// File:src/Three.js /** * @author mrdoob / http://mrdoob.com/ */ var THREE = { REVISION: '68' }; // browserify support if ( typeof module === 'object' ) { module.exports = THREE; } // GL STATE CONSTANTS THREE.CullFaceNone = 0; THREE.CullFaceBack = 1; THREE.CullFaceFront = 2; THREE.CullFaceFrontBack = 3; THREE.FrontFaceDirectionCW = 0; THREE.FrontFaceDirectionCCW = 1; // SHADOWING TYPES THREE.BasicShadowMap = 0; THREE.PCFShadowMap = 1; THREE.PCFSoftShadowMap = 2; // MATERIAL CONSTANTS // side THREE.FrontSide = 0; THREE.BackSide = 1; THREE.DoubleSide = 2; // shading THREE.NoShading = 0; THREE.FlatShading = 1; THREE.SmoothShading = 2; // colors THREE.NoColors = 0; THREE.FaceColors = 1; THREE.VertexColors = 2; // blending modes THREE.NoBlending = 0; THREE.NormalBlending = 1; THREE.AdditiveBlending = 2; THREE.SubtractiveBlending = 3; THREE.MultiplyBlending = 4; THREE.CustomBlending = 5; // custom blending equations // (numbers start from 100 not to clash with other // mappings to OpenGL constants defined in Texture.js) THREE.AddEquation = 100; THREE.SubtractEquation = 101; THREE.ReverseSubtractEquation = 102; // custom blending destination factors THREE.ZeroFactor = 200; THREE.OneFactor = 201; THREE.SrcColorFactor = 202; THREE.OneMinusSrcColorFactor = 203; THREE.SrcAlphaFactor = 204; THREE.OneMinusSrcAlphaFactor = 205; THREE.DstAlphaFactor = 206; THREE.OneMinusDstAlphaFactor = 207; // custom blending source factors //THREE.ZeroFactor = 200; //THREE.OneFactor = 201; //THREE.SrcAlphaFactor = 204; //THREE.OneMinusSrcAlphaFactor = 205; //THREE.DstAlphaFactor = 206; //THREE.OneMinusDstAlphaFactor = 207; THREE.DstColorFactor = 208; THREE.OneMinusDstColorFactor = 209; THREE.SrcAlphaSaturateFactor = 210; // TEXTURE CONSTANTS THREE.MultiplyOperation = 0; THREE.MixOperation = 1; THREE.AddOperation = 2; // Mapping modes THREE.UVMapping = function () {}; THREE.CubeReflectionMapping = function () {}; THREE.CubeRefractionMapping = function () {}; THREE.SphericalReflectionMapping = function () {}; THREE.SphericalRefractionMapping = function () {}; // Wrapping modes THREE.RepeatWrapping = 1000; THREE.ClampToEdgeWrapping = 1001; THREE.MirroredRepeatWrapping = 1002; // Filters THREE.NearestFilter = 1003; THREE.NearestMipMapNearestFilter = 1004; THREE.NearestMipMapLinearFilter = 1005; THREE.LinearFilter = 1006; THREE.LinearMipMapNearestFilter = 1007; THREE.LinearMipMapLinearFilter = 1008; // Data types THREE.UnsignedByteType = 1009; THREE.ByteType = 1010; THREE.ShortType = 1011; THREE.UnsignedShortType = 1012; THREE.IntType = 1013; THREE.UnsignedIntType = 1014; THREE.FloatType = 1015; // Pixel types //THREE.UnsignedByteType = 1009; THREE.UnsignedShort4444Type = 1016; THREE.UnsignedShort5551Type = 1017; THREE.UnsignedShort565Type = 1018; // Pixel formats THREE.AlphaFormat = 1019; THREE.RGBFormat = 1020; THREE.RGBAFormat = 1021; THREE.LuminanceFormat = 1022; THREE.LuminanceAlphaFormat = 1023; // Compressed texture formats THREE.RGB_S3TC_DXT1_Format = 2001; THREE.RGBA_S3TC_DXT1_Format = 2002; THREE.RGBA_S3TC_DXT3_Format = 2003; THREE.RGBA_S3TC_DXT5_Format = 2004; /* // Potential future PVRTC compressed texture formats THREE.RGB_PVRTC_4BPPV1_Format = 2100; THREE.RGB_PVRTC_2BPPV1_Format = 2101; THREE.RGBA_PVRTC_4BPPV1_Format = 2102; THREE.RGBA_PVRTC_2BPPV1_Format = 2103; */ // File:src/math/Color.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Color = function ( color ) { if ( arguments.length === 3 ) { return this.setRGB( arguments[ 0 ], arguments[ 1 ], arguments[ 2 ] ); } return this.set( color ) }; THREE.Color.prototype = { constructor: THREE.Color, r: 1, g: 1, b: 1, set: function ( value ) { if ( value instanceof THREE.Color ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } return this; }, setHex: function ( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; }, setRGB: function ( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; }, setHSL: function ( h, s, l ) { // h,s,l ranges are in 0.0 - 1.0 if ( s === 0 ) { this.r = this.g = this.b = l; } else { var hue2rgb = function ( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; }; var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); var q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } return this; }, setStyle: function ( style ) { // rgb(255,0,0) if ( /^rgb\((\d+), ?(\d+), ?(\d+)\)$/i.test( style ) ) { var color = /^rgb\((\d+), ?(\d+), ?(\d+)\)$/i.exec( style ); this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; return this; } // rgb(100%,0%,0%) if ( /^rgb\((\d+)\%, ?(\d+)\%, ?(\d+)\%\)$/i.test( style ) ) { var color = /^rgb\((\d+)\%, ?(\d+)\%, ?(\d+)\%\)$/i.exec( style ); this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; return this; } // #ff0000 if ( /^\#([0-9a-f]{6})$/i.test( style ) ) { var color = /^\#([0-9a-f]{6})$/i.exec( style ); this.setHex( parseInt( color[ 1 ], 16 ) ); return this; } // #f00 if ( /^\#([0-9a-f])([0-9a-f])([0-9a-f])$/i.test( style ) ) { var color = /^\#([0-9a-f])([0-9a-f])([0-9a-f])$/i.exec( style ); this.setHex( parseInt( color[ 1 ] + color[ 1 ] + color[ 2 ] + color[ 2 ] + color[ 3 ] + color[ 3 ], 16 ) ); return this; } // red if ( /^(\w+)$/i.test( style ) ) { this.setHex( THREE.ColorKeywords[ style ] ); return this; } }, copy: function ( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; }, copyGammaToLinear: function ( color ) { this.r = color.r * color.r; this.g = color.g * color.g; this.b = color.b * color.b; return this; }, copyLinearToGamma: function ( color ) { this.r = Math.sqrt( color.r ); this.g = Math.sqrt( color.g ); this.b = Math.sqrt( color.b ); return this; }, convertGammaToLinear: function () { var r = this.r, g = this.g, b = this.b; this.r = r * r; this.g = g * g; this.b = b * b; return this; }, convertLinearToGamma: function () { this.r = Math.sqrt( this.r ); this.g = Math.sqrt( this.g ); this.b = Math.sqrt( this.b ); return this; }, getHex: function () { return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0; }, getHexString: function () { return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 ); }, getHSL: function ( optionalTarget ) { // h,s,l ranges are in 0.0 - 1.0 var hsl = optionalTarget || { h: 0, s: 0, l: 0 }; var r = this.r, g = this.g, b = this.b; var max = Math.max( r, g, b ); var min = Math.min( r, g, b ); var hue, saturation; var lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { var delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } hsl.h = hue; hsl.s = saturation; hsl.l = lightness; return hsl; }, getStyle: function () { return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')'; }, offsetHSL: function ( h, s, l ) { var hsl = this.getHSL(); hsl.h += h; hsl.s += s; hsl.l += l; this.setHSL( hsl.h, hsl.s, hsl.l ); return this; }, add: function ( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; }, addColors: function ( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; }, addScalar: function ( s ) { this.r += s; this.g += s; this.b += s; return this; }, multiply: function ( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; }, multiplyScalar: function ( s ) { this.r *= s; this.g *= s; this.b *= s; return this; }, lerp: function ( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; }, equals: function ( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); }, fromArray: function ( array ) { this.r = array[ 0 ]; this.g = array[ 1 ]; this.b = array[ 2 ]; return this; }, toArray: function () { return [ this.r, this.g, this.b ]; }, clone: function () { return new THREE.Color().setRGB( this.r, this.g, this.b ); } }; THREE.ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; // File:src/math/Quaternion.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://exocortex.com */ THREE.Quaternion = function ( x, y, z, w ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._w = ( w !== undefined ) ? w : 1; }; THREE.Quaternion.prototype = { constructor: THREE.Quaternion, _x: 0,_y: 0, _z: 0, _w: 0, get x () { return this._x; }, set x ( value ) { this._x = value; this.onChangeCallback(); }, get y () { return this._y; }, set y ( value ) { this._y = value; this.onChangeCallback(); }, get z () { return this._z; }, set z ( value ) { this._z = value; this.onChangeCallback(); }, get w () { return this._w; }, set w ( value ) { this._w = value; this.onChangeCallback(); }, set: function ( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this.onChangeCallback(); return this; }, copy: function ( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this.onChangeCallback(); return this; }, setFromEuler: function ( euler, update ) { if ( euler instanceof THREE.Euler === false ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var c1 = Math.cos( euler._x / 2 ); var c2 = Math.cos( euler._y / 2 ); var c3 = Math.cos( euler._z / 2 ); var s1 = Math.sin( euler._x / 2 ); var s2 = Math.sin( euler._y / 2 ); var s3 = Math.sin( euler._z / 2 ); if ( euler.order === 'XYZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( euler.order === 'YXZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( euler.order === 'ZXY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( euler.order === 'ZYX' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( euler.order === 'YZX' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( euler.order === 'XZY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } if ( update !== false ) this.onChangeCallback(); return this; }, setFromAxisAngle: function ( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33, s; if ( trace > 0 ) { s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this.onChangeCallback(); return this; }, setFromUnitVectors: function () { // http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final // assumes direction vectors vFrom and vTo are normalized var v1, r; var EPS = 0.000001; return function ( vFrom, vTo ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); r = vFrom.dot( vTo ) + 1; if ( r < EPS ) { r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { v1.set( - vFrom.y, vFrom.x, 0 ); } else { v1.set( 0, - vFrom.z, vFrom.y ); } } else { v1.crossVectors( vFrom, vTo ); } this._x = v1.x; this._y = v1.y; this._z = v1.z; this._w = r; this.normalize(); return this; } }(), inverse: function () { this.conjugate().normalize(); return this; }, conjugate: function () { this._x *= - 1; this._y *= - 1; this._z *= - 1; this.onChangeCallback(); return this; }, dot: function ( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; }, lengthSq: function () { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; }, length: function () { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); }, normalize: function () { var l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this.onChangeCallback(); return this; }, multiply: function ( q, p ) { if ( p !== undefined ) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p ); } return this.multiplyQuaternions( this, q ); }, multiplyQuaternions: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this.onChangeCallback(); return this; }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this ); }, slerp: function ( qb, t ) { var x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } var halfTheta = Math.acos( cosHalfTheta ); var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this._w = 0.5 * ( w + this._w ); this._x = 0.5 * ( x + this._x ); this._y = 0.5 * ( y + this._y ); this._z = 0.5 * ( z + this._z ); return this; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this.onChangeCallback(); return this; }, equals: function ( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); }, fromArray: function ( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; this._w = array[ 3 ]; this.onChangeCallback(); return this; }, toArray: function () { return [ this._x, this._y, this._z, this._w ]; }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {}, clone: function () { return new THREE.Quaternion( this._x, this._y, this._z, this._w ); } }; THREE.Quaternion.slerp = function ( qa, qb, qm, t ) { return qm.copy( qa ).slerp( qb, t ); } // File:src/math/Vector2.js /** * @author mrdoob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.Vector2 = function ( x, y ) { this.x = x || 0; this.y = y || 0; }; THREE.Vector2.prototype = { constructor: THREE.Vector2, set: function ( x, y ) { this.x = x; this.y = y; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } }, copy: function ( v ) { this.x = v.x; this.y = v.y; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }, multiply: function ( v ) { this.x *= v.x; this.y *= v.y; return this; }, multiplyScalar: function ( s ) { this.x *= s; this.y *= s; return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; return this; }, divideScalar: function ( scalar ) { if ( scalar !== 0 ) { var invScalar = 1 / scalar; this.x *= invScalar; this.y *= invScalar; } else { this.x = 0; this.y = 0; } return this; }, min: function ( v ) { if ( this.x > v.x ) { this.x = v.x; } if ( this.y > v.y ) { this.y = v.y; } return this; }, max: function ( v ) { if ( this.x < v.x ) { this.x = v.x; } if ( this.y < v.y ) { this.y = v.y; } return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly if ( this.x < min.x ) { this.x = min.x; } else if ( this.x > max.x ) { this.x = max.x; } if ( this.y < min.y ) { this.y = min.y; } else if ( this.y > max.y ) { this.y = max.y; } return this; }, clampScalar: ( function () { var min, max; return function ( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector2(); max = new THREE.Vector2(); } min.set( minVal, minVal ); max.set( maxVal, maxVal ); return this.clamp( min, max ); }; } )(), floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y; }, lengthSq: function () { return this.x * this.x + this.y * this.y; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y ); }, normalize: function () { return this.divideScalar( this.length() ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }, setLength: function ( l ) { var oldLength = this.length(); if ( oldLength !== 0 && l !== oldLength ) { this.multiplyScalar( l / oldLength ); } return this; }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }, fromArray: function ( array ) { this.x = array[ 0 ]; this.y = array[ 1 ]; return this; }, toArray: function () { return [ this.x, this.y ]; }, clone: function () { return new THREE.Vector2( this.x, this.y ); } }; // File:src/math/Vector3.js /** * @author mrdoob / http://mrdoob.com/ * @author *kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector3 = function ( x, y, z ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; }; THREE.Vector3.prototype = { constructor: THREE.Vector3, set: function ( x, y, z ) { this.x = x; this.y = y; this.z = z; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }, multiply: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w ); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }, multiplyScalar: function ( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; }, multiplyVectors: function ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }, applyEuler: function () { var quaternion; return function ( euler ) { if ( euler instanceof THREE.Euler === false ) { console.error( 'THREE.Vector3: .applyEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } if ( quaternion === undefined ) quaternion = new THREE.Quaternion(); this.applyQuaternion( quaternion.setFromEuler( euler ) ); return this; }; }(), applyAxisAngle: function () { var quaternion; return function ( axis, angle ) { if ( quaternion === undefined ) quaternion = new THREE.Quaternion(); this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) ); return this; }; }(), applyMatrix3: function ( m ) { var x = this.x; var y = this.y; var z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; }, applyMatrix4: function ( m ) { // input: THREE.Matrix4 affine matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ]; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ]; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ]; return this; }, applyProjection: function ( m ) { // input: THREE.Matrix4 projection matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; var d = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); // perspective divide this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * d; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * d; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * d; return this; }, applyQuaternion: function ( q ) { var x = this.x; var y = this.y; var z = this.z; var qx = q.x; var qy = q.y; var qz = q.z; var qw = q.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; }, transformDirection: function ( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; this.normalize(); return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }, divideScalar: function ( scalar ) { if ( scalar !== 0 ) { var invScalar = 1 / scalar; this.x *= invScalar; this.y *= invScalar; this.z *= invScalar; } else { this.x = 0; this.y = 0; this.z = 0; } return this; }, min: function ( v ) { if ( this.x > v.x ) { this.x = v.x; } if ( this.y > v.y ) { this.y = v.y; } if ( this.z > v.z ) { this.z = v.z; } return this; }, max: function ( v ) { if ( this.x < v.x ) { this.x = v.x; } if ( this.y < v.y ) { this.y = v.y; } if ( this.z < v.z ) { this.z = v.z; } return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly if ( this.x < min.x ) { this.x = min.x; } else if ( this.x > max.x ) { this.x = max.x; } if ( this.y < min.y ) { this.y = min.y; } else if ( this.y > max.y ) { this.y = max.y; } if ( this.z < min.z ) { this.z = min.z; } else if ( this.z > max.z ) { this.z = max.z; } return this; }, clampScalar: ( function () { var min, max; return function ( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector3(); max = new THREE.Vector3(); } min.set( minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; } )(), floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( l ) { var oldLength = this.length(); if ( oldLength !== 0 && l !== oldLength ) { this.multiplyScalar( l / oldLength ); } return this; }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }, cross: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w ); } var x = this.x, y = this.y, z = this.z; this.x = y * v.z - z * v.y; this.y = z * v.x - x * v.z; this.z = x * v.y - y * v.x; return this; }, crossVectors: function ( a, b ) { var ax = a.x, ay = a.y, az = a.z; var bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; }, projectOnVector: function () { var v1, dot; return function ( vector ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); v1.copy( vector ).normalize(); dot = this.dot( v1 ); return this.copy( v1 ).multiplyScalar( dot ); }; }(), projectOnPlane: function () { var v1; return function ( planeNormal ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); v1.copy( this ).projectOnVector( planeNormal ); return this.sub( v1 ); } }(), reflect: function () { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length var v1; return function ( normal ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } }(), angleTo: function ( v ) { var theta = this.dot( v ) / ( this.length() * v.length() ); // clamp, to handle numerical problems return Math.acos( THREE.Math.clamp( theta, - 1, 1 ) ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x; var dy = this.y - v.y; var dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; }, setEulerFromRotationMatrix: function ( m, order ) { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); }, setEulerFromQuaternion: function ( q, order ) { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); }, getPositionFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m ); }, getScaleFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m ); }, getColumnFromMatrix: function ( index, matrix ) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( index, matrix ); }, setFromMatrixPosition: function ( m ) { this.x = m.elements[ 12 ]; this.y = m.elements[ 13 ]; this.z = m.elements[ 14 ]; return this; }, setFromMatrixScale: function ( m ) { var sx = this.set( m.elements[ 0 ], m.elements[ 1 ], m.elements[ 2 ] ).length(); var sy = this.set( m.elements[ 4 ], m.elements[ 5 ], m.elements[ 6 ] ).length(); var sz = this.set( m.elements[ 8 ], m.elements[ 9 ], m.elements[ 10 ] ).length(); this.x = sx; this.y = sy; this.z = sz; return this; }, setFromMatrixColumn: function ( index, matrix ) { var offset = index * 4; var me = matrix.elements; this.x = me[ offset ]; this.y = me[ offset + 1 ]; this.z = me[ offset + 2 ]; return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }, fromArray: function ( array ) { this.x = array[ 0 ]; this.y = array[ 1 ]; this.z = array[ 2 ]; return this; }, toArray: function () { return [ this.x, this.y, this.z ]; }, clone: function () { return new THREE.Vector3( this.x, this.y, this.z ); } }; // File:src/math/Vector4.js /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector4 = function ( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Vector4.prototype = { constructor: THREE.Vector4, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setW: function ( w ) { this.w = w; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; }, multiplyScalar: function ( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; }, applyMatrix4: function ( m ) { var x = this.x; var y = this.y; var z = this.z; var w = this.w; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; }, divideScalar: function ( scalar ) { if ( scalar !== 0 ) { var invScalar = 1 / scalar; this.x *= invScalar; this.y *= invScalar; this.z *= invScalar; this.w *= invScalar; } else { this.x = 0; this.y = 0; this.z = 0; this.w = 1; } return this; }, setAxisAngleFromQuaternion: function ( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); var s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; }, setAxisAngleFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; var xx = ( m11 + 1 ) / 2; var yy = ( m22 + 1 ) / 2; var zz = ( m33 + 1 ) / 2; var xy = ( m12 + m21 ) / 4; var xz = ( m13 + m31 ) / 4; var yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; }, min: function ( v ) { if ( this.x > v.x ) { this.x = v.x; } if ( this.y > v.y ) { this.y = v.y; } if ( this.z > v.z ) { this.z = v.z; } if ( this.w > v.w ) { this.w = v.w; } return this; }, max: function ( v ) { if ( this.x < v.x ) { this.x = v.x; } if ( this.y < v.y ) { this.y = v.y; } if ( this.z < v.z ) { this.z = v.z; } if ( this.w < v.w ) { this.w = v.w; } return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly if ( this.x < min.x ) { this.x = min.x; } else if ( this.x > max.x ) { this.x = max.x; } if ( this.y < min.y ) { this.y = min.y; } else if ( this.y > max.y ) { this.y = max.y; } if ( this.z < min.z ) { this.z = min.z; } else if ( this.z > max.z ) { this.z = max.z; } if ( this.w < min.w ) { this.w = min.w; } else if ( this.w > max.w ) { this.w = max.w; } return this; }, clampScalar: ( function () { var min, max; return function ( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector4(); max = new THREE.Vector4(); } min.set( minVal, minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; } )(), floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( l ) { var oldLength = this.length(); if ( oldLength !== 0 && l !== oldLength ) { this.multiplyScalar( l / oldLength ); } return this; }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); }, fromArray: function ( array ) { this.x = array[ 0 ]; this.y = array[ 1 ]; this.z = array[ 2 ]; this.w = array[ 3 ]; return this; }, toArray: function () { return [ this.x, this.y, this.z, this.w ]; }, clone: function () { return new THREE.Vector4( this.x, this.y, this.z, this.w ); } }; // File:src/math/Euler.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://exocortex.com */ THREE.Euler = function ( x, y, z, order ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._order = order || THREE.Euler.DefaultOrder; }; THREE.Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; THREE.Euler.DefaultOrder = 'XYZ'; THREE.Euler.prototype = { constructor: THREE.Euler, _x: 0, _y: 0, _z: 0, _order: THREE.Euler.DefaultOrder, get x () { return this._x; }, set x ( value ) { this._x = value; this.onChangeCallback(); }, get y () { return this._y; }, set y ( value ) { this._y = value; this.onChangeCallback(); }, get z () { return this._z; }, set z ( value ) { this._z = value; this.onChangeCallback(); }, get order () { return this._order; }, set order ( value ) { this._order = value; this.onChangeCallback(); }, set: function ( x, y, z, order ) { this._x = x; this._y = y; this._z = z; this._order = order || this._order; this.onChangeCallback(); return this; }, copy: function ( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m, order ) { var clamp = THREE.Math.clamp; // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements; var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; order = order || this._order; if ( order === 'XYZ' ) { this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.99999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } } else if ( order === 'YXZ' ) { this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.99999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } } else if ( order === 'ZXY' ) { this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.99999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } } else if ( order === 'ZYX' ) { this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.99999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } } else if ( order === 'YZX' ) { this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.99999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } } else if ( order === 'XZY' ) { this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.99999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } } else { console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order ) } this._order = order; this.onChangeCallback(); return this; }, setFromQuaternion: function ( q, order, update ) { var clamp = THREE.Math.clamp; // q is assumed to be normalized // http://www.mathworks.com/matlabcentral/fileexchange/20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/content/SpinCalc.m var sqx = q.x * q.x; var sqy = q.y * q.y; var sqz = q.z * q.z; var sqw = q.w * q.w; order = order || this._order; if ( order === 'XYZ' ) { this._x = Math.atan2( 2 * ( q.x * q.w - q.y * q.z ), ( sqw - sqx - sqy + sqz ) ); this._y = Math.asin( clamp( 2 * ( q.x * q.z + q.y * q.w ), - 1, 1 ) ); this._z = Math.atan2( 2 * ( q.z * q.w - q.x * q.y ), ( sqw + sqx - sqy - sqz ) ); } else if ( order === 'YXZ' ) { this._x = Math.asin( clamp( 2 * ( q.x * q.w - q.y * q.z ), - 1, 1 ) ); this._y = Math.atan2( 2 * ( q.x * q.z + q.y * q.w ), ( sqw - sqx - sqy + sqz ) ); this._z = Math.atan2( 2 * ( q.x * q.y + q.z * q.w ), ( sqw - sqx + sqy - sqz ) ); } else if ( order === 'ZXY' ) { this._x = Math.asin( clamp( 2 * ( q.x * q.w + q.y * q.z ), - 1, 1 ) ); this._y = Math.atan2( 2 * ( q.y * q.w - q.z * q.x ), ( sqw - sqx - sqy + sqz ) ); this._z = Math.atan2( 2 * ( q.z * q.w - q.x * q.y ), ( sqw - sqx + sqy - sqz ) ); } else if ( order === 'ZYX' ) { this._x = Math.atan2( 2 * ( q.x * q.w + q.z * q.y ), ( sqw - sqx - sqy + sqz ) ); this._y = Math.asin( clamp( 2 * ( q.y * q.w - q.x * q.z ), - 1, 1 ) ); this._z = Math.atan2( 2 * ( q.x * q.y + q.z * q.w ), ( sqw + sqx - sqy - sqz ) ); } else if ( order === 'YZX' ) { this._x = Math.atan2( 2 * ( q.x * q.w - q.z * q.y ), ( sqw - sqx + sqy - sqz ) ); this._y = Math.atan2( 2 * ( q.y * q.w - q.x * q.z ), ( sqw + sqx - sqy - sqz ) ); this._z = Math.asin( clamp( 2 * ( q.x * q.y + q.z * q.w ), - 1, 1 ) ); } else if ( order === 'XZY' ) { this._x = Math.atan2( 2 * ( q.x * q.w + q.y * q.z ), ( sqw - sqx + sqy - sqz ) ); this._y = Math.atan2( 2 * ( q.x * q.z + q.y * q.w ), ( sqw + sqx - sqy - sqz ) ); this._z = Math.asin( clamp( 2 * ( q.z * q.w - q.x * q.y ), - 1, 1 ) ); } else { console.warn( 'THREE.Euler: .setFromQuaternion() given unsupported order: ' + order ) } this._order = order; if ( update !== false ) this.onChangeCallback(); return this; }, reorder: function () { // WARNING: this discards revolution information -bhouston var q = new THREE.Quaternion(); return function ( newOrder ) { q.setFromEuler( this ); this.setFromQuaternion( q, newOrder ); }; }(), equals: function ( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); }, fromArray: function ( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this.onChangeCallback(); return this; }, toArray: function () { return [ this._x, this._y, this._z, this._order ]; }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {}, clone: function () { return new THREE.Euler( this._x, this._y, this._z, this._order ); } }; // File:src/math/Line3.js /** * @author bhouston / http://exocortex.com */ THREE.Line3 = function ( start, end ) { this.start = ( start !== undefined ) ? start : new THREE.Vector3(); this.end = ( end !== undefined ) ? end : new THREE.Vector3(); }; THREE.Line3.prototype = { constructor: THREE.Line3, set: function ( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; }, copy: function ( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); }, delta: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.subVectors( this.end, this.start ); }, distanceSq: function () { return this.start.distanceToSquared( this.end ); }, distance: function () { return this.start.distanceTo( this.end ); }, at: function ( t, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, closestPointToPointParameter: function () { var startP = new THREE.Vector3(); var startEnd = new THREE.Vector3(); return function ( point, clampToLine ) { startP.subVectors( point, this.start ); startEnd.subVectors( this.end, this.start ); var startEnd2 = startEnd.dot( startEnd ); var startEnd_startP = startEnd.dot( startP ); var t = startEnd_startP / startEnd2; if ( clampToLine ) { t = THREE.Math.clamp( t, 0, 1 ); } return t; }; }(), closestPointToPoint: function ( point, clampToLine, optionalTarget ) { var t = this.closestPointToPointParameter( point, clampToLine ); var result = optionalTarget || new THREE.Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, applyMatrix4: function ( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; }, equals: function ( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); }, clone: function () { return new THREE.Line3().copy( this ); } }; // File:src/math/Box2.js /** * @author bhouston / http://exocortex.com */ THREE.Box2 = function ( min, max ) { this.min = ( min !== undefined ) ? min : new THREE.Vector2( Infinity, Infinity ); this.max = ( max !== undefined ) ? max : new THREE.Vector2( - Infinity, - Infinity ); }; THREE.Box2.prototype = { constructor: THREE.Box2, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ) } return this; }, setFromCenterAndSize: function () { var v1 = new THREE.Vector2(); return function ( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = Infinity; this.max.x = this.max.y = - Infinity; return this; }, empty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, size: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { if ( point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ) { return false; } return true; }, containsBox: function ( box ) { if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) && ( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) ) { return true; } return false; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new THREE.Vector2(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) ); }, isIntersectionBox: function ( box ) { // using 6 splitting planes to rule out intersections. if ( box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ) { return false; } return true; }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new THREE.Vector2(); return function ( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); }, clone: function () { return new THREE.Box2().copy( this ); } }; // File:src/math/Box3.js /** * @author bhouston / http://exocortex.com * @author WestLangley / http://github.com/WestLangley */ THREE.Box3 = function ( min, max ) { this.min = ( min !== undefined ) ? min : new THREE.Vector3( Infinity, Infinity, Infinity ); this.max = ( max !== undefined ) ? max : new THREE.Vector3( - Infinity, - Infinity, - Infinity ); }; THREE.Box3.prototype = { constructor: THREE.Box3, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ) } return this; }, setFromCenterAndSize: function () { var v1 = new THREE.Vector3(); return function ( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), setFromObject: function () { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and childrens', world transforms var v1 = new THREE.Vector3(); return function ( object ) { var scope = this; object.updateMatrixWorld( true ); this.makeEmpty(); object.traverse( function ( node ) { if ( node.geometry !== undefined && node.geometry.vertices !== undefined ) { var vertices = node.geometry.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { v1.copy( vertices[ i ] ); v1.applyMatrix4( node.matrixWorld ); scope.expandByPoint( v1 ); } } } ); return this; }; }(), copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = this.min.z = Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; }, empty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, size: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { if ( point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ) { return false; } return true; }, containsBox: function ( box ) { if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) && ( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) && ( this.min.z <= box.min.z ) && ( box.max.z <= this.max.z ) ) { return true; } return false; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new THREE.Vector3(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); }, isIntersectionBox: function ( box ) { // using 6 splitting planes to rule out intersections. if ( box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ) { return false; } return true; }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new THREE.Vector3(); return function ( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), getBoundingSphere: function () { var v1 = new THREE.Vector3(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Sphere(); result.center = this.center(); result.radius = this.size( v1 ).length() * 0.5; return result; }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, applyMatrix4: function () { var points = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; return function ( matrix ) { // NOTE: I am using a binary pattern to specify all 2^3 combinations below points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.makeEmpty(); this.setFromPoints( points ); return this; }; }(), translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); }, clone: function () { return new THREE.Box3().copy( this ); } }; // File:src/math/Matrix3.js /** * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://exocortex.com */ THREE.Matrix3 = function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { this.elements = new Float32Array( 9 ); var te = this.elements; te[ 0 ] = ( n11 !== undefined ) ? n11 : 1; te[ 3 ] = n12 || 0; te[ 6 ] = n13 || 0; te[ 1 ] = n21 || 0; te[ 4 ] = ( n22 !== undefined ) ? n22 : 1; te[ 7 ] = n23 || 0; te[ 2 ] = n31 || 0; te[ 5 ] = n32 || 0; te[ 8 ] = ( n33 !== undefined ) ? n33 : 1; }; THREE.Matrix3.prototype = { constructor: THREE.Matrix3, set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { var te = this.elements; te[ 0 ] = n11; te[ 3 ] = n12; te[ 6 ] = n13; te[ 1 ] = n21; te[ 4 ] = n22; te[ 7 ] = n23; te[ 2 ] = n31; te[ 5 ] = n32; te[ 8 ] = n33; return this; }, identity: function () { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; }, copy: function ( m ) { var me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], me[ 1 ], me[ 4 ], me[ 7 ], me[ 2 ], me[ 5 ], me[ 8 ] ); return this; }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); return vector.applyMatrix3( this ); }, multiplyVector3Array: function ( a ) { console.warn( 'THREE.Matrix3: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' ); return this.applyToVector3Array( a ); }, applyToVector3Array: function () { var v1 = new THREE.Vector3(); return function ( array, offset, length ) { if ( offset === undefined ) offset = 0; if ( length === undefined ) length = array.length; for ( var i = 0, j = offset, il; i < length; i += 3, j += 3 ) { v1.x = array[ j ]; v1.y = array[ j + 1 ]; v1.z = array[ j + 2 ]; v1.applyMatrix3( this ); array[ j ] = v1.x; array[ j + 1 ] = v1.y; array[ j + 2 ] = v1.z; } return array; }; }(), multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; }, determinant: function () { var te = this.elements; var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; }, getInverse: function ( matrix, throwOnInvertible ) { // input: THREE.Matrix4 // ( based on http://code.google.com/p/webgl-mjs/ ) var me = matrix.elements; var te = this.elements; te[ 0 ] = me[ 10 ] * me[ 5 ] - me[ 6 ] * me[ 9 ]; te[ 1 ] = - me[ 10 ] * me[ 1 ] + me[ 2 ] * me[ 9 ]; te[ 2 ] = me[ 6 ] * me[ 1 ] - me[ 2 ] * me[ 5 ]; te[ 3 ] = - me[ 10 ] * me[ 4 ] + me[ 6 ] * me[ 8 ]; te[ 4 ] = me[ 10 ] * me[ 0 ] - me[ 2 ] * me[ 8 ]; te[ 5 ] = - me[ 6 ] * me[ 0 ] + me[ 2 ] * me[ 4 ]; te[ 6 ] = me[ 9 ] * me[ 4 ] - me[ 5 ] * me[ 8 ]; te[ 7 ] = - me[ 9 ] * me[ 0 ] + me[ 1 ] * me[ 8 ]; te[ 8 ] = me[ 5 ] * me[ 0 ] - me[ 1 ] * me[ 4 ]; var det = me[ 0 ] * te[ 0 ] + me[ 1 ] * te[ 3 ] + me[ 2 ] * te[ 6 ]; // no inverse if ( det === 0 ) { var msg = "Matrix3.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnInvertible || false ) { throw new Error( msg ); } else { console.warn( msg ); } this.identity(); return this; } this.multiplyScalar( 1.0 / det ); return this; }, transpose: function () { var tmp, m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; }, flattenToArrayOffset: function ( array, offset ) { var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; }, getNormalMatrix: function ( m ) { // input: THREE.Matrix4 this.getInverse( m ).transpose(); return this; }, transposeIntoArray: function ( r ) { var m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; }, fromArray: function ( array ) { this.elements.set( array ); return this; }, toArray: function () { var te = this.elements; return [ te[ 0 ], te[ 1 ], te[ 2 ], te[ 3 ], te[ 4 ], te[ 5 ], te[ 6 ], te[ 7 ], te[ 8 ] ]; }, clone: function () { var te = this.elements; return new THREE.Matrix3( te[ 0 ], te[ 3 ], te[ 6 ], te[ 1 ], te[ 4 ], te[ 7 ], te[ 2 ], te[ 5 ], te[ 8 ] ); } }; // File:src/math/Matrix4.js /** * @author mrdoob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ * @author bhouston / http://exocortex.com * @author WestLangley / http://github.com/WestLangley */ THREE.Matrix4 = function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { this.elements = new Float32Array( 16 ); // TODO: if n11 is undefined, then just set to identity, otherwise copy all other values into matrix // we should not support semi specification of Matrix4, it is just weird. var te = this.elements; te[ 0 ] = ( n11 !== undefined ) ? n11 : 1; te[ 4 ] = n12 || 0; te[ 8 ] = n13 || 0; te[ 12 ] = n14 || 0; te[ 1 ] = n21 || 0; te[ 5 ] = ( n22 !== undefined ) ? n22 : 1; te[ 9 ] = n23 || 0; te[ 13 ] = n24 || 0; te[ 2 ] = n31 || 0; te[ 6 ] = n32 || 0; te[ 10 ] = ( n33 !== undefined ) ? n33 : 1; te[ 14 ] = n34 || 0; te[ 3 ] = n41 || 0; te[ 7 ] = n42 || 0; te[ 11 ] = n43 || 0; te[ 15 ] = ( n44 !== undefined ) ? n44 : 1; }; THREE.Matrix4.prototype = { constructor: THREE.Matrix4, set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; }, identity: function () { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, copy: function ( m ) { this.elements.set( m.elements ); return this; }, extractPosition: function ( m ) { console.warn( 'THREEMatrix4: .extractPosition() has been renamed to .copyPosition().' ); return this.copyPosition( m ); }, copyPosition: function ( m ) { var te = this.elements; var me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; }, extractRotation: function () { var v1 = new THREE.Vector3(); return function ( m ) { var te = this.elements; var me = m.elements; var scaleX = 1 / v1.set( me[ 0 ], me[ 1 ], me[ 2 ] ).length(); var scaleY = 1 / v1.set( me[ 4 ], me[ 5 ], me[ 6 ] ).length(); var scaleZ = 1 / v1.set( me[ 8 ], me[ 9 ], me[ 10 ] ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; return this; }; }(), makeRotationFromEuler: function ( euler ) { if ( euler instanceof THREE.Euler === false ) { console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } var te = this.elements; var x = euler.x, y = euler.y, z = euler.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, setRotationFromQuaternion: function ( q ) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q ); }, makeRotationFromQuaternion: function ( q ) { var te = this.elements; var x = q.x, y = q.y, z = q.z, w = q.w; var x2 = x + x, y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2; te[ 0 ] = 1 - ( yy + zz ); te[ 4 ] = xy - wz; te[ 8 ] = xz + wy; te[ 1 ] = xy + wz; te[ 5 ] = 1 - ( xx + zz ); te[ 9 ] = yz - wx; te[ 2 ] = xz - wy; te[ 6 ] = yz + wx; te[ 10 ] = 1 - ( xx + yy ); // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, lookAt: function () { var x = new THREE.Vector3(); var y = new THREE.Vector3(); var z = new THREE.Vector3(); return function ( eye, target, up ) { var te = this.elements; z.subVectors( eye, target ).normalize(); if ( z.length() === 0 ) { z.z = 1; } x.crossVectors( up, z ).normalize(); if ( x.length() === 0 ) { z.x += 0.0001; x.crossVectors( up, z ).normalize(); } y.crossVectors( z, x ); te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x; te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y; te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z; return this; }; }(), multiply: function ( m, n ) { if ( n !== undefined ) { console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); return this.multiplyMatrices( m, n ); } return this.multiplyMatrices( this, m ); }, multiplyMatrices: function ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; }, multiplyToArray: function ( a, b, r ) { var te = this.elements; this.multiplyMatrices( a, b ); r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ]; r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ]; r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ]; r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ]; return this; }, multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) or vector.applyProjection( matrix ) instead.' ); return vector.applyProjection( this ); }, multiplyVector4: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, multiplyVector3Array: function ( a ) { console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' ); return this.applyToVector3Array( a ); }, applyToVector3Array: function () { var v1 = new THREE.Vector3(); return function ( array, offset, length ) { if ( offset === undefined ) offset = 0; if ( length === undefined ) length = array.length; for ( var i = 0, j = offset, il; i < length; i += 3, j += 3 ) { v1.x = array[ j ]; v1.y = array[ j + 1 ]; v1.z = array[ j + 2 ]; v1.applyMatrix4( this ); array[ j ] = v1.x; array[ j + 1 ] = v1.y; array[ j + 2 ] = v1.z; } return array; }; }(), rotateAxis: function ( v ) { console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this ); }, crossVector: function ( vector ) { console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, determinant: function () { var te = this.elements; var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); }, transpose: function () { var te = this.elements; var tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; }, flattenToArrayOffset: function ( array, offset ) { var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; }, getPosition: function () { var v1 = new THREE.Vector3(); return function () { console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); var te = this.elements; return v1.set( te[ 12 ], te[ 13 ], te[ 14 ] ); }; }(), setPosition: function ( v ) { var te = this.elements; te[ 12 ] = v.x; te[ 13 ] = v.y; te[ 14 ] = v.z; return this; }, getInverse: function ( m, throwOnInvertible ) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements; var me = m.elements; var n11 = me[ 0 ], n12 = me[ 4 ], n13 = me[ 8 ], n14 = me[ 12 ]; var n21 = me[ 1 ], n22 = me[ 5 ], n23 = me[ 9 ], n24 = me[ 13 ]; var n31 = me[ 2 ], n32 = me[ 6 ], n33 = me[ 10 ], n34 = me[ 14 ]; var n41 = me[ 3 ], n42 = me[ 7 ], n43 = me[ 11 ], n44 = me[ 15 ]; te[ 0 ] = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44; te[ 4 ] = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44; te[ 8 ] = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44; te[ 12 ] = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; te[ 1 ] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44; te[ 5 ] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44; te[ 9 ] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44; te[ 13 ] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34; te[ 2 ] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44; te[ 6 ] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44; te[ 10 ] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44; te[ 14 ] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34; te[ 3 ] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43; te[ 7 ] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43; te[ 11 ] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43; te[ 15 ] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33; var det = n11 * te[ 0 ] + n21 * te[ 4 ] + n31 * te[ 8 ] + n41 * te[ 12 ]; if ( det == 0 ) { var msg = "Matrix4.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnInvertible || false ) { throw new Error( msg ); } else { console.warn( msg ); } this.identity(); return this; } this.multiplyScalar( 1 / det ); return this; }, translate: function ( v ) { console.warn( 'THREE.Matrix4: .translate() has been removed.' ); }, rotateX: function ( angle ) { console.warn( 'THREE.Matrix4: .rotateX() has been removed.' ); }, rotateY: function ( angle ) { console.warn( 'THREE.Matrix4: .rotateY() has been removed.' ); }, rotateZ: function ( angle ) { console.warn( 'THREE.Matrix4: .rotateZ() has been removed.' ); }, rotateByAxis: function ( axis, angle ) { console.warn( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); }, scale: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; }, getMaxScaleOnAxis: function () { var te = this.elements; var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, Math.max( scaleYSq, scaleZSq ) ) ); }, makeTranslation: function ( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; }, makeRotationX: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationY: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationZ: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, makeRotationAxis: function ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; }, makeScale: function ( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; }, compose: function ( position, quaternion, scale ) { this.makeRotationFromQuaternion( quaternion ); this.scale( scale ); this.setPosition( position ); return this; }, decompose: function () { var vector = new THREE.Vector3(); var matrix = new THREE.Matrix4(); return function ( position, quaternion, scale ) { var te = this.elements; var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale var det = this.determinant(); if ( det < 0 ) { sx = - sx; } position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part matrix.elements.set( this.elements ); // at this point matrix is incomplete so we can't use .copy() var invSX = 1 / sx; var invSY = 1 / sy; var invSZ = 1 / sz; matrix.elements[ 0 ] *= invSX; matrix.elements[ 1 ] *= invSX; matrix.elements[ 2 ] *= invSX; matrix.elements[ 4 ] *= invSY; matrix.elements[ 5 ] *= invSY; matrix.elements[ 6 ] *= invSY; matrix.elements[ 8 ] *= invSZ; matrix.elements[ 9 ] *= invSZ; matrix.