid); } array.push(materials[uuid]); } return array; } if (materials[name] === undefined) { console.warn('THREE.ObjectLoader: Undefined material', name); } return materials[name]; } let geometry, material; switch (data.type) { case 'Scene': object = new Scene(); if (data.background !== undefined) { if (Number.isInteger(data.background)) { object.background = new Color(data.background); } } if (data.fog !== undefined) { if (data.fog.type === 'Fog') { object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far); } else if (data.fog.type === 'FogExp2') { object.fog = new FogExp2(data.fog.color, data.fog.density); } } break; case 'PerspectiveCamera': object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far); if (data.focus !== undefined) object.focus = data.focus; if (data.zoom !== undefined) object.zoom = data.zoom; if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge; if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset; if (data.view !== undefined) object.view = Object.assign({}, data.view); break; case 'OrthographicCamera': object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far); if (data.zoom !== undefined) object.zoom = data.zoom; if (data.view !== undefined) object.view = Object.assign({}, data.view); break; case 'AmbientLight': object = new AmbientLight(data.color, data.intensity); break; case 'DirectionalLight': object = new DirectionalLight(data.color, data.intensity); break; case 'PointLight': object = new PointLight(data.color, data.intensity, data.distance, data.decay); break; case 'RectAreaLight': object = new RectAreaLight(data.color, data.intensity, data.width, data.height); break; case 'SpotLight': object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay); break; case 'HemisphereLight': object = new HemisphereLight(data.color, data.groundColor, data.intensity); break; case 'LightProbe': object = new LightProbe().fromJSON(data); break; case 'SkinnedMesh': geometry = getGeometry(data.geometry); material = getMaterial(data.material); object = new SkinnedMesh(geometry, material); if (data.bindMode !== undefined) object.bindMode = data.bindMode; if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix); if (data.skeleton !== undefined) object.skeleton = data.skeleton; break; case 'Mesh': geometry = getGeometry(data.geometry); material = getMaterial(data.material); object = new Mesh(geometry, material); break; case 'InstancedMesh': geometry = getGeometry(data.geometry); material = getMaterial(data.material); const count = data.count; const instanceMatrix = data.instanceMatrix; const instanceColor = data.instanceColor; object = new InstancedMesh(geometry, material, count); object.instanceMatrix = new BufferAttribute(new Float32Array(instanceMatrix.array), 16); if (instanceColor !== undefined) object.instanceColor = new BufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize); break; case 'LOD': object = new LOD(); break; case 'Line': object = new Line(getGeometry(data.geometry), getMaterial(data.material)); break; case 'LineLoop': object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material)); break; case 'LineSegments': object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material)); break; case 'PointCloud': case 'Points': object = new Points(getGeometry(data.geometry), getMaterial(data.material)); break; case 'Sprite': object = new Sprite(getMaterial(data.material)); break; case 'Group': object = new Group(); break; case 'Bone': object = new Bone(); break; default: object = new Object3D(); } object.uuid = data.uuid; if (data.name !== undefined) object.name = data.name; if (data.matrix !== undefined) { object.matrix.fromArray(data.matrix); if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate; if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale); } else { if (data.position !== undefined) object.position.fromArray(data.position); if (data.rotation !== undefined) object.rotation.fromArray(data.rotation); if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion); if (data.scale !== undefined) object.scale.fromArray(data.scale); } if (data.castShadow !== undefined) object.castShadow = data.castShadow; if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow; if (data.shadow) { if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias; if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias; if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius; if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize); if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera); } if (data.visible !== undefined) object.visible = data.visible; if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled; if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder; if (data.userData !== undefined) object.userData = data.userData; if (data.layers !== undefined) object.layers.mask = data.layers; if (data.children !== undefined) { const children = data.children; for (let i = 0; i < children.length; i++) { object.add(this.parseObject(children[i], geometries, materials, animations)); } } if (data.animations !== undefined) { const objectAnimations = data.animations; for (let i = 0; i < objectAnimations.length; i++) { const uuid = objectAnimations[i]; object.animations.push(animations[uuid]); } } if (data.type === 'LOD') { if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate; const levels = data.levels; for (let l = 0; l < levels.length; l++) { const level = levels[l]; const child = object.getObjectByProperty('uuid', level.object); if (child !== undefined) { object.addLevel(child, level.distance); } } } return object; } bindSkeletons(object, skeletons) { if (Object.keys(skeletons).length === 0) return; object.traverse(function (child) { if (child.isSkinnedMesh === true && child.skeleton !== undefined) { const skeleton = skeletons[child.skeleton]; if (skeleton === undefined) { console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton); } else { child.bind(skeleton, child.bindMatrix); } } }); } /* DEPRECATED */ setTexturePath(value) { console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().'); return this.setResourcePath(value); } } const TEXTURE_MAPPING = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping, CubeUVRefractionMapping: CubeUVRefractionMapping }; const TEXTURE_WRAPPING = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping }; const TEXTURE_FILTER = { NearestFilter: NearestFilter, NearestMipmapNearestFilter: NearestMipmapNearestFilter, NearestMipmapLinearFilter: NearestMipmapLinearFilter, LinearFilter: LinearFilter, LinearMipmapNearestFilter: LinearMipmapNearestFilter, LinearMipmapLinearFilter: LinearMipmapLinearFilter }; class ImageBitmapLoader extends Loader { constructor(manager) { super(manager); if (typeof createImageBitmap === 'undefined') { console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.'); } if (typeof fetch === 'undefined') { console.warn('THREE.ImageBitmapLoader: fetch() not supported.'); } this.options = { premultiplyAlpha: 'none' }; } setOptions(options) { this.options = options; return this; } load(url, onLoad, onProgress, onError) { if (url === undefined) url = ''; if (this.path !== undefined) url = this.path + url; url = this.manager.resolveURL(url); const scope = this; const cached = Cache.get(url); if (cached !== undefined) { scope.manager.itemStart(url); setTimeout(function () { if (onLoad) onLoad(cached); scope.manager.itemEnd(url); }, 0); return cached; } const fetchOptions = {}; fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include'; fetchOptions.headers = this.requestHeader; fetch(url, fetchOptions).then(function (res) { return res.blob(); }).then(function (blob) { return createImageBitmap(blob, Object.assign(scope.options, { colorSpaceConversion: 'none' })); }).then(function (imageBitmap) { Cache.add(url, imageBitmap); if (onLoad) onLoad(imageBitmap); scope.manager.itemEnd(url); }).catch(function (e) { if (onError) onError(e); scope.manager.itemError(url); scope.manager.itemEnd(url); }); scope.manager.itemStart(url); } } ImageBitmapLoader.prototype.isImageBitmapLoader = true; class ShapePath { constructor() { this.type = 'ShapePath'; this.color = new Color(); this.subPaths = []; this.currentPath = null; } moveTo(x, y) { this.currentPath = new Path(); this.subPaths.push(this.currentPath); this.currentPath.moveTo(x, y); return this; } lineTo(x, y) { this.currentPath.lineTo(x, y); return this; } quadraticCurveTo(aCPx, aCPy, aX, aY) { this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY); return this; } bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY); return this; } splineThru(pts) { this.currentPath.splineThru(pts); return this; } toShapes(isCCW, noHoles) { function toShapesNoHoles(inSubpaths) { const shapes = []; for (let i = 0, l = inSubpaths.length; i < l; i++) { const tmpPath = inSubpaths[i]; const tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push(tmpShape); } return shapes; } function isPointInsidePolygon(inPt, inPolygon) { const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line let inside = false; for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) { let edgeLowPt = inPolygon[p]; let edgeHighPt = inPolygon[q]; let edgeDx = edgeHighPt.x - edgeLowPt.x; let edgeDy = edgeHighPt.y - edgeLowPt.y; if (Math.abs(edgeDy) > Number.EPSILON) { // not parallel if (edgeDy < 0) { edgeLowPt = inPolygon[q]; edgeDx = -edgeDx; edgeHighPt = inPolygon[p]; edgeDy = -edgeDy; } if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue; if (inPt.y === edgeLowPt.y) { if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y); if (perpEdge === 0) return true; // inPt is on contour ? if (perpEdge < 0) continue; inside = !inside; // true intersection left of inPt } } else { // parallel or collinear if (inPt.y !== edgeLowPt.y) continue; // parallel // edge lies on the same horizontal line as inPt if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour ! // continue; } } return inside; } const isClockWise = ShapeUtils.isClockWise; const subPaths = this.subPaths; if (subPaths.length === 0) return []; if (noHoles === true) return toShapesNoHoles(subPaths); let solid, tmpPath, tmpShape; const shapes = []; if (subPaths.length === 1) { tmpPath = subPaths[0]; tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push(tmpShape); return shapes; } let holesFirst = !isClockWise(subPaths[0].getPoints()); holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst); const betterShapeHoles = []; const newShapes = []; let newShapeHoles = []; let mainIdx = 0; let tmpPoints; newShapes[mainIdx] = undefined; newShapeHoles[mainIdx] = []; for (let i = 0, l = subPaths.length; i < l; i++) { tmpPath = subPaths[i]; tmpPoints = tmpPath.getPoints(); solid = isClockWise(tmpPoints); solid = isCCW ? !solid : solid; if (solid) { if (!holesFirst && newShapes[mainIdx]) mainIdx++; newShapes[mainIdx] = { s: new Shape(), p: tmpPoints }; newShapes[mainIdx].s.curves = tmpPath.curves; if (holesFirst) mainIdx++; newShapeHoles[mainIdx] = []; //console.log('cw', i); } else { newShapeHoles[mainIdx].push({ h: tmpPath, p: tmpPoints[0] }); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if (!newShapes[0]) return toShapesNoHoles(subPaths); if (newShapes.length > 1) { let ambiguous = false; const toChange = []; for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { betterShapeHoles[sIdx] = []; } for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { const sho = newShapeHoles[sIdx]; for (let hIdx = 0; hIdx < sho.length; hIdx++) { const ho = sho[hIdx]; let hole_unassigned = true; for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) { if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) { if (sIdx !== s2Idx) toChange.push({ froms: sIdx, tos: s2Idx, hole: hIdx }); if (hole_unassigned) { hole_unassigned = false; betterShapeHoles[s2Idx].push(ho); } else { ambiguous = true; } } } if (hole_unassigned) { betterShapeHoles[sIdx].push(ho); } } } // console.log("ambiguous: ", ambiguous); if (toChange.length > 0) { // console.log("to change: ", toChange); if (!ambiguous) newShapeHoles = betterShapeHoles; } } let tmpHoles; for (let i = 0, il = newShapes.length; i < il; i++) { tmpShape = newShapes[i].s; shapes.push(tmpShape); tmpHoles = newShapeHoles[i]; for (let j = 0, jl = tmpHoles.length; j < jl; j++) { tmpShape.holes.push(tmpHoles[j].h); } } //console.log("shape", shapes); return shapes; } } class Font { constructor(data) { this.type = 'Font'; this.data = data; } generateShapes(text, size = 100) { const shapes = []; const paths = createPaths(text, size, this.data); for (let p = 0, pl = paths.length; p < pl; p++) { Array.prototype.push.apply(shapes, paths[p].toShapes()); } return shapes; } } function createPaths(text, size, data) { const chars = Array.from(text); const scale = size / data.resolution; const line_height = (data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness) * scale; const paths = []; let offsetX = 0, offsetY = 0; for (let i = 0; i < chars.length; i++) { const char = chars[i]; if (char === '\n') { offsetX = 0; offsetY -= line_height; } else { const ret = createPath(char, scale, offsetX, offsetY, data); offsetX += ret.offsetX; paths.push(ret.path); } } return paths; } function createPath(char, scale, offsetX, offsetY, data) { const glyph = data.glyphs[char] || data.glyphs['?']; if (!glyph) { console.error('THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.'); return; } const path = new ShapePath(); let x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2; if (glyph.o) { const outline = glyph._cachedOutline || (glyph._cachedOutline = glyph.o.split(' ')); for (let i = 0, l = outline.length; i < l;) { const action = outline[i++]; switch (action) { case 'm': // moveTo x = outline[i++] * scale + offsetX; y = outline[i++] * scale + offsetY; path.moveTo(x, y); break; case 'l': // lineTo x = outline[i++] * scale + offsetX; y = outline[i++] * scale + offsetY; path.lineTo(x, y); break; case 'q': // quadraticCurveTo cpx = outline[i++] * scale + offsetX; cpy = outline[i++] * scale + offsetY; cpx1 = outline[i++] * scale + offsetX; cpy1 = outline[i++] * scale + offsetY; path.quadraticCurveTo(cpx1, cpy1, cpx, cpy); break; case 'b': // bezierCurveTo cpx = outline[i++] * scale + offsetX; cpy = outline[i++] * scale + offsetY; cpx1 = outline[i++] * scale + offsetX; cpy1 = outline[i++] * scale + offsetY; cpx2 = outline[i++] * scale + offsetX; cpy2 = outline[i++] * scale + offsetY; path.bezierCurveTo(cpx1, cpy1, cpx2, cpy2, cpx, cpy); break; } } } return { offsetX: glyph.ha * scale, path: path }; } Font.prototype.isFont = true; class FontLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(scope.withCredentials); loader.load(url, function (text) { let json; try { json = JSON.parse(text); } catch (e) { console.warn('THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.'); json = JSON.parse(text.substring(65, text.length - 2)); } const font = scope.parse(json); if (onLoad) onLoad(font); }, onProgress, onError); } parse(json) { return new Font(json); } } let _context; const AudioContext = { getContext: function () { if (_context === undefined) { _context = new (window.AudioContext || window.webkitAudioContext)(); } return _context; }, setContext: function (value) { _context = value; } }; class AudioLoader extends Loader { constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(this.manager); loader.setResponseType('arraybuffer'); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function (buffer) { try { // Create a copy of the buffer. The `decodeAudioData` method // detaches the buffer when complete, preventing reuse. const bufferCopy = buffer.slice(0); const context = AudioContext.getContext(); context.decodeAudioData(bufferCopy, function (audioBuffer) { onLoad(audioBuffer); }); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } } class HemisphereLightProbe extends LightProbe { constructor(skyColor, groundColor, intensity = 1) { super(undefined, intensity); const color1 = new Color().set(skyColor); const color2 = new Color().set(groundColor); const sky = new Vector3(color1.r, color1.g, color1.b); const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI ); const c0 = Math.sqrt(Math.PI); const c1 = c0 * Math.sqrt(0.75); this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0); this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1); } } HemisphereLightProbe.prototype.isHemisphereLightProbe = true; class AmbientLightProbe extends LightProbe { constructor(color, intensity = 1) { super(undefined, intensity); const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI ); this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI)); } } AmbientLightProbe.prototype.isAmbientLightProbe = true; const _eyeRight = /*@__PURE__*/new Matrix4(); const _eyeLeft = /*@__PURE__*/new Matrix4(); class StereoCamera { constructor() { this.type = 'StereoCamera'; this.aspect = 1; this.eyeSep = 0.064; this.cameraL = new PerspectiveCamera(); this.cameraL.layers.enable(1); this.cameraL.matrixAutoUpdate = false; this.cameraR = new PerspectiveCamera(); this.cameraR.layers.enable(2); this.cameraR.matrixAutoUpdate = false; this._cache = { focus: null, fov: null, aspect: null, near: null, far: null, zoom: null, eyeSep: null }; } update(camera) { const cache = this._cache; const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; if (needsUpdate) { cache.focus = camera.focus; cache.fov = camera.fov; cache.aspect = camera.aspect * this.aspect; cache.near = camera.near; cache.far = camera.far; cache.zoom = camera.zoom; cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ const projectionMatrix = camera.projectionMatrix.clone(); const eyeSepHalf = cache.eyeSep / 2; const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom; let xmin, xmax; // translate xOffset _eyeLeft.elements[12] = -eyeSepHalf; _eyeRight.elements[12] = eyeSepHalf; // for left eye xmin = -ymax * cache.aspect + eyeSepOnProjection; xmax = ymax * cache.aspect + eyeSepOnProjection; projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin); projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin); this.cameraL.projectionMatrix.copy(projectionMatrix); // for right eye xmin = -ymax * cache.aspect - eyeSepOnProjection; xmax = ymax * cache.aspect - eyeSepOnProjection; projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin); projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin); this.cameraR.projectionMatrix.copy(projectionMatrix); } this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft); this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight); } } class Clock { constructor(autoStart = true) { this.autoStart = autoStart; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; } start() { this.startTime = now(); this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; } stop() { this.getElapsedTime(); this.running = false; this.autoStart = false; } getElapsedTime() { this.getDelta(); return this.elapsedTime; } getDelta() { let diff = 0; if (this.autoStart && !this.running) { this.start(); return 0; } if (this.running) { const newTime = now(); diff = (newTime - this.oldTime) / 1000; this.oldTime = newTime; this.elapsedTime += diff; } return diff; } } function now() { return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732 } const _position$1 = /*@__PURE__*/new Vector3(); const _quaternion$1 = /*@__PURE__*/new Quaternion(); const _scale$1 = /*@__PURE__*/new Vector3(); const _orientation$1 = /*@__PURE__*/new Vector3(); class AudioListener extends Object3D { constructor() { super(); this.type = 'AudioListener'; this.context = AudioContext.getContext(); this.gain = this.context.createGain(); this.gain.connect(this.context.destination); this.filter = null; this.timeDelta = 0; // private this._clock = new Clock(); } getInput() { return this.gain; } removeFilter() { if (this.filter !== null) { this.gain.disconnect(this.filter); this.filter.disconnect(this.context.destination); this.gain.connect(this.context.destination); this.filter = null; } return this; } getFilter() { return this.filter; } setFilter(value) { if (this.filter !