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( matrix ); scale.x = sx; scale.y = sy; scale.z = sz; return this; }; }(), makeFrustum: function ( left, right, bottom, top, near, far ) { var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near ); te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; }, makePerspective: function ( fov, aspect, near, far ) { var ymax = near * Math.tan( THREE.Math.degToRad( fov * 0.5 ) ); var ymin = - ymax; var xmin = ymin * aspect; var xmax = ymax * aspect; return this.makeFrustum( xmin, xmax, ymin, ymax, near, far ); }, makeOrthographic: function ( left, right, top, bottom, near, far ) { var te = this.elements; var w = right - left; var h = top - bottom; var p = far - near; var x = ( right + left ) / w; var y = ( top + bottom ) / h; var z = ( far + near ) / p; te[ 0 ] = 2 / w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 / h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 / p; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; }, fromArray: function ( array ) { this.elements.set( array ); return this; }, toArray: function () { var te = this.elements; return [ te[ 0 ], te[ 1 ], te[ 2 ], te[ 3 ], te[ 4 ], te[ 5 ], te[ 6 ], te[ 7 ], te[ 8 ], te[ 9 ], te[ 10 ], te[ 11 ], te[ 12 ], te[ 13 ], te[ 14 ], te[ 15 ] ]; }, clone: function () { var te = this.elements; return new THREE.Matrix4( te[ 0 ], te[ 4 ], te[ 8 ], te[ 12 ], te[ 1 ], te[ 5 ], te[ 9 ], te[ 13 ], te[ 2 ], te[ 6 ], te[ 10 ], te[ 14 ], te[ 3 ], te[ 7 ], te[ 11 ], te[ 15 ] ); } }; // File:src/math/Ray.js /** * @author bhouston / http://exocortex.com */ THREE.Ray = function ( origin, direction ) { this.origin = ( origin !== undefined ) ? origin : new THREE.Vector3(); this.direction = ( direction !== undefined ) ? direction : new THREE.Vector3(); }; THREE.Ray.prototype = { constructor: THREE.Ray, set: function ( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; }, copy: function ( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; }, at: function ( t, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( this.direction ).multiplyScalar( t ).add( this.origin ); }, recast: function () { var v1 = new THREE.Vector3(); return function ( t ) { this.origin.copy( this.at( t, v1 ) ); return this; }; }(), closestPointToPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); result.subVectors( point, this.origin ); var directionDistance = result.dot( this.direction ); if ( directionDistance < 0 ) { return result.copy( this.origin ); } return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); }, distanceToPoint: function () { var v1 = new THREE.Vector3(); return function ( point ) { var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceTo( point ); } v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); return v1.distanceTo( point ); }; }(), distanceSqToSegment: function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from http://www.geometrictools.com/LibMathematics/Distance/Wm5DistRay3Segment3.cpp // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment var segCenter = v0.clone().add( v1 ).multiplyScalar( 0.5 ); var segDir = v1.clone().sub( v0 ).normalize(); var segExtent = v0.distanceTo( v1 ) * 0.5; var diff = this.origin.clone().sub( segCenter ); var a01 = - this.direction.dot( segDir ); var b0 = diff.dot( this.direction ); var b1 = - diff.dot( segDir ); var c = diff.lengthSq(); var det = Math.abs( 1 - a01 * a01 ); var s0, s1, sqrDist, extDet; if ( det >= 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. var invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.direction.clone().multiplyScalar( s0 ).add( this.origin ) ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( segDir.clone().multiplyScalar( s1 ).add( segCenter ) ); } return sqrDist; }, isIntersectionSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) <= sphere.radius; }, intersectSphere: function () { // from http://www.scratchapixel.com/lessons/3d-basic-lessons/lesson-7-intersecting-simple-shapes/ray-sphere-intersection/ var v1 = new THREE.Vector3(); return function ( sphere, optionalTarget ) { v1.subVectors( sphere.center, this.origin ); var tca = v1.dot( this.direction ); var d2 = v1.dot( v1 ) - tca * tca; var radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; var thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere var t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere var t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, optionalTarget ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, optionalTarget ); } }(), isIntersectionPlane: function ( plane ) { // check if the ray lies on the plane first var distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } var denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; }, distanceToPlane: function ( plane ) { var denominator = plane.normal.dot( this.direction ); if ( denominator == 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) == 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; }, intersectPlane: function ( plane, optionalTarget ) { var t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, optionalTarget ); }, isIntersectionBox: function () { var v = new THREE.Vector3(); return function ( box ) { return this.intersectBox( box, v ) !== null; }; }(), intersectBox: function ( box , optionalTarget ) { // http://www.scratchapixel.com/lessons/3d-basic-lessons/lesson-7-intersecting-simple-shapes/ray-box-intersection/ var tmin,tmax,tymin,tymax,tzmin,tzmax; var invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; var origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if ( tymin > tmin || tmin !== tmin ) tmin = tymin; if ( tymax < tmax || tmax !== tmax ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, optionalTarget ); }, intersectTriangle: function () { // Compute the offset origin, edges, and normal. var diff = new THREE.Vector3(); var edge1 = new THREE.Vector3(); var edge2 = new THREE.Vector3(); var normal = new THREE.Vector3(); return function ( a, b, c, backfaceCulling, optionalTarget ) { // from http://www.geometrictools.com/LibMathematics/Intersection/Wm5IntrRay3Triangle3.cpp edge1.subVectors( b, a ); edge2.subVectors( c, a ); normal.crossVectors( edge1, edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) var DdN = this.direction.dot( normal ); var sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } diff.subVectors( this.origin, a ); var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. var QdN = - sign * diff.dot( normal ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, optionalTarget ); }; }(), applyMatrix4: function ( matrix4 ) { this.direction.add( this.origin ).applyMatrix4( matrix4 ); this.origin.applyMatrix4( matrix4 ); this.direction.sub( this.origin ); this.direction.normalize(); return this; }, equals: function ( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); }, clone: function () { return new THREE.Ray().copy( this ); } }; // File:src/math/Sphere.js /** * @author bhouston / http://exocortex.com * @author mrdoob / http://mrdoob.com/ */ THREE.Sphere = function ( center, radius ) { this.center = ( center !== undefined ) ? center : new THREE.Vector3(); this.radius = ( radius !== undefined ) ? radius : 0; }; THREE.Sphere.prototype = { constructor: THREE.Sphere, set: function ( center, radius ) { this.center.copy( center ); this.radius = radius; return this; }, setFromPoints: function () { var box = new THREE.Box3(); return function ( points, optionalCenter ) { var center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { box.setFromPoints( points ).center( center ); } var maxRadiusSq = 0; for ( var i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; }; }(), copy: function ( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; }, empty: function () { return ( this.radius <= 0 ); }, containsPoint: function ( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); }, distanceToPoint: function ( point ) { return ( point.distanceTo( this.center ) - this.radius ); }, intersectsSphere: function ( sphere ) { var radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); }, clampPoint: function ( point, optionalTarget ) { var deltaLengthSq = this.center.distanceToSquared( point ); var result = optionalTarget || new THREE.Vector3(); result.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { result.sub( this.center ).normalize(); result.multiplyScalar( this.radius ).add( this.center ); } return result; }, getBoundingBox: function ( optionalTarget ) { var box = optionalTarget || new THREE.Box3(); box.set( this.center, this.center ); box.expandByScalar( this.radius ); return box; }, applyMatrix4: function ( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; }, translate: function ( offset ) { this.center.add( offset ); return this; }, equals: function ( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); }, clone: function () { return new THREE.Sphere().copy( this ); } }; // File:src/math/Frustum.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / http://exocortex.com */ THREE.Frustum = function ( p0, p1, p2, p3, p4, p5 ) { this.planes = [ ( p0 !== undefined ) ? p0 : new THREE.Plane(), ( p1 !== undefined ) ? p1 : new THREE.Plane(), ( p2 !== undefined ) ? p2 : new THREE.Plane(), ( p3 !== undefined ) ? p3 : new THREE.Plane(), ( p4 !== undefined ) ? p4 : new THREE.Plane(), ( p5 !== undefined ) ? p5 : new THREE.Plane() ]; }; THREE.Frustum.prototype = { constructor: THREE.Frustum, set: function ( p0, p1, p2, p3, p4, p5 ) { var planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; }, copy: function ( frustum ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; }, setFromMatrix: function ( m ) { var planes = this.planes; var me = m.elements; var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); return this; }, intersectsObject: function () { var sphere = new THREE.Sphere(); return function ( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( object.matrixWorld ); return this.intersectsSphere( sphere ); }; }(), intersectsSphere: function ( sphere ) { var planes = this.planes; var center = sphere.center; var negRadius = - sphere.radius; for ( var i = 0; i < 6; i ++ ) { var distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; }, intersectsBox: function () { var p1 = new THREE.Vector3(), p2 = new THREE.Vector3(); return function ( box ) { var planes = this.planes; for ( var i = 0; i < 6 ; i ++ ) { var plane = planes[ i ]; p1.x = plane.normal.x > 0 ? box.min.x : box.max.x; p2.x = plane.normal.x > 0 ? box.max.x : box.min.x; p1.y = plane.normal.y > 0 ? box.min.y : box.max.y; p2.y = plane.normal.y > 0 ? box.max.y : box.min.y; p1.z = plane.normal.z > 0 ? box.min.z : box.max.z; p2.z = plane.normal.z > 0 ? box.max.z : box.min.z; var d1 = plane.distanceToPoint( p1 ); var d2 = plane.distanceToPoint( p2 ); // if both outside plane, no intersection if ( d1 < 0 && d2 < 0 ) { return false; } } return true; }; }(), containsPoint: function ( point ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; }, clone: function () { return new THREE.Frustum().copy( this ); } }; // File:src/math/Plane.js /** * @author bhouston / http://exocortex.com */ THREE.Plane = function ( normal, constant ) { this.normal = ( normal !== undefined ) ? normal : new THREE.Vector3( 1, 0, 0 ); this.constant = ( constant !== undefined ) ? constant : 0; }; THREE.Plane.prototype = { constructor: THREE.Plane, set: function ( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; }, setComponents: function ( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; }, setFromNormalAndCoplanarPoint: function ( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized return this; }, setFromCoplanarPoints: function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function ( a, b, c ) { var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; }; }(), copy: function ( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; }, normalize: function () { // Note: will lead to a divide by zero if the plane is invalid. var inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; }, negate: function () { this.constant *= - 1; this.normal.negate(); return this; }, distanceToPoint: function ( point ) { return this.normal.dot( point ) + this.constant; }, distanceToSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; }, projectPoint: function ( point, optionalTarget ) { return this.orthoPoint( point, optionalTarget ).sub( point ).negate(); }, orthoPoint: function ( point, optionalTarget ) { var perpendicularMagnitude = this.distanceToPoint( point ); var result = optionalTarget || new THREE.Vector3(); return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude ); }, isIntersectionLine: function ( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. var startSign = this.distanceToPoint( line.start ); var endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); }, intersectLine: function () { var v1 = new THREE.Vector3(); return function ( line, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); var direction = line.delta( v1 ); var denominator = this.normal.dot( direction ); if ( denominator == 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) == 0 ) { return result.copy( line.start ); } // Unsure if this is the correct method to handle this case. return undefined; } var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return undefined; } return result.copy( direction ).multiplyScalar( t ).add( line.start ); }; }(), coplanarPoint: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( this.normal ).multiplyScalar( - this.constant ); }, applyMatrix4: function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var m1 = new THREE.Matrix3(); return function ( matrix, optionalNormalMatrix ) { // compute new normal based on theory here: // http://www.songho.ca/opengl/gl_normaltransform.html var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix ); var newNormal = v1.copy( this.normal ).applyMatrix3( normalMatrix ); var newCoplanarPoint = this.coplanarPoint( v2 ); newCoplanarPoint.applyMatrix4( matrix ); this.setFromNormalAndCoplanarPoint( newNormal, newCoplanarPoint ); return this; }; }(), translate: function ( offset ) { this.constant = this.constant - offset.dot( this.normal ); return this; }, equals: function ( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant == this.constant ); }, clone: function () { return new THREE.Plane().copy( this ); } }; // File:src/math/Math.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.Math = { generateUUID: function () { // http://www.broofa.com/Tools/Math.uuid.htm var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' ); var uuid = new Array( 36 ); var rnd = 0, r; return function () { for ( var i = 0; i < 36; i ++ ) { if ( i == 8 || i == 13 || i == 18 || i == 23 ) { uuid[ i ] = '-'; } else if ( i == 14 ) { uuid[ i ] = '4'; } else { if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0; r = rnd & 0xf; rnd = rnd >> 4; uuid[ i ] = chars[ ( i == 19 ) ? ( r & 0x3 ) | 0x8 : r ]; } } return uuid.join( '' ); }; }(), // Clamp value to range clamp: function ( x, a, b ) { return ( x < a ) ? a : ( ( x > b ) ? b : x ); }, // Clamp value to range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // http://en.wikipedia.org/wiki/Smoothstep smoothstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); }, smootherstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); }, // Random float from <0, 1> with 16 bits of randomness // (standard Math.random() creates repetitive patterns when applied over larger space) random16: function () { return ( 65280 * Math.random() + 255 * Math.random() ) / 65535; }, // Random integer from interval randInt: function ( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, sign: function ( x ) { return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : 0; }, degToRad: function () { var degreeToRadiansFactor = Math.PI / 180; return function ( degrees ) { return degrees * degreeToRadiansFactor; }; }(), radToDeg: function () { var radianToDegreesFactor = 180 / Math.PI; return function ( radians ) { return radians * radianToDegreesFactor; }; }(), isPowerOfTwo: function ( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; } }; // File:src/math/Spline.js /** * Spline from Tween.js, slightly optimized (and trashed) * http://sole.github.com/tween.js/examples/05_spline.html * * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Spline = function ( points ) { this.points = points; var c = [], v3 = { x: 0, y: 0, z: 0 }, point, intPoint, weight, w2, w3, pa, pb, pc, pd; this.initFromArray = function ( a ) { this.points = []; for ( var i = 0; i < a.length; i ++ ) { this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] }; } }; this.getPoint = function ( k ) { point = ( this.points.length - 1 ) * k; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1; c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2; pa = this.points[ c[ 0 ] ]; pb = this.points[ c[ 1 ] ]; pc = this.points[ c[ 2 ] ]; pd = this.points[ c[ 3 ] ]; w2 = weight * weight; w3 = weight * w2; v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 ); v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 ); v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 ); return v3; }; this.getControlPointsArray = function () { var i, p, l = this.points.length, coords = []; for ( i = 0; i < l; i ++ ) { p = this.points[ i ]; coords[ i ] = [ p.x, p.y, p.z ]; } return coords; }; // approximate length by summing linear segments this.getLength = function ( nSubDivisions ) { var i, index, nSamples, position, point = 0, intPoint = 0, oldIntPoint = 0, oldPosition = new THREE.Vector3(), tmpVec = new THREE.Vector3(), chunkLengths = [], totalLength = 0; // first point has 0 length chunkLengths[ 0 ] = 0; if ( ! nSubDivisions ) nSubDivisions = 100; nSamples = this.points.length * nSubDivisions; oldPosition.copy( this.points[ 0 ] ); for ( i = 1; i < nSamples; i ++ ) { index = i / nSamples; position = this.getPoint( index ); tmpVec.copy( position ); totalLength += tmpVec.distanceTo( oldPosition ); oldPosition.copy( position ); point = ( this.points.length - 1 ) * index; intPoint = Math.floor( point ); if ( intPoint != oldIntPoint ) { chunkLengths[ intPoint ] = totalLength; oldIntPoint = intPoint; } } // last point ends with total length chunkLengths[ chunkLengths.length ] = totalLength; return { chunks: chunkLengths, total: totalLength }; }; this.reparametrizeByArcLength = function ( samplingCoef ) { var i, j, index, indexCurrent, indexNext, linearDistance, realDistance, sampling, position, newpoints = [], tmpVec = new THREE.Vector3(), sl = this.getLength(); newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() ); for ( i = 1; i < this.points.length; i ++ ) { //tmpVec.copy( this.points[ i - 1 ] ); //linearDistance = tmpVec.distanceTo( this.points[ i ] ); realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ]; sampling = Math.ceil( samplingCoef * realDistance / sl.total ); indexCurrent = ( i - 1 ) / ( this.points.length - 1 ); indexNext = i / ( this.points.length - 1 ); for ( j = 1; j < sampling - 1; j ++ ) { index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent ); position = this.getPoint( index ); newpoints.push( tmpVec.copy( position ).clone() ); } newpoints.push( tmpVec.copy( this.points[ i ] ).clone() ); } this.points = newpoints; }; // Catmull-Rom function interpolate( p0, p1, p2, p3, t, t2, t3 ) { var v0 = ( p2 - p0 ) * 0.5, v1 = ( p3 - p1 ) * 0.5; return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1; }; }; // File:src/math/Triangle.js /** * @author bhouston / http://exocortex.com * @author mrdoob / http://mrdoob.com/ */ THREE.Triangle = function ( a, b, c ) { this.a = ( a !== undefined ) ? a : new THREE.Vector3(); this.b = ( b !== undefined ) ? b : new THREE.Vector3(); this.c = ( c !== undefined ) ? c : new THREE.Vector3(); }; THREE.Triangle.normal = function () { var v0 = new THREE.Vector3(); return function ( a, b, c, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); result.subVectors( c, b ); v0.subVectors( a, b ); result.cross( v0 ); var resultLengthSq = result.lengthSq(); if ( resultLengthSq > 0 ) { return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) ); } return result.set( 0, 0, 0 ); }; }(); // static/instance method to calculate barycoordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html THREE.Triangle.barycoordFromPoint = function () { var v0 = new THREE.Vector3(); var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function ( point, a, b, c, optionalTarget ) { v0.subVectors( c, a ); v1.subVectors( b, a ); v2.subVectors( point, a ); var dot00 = v0.dot( v0 ); var dot01 = v0.dot( v1 ); var dot02 = v0.dot( v2 ); var dot11 = v1.dot( v1 ); var dot12 = v1.dot( v2 ); var denom = ( dot00 * dot11 - dot01 * dot01 ); var result = optionalTarget || new THREE.Vector3(); // colinear or singular triangle if ( denom == 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return result.set( - 2, - 1, - 1 ); } var invDenom = 1 / denom; var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycoordinates must always sum to 1 return result.set( 1 - u - v, v, u ); }; }(); THREE.Triangle.containsPoint = function () { var v1 = new THREE.Vector3(); return function ( point, a, b, c ) { var result = THREE.Triangle.barycoordFromPoint( point, a, b, c, v1 ); return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 ); }; }(); THREE.Triangle.prototype = { constructor: THREE.Triangle, set: function ( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; }, setFromPointsAndIndices: function ( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; }, copy: function ( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; }, area: function () { var v0 = new THREE.Vector3(); var v1 = new THREE.Vector3(); return function () { v0.subVectors( this.c, this.b ); v1.subVectors( this.a, this.b ); return v0.cross( v1 ).length() * 0.5; }; }(), midpoint: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); }, normal: function ( optionalTarget ) { return THREE.Triangle.normal( this.a, this.b, this.c, optionalTarget ); }, plane: function ( optionalTarget ) { var result = optionalTarget || new THREE.Plane(); return result.setFromCoplanarPoints( this.a, this.b, this.c ); }, barycoordFromPoint: function ( point, optionalTarget ) { return THREE.Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget ); }, containsPoint: function ( point ) { return THREE.Triangle.containsPoint( point, this.a, this.b, this.c ); }, equals: function ( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); }, clone: function () { return new THREE.Triangle().copy( this ); } }; // File:src/core/Clock.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Clock = function ( autoStart ) { this.autoStart = ( autoStart !== undefined ) ? autoStart : true; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; }; THREE.Clock.prototype = { constructor: THREE.Clock, start: function () { this.startTime = self.performance !== undefined && self.performance.now !== undefined ? self.performance.now() : Date.now(); this.oldTime = this.startTime; this.running = true; }, stop: function () { this.getElapsedTime(); this.running = false; }, getElapsedTime: function () { this.getDelta(); return this.elapsedTime; }, getDelta: function () { var diff = 0; if ( this.autoStart && ! this.running ) { this.start(); } if ( this.running ) { var newTime = self.performance !== undefined && self.performance.now !