== null) { this.gain.disconnect(this.filter); this.filter.disconnect(this.context.destination); } else { this.gain.disconnect(this.context.destination); } this.filter = value; this.gain.connect(this.filter); this.filter.connect(this.context.destination); return this; } getMasterVolume() { return this.gain.gain.value; } setMasterVolume(value) { this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01); return this; } updateMatrixWorld(force) { super.updateMatrixWorld(force); const listener = this.context.listener; const up = this.up; this.timeDelta = this._clock.getDelta(); this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1); _orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1); if (listener.positionX) { // code path for Chrome (see #14393) const endTime = this.context.currentTime + this.timeDelta; listener.positionX.linearRampToValueAtTime(_position$1.x, endTime); listener.positionY.linearRampToValueAtTime(_position$1.y, endTime); listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime); listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime); listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime); listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime); listener.upX.linearRampToValueAtTime(up.x, endTime); listener.upY.linearRampToValueAtTime(up.y, endTime); listener.upZ.linearRampToValueAtTime(up.z, endTime); } else { listener.setPosition(_position$1.x, _position$1.y, _position$1.z); listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z); } } } class Audio extends Object3D { constructor(listener) { super(); this.type = 'Audio'; this.listener = listener; this.context = listener.context; this.gain = this.context.createGain(); this.gain.connect(listener.getInput()); this.autoplay = false; this.buffer = null; this.detune = 0; this.loop = false; this.loopStart = 0; this.loopEnd = 0; this.offset = 0; this.duration = undefined; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.source = null; this.sourceType = 'empty'; this._startedAt = 0; this._progress = 0; this._connected = false; this.filters = []; } getOutput() { return this.gain; } setNodeSource(audioNode) { this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect(); return this; } setMediaElementSource(mediaElement) { this.hasPlaybackControl = false; this.sourceType = 'mediaNode'; this.source = this.context.createMediaElementSource(mediaElement); this.connect(); return this; } setMediaStreamSource(mediaStream) { this.hasPlaybackControl = false; this.sourceType = 'mediaStreamNode'; this.source = this.context.createMediaStreamSource(mediaStream); this.connect(); return this; } setBuffer(audioBuffer) { this.buffer = audioBuffer; this.sourceType = 'buffer'; if (this.autoplay) this.play(); return this; } play(delay = 0) { if (this.isPlaying === true) { console.warn('THREE.Audio: Audio is already playing.'); return; } if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.'); return; } this._startedAt = this.context.currentTime + delay; const source = this.context.createBufferSource(); source.buffer = this.buffer; source.loop = this.loop; source.loopStart = this.loopStart; source.loopEnd = this.loopEnd; source.onended = this.onEnded.bind(this); source.start(this._startedAt, this._progress + this.offset, this.duration); this.isPlaying = true; this.source = source; this.setDetune(this.detune); this.setPlaybackRate(this.playbackRate); return this.connect(); } pause() { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.'); return; } if (this.isPlaying === true) { // update current progress this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate; if (this.loop === true) { // ensure _progress does not exceed duration with looped audios this._progress = this._progress % (this.duration || this.buffer.duration); } this.source.stop(); this.source.onended = null; this.isPlaying = false; } return this; } stop() { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.'); return; } this._progress = 0; this.source.stop(); this.source.onended = null; this.isPlaying = false; return this; } connect() { if (this.filters.length > 0) { this.source.connect(this.filters[0]); for (let i = 1, l = this.filters.length; i < l; i++) { this.filters[i - 1].connect(this.filters[i]); } this.filters[this.filters.length - 1].connect(this.getOutput()); } else { this.source.connect(this.getOutput()); } this._connected = true; return this; } disconnect() { if (this.filters.length > 0) { this.source.disconnect(this.filters[0]); for (let i = 1, l = this.filters.length; i < l; i++) { this.filters[i - 1].disconnect(this.filters[i]); } this.filters[this.filters.length - 1].disconnect(this.getOutput()); } else { this.source.disconnect(this.getOutput()); } this._connected = false; return this; } getFilters() { return this.filters; } setFilters(value) { if (!value) value = []; if (this._connected === true) { this.disconnect(); this.filters = value.slice(); this.connect(); } else { this.filters = value.slice(); } return this; } setDetune(value) { this.detune = value; if (this.source.detune === undefined) return; // only set detune when available if (this.isPlaying === true) { this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01); } return this; } getDetune() { return this.detune; } getFilter() { return this.getFilters()[0]; } setFilter(filter) { return this.setFilters(filter ? [filter] : []); } setPlaybackRate(value) { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.'); return; } this.playbackRate = value; if (this.isPlaying === true) { this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01); } return this; } getPlaybackRate() { return this.playbackRate; } onEnded() { this.isPlaying = false; } getLoop() { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.'); return false; } return this.loop; } setLoop(value) { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.'); return; } this.loop = value; if (this.isPlaying === true) { this.source.loop = this.loop; } return this; } setLoopStart(value) { this.loopStart = value; return this; } setLoopEnd(value) { this.loopEnd = value; return this; } getVolume() { return this.gain.gain.value; } setVolume(value) { this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01); return this; } } const _position = /*@__PURE__*/new Vector3(); const _quaternion = /*@__PURE__*/new Quaternion(); const _scale = /*@__PURE__*/new Vector3(); const _orientation = /*@__PURE__*/new Vector3(); class PositionalAudio extends Audio { constructor(listener) { super(listener); this.panner = this.context.createPanner(); this.panner.panningModel = 'HRTF'; this.panner.connect(this.gain); } getOutput() { return this.panner; } getRefDistance() { return this.panner.refDistance; } setRefDistance(value) { this.panner.refDistance = value; return this; } getRolloffFactor() { return this.panner.rolloffFactor; } setRolloffFactor(value) { this.panner.rolloffFactor = value; return this; } getDistanceModel() { return this.panner.distanceModel; } setDistanceModel(value) { this.panner.distanceModel = value; return this; } getMaxDistance() { return this.panner.maxDistance; } setMaxDistance(value) { this.panner.maxDistance = value; return this; } setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) { this.panner.coneInnerAngle = coneInnerAngle; this.panner.coneOuterAngle = coneOuterAngle; this.panner.coneOuterGain = coneOuterGain; return this; } updateMatrixWorld(force) { super.updateMatrixWorld(force); if (this.hasPlaybackControl === true && this.isPlaying === false) return; this.matrixWorld.decompose(_position, _quaternion, _scale); _orientation.set(0, 0, 1).applyQuaternion(_quaternion); const panner = this.panner; if (panner.positionX) { // code path for Chrome and Firefox (see #14393) const endTime = this.context.currentTime + this.listener.timeDelta; panner.positionX.linearRampToValueAtTime(_position.x, endTime); panner.positionY.linearRampToValueAtTime(_position.y, endTime); panner.positionZ.linearRampToValueAtTime(_position.z, endTime); panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime); panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime); panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime); } else { panner.setPosition(_position.x, _position.y, _position.z); panner.setOrientation(_orientation.x, _orientation.y, _orientation.z); } } } class AudioAnalyser { constructor(audio, fftSize = 2048) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize; this.data = new Uint8Array(this.analyser.frequencyBinCount); audio.getOutput().connect(this.analyser); } getFrequencyData() { this.analyser.getByteFrequencyData(this.data); return this.data; } getAverageFrequency() { let value = 0; const data = this.getFrequencyData(); for (let i = 0; i < data.length; i++) { value += data[i]; } return value / data.length; } } class PropertyMixer { constructor(binding, typeName, valueSize) { this.binding = binding; this.valueSize = valueSize; let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property // // 'add' is used for additive cumulative results // // 'work' is optional and is only present for quaternion types. It is used // to store intermediate quaternion multiplication results switch (typeName) { case 'quaternion': mixFunction = this._slerp; mixFunctionAdditive = this._slerpAdditive; setIdentity = this._setAdditiveIdentityQuaternion; this.buffer = new Float64Array(valueSize * 6); this._workIndex = 5; break; case 'string': case 'bool': mixFunction = this._select; // Use the regular mix function and for additive on these types, // additive is not relevant for non-numeric types mixFunctionAdditive = this._select; setIdentity = this._setAdditiveIdentityOther; this.buffer = new Array(valueSize * 5); break; default: mixFunction = this._lerp; mixFunctionAdditive = this._lerpAdditive; setIdentity = this._setAdditiveIdentityNumeric; this.buffer = new Float64Array(valueSize * 5); } this._mixBufferRegion = mixFunction; this._mixBufferRegionAdditive = mixFunctionAdditive; this._setIdentity = setIdentity; this._origIndex = 3; this._addIndex = 4; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; this.useCount = 0; this.referenceCount = 0; } // accumulate data in the 'incoming' region into 'accu' accumulate(accuIndex, weight) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place const buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride; let currentWeight = this.cumulativeWeight; if (currentWeight === 0) { // accuN := incoming * weight for (let i = 0; i !== stride; ++i) { buffer[offset + i] = buffer[i]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; const mix = weight / currentWeight; this._mixBufferRegion(buffer, offset, 0, mix, stride); } this.cumulativeWeight = currentWeight; } // accumulate data in the 'incoming' region into 'add' accumulateAdditive(weight) { const buffer = this.buffer, stride = this.valueSize, offset = stride * this._addIndex; if (this.cumulativeWeightAdditive === 0) { // add = identity this._setIdentity(); } // add := add + incoming * weight this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride); this.cumulativeWeightAdditive += weight; } // apply the state of 'accu' to the binding when accus differ apply(accuIndex) { const stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, weightAdditive = this.cumulativeWeightAdditive, binding = this.binding; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; if (weight < 1) { // accuN := accuN + original * ( 1 - cumulativeWeight ) const originalValueOffset = stride * this._origIndex; this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride); } if (weightAdditive > 0) { // accuN := accuN + additive accuN this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride); } for (let i = stride, e = stride + stride; i !== e; ++i) { if (buffer[i] !== buffer[i + stride]) { // value has changed -> update scene graph binding.setValue(buffer, offset); break; } } } // remember the state of the bound property and copy it to both accus saveOriginalState() { const binding = this.binding; const buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * this._origIndex; binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original for (let i = stride, e = originalValueOffset; i !== e; ++i) { buffer[i] = buffer[originalValueOffset + i % stride]; } // Add to identity for additive this._setIdentity(); this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; } // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState() { const originalValueOffset = this.valueSize * 3; this.binding.setValue(this.buffer, originalValueOffset); } _setAdditiveIdentityNumeric() { const startIndex = this._addIndex * this.valueSize; const endIndex = startIndex + this.valueSize; for (let i = startIndex; i < endIndex; i++) { this.buffer[i] = 0; } } _setAdditiveIdentityQuaternion() { this._setAdditiveIdentityNumeric(); this.buffer[this._addIndex * this.valueSize + 3] = 1; } _setAdditiveIdentityOther() { const startIndex = this._origIndex * this.valueSize; const targetIndex = this._addIndex * this.valueSize; for (let i = 0; i < this.valueSize; i++) { this.buffer[targetIndex + i] = this.buffer[startIndex + i]; } } // mix functions _select(buffer, dstOffset, srcOffset, t, stride) { if (t >= 0.5) { for (let i = 0; i !== stride; ++i) { buffer[dstOffset + i] = buffer[srcOffset + i]; } } } _slerp(buffer, dstOffset, srcOffset, t) { Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t); } _slerpAdditive(buffer, dstOffset, srcOffset, t, stride) { const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t); } _lerp(buffer, dstOffset, srcOffset, t, stride) { const s = 1 - t; for (let i = 0; i !== stride; ++i) { const j = dstOffset + i; buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t; } } _lerpAdditive(buffer, dstOffset, srcOffset, t, stride) { for (let i = 0; i !== stride; ++i) { const j = dstOffset + i; buffer[j] = buffer[j] + buffer[srcOffset + i] * t; } } } // Characters [].:/ are reserved for track binding syntax. const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches // only latin characters, and the unicode \p{L} is not yet supported. So // instead, we exclude reserved characters and match everything else. const _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved // characters. Accessor may contain any character except closing bracket. const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may // contain any non-bracket characters. const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar); const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$'); const _supportedObjectNames = ['material', 'materials', 'bones']; class Composite { constructor(targetGroup, path, optionalParsedPath) { const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_(path, parsedPath); } getValue(array, offset) { this.bind(); // bind all binding const firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[firstValidIndex]; // and only call .getValue on the first if (binding !== undefined) binding.getValue(array, offset); } setValue(array, offset) { const bindings = this._bindings; for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].setValue(array, offset); } } bind() { const bindings = this._bindings; for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].bind(); } } unbind() { const bindings = this._bindings; for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].unbind(); } } } // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. class PropertyBinding { constructor(rootNode, path, parsedPath) { this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path); this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode; this.rootNode = rootNode; // initial state of these methods that calls 'bind' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } static create(root, path, parsedPath) { if (!(root && root.isAnimationObjectGroup)) { return new PropertyBinding(root, path, parsedPath); } else { return new PropertyBinding.Composite(root, path, parsedPath); } } /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ static sanitizeNodeName(name) { return name.replace(/\s/g, '_').replace(_reservedRe, ''); } static parseTrackName(trackName) { const matches = _trackRe.exec(trackName); if (!matches) { throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName); } const results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[2], objectName: matches[3], objectIndex: matches[4], propertyName: matches[5], // required propertyIndex: matches[6] }; const lastDot = results.nodeName && results.nodeName.lastIndexOf('.'); if (lastDot !== undefined && lastDot !== -1) { const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if (_supportedObjectNames.indexOf(objectName) !== -1) { results.nodeName = results.nodeName.substring(0, lastDot); results.objectName = objectName; } } if (results.propertyName === null || results.propertyName.length === 0) { throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName); } return results; } static findNode(root, nodeName) { if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) { return root; } // search into skeleton bones. if (root.skeleton) { const bone = root.skeleton.getBoneByName(nodeName); if (bone !== undefined) { return bone; } } // search into node subtree. if (root.children) { const searchNodeSubtree = function (children) { for (let i = 0; i < children.length; i++) { const childNode = children[i]; if (childNode.name === nodeName || childNode.uuid === nodeName) { return childNode; } const result = searchNodeSubtree(childNode.children); if (result) return result; } return null; }; const subTreeNode = searchNodeSubtree(root.children); if (subTreeNode) { return subTreeNode; } } return null; } // these are used to "bind" a nonexistent property _getValue_unavailable() {} _setValue_unavailable() {} // Getters _getValue_direct(buffer, offset) { buffer[offset] = this.node[this.propertyName]; } _getValue_array(buffer, offset) { const source = this.resolvedProperty; for (let i = 0, n = source.length; i !== n; ++i) { buffer[offset++] = source[i]; } } _getValue_arrayElement(buffer, offset) { buffer[offset] = this.resolvedProperty[this.propertyIndex]; } _getValue_toArray(buffer, offset) { this.resolvedProperty.toArray(buffer, offset); } // Direct _setValue_direct(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset]; } _setValue_direct_setNeedsUpdate(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset]; this.targetObject.needsUpdate = true; } _setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset]; this.targetObject.matrixWorldNeedsUpdate = true; } // EntireArray _setValue_array(buffer, offset) { const dest = this.resolvedProperty; for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++]; } } _setValue_array_setNeedsUpdate(buffer, offset) { const dest = this.resolvedProperty; for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++]; } this.targetObject.needsUpdate = true; } _setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) { const dest = this.resolvedProperty; for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++]; } this.targetObject.matrixWorldNeedsUpdate = true; } // ArrayElement _setValue_arrayElement(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset]; } _setValue_arrayElement_setNeedsUpdate(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset]; this.targetObject.needsUpdate = true; } _setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset]; this.targetObject.matrixWorldNeedsUpdate = true; } // HasToFromArray _setValue_fromArray(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset); } _setValue_fromArray_setNeedsUpdate(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset); this.targetObject.needsUpdate = true; } _setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset); this.targetObject.matrixWorldNeedsUpdate = true; } _getValue_unbound(targetArray, offset) { this.bind(); this.getValue(targetArray, offset); } _setValue_unbound(sourceArray, offset) { this.bind(); this.setValue(sourceArray, offset); } // create getter / setter pair for a property in the scene graph bind() { let targetObject = this.node; const parsedPath = this.parsedPath; const objectName = parsedPath.objectName; const propertyName = parsedPath.propertyName; let propertyIndex = parsedPath.propertyIndex; if (!targetObject) { targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode; this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if (!targetObject) { console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.'); return; } if (objectName) { let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch (objectName) { case 'materials': if (!targetObject.material) { console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this); return; } if (!targetObject.material.materials) { console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this); return; } targetObject = targetObject.material.materials; break; case 'bones': if (!targetObject.skeleton) { console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for (let i = 0; i < targetObject.length; i++) { if (targetObject[i].name === objectIndex) { objectIndex = i; break; } } break; default: if (targetObject[objectName] === undefined) { console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this); return; } targetObject = targetObject[objectName]; } if (objectIndex !== undefined) { if (targetObject[objectIndex] === undefined) { console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject); return; } targetObject = targetObject[objectIndex]; } } // resolve property const nodeProperty = targetObject[propertyName]; if (nodeProperty === undefined) { const nodeName = parsedPath.nodeName; console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject); return; } // determine versioning scheme let versioning = this.Versioning.None; this.targetObject = targetObject; if (targetObject.needsUpdate !== undefined) { // material versioning = this.Versioning.NeedsUpdate; } else if (targetObject.matrixWorldNeedsUpdate !