== undefined ? self.performance.now() : Date.now(); diff = 0.001 * ( newTime - this.oldTime ); this.oldTime = newTime; this.elapsedTime += diff; } return diff; } }; // File:src/core/EventDispatcher.js /** * https://github.com/mrdoob/eventdispatcher.js/ */ THREE.EventDispatcher = function () {} THREE.EventDispatcher.prototype = { constructor: THREE.EventDispatcher, apply: function ( object ) { object.addEventListener = THREE.EventDispatcher.prototype.addEventListener; object.hasEventListener = THREE.EventDispatcher.prototype.hasEventListener; object.removeEventListener = THREE.EventDispatcher.prototype.removeEventListener; object.dispatchEvent = THREE.EventDispatcher.prototype.dispatchEvent; }, addEventListener: function ( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; var listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } }, hasEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return false; var listeners = this._listeners; if ( listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1 ) { return true; } return false; }, removeEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { var index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } }, dispatchEvent: function ( event ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; var array = []; var length = listenerArray.length; for ( var i = 0; i < length; i ++ ) { array[ i ] = listenerArray[ i ]; } for ( var i = 0; i < length; i ++ ) { array[ i ].call( this, event ); } } } }; // File:src/core/Raycaster.js /** * @author mrdoob / http://mrdoob.com/ * @author bhouston / http://exocortex.com/ * @author stephomi / http://stephaneginier.com/ */ ( function ( THREE ) { THREE.Raycaster = function ( origin, direction, near, far ) { this.ray = new THREE.Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near || 0; this.far = far || Infinity; this.params = { Sprite: {}, Mesh: {}, PointCloud: { threshold: 1 }, LOD: {}, Line: {} }; }; var descSort = function ( a, b ) { return a.distance - b.distance; }; var intersectObject = function ( object, raycaster, intersects, recursive ) { object.raycast( raycaster, intersects ); if ( recursive === true ) { var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { intersectObject( children[ i ], raycaster, intersects, true ); } } }; // THREE.Raycaster.prototype = { constructor: THREE.Raycaster, precision: 0.0001, linePrecision: 1, set: function ( origin, direction ) { this.ray.set( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) }, intersectObject: function ( object, recursive ) { var intersects = []; intersectObject( object, this, intersects, recursive ); intersects.sort( descSort ); return intersects; }, intersectObjects: function ( objects, recursive ) { var intersects = []; for ( var i = 0, l = objects.length; i < l; i ++ ) { intersectObject( objects[ i ], this, intersects, recursive ); } intersects.sort( descSort ); return intersects; } }; }( THREE ) ); // File:src/core/Object3D.js /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Object3D = function () { this.id = THREE.Object3DIdCount ++; this.uuid = THREE.Math.generateUUID(); this.name = ''; this.parent = undefined; this.children = []; this.up = THREE.Object3D.DefaultUp.clone(); var scope = this; var position = new THREE.Vector3(); var rotation = new THREE.Euler(); var quaternion = new THREE.Quaternion(); var scale = new THREE.Vector3( 1, 1, 1 ); rotation.onChange( function () { quaternion.setFromEuler( rotation, false ); } ); quaternion.onChange( function () { rotation.setFromQuaternion( quaternion, undefined, false ); } ); Object.defineProperties( this, { position: { enumerable: true, value: position }, rotation: { enumerable: true, value: rotation }, quaternion: { enumerable: true, value: quaternion }, scale: { enumerable: true, value: scale }, } ); this.renderDepth = null; this.rotationAutoUpdate = true; this.matrix = new THREE.Matrix4(); this.matrixWorld = new THREE.Matrix4(); this.matrixAutoUpdate = true; this.matrixWorldNeedsUpdate = false; this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.userData = {}; }; THREE.Object3D.DefaultUp = new THREE.Vector3( 0, 1, 0 ); THREE.Object3D.prototype = { constructor: THREE.Object3D, get eulerOrder () { console.warn( 'THREE.Object3D: .eulerOrder has been moved to .rotation.order.' ); return this.rotation.order; }, set eulerOrder ( value ) { console.warn( 'THREE.Object3D: .eulerOrder has been moved to .rotation.order.' ); this.rotation.order = value; }, get useQuaternion () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); }, set useQuaternion ( value ) { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); }, applyMatrix: function ( matrix ) { this.matrix.multiplyMatrices( matrix, this.matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); }, setRotationFromAxisAngle: function ( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); }, setRotationFromEuler: function ( euler ) { this.quaternion.setFromEuler( euler, true ); }, setRotationFromMatrix: function ( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); }, setRotationFromQuaternion: function ( q ) { // assumes q is normalized this.quaternion.copy( q ); }, rotateOnAxis: function () { // rotate object on axis in object space // axis is assumed to be normalized var q1 = new THREE.Quaternion(); return function ( axis, angle ) { q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( q1 ); return this; } }(), rotateX: function () { var v1 = new THREE.Vector3( 1, 0, 0 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateY: function () { var v1 = new THREE.Vector3( 0, 1, 0 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateZ: function () { var v1 = new THREE.Vector3( 0, 0, 1 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), translateOnAxis: function () { // translate object by distance along axis in object space // axis is assumed to be normalized var v1 = new THREE.Vector3(); return function ( axis, distance ) { v1.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( v1.multiplyScalar( distance ) ); return this; } }(), translate: function ( distance, axis ) { console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); return this.translateOnAxis( axis, distance ); }, translateX: function () { var v1 = new THREE.Vector3( 1, 0, 0 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateY: function () { var v1 = new THREE.Vector3( 0, 1, 0 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateZ: function () { var v1 = new THREE.Vector3( 0, 0, 1 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), localToWorld: function ( vector ) { return vector.applyMatrix4( this.matrixWorld ); }, worldToLocal: function () { var m1 = new THREE.Matrix4(); return function ( vector ) { return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) ); }; }(), lookAt: function () { // This routine does not support objects with rotated and/or translated parent(s) var m1 = new THREE.Matrix4(); return function ( vector ) { m1.lookAt( vector, this.position, this.up ); this.quaternion.setFromRotationMatrix( m1 ); }; }(), add: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i++ ) { this.add( arguments[ i ] ); } return this; }; if ( object === this ) { console.error( "THREE.Object3D.add:", object, "can't be added as a child of itself." ); return this; } if ( object instanceof THREE.Object3D ) { if ( object.parent !== undefined ) { object.parent.remove( object ); } object.parent = this; object.dispatchEvent( { type: 'added' } ); this.children.push( object ); // add to scene var scene = this; while ( scene.parent !== undefined ) { scene = scene.parent; } if ( scene !== undefined && scene instanceof THREE.Scene ) { scene.__addObject( object ); } } else { console.error( "THREE.Object3D.add:", object, "is not an instance of THREE.Object3D." ); } return this; }, remove: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i++ ) { this.remove( arguments[ i ] ); } }; var index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = undefined; object.dispatchEvent( { type: 'removed' } ); this.children.splice( index, 1 ); // remove from scene var scene = this; while ( scene.parent !== undefined ) { scene = scene.parent; } if ( scene !== undefined && scene instanceof THREE.Scene ) { scene.__removeObject( object ); } } }, raycast: function () {}, traverse: function ( callback ) { callback( this ); for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].traverse( callback ); } }, traverseVisible: function ( callback ) { if ( this.visible === false ) return; callback( this ); for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].traverseVisible( callback ); } }, getObjectById: function ( id, recursive ) { for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; if ( child.id === id ) { return child; } if ( recursive === true ) { child = child.getObjectById( id, recursive ); if ( child !== undefined ) { return child; } } } return undefined; }, getObjectByName: function ( name, recursive ) { for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; if ( child.name === name ) { return child; } if ( recursive === true ) { child = child.getObjectByName( name, recursive ); if ( child !== undefined ) { return child; } } } return undefined; }, getChildByName: function ( name, recursive ) { console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); return this.getObjectByName( name, recursive ); }, updateMatrix: function () { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; }, updateMatrixWorld: function ( force ) { if ( this.matrixAutoUpdate === true ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate === true || force === true ) { if ( this.parent === undefined ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].updateMatrixWorld( force ); } }, clone: function ( object, recursive ) { if ( object === undefined ) object = new THREE.Object3D(); if ( recursive === undefined ) recursive = true; object.name = this.name; object.up.copy( this.up ); object.position.copy( this.position ); object.quaternion.copy( this.quaternion ); object.scale.copy( this.scale ); object.renderDepth = this.renderDepth; object.rotationAutoUpdate = this.rotationAutoUpdate; object.matrix.copy( this.matrix ); object.matrixWorld.copy( this.matrixWorld ); object.matrixAutoUpdate = this.matrixAutoUpdate; object.matrixWorldNeedsUpdate = this.matrixWorldNeedsUpdate; object.visible = this.visible; object.castShadow = this.castShadow; object.receiveShadow = this.receiveShadow; object.frustumCulled = this.frustumCulled; object.userData = JSON.parse( JSON.stringify( this.userData ) ); if ( recursive === true ) { for ( var i = 0; i < this.children.length; i ++ ) { var child = this.children[ i ]; object.add( child.clone() ); } } return object; } }; THREE.EventDispatcher.prototype.apply( THREE.Object3D.prototype ); THREE.Object3DIdCount = 0; // File:src/core/Projector.js /** * @author mrdoob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author julianwa / https://github.com/julianwa */ THREE.Projector = function () { var _object, _objectCount, _objectPool = [], _objectPoolLength = 0, _vertex, _vertexCount, _vertexPool = [], _vertexPoolLength = 0, _face, _faceCount, _facePool = [], _facePoolLength = 0, _line, _lineCount, _linePool = [], _linePoolLength = 0, _sprite, _spriteCount, _spritePool = [], _spritePoolLength = 0, _renderData = { objects: [], lights: [], elements: [] }, _vA = new THREE.Vector3(), _vB = new THREE.Vector3(), _vC = new THREE.Vector3(), _vector3 = new THREE.Vector3(), _vector4 = new THREE.Vector4(), _clipBox = new THREE.Box3( new THREE.Vector3( - 1, - 1, - 1 ), new THREE.Vector3( 1, 1, 1 ) ), _boundingBox = new THREE.Box3(), _points3 = new Array( 3 ), _points4 = new Array( 4 ), _viewMatrix = new THREE.Matrix4(), _viewProjectionMatrix = new THREE.Matrix4(), _modelMatrix, _modelViewProjectionMatrix = new THREE.Matrix4(), _normalMatrix = new THREE.Matrix3(), _frustum = new THREE.Frustum(), _clippedVertex1PositionScreen = new THREE.Vector4(), _clippedVertex2PositionScreen = new THREE.Vector4(); this.projectVector = function ( vector, camera ) { camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _viewProjectionMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); return vector.applyProjection( _viewProjectionMatrix ); }; this.unprojectVector = function () { var projectionMatrixInverse = new THREE.Matrix4(); return function ( vector, camera ) { projectionMatrixInverse.getInverse( camera.projectionMatrix ); _viewProjectionMatrix.multiplyMatrices( camera.matrixWorld, projectionMatrixInverse ); return vector.applyProjection( _viewProjectionMatrix ); }; }(); this.pickingRay = function ( vector, camera ) { // set two vectors with opposing z values vector.z = - 1.0; var end = new THREE.Vector3( vector.x, vector.y, 1.0 ); this.unprojectVector( vector, camera ); this.unprojectVector( end, camera ); // find direction from vector to end end.sub( vector ).normalize(); return new THREE.Raycaster( vector, end ); }; var RenderList = function () { var normals = []; var uvs = []; var object = null; var material = null; var normalMatrix = new THREE.Matrix3(); var setObject = function ( value ) { object = value; material = object.material; normalMatrix.getNormalMatrix( object.matrixWorld ); normals.length = 0; uvs.length = 0; }; var projectVertex = function ( vertex ) { var position = vertex.position; var positionWorld = vertex.positionWorld; var positionScreen = vertex.positionScreen; positionWorld.copy( position ).applyMatrix4( _modelMatrix ); positionScreen.copy( positionWorld ).applyMatrix4( _viewProjectionMatrix ); var invW = 1 / positionScreen.w; positionScreen.x *= invW; positionScreen.y *= invW; positionScreen.z *= invW; vertex.visible = positionScreen.x >= - 1 && positionScreen.x <= 1 && positionScreen.y >= - 1 && positionScreen.y <= 1 && positionScreen.z >= - 1 && positionScreen.z <= 1; }; var pushVertex = function ( x, y, z ) { _vertex = getNextVertexInPool(); _vertex.position.set( x, y, z ); projectVertex( _vertex ); }; var pushNormal = function ( x, y, z ) { normals.push( x, y, z ); }; var pushUv = function ( x, y ) { uvs.push( x, y ); }; var checkTriangleVisibility = function ( v1, v2, v3 ) { if ( v1.visible === true || v2.visible === true || v3.visible === true ) return true; _points3[ 0 ] = v1.positionScreen; _points3[ 1 ] = v2.positionScreen; _points3[ 2 ] = v3.positionScreen; return _clipBox.isIntersectionBox( _boundingBox.setFromPoints( _points3 ) ); }; var checkBackfaceCulling = function ( v1, v2, v3 ) { return ( ( v3.positionScreen.x - v1.positionScreen.x ) * ( v2.positionScreen.y - v1.positionScreen.y ) - ( v3.positionScreen.y - v1.positionScreen.y ) * ( v2.positionScreen.x - v1.positionScreen.x ) ) < 0; }; var pushLine = function ( a, b ) { var v1 = _vertexPool[ a ]; var v2 = _vertexPool[ b ]; _line = getNextLineInPool(); _line.id = object.id; _line.v1.copy( v1 ); _line.v2.copy( v2 ); _line.z = ( v1.positionScreen.z + v2.positionScreen.z ) / 2; _line.material = object.material; _renderData.elements.push( _line ); }; var pushTriangle = function ( a, b, c ) { var v1 = _vertexPool[ a ]; var v2 = _vertexPool[ b ]; var v3 = _vertexPool[ c ]; if ( checkTriangleVisibility( v1, v2, v3 ) === false ) return; if ( material.side === THREE.DoubleSide || checkBackfaceCulling( v1, v2, v3 ) === true ) { _face = getNextFaceInPool(); _face.id = object.id; _face.v1.copy( v1 ); _face.v2.copy( v2 ); _face.v3.copy( v3 ); _face.z = ( v1.positionScreen.z + v2.positionScreen.z + v3.positionScreen.z ) / 3; for ( var i = 0; i < 3; i ++ ) { var offset = arguments[ i ] * 3; var normal = _face.vertexNormalsModel[ i ]; normal.set( normals[ offset ], normals[ offset + 1 ], normals[ offset + 2 ] ); normal.applyMatrix3( normalMatrix ).normalize(); var offset2 = arguments[ i ] * 2; var uv = _face.uvs[ i ]; uv.set( uvs[ offset2 ], uvs[ offset2 + 1 ] ); } _face.vertexNormalsLength = 3; _face.material = object.material; _renderData.elements.push( _face ); } }; return { setObject: setObject, projectVertex: projectVertex, checkTriangleVisibility: checkTriangleVisibility, checkBackfaceCulling: checkBackfaceCulling, pushVertex: pushVertex, pushNormal: pushNormal, pushUv: pushUv, pushLine: pushLine, pushTriangle: pushTriangle } }; var renderList = new RenderList(); this.projectScene = function ( scene, camera, sortObjects, sortElements ) { _faceCount = 0; _lineCount = 0; _spriteCount = 0; _renderData.elements.length = 0; if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); if ( camera.parent === undefined ) camera.updateMatrixWorld(); _viewMatrix.copy( camera.matrixWorldInverse.getInverse( camera.matrixWorld ) ); _viewProjectionMatrix.multiplyMatrices( camera.projectionMatrix, _viewMatrix ); _frustum.setFromMatrix( _viewProjectionMatrix ); // _objectCount = 0; _renderData.objects.length = 0; _renderData.lights.length = 0; scene.traverseVisible( function ( object ) { if ( object instanceof THREE.Light ) { _renderData.lights.push( object ); } else if ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Sprite ) { if ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) { _object = getNextObjectInPool(); _object.id = object.id; _object.object = object; if ( object.renderDepth !== null ) { _object.z = object.renderDepth; } else { _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyProjection( _viewProjectionMatrix ); _object.z = _vector3.z; } _renderData.objects.push( _object ); } } } ); if ( sortObjects === true ) { _renderData.objects.sort( painterSort ); } // for ( var o = 0, ol = _renderData.objects.length; o < ol; o ++ ) { var object = _renderData.objects[ o ].object; var geometry = object.geometry; renderList.setObject( object ); _modelMatrix = object.matrixWorld; _vertexCount = 0; if ( object instanceof THREE.Mesh ) { if ( geometry instanceof THREE.BufferGeometry ) { var attributes = geometry.attributes; var offsets = geometry.offsets; if ( attributes.position === undefined ) continue; var positions = attributes.position.array; for ( var i = 0, l = positions.length; i < l; i += 3 ) { renderList.pushVertex( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ); } if ( attributes.normal !== undefined ) { var normals = attributes.normal.array; for ( var i = 0, l = normals.length; i < l; i += 3 ) { renderList.pushNormal( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ); } } if ( attributes.uv !== undefined ) { var uvs = attributes.uv.array; for ( var i = 0, l = uvs.length; i < l; i += 2 ) { renderList.pushUv( uvs[ i ], uvs[ i + 1 ] ); } } if ( attributes.index !== undefined ) { var indices = attributes.index.array; if ( offsets.length > 0 ) { for ( var o = 0; o < offsets.length; o ++ ) { var offset = offsets[ o ]; var index = offset.index; for ( var i = offset.start, l = offset.start + offset.count; i < l; i += 3 ) { renderList.pushTriangle( indices[ i ] + index, indices[ i + 1 ] + index, indices[ i + 2 ] + index ); } } } else { for ( var i = 0, l = indices.length; i < l; i += 3 ) { renderList.pushTriangle( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] ); } } } else { for ( var i = 0, l = positions.length / 3; i < l; i += 3 ) { renderList.pushTriangle( i, i + 1, i + 2 ); } } } else if ( geometry instanceof THREE.Geometry ) { var vertices = geometry.vertices; var faces = geometry.faces; var faceVertexUvs = geometry.faceVertexUvs[ 0 ]; _normalMatrix.getNormalMatrix( _modelMatrix ); var isFaceMaterial = object.material instanceof THREE.MeshFaceMaterial; var objectMaterials = isFaceMaterial === true ? object.material : null; for ( var v = 0, vl = vertices.length; v < vl; v ++ ) { var vertex = vertices[ v ]; renderList.pushVertex( vertex.x, vertex.y, vertex.z ); } for ( var f = 0, fl = faces.length; f < fl; f ++ ) { var face = faces[ f ]; var material = isFaceMaterial === true ? objectMaterials.materials[ face.materialIndex ] : object.material; if ( material === undefined ) continue; var side = material.side; var v1 = _vertexPool[ face.a ]; var v2 = _vertexPool[ face.b ]; var v3 = _vertexPool[ face.c ]; if ( material.morphTargets === true ) { var morphTargets = geometry.morphTargets; var morphInfluences = object.morphTargetInfluences; var v1p = v1.position; var v2p = v2.position; var v3p = v3.position; _vA.set( 0, 0, 0 ); _vB.set( 0, 0, 0 ); _vC.set( 0, 0, 0 ); for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) { var influence = morphInfluences[ t ]; if ( influence === 0 ) continue; var targets = morphTargets[ t ].vertices; _vA.x += ( targets[ face.a ].x - v1p.x ) * influence; _vA.y += ( targets[ face.a ].y - v1p.y ) * influence; _vA.z += ( targets[ face.a ].z - v1p.z ) * influence; _vB.x += ( targets[ face.b ].x - v2p.x ) * influence; _vB.y += ( targets[ face.b ].y - v2p.y ) * influence; _vB.z += ( targets[ face.b ].z - v2p.z ) * influence; _vC.x += ( targets[ face.c ].x - v3p.x ) * influence; _vC.y += ( targets[ face.c ].y - v3p.y ) * influence; _vC.z += ( targets[ face.c ].z - v3p.z ) * influence; } v1.position.add( _vA ); v2.position.add( _vB ); v3.position.add( _vC ); renderList.projectVertex( v1 ); renderList.projectVertex( v2 ); renderList.projectVertex( v3 ); } if ( renderList.checkTriangleVisibility( v1, v2, v3 ) === false ) continue; var visible = renderList.checkBackfaceCulling( v1, v2, v3 ); if ( side !== THREE.DoubleSide ) { if ( side === THREE.FrontSide && visible === false ) continue; if ( side === THREE.BackSide && visible === true ) continue; } _face = getNextFaceInPool(); _face.id = object.id; _face.v1.copy( v1 ); _face.v2.copy( v2 ); _face.v3.copy( v3 ); _face.normalModel.copy( face.normal ); if ( visible === false && ( side === THREE.BackSide || side === THREE.DoubleSide ) ) { _face.normalModel.negate(); } _face.normalModel.applyMatrix3( _normalMatrix ).normalize(); var faceVertexNormals = face.vertexNormals; for ( var n = 0, nl = Math.min( faceVertexNormals.length, 3 ); n < nl; n ++ ) { var normalModel = _face.vertexNormalsModel[ n ]; normalModel.copy( faceVertexNormals[ n ] ); if ( visible === false && ( side === THREE.BackSide || side === THREE.DoubleSide ) ) { normalModel.negate(); } normalModel.applyMatrix3( _normalMatrix ).normalize(); } _face.vertexNormalsLength = faceVertexNormals.length; var vertexUvs = faceVertexUvs[ f ]; if ( vertexUvs !== undefined ) { for ( var u = 0; u < 3; u ++ ) { _face.uvs[ u ].copy( vertexUvs[ u ] ); } } _face.color = face.color; _face.material = material; _face.z = ( v1.positionScreen.z + v2.positionScreen.z + v3.positionScreen.z ) / 3; _renderData.elements.push( _face ); } } } else if ( object instanceof THREE.Line ) { if ( geometry instanceof THREE.BufferGeometry ) { var attributes = geometry.attributes; if ( attributes.position !== undefined ) { var positions = attributes.position.array; for ( var i = 0, l = positions.length; i < l; i += 3 ) { renderList.pushVertex( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ); } if ( attributes.index !== undefined ) { var indices = attributes.index.array; for ( var i = 0, l = indices.length; i < l; i += 2 ) { renderList.pushLine( indices[ i ], indices[ i + 1 ] ); } } else { var step = object.type === THREE.LinePieces ? 2 : 1; for ( var i = 0, l = ( positions.length / 3 ) - 1; i < l; i += step ) { renderList.pushLine( i, i + 1 ); } } } } else if ( geometry instanceof THREE.Geometry ) { _modelViewProjectionMatrix.multiplyMatrices( _viewProjectionMatrix, _modelMatrix ); var vertices = object.geometry.vertices; if ( vertices.length === 0 ) continue; v1 = getNextVertexInPool(); v1.positionScreen.copy( vertices[ 0 ] ).applyMatrix4( _modelViewProjectionMatrix ); // Handle LineStrip and LinePieces var step = object.type === THREE.LinePieces ? 