== undefined) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; } // determine how the property gets bound let bindingType = this.BindingType.Direct; if (propertyIndex !== undefined) { // access a sub element of the property array (only primitives are supported right now) if (propertyName === 'morphTargetInfluences') { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if (!targetObject.geometry) { console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this); return; } if (targetObject.geometry.isBufferGeometry) { if (!targetObject.geometry.morphAttributes) { console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this); return; } if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) { propertyIndex = targetObject.morphTargetDictionary[propertyIndex]; } } else { console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this); return; } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if (Array.isArray(nodeProperty)) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[bindingType]; this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning]; } unbind() { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } } PropertyBinding.Composite = Composite; PropertyBinding.prototype.BindingType = { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }; PropertyBinding.prototype.Versioning = { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }; PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray]; PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]]; /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. */ class AnimationObjectGroup { constructor() { this.uuid = generateUUID(); // cached objects followed by the active ones this._objects = Array.prototype.slice.call(arguments); this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite const indices = {}; this._indicesByUUID = indices; // for bookkeeping for (let i = 0, n = arguments.length; i !== n; ++i) { indices[arguments[i].uuid] = i; } this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays const scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; } add() { const objects = this._objects, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; let knownObject = undefined, nObjects = objects.length, nCachedObjects = this.nCachedObjects_; for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid; let index = indicesByUUID[uuid]; if (index === undefined) { // unknown object -> add it to the ACTIVE region index = nObjects++; indicesByUUID[uuid] = index; objects.push(object); // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j])); } } else if (index < nCachedObjects) { knownObject = objects[index]; // move existing object to the ACTIVE region const firstActiveIndex = --nCachedObjects, lastCachedObject = objects[firstActiveIndex]; indicesByUUID[lastCachedObject.uuid] = index; objects[index] = lastCachedObject; indicesByUUID[uuid] = firstActiveIndex; objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], lastCached = bindingsForPath[firstActiveIndex]; let binding = bindingsForPath[index]; bindingsForPath[index] = lastCached; if (binding === undefined) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new PropertyBinding(object, paths[j], parsedPaths[j]); } bindingsForPath[firstActiveIndex] = binding; } } else if (objects[index] !== knownObject) { console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.'); } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects; } remove() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; let nCachedObjects = this.nCachedObjects_; for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid]; if (index !== undefined && index >= nCachedObjects) { // move existing object into the CACHED region const lastCachedIndex = nCachedObjects++, firstActiveObject = objects[lastCachedIndex]; indicesByUUID[firstActiveObject.uuid] = index; objects[index] = firstActiveObject; indicesByUUID[uuid] = lastCachedIndex; objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], firstActive = bindingsForPath[lastCachedIndex], binding = bindingsForPath[index]; bindingsForPath[index] = firstActive; bindingsForPath[lastCachedIndex] = binding; } } } // for arguments this.nCachedObjects_ = nCachedObjects; } // remove & forget uncache() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; let nCachedObjects = this.nCachedObjects_, nObjects = objects.length; for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid]; if (index !== undefined) { delete indicesByUUID[uuid]; if (index < nCachedObjects) { // object is cached, shrink the CACHED region const firstActiveIndex = --nCachedObjects, lastCachedObject = objects[firstActiveIndex], lastIndex = --nObjects, lastObject = objects[lastIndex]; // last cached object takes this object's place indicesByUUID[lastCachedObject.uuid] = index; objects[index] = lastCachedObject; // last object goes to the activated slot and pop indicesByUUID[lastObject.uuid] = firstActiveIndex; objects[firstActiveIndex] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], lastCached = bindingsForPath[firstActiveIndex], last = bindingsForPath[lastIndex]; bindingsForPath[index] = lastCached; bindingsForPath[firstActiveIndex] = last; bindingsForPath.pop(); } } else { // object is active, just swap with the last and pop const lastIndex = --nObjects, lastObject = objects[lastIndex]; if (lastIndex > 0) { indicesByUUID[lastObject.uuid] = index; } objects[index] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j]; bindingsForPath[index] = bindingsForPath[lastIndex]; bindingsForPath.pop(); } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects; } // Internal interface used by befriended PropertyBinding.Composite: subscribe_(path, parsedPath) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group const indicesByPath = this._bindingsIndicesByPath; let index = indicesByPath[path]; const bindings = this._bindings; if (index !== undefined) return bindings[index]; const paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array(nObjects); index = bindings.length; indicesByPath[path] = index; paths.push(path); parsedPaths.push(parsedPath); bindings.push(bindingsForPath); for (let i = nCachedObjects, n = objects.length; i !== n; ++i) { const object = objects[i]; bindingsForPath[i] = new PropertyBinding(object, path, parsedPath); } return bindingsForPath; } unsubscribe_(path) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' const indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[path]; if (index !== undefined) { const paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[lastBindingsIndex], lastBindingsPath = path[lastBindingsIndex]; indicesByPath[lastBindingsPath] = index; bindings[index] = lastBindings; bindings.pop(); parsedPaths[index] = parsedPaths[lastBindingsIndex]; parsedPaths.pop(); paths[index] = paths[lastBindingsIndex]; paths.pop(); } } } AnimationObjectGroup.prototype.isAnimationObjectGroup = true; class AnimationAction { constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot; this.blendMode = blendMode; const tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array(nTracks); const interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; for (let i = 0; i !== nTracks; ++i) { const interpolant = tracks[i].createInterpolant(null); interpolants[i] = interpolant; interpolant.settings = interpolantSettings; } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array(nTracks); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = LoopRepeat; this._loopCount = -1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // true -> zero effective time scale this.enabled = true; // false -> zero effective weight this.clampWhenFinished = false; // keep feeding the last frame? this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate this.zeroSlopeAtEnd = true; // clips for start, loop and end } // State & Scheduling play() { this._mixer._activateAction(this); return this; } stop() { this._mixer._deactivateAction(this); return this.reset(); } reset() { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = -1; // forget previous loops this._startTime = null; // forget scheduling return this.stopFading().stopWarping(); } isRunning() { return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this); } // return true when play has been called isScheduled() { return this._mixer._isActiveAction(this); } startAt(time) { this._startTime = time; return this; } setLoop(mode, repetitions) { this.loop = mode; this.repetitions = repetitions; return this; } // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight(weight) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); } // return the weight considering fading and .enabled getEffectiveWeight() { return this._effectiveWeight; } fadeIn(duration) { return this._scheduleFading(duration, 0, 1); } fadeOut(duration) { return this._scheduleFading(duration, 1, 0); } crossFadeFrom(fadeOutAction, duration, warp) { fadeOutAction.fadeOut(duration); this.fadeIn(duration); if (warp) { const fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp(1.0, startEndRatio, duration); this.warp(endStartRatio, 1.0, duration); } return this; } crossFadeTo(fadeInAction, duration, warp) { return fadeInAction.crossFadeFrom(this, duration, warp); } stopFading() { const weightInterpolant = this._weightInterpolant; if (weightInterpolant !== null) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant(weightInterpolant); } return this; } // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale(timeScale) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 : timeScale; return this.stopWarping(); } // return the time scale considering warping and .paused getEffectiveTimeScale() { return this._effectiveTimeScale; } setDuration(duration) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); } syncWith(action) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); } halt(duration) { return this.warp(this._effectiveTimeScale, 0, duration); } warp(startTimeScale, endTimeScale, duration) { const mixer = this._mixer, now = mixer.time, timeScale = this.timeScale; let interpolant = this._timeScaleInterpolant; if (interpolant === null) { interpolant = mixer._lendControlInterpolant(); this._timeScaleInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[0] = now; times[1] = now + duration; values[0] = startTimeScale / timeScale; values[1] = endTimeScale / timeScale; return this; } stopWarping() { const timeScaleInterpolant = this._timeScaleInterpolant; if (timeScaleInterpolant !== null) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant(timeScaleInterpolant); } return this; } // Object Accessors getMixer() { return this._mixer; } getClip() { return this._clip; } getRoot() { return this._localRoot || this._mixer._root; } // Interna _update(time, deltaTime, timeDirection, accuIndex) { // called by the mixer if (!this.enabled) { // call ._updateWeight() to update ._effectiveWeight this._updateWeight(time); return; } const startTime = this._startTime; if (startTime !== null) { // check for scheduled start of action const timeRunning = (time - startTime) * timeDirection; if (timeRunning < 0 || timeDirection === 0) { return; // yet to come / don't decide when delta = 0 } // start this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } // apply time scale and advance time deltaTime *= this._updateTimeScale(time); const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in // an effective weight of 0 const weight = this._updateWeight(time); if (weight > 0) { const interpolants = this._interpolants; const propertyMixers = this._propertyBindings; switch (this.blendMode) { case AdditiveAnimationBlendMode: for (let j = 0, m = interpolants.length; j !== m; ++j) { interpolants[j].evaluate(clipTime); propertyMixers[j].accumulateAdditive(weight); } break; case NormalAnimationBlendMode: default: for (let j = 0, m = interpolants.length; j !== m; ++j) { interpolants[j].evaluate(clipTime); propertyMixers[j].accumulate(accuIndex, weight); } } } } _updateWeight(time) { let weight = 0; if (this.enabled) { weight = this.weight; const interpolant = this._weightInterpolant; if (interpolant !== null) { const interpolantValue = interpolant.evaluate(time)[0]; weight *= interpolantValue; if (time > interpolant.parameterPositions[1]) { this.stopFading(); if (interpolantValue === 0) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; } _updateTimeScale(time) { let timeScale = 0; if (!this.paused) { timeScale = this.timeScale; const interpolant = this._timeScaleInterpolant; if (interpolant !== null) { const interpolantValue = interpolant.evaluate(time)[0]; timeScale *= interpolantValue; if (time > interpolant.parameterPositions[1]) { this.stopWarping(); if (timeScale === 0) { // motion has halted, pause this.paused = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; } _updateTime(deltaTime) { const duration = this._clip.duration; const loop = this.loop; let time = this.time + deltaTime; let loopCount = this._loopCount; const pingPong = loop === LoopPingPong; if (deltaTime === 0) { if (loopCount === -1) return time; return pingPong && (loopCount & 1) === 1 ? duration - time : time; } if (loop === LoopOnce) { if (loopCount === -1) { // just started this._loopCount = 0; this._setEndings(true, true, false); } handle_stop: { if (time >= duration) { time = duration; } else if (time < 0) { time = 0; } else { this.time = time; break handle_stop; } if (this.clampWhenFinished) this.paused = true;else this.enabled = false; this.time = time; this._mixer.dispatchEvent({ type: 'finished', action: this, direction: deltaTime < 0 ? -1 : 1 }); } } else { // repetitive Repeat or PingPong if (loopCount === -1) { // just started if (deltaTime >= 0) { loopCount = 0; this._setEndings(true, this.repetitions === 0, pingPong); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings(this.repetitions === 0, true, pingPong); } } if (time >= duration || time < 0) { // wrap around const loopDelta = Math.floor(time / duration); // signed time -= duration * loopDelta; loopCount += Math.abs(loopDelta); const pending = this.repetitions - loopCount; if (pending <= 0) { // have to stop (switch state, clamp time, fire event) if (this.clampWhenFinished) this.paused = true;else this.enabled = false; time = deltaTime > 0 ? duration : 0; this.time = time; this._mixer.dispatchEvent({ type: 'finished', action: this, direction: deltaTime > 0 ? 1 : -1 }); } else { // keep running if (pending === 1) { // entering the last round const atStart = deltaTime < 0; this._setEndings(atStart, !atStart, pingPong); } else { this._setEndings(false, false, pingPong); } this._loopCount = loopCount; this.time = time; this._mixer.dispatchEvent({ type: 'loop', action: this, loopDelta: loopDelta }); } } else { this.time = time; } if (pingPong && (loopCount & 1) === 1) { // invert time for the "pong round" return duration - time; } } return time; } _setEndings(atStart, atEnd, pingPong) { const settings = this._interpolantSettings; if (pingPong) { settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if (atStart) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingStart = WrapAroundEnding; } if (atEnd) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingEnd = WrapAroundEnding; } } } _scheduleFading(duration, weightNow, weightThen) { const mixer = this._mixer, now = mixer.time; let interpolant = this._weightInterpolant; if (interpolant === null) { interpolant = mixer._lendControlInterpolant(); this._weightInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[0] = now; values[0] = weightNow; times[1] = now + duration; values[1] = weightThen; return this; } } class AnimationMixer extends EventDispatcher { constructor(root) { super(); this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; } _bindAction(action, prototypeAction) { const root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName; let bindingsByName = bindingsByRoot[rootUuid]; if (bindingsByName === undefined) { bindingsByName = {}; bindingsByRoot[rootUuid] = bindingsByName; } for (let i = 0; i !== nTracks; ++i) { const track = tracks[i], trackName = track.name; let binding = bindingsByName[trackName]; if (binding !== undefined) { bindings[i] = binding; } else { binding = bindings[i]; if (binding !== undefined) { // existing binding, make sure the cache knows if (binding._cacheIndex === null) { ++binding.referenceCount; this._addInactiveBinding(binding, rootUuid, trackName); } continue; } const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath; binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize()); ++binding.referenceCount; this._addInactiveBinding(binding, rootUuid, trackName); bindings[i] = binding; } interpolants[i].resultBuffer = binding.buffer; } } _activateAction(action) { if (!this._isActiveAction(action)) { if (action._cacheIndex === null) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind const rootUuid = (action._localRoot || this._root).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[clipUuid]; this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]); this._addInactiveAction(action, clipUuid, rootUuid); } const bindings = action._propertyBindings; // increment reference counts / sort out state for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i]; if (binding.useCount++ === 0) { this._lendBinding(binding); binding.saveOriginalState(); } } this._lendAction(action); } } _deactivateAction(action) { if (this._isActiveAction(action)) { const bindings = action._propertyBindings; // decrement reference counts / sort out state for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i]; if (--binding.useCount === 0) { binding.restoreOriginalState(); this._takeBackBinding(binding); } } this._takeBackAction(action); } } // Memory manager _initMemoryManager() { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; const scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; } // Memory management for AnimationAction objects _isActiveAction(action) { const index = action._cacheIndex; return index !== null && index < this._nActiveActions; } _addInactiveAction(action, clipUuid, rootUuid) { const actions = this._actions, actionsByClip = this._actionsByClip; let actionsForClip = actionsByClip[clipUuid]; if (actionsForClip === undefined) { actionsForClip = { knownActions: [action], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[clipUuid] = actionsForClip; } else { const knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push(action); } action._cacheIndex = actions.length; actions.push(action); actionsForClip.actionByRoot[rootUuid] = action; } _removeInactiveAction(action) { const actions = this._actions, lastInactiveAction = actions[actions.length - 1], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[cacheIndex] = lastInactiveAction; actions.pop(); action._cacheIndex = null; const clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[byClipCacheIndex] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; const actionByRoot = actionsForClip.actionByRoot, rootUuid = (action._localRoot || this._root).uuid; delete actionByRoot[rootUuid]; if (knownActionsForClip.length === 0) { delete actionsByClip[clipUuid]; } this._removeInactiveBindingsForAction(action); } _removeInactiveBindingsForAction(action) { const bindings = action._propertyBindings; for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i]; if (--binding.referenceCount === 0) { this._removeInactiveBinding(binding); } } } _lendAction(action) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s const actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions++, firstInactiveAction = actions[lastActiveIndex]; action._cacheIndex = lastActiveIndex; actions[lastActiveIndex] = action; firstInactiveAction._cacheIndex = prevIndex; actions[prevIndex] = firstInactiveAction; } _takeBackAction(action) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a const actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = --this._nActiveActions, lastActiveAction = actions[firstInactiveIndex]; action._cacheIndex = firstInactiveIndex; actions[firstInactiveIndex] = action; lastActiveAction._cacheIndex = prevIndex; actions[prevIndex] = lastActiveAction; } // Memory management for PropertyMixer objects _addInactiveBinding(binding, rootUuid, trackName) { const bindingsByRoot = this._bindingsByRootAndName, bindings = this._bindings; let bindingByName = bindingsByRoot[rootUuid]; if (bindingByName === undefined) { bindingByName = {}; bindingsByRoot[rootUuid] = bindingByName; } bindingByName[trackName] = binding; binding._cacheIndex = bindings.length; bindings.push(binding); } _removeInactiveBinding(binding) { const bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid], lastInactiveBinding = bindings[bindings.length - 1], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[cacheIndex] = lastInactiveBinding; bindings.pop(); delete bindingByName[trackName]; if (Object.keys(bindingByName).length === 0) { delete bindingsByRoot[rootUuid]; } } _lendBinding(binding) { const bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings++, firstInactiveBinding = bindings[lastActiveIndex]; binding._cacheIndex = lastActiveIndex; bindings[lastActiveIndex] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[prevIndex] = firstInactiveBinding; } _takeBackBinding(binding) { const bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = --this._nActiveBindings, lastActiveBinding = bindings[firstInactiveIndex]; binding._cacheIndex = firstInactiveIndex; bindings[firstInactiveIndex] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[prevIndex] = lastActiveBinding; } // Memory management of Interpolants for weight and time scale _lendControlInterpolant() { const interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants++; let interpolant = interpolants[lastActiveIndex]; if (interpolant === undefined) { interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer); interpolant.__cacheIndex = lastActiveIndex; interpolants[lastActiveIndex] = interpolant; } return interpolant; } _takeBackControlInterpolant(interpolant) { const interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = --this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[firstInactiveIndex]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[firstInactiveIndex] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[prevIndex] = lastActiveInterpolant; } // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction(clip, optionalRoot, blendMode) { const root = optionalRoot || this._root, rootUuid = root.uuid; let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip; const clipUuid = clipObject !== null ? clipObject.uuid : clip; const actionsForClip = this._actionsByClip[clipUuid]; let prototypeAction = null; if (blendMode === undefined) { if (clipObject !== null) { blendMode = clipObject.blendMode; } else { blendMode = NormalAnimationBlendMode; } } if (actionsForClip !== undefined) { const existingAction = actionsForClip.actionByRoot[rootUuid]; if (existingAction !== undefined && existingAction.blendMode === blendMode) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action if (clipObject === null) clipObject = prototypeAction._clip; } // clip must be known when specified via string if (clipObject === null) return null; // allocate all resources required to run it const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode); this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager this._addInactiveAction(newAction, clipUuid, rootUuid); return newAction; } // get an existing action existingAction(clip, optionalRoot) { const root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[clipUuid]; if (actionsForClip !== undefined) { return actionsForClip.actionByRoot[rootUuid] || null; } return null; } // deactivates all previously scheduled actions stopAllAction() { const actions = this._actions, nActions = this._nActiveActions; for (let i = nActions - 1; i >= 0; --i) { actions[i].stop(); } return this; } // advance the time and update apply the animation update(deltaTime) { deltaTime *= this.timeScale; const actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign(deltaTime), accuIndex = this._accuIndex ^= 1; // run active actions for (let i = 0; i !== nActions; ++i) { const action = actions[i]; action._update(time, deltaTime, timeDirection, accuIndex); } // update scene graph const bindings = this._bindings, nBindings = this._nActiveBindings; for (let i = 0; i !== nBindings; ++i) { bindings[i].apply(accuIndex); } return this; } // Allows you to seek to a specific time in an animation. setTime(timeInSeconds) { this.time = 0; // Zero out time attribute for AnimationMixer object; for (let i = 0; i < this._actions.length; i++) { this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects. } return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object. } // return this mixer's root target object getRoot() { return this._root; } // free all resources specific to a particular clip uncacheClip(clip) { const actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid]; if (actionsForClip !== undefined) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away const actionsToRemove = actionsForClip.knownActions; for (let i = 0, n = actionsToRemove.length; i !== n; ++i) { const action = actionsToRemove[i]; this._deactivateAction(action); const cacheIndex = action._cacheIndex, lastInactiveAction = actions[actions.length - 1]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[cacheIndex] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction(action); } delete actionsByClip[clipUuid]; } } // free all resources specific to a particular root target object uncacheRoot(root) { const rootUuid = root.uuid, actionsByClip = this._actionsByClip; for (const clipUuid in actionsByClip) { const actionByRoot = actionsByClip[clipUuid].actionByRoot, action = actionByRoot[rootUuid]; if (action !== undefined) { this._deactivateAction(action); this._removeInactiveAction(action); } } const bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid]; if (bindingByName !== undefined) { for (const trackName in bindingByName) { const binding = bindingByName[trackName]; binding.restoreOriginalState(); this._removeInactiveBinding(binding); } } } // remove a targeted clip from the cache uncacheAction(clip, optionalRoot) { const action = this.existingAction(clip, optionalRoot); if (action !== null) { this._deactivateAction(action); this._removeInactiveAction(action); } } } AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1); class Uniform { constructor(value) { if (typeof value === 'string') { console.warn('THREE.Uniform: Type parameter is no longer needed.'); value = arguments[1]; } this.value = value; } clone() { return new Uniform(this.value.clone === undefined ? this.value : this.value.clone()); } } class InstancedInterleavedBuffer extends InterleavedBuffer { constructor(array, stride, meshPerAttribute = 1) { super(array, stride); this.meshPerAttribute = meshPerAttribute || 1; } copy(source) { super.copy(source); this.meshPerAttribute = source.meshPerAttribute; return this; } clone(data) { const ib = super.clone(data); ib.meshPerAttribute = this.meshPerAttribute; return ib; } toJSON(data) { const json = super.toJSON(data); json.isInstancedInterleavedBuffer = true; json.meshPerAttribute = this.meshPerAttribute; return json; } } InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true; class GLBufferAttribute { constructor(buffer, type, itemSize, elementSize, count) { this.buffer = buffer; this.type = type; this.itemSize = itemSize; this.elementSize = elementSize; this.count = count; this.version = 0; } set needsUpdate(value) { if (value === true) this.version++; } setBuffer(buffer) { this.buffer = buffer; return this; } setType(type, elementSize) { this.type = type; this.elementSize = elementSize; return this; } setItemSize(itemSize) { this.itemSize = itemSize; return this; } setCount(count) { this.count = count; return this; } } GLBufferAttribute.prototype.isGLBufferAttribute = true; class Raycaster { constructor(origin, direction, near = 0, far = Infinity) { this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations) this.near = near; this.far = far; this.camera = null; this.layers = new Layers(); this.params = { Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; } set(origin, direction) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set(origin, direction); } setFromCamera(coords, camera) { if (camera && camera.isPerspectiveCamera) { this.ray.origin.setFromMatrixPosition(camera.matrixWorld); this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize(); this.camera = camera; } else if (camera && camera.isOrthographicCamera) { this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld); this.camera = camera; } else { console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type); } } intersectObject(object, recursive = false, intersects = []) { intersectObject(object, this, intersects, recursive); intersects.sort(ascSort); return intersects; } intersectObjects(objects, recursive = false, intersects = []) { for (let i = 0, l = objects.length; i < l; i++) { intersectObject(objects[i], this, intersects, recursive); } intersects.sort(ascSort); return intersects; } } function ascSort(a, b) { return a.distance - b.distance; } function intersectObject(object, raycaster, intersects, recursive) { if (object.layers.test(raycaster.layers)) { object.raycast(raycaster, intersects); } if (recursive === true) { const children = object.children; for (let i = 0, l = children.length; i < l; i++) { intersectObject(children[i], raycaster, intersects, true); } } } /** * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. * The azimuthal angle (theta) is measured from the positive z-axis. */ class Spherical { constructor(radius = 1, phi = 0, theta = 0) { this.radius = radius; this.phi = phi; // polar angle this.theta = theta; // azimuthal angle return this; } set(radius, phi, theta) { this.radius = radius; this.phi = phi; this.theta = theta; return this; } copy(other) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; } // restrict phi to be betwee EPS and PI-EPS makeSafe() { const EPS = 0.000001; this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi)); return this; } setFromVector3(v) { return this.setFromCartesianCoords(v.x, v.y, v.z); } setFromCartesianCoords(x, y, z) { this.radius = Math.sqrt(x * x + y * y + z * z); if (this.radius === 0) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2(x, z); this.phi = Math.acos(clamp(y / this.radius, -1, 1)); } return this; } clone() { return new this.constructor().copy(this); } } /** * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system */ class Cylindrical { constructor(radius = 1, theta = 0, y = 0) { this.radius = radius; // distance from the origin to a point in the x-z plane this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis this.y = y; // height above the x-z plane return this; } set(radius, theta, y) { this.radius = radius; this.theta = theta; this.y = y; return this; } copy(other) { this.radius = other.radius; this.theta = other.theta; this.y = other.y; return this; } setFromVector3(v) { return this.setFromCartesianCoords(v.x, v.y, v.z); } setFromCartesianCoords(x, y, z) { this.radius = Math.sqrt(x * x + z * z); this.theta = Math.atan2(x, z); this.y = y; return this; } clone() { return new this.constructor().copy(this); } } const _vector$4 = /*@__PURE__*/new Vector2(); class Box2 { constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) { this.min = min; this.max = max; } set(min, max) { this.min.copy(min); this.max.copy(max); return this; } setFromPoints(points) { this.makeEmpty(); for (let i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]); } return this; } setFromCenterAndSize(center, size) { const halfSize = _vector$4.copy(size).multiplyScalar(0.5); this.min.copy(center).sub(halfSize); this.max.copy(center).add(halfSize); return this; } clone() { return new this.constructor().copy(this); } copy(box) { this.min.copy(box.min); this.max.copy(box.max); return this; } makeEmpty() { this.min.x = this.min.y = +Infinity; this.max.x = this.max.y = -Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return this.max.x < this.min.x || this.max.y < this.min.y; } getCenter(target) { if (target === undefined) { console.warn('THREE.Box2: .getCenter() target is now required'); target = new Vector2(); } return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); } getSize(target) { if (target === undefined) { console.warn('THREE.Box2: .getSize() target is now required'); target = new Vector2(); } return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min); } expandByPoint(point) { this.min.min(point); this.max.max(point); return this; } expandByVector(vector) { this.min.sub(vector); this.max.add(vector); return this; } expandByScalar(scalar) { this.min.addScalar(-scalar); this.max.addScalar(scalar); return this; } containsPoint(point) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true; } containsBox(box) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y; } getParameter(point, target) { // This can potentially have a divide by zero if the box // has a size dimension of 0. if (target === undefined) { console.warn('THREE.Box2: .getParameter() target is now required'); target = new Vector2(); } return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y)); } intersectsBox(box) { // using 4 splitting planes to rule out intersections return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true; } clampPoint(point, target) { if (target === undefined) { console.warn('THREE.Box2: .clampPoint() target is now required'); target = new Vector2(); } return target.copy(point).clamp(this.min, this.max); } distanceToPoint(point) { const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max); return clampedPoint.sub(point).length(); } intersect(box) { this.min.max(box.min); this.max.min(box.max); return this; } union(box) { this.min.min(box.min); this.max.max(box.max); return this; } translate(offset) { this.min.add(offset); this.max.add(offset); return this; } equals(box) { return box.min.equals(this.min) && box.max.equals(this.max); } } Box2.prototype.isBox2 = true; const _startP = /*@__PURE__*/new Vector3(); const _startEnd = /*@__PURE__*/new Vector3(); class Line3 { constructor(start = new Vector3(), end = new Vector3()) { this.start = start; this.end = end; } set(start, end) { this.start.copy(start); this.end.copy(end); return this; } copy(line) { this.start.copy(line.start); this.end.copy(line.end); return this; } getCenter(target) { if (target === undefined) { console.warn('THREE.Line3: .getCenter() target is now required'); target = new Vector3(); } return target.addVectors(this.start, this.end).multiplyScalar(0.5); } delta(target) { if (target === undefined) { console.warn('THREE.Line3: .delta() target is now required'); target = new Vector3(); } return target.subVectors(this.end, this.start); } distanceSq() { return this.start.distanceToSquared(this.end); } distance() { return this.start.distanceTo(this.end); } at(t, target) { if (target === undefined) { console.warn('THREE.Line3: .at() target is now required'); target = new Vector3(); } return this.delta(target).multiplyScalar(t).add(this.start); } closestPointToPointParameter(point, clampToLine) { _startP.subVectors(point, this.start); _startEnd.subVectors(this.end, this.start); const startEnd2 = _startEnd.dot(_startEnd); const startEnd_startP = _startEnd.dot(_startP); let t = startEnd_startP / startEnd2; if (clampToLine) { t = clamp(t, 0, 1); } return t; } closestPointToPoint(point, clampToLine, target) { const t = this.closestPointToPointParameter(point, clampToLine); if (target === undefined) { console.warn('THREE.Line3: .closestPointToPoint() target is now required'); target = new Vector3(); } return this.delta(target).multiplyScalar(t).add(this.start); } applyMatrix4(matrix) { this.start.applyMatrix4(matrix); this.end.applyMatrix4(matrix); return this; } equals(line) { return line.start.equals(this.start) && line.end.equals(this.end); } clone() { return new this.constructor().copy(this); } } class ImmediateRenderObject extends Object3D { constructor(material) { super(); this.material = material; this.render = function () /* renderCallback */ {}; this.hasPositions = false; this.hasNormals = false; this.hasColors = false; this.hasUvs = false; this.positionArray = null; this.normalArray = null; this.colorArray = null; this.uvArray = null; this.count = 0; } } ImmediateRenderObject.prototype.isImmediateRenderObject = true; const _vector$3 = /*@__PURE__*/new Vector3(); class SpotLightHelper extends Object3D { constructor(light, color) { super(); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; const geometry = new BufferGeometry(); const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1]; for (let i = 0, j = 1, l = 32; i < l; i++, j++) { const p1 = i / l * Math.PI * 2; const p2 = j / l * Math.PI * 2; positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1); } geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); const material = new LineBasicMaterial({ fog: false, toneMapped: false }); this.cone = new LineSegments(geometry, material); this.add(this.cone); this.update(); } dispose() { this.cone.geometry.dispose(); this.cone.material.dispose(); } update() { this.light.updateMatrixWorld(); const coneLength = this.light.distance ? this.light.distance : 1000; const coneWidth = coneLength * Math.tan(this.light.angle); this.cone.scale.set(coneWidth, coneWidth, coneLength); _vector$3.setFromMatrixPosition(this.light.target.matrixWorld); this.cone.lookAt(_vector$3); if (this.color !== undefined) { this.cone.material.color.set(this.color); } else { this.cone.material.color.copy(this.light.color); } } } const _vector$2 = /*@__PURE__*/new Vector3(); const _boneMatrix = /*@__PURE__*/new Matrix4(); const _matrixWorldInv = /*@__PURE__*/new Matrix4(); class SkeletonHelper extends LineSegments { constructor(object) { const bones = getBoneList(object); const geometry = new BufferGeometry(); const vertices = []; const colors = []; const color1 = new Color(0, 0, 1); const color2 = new Color(0, 1, 0); for (let i = 0; i < bones.length; i++) { const bone = bones[i]; if (bone.parent && bone.parent.isBone) { vertices.push(0, 0, 0); vertices.push(0, 0, 0); colors.push(color1.r, color1.g, color1.b); colors.push(color2.r, color2.g, color2.b); } } geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); const material = new LineBasicMaterial({ vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true }); super(geometry, material); this.type = 'SkeletonHelper'; this.isSkeletonHelper = true; this.root = object; this.bones = bones; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; } updateMatrixWorld(force) { const bones = this.bones; const geometry = this.geometry; const position = geometry.getAttribute('position'); _matrixWorldInv.copy(this.root.matrixWorld).invert(); for (let i = 0, j = 0; i < bones.length; i++) { const bone = bones[i]; if (bone.parent && bone.parent.isBone) { _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld); _vector$2.setFromMatrixPosition(_boneMatrix); position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z); _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld); _vector$2.setFromMatrixPosition(_boneMatrix); position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z); j += 2; } } geometry.getAttribute('position').needsUpdate = true; super.updateMatrixWorld(force); } } function getBoneList(object) { const boneList = []; if (object && object.isBone) { boneList.push(object); } for (let i = 0; i < object.children.length; i++) { boneList.push.apply(boneList, getBoneList(object.children[i])); } return boneList; } class PointLightHelper extends Mesh { constructor(light, sphereSize, color) { const geometry = new SphereGeometry(sphereSize, 4, 2); const material = new MeshBasicMaterial({ wireframe: true, fog: false, toneMapped: false }); super(geometry, material); this.light = light; this.light.updateMatrixWorld(); this.color = color; this.type = 'PointLightHelper'; this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false; this.update(); /* // TODO: delete this comment? const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 ); const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); const d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ } dispose() { this.geometry.dispose(); this.material.dispose(); } update() { if (this.color !== undefined) { this.material.color.set(this.color); } else { this.material.color.copy(this.light.color); } /* const d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ } } const _vector$1 = /*@__PURE__*/new Vector3(); const _color1 = /*@__PURE__*/new Color(); const _color2 = /*@__PURE__*/new Color(); class HemisphereLightHelper extends Object3D { constructor(light, size, color) { super(); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; const geometry = new OctahedronGeometry(size); geometry.rotateY(Math.PI * 0.5); this.material = new MeshBasicMaterial({ wireframe: true, fog: false, toneMapped: false }); if (this.color === undefined) this.material.vertexColors = true; const position = geometry.getAttribute('position'); const colors = new Float32Array(position.count * 3); geometry.setAttribute('color', new BufferAttribute(colors, 3)); this.add(new Mesh(geometry, this.material)); this.update(); } dispose() { this.children[0].geometry.dispose(); this.children[0].material.dispose(); } update() { const mesh = this.children[0]; if (this.color !