2 : 1; for ( var v = 1, vl = vertices.length; v < vl; v ++ ) { v1 = getNextVertexInPool(); v1.positionScreen.copy( vertices[ v ] ).applyMatrix4( _modelViewProjectionMatrix ); if ( ( v + 1 ) % step > 0 ) continue; v2 = _vertexPool[ _vertexCount - 2 ]; _clippedVertex1PositionScreen.copy( v1.positionScreen ); _clippedVertex2PositionScreen.copy( v2.positionScreen ); if ( clipLine( _clippedVertex1PositionScreen, _clippedVertex2PositionScreen ) === true ) { // Perform the perspective divide _clippedVertex1PositionScreen.multiplyScalar( 1 / _clippedVertex1PositionScreen.w ); _clippedVertex2PositionScreen.multiplyScalar( 1 / _clippedVertex2PositionScreen.w ); _line = getNextLineInPool(); _line.id = object.id; _line.v1.positionScreen.copy( _clippedVertex1PositionScreen ); _line.v2.positionScreen.copy( _clippedVertex2PositionScreen ); _line.z = Math.max( _clippedVertex1PositionScreen.z, _clippedVertex2PositionScreen.z ); _line.material = object.material; if ( object.material.vertexColors === THREE.VertexColors ) { _line.vertexColors[ 0 ].copy( object.geometry.colors[ v ] ); _line.vertexColors[ 1 ].copy( object.geometry.colors[ v - 1 ] ); } _renderData.elements.push( _line ); } } } } else if ( object instanceof THREE.Sprite ) { _vector4.set( _modelMatrix.elements[ 12 ], _modelMatrix.elements[ 13 ], _modelMatrix.elements[ 14 ], 1 ); _vector4.applyMatrix4( _viewProjectionMatrix ); var invW = 1 / _vector4.w; _vector4.z *= invW; if ( _vector4.z >= - 1 && _vector4.z <= 1 ) { _sprite = getNextSpriteInPool(); _sprite.id = object.id; _sprite.x = _vector4.x * invW; _sprite.y = _vector4.y * invW; _sprite.z = _vector4.z; _sprite.object = object; _sprite.rotation = object.rotation; _sprite.scale.x = object.scale.x * Math.abs( _sprite.x - ( _vector4.x + camera.projectionMatrix.elements[ 0 ] ) / ( _vector4.w + camera.projectionMatrix.elements[ 12 ] ) ); _sprite.scale.y = object.scale.y * Math.abs( _sprite.y - ( _vector4.y + camera.projectionMatrix.elements[ 5 ] ) / ( _vector4.w + camera.projectionMatrix.elements[ 13 ] ) ); _sprite.material = object.material; _renderData.elements.push( _sprite ); } } } if ( sortElements === true ) _renderData.elements.sort( painterSort ); return _renderData; }; // Pools function getNextObjectInPool() { if ( _objectCount === _objectPoolLength ) { var object = new THREE.RenderableObject(); _objectPool.push( object ); _objectPoolLength ++; _objectCount ++; return object; } return _objectPool[ _objectCount ++ ]; } function getNextVertexInPool() { if ( _vertexCount === _vertexPoolLength ) { var vertex = new THREE.RenderableVertex(); _vertexPool.push( vertex ); _vertexPoolLength ++; _vertexCount ++; return vertex; } return _vertexPool[ _vertexCount ++ ]; } function getNextFaceInPool() { if ( _faceCount === _facePoolLength ) { var face = new THREE.RenderableFace(); _facePool.push( face ); _facePoolLength ++; _faceCount ++; return face; } return _facePool[ _faceCount ++ ]; } function getNextLineInPool() { if ( _lineCount === _linePoolLength ) { var line = new THREE.RenderableLine(); _linePool.push( line ); _linePoolLength ++; _lineCount ++ return line; } return _linePool[ _lineCount ++ ]; } function getNextSpriteInPool() { if ( _spriteCount === _spritePoolLength ) { var sprite = new THREE.RenderableSprite(); _spritePool.push( sprite ); _spritePoolLength ++; _spriteCount ++ return sprite; } return _spritePool[ _spriteCount ++ ]; } // function painterSort( a, b ) { if ( a.z !== b.z ) { return b.z - a.z; } else if ( a.id !== b.id ) { return a.id - b.id; } else { return 0; } } function clipLine( s1, s2 ) { var alpha1 = 0, alpha2 = 1, // Calculate the boundary coordinate of each vertex for the near and far clip planes, // Z = -1 and Z = +1, respectively. bc1near = s1.z + s1.w, bc2near = s2.z + s2.w, bc1far = - s1.z + s1.w, bc2far = - s2.z + s2.w; if ( bc1near >= 0 && bc2near >= 0 && bc1far >= 0 && bc2far >= 0 ) { // Both vertices lie entirely within all clip planes. return true; } else if ( ( bc1near < 0 && bc2near < 0 ) || ( bc1far < 0 && bc2far < 0 ) ) { // Both vertices lie entirely outside one of the clip planes. return false; } else { // The line segment spans at least one clip plane. if ( bc1near < 0 ) { // v1 lies outside the near plane, v2 inside alpha1 = Math.max( alpha1, bc1near / ( bc1near - bc2near ) ); } else if ( bc2near < 0 ) { // v2 lies outside the near plane, v1 inside alpha2 = Math.min( alpha2, bc1near / ( bc1near - bc2near ) ); } if ( bc1far < 0 ) { // v1 lies outside the far plane, v2 inside alpha1 = Math.max( alpha1, bc1far / ( bc1far - bc2far ) ); } else if ( bc2far < 0 ) { // v2 lies outside the far plane, v2 inside alpha2 = Math.min( alpha2, bc1far / ( bc1far - bc2far ) ); } if ( alpha2 < alpha1 ) { // The line segment spans two boundaries, but is outside both of them. // (This can't happen when we're only clipping against just near/far but good // to leave the check here for future usage if other clip planes are added.) return false; } else { // Update the s1 and s2 vertices to match the clipped line segment. s1.lerp( s2, alpha1 ); s2.lerp( s1, 1 - alpha2 ); return true; } } } }; // File:src/core/Face3.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Face3 = function ( a, b, c, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3(); this.vertexNormals = normal instanceof Array ? normal : []; this.color = color instanceof THREE.Color ? color : new THREE.Color(); this.vertexColors = color instanceof Array ? color : []; this.vertexTangents = []; this.materialIndex = materialIndex !== undefined ? materialIndex : 0; }; THREE.Face3.prototype = { constructor: THREE.Face3, clone: function () { var face = new THREE.Face3( this.a, this.b, this.c ); face.normal.copy( this.normal ); face.color.copy( this.color ); face.materialIndex = this.materialIndex; for ( var i = 0, il = this.vertexNormals.length; i < il; i ++ ) { face.vertexNormals[ i ] = this.vertexNormals[ i ].clone(); } for ( var i = 0, il = this.vertexColors.length; i < il; i ++ ) { face.vertexColors[ i ] = this.vertexColors[ i ].clone(); } for ( var i = 0, il = this.vertexTangents.length; i < il; i ++ ) { face.vertexTangents[ i ] = this.vertexTangents[ i ].clone(); } return face; } }; // File:src/core/Face4.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Face4 = function ( a, b, c, d, normal, color, materialIndex ) { console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' ) return new THREE.Face3( a, b, c, normal, color, materialIndex ); }; // File:src/core/BufferAttribute.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BufferAttribute = function ( array, itemSize ) { this.array = array; this.itemSize = itemSize; }; THREE.BufferAttribute.prototype = { constructor: THREE.BufferAttribute, get length () { return this.array.length; }, set: function ( value ) { this.array.set( value ); return this; }, setX: function ( index, x ) { this.array[ index * this.itemSize ] = x; return this; }, setY: function ( index, y ) { this.array[ index * this.itemSize + 1 ] = y; return this; }, setZ: function ( index, z ) { this.array[ index * this.itemSize + 2 ] = z; return this; }, setXY: function ( index, x, y ) { index *= this.itemSize; this.array[ index ] = x; this.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index *= this.itemSize; this.array[ index ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index *= this.itemSize; this.array[ index ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; } }; // THREE.Int8Attribute = function ( data, itemSize ) { console.warn( 'THREE.Int8Attribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; THREE.Uint8Attribute = function ( data, itemSize ) { console.warn( 'THREE.Uint8Attribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; THREE.Uint8ClampedAttribute = function ( data, itemSize ) { console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; THREE.Int16Attribute = function ( data, itemSize ) { console.warn( 'THREE.Int16Attribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; THREE.Uint16Attribute = function ( data, itemSize ) { console.warn( 'THREE.Uint16Attribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; THREE.Int32Attribute = function ( data, itemSize ) { console.warn( 'THREE.Int32Attribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; THREE.Uint32Attribute = function ( data, itemSize ) { console.warn( 'THREE.Uint32Attribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; THREE.Float32Attribute = function ( data, itemSize ) { console.warn( 'THREE.Float32Attribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; THREE.Float64Attribute = function ( data, itemSize ) { console.warn( 'THREE.Float64Attribute has been removed. Use THREE.BufferAttribute( array, itemSize ) instead.' ); return new THREE.BufferAttribute( data, itemSize ); }; // File:src/core/BufferGeometry.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.BufferGeometry = function () { this.id = THREE.GeometryIdCount ++; this.uuid = THREE.Math.generateUUID(); this.name = ''; this.attributes = {}; this.drawcalls = []; this.offsets = this.drawcalls; // backwards compatibility this.boundingBox = null; this.boundingSphere = null; }; THREE.BufferGeometry.prototype = { constructor: THREE.BufferGeometry, addAttribute: function ( name, attribute ) { if ( attribute instanceof THREE.BufferAttribute === false ) { console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' ); this.attributes[ name ] = { array: arguments[ 1 ], itemSize: arguments[ 2 ] }; return; } this.attributes[ name ] = attribute; }, getAttribute: function ( name ) { return this.attributes[ name ]; }, addDrawCall: function ( start, count, indexOffset ) { this.drawcalls.push( { start: start, count: count, index: indexOffset !== undefined ? indexOffset : 0 } ); }, applyMatrix: function ( matrix ) { var position = this.attributes.position; if ( position !== undefined ) { matrix.applyToVector3Array( position.array ); position.needsUpdate = true; } var normal = this.attributes.normal; if ( normal !== undefined ) { var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); normalMatrix.applyToVector3Array( normal.array ); normal.needsUpdate = true; } }, fromGeometry: function ( geometry, settings ) { settings = settings || { 'vertexColors': THREE.NoColors }; var vertices = geometry.vertices; var faces = geometry.faces; var faceVertexUvs = geometry.faceVertexUvs; var vertexColors = settings.vertexColors; var hasFaceVertexUv = faceVertexUvs[ 0 ].length > 0; var hasFaceVertexNormals = faces[ 0 ].vertexNormals.length == 3; var positions = new Float32Array( faces.length * 3 * 3 ); this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); var normals = new Float32Array( faces.length * 3 * 3 ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); if ( vertexColors !== THREE.NoColors ) { var colors = new Float32Array( faces.length * 3 * 3 ); this.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) ); } if ( hasFaceVertexUv === true ) { var uvs = new Float32Array( faces.length * 3 * 2 ); this.addAttribute( 'uvs', new THREE.BufferAttribute( uvs, 2 ) ); } for ( var i = 0, i2 = 0, i3 = 0; i < faces.length; i ++, i2 += 6, i3 += 9 ) { var face = faces[ i ]; var a = vertices[ face.a ]; var b = vertices[ face.b ]; var c = vertices[ face.c ]; positions[ i3 ] = a.x; positions[ i3 + 1 ] = a.y; positions[ i3 + 2 ] = a.z; positions[ i3 + 3 ] = b.x; positions[ i3 + 4 ] = b.y; positions[ i3 + 5 ] = b.z; positions[ i3 + 6 ] = c.x; positions[ i3 + 7 ] = c.y; positions[ i3 + 8 ] = c.z; if ( hasFaceVertexNormals === true ) { var na = face.vertexNormals[ 0 ]; var nb = face.vertexNormals[ 1 ]; var nc = face.vertexNormals[ 2 ]; normals[ i3 ] = na.x; normals[ i3 + 1 ] = na.y; normals[ i3 + 2 ] = na.z; normals[ i3 + 3 ] = nb.x; normals[ i3 + 4 ] = nb.y; normals[ i3 + 5 ] = nb.z; normals[ i3 + 6 ] = nc.x; normals[ i3 + 7 ] = nc.y; normals[ i3 + 8 ] = nc.z; } else { var n = face.normal; normals[ i3 ] = n.x; normals[ i3 + 1 ] = n.y; normals[ i3 + 2 ] = n.z; normals[ i3 + 3 ] = n.x; normals[ i3 + 4 ] = n.y; normals[ i3 + 5 ] = n.z; normals[ i3 + 6 ] = n.x; normals[ i3 + 7 ] = n.y; normals[ i3 + 8 ] = n.z; } if ( vertexColors === THREE.FaceColors ) { var fc = face.color; colors[ i3 ] = fc.r; colors[ i3 + 1 ] = fc.g; colors[ i3 + 2 ] = fc.b; colors[ i3 + 3 ] = fc.r; colors[ i3 + 4 ] = fc.g; colors[ i3 + 5 ] = fc.b; colors[ i3 + 6 ] = fc.r; colors[ i3 + 7 ] = fc.g; colors[ i3 + 8 ] = fc.b; } else if ( vertexColors === THREE.VertexColors ) { var vca = face.vertexColors[ 0 ]; var vcb = face.vertexColors[ 1 ]; var vcc = face.vertexColors[ 2 ]; colors[ i3 ] = vca.r; colors[ i3 + 1 ] = vca.g; colors[ i3 + 2 ] = vca.b; colors[ i3 + 3 ] = vcb.r; colors[ i3 + 4 ] = vcb.g; colors[ i3 + 5 ] = vcb.b; colors[ i3 + 6 ] = vcc.r; colors[ i3 + 7 ] = vcc.g; colors[ i3 + 8 ] = vcc.b; } if ( hasFaceVertexUv === true ) { var uva = faceVertexUvs[ 0 ][ i ][ 0 ]; var uvb = faceVertexUvs[ 0 ][ i ][ 1 ]; var uvc = faceVertexUvs[ 0 ][ i ][ 2 ]; uvs[ i2 ] = uva.x; uvs[ i2 + 1 ] = uva.y; uvs[ i2 + 2 ] = uvb.x; uvs[ i2 + 3 ] = uvb.y; uvs[ i2 + 4 ] = uvc.x; uvs[ i2 + 5 ] = uvc.y; } } this.computeBoundingSphere() return this; }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new THREE.Box3(); } var positions = this.attributes[ 'position' ].array; if ( positions ) { var bb = this.boundingBox; if ( positions.length >= 3 ) { bb.min.x = bb.max.x = positions[ 0 ]; bb.min.y = bb.max.y = positions[ 1 ]; bb.min.z = bb.max.z = positions[ 2 ]; } for ( var i = 3, il = positions.length; i < il; i += 3 ) { var x = positions[ i ]; var y = positions[ i + 1 ]; var z = positions[ i + 2 ]; // bounding box if ( x < bb.min.x ) { bb.min.x = x; } else if ( x > bb.max.x ) { bb.max.x = x; } if ( y < bb.min.y ) { bb.min.y = y; } else if ( y > bb.max.y ) { bb.max.y = y; } if ( z < bb.min.z ) { bb.min.z = z; } else if ( z > bb.max.z ) { bb.max.z = z; } } } if ( positions === undefined || positions.length === 0 ) { this.boundingBox.min.set( 0, 0, 0 ); this.boundingBox.max.set( 0, 0, 0 ); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.' ); } }, computeBoundingSphere: function () { var box = new THREE.Box3(); var vector = new THREE.Vector3(); return function () { if ( this.boundingSphere === null ) { this.boundingSphere = new THREE.Sphere(); } var positions = this.attributes[ 'position' ].array; if ( positions ) { box.makeEmpty(); var center = this.boundingSphere.center; for ( var i = 0, il = positions.length; i < il; i += 3 ) { vector.set( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ); box.expandByPoint( vector ); } box.center( center ); // hoping to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case var maxRadiusSq = 0; for ( var i = 0, il = positions.length; i < il; i += 3 ) { vector.set( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) ); } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.' ); } } } }(), computeFaceNormals: function () { // backwards compatibility }, computeVertexNormals: function () { if ( this.attributes[ 'position' ] ) { var i, il; var j, jl; var nVertexElements = this.attributes[ 'position' ].array.length; if ( this.attributes[ 'normal' ] === undefined ) { this.attributes[ 'normal' ] = { itemSize: 3, array: new Float32Array( nVertexElements ) }; } else { // reset existing normals to zero for ( i = 0, il = this.attributes[ 'normal' ].array.length; i < il; i ++ ) { this.attributes[ 'normal' ].array[ i ] = 0; } } var positions = this.attributes[ 'position' ].array; var normals = this.attributes[ 'normal' ].array; var vA, vB, vC, x, y, z, pA = new THREE.Vector3(), pB = new THREE.Vector3(), pC = new THREE.Vector3(), cb = new THREE.Vector3(), ab = new THREE.Vector3(); // indexed elements if ( this.attributes[ 'index' ] ) { var indices = this.attributes[ 'index' ].array; var offsets = ( this.offsets.length > 0 ? this.offsets : [ { start: 0, count: indices.length, index: 0 } ] ); for ( j = 0, jl = offsets.length; j < jl; ++ j ) { var start = offsets[ j ].start; var count = offsets[ j ].count; var index = offsets[ j ].index; for ( i = start, il = start + count; i < il; i += 3 ) { vA = index + indices[ i ]; vB = index + indices[ i + 1 ]; vC = index + indices[ i + 2 ]; x = positions[ vA * 3 ]; y = positions[ vA * 3 + 1 ]; z = positions[ vA * 3 + 2 ]; pA.set( x, y, z ); x = positions[ vB * 3 ]; y = positions[ vB * 3 + 1 ]; z = positions[ vB * 3 + 2 ]; pB.set( x, y, z ); x = positions[ vC * 3 ]; y = positions[ vC * 3 + 1 ]; z = positions[ vC * 3 + 2 ]; pC.set( x, y, z ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ vA * 3 ] += cb.x; normals[ vA * 3 + 1 ] += cb.y; normals[ vA * 3 + 2 ] += cb.z; normals[ vB * 3 ] += cb.x; normals[ vB * 3 + 1 ] += cb.y; normals[ vB * 3 + 2 ] += cb.z; normals[ vC * 3 ] += cb.x; normals[ vC * 3 + 1 ] += cb.y; normals[ vC * 3 + 2 ] += cb.z; } } // non-indexed elements (unconnected triangle soup) } else { for ( i = 0, il = positions.length; i < il; i += 9 ) { x = positions[ i ]; y = positions[ i + 1 ]; z = positions[ i + 2 ]; pA.set( x, y, z ); x = positions[ i + 3 ]; y = positions[ i + 4 ]; z = positions[ i + 5 ]; pB.set( x, y, z ); x = positions[ i + 6 ]; y = positions[ i + 7 ]; z = positions[ i + 8 ]; pC.set( x, y, z ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ i ] = cb.x; normals[ i + 1 ] = cb.y; normals[ i + 2 ] = cb.z; normals[ i + 3 ] = cb.x; normals[ i + 4 ] = cb.y; normals[ i + 5 ] = cb.z; normals[ i + 6 ] = cb.x; normals[ i + 7 ] = cb.y; normals[ i + 8 ] = cb.z; } } this.normalizeNormals(); this.normalsNeedUpdate = true; } }, computeTangents: function () { // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if ( this.attributes[ 'index' ] === undefined || this.attributes[ 'position' ] === undefined || this.attributes[ 'normal' ] === undefined || this.attributes[ 'uv' ] === undefined ) { console.warn( 'Missing required attributes (index, position, normal or uv) in BufferGeometry.computeTangents()' ); return; } var indices = this.attributes[ 'index' ].array; var positions = this.attributes[ 'position' ].array; var normals = this.attributes[ 'normal' ].array; var uvs = this.attributes[ 'uv' ].array; var nVertices = positions.length / 3; if ( this.attributes[ 'tangent' ] === undefined ) { var nTangentElements = 4 * nVertices; this.attributes[ 'tangent' ] = { itemSize: 4, array: new Float32Array( nTangentElements ) }; } var tangents = this.attributes[ 'tangent' ].array; var tan1 = [], tan2 = []; for ( var k = 0; k < nVertices; k ++ ) { tan1[ k ] = new THREE.Vector3(); tan2[ k ] = new THREE.Vector3(); } var xA, yA, zA, xB, yB, zB, xC, yC, zC, uA, vA, uB, vB, uC, vC, x1, x2, y1, y2, z1, z2, s1, s2, t1, t2, r; var sdir = new THREE.Vector3(), tdir = new THREE.Vector3(); function handleTriangle( a, b, c ) { xA = positions[ a * 3 ]; yA = positions[ a * 3 + 1 ]; zA = positions[ a * 3 + 2 ]; xB = positions[ b * 3 ]; yB = positions[ b * 3 + 1 ]; zB = positions[ b * 3 + 2 ]; xC = positions[ c * 3 ]; yC = positions[ c * 3 + 1 ]; zC = positions[ c * 3 + 2 ]; uA = uvs[ a * 2 ]; vA = uvs[ a * 2 + 1 ]; uB = uvs[ b * 2 ]; vB = uvs[ b * 2 + 1 ]; uC = uvs[ c * 2 ]; vC = uvs[ c * 2 + 1 ]; x1 = xB - xA; x2 = xC - xA; y1 = yB - yA; y2 = yC - yA; z1 = zB - zA; z2 = zC - zA; s1 = uB - uA; s2 = uC - uA; t1 = vB - vA; t2 = vC - vA; r = 1.0 / ( s1 * t2 - s2 * t1 ); sdir.set( ( t2 * x1 - t1 * x2 ) * r, ( t2 * y1 - t1 * y2 ) * r, ( t2 * z1 - t1 * z2 ) * r ); tdir.set( ( s1 * x2 - s2 * x1 ) * r, ( s1 * y2 - s2 * y1 ) * r, ( s1 * z2 - s2 * z1 ) * r ); tan1[ a ].add( sdir ); tan1[ b ].add( sdir ); tan1[ c ].add( sdir ); tan2[ a ].add( tdir ); tan2[ b ].add( tdir ); tan2[ c ].add( tdir ); } var i, il; var j, jl; var iA, iB, iC; var offsets = this.offsets; for ( j = 0, jl = offsets.length; j < jl; ++ j ) { var start = offsets[ j ].start; var count = offsets[ j ].count; var index = offsets[ j ].index; for ( i = start, il = start + count; i < il; i += 3 ) { iA = index + indices[ i ]; iB = index + indices[ i + 1 ]; iC = index + indices[ i + 2 ]; handleTriangle( iA, iB, iC ); } } var tmp = new THREE.Vector3(), tmp2 = new THREE.Vector3(); var n = new THREE.Vector3(), n2 = new THREE.Vector3(); var w, t, test; function handleVertex( v ) { n.x = normals[ v * 3 ]; n.y = normals[ v * 3 + 1 ]; n.z = normals[ v * 3 + 2 ]; n2.copy( n ); t = tan1[ v ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.crossVectors( n2, t ); test = tmp2.dot( tan2[ v ] ); w = ( test < 0.0 ) ? - 1.0 : 1.0; tangents[ v * 4 ] = tmp.x; tangents[ v * 4 + 1 ] = tmp.y; tangents[ v * 4 + 2 ] = tmp.z; tangents[ v * 4 + 3 ] = w; } for ( j = 0, jl = offsets.length; j < jl; ++ j ) { var start = offsets[ j ].start; var count = offsets[ j ].count; var index = offsets[ j ].index; for ( i = start, il = start + count; i < il; i += 3 ) { iA = index + indices[ i ]; iB = index + indices[ i + 1 ]; iC = index + indices[ i + 2 ]; handleVertex( iA ); handleVertex( iB ); handleVertex( iC ); } } }, /* computeOffsets Compute the draw offset for large models by chunking the index buffer into chunks of 65k addressable vertices. This method will effectively rewrite the index buffer and remap all attributes to match the new indices. WARNING: This method will also expand the vertex count to prevent sprawled triangles across draw offsets. indexBufferSize - Defaults to 65535, but allows for larger or smaller chunks. */ computeOffsets: function ( indexBufferSize ) { var size = indexBufferSize; if ( indexBufferSize === undefined ) size = 65535; //WebGL limits type of index buffer values to 16-bit. var s = Date.now(); var indices = this.attributes[ 'index' ].array; var vertices = this.attributes[ 'position' ].array; var verticesCount = ( vertices.length / 3 ); var facesCount = ( indices.length / 3 ); /* console.log("Computing buffers in offsets of "+size+" -> indices:"+indices.length+" vertices:"+vertices.length); console.log("Faces to process: "+(indices.length/3)); console.log("Reordering "+verticesCount+" vertices."); */ var sortedIndices = new Uint16Array( indices.length ); //16-bit buffers var indexPtr = 0; var vertexPtr = 0; var offsets = [ { start:0, count:0, index:0 } ]; var offset = offsets[ 0 ]; var duplicatedVertices = 0; var newVerticeMaps = 0; var faceVertices = new Int32Array( 6 ); var vertexMap = new Int32Array( vertices.length ); var revVertexMap = new Int32Array( vertices.length ); for ( var j = 0; j < vertices.length; j ++ ) { vertexMap[ j ] = - 1; revVertexMap[ j ] = - 1; } /* Traverse every face and reorder vertices in the proper offsets of 65k. We can have more than 65k entries in the index buffer per offset, but only reference 65k values. */ for ( var findex = 0; findex < facesCount; findex ++ ) { newVerticeMaps = 0; for ( var vo = 0; vo < 3; vo ++ ) { var vid = indices[ findex * 3 + vo ]; if ( vertexMap[ vid ] == - 1 ) { //Unmapped vertice faceVertices[ vo * 2 ] = vid; faceVertices[ vo * 2 + 1 ] = - 1; newVerticeMaps ++; } else if ( vertexMap[ vid ] < offset.index ) { //Reused vertices from previous block (duplicate) faceVertices[ vo * 2 ] = vid; faceVertices[ vo * 2 + 1 ] = - 1; duplicatedVertices ++; } else { //Reused vertice in the current block faceVertices[ vo * 2 ] = vid; faceVertices[ vo * 2 + 1 ] = vertexMap[ vid ]; } } var faceMax = vertexPtr + newVerticeMaps; if ( faceMax > ( offset.index + size ) ) { var new_offset = { start:indexPtr, count:0, index:vertexPtr }; offsets.push( new_offset ); offset = new_offset; //Re-evaluate reused vertices in light of new offset. for ( var v = 0; v < 6; v += 2 ) { var new_vid = faceVertices[ v + 1 ]; if ( new_vid > - 1 && new_vid < offset.index ) faceVertices[ v + 1 ] = - 1; } } //Reindex the face. for ( var v = 0; v < 6; v += 2 ) { var vid = faceVertices[ v ]; var new_vid = faceVertices[ v + 1 ]; if ( new_vid === - 1 ) new_vid = vertexPtr ++; vertexMap[ vid ] = new_vid; revVertexMap[ new_vid ] = vid; sortedIndices[ indexPtr ++ ] = new_vid - offset.index; //XXX overflows at 16bit offset.count ++; } } /* Move all attribute values to map to the new computed indices , also expand the vertice stack to match our new vertexPtr. */ this.reorderBuffers( sortedIndices, revVertexMap, vertexPtr ); this.offsets = offsets; /* var orderTime = Date.now(); console.log("Reorder time: "+(orderTime-s)+"ms"); console.log("Duplicated "+duplicatedVertices+" vertices."); console.log("Compute Buffers time: "+(Date.now()-s)+"ms"); console.log("Draw offsets: "+offsets.length); */ return offsets; }, merge: function () { console.log( 'BufferGeometry.merge(): TODO' ); }, normalizeNormals: function () { var normals = this.attributes[ 'normal' ].array; var x, y, z, n; for ( var i = 0, il = normals.length; i < il; i += 3 ) { x = normals[ i ]; y = normals[ i + 1 ]; z = normals[ i + 2 ]; n = 1.0 / Math.sqrt( x * x + y * y + z * z ); normals[ i ] *= n; normals[ i + 1 ] *= n; normals[ i + 2 ] *= n; } }, /* reoderBuffers: Reorder attributes based on a new indexBuffer and indexMap. indexBuffer - Uint16Array of the new ordered indices. indexMap - Int32Array where the position is the new vertex ID and the value the old vertex ID for each vertex. vertexCount - Amount of total vertices considered in this reordering (in case you want to grow the vertice stack). */ reorderBuffers: function ( indexBuffer, indexMap, vertexCount ) { /* Create a copy of all attributes for reordering. */ var sortedAttributes = {}; var types = [ Int8Array, Uint8Array, Uint8ClampedArray, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, Float64Array ]; for ( var attr in this.attributes ) { if ( attr == 'index' ) continue; var sourceArray = this.attributes[ attr ].array; for ( var i = 0, il = types.length; i < il; i ++ ) { var type = types[ i ]; if ( sourceArray instanceof type ) { sortedAttributes[ attr ] = new type( this.attributes[ attr ].itemSize * vertexCount ); break; } } } /* Move attribute positions based on the new index map */ for ( var new_vid = 0; new_vid < vertexCount; new_vid ++ ) { var vid = indexMap[ new_vid ]; for ( var attr in this.attributes ) { if ( attr == 'index' ) continue; var attrArray = this.attributes[ attr ].array; var attrSize = this.attributes[ attr ].itemSize; var sortedAttr = sortedAttributes[ attr ]; for ( var k = 0; k < attrSize; k ++ ) sortedAttr[ new_vid * attrSize + k ] = attrArray[ vid * attrSize + k ]; } } /* Carry the new sorted buffers locally */ this.attributes[ 'index' ].array = indexBuffer; for ( var attr in this.attributes ) { if ( attr == 'index' ) continue; this.attributes[ attr ].array = sortedAttributes[ attr ]; this.attributes[ attr ].numItems = this.attributes[ attr ].itemSize * vertexCount; } }, clone: function () { var geometry = new THREE.BufferGeometry(); var types = [ Int8Array, Uint8Array, Uint8ClampedArray, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, Float64Array ]; for ( var attr in this.attributes ) { var sourceAttr = this.attributes[ attr ]; var sourceArray = sourceAttr.array; var attribute = { itemSize: sourceAttr.itemSize, array: null }; for ( var i = 0, il = types.length; i < il; i ++ ) { var type = types[ i ]; if ( sourceArray instanceof type ) { attribute.array = new type( sourceArray ); break; } } geometry.attributes[ attr ] = attribute; } for ( var i = 0, il = this.offsets.length; i < il; i ++ ) { var offset = this.offsets[ i ]; geometry.offsets.push( { start: offset.start, index: offset.index, count: offset.count } ); } return geometry; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.BufferGeometry.prototype ); // File:src/core/Geometry.js /** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author bhouston / http://exocortex.com */ THREE.Geometry = function () { this.id = THREE.GeometryIdCount ++; this.uuid = THREE.Math.generateUUID(); this.name = ''; this.vertices = []; this.colors = []; // one-to-one vertex colors, used in Points and Line this.faces = []; this.faceVertexUvs = [ [] ]; this.morphTargets = []; this.morphColors = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; this.hasTangents = false; this.dynamic = true; // the intermediate typed arrays will be deleted when set to false // update flags this.verticesNeedUpdate = false; this.elementsNeedUpdate = false; this.uvsNeedUpdate = false; this.normalsNeedUpdate = false; this.tangentsNeedUpdate = false; this.colorsNeedUpdate = false; this.lineDistancesNeedUpdate = false; this.buffersNeedUpdate = false; this.groupsNeedUpdate = false; }; THREE.Geometry.prototype = { constructor: THREE.Geometry, applyMatrix: function ( matrix ) { var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var vertex = this.vertices[ i ]; vertex.applyMatrix4( matrix ); } for ( var i = 0, il = this.faces.length; i < il; i ++ ) { var face = this.faces[ i ]; face.normal.applyMatrix3( normalMatrix ).normalize(); for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize(); } } if ( this.boundingBox instanceof THREE.Box3 ) { this.computeBoundingBox(); } if ( this.boundingSphere instanceof THREE.Sphere ) { this.computeBoundingSphere(); } }, center: function () { this.computeBoundingBox(); var offset = new THREE.Vector3(); offset.addVectors( this.boundingBox.min, this.boundingBox.max ); offset.multiplyScalar( - 0.5 ); this.applyMatrix( new THREE.Matrix4().makeTranslation( offset.x, offset.y, offset.z ) ); this.computeBoundingBox(); return offset; }, computeFaceNormals: function () { var cb = new THREE.Vector3(), ab = new THREE.Vector3(); for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; var vA = this.vertices[ face.a ]; var vB = this.vertices[ face.b ]; var vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); cb.normalize(); face.normal.copy( cb ); } }, computeVertexNormals: function ( areaWeighted ) { var v, vl, f, fl, face, vertices; vertices = new Array( this.vertices.length ); for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ] = new THREE.Vector3(); } if ( areaWeighted ) { // vertex normals weighted by triangle areas // http://www.iquilezles.org/www/articles/normals/normals.htm var vA, vB, vC, vD; var cb = new THREE.Vector3(), ab = new THREE.Vector3(), db = new THREE.Vector3(), dc = new THREE.Vector3(), bc = new THREE.Vector3(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vA = this.vertices[ face.a ]; vB = this.vertices[ face.b ]; vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); vertices[ face.a ].add( cb ); vertices[ face.b ].add( cb ); vertices[ face.c ].add( cb ); } } else { for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vertices[ face.a ].add( face.normal ); vertices[ face.b ].add( face.normal ); vertices[ face.c ].add( face.normal ); } } for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].normalize(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.vertexNormals[ 0 ] = vertices[ face.a ].clone(); face.vertexNormals[ 1 ] = vertices[ face.b ].clone(); face.vertexNormals[ 2 ] = vertices[ face.c ].clone(); } }, computeMorphNormals: function () { var i, il, f, fl, face; // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( ! face.__originalFaceNormal ) { face.__originalFaceNormal = face.normal.clone(); } else { face.__originalFaceNormal.copy( face.normal ); } if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = []; for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) { if ( ! face.__originalVertexNormals[ i ] ) { face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); } else { face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new THREE.Geometry(); tmpGeo.faces = this.faces; for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) { // create on first access if ( ! this.morphNormals[ i ] ) { this.morphNormals[ i ] = {}; this.morphNormals[ i ].faceNormals = []; this.morphNormals[ i ].vertexNormals = []; var dstNormalsFace = this.morphNormals[ i ].faceNormals; var dstNormalsVertex = this.morphNormals[ i ].vertexNormals; var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { faceNormal = new THREE.Vector3(); vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3() }; dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals ); } } var morphNormals = this.morphNormals[ i ]; // set vertices to morph target tmpGeo.vertices = this.morphTargets[ i ].vertices; // compute morph normals tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals(); // store morph normals var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = morphNormals.faceNormals[ f ]; vertexNormals = morphNormals.vertexNormals[ f ]; faceNormal.copy( face.normal ); vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); } } // restore original normals for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.normal = face.__originalFaceNormal; face.vertexNormals = face.__originalVertexNormals; } }, computeTangents: function () { // based on http://www.terathon.com/code/tangent.html // tangents go to vertices var f, fl, v, vl, i, il, vertexIndex, face, uv, vA, vB, vC, uvA, uvB, uvC, x1, x2, y1, y2, z1, z2, s1, s2, t1, t2, r, t, test, tan1 = [], tan2 = [], sdir = new THREE.Vector3(), tdir = new THREE.Vector3(), tmp = new THREE.Vector3(), tmp2 = new THREE.Vector3(), n = new THREE.Vector3(), w; for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { tan1[ v ] = new THREE.Vector3(); tan2[ v ] = new THREE.Vector3(); } function handleTriangle( context, a, b, c, ua, ub, uc ) { vA = context.vertices[ a ]; vB = context.vertices[ b ]; vC = context.vertices[ c ]; uvA = uv[ ua ]; uvB = uv[ ub ]; uvC = uv[ uc ]; x1 = vB.x - vA.x; x2 = vC.x - vA.x; y1 = vB.y - vA.y; y2 = vC.y - vA.y; z1 = vB.z - vA.z; z2 = vC.z - vA.z; s1 = uvB.x - uvA.x; s2 = uvC.x - uvA.x; t1 = uvB.y - uvA.y; t2 = uvC.y - uvA.y; r = 1.0 / ( s1 * t2 - s2 * t1 ); sdir.set( ( t2 * x1 - t1 * x2 ) * r, ( t2 * y1 - t1 * y2 ) * r, ( t2 * z1 - t1 * z2 ) * r ); tdir.set( ( s1 * x2 - s2 * x1 ) * r, ( s1 * y2 - s2 * y1 ) * r, ( s1 * z2 - s2 * z1 ) * r ); tan1[ a ].add( sdir ); tan1[ b ].add( sdir ); tan1[ c ].add( sdir ); tan2[ a ].add( tdir ); tan2[ b ].add( tdir ); tan2[ c ].add( tdir ); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; uv = this.faceVertexUvs[ 0 ][ f ]; // use UV layer 0 for tangents handleTriangle( this, face.a, face.b, face.c, 0, 1, 2 ); } var faceIndex = [ 'a', 'b', 'c', 'd' ]; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; for ( i = 0; i < Math.min( face.vertexNormals.length, 3 ); i ++ ) { n.copy( face.vertexNormals[ i ] ); vertexIndex = face[ faceIndex[ i ] ]; t = tan1[ vertexIndex ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.crossVectors( face.vertexNormals[ i ], t ); test = tmp2.dot( tan2[ vertexIndex ] ); w = ( test < 0.0 ) ? - 1.0 : 1.0; face.vertexTangents[ i ] = new THREE.Vector4( tmp.x, tmp.y, tmp.z, w ); } } this.hasTangents = true; }, computeLineDistances: function () { var d = 0; var vertices = this.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { if ( i > 0 ) { d += vertices[ i ].distanceTo( vertices[ i - 1 ] ); } this.lineDistances[ i ] = d; } }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new THREE.Box3(); } this.boundingBox.setFromPoints( this.vertices ); }, computeBoundingSphere: function () { if ( this.boundingSphere === null ) { this.boundingSphere = new THREE.Sphere(); } this.boundingSphere.setFromPoints( this.vertices ); }, merge: function ( geometry, matrix, materialIndexOffset ) { if ( geometry instanceof THREE.Geometry === false ) { console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ); return; } var normalMatrix, vertexOffset = this.vertices.length, uvPosition = this.faceVertexUvs[ 0 ].length, vertices1 = this.vertices, vertices2 = geometry.vertices, faces1 = this.faces, faces2 = geometry.faces, uvs1 = this.faceVertexUvs[ 0 ], uvs2 = geometry.faceVertexUvs[ 0 ]; if ( materialIndexOffset === undefined ) materialIndexOffset = 0; if ( matrix !== undefined ) { normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); } // vertices for ( var i = 0, il = vertices2.length; i < il; i ++ ) { var vertex = vertices2[ i ]; var vertexCopy = vertex.clone(); if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix ); vertices1.push( vertexCopy ); } // faces for ( i = 0, il = faces2.length; i < il; i ++ ) { var face = faces2[ i ], faceCopy, normal, color, faceVertexNormals = face.vertexNormals, faceVertexColors = face.vertexColors; faceCopy = new THREE.Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset ); faceCopy.normal.copy( face.normal ); if ( normalMatrix !== undefined ) { faceCopy.normal.applyMatrix3( normalMatrix ).normalize(); } for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) { normal = faceVertexNormals[ j ].clone(); if ( normalMatrix !== undefined ) { normal.applyMatrix3( normalMatrix ).normalize(); } faceCopy.vertexNormals.push( normal ); } faceCopy.color.copy( face.color ); for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) { color = faceVertexColors[ j ]; faceCopy.vertexColors.push( color.clone() ); } faceCopy.materialIndex = face.materialIndex + materialIndexOffset; faces1.push( faceCopy ); } // uvs for ( i = 0, il = uvs2.length; i < il; i ++ ) { var uv = uvs2[ i ], uvCopy = []; if ( uv === undefined ) { continue; } for ( var j = 0, jl = uv.length; j < jl; j ++ ) { uvCopy.push( new THREE.Vector2( uv[ j ].x, uv[ j ].y ) ); } uvs1.push( uvCopy ); } }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function () { var verticesMap = {}; // Hashmap for looking up vertice by position coordinates (and making sure they are unique) var unique = [], changes = []; var v, key; var precisionPoints = 4; // number of decimal points, eg. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); var i,il, face; var indices, k, j, jl, u; for ( i = 0, il = this.vertices.length; i < il; i ++ ) { v = this.vertices[ i ]; key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision ); if ( verticesMap[ key ] === undefined ) { verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1; } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ]; } }; // if faces are completely degenerate after merging vertices, we // have to remove them from the geometry. var faceIndicesToRemove = []; for ( i = 0, il = this.faces.length; i < il; i ++ ) { face = this.faces[ i ]; face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; indices = [ face.a, face.b, face.c ]; var dupIndex = - 1; // if any duplicate vertices are found in a Face3 // we have to remove the face as nothing can be saved for ( var n = 0; n < 3; n ++ ) { if ( indices[ n ] == indices[ ( n + 1 ) % 3 ] ) { dupIndex = n; faceIndicesToRemove.push( i ); break; } } } for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) { var idx = faceIndicesToRemove[ i ]; this.faces.splice( idx, 1 ); for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) { this.faceVertexUvs[ j ].splice( idx, 1 ); } } // Use unique set of vertices var diff = this.vertices.length - unique.length; this.vertices = unique; return diff; }, // Geometry splitting makeGroups: ( function () { var geometryGroupCounter = 0; return function ( usesFaceMaterial, maxVerticesInGroup ) { var f, fl, face, materialIndex, groupHash, hash_map = {},geometryGroup; var numMorphTargets = this.morphTargets.length; var numMorphNormals = this.morphNormals.length; this.geometryGroups = {}; this.geometryGroupsList = []; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; materialIndex = usesFaceMaterial ? face.materialIndex : 0; if ( ! ( materialIndex in hash_map ) ) { hash_map[ materialIndex ] = { 'hash': materialIndex, 'counter': 0 }; } groupHash = hash_map[ materialIndex ].hash + '_' + hash_map[ materialIndex ].counter; if ( ! ( groupHash in this.geometryGroups ) ) { geometryGroup = { 'id': geometryGroupCounter++, 'faces3': [], 'materialIndex': materialIndex, 'vertices': 0, 'numMorphTargets': numMorphTargets, 'numMorphNormals': numMorphNormals }; this.geometryGroups[ groupHash ] = geometryGroup; this.geometryGroupsList.push(geometryGroup); } if ( this.geometryGroups[ groupHash ].vertices + 3 > maxVerticesInGroup ) { hash_map[ materialIndex ].counter += 1; groupHash = hash_map[ materialIndex ].hash + '_' + hash_map[ materialIndex ].counter; if ( ! ( groupHash in this.geometryGroups ) ) { geometryGroup = { 'id': geometryGroupCounter++, 'faces3': [], 'materialIndex': materialIndex, 'vertices': 0, 'numMorphTargets': numMorphTargets, 'numMorphNormals': numMorphNormals }; this.geometryGroups[ groupHash ] = geometryGroup; this.geometryGroupsList.push(geometryGroup); } } this.geometryGroups[ groupHash ].faces3.push( f ); this.geometryGroups[ groupHash ].vertices += 3; } }; } )(), clone: function () { var geometry = new THREE.Geometry(); var vertices = this.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { geometry.vertices.push( vertices[ i ].clone() ); } var faces = this.faces; for ( var i = 0, il = faces.length; i < il; i ++ ) { geometry.faces.push( faces[ i ].clone() ); } var uvs = this.faceVertexUvs[ 0 ]; for ( var i = 0, il = uvs.length; i < il; i ++ ) { var uv = uvs[ i ], uvCopy = []; for ( var j = 0, jl = uv.length; j < jl; j ++ ) { uvCopy.push( new THREE.Vector2( uv[ j ].x, uv[ j ].y ) ); } geometry.faceVertexUvs[ 0 ].push( uvCopy ); } return geometry; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.Geometry.prototype ); THREE.GeometryIdCount = 0; // File:src/cameras/Camera.js /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author WestLangley / http://github.com/WestLangley */ THREE.Camera = function () { THREE.Object3D.call( this ); this.matrixWorldInverse = new THREE.Matrix4(); this.projectionMatrix = new THREE.Matrix4(); }; THREE.Camera.prototype = Object.create( THREE.Object3D.prototype ); THREE.Camera.prototype.lookAt = function () { // This routine does not support cameras with rotated and/or translated parent(s) var m1 = new THREE.Matrix4(); return function ( vector ) { m1.lookAt( this.position, vector, this.up ); this.quaternion.setFromRotationMatrix( m1 ); }; }(); THREE.Camera.prototype.clone = function ( camera ) { if ( camera === undefined ) camera = new THREE.Camera(); THREE.Object3D.prototype.clone.call( this, camera ); camera.matrixWorldInverse.copy( this.matrixWorldInverse ); camera.projectionMatrix.copy( this.projectionMatrix ); return camera; }; // File:src/cameras/CubeCamera.js /** * Camera for rendering cube maps * - renders scene into axis-aligned cube * * @author alteredq / http://alteredqualia.com/ */ THREE.CubeCamera = function ( near, far, cubeResolution ) { THREE.Object3D.call( this ); var fov = 90, aspect = 1; var cameraPX = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( new THREE.Vector3( 1, 0, 0 ) ); this.add( cameraPX ); var cameraNX = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( new THREE.Vector3( - 1, 0, 0 ) ); this.add( cameraNX ); var cameraPY = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( new THREE.Vector3( 0, 1, 0 ) ); this.add( cameraPY ); var cameraNY = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( new THREE.Vector3( 0, - 1, 0 ) ); this.add( cameraNY ); var cameraPZ = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( new THREE.Vector3( 0, 0, 1 ) ); this.add( cameraPZ ); var cameraNZ = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( new THREE.Vector3( 0, 0, - 1 ) ); this.add( cameraNZ ); this.renderTarget = new THREE.WebGLRenderTargetCube( cubeResolution, cubeResolution, { format: THREE.RGBFormat, magFilter: THREE.LinearFilter, minFilter: THREE.LinearFilter } ); this.updateCubeMap = function ( renderer, scene ) { var renderTarget = this.renderTarget; var generateMipmaps = renderTarget.generateMipmaps; renderTarget.generateMipmaps = false; renderTarget.activeCubeFace = 0; renderer.render( scene, cameraPX, renderTarget ); renderTarget.activeCubeFace = 1; renderer.render( scene, cameraNX, renderTarget ); renderTarget.activeCubeFace = 2; renderer.render( scene, cameraPY, renderTarget ); renderTarget.activeCubeFace = 3; renderer.render( scene, cameraNY, renderTarget ); renderTarget.activeCubeFace = 4; renderer.render( scene, cameraPZ, renderTarget ); renderTarget.generateMipmaps = generateMipmaps; renderTarget.activeCubeFace = 5; renderer.render( scene, cameraNZ, renderTarget ); }; }; THREE.CubeCamera.prototype = Object.create( THREE.Object3D.prototype ); // File:src/cameras/OrthographicCamera.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) { THREE.Camera.call( this ); this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000; this.updateProjectionMatrix(); }; THREE.OrthographicCamera.prototype = Object.create( THREE.Camera.prototype ); THREE.OrthographicCamera.prototype.updateProjectionMatrix = function () { this.projectionMatrix.makeOrthographic( this.left, this.right, this.top, this.bottom, this.near, this.far ); }; THREE.OrthographicCamera.prototype.clone = function () { var camera = new THREE.OrthographicCamera(); THREE.Camera.prototype.clone.call( this, camera ); camera.left = this.left; camera.right = this.right; camera.top = this.top; camera.bottom = this.bottom; camera.near = this.near; camera.far = this.far; return camera; }; // File:src/cameras/PerspectiveCamera.js /** * @author mrdoob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.PerspectiveCamera = function ( fov, aspect, near, far ) { THREE.Camera.call( this ); this.fov = fov !== undefined ? fov : 50; this.aspect = aspect !== undefined ? aspect : 1; this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype = Object.create( THREE.Camera.prototype ); /** * Uses Focal Length (in mm) to estimate and set FOV * 35mm (fullframe) camera is used if frame size is not specified; * Formula based on http://www.bobatkins.com/photography/technical/field_of_view.html */ THREE.PerspectiveCamera.prototype.setLens = function ( focalLength, frameHeight ) { if ( frameHeight === undefined ) frameHeight = 24; this.fov = 2 * THREE.Math.radToDeg( Math.atan( frameHeight / ( focalLength * 2 ) ) ); this.updateProjectionMatrix(); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ THREE.PerspectiveCamera.prototype.setViewOffset = function ( fullWidth, fullHeight, x, y, width, height ) { this.fullWidth = fullWidth; this.fullHeight = fullHeight; this.x = x; this.y = y; this.width = width; this.height = height; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype.updateProjectionMatrix = function () { if ( this.fullWidth ) { var aspect = this.fullWidth / this.fullHeight; var top = Math.tan( THREE.Math.degToRad( this.fov * 0.5 ) ) * this.near; var bottom = - top; var left = aspect * bottom; var right = aspect * top; var width = Math.abs( right - left ); var height = Math.abs( top - bottom ); this.projectionMatrix.makeFrustum( left + this.x * width / this.fullWidth, left + ( this.x + this.width ) * width / this.fullWidth, top - ( this.y + this.height ) * height / this.fullHeight, top - this.y * height / this.fullHeight, this.near, this.far ); } else { this.projectionMatrix.makePerspective( this.fov, this.aspect, this.near, this.far ); } }; THREE.PerspectiveCamera.prototype.clone = function () { var camera = new THREE.PerspectiveCamera(); THREE.Camera.prototype.clone.call( this, camera ); camera.fov = this.fov; camera.aspect = this.aspect; camera.near = this.near; camera.far = this.far; return camera; }; // File:src/lights/Light.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Light = function ( color ) { THREE.Object3D.call( this ); this.color = new THREE.Color( color ); }; THREE.Light.prototype = Object.create( THREE.Object3D.prototype ); THREE.Light.prototype.clone = function ( light ) { if ( light === undefined ) light = new THREE.Light(); THREE.Object3D.prototype.clone.call( this, light ); light.color.copy( this.color ); return light; }; // File:src/lights/AmbientLight.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AmbientLight = function ( color ) { THREE.Light.call( this, color ); }; THREE.AmbientLight.prototype = Object.create( THREE.Light.prototype ); THREE.AmbientLight.prototype.clone = function () { var light = new THREE.AmbientLight(); THREE.Light.prototype.clone.call( this, light ); return light; }; // File:src/lights/AreaLight.js /** * @author MPanknin / http://www.redplant.de/ * @author alteredq / http://alteredqualia.com/ */ THREE.AreaLight = function ( color, intensity ) { THREE.Light.call( this, color ); this.normal = new THREE.Vector3( 0, - 1, 0 ); this.right = new THREE.Vector3( 1, 0, 0 ); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.width = 1.0; this.height = 1.0; this.constantAttenuation = 1.5; this.linearAttenuation = 0.5; this.quadraticAttenuation = 0.1; }; THREE.AreaLight.prototype = Object.create( THREE.Light.prototype ); // File:src/lights/DirectionalLight.