== undefined) { this.material.color.set(this.color); } else { const colors = mesh.geometry.getAttribute('color'); _color1.copy(this.light.color); _color2.copy(this.light.groundColor); for (let i = 0, l = colors.count; i < l; i++) { const color = i < l / 2 ? _color1 : _color2; colors.setXYZ(i, color.r, color.g, color.b); } colors.needsUpdate = true; } mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate()); } } class GridHelper extends LineSegments { constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) { color1 = new Color(color1); color2 = new Color(color2); const center = divisions / 2; const step = size / divisions; const halfSize = size / 2; const vertices = [], colors = []; for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) { vertices.push(-halfSize, 0, k, halfSize, 0, k); vertices.push(k, 0, -halfSize, k, 0, halfSize); const color = i === center ? color1 : color2; color.toArray(colors, j); j += 3; color.toArray(colors, j); j += 3; color.toArray(colors, j); j += 3; color.toArray(colors, j); j += 3; } const geometry = new BufferGeometry(); geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }); super(geometry, material); this.type = 'GridHelper'; } } class PolarGridHelper extends LineSegments { constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) { color1 = new Color(color1); color2 = new Color(color2); const vertices = []; const colors = []; // create the radials for (let i = 0; i <= radials; i++) { const v = i / radials * (Math.PI * 2); const x = Math.sin(v) * radius; const z = Math.cos(v) * radius; vertices.push(0, 0, 0); vertices.push(x, 0, z); const color = i & 1 ? color1 : color2; colors.push(color.r, color.g, color.b); colors.push(color.r, color.g, color.b); } // create the circles for (let i = 0; i <= circles; i++) { const color = i & 1 ? color1 : color2; const r = radius - radius / circles * i; for (let j = 0; j < divisions; j++) { // first vertex let v = j / divisions * (Math.PI * 2); let x = Math.sin(v) * r; let z = Math.cos(v) * r; vertices.push(x, 0, z); colors.push(color.r, color.g, color.b); // second vertex v = (j + 1) / divisions * (Math.PI * 2); x = Math.sin(v) * r; z = Math.cos(v) * r; vertices.push(x, 0, z); colors.push(color.r, color.g, color.b); } } const geometry = new BufferGeometry(); geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }); super(geometry, material); this.type = 'PolarGridHelper'; } } const _v1 = /*@__PURE__*/new Vector3(); const _v2 = /*@__PURE__*/new Vector3(); const _v3 = /*@__PURE__*/new Vector3(); class DirectionalLightHelper extends Object3D { constructor(light, size, color) { super(); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; if (size === undefined) size = 1; let geometry = new BufferGeometry(); geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3)); const material = new LineBasicMaterial({ fog: false, toneMapped: false }); this.lightPlane = new Line(geometry, material); this.add(this.lightPlane); geometry = new BufferGeometry(); geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3)); this.targetLine = new Line(geometry, material); this.add(this.targetLine); this.update(); } dispose() { this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose(); } update() { _v1.setFromMatrixPosition(this.light.matrixWorld); _v2.setFromMatrixPosition(this.light.target.matrixWorld); _v3.subVectors(_v2, _v1); this.lightPlane.lookAt(_v2); if (this.color !== undefined) { this.lightPlane.material.color.set(this.color); this.targetLine.material.color.set(this.color); } else { this.lightPlane.material.color.copy(this.light.color); this.targetLine.material.color.copy(this.light.color); } this.targetLine.lookAt(_v2); this.targetLine.scale.z = _v3.length(); } } const _vector = /*@__PURE__*/new Vector3(); const _camera = /*@__PURE__*/new Camera(); /** * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ class CameraHelper extends LineSegments { constructor(camera) { const geometry = new BufferGeometry(); const material = new LineBasicMaterial({ color: 0xffffff, vertexColors: true, toneMapped: false }); const vertices = []; const colors = []; const pointMap = {}; // colors const colorFrustum = new Color(0xffaa00); const colorCone = new Color(0xff0000); const colorUp = new Color(0x00aaff); const colorTarget = new Color(0xffffff); const colorCross = new Color(0x333333); // near addLine('n1', 'n2', colorFrustum); addLine('n2', 'n4', colorFrustum); addLine('n4', 'n3', colorFrustum); addLine('n3', 'n1', colorFrustum); // far addLine('f1', 'f2', colorFrustum); addLine('f2', 'f4', colorFrustum); addLine('f4', 'f3', colorFrustum); addLine('f3', 'f1', colorFrustum); // sides addLine('n1', 'f1', colorFrustum); addLine('n2', 'f2', colorFrustum); addLine('n3', 'f3', colorFrustum); addLine('n4', 'f4', colorFrustum); // cone addLine('p', 'n1', colorCone); addLine('p', 'n2', colorCone); addLine('p', 'n3', colorCone); addLine('p', 'n4', colorCone); // up addLine('u1', 'u2', colorUp); addLine('u2', 'u3', colorUp); addLine('u3', 'u1', colorUp); // target addLine('c', 't', colorTarget); addLine('p', 'c', colorCross); // cross addLine('cn1', 'cn2', colorCross); addLine('cn3', 'cn4', colorCross); addLine('cf1', 'cf2', colorCross); addLine('cf3', 'cf4', colorCross); function addLine(a, b, color) { addPoint(a, color); addPoint(b, color); } function addPoint(id, color) { vertices.push(0, 0, 0); colors.push(color.r, color.g, color.b); if (pointMap[id] === undefined) { pointMap[id] = []; } pointMap[id].push(vertices.length / 3 - 1); } geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); super(geometry, material); this.type = 'CameraHelper'; this.camera = camera; if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix(); this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); } update() { const geometry = this.geometry; const pointMap = this.pointMap; const w = 1, h = 1; // we need just camera projection matrix inverse // world matrix must be identity _camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target setPoint('c', pointMap, geometry, _camera, 0, 0, -1); setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near setPoint('n1', pointMap, geometry, _camera, -w, -h, -1); setPoint('n2', pointMap, geometry, _camera, w, -h, -1); setPoint('n3', pointMap, geometry, _camera, -w, h, -1); setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far setPoint('f1', pointMap, geometry, _camera, -w, -h, 1); setPoint('f2', pointMap, geometry, _camera, w, -h, 1); setPoint('f3', pointMap, geometry, _camera, -w, h, 1); setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1); setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1); setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1); setPoint('cf2', pointMap, geometry, _camera, w, 0, 1); setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1); setPoint('cf4', pointMap, geometry, _camera, 0, h, 1); setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1); setPoint('cn2', pointMap, geometry, _camera, w, 0, -1); setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1); setPoint('cn4', pointMap, geometry, _camera, 0, h, -1); geometry.getAttribute('position').needsUpdate = true; } dispose() { this.geometry.dispose(); this.material.dispose(); } } function setPoint(point, pointMap, geometry, camera, x, y, z) { _vector.set(x, y, z).unproject(camera); const points = pointMap[point]; if (points !== undefined) { const position = geometry.getAttribute('position'); for (let i = 0, l = points.length; i < l; i++) { position.setXYZ(points[i], _vector.x, _vector.y, _vector.z); } } } const _box = /*@__PURE__*/new Box3(); class BoxHelper extends LineSegments { constructor(object, color = 0xffff00) { const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]); const positions = new Float32Array(8 * 3); const geometry = new BufferGeometry(); geometry.setIndex(new BufferAttribute(indices, 1)); geometry.setAttribute('position', new BufferAttribute(positions, 3)); super(geometry, new LineBasicMaterial({ color: color, toneMapped: false })); this.object = object; this.type = 'BoxHelper'; this.matrixAutoUpdate = false; this.update(); } update(object) { if (object !== undefined) { console.warn('THREE.BoxHelper: .update() has no longer arguments.'); } if (this.object !== undefined) { _box.setFromObject(this.object); } if (_box.isEmpty()) return; const min = _box.min; const max = _box.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ const position = this.geometry.attributes.position; const array = position.array; array[0] = max.x; array[1] = max.y; array[2] = max.z; array[3] = min.x; array[4] = max.y; array[5] = max.z; array[6] = min.x; array[7] = min.y; array[8] = max.z; array[9] = max.x; array[10] = min.y; array[11] = max.z; array[12] = max.x; array[13] = max.y; array[14] = min.z; array[15] = min.x; array[16] = max.y; array[17] = min.z; array[18] = min.x; array[19] = min.y; array[20] = min.z; array[21] = max.x; array[22] = min.y; array[23] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); } setFromObject(object) { this.object = object; this.update(); return this; } copy(source) { LineSegments.prototype.copy.call(this, source); this.object = source.object; return this; } } class Box3Helper extends LineSegments { constructor(box, color = 0xffff00) { const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]); const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1]; const geometry = new BufferGeometry(); geometry.setIndex(new BufferAttribute(indices, 1)); geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); super(geometry, new LineBasicMaterial({ color: color, toneMapped: false })); this.box = box; this.type = 'Box3Helper'; this.geometry.computeBoundingSphere(); } updateMatrixWorld(force) { const box = this.box; if (box.isEmpty()) return; box.getCenter(this.position); box.getSize(this.scale); this.scale.multiplyScalar(0.5); super.updateMatrixWorld(force); } } class PlaneHelper extends Line { constructor(plane, size = 1, hex = 0xffff00) { const color = hex; const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0]; const geometry = new BufferGeometry(); geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)); geometry.computeBoundingSphere(); super(geometry, new LineBasicMaterial({ color: color, toneMapped: false })); this.type = 'PlaneHelper'; this.plane = plane; this.size = size; const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1]; const geometry2 = new BufferGeometry(); geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3)); geometry2.computeBoundingSphere(); this.add(new Mesh(geometry2, new MeshBasicMaterial({ color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false }))); } updateMatrixWorld(force) { let scale = -this.plane.constant; if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter this.scale.set(0.5 * this.size, 0.5 * this.size, scale); this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here this.lookAt(this.plane.normal); super.updateMatrixWorld(force); } } const _axis = /*@__PURE__*/new Vector3(); let _lineGeometry, _coneGeometry; class ArrowHelper extends Object3D { // dir is assumed to be normalized constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) { super(); this.type = 'ArrowHelper'; if (_lineGeometry === undefined) { _lineGeometry = new BufferGeometry(); _lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3)); _coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1); _coneGeometry.translate(0, -0.5, 0); } this.position.copy(origin); this.line = new Line(_lineGeometry, new LineBasicMaterial({ color: color, toneMapped: false })); this.line.matrixAutoUpdate = false; this.add(this.line); this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({ color: color, toneMapped: false })); this.cone.matrixAutoUpdate = false; this.add(this.cone); this.setDirection(dir); this.setLength(length, headLength, headWidth); } setDirection(dir) { // dir is assumed to be normalized if (dir.y > 0.99999) { this.quaternion.set(0, 0, 0, 1); } else if (dir.y < -0.99999) { this.quaternion.set(1, 0, 0, 0); } else { _axis.set(dir.z, 0, -dir.x).normalize(); const radians = Math.acos(dir.y); this.quaternion.setFromAxisAngle(_axis, radians); } } setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) { this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458 this.line.updateMatrix(); this.cone.scale.set(headWidth, headLength, headWidth); this.cone.position.y = length; this.cone.updateMatrix(); } setColor(color) { this.line.material.color.set(color); this.cone.material.color.set(color); } copy(source) { super.copy(source, false); this.line.copy(source.line); this.cone.copy(source.cone); return this; } } class AxesHelper extends LineSegments { constructor(size = 1) { const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size]; const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1]; const geometry = new BufferGeometry(); geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)); geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)); const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }); super(geometry, material); this.type = 'AxesHelper'; } dispose() { this.geometry.dispose(); this.material.dispose(); } } const _floatView = new Float32Array(1); const _int32View = new Int32Array(_floatView.buffer); class DataUtils { // Converts float32 to float16 (stored as uint16 value). static toHalfFloat(val) { // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410 /* This method is faster than the OpenEXR implementation (very often * used, eg. in Ogre), with the additional benefit of rounding, inspired * by James Tursa?s half-precision code. */ _floatView[0] = val; const x = _int32View[0]; let bits = x >> 16 & 0x8000; /* Get the sign */ let m = x >> 12 & 0x07ff; /* Keep one extra bit for rounding */ const e = x >> 23 & 0xff; /* Using int is faster here */ /* If zero, or denormal, or exponent underflows too much for a denormal * half, return signed zero. */ if (e < 103) return bits; /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */ if (e > 142) { bits |= 0x7c00; /* If exponent was 0xff and one mantissa bit was set, it means NaN, * not Inf, so make sure we set one mantissa bit too. */ bits |= (e == 255 ? 0 : 1) && x & 0x007fffff; return bits; } /* If exponent underflows but not too much, return a denormal */ if (e < 113) { m |= 0x0800; /* Extra rounding may overflow and set mantissa to 0 and exponent * to 1, which is OK. */ bits |= (m >> 114 - e) + (m >> 113 - e & 1); return bits; } bits |= e - 112 << 10 | m >> 1; /* Extra rounding. An overflow will set mantissa to 0 and increment * the exponent, which is OK. */ bits += m & 1; return bits; } } const LOD_MIN = 4; const LOD_MAX = 8; const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582]; const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES = 20; const ENCODINGS = { [LinearEncoding]: 0, [sRGBEncoding]: 1, [RGBEEncoding]: 2, [RGBM7Encoding]: 3, [RGBM16Encoding]: 4, [RGBDEncoding]: 5, [GammaEncoding]: 6 }; const backgroundMaterial = new MeshBasicMaterial({ side: BackSide, depthWrite: false, depthTest: false }); const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial); const _flatCamera = /*@__PURE__*/new OrthographicCamera(); const { _lodPlanes, _sizeLods, _sigmas } = /*@__PURE__*/_createPlanes(); const _clearColor = /*@__PURE__*/new Color(); let _oldTarget = null; // Golden Ratio const PHI = (1 + Math.sqrt(5)) / 2; const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)]; /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. * * Paper: Fast, Accurate Image-Based Lighting * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view */ function convertLinearToRGBE(color) { const maxComponent = Math.max(color.r, color.g, color.b); const fExp = Math.min(Math.max(Math.ceil(Math.log2(maxComponent)), -128.0), 127.0); color.multiplyScalar(Math.pow(2.0, -fExp)); const alpha = (fExp + 128.0) / 255.0; return alpha; } class PMREMGenerator { constructor(renderer) { this._renderer = renderer; this._pingPongRenderTarget = null; this._blurMaterial = _getBlurShader(MAX_SAMPLES); this._equirectShader = null; this._cubemapShader = null; this._compileMaterial(this._blurMaterial); } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene(scene, sigma = 0, near = 0.1, far = 100) { _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = this._allocateTargets(); this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget); if (sigma > 0) { this._blur(cubeUVRenderTarget, 0, 0, sigma); } this._applyPMREM(cubeUVRenderTarget); this._cleanup(cubeUVRenderTarget); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. */ fromEquirectangular(equirectangular) { return this._fromTexture(equirectangular); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. */ fromCubemap(cubemap) { return this._fromTexture(cubemap); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if (this._cubemapShader === null) { this._cubemapShader = _getCubemapShader(); this._compileMaterial(this._cubemapShader); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if (this._equirectShader === null) { this._equirectShader = _getEquirectShader(); this._compileMaterial(this._equirectShader); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._blurMaterial.dispose(); if (this._cubemapShader !== null) this._cubemapShader.dispose(); if (this._equirectShader !== null) this._equirectShader.dispose(); for (let i = 0; i < _lodPlanes.length; i++) { _lodPlanes[i].dispose(); } } // private interface _cleanup(outputTarget) { this._pingPongRenderTarget.dispose(); this._renderer.setRenderTarget(_oldTarget); outputTarget.scissorTest = false; _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height); } _fromTexture(texture) { _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = this._allocateTargets(texture); this._textureToCubeUV(texture, cubeUVRenderTarget); this._applyPMREM(cubeUVRenderTarget); this._cleanup(cubeUVRenderTarget); return cubeUVRenderTarget; } _allocateTargets(texture) { // warning: null texture is valid const params = { magFilter: NearestFilter, minFilter: NearestFilter, generateMipmaps: false, type: UnsignedByteType, format: RGBEFormat, encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding, depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget(params); cubeUVRenderTarget.depthBuffer = texture ? false : true; this._pingPongRenderTarget = _createRenderTarget(params); return cubeUVRenderTarget; } _compileMaterial(material) { const tmpMesh = new Mesh(_lodPlanes[0], material); this._renderer.compile(tmpMesh, _flatCamera); } _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) { const fov = 90; const aspect = 1; const cubeCamera = new PerspectiveCamera(fov, aspect, near, far); const upSign = [1, -1, 1, 1, 1, 1]; const forwardSign = [1, 1, 1, -1, -1, -1]; const renderer = this._renderer; const originalAutoClear = renderer.autoClear; const outputEncoding = renderer.outputEncoding; const toneMapping = renderer.toneMapping; renderer.getClearColor(_clearColor); renderer.toneMapping = NoToneMapping; renderer.outputEncoding = LinearEncoding; renderer.autoClear = false; let useSolidColor = false; const background = scene.background; if (background) { if (background.isColor) { backgroundMaterial.color.copy(background).convertSRGBToLinear(); scene.background = null; const alpha = convertLinearToRGBE(backgroundMaterial.color); backgroundMaterial.opacity = alpha; useSolidColor = true; } } else { backgroundMaterial.color.copy(_clearColor).convertSRGBToLinear(); const alpha = convertLinearToRGBE(backgroundMaterial.color); backgroundMaterial.opacity = alpha; useSolidColor = true; } for (let i = 0; i < 6; i++) { const col = i % 3; if (col == 0) { cubeCamera.up.set(0, upSign[i], 0); cubeCamera.lookAt(forwardSign[i], 0, 0); } else if (col == 1) { cubeCamera.up.set(0, 0, upSign[i]); cubeCamera.lookAt(0, forwardSign[i], 0); } else { cubeCamera.up.set(0, upSign[i], 0); cubeCamera.lookAt(0, 0, forwardSign[i]); } _setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX); renderer.setRenderTarget(cubeUVRenderTarget); if (useSolidColor) { renderer.render(backgroundBox, cubeCamera); } renderer.render(scene, cubeCamera); } renderer.toneMapping = toneMapping; renderer.outputEncoding = outputEncoding; renderer.autoClear = originalAutoClear; } _textureToCubeUV(texture, cubeUVRenderTarget) { const renderer = this._renderer; if (texture.isCubeTexture) { if (this._cubemapShader == null) { this._cubemapShader = _getCubemapShader(); } } else { if (this._equirectShader == null) { this._equirectShader = _getEquirectShader(); } } const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader; const mesh = new Mesh(_lodPlanes[0], material); const uniforms = material.uniforms; uniforms['envMap'].value = texture; if (!texture.isCubeTexture) { uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height); } uniforms['inputEncoding'].value = ENCODINGS[texture.encoding]; uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding]; _setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX); renderer.setRenderTarget(cubeUVRenderTarget); renderer.render(mesh, _flatCamera); } _applyPMREM(cubeUVRenderTarget) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; for (let i = 1; i < TOTAL_LODS; i++) { const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]); const poleAxis = _axisDirections[(i - 1) % _axisDirections.length]; this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis); this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis); } _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if (direction !== 'latitudinal' && direction !== 'longitudinal') { console.error('blur direction must be either latitudinal or longitudinal!'); } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3; const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial); const blurUniforms = blurMaterial.uniforms; const pixels = _sizeLods[lodIn] - 1; const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES; if (samples > MAX_SAMPLES) { console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`); } const weights = []; let sum = 0; for (let i = 0; i < MAX_SAMPLES; ++i) { const x = i / sigmaPixels; const weight = Math.exp(-x * x / 2); weights.push(weight); if (i == 0) { sum += weight; } else if (i < samples) { sum += 2 * weight; } } for (let i = 0; i < weights.length; i++) { weights[i] = weights[i] / sum; } blurUniforms['envMap'].value = targetIn.texture; blurUniforms['samples'].value = samples; blurUniforms['weights'].value = weights; blurUniforms['latitudinal'].value = direction === 'latitudinal'; if (poleAxis) { blurUniforms['poleAxis'].value = poleAxis; } blurUniforms['dTheta'].value = radiansPerPixel; blurUniforms['mipInt'].value = LOD_MAX - lodIn; blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding]; blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding]; const outputSize = _sizeLods[lodOut]; const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize); const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0); _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize); renderer.setRenderTarget(targetOut); renderer.render(blurMesh, _flatCamera); } } function _isLDR(texture) { if (texture === undefined || texture.type !== UnsignedByteType) return false; return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding; } function _createPlanes() { const _lodPlanes = []; const _sizeLods = []; const _sigmas = []; let lod = LOD_MAX; for (let i = 0; i < TOTAL_LODS; i++) { const sizeLod = Math.pow(2, lod); _sizeLods.push(sizeLod); let sigma = 1.0 / sizeLod; if (i > LOD_MAX - LOD_MIN) { sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1]; } else if (i == 0) { sigma = 0; } _sigmas.push(sigma); const texelSize = 1.0 / (sizeLod - 1); const min = -texelSize / 2; const max = 1 + texelSize / 2; const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array(positionSize * vertices * cubeFaces); const uv = new Float32Array(uvSize * vertices * cubeFaces); const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces); for (let face = 0; face < cubeFaces; face++) { const x = face % 3 * 2 / 3 - 1; const y = face > 2 ? 0 : -1; const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0]; position.set(coordinates, positionSize * vertices * face); uv.set(uv1, uvSize * vertices * face); const fill = [face, face, face, face, face, face]; faceIndex.set(fill, faceIndexSize * vertices * face); } const planes = new BufferGeometry(); planes.setAttribute('position', new BufferAttribute(position, positionSize)); planes.setAttribute('uv', new BufferAttribute(uv, uvSize)); planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize)); _lodPlanes.push(planes); if (lod > LOD_MIN) { lod--; } } return { _lodPlanes, _sizeLods, _sigmas }; } function _createRenderTarget(params) { const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport(target, x, y, width, height) { target.viewport.set(x, y, width, height); target.scissor.set(x, y, width, height); } function _getBlurShader(maxSamples) { const weights = new Float32Array(maxSamples); const poleAxis = new Vector3(0, 1, 0); const shaderMaterial = new RawShaderMaterial({ name: 'SphericalGaussianBlur', defines: { 'n': maxSamples }, uniforms: { 'envMap': { value: null }, 'samples': { value: 1 }, 'weights': { value: weights }, 'latitudinal': { value: false }, 'dTheta': { value: 0 }, 'mipInt': { value: 0 }, 'poleAxis': { value: poleAxis }, 'inputEncoding': { value: ENCODINGS[LinearEncoding] }, 'outputEncoding': { value: ENCODINGS[LinearEncoding] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */ ` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; ${_getEncodings()} #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false }); return shaderMaterial; } function _getEquirectShader() { const texelSize = new Vector2(1, 1); const shaderMaterial = new RawShaderMaterial({ name: 'EquirectangularToCubeUV', uniforms: { 'envMap': { value: null }, 'texelSize': { value: texelSize }, 'inputEncoding': { value: ENCODINGS[LinearEncoding] }, 'outputEncoding': { value: ENCODINGS[LinearEncoding] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */ ` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform vec2 texelSize; ${_getEncodings()} #include void main() { gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); vec2 f = fract( uv / texelSize - 0.5 ); uv -= f * texelSize; vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.x += texelSize.x; vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.y += texelSize.y; vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.x -= texelSize.x; vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; vec3 tm = mix( tl, tr, f.x ); vec3 bm = mix( bl, br, f.x ); gl_FragColor.rgb = mix( tm, bm, f.y ); gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false }); return shaderMaterial; } function _getCubemapShader() { const shaderMaterial = new RawShaderMaterial({ name: 'CubemapToCubeUV', uniforms: { 'envMap': { value: null }, 'inputEncoding': { value: ENCODINGS[LinearEncoding] }, 'outputEncoding': { value: ENCODINGS[LinearEncoding] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */ ` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform samplerCube envMap; ${_getEncodings()} void main() { gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb; gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false }); return shaderMaterial; } function _getCommonVertexShader() { return ( /* glsl */ ` precision mediump float; precision mediump int; attribute vec3 position; attribute vec2 uv; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); gl_Position = vec4( position, 1.0 ); } ` ); } function _getEncodings() { return ( /* glsl */ ` uniform int inputEncoding; uniform int outputEncoding; #include vec4 inputTexelToLinear( vec4 value ) { if ( inputEncoding == 0 ) { return value; } else if ( inputEncoding == 1 ) { return sRGBToLinear( value ); } else if ( inputEncoding == 2 ) { return RGBEToLinear( value ); } else if ( inputEncoding == 3 ) { return RGBMToLinear( value, 7.0 ); } else if ( inputEncoding == 4 ) { return RGBMToLinear( value, 16.0 ); } else if ( inputEncoding == 5 ) { return RGBDToLinear( value, 256.0 ); } else { return GammaToLinear( value, 2.2 ); } } vec4 linearToOutputTexel( vec4 value ) { if ( outputEncoding == 0 ) { return value; } else if ( outputEncoding == 1 ) { return LinearTosRGB( value ); } else if ( outputEncoding == 2 ) { return LinearToRGBE( value ); } else if ( outputEncoding == 3 ) { return LinearToRGBM( value, 7.0 ); } else if ( outputEncoding == 4 ) { return LinearToRGBM( value, 16.0 ); } else if ( outputEncoding == 5 ) { return LinearToRGBD( value, 256.0 ); } else { return LinearToGamma( value, 2.2 ); } } vec4 envMapTexelToLinear( vec4 color ) { return inputTexelToLinear( color ); } ` ); } const LineStrip = 0; const LinePieces = 1; const NoColors = 0; const FaceColors = 1; const VertexColors = 2; function MeshFaceMaterial(materials) { console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.'); return materials; } function MultiMaterial(materials = []) { console.warn('THREE.MultiMaterial has been removed. Use an Array instead.'); materials.isMultiMaterial = true; materials.materials = materials; materials.clone = function () { return materials.slice(); }; return materials; } function PointCloud(geometry, material) { console.warn('THREE.PointCloud has been renamed to THREE.Points.'); return new Points(geometry, material); } function Particle(material) { console.warn('THREE.Particle has been renamed to THREE.Sprite.'); return new Sprite(material); } function ParticleSystem(geometry, material) { console.warn('THREE.ParticleSystem has been renamed to THREE.Points.'); return new Points(geometry, material); } function PointCloudMaterial(parameters) { console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.'); return new PointsMaterial(parameters); } function ParticleBasicMaterial(parameters) { console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.'); return new PointsMaterial(parameters); } function ParticleSystemMaterial(parameters) { console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.'); return new PointsMaterial(parameters); } function Vertex(x, y, z) { console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.'); return new Vector3(x, y, z); } // function DynamicBufferAttribute(array, itemSize) { console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.'); return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage); } function Int8Attribute(array, itemSize) { console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.'); return new Int8BufferAttribute(array, itemSize); } function Uint8Attribute(array, itemSize) { console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.'); return new Uint8BufferAttribute(array, itemSize); } function Uint8ClampedAttribute(array, itemSize) { console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.'); return new Uint8ClampedBufferAttribute(array, itemSize); } function Int16Attribute(array, itemSize) { console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.'); return new Int16BufferAttribute(array, itemSize); } function Uint16Attribute(array, itemSize) { console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.'); return new Uint16BufferAttribute(array, itemSize); } function Int32Attribute(array, itemSize) { console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.'); return new Int32BufferAttribute(array, itemSize); } function Uint32Attribute(array, itemSize) { console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.'); return new Uint32BufferAttribute(array, itemSize); } function Float32Attribute(array, itemSize) { console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.'); return new Float32BufferAttribute(array, itemSize); } function Float64Attribute(array, itemSize) { console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.'); return new Float64BufferAttribute(array, itemSize); } // Curve.create = function (construct, getPoint) { console.log('THREE.Curve.create() has been deprecated'); construct.prototype = Object.create(Curve.prototype); construct.prototype.constructor = construct; construct.prototype.getPoint = getPoint; return construct; }; // Path.prototype.fromPoints = function (points) { console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().'); return this.setFromPoints(points); }; // function AxisHelper(size) { console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.'); return new AxesHelper(size); } function BoundingBoxHelper(object, color) { console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.'); return new BoxHelper(object, color); } function EdgesHelper(object, hex) { console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.'); return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({ color: hex !== undefined ? hex : 0xffffff })); } GridHelper.prototype.setColors = function () { console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.'); }; SkeletonHelper.prototype.update = function () { console.error('THREE.SkeletonHelper: update() no longer needs to be called.'); }; function WireframeHelper(object, hex) { console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.'); return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({ color: hex !== undefined ? hex : 0xffffff })); } // Loader.prototype.extractUrlBase = function (url) { console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.'); return LoaderUtils.extractUrlBase(url); }; Loader.Handlers = { add: function () /* regex, loader */ { console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.'); }, get: function () /* file */ { console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.'); } }; function XHRLoader(manager) { console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.'); return new FileLoader(manager); } function BinaryTextureLoader(manager) { console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.'); return new DataTextureLoader(manager); } // Box2.prototype.center = function (optionalTarget) { console.warn('THREE.Box2: .center() has been renamed to .getCenter().'); return this.getCenter(optionalTarget); }; Box2.prototype.empty = function () { console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().'); return this.isEmpty(); }; Box2.prototype.isIntersectionBox = function (box) { console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().'); return this.intersectsBox(box); }; Box2.prototype.size = function (optionalTarget) { console.warn('THREE.Box2: .size() has been renamed to .getSize().'); return this.getSize(optionalTarget); }; // Box3.prototype.center = function (optionalTarget) { console.warn('THREE.Box3: .center() has been renamed to .getCenter().'); return this.getCenter(optionalTarget); }; Box3.prototype.empty = function () { console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().'); return this.isEmpty(); }; Box3.prototype.isIntersectionBox = function (box) { console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().'); return this.intersectsBox(box); }; Box3.prototype.isIntersectionSphere = function (sphere) { console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().'); return this.intersectsSphere(sphere); }; Box3.prototype.size = function (optionalTarget) { console.warn('THREE.Box3: .size() has been renamed to .getSize().'); return this.getSize(optionalTarget); }; // Sphere.prototype.empty = function () { console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().'); return this.isEmpty(); }; // Frustum.prototype.setFromMatrix = function (m) { console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().'); return this.setFromProjectionMatrix(m); }; // Line3.prototype.center = function (optionalTarget) { console.warn('THREE.Line3: .center() has been renamed to .getCenter().'); return this.getCenter(optionalTarget); }; // Matrix3.prototype.flattenToArrayOffset = function (array, offset) { console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.'); return this.toArray(array, offset); }; Matrix3.prototype.multiplyVector3 = function (vector) { console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.'); return vector.applyMatrix3(this); }; Matrix3.prototype.multiplyVector3Array = function () /* a */ { console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.'); }; Matrix3.prototype.applyToBufferAttribute = function (attribute) { console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.'); return attribute.applyMatrix3(this); }; Matrix3.prototype.applyToVector3Array = function () /* array, offset, length */ { console.error('THREE.Matrix3: .applyToVector3Array() has been removed.'); }; Matrix3.prototype.getInverse = function (matrix) { console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.'); return this.copy(matrix).invert(); }; // Matrix4.prototype.extractPosition = function (m) { console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().'); return this.copyPosition(m); }; Matrix4.prototype.flattenToArrayOffset = function (array, offset) { console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.'); return this.toArray(array, offset); }; Matrix4.prototype.getPosition = function () { console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.'); return new Vector3().setFromMatrixColumn(this, 3); }; Matrix4.prototype.setRotationFromQuaternion = function (q) { console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().'); return this.makeRotationFromQuaternion(q); }; Matrix4.prototype.multiplyToArray = function () { console.warn('THREE.Matrix4: .multiplyToArray() has been removed.'); }; Matrix4.prototype.multiplyVector3 = function (vector) { console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.'); return vector.applyMatrix4(this); }; Matrix4.prototype.multiplyVector4 = function (vector) { console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.'); return vector.applyMatrix4(this); }; Matrix4.prototype.multiplyVector3Array = function () /* a */ { console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.'); }; Matrix4.prototype.rotateAxis = function (v) { console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.'); v.transformDirection(this); }; Matrix4.prototype.crossVector = function (vector) { console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.'); return vector.applyMatrix4(this); }; Matrix4.prototype.translate = function () { console.error('THREE.Matrix4: .translate() has been removed.'); }; Matrix4.prototype.rotateX = function () { console.error('THREE.Matrix4: .rotateX() has been removed.'); }; Matrix4.prototype.rotateY = function () { console.error('THREE.Matrix4: .rotateY() has been removed.'); }; Matrix4.prototype.rotateZ = function () { console.error('THREE.Matrix4: .rotateZ() has been removed.'); }; Matrix4.prototype.rotateByAxis = function () { console.error('THREE.Matrix4: .rotateByAxis() has been removed.'); }; Matrix4.prototype.applyToBufferAttribute = function (attribute) { console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.'); return attribute.applyMatrix4(this); }; Matrix4.prototype.applyToVector3Array = function () /* array, offset, length */ { console.error('THREE.Matrix4: .applyToVector3Array() has been removed.'); }; Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) { console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.'); return this.makePerspective(left, right, top, bottom, near, far); }; Matrix4.prototype.getInverse = function (matrix) { console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.'); return this.copy(matrix).invert(); }; // Plane.prototype.isIntersectionLine = function (line) { console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().'); return this.intersectsLine(line); }; // Quaternion.prototype.multiplyVector3 = function (vector) { console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.'); return vector.applyQuaternion(this); }; Quaternion.prototype.inverse = function () { console.warn('THREE.Quaternion: .inverse() has been renamed to invert().'); return this.invert(); }; // Ray.prototype.isIntersectionBox = function (box) { console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().'); return this.intersectsBox(box); }; Ray.prototype.isIntersectionPlane = function (plane) { console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().'); return this.intersectsPlane(plane); }; Ray.prototype.isIntersectionSphere = function (sphere) { console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().'); return this.intersectsSphere(sphere); }; // Triangle.prototype.area = function () { console.warn('THREE.Triangle: .area() has been renamed to .getArea().'); return this.getArea(); }; Triangle.prototype.barycoordFromPoint = function (point, target) { console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().'); return this.getBarycoord(point, target); }; Triangle.prototype.midpoint = function (target) { console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().'); return this.getMidpoint(target); }; Triangle.prototypenormal = function (target) { console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().'); return this.getNormal(target); }; Triangle.prototype.plane = function (target) { console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().'); return this.getPlane(target); }; Triangle.barycoordFromPoint = function (point, a, b, c, target) { console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().'); return Triangle.getBarycoord(point, a, b, c, target); }; Triangle.normal = function (a, b, c, target) { console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().'); return Triangle.getNormal(a, b, c, target); }; // Shape.prototype.extractAllPoints = function (divisions) { console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.'); return this.extractPoints(divisions); }; Shape.prototype.extrude = function (options) { console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.'); return new ExtrudeGeometry(this, options); }; Shape.prototype.makeGeometry = function (options) { console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.'); return new ShapeGeometry(this, options); }; // Vector2.prototype.fromAttribute = function (attribute, index, offset) { console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().'); return this.fromBufferAttribute(attribute, index, offset); }; Vector2.prototype.distanceToManhattan = function (v) { console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().'); return this.manhattanDistanceTo(v); }; Vector2.prototype.lengthManhattan = function () { console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().'); return this.manhattanLength(); }; // Vector3.prototype.setEulerFromRotationMatrix = function () { console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.'); }; Vector3.prototype.setEulerFromQuaternion = function () { console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.'); }; Vector3.prototype.getPositionFromMatrix = function (m) { console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().'); return this.setFromMatrixPosition(m); }; Vector3.prototype.getScaleFromMatrix = function (m) { console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().'); return this.setFromMatrixScale(m); }; Vector3.prototype.getColumnFromMatrix = function (index, matrix) { console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().'); return this.setFromMatrixColumn(matrix, index); }; Vector3.prototype.applyProjection = function (m) { console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.'); return this.applyMatrix4(m); }; Vector3.prototype.fromAttribute = function (attribute, index, offset) { console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().'); return this.fromBufferAttribute(attribute, index, offset); }; Vector3.prototype.distanceToManhattan = function (v) { console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().'); return this.manhattanDistanceTo(v); }; Vector3.prototype.lengthManhattan = function () { console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().'); return this.manhattanLength(); }; // Vector4.prototype.fromAttribute = function (attribute, index, offset) { console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().'); return this.fromBufferAttribute(attribute, index, offset); }; Vector4.prototype.lengthManhattan = function () { console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().'); return this.manhattanLength(); }; // Object3D.prototype.getChildByName = function (name) { console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().'); return this.getObjectByName(name); }; Object3D.prototype.renderDepth = function () { console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.'); }; Object3D.prototype.translate = function (distance, axis) { console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.'); return this.translateOnAxis(axis, distance); }; Object3D.prototype.getWorldRotation = function () { console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.'); }; Object3D.prototype.applyMatrix = function (matrix) { console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().'); return this.applyMatrix4(matrix); }; Object.defineProperties(Object3D.prototype, { eulerOrder: { get: function () { console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.'); return this.rotation.order; }, set: function (value) { console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.'); this.rotation.order = value; } }, useQuaternion: { get: function () { console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.'); }, set: function () { console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.'); } } }); Mesh.prototype.setDrawMode = function () { console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.'); }; Object.defineProperties(Mesh.prototype, { drawMode: { get: function () { console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.'); return TrianglesDrawMode; }, set: function () { console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.'); } } }); SkinnedMesh.prototype.initBones = function () { console.error('THREE.SkinnedMesh: initBones() has been removed.'); }; // PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) { console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.'); if (filmGauge !== undefined) this.filmGauge = filmGauge; this.setFocalLength(focalLength); }; // Object.defineProperties(Light.prototype, { onlyShadow: { set: function () { console.warn('THREE.Light: .onlyShadow has been removed.'); } }, shadowCameraFov: { set: function (value) { console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.'); this.shadow.camera.fov = value; } }, shadowCameraLeft: { set: function (value) { console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.'); this.shadow.camera.left = value; } }, shadowCameraRight: { set: function (value) { console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.'); this.shadow.camera.right = value; } }, shadowCameraTop: { set: function (value) { console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.'); this.shadow.camera.top = value; } }, shadowCameraBottom: { set: function (value) { console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.'); this.shadow.camera.bottom = value; } }, shadowCameraNear: { set: function (value) { console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.'); this.shadow.camera.near = value; } }, shadowCameraFar: { set: function (value) { console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.'); this.shadow.camera.far = value; } }, shadowCameraVisible: { set: function () { console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.'); } }, shadowBias: { set: function (value) { console.warn('THREE.Light: .shadowBias is now .shadow.bias.'); this.shadow.bias = value; } }, shadowDarkness: { set: function () { console.warn('THREE.Light: .shadowDarkness has been removed.'); } }, shadowMapWidth: { set: function (value) { console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.'); this.shadow.mapSize.width = value; } }, shadowMapHeight: { set: function (value) { console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.'); this.shadow.mapSize.height = value; } } }); // Object.defineProperties(BufferAttribute.prototype, { length: { get: function () { console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.'); return this.array.length; } }, dynamic: { get: function () { console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.'); return this.usage === DynamicDrawUsage; }, set: function () /* value */ { console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.'); this.setUsage(DynamicDrawUsage); } } }); BufferAttribute.prototype.setDynamic = function (value) { console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.'); this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage); return this; }; BufferAttribute.prototype.copyIndicesArray = function () /* indices */ { console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.'); }, BufferAttribute.prototype.setArray = function () /* array */ { console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers'); }; // BufferGeometry.prototype.addIndex = function (index) { console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().'); this.setIndex(index); }; BufferGeometry.prototype.addAttribute = function (name, attribute) { console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().'); if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) { console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).'); return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2])); } if (name === 'index') { console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.'); this.setIndex(attribute); return this; } return this.setAttribute(name, attribute); }; BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) { if (indexOffset !== undefined) { console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.'); } console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().'); this.addGroup(start, count); }; BufferGeometry.prototype.clearDrawCalls = function () { console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().'); this.clearGroups(); }; BufferGeometry.prototype.computeOffsets = function () { console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.'); }; BufferGeometry.prototype.removeAttribute = function (name) { console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().'); return this.deleteAttribute(name); }; BufferGeometry.prototype.applyMatrix = function (matrix) { console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().'); return this.applyMatrix4(matrix); }; Object.defineProperties(BufferGeometry.prototype, { drawcalls: { get: function () { console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.'); return this.groups; } }, offsets: { get: function () { console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.'); return this.groups; } } }); InterleavedBuffer.prototype.setDynamic = function (value) { console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.'); this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage); return this; }; InterleavedBuffer.prototype.setArray = function () /* array */ { console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers'); }; // ExtrudeGeometry.prototype.getArrays = function () { console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.'); }; ExtrudeGeometry.prototype.addShapeList = function () { console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.'); }; ExtrudeGeometry.prototype.addShape = function () { console.error('THREE.ExtrudeGeometry: .addShape() has been removed.'); }; // Scene.prototype.dispose = function () { console.error('THREE.Scene: .dispose() has been removed.'); }; // Uniform.prototype.onUpdate = function () { console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.'); return this; }; // Object.defineProperties(Material.prototype, { wrapAround: { get: function () { console.warn('THREE.Material: .wrapAround has been removed.'); }, set: function () { console.warn('THREE.Material: .wrapAround has been removed.'); } }, overdraw: { get: function () { console.warn('THREE.Material: .overdraw has been removed.'); }, set: function () { console.warn('THREE.Material: .overdraw has been removed.'); } }, wrapRGB: { get: function () { console.warn('THREE.Material: .wrapRGB has been removed.'); return new Color(); } }, shading: { get: function () { console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); }, set: function (value) { console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.'); this.flatShading = value === FlatShading; } }, stencilMask: { get: function () { console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.'); return this.stencilFuncMask; }, set: function (value) { console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.'); this.stencilFuncMask = value; } } }); Object.defineProperties(ShaderMaterial.prototype, { derivatives: { get: function () { console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.'); return this.extensions.derivatives; }, set: function (value) { console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.'); this.extensions.derivatives = value; } } }); // WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) { console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.'); this.setRenderTarget(renderTarget); this.clear(color, depth, stencil); }; WebGLRenderer.prototype.animate = function (callback) { console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().'); this.setAnimationLoop(callback); }; WebGLRenderer.prototype.getCurrentRenderTarget = function () { console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().'); return this.getRenderTarget(); }; WebGLRenderer.prototype.getMaxAnisotropy = function () { console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().'); return this.capabilities.getMaxAnisotropy(); }; WebGLRenderer.prototype.getPrecision = function () { console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.'); return this.capabilities.precision; }; WebGLRenderer.prototype.resetGLState = function () { console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().'); return this.state.reset(); }; WebGLRenderer.prototype.supportsFloatTextures = function () { console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).'); return this.extensions.get('OES_texture_float'); }; WebGLRenderer.prototype.supportsHalfFloatTextures = function () { console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).'); return this.extensions.get('OES_texture_half_float'); }; WebGLRenderer.prototype.supportsStandardDerivatives = function () { console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).'); return this.extensions.get('OES_standard_derivatives'); }; WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () { console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).'); return this.extensions.get('WEBGL_compressed_texture_s3tc'); }; WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () { console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).'); return this.extensions.get('WEBGL_compressed_texture_pvrtc'); }; WebGLRenderer.prototype.supportsBlendMinMax = function () { console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).'); return this.extensions.get('EXT_blend_minmax'); }; WebGLRenderer.prototype.supportsVertexTextures = function () { console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.'); return this.capabilities.vertexTextures; }; WebGLRenderer.prototype.supportsInstancedArrays = function () { console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).'); return this.extensions.get('ANGLE_instanced_arrays'); }; WebGLRenderer.prototype.enableScissorTest = function (boolean) { console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().'); this.setScissorTest(boolean); }; WebGLRenderer.prototype.initMaterial = function () { console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.'); }; WebGLRenderer.prototype.addPrePlugin = function () { console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.'); }; WebGLRenderer.prototype.addPostPlugin = function () { console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.'); }; WebGLRenderer.prototype.updateShadowMap = function () { console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.'); }; WebGLRenderer.prototype.setFaceCulling = function () { console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.'); }; WebGLRenderer.prototype.allocTextureUnit = function () { console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.'); }; WebGLRenderer.prototype.setTexture = function () { console.warn('THREE.WebGLRenderer: .setTexture() has been removed.'); }; WebGLRenderer.prototype.setTexture2D = function () { console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.'); }; WebGLRenderer.prototype.setTextureCube = function () { console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.'); }; WebGLRenderer.prototype.getActiveMipMapLevel = function () { console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().'); return this.getActiveMipmapLevel(); }; Object.defineProperties(WebGLRenderer.prototype, { shadowMapEnabled: { get: function () { return this.shadowMap.enabled; }, set: function (value) { console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.'); this.shadowMap.enabled = value; } }, shadowMapType: { get: function () { return this.shadowMap.type; }, set: function (value) { console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.'); this.shadowMap.type = value; } }, shadowMapCullFace: { get: function () { console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.'); return undefined; }, set: function () /* value */ { console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.'); } }, context: { get: function () { console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.'); return this.getContext(); } }, vr: { get: function () { console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr'); return this.xr; } }, gammaInput: { get: function () { console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.'); return false; }, set: function () { console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.'); } }, gammaOutput: { get: function () { console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.'); return false; }, set: function (value) { console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.'); this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding; } }, toneMappingWhitePoint: { get: function () { console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.'); return 1.0; }, set: function () { console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.'); } } }); Object.defineProperties(WebGLShadowMap.prototype, { cullFace: { get: function () { console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.'); return undefined; }, set: function () /* cullFace */ { console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.'); } }, renderReverseSided: { get: function () { console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.'); return undefined; }, set: function () { console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.'); } }, renderSingleSided: { get: function () { console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.'); return undefined; }, set: function () { console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.'); } } }); function WebGLRenderTargetCube(width, height, options) { console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).'); return new WebGLCubeRenderTarget(width, options); } // Object.defineProperties(WebGLRenderTarget.prototype, { wrapS: { get: function () { console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.'); return this.texture.wrapS; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.'); this.texture.wrapS = value; } }, wrapT: { get: function () { console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.'); return this.texture.wrapT; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.'); this.texture.wrapT = value; } }, magFilter: { get: function () { console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.'); return this.texture.magFilter; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.'); this.texture.magFilter = value; } }, minFilter: { get: function () { console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.'); return this.texture.minFilter; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.'); this.texture.minFilter = value; } }, anisotropy: { get: function () { console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.'); return this.texture.anisotropy; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.'); this.texture.anisotropy = value; } }, offset: { get: function () { console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.'); return this.texture.offset; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.'); this.texture.offset = value; } }, repeat: { get: function () { console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.'); return this.texture.repeat; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.'); this.texture.repeat = value; } }, format: { get: function () { console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.'); return this.texture.format; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.'); this.texture.format = value; } }, type: { get: function () { console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.'); return this.texture.type; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.'); this.texture.type = value; } }, generateMipmaps: { get: function () { console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.'); return this.texture.generateMipmaps; }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.'); this.texture.generateMipmaps = value; } } }); // Audio.prototype.load = function (file) { console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.'); const scope = this; const audioLoader = new AudioLoader(); audioLoader.load(file, function (buffer) { scope.setBuffer(buffer); }); return this; }; AudioAnalyser.prototype.getData = function () { console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().'); return this.getFrequencyData(); }; // CubeCamera.prototype.updateCubeMap = function (renderer, scene) { console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().'); return this.update(renderer, scene); }; CubeCamera.prototype.clear = function (renderer, color, depth, stencil) { console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().'); return this.renderTarget.clear(renderer, color, depth, stencil); }; ImageUtils.crossOrigin = undefined; ImageUtils.loadTexture = function (url, mapping, onLoad, onError) { console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.'); const loader = new TextureLoader(); loader.setCrossOrigin(this.crossOrigin); const texture = loader.load(url, onLoad, undefined, onError); if (mapping) texture.mapping = mapping; return texture; }; ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) { console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.'); const loader = new CubeTextureLoader(); loader.setCrossOrigin(this.crossOrigin); const texture = loader.load(urls, onLoad, undefined, onError); if (mapping) texture.mapping = mapping; return texture; }; ImageUtils.loadCompressedTexture = function () { console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.'); }; ImageUtils.loadCompressedTextureCube = function () { console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.'); }; // function CanvasRenderer() { console.error('THREE.CanvasRenderer has been removed'); } // function JSONLoader() { console.error('THREE.JSONLoader has been removed.'); } // const SceneUtils = { createMultiMaterialObject: function () /* geometry, materials */ { console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); }, detach: function () /* child, parent, scene */ { console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); }, attach: function () /* child, scene, parent */ { console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js'); } }; // function LensFlare() { console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js'); } if (typeof __THREE_DEVTOOLS__ !