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.DirectionalLight = function ( color, intensity ) { THREE.Light.call( this, color ); this.position.set( 0, 1, 0 ); this.target = new THREE.Object3D(); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.castShadow = false; this.onlyShadow = false; // this.shadowCameraNear = 50; this.shadowCameraFar = 5000; this.shadowCameraLeft = - 500; this.shadowCameraRight = 500; this.shadowCameraTop = 500; this.shadowCameraBottom = - 500; this.shadowCameraVisible = false; this.shadowBias = 0; this.shadowDarkness = 0.5; this.shadowMapWidth = 512; this.shadowMapHeight = 512; // this.shadowCascade = false; this.shadowCascadeOffset = new THREE.Vector3( 0, 0, - 1000 ); this.shadowCascadeCount = 2; this.shadowCascadeBias = [ 0, 0, 0 ]; this.shadowCascadeWidth = [ 512, 512, 512 ]; this.shadowCascadeHeight = [ 512, 512, 512 ]; this.shadowCascadeNearZ = [ - 1.000, 0.990, 0.998 ]; this.shadowCascadeFarZ = [ 0.990, 0.998, 1.000 ]; this.shadowCascadeArray = []; // this.shadowMap = null; this.shadowMapSize = null; this.shadowCamera = null; this.shadowMatrix = null; }; THREE.DirectionalLight.prototype = Object.create( THREE.Light.prototype ); THREE.DirectionalLight.prototype.clone = function () { var light = new THREE.DirectionalLight(); THREE.Light.prototype.clone.call( this, light ); light.target = this.target.clone(); light.intensity = this.intensity; light.castShadow = this.castShadow; light.onlyShadow = this.onlyShadow; // light.shadowCameraNear = this.shadowCameraNear; light.shadowCameraFar = this.shadowCameraFar; light.shadowCameraLeft = this.shadowCameraLeft; light.shadowCameraRight = this.shadowCameraRight; light.shadowCameraTop = this.shadowCameraTop; light.shadowCameraBottom = this.shadowCameraBottom; light.shadowCameraVisible = this.shadowCameraVisible; light.shadowBias = this.shadowBias; light.shadowDarkness = this.shadowDarkness; light.shadowMapWidth = this.shadowMapWidth; light.shadowMapHeight = this.shadowMapHeight; // light.shadowCascade = this.shadowCascade; light.shadowCascadeOffset.copy( this.shadowCascadeOffset ); light.shadowCascadeCount = this.shadowCascadeCount; light.shadowCascadeBias = this.shadowCascadeBias.slice( 0 ); light.shadowCascadeWidth = this.shadowCascadeWidth.slice( 0 ); light.shadowCascadeHeight = this.shadowCascadeHeight.slice( 0 ); light.shadowCascadeNearZ = this.shadowCascadeNearZ.slice( 0 ); light.shadowCascadeFarZ = this.shadowCascadeFarZ.slice( 0 ); return light; }; // File:src/lights/HemisphereLight.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.HemisphereLight = function ( skyColor, groundColor, intensity ) { THREE.Light.call( this, skyColor ); this.position.set( 0, 100, 0 ); this.groundColor = new THREE.Color( groundColor ); this.intensity = ( intensity !== undefined ) ? intensity : 1; }; THREE.HemisphereLight.prototype = Object.create( THREE.Light.prototype ); THREE.HemisphereLight.prototype.clone = function () { var light = new THREE.HemisphereLight(); THREE.Light.prototype.clone.call( this, light ); light.groundColor.copy( this.groundColor ); light.intensity = this.intensity; return light; }; // File:src/lights/PointLight.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.PointLight = function ( color, intensity, distance ) { THREE.Light.call( this, color ); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.distance = ( distance !== undefined ) ? distance : 0; }; THREE.PointLight.prototype = Object.create( THREE.Light.prototype ); THREE.PointLight.prototype.clone = function () { var light = new THREE.PointLight(); THREE.Light.prototype.clone.call( this, light ); light.intensity = this.intensity; light.distance = this.distance; return light; }; // File:src/lights/SpotLight.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.SpotLight = function ( color, intensity, distance, angle, exponent ) { THREE.Light.call( this, color ); this.position.set( 0, 1, 0 ); this.target = new THREE.Object3D(); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.distance = ( distance !== undefined ) ? distance : 0; this.angle = ( angle !== undefined ) ? angle : Math.PI / 3; this.exponent = ( exponent !== undefined ) ? exponent : 10; this.castShadow = false; this.onlyShadow = false; // this.shadowCameraNear = 50; this.shadowCameraFar = 5000; this.shadowCameraFov = 50; this.shadowCameraVisible = false; this.shadowBias = 0; this.shadowDarkness = 0.5; this.shadowMapWidth = 512; this.shadowMapHeight = 512; // this.shadowMap = null; this.shadowMapSize = null; this.shadowCamera = null; this.shadowMatrix = null; }; THREE.SpotLight.prototype = Object.create( THREE.Light.prototype ); THREE.SpotLight.prototype.clone = function () { var light = new THREE.SpotLight(); THREE.Light.prototype.clone.call( this, light ); light.target = this.target.clone(); light.intensity = this.intensity; light.distance = this.distance; light.angle = this.angle; light.exponent = this.exponent; light.castShadow = this.castShadow; light.onlyShadow = this.onlyShadow; // light.shadowCameraNear = this.shadowCameraNear; light.shadowCameraFar = this.shadowCameraFar; light.shadowCameraFov = this.shadowCameraFov; light.shadowCameraVisible = this.shadowCameraVisible; light.shadowBias = this.shadowBias; light.shadowDarkness = this.shadowDarkness; light.shadowMapWidth = this.shadowMapWidth; light.shadowMapHeight = this.shadowMapHeight; return light; }; // File:src/loaders/Cache.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Cache = function () { this.files = {}; }; THREE.Cache.prototype = { constructor: THREE.Cache, add: function ( key, file ) { // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {} } }; // File:src/loaders/Loader.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Loader = function ( showStatus ) { this.showStatus = showStatus; this.statusDomElement = showStatus ? THREE.Loader.prototype.addStatusElement() : null; this.imageLoader = new THREE.ImageLoader(); this.onLoadStart = function () {}; this.onLoadProgress = function () {}; this.onLoadComplete = function () {}; }; THREE.Loader.prototype = { constructor: THREE.Loader, crossOrigin: undefined, addStatusElement: function () { var e = document.createElement( 'div' ); e.style.position = 'absolute'; e.style.right = '0px'; e.style.top = '0px'; e.style.fontSize = '0.8em'; e.style.textAlign = 'left'; e.style.background = 'rgba(0,0,0,0.25)'; e.style.color = '#fff'; e.style.width = '120px'; e.style.padding = '0.5em 0.5em 0.5em 0.5em'; e.style.zIndex = 1000; e.innerHTML = 'Loading ...'; return e; }, updateProgress: function ( progress ) { var message = 'Loaded '; if ( progress.total ) { message += ( 100 * progress.loaded / progress.total ).toFixed( 0 ) + '%'; } else { message += ( progress.loaded / 1024 ).toFixed( 2 ) + ' KB'; } this.statusDomElement.innerHTML = message; }, extractUrlBase: function ( url ) { var parts = url.split( '/' ); if ( parts.length === 1 ) return './'; parts.pop(); return parts.join( '/' ) + '/'; }, initMaterials: function ( materials, texturePath ) { var array = []; for ( var i = 0; i < materials.length; ++ i ) { array[ i ] = this.createMaterial( materials[ i ], texturePath ); } return array; }, needsTangents: function ( materials ) { for ( var i = 0, il = materials.length; i < il; i ++ ) { var m = materials[ i ]; if ( m instanceof THREE.ShaderMaterial ) return true; } return false; }, createMaterial: function ( m, texturePath ) { var scope = this; function nearest_pow2( n ) { var l = Math.log( n ) / Math.LN2; return Math.pow( 2, Math.round( l ) ); } function create_texture( where, name, sourceFile, repeat, offset, wrap, anisotropy ) { var fullPath = texturePath + sourceFile; var texture; var loader = THREE.Loader.Handlers.get( fullPath ); if ( loader !== null ) { texture = loader.load( fullPath ); } else { texture = new THREE.Texture(); loader = scope.imageLoader; loader.crossOrigin = scope.crossOrigin; loader.load( fullPath, function ( image ) { if ( THREE.Math.isPowerOfTwo( image.width ) === false || THREE.Math.isPowerOfTwo( image.height ) === false ) { var width = nearest_pow2( image.width ); var height = nearest_pow2( image.height ); var canvas = document.createElement( 'canvas' ); canvas.width = width; canvas.height = height; var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, width, height ); texture.image = canvas; } else { texture.image = image; } texture.needsUpdate = true; } ); } texture.sourceFile = sourceFile; if ( repeat ) { texture.repeat.set( repeat[ 0 ], repeat[ 1 ] ); if ( repeat[ 0 ] !== 1 ) texture.wrapS = THREE.RepeatWrapping; if ( repeat[ 1 ] !== 1 ) texture.wrapT = THREE.RepeatWrapping; } if ( offset ) { texture.offset.set( offset[ 0 ], offset[ 1 ] ); } if ( wrap ) { var wrapMap = { 'repeat': THREE.RepeatWrapping, 'mirror': THREE.MirroredRepeatWrapping } if ( wrapMap[ wrap[ 0 ] ] !== undefined ) texture.wrapS = wrapMap[ wrap[ 0 ] ]; if ( wrapMap[ wrap[ 1 ] ] !== undefined ) texture.wrapT = wrapMap[ wrap[ 1 ] ]; } if ( anisotropy ) { texture.anisotropy = anisotropy; } where[ name ] = texture; } function rgb2hex( rgb ) { return ( rgb[ 0 ] * 255 << 16 ) + ( rgb[ 1 ] * 255 << 8 ) + rgb[ 2 ] * 255; } // defaults var mtype = 'MeshLambertMaterial'; var mpars = { color: 0xeeeeee, opacity: 1.0, map: null, lightMap: null, normalMap: null, bumpMap: null, wireframe: false }; // parameters from model file if ( m.shading ) { var shading = m.shading.toLowerCase(); if ( shading === 'phong' ) mtype = 'MeshPhongMaterial'; else if ( shading === 'basic' ) mtype = 'MeshBasicMaterial'; } if ( m.blending !== undefined && THREE[ m.blending ] !== undefined ) { mpars.blending = THREE[ m.blending ]; } if ( m.transparent !== undefined || m.opacity < 1.0 ) { mpars.transparent = m.transparent; } if ( m.depthTest !== undefined ) { mpars.depthTest = m.depthTest; } if ( m.depthWrite !== undefined ) { mpars.depthWrite = m.depthWrite; } if ( m.visible !== undefined ) { mpars.visible = m.visible; } if ( m.flipSided !== undefined ) { mpars.side = THREE.BackSide; } if ( m.doubleSided !== undefined ) { mpars.side = THREE.DoubleSide; } if ( m.wireframe !== undefined ) { mpars.wireframe = m.wireframe; } if ( m.vertexColors !== undefined ) { if ( m.vertexColors === 'face' ) { mpars.vertexColors = THREE.FaceColors; } else if ( m.vertexColors ) { mpars.vertexColors = THREE.VertexColors; } } // colors if ( m.colorDiffuse ) { mpars.color = rgb2hex( m.colorDiffuse ); } else if ( m.DbgColor ) { mpars.color = m.DbgColor; } if ( m.colorSpecular ) { mpars.specular = rgb2hex( m.colorSpecular ); } if ( m.colorAmbient ) { mpars.ambient = rgb2hex( m.colorAmbient ); } if ( m.colorEmissive ) { mpars.emissive = rgb2hex( m.colorEmissive ); } // modifiers if ( m.transparency ) { mpars.opacity = m.transparency; } if ( m.specularCoef ) { mpars.shininess = m.specularCoef; } // textures if ( m.mapDiffuse && texturePath ) { create_texture( mpars, 'map', m.mapDiffuse, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy ); } if ( m.mapLight && texturePath ) { create_texture( mpars, 'lightMap', m.mapLight, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy ); } if ( m.mapBump && texturePath ) { create_texture( mpars, 'bumpMap', m.mapBump, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy ); } if ( m.mapNormal && texturePath ) { create_texture( mpars, 'normalMap', m.mapNormal, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy ); } if ( m.mapSpecular && texturePath ) { create_texture( mpars, 'specularMap', m.mapSpecular, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy ); } if ( m.mapAlpha && texturePath ) { create_texture( mpars, 'alphaMap', m.mapAlpha, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy ); } // if ( m.mapBumpScale ) { mpars.bumpScale = m.mapBumpScale; } // special case for normal mapped material if ( m.mapNormal ) { var shader = THREE.ShaderLib[ 'normalmap' ]; var uniforms = THREE.UniformsUtils.clone( shader.uniforms ); uniforms[ 'tNormal' ].value = mpars.normalMap; if ( m.mapNormalFactor ) { uniforms[ 'uNormalScale' ].value.set( m.mapNormalFactor, m.mapNormalFactor ); } if ( mpars.map ) { uniforms[ 'tDiffuse' ].value = mpars.map; uniforms[ 'enableDiffuse' ].value = true; } if ( mpars.specularMap ) { uniforms[ 'tSpecular' ].value = mpars.specularMap; uniforms[ 'enableSpecular' ].value = true; } if ( mpars.lightMap ) { uniforms[ 'tAO' ].value = mpars.lightMap; uniforms[ 'enableAO' ].value = true; } // for the moment don't handle displacement texture uniforms[ 'diffuse' ].value.setHex( mpars.color ); uniforms[ 'specular' ].value.setHex( mpars.specular ); uniforms[ 'ambient' ].value.setHex( mpars.ambient ); uniforms[ 'shininess' ].value = mpars.shininess; if ( mpars.opacity !== undefined ) { uniforms[ 'opacity' ].value = mpars.opacity; } var parameters = { fragmentShader: shader.fragmentShader, vertexShader: shader.vertexShader, uniforms: uniforms, lights: true, fog: true }; var material = new THREE.ShaderMaterial( parameters ); if ( mpars.transparent ) { material.transparent = true; } } else { var material = new THREE[ mtype ]( mpars ); } if ( m.DbgName !== undefined ) material.name = m.DbgName; return material; } }; THREE.Loader.Handlers = { handlers: [], add: function ( regex, loader ) { this.handlers.push( regex, loader ); }, get: function ( file ) { for ( var i = 0, l = this.handlers.length; i < l; i += 2 ) { var regex = this.handlers[ i ]; var loader = this.handlers[ i + 1 ]; if ( regex.test( file ) ) { return loader; } } return null; } }; // File:src/loaders/XHRLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.XHRLoader = function ( manager ) { this.cache = new THREE.Cache(); this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.XHRLoader.prototype = { constructor: THREE.XHRLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var cached = scope.cache.get( url ); if ( cached !== undefined ) { if ( onLoad ) onLoad( cached ); return; } var request = new XMLHttpRequest(); request.open( 'GET', url, true ); request.addEventListener( 'load', function ( event ) { scope.cache.add( url, this.response ); if ( onLoad ) onLoad( this.response ); scope.manager.itemEnd( url ); }, false ); if ( onProgress !== undefined ) { request.addEventListener( 'progress', function ( event ) { onProgress( event ); }, false ); } if ( onError !== undefined ) { request.addEventListener( 'error', function ( event ) { onError( event ); }, false ); } if ( this.crossOrigin !== undefined ) request.crossOrigin = this.crossOrigin; if ( this.responseType !== undefined ) request.responseType = this.responseType; request.send( null ); scope.manager.itemStart( url ); }, setResponseType: function ( value ) { this.responseType = value; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; } }; // File:src/loaders/ImageLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.ImageLoader = function ( manager ) { this.cache = new THREE.Cache(); this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.ImageLoader.prototype = { constructor: THREE.ImageLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var cached = scope.cache.get( url ); if ( cached !== undefined ) { onLoad( cached ); return; } var image = document.createElement( 'img' ); if ( onLoad !== undefined ) { image.addEventListener( 'load', function ( event ) { scope.cache.add( url, this ); onLoad( this ); scope.manager.itemEnd( url ); }, false ); } if ( onProgress !== undefined ) { image.addEventListener( 'progress', function ( event ) { onProgress( event ); }, false ); } if ( onError !== undefined ) { image.addEventListener( 'error', function ( event ) { onError( event ); }, false ); } if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; image.src = url; scope.manager.itemStart( url ); return image; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; } } // File:src/loaders/JSONLoader.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.JSONLoader = function ( showStatus ) { THREE.Loader.call( this, showStatus ); this.withCredentials = false; }; THREE.JSONLoader.prototype = Object.create( THREE.Loader.prototype ); THREE.JSONLoader.prototype.load = function ( url, callback, texturePath ) { var scope = this; // todo: unify load API to for easier SceneLoader use texturePath = texturePath && ( typeof texturePath === 'string' ) ? texturePath : this.extractUrlBase( url ); this.onLoadStart(); this.loadAjaxJSON( this, url, callback, texturePath ); }; THREE.JSONLoader.prototype.loadAjaxJSON = function ( context, url, callback, texturePath, callbackProgress ) { var xhr = new XMLHttpRequest(); var length = 0; xhr.onreadystatechange = function () { if ( xhr.readyState === xhr.DONE ) { if ( xhr.status === 200 || xhr.status === 0 ) { if ( xhr.responseText ) { var json = JSON.parse( xhr.responseText ); if ( json.metadata !== undefined && json.metadata.type === 'scene' ) { console.error( 'THREE.JSONLoader: "' + url + '" seems to be a Scene. Use THREE.SceneLoader instead.' ); return; } var result = context.parse( json, texturePath ); callback( result.geometry, result.materials ); } else { console.error( 'THREE.JSONLoader: "' + url + '" seems to be unreachable or the file is empty.' ); } // in context of more complex asset initialization // do not block on single failed file // maybe should go even one more level up context.onLoadComplete(); } else { console.error( 'THREE.JSONLoader: Couldn\'t load "' + url + '" (' + xhr.status + ')' ); } } else if ( xhr.readyState === xhr.LOADING ) { if ( callbackProgress ) { if ( length === 0 ) { length = xhr.getResponseHeader( 'Content-Length' ); } callbackProgress( { total: length, loaded: xhr.responseText.length } ); } } else if ( xhr.readyState === xhr.HEADERS_RECEIVED ) { if ( callbackProgress !== undefined ) { length = xhr.getResponseHeader( 'Content-Length' ); } } }; xhr.open( 'GET', url, true ); xhr.withCredentials = this.withCredentials; xhr.send( null ); }; THREE.JSONLoader.prototype.parse = function ( json, texturePath ) { var scope = this, geometry = new THREE.Geometry(), scale = ( json.scale !== undefined ) ? 1.0 / json.scale : 1.0; parseModel( scale ); parseSkin(); parseMorphing( scale ); geometry.computeFaceNormals(); geometry.computeBoundingSphere(); function parseModel( scale ) { function isBitSet( value, position ) { return value & ( 1 << position ); } var i, j, fi, offset, zLength, colorIndex, normalIndex, uvIndex, materialIndex, type, isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor, vertex, face, faceA, faceB, color, hex, normal, uvLayer, uv, u, v, faces = json.faces, vertices = json.vertices, normals = json.normals, colors = json.colors, nUvLayers = 0; if ( json.uvs !== undefined ) { // disregard empty arrays for ( i = 0; i < json.uvs.length; i ++ ) { if ( json.uvs[ i ].length ) nUvLayers ++; } for ( i = 0; i < nUvLayers; i ++ ) { geometry.faceVertexUvs[ i ] = []; } } offset = 0; zLength = vertices.length; while ( offset < zLength ) { vertex = new THREE.Vector3(); vertex.x = vertices[ offset ++ ] * scale; vertex.y = vertices[ offset ++ ] * scale; vertex.z = vertices[ offset ++ ] * scale; geometry.vertices.push( vertex ); } offset = 0; zLength = faces.length; while ( offset < zLength ) { type = faces[ offset ++ ]; isQuad = isBitSet( type, 0 ); hasMaterial = isBitSet( type, 1 ); hasFaceVertexUv = isBitSet( type, 3 ); hasFaceNormal = isBitSet( type, 4 ); hasFaceVertexNormal = isBitSet( type, 5 ); hasFaceColor = isBitSet( type, 6 ); hasFaceVertexColor = isBitSet( type, 7 ); // console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor); if ( isQuad ) { faceA = new THREE.Face3(); faceA.a = faces[ offset ]; faceA.b = faces[ offset + 1 ]; faceA.c = faces[ offset + 3 ]; faceB = new THREE.Face3(); faceB.a = faces[ offset + 1 ]; faceB.b = faces[ offset + 2 ]; faceB.c = faces[ offset + 3 ]; offset += 4; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; faceA.materialIndex = materialIndex; faceB.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; geometry.faceVertexUvs[ i ][ fi + 1 ] = [] for ( j = 0; j < 4; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new THREE.Vector2( u, v ); if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv ); if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; faceA.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); faceB.normal.copy( faceA.normal ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 4; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new THREE.Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); if ( i !== 2 ) faceA.vertexNormals.push( normal ); if ( i !== 0 ) faceB.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; faceA.color.setHex( hex ); faceB.color.setHex( hex ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 4; i ++ ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; if ( i !== 2 ) faceA.vertexColors.push( new THREE.Color( hex ) ); if ( i !== 0 ) faceB.vertexColors.push( new THREE.Color( hex ) ); } } geometry.faces.push( faceA ); geometry.faces.push( faceB ); } else { face = new THREE.Face3(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; face.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; for ( j = 0; j < 3; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new THREE.Vector2( u, v ); geometry.faceVertexUvs[ i ][ fi ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; face.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 3; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new THREE.Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); face.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; face.color.setHex( colors[ colorIndex ] ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 3; i ++ ) { colorIndex = faces[ offset ++ ]; face.vertexColors.push( new THREE.Color( colors[ colorIndex ] ) ); } } geometry.faces.push( face ); } } }; function parseSkin() { var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2; if ( json.skinWeights ) { for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) { var x = json.skinWeights[ i ]; var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0; var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0; var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0; geometry.skinWeights.push( new THREE.Vector4( x, y, z, w ) ); } } if ( json.skinIndices ) { for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) { var a = json.skinIndices[ i ]; var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0; var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0; var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0; geometry.skinIndices.push( new THREE.Vector4( a, b, c, d ) ); } } geometry.bones = json.bones; if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) { console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' + geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' ); } // could change this to json.animations[0] or remove completely geometry.animation = json.animation; geometry.animations = json.animations; }; function parseMorphing( scale ) { if ( json.morphTargets !== undefined ) { var i, l, v, vl, dstVertices, srcVertices; for ( i = 0, l = json.morphTargets.length; i < l; i ++ ) { geometry.morphTargets[ i ] = {}; geometry.morphTargets[ i ].name = json.morphTargets[ i ].name; geometry.morphTargets[ i ].vertices = []; dstVertices = geometry.morphTargets[ i ].vertices; srcVertices = json.morphTargets [ i ].vertices; for ( v = 0, vl = srcVertices.length; v < vl; v += 3 ) { var vertex = new THREE.Vector3(); vertex.x = srcVertices[ v ] * scale; vertex.y = srcVertices[ v + 1 ] * scale; vertex.z = srcVertices[ v + 2 ] * scale; dstVertices.push( vertex ); } } } if ( json.morphColors !== undefined ) { var i, l, c, cl, dstColors, srcColors, color; for ( i = 0, l = json.morphColors.length; i < l; i ++ ) { geometry.morphColors[ i ] = {}; geometry.morphColors[ i ].name = json.morphColors[ i ].name; geometry.morphColors[ i ].colors = []; dstColors = geometry.morphColors[ i ].colors; srcColors = json.morphColors [ i ].colors; for ( c = 0, cl = srcColors.length; c < cl; c += 3 ) { color = new THREE.Color( 0xffaa00 ); color.setRGB( srcColors[ c ], srcColors[ c + 1 ], srcColors[ c + 2 ] ); dstColors.push( color ); } } } }; if ( json.materials === undefined || json.materials.length === 0 ) { return { geometry: geometry }; } else { var materials = this.initMaterials( json.materials, texturePath ); if ( this.needsTangents( materials ) ) { geometry.computeTangents(); } return { geometry: geometry, materials: materials }; } }; // File:src/loaders/LoadingManager.