== 'undefined') { /* eslint-disable no-undef */ __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', { detail: { revision: REVISION } })); /* eslint-enable no-undef */ } if (typeof window !== 'undefined') { if (window.__THREE__) { console.warn('WARNING: Multiple instances of Three.js being imported.'); } else { window.__THREE__ = REVISION; } } exports.ACESFilmicToneMapping = ACESFilmicToneMapping; exports.AddEquation = AddEquation; exports.AddOperation = AddOperation; exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode; exports.AdditiveBlending = AdditiveBlending; exports.AlphaFormat = AlphaFormat; exports.AlwaysDepth = AlwaysDepth; exports.AlwaysStencilFunc = AlwaysStencilFunc; exports.AmbientLight = AmbientLight; exports.AmbientLightProbe = AmbientLightProbe; exports.AnimationClip = AnimationClip; exports.AnimationLoader = AnimationLoader; exports.AnimationMixer = AnimationMixer; exports.AnimationObjectGroup = AnimationObjectGroup; exports.AnimationUtils = AnimationUtils; exports.ArcCurve = ArcCurve; exports.ArrayCamera = ArrayCamera; exports.ArrowHelper = ArrowHelper; exports.Audio = Audio; exports.AudioAnalyser = AudioAnalyser; exports.AudioContext = AudioContext; exports.AudioListener = AudioListener; exports.AudioLoader = AudioLoader; exports.AxesHelper = AxesHelper; exports.AxisHelper = AxisHelper; exports.BackSide = BackSide; exports.BasicDepthPacking = BasicDepthPacking; exports.BasicShadowMap = BasicShadowMap; exports.BinaryTextureLoader = BinaryTextureLoader; exports.Bone = Bone; exports.BooleanKeyframeTrack = BooleanKeyframeTrack; exports.BoundingBoxHelper = BoundingBoxHelper; exports.Box2 = Box2; exports.Box3 = Box3; exports.Box3Helper = Box3Helper; exports.BoxBufferGeometry = BoxGeometry; exports.BoxGeometry = BoxGeometry; exports.BoxHelper = BoxHelper; exports.BufferAttribute = BufferAttribute; exports.BufferGeometry = BufferGeometry; exports.BufferGeometryLoader = BufferGeometryLoader; exports.ByteType = ByteType; exports.Cache = Cache; exports.Camera = Camera; exports.CameraHelper = CameraHelper; exports.CanvasRenderer = CanvasRenderer; exports.CanvasTexture = CanvasTexture; exports.CatmullRomCurve3 = CatmullRomCurve3; exports.CineonToneMapping = CineonToneMapping; exports.CircleBufferGeometry = CircleGeometry; exports.CircleGeometry = CircleGeometry; exports.ClampToEdgeWrapping = ClampToEdgeWrapping; exports.Clock = Clock; exports.Color = Color; exports.ColorKeyframeTrack = ColorKeyframeTrack; exports.CompressedTexture = CompressedTexture; exports.CompressedTextureLoader = CompressedTextureLoader; exports.ConeBufferGeometry = ConeGeometry; exports.ConeGeometry = ConeGeometry; exports.CubeCamera = CubeCamera; exports.CubeReflectionMapping = CubeReflectionMapping; exports.CubeRefractionMapping = CubeRefractionMapping; exports.CubeTexture = CubeTexture; exports.CubeTextureLoader = CubeTextureLoader; exports.CubeUVReflectionMapping = CubeUVReflectionMapping; exports.CubeUVRefractionMapping = CubeUVRefractionMapping; exports.CubicBezierCurve = CubicBezierCurve; exports.CubicBezierCurve3 = CubicBezierCurve3; exports.CubicInterpolant = CubicInterpolant; exports.CullFaceBack = CullFaceBack; exports.CullFaceFront = CullFaceFront; exports.CullFaceFrontBack = CullFaceFrontBack; exports.CullFaceNone = CullFaceNone; exports.Curve = Curve; exports.CurvePath = CurvePath; exports.CustomBlending = CustomBlending; exports.CustomToneMapping = CustomToneMapping; exports.CylinderBufferGeometry = CylinderGeometry; exports.CylinderGeometry = CylinderGeometry; exports.Cylindrical = Cylindrical; exports.DataTexture = DataTexture; exports.DataTexture2DArray = DataTexture2DArray; exports.DataTexture3D = DataTexture3D; exports.DataTextureLoader = DataTextureLoader; exports.DataUtils = DataUtils; exports.DecrementStencilOp = DecrementStencilOp; exports.DecrementWrapStencilOp = DecrementWrapStencilOp; exports.DefaultLoadingManager = DefaultLoadingManager; exports.DepthFormat = DepthFormat; exports.DepthStencilFormat = DepthStencilFormat; exports.DepthTexture = DepthTexture; exports.DirectionalLight = DirectionalLight; exports.DirectionalLightHelper = DirectionalLightHelper; exports.DiscreteInterpolant = DiscreteInterpolant; exports.DodecahedronBufferGeometry = DodecahedronGeometry; exports.DodecahedronGeometry = DodecahedronGeometry; exports.DoubleSide = DoubleSide; exports.DstAlphaFactor = DstAlphaFactor; exports.DstColorFactor = DstColorFactor; exports.DynamicBufferAttribute = DynamicBufferAttribute; exports.DynamicCopyUsage = DynamicCopyUsage; exports.DynamicDrawUsage = DynamicDrawUsage; exports.DynamicReadUsage = DynamicReadUsage; exports.EdgesGeometry = EdgesGeometry; exports.EdgesHelper = EdgesHelper; exports.EllipseCurve = EllipseCurve; exports.EqualDepth = EqualDepth; exports.EqualStencilFunc = EqualStencilFunc; exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping; exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping; exports.Euler = Euler; exports.EventDispatcher = EventDispatcher; exports.ExtrudeBufferGeometry = ExtrudeGeometry; exports.ExtrudeGeometry = ExtrudeGeometry; exports.FaceColors = FaceColors; exports.FileLoader = FileLoader; exports.FlatShading = FlatShading; exports.Float16BufferAttribute = Float16BufferAttribute; exports.Float32Attribute = Float32Attribute; exports.Float32BufferAttribute = Float32BufferAttribute; exports.Float64Attribute = Float64Attribute; exports.Float64BufferAttribute = Float64BufferAttribute; exports.FloatType = FloatType; exports.Fog = Fog; exports.FogExp2 = FogExp2; exports.Font = Font; exports.FontLoader = FontLoader; exports.FrontSide = FrontSide; exports.Frustum = Frustum; exports.GLBufferAttribute = GLBufferAttribute; exports.GLSL1 = GLSL1; exports.GLSL3 = GLSL3; exports.GammaEncoding = GammaEncoding; exports.GreaterDepth = GreaterDepth; exports.GreaterEqualDepth = GreaterEqualDepth; exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc; exports.GreaterStencilFunc = GreaterStencilFunc; exports.GridHelper = GridHelper; exports.Group = Group; exports.HalfFloatType = HalfFloatType; exports.HemisphereLight = HemisphereLight; exports.HemisphereLightHelper = HemisphereLightHelper; exports.HemisphereLightProbe = HemisphereLightProbe; exports.IcosahedronBufferGeometry = IcosahedronGeometry; exports.IcosahedronGeometry = IcosahedronGeometry; exports.ImageBitmapLoader = ImageBitmapLoader; exports.ImageLoader = ImageLoader; exports.ImageUtils = ImageUtils; exports.ImmediateRenderObject = ImmediateRenderObject; exports.IncrementStencilOp = IncrementStencilOp; exports.IncrementWrapStencilOp = IncrementWrapStencilOp; exports.InstancedBufferAttribute = InstancedBufferAttribute; exports.InstancedBufferGeometry = InstancedBufferGeometry; exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer; exports.InstancedMesh = InstancedMesh; exports.Int16Attribute = Int16Attribute; exports.Int16BufferAttribute = Int16BufferAttribute; exports.Int32Attribute = Int32Attribute; exports.Int32BufferAttribute = Int32BufferAttribute; exports.Int8Attribute = Int8Attribute; exports.Int8BufferAttribute = Int8BufferAttribute; exports.IntType = IntType; exports.InterleavedBuffer = InterleavedBuffer; exports.InterleavedBufferAttribute = InterleavedBufferAttribute; exports.Interpolant = Interpolant; exports.InterpolateDiscrete = InterpolateDiscrete; exports.InterpolateLinear = InterpolateLinear; exports.InterpolateSmooth = InterpolateSmooth; exports.InvertStencilOp = InvertStencilOp; exports.JSONLoader = JSONLoader; exports.KeepStencilOp = KeepStencilOp; exports.KeyframeTrack = KeyframeTrack; exports.LOD = LOD; exports.LatheBufferGeometry = LatheGeometry; exports.LatheGeometry = LatheGeometry; exports.Layers = Layers; exports.LensFlare = LensFlare; exports.LessDepth = LessDepth; exports.LessEqualDepth = LessEqualDepth; exports.LessEqualStencilFunc = LessEqualStencilFunc; exports.LessStencilFunc = LessStencilFunc; exports.Light = Light; exports.LightProbe = LightProbe; exports.Line = Line; exports.Line3 = Line3; exports.LineBasicMaterial = LineBasicMaterial; exports.LineCurve = LineCurve; exports.LineCurve3 = LineCurve3; exports.LineDashedMaterial = LineDashedMaterial; exports.LineLoop = LineLoop; exports.LinePieces = LinePieces; exports.LineSegments = LineSegments; exports.LineStrip = LineStrip; exports.LinearEncoding = LinearEncoding; exports.LinearFilter = LinearFilter; exports.LinearInterpolant = LinearInterpolant; exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter; exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter; exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter; exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter; exports.LinearToneMapping = LinearToneMapping; exports.Loader = Loader; exports.LoaderUtils = LoaderUtils; exports.LoadingManager = LoadingManager; exports.LogLuvEncoding = LogLuvEncoding; exports.LoopOnce = LoopOnce; exports.LoopPingPong = LoopPingPong; exports.LoopRepeat = LoopRepeat; exports.LuminanceAlphaFormat = LuminanceAlphaFormat; exports.LuminanceFormat = LuminanceFormat; exports.MOUSE = MOUSE; exports.Material = Material; exports.MaterialLoader = MaterialLoader; exports.Math = MathUtils; exports.MathUtils = MathUtils; exports.Matrix3 = Matrix3; exports.Matrix4 = Matrix4; exports.MaxEquation = MaxEquation; exports.Mesh = Mesh; exports.MeshBasicMaterial = MeshBasicMaterial; exports.MeshDepthMaterial = MeshDepthMaterial; exports.MeshDistanceMaterial = MeshDistanceMaterial; exports.MeshFaceMaterial = MeshFaceMaterial; exports.MeshLambertMaterial = MeshLambertMaterial; exports.MeshMatcapMaterial = MeshMatcapMaterial; exports.MeshNormalMaterial = MeshNormalMaterial; exports.MeshPhongMaterial = MeshPhongMaterial; exports.MeshPhysicalMaterial = MeshPhysicalMaterial; exports.MeshStandardMaterial = MeshStandardMaterial; exports.MeshToonMaterial = MeshToonMaterial; exports.MinEquation = MinEquation; exports.MirroredRepeatWrapping = MirroredRepeatWrapping; exports.MixOperation = MixOperation; exports.MultiMaterial = MultiMaterial; exports.MultiplyBlending = MultiplyBlending; exports.MultiplyOperation = MultiplyOperation; exports.NearestFilter = NearestFilter; exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter; exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter; exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter; exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter; exports.NeverDepth = NeverDepth; exports.NeverStencilFunc = NeverStencilFunc; exports.NoBlending = NoBlending; exports.NoColors = NoColors; exports.NoToneMapping = NoToneMapping; exports.NormalAnimationBlendMode = NormalAnimationBlendMode; exports.NormalBlending = NormalBlending; exports.NotEqualDepth = NotEqualDepth; exports.NotEqualStencilFunc = NotEqualStencilFunc; exports.NumberKeyframeTrack = NumberKeyframeTrack; exports.Object3D = Object3D; exports.ObjectLoader = ObjectLoader; exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap; exports.OctahedronBufferGeometry = OctahedronGeometry; exports.OctahedronGeometry = OctahedronGeometry; exports.OneFactor = OneFactor; exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor; exports.OneMinusDstColorFactor = OneMinusDstColorFactor; exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor; exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor; exports.OrthographicCamera = OrthographicCamera; exports.PCFShadowMap = PCFShadowMap; exports.PCFSoftShadowMap = PCFSoftShadowMap; exports.PMREMGenerator = PMREMGenerator; exports.ParametricBufferGeometry = ParametricGeometry; exports.ParametricGeometry = ParametricGeometry; exports.Particle = Particle; exports.ParticleBasicMaterial = ParticleBasicMaterial; exports.ParticleSystem = ParticleSystem; exports.ParticleSystemMaterial = ParticleSystemMaterial; exports.Path = Path; exports.PerspectiveCamera = PerspectiveCamera; exports.Plane = Plane; exports.PlaneBufferGeometry = PlaneGeometry; exports.PlaneGeometry = PlaneGeometry; exports.PlaneHelper = PlaneHelper; exports.PointCloud = PointCloud; exports.PointCloudMaterial = PointCloudMaterial; exports.PointLight = PointLight; exports.PointLightHelper = PointLightHelper; exports.Points = Points; exports.PointsMaterial = PointsMaterial; exports.PolarGridHelper = PolarGridHelper; exports.PolyhedronBufferGeometry = PolyhedronGeometry; exports.PolyhedronGeometry = PolyhedronGeometry; exports.PositionalAudio = PositionalAudio; exports.PropertyBinding = PropertyBinding; exports.PropertyMixer = PropertyMixer; exports.QuadraticBezierCurve = QuadraticBezierCurve; exports.QuadraticBezierCurve3 = QuadraticBezierCurve3; exports.Quaternion = Quaternion; exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack; exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant; exports.REVISION = REVISION; exports.RGBADepthPacking = RGBADepthPacking; exports.RGBAFormat = RGBAFormat; exports.RGBAIntegerFormat = RGBAIntegerFormat; exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format; exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format; exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format; exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format; exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format; exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format; exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format; exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format; exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format; exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format; exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format; exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format; exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format; exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format; exports.RGBA_BPTC_Format = RGBA_BPTC_Format; exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format; exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format; exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format; exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format; exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format; exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format; exports.RGBDEncoding = RGBDEncoding; exports.RGBEEncoding = RGBEEncoding; exports.RGBEFormat = RGBEFormat; exports.RGBFormat = RGBFormat; exports.RGBIntegerFormat = RGBIntegerFormat; exports.RGBM16Encoding = RGBM16Encoding; exports.RGBM7Encoding = RGBM7Encoding; exports.RGB_ETC1_Format = RGB_ETC1_Format; exports.RGB_ETC2_Format = RGB_ETC2_Format; exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format; exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format; exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format; exports.RGFormat = RGFormat; exports.RGIntegerFormat = RGIntegerFormat; exports.RawShaderMaterial = RawShaderMaterial; exports.Ray = Ray; exports.Raycaster = Raycaster; exports.RectAreaLight = RectAreaLight; exports.RedFormat = RedFormat; exports.RedIntegerFormat = RedIntegerFormat; exports.ReinhardToneMapping = ReinhardToneMapping; exports.RepeatWrapping = RepeatWrapping; exports.ReplaceStencilOp = ReplaceStencilOp; exports.ReverseSubtractEquation = ReverseSubtractEquation; exports.RingBufferGeometry = RingGeometry; exports.RingGeometry = RingGeometry; exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format; exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format; exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format; exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format; exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format; exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format; exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format; exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format; exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format; exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format; exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format; exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format; exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format; exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format; exports.Scene = Scene; exports.SceneUtils = SceneUtils; exports.ShaderChunk = ShaderChunk; exports.ShaderLib = ShaderLib; exports.ShaderMaterial = ShaderMaterial; exports.ShadowMaterial = ShadowMaterial; exports.Shape = Shape; exports.ShapeBufferGeometry = ShapeGeometry; exports.ShapeGeometry = ShapeGeometry; exports.ShapePath = ShapePath; exports.ShapeUtils = ShapeUtils; exports.ShortType = ShortType; exports.Skeleton = Skeleton; exports.SkeletonHelper = SkeletonHelper; exports.SkinnedMesh = SkinnedMesh; exports.SmoothShading = SmoothShading; exports.Sphere = Sphere; exports.SphereBufferGeometry = SphereGeometry; exports.SphereGeometry = SphereGeometry; exports.Spherical = Spherical; exports.SphericalHarmonics3 = SphericalHarmonics3; exports.SplineCurve = SplineCurve; exports.SpotLight = SpotLight; exports.SpotLightHelper = SpotLightHelper; exports.Sprite = Sprite; exports.SpriteMaterial = SpriteMaterial; exports.SrcAlphaFactor = SrcAlphaFactor; exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor; exports.SrcColorFactor = SrcColorFactor; exports.StaticCopyUsage = StaticCopyUsage; exports.StaticDrawUsage = StaticDrawUsage; exports.StaticReadUsage = StaticReadUsage; exports.StereoCamera = StereoCamera; exports.StreamCopyUsage = StreamCopyUsage; exports.StreamDrawUsage = StreamDrawUsage; exports.StreamReadUsage = StreamReadUsage; exports.StringKeyframeTrack = StringKeyframeTrack; exports.SubtractEquation = SubtractEquation; exports.SubtractiveBlending = SubtractiveBlending; exports.TOUCH = TOUCH; exports.TangentSpaceNormalMap = TangentSpaceNormalMap; exports.TetrahedronBufferGeometry = TetrahedronGeometry; exports.TetrahedronGeometry = TetrahedronGeometry; exports.TextBufferGeometry = TextGeometry; exports.TextGeometry = TextGeometry; exports.Texture = Texture; exports.TextureLoader = TextureLoader; exports.TorusBufferGeometry = TorusGeometry; exports.TorusGeometry = TorusGeometry; exports.TorusKnotBufferGeometry = TorusKnotGeometry; exports.TorusKnotGeometry = TorusKnotGeometry; exports.Triangle = Triangle; exports.TriangleFanDrawMode = TriangleFanDrawMode; exports.TriangleStripDrawMode = TriangleStripDrawMode; exports.TrianglesDrawMode = TrianglesDrawMode; exports.TubeBufferGeometry = TubeGeometry; exports.TubeGeometry = TubeGeometry; exports.UVMapping = UVMapping; exports.Uint16Attribute = Uint16Attribute; exports.Uint16BufferAttribute = Uint16BufferAttribute; exports.Uint32Attribute = Uint32Attribute; exports.Uint32BufferAttribute = Uint32BufferAttribute; exports.Uint8Attribute = Uint8Attribute; exports.Uint8BufferAttribute = Uint8BufferAttribute; exports.Uint8ClampedAttribute = Uint8ClampedAttribute; exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute; exports.Uniform = Uniform; exports.UniformsLib = UniformsLib; exports.UniformsUtils = UniformsUtils; exports.UnsignedByteType = UnsignedByteType; exports.UnsignedInt248Type = UnsignedInt248Type; exports.UnsignedIntType = UnsignedIntType; exports.UnsignedShort4444Type = UnsignedShort4444Type; exports.UnsignedShort5551Type = UnsignedShort5551Type; exports.UnsignedShort565Type = UnsignedShort565Type; exports.UnsignedShortType = UnsignedShortType; exports.VSMShadowMap = VSMShadowMap; exports.Vector2 = Vector2; exports.Vector3 = Vector3; exports.Vector4 = Vector4; exports.VectorKeyframeTrack = VectorKeyframeTrack; exports.Vertex = Vertex; exports.VertexColors = VertexColors; exports.VideoTexture = VideoTexture; exports.WebGL1Renderer = WebGL1Renderer; exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget; exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets; exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget; exports.WebGLRenderTarget = WebGLRenderTarget; exports.WebGLRenderTargetCube = WebGLRenderTargetCube; exports.WebGLRenderer = WebGLRenderer; exports.WebGLUtils = WebGLUtils; exports.WireframeGeometry = WireframeGeometry; exports.WireframeHelper = WireframeHelper; exports.WrapAroundEnding = WrapAroundEnding; exports.XHRLoader = XHRLoader; exports.ZeroCurvatureEnding = ZeroCurvatureEnding; exports.ZeroFactor = ZeroFactor; exports.ZeroSlopeEnding = ZeroSlopeEnding; exports.ZeroStencilOp = ZeroStencilOp; exports.sRGBEncoding = sRGBEncoding; Object.defineProperty(exports, '__esModule', { value: true }); })));