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.LoadingManager = function ( onLoad, onProgress, onError ) { var scope = this; var loaded = 0, total = 0; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { total ++; }; this.itemEnd = function ( url ) { loaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, loaded, total ); } if ( loaded === total && scope.onLoad !== undefined ) { scope.onLoad(); } }; }; THREE.DefaultLoadingManager = new THREE.LoadingManager(); // File:src/loaders/BufferGeometryLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BufferGeometryLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.BufferGeometryLoader.prototype = { constructor: THREE.BufferGeometryLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader(); loader.setCrossOrigin( this.crossOrigin ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, parse: function ( json ) { var geometry = new THREE.BufferGeometry(); var attributes = json.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; geometry.attributes[ key ] = { itemSize: attribute.itemSize, array: new self[ attribute.type ]( attribute.array ) } } var offsets = json.offsets; if ( offsets !== undefined ) { geometry.offsets = JSON.parse( JSON.stringify( offsets ) ); } var boundingSphere = json.boundingSphere; if ( boundingSphere !== undefined ) { geometry.boundingSphere = new THREE.Sphere( new THREE.Vector3().fromArray( boundingSphere.center !== undefined ? boundingSphere.center : [ 0, 0, 0 ] ), boundingSphere.radius ); } return geometry; } }; // File:src/loaders/MaterialLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.MaterialLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.MaterialLoader.prototype = { constructor: THREE.MaterialLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader(); loader.setCrossOrigin( this.crossOrigin ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, parse: function ( json ) { var material = new THREE[ json.type ]; if ( json.color !== undefined ) material.color.setHex( json.color ); if ( json.ambient !== undefined ) material.ambient.setHex( json.ambient ); if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive ); if ( json.specular !== undefined ) material.specular.setHex( json.specular ); if ( json.shininess !== undefined ) material.shininess = json.shininess; if ( json.uniforms !== undefined ) material.uniforms = json.uniforms; if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader; if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors; if ( json.blending !== undefined ) material.blending = json.blending; if ( json.side !== undefined ) material.side = json.side; if ( json.opacity !== undefined ) material.opacity = json.opacity; if ( json.transparent !== undefined ) material.transparent = json.transparent; if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; if ( json.materials !== undefined ) { for ( var i = 0, l = json.materials.length; i < l; i ++ ) { material.materials.push( this.parse( json.materials[ i ] ) ); } } return material; } }; // File:src/loaders/ObjectLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.ObjectLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.ObjectLoader.prototype = { constructor: THREE.ObjectLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, parse: function ( json ) { var geometries = this.parseGeometries( json.geometries ); var materials = this.parseMaterials( json.materials ); var object = this.parseObject( json.object, geometries, materials ); return object; }, parseGeometries: function ( json ) { var geometries = {}; if ( json !== undefined ) { var geometryLoader = new THREE.JSONLoader(); var bufferGeometryLoader = new THREE.BufferGeometryLoader(); for ( var i = 0, l = json.length; i < l; i ++ ) { var geometry; var data = json[ i ]; switch ( data.type ) { case 'PlaneGeometry': geometry = new THREE.PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments ); break; case 'BoxGeometry': case 'CubeGeometry': // backwards compatible geometry = new THREE.BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); break; case 'CircleGeometry': geometry = new THREE.CircleGeometry( data.radius, data.segments ); break; case 'CylinderGeometry': geometry = new THREE.CylinderGeometry( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded ); break; case 'SphereGeometry': geometry = new THREE.SphereGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); break; case 'IcosahedronGeometry': geometry = new THREE.IcosahedronGeometry( data.radius, data.detail ); break; case 'TorusGeometry': geometry = new THREE.TorusGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); break; case 'TorusKnotGeometry': geometry = new THREE.TorusKnotGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.p, data.q, data.heightScale ); break; case 'BufferGeometry': geometry = bufferGeometryLoader.parse( data.data ); break; case 'Geometry': geometry = geometryLoader.parse( data.data ).geometry; break; } geometry.uuid = data.uuid; if ( data.name !== undefined ) geometry.name = data.name; geometries[ data.uuid ] = geometry; } } return geometries; }, parseMaterials: function ( json ) { var materials = {}; if ( json !== undefined ) { var loader = new THREE.MaterialLoader(); for ( var i = 0, l = json.length; i < l; i ++ ) { var data = json[ i ]; var material = loader.parse( data ); material.uuid = data.uuid; if ( data.name !== undefined ) material.name = data.name; materials[ data.uuid ] = material; } } return materials; }, parseObject: function () { var matrix = new THREE.Matrix4(); return function ( data, geometries, materials ) { var object; switch ( data.type ) { case 'Scene': object = new THREE.Scene(); break; case 'PerspectiveCamera': object = new THREE.PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); break; case 'OrthographicCamera': object = new THREE.OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); break; case 'AmbientLight': object = new THREE.AmbientLight( data.color ); break; case 'DirectionalLight': object = new THREE.DirectionalLight( data.color, data.intensity ); break; case 'PointLight': object = new THREE.PointLight( data.color, data.intensity, data.distance ); break; case 'SpotLight': object = new THREE.SpotLight( data.color, data.intensity, data.distance, data.angle, data.exponent ); break; case 'HemisphereLight': object = new THREE.HemisphereLight( data.color, data.groundColor, data.intensity ); break; case 'Mesh': var geometry = geometries[ data.geometry ]; var material = materials[ data.material ]; if ( geometry === undefined ) { console.error( 'THREE.ObjectLoader: Undefined geometry ' + data.geometry ); } if ( material === undefined ) { console.error( 'THREE.ObjectLoader: Undefined material ' + data.material ); } object = new THREE.Mesh( geometry, material ); break; case 'Sprite': var material = materials[ data.material ]; if ( material === undefined ) { console.error( 'THREE.ObjectLoader: Undefined material ' + data.material ); } object = new THREE.Sprite( material ); break; default: object = new THREE.Object3D(); } object.uuid = data.uuid; if ( data.name !== undefined ) object.name = data.name; if ( data.matrix !== undefined ) { matrix.fromArray( data.matrix ); matrix.decompose( object.position, object.quaternion, object.scale ); } else { if ( data.position !== undefined ) object.position.fromArray( data.position ); if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); if ( data.scale !== undefined ) object.scale.fromArray( data.scale ); } if ( data.visible !== undefined ) object.visible = data.visible; if ( data.userData !== undefined ) object.userData = data.userData; if ( data.children !== undefined ) { for ( var child in data.children ) { object.add( this.parseObject( data.children[ child ], geometries, materials ) ); } } return object; } }() }; // File:src/loaders/TextureLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.TextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.TextureLoader.prototype = { constructor: THREE.TextureLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.ImageLoader( scope.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.load( url, function ( image ) { var texture = new THREE.Texture( image ); texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; } }; // File:src/materials/Material.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Material = function () { this.id = THREE.MaterialIdCount ++; this.uuid = THREE.Math.generateUUID(); this.name = ''; this.side = THREE.FrontSide; this.opacity = 1; this.transparent = false; this.blending = THREE.NormalBlending; this.blendSrc = THREE.SrcAlphaFactor; this.blendDst = THREE.OneMinusSrcAlphaFactor; this.blendEquation = THREE.AddEquation; this.depthTest = true; this.depthWrite = true; this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.alphaTest = 0; this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer this.visible = true; this.needsUpdate = true; }; THREE.Material.prototype = { constructor: THREE.Material, setValues: function ( values ) { if ( values === undefined ) return; for ( var key in values ) { var newValue = values[ key ]; if ( newValue === undefined ) { console.warn( "THREE.Material: '" + key + "' parameter is undefined." ); continue; } if ( key in this ) { var currentValue = this[ key ]; if ( currentValue instanceof THREE.Color ) { currentValue.set( newValue ); } else if ( currentValue instanceof THREE.Vector3 && newValue instanceof THREE.Vector3 ) { currentValue.copy( newValue ); } else if ( key == 'overdraw' ) { // ensure overdraw is backwards-compatable with legacy boolean type this[ key ] = Number( newValue ); } else { this[ key ] = newValue; } } } }, clone: function ( material ) { if ( material === undefined ) material = new THREE.Material(); material.name = this.name; material.side = this.side; material.opacity = this.opacity; material.transparent = this.transparent; material.blending = this.blending; material.blendSrc = this.blendSrc; material.blendDst = this.blendDst; material.blendEquation = this.blendEquation; material.depthTest = this.depthTest; material.depthWrite = this.depthWrite; material.polygonOffset = this.polygonOffset; material.polygonOffsetFactor = this.polygonOffsetFactor; material.polygonOffsetUnits = this.polygonOffsetUnits; material.alphaTest = this.alphaTest; material.overdraw = this.overdraw; material.visible = this.visible; return material; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.Material.prototype ); THREE.MaterialIdCount = 0; // File:src/materials/LineBasicMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * linewidth: , * linecap: "round", * linejoin: "round", * * vertexColors: * * fog: * } */ THREE.LineBasicMaterial = function ( parameters ) { THREE.Material.call( this ); this.color = new THREE.Color( 0xffffff ); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.vertexColors = THREE.NoColors; this.fog = true; this.setValues( parameters ); }; THREE.LineBasicMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.LineBasicMaterial.prototype.clone = function () { var material = new THREE.LineBasicMaterial(); THREE.Material.prototype.clone.call( this, material ); material.color.copy( this.color ); material.linewidth = this.linewidth; material.linecap = this.linecap; material.linejoin = this.linejoin; material.vertexColors = this.vertexColors; material.fog = this.fog; return material; }; // File:src/materials/LineDashedMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * linewidth: , * * scale: , * dashSize: , * gapSize: , * * vertexColors: * * fog: * } */ THREE.LineDashedMaterial = function ( parameters ) { THREE.Material.call( this ); this.color = new THREE.Color( 0xffffff ); this.linewidth = 1; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.vertexColors = false; this.fog = true; this.setValues( parameters ); }; THREE.LineDashedMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.LineDashedMaterial.prototype.clone = function () { var material = new THREE.LineDashedMaterial(); THREE.Material.prototype.clone.call( this, material ); material.color.copy( this.color ); material.linewidth = this.linewidth; material.scale = this.scale; material.dashSize = this.dashSize; material.gapSize = this.gapSize; material.vertexColors = this.vertexColors; material.fog = this.fog; return material; }; // File:src/materials/MeshBasicMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * * fog: * } */ THREE.MeshBasicMaterial = function ( parameters ) { THREE.Material.call( this ); this.color = new THREE.Color( 0xffffff ); // emissive this.map = null; this.lightMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.setValues( parameters ); }; THREE.MeshBasicMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshBasicMaterial.prototype.clone = function () { var material = new THREE.MeshBasicMaterial(); THREE.Material.prototype.clone.call( this, material ); material.color.copy( this.color ); material.map = this.map; material.lightMap = this.lightMap; material.specularMap = this.specularMap; material.alphaMap = this.alphaMap; material.envMap = this.envMap; material.combine = this.combine; material.reflectivity = this.reflectivity; material.refractionRatio = this.refractionRatio; material.fog = this.fog; material.shading = this.shading; material.wireframe = this.wireframe; material.wireframeLinewidth = this.wireframeLinewidth; material.wireframeLinecap = this.wireframeLinecap; material.wireframeLinejoin = this.wireframeLinejoin; material.vertexColors = this.vertexColors; material.skinning = this.skinning; material.morphTargets = this.morphTargets; return material; }; // File:src/materials/MeshLambertMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * ambient: , * emissive: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshLambertMaterial = function ( parameters ) { THREE.Material.call( this ); this.color = new THREE.Color( 0xffffff ); // diffuse this.ambient = new THREE.Color( 0xffffff ); this.emissive = new THREE.Color( 0x000000 ); this.wrapAround = false; this.wrapRGB = new THREE.Vector3( 1, 1, 1 ); this.map = null; this.lightMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); }; THREE.MeshLambertMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshLambertMaterial.prototype.clone = function () { var material = new THREE.MeshLambertMaterial(); THREE.Material.prototype.clone.call( this, material ); material.color.copy( this.color ); material.ambient.copy( this.ambient ); material.emissive.copy( this.emissive ); material.wrapAround = this.wrapAround; material.wrapRGB.copy( this.wrapRGB ); material.map = this.map; material.lightMap = this.lightMap; material.specularMap = this.specularMap; material.alphaMap = this.alphaMap; material.envMap = this.envMap; material.combine = this.combine; material.reflectivity = this.reflectivity; material.refractionRatio = this.refractionRatio; material.fog = this.fog; material.shading = this.shading; material.wireframe = this.wireframe; material.wireframeLinewidth = this.wireframeLinewidth; material.wireframeLinecap = this.wireframeLinecap; material.wireframeLinejoin = this.wireframeLinejoin; material.vertexColors = this.vertexColors; material.skinning = this.skinning; material.morphTargets = this.morphTargets; material.morphNormals = this.morphNormals; return material; }; // File:src/materials/MeshPhongMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * ambient: , * emissive: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshPhongMaterial = function ( parameters ) { THREE.Material.call( this ); this.color = new THREE.Color( 0xffffff ); // diffuse this.ambient = new THREE.Color( 0xffffff ); this.emissive = new THREE.Color( 0x000000 ); this.specular = new THREE.Color( 0x111111 ); this.shininess = 30; this.metal = false; this.wrapAround = false; this.wrapRGB = new THREE.Vector3( 1, 1, 1 ); this.map = null; this.lightMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new THREE.Vector2( 1, 1 ); this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); }; THREE.MeshPhongMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshPhongMaterial.prototype.clone = function () { var material = new THREE.MeshPhongMaterial(); THREE.Material.prototype.clone.call( this, material ); material.color.copy( this.color ); material.ambient.copy( this.ambient ); material.emissive.copy( this.emissive ); material.specular.copy( this.specular ); material.shininess = this.shininess; material.metal = this.metal; material.wrapAround = this.wrapAround; material.wrapRGB.copy( this.wrapRGB ); material.map = this.map; material.lightMap = this.lightMap; material.bumpMap = this.bumpMap; material.bumpScale = this.bumpScale; material.normalMap = this.normalMap; material.normalScale.copy( this.normalScale ); material.specularMap = this.specularMap; material.alphaMap = this.alphaMap; material.envMap = this.envMap; material.combine = this.combine; material.reflectivity = this.reflectivity; material.refractionRatio = this.refractionRatio; material.fog = this.fog; material.shading = this.shading; material.wireframe = this.wireframe; material.wireframeLinewidth = this.wireframeLinewidth; material.wireframeLinecap = this.wireframeLinecap; material.wireframeLinejoin = this.wireframeLinejoin; material.vertexColors = this.vertexColors; material.skinning = this.skinning; material.morphTargets = this.morphTargets; material.morphNormals = this.morphNormals; return material; }; // File:src/materials/MeshDepthMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * opacity: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: * } */ THREE.MeshDepthMaterial = function ( parameters ) { THREE.Material.call( this ); this.morphTargets = false; this.wireframe = false; this.wireframeLinewidth = 1; this.setValues( parameters ); }; THREE.MeshDepthMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshDepthMaterial.prototype.clone = function () { var material = new THREE.MeshDepthMaterial(); THREE.Material.prototype.clone.call( this, material ); material.wireframe = this.wireframe; material.wireframeLinewidth = this.wireframeLinewidth; return material; }; // File:src/materials/MeshNormalMaterial.js /** * @author mrdoob / http://mrdoob.com/ * * parameters = { * opacity: , * * shading: THREE.FlatShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: * } */ THREE.MeshNormalMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); this.shading = THREE.FlatShading; this.wireframe = false; this.wireframeLinewidth = 1; this.morphTargets = false; this.setValues( parameters ); }; THREE.MeshNormalMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshNormalMaterial.prototype.clone = function () { var material = new THREE.MeshNormalMaterial(); THREE.Material.prototype.clone.call( this, material ); material.shading = this.shading; material.wireframe = this.wireframe; material.wireframeLinewidth = this.wireframeLinewidth; return material; }; // File:src/materials/MeshFaceMaterial.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.MeshFaceMaterial = function ( materials ) { this.materials = materials instanceof Array ? materials : []; }; THREE.MeshFaceMaterial.prototype.clone = function () { var material = new THREE.MeshFaceMaterial(); for ( var i = 0; i < this.materials.length; i ++ ) { material.materials.push( this.materials[ i ].clone() ); } return material; }; // File:src/materials/PointCloudMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * size: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * vertexColors: , * * fog: * } */ THREE.PointCloudMaterial = function ( parameters ) { THREE.Material.call( this ); this.color = new THREE.Color( 0xffffff ); this.map = null; this.size = 1; this.sizeAttenuation = true; this.vertexColors = THREE.NoColors; this.fog = true; this.setValues( parameters ); }; THREE.PointCloudMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.PointCloudMaterial.prototype.clone = function () { var material = new THREE.PointCloudMaterial(); THREE.Material.prototype.clone.call( this, material ); material.color.copy( this.color ); material.map = this.map; material.size = this.size; material.sizeAttenuation = this.sizeAttenuation; material.vertexColors = this.vertexColors; material.fog = this.fog; return material; }; // backwards compatibility THREE.ParticleBasicMaterial = function ( parameters ) { console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointCloudMaterial.' ); return new THREE.PointCloudMaterial( parameters ); }; THREE.ParticleSystemMaterial = function ( parameters ) { console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointCloudMaterial.' ); return new THREE.PointCloudMaterial( parameters ); }; // File:src/materials/ShaderMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { type: "f", value: 1.0 }, "parameter2": { type: "i" value2: 2 } }, * * fragmentShader: , * vertexShader: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.ShaderMaterial = function ( parameters ) { THREE.Material.call( this ); this.defines = {}; this.uniforms = {}; this.attributes = null; this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}'; this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}'; this.shading = THREE.SmoothShading; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.vertexColors = THREE.NoColors; // set to use "color" attribute stream this.skinning = false; // set to use skinning attribute streams this.morphTargets = false; // set to use morph targets this.morphNormals = false; // set to use morph normals // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] }; this.index0AttributeName = undefined; this.setValues( parameters ); }; THREE.ShaderMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.ShaderMaterial.prototype.clone = function () { var material = new THREE.ShaderMaterial(); THREE.Material.prototype.clone.call( this, material ); material.fragmentShader = this.fragmentShader; material.vertexShader = this.vertexShader; material.uniforms = THREE.UniformsUtils.clone( this.uniforms ); material.attributes = this.attributes; material.defines = this.defines; material.shading = this.shading; material.wireframe = this.wireframe; material.wireframeLinewidth = this.wireframeLinewidth; material.fog = this.fog; material.lights = this.lights; material.vertexColors = this.vertexColors; material.skinning = this.skinning; material.morphTargets = this.morphTargets; material.morphNormals = this.morphNormals; return material; }; // File:src/materials/RawShaderMaterial.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.RawShaderMaterial = function ( parameters ) { THREE.ShaderMaterial.call( this, parameters ); }; THREE.RawShaderMaterial.prototype = Object.create( THREE.ShaderMaterial.prototype ); THREE.RawShaderMaterial.prototype.clone = function () { var material = new THREE.RawShaderMaterial(); THREE.ShaderMaterial.prototype.clone.call( this, material ); return material; }; // File:src/materials/SpriteMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * uvOffset: new THREE.Vector2(), * uvScale: new THREE.Vector2(), * * fog: * } */ THREE.SpriteMaterial = function ( parameters ) { THREE.Material.call( this ); // defaults this.color = new THREE.Color( 0xffffff ); this.map = null; this.rotation = 0; this.fog = false; // set parameters this.setValues( parameters ); }; THREE.SpriteMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.SpriteMaterial.prototype.clone = function () { var material = new THREE.SpriteMaterial(); THREE.Material.prototype.clone.call( this, material ); material.color.copy( this.color ); material.map = this.map; material.rotation = this.rotation; material.fog = this.fog; return material; }; // File:src/materials/SpriteCanvasMaterial.js /** * @author mrdoob / http://mrdoob.com/ * * parameters = { * color: , * program: , * opacity: , * blending: THREE.NormalBlending * } */ THREE.SpriteCanvasMaterial = function ( parameters ) { THREE.Material.call( this ); this.color = new THREE.Color( 0xffffff ); this.program = function ( context, color ) {}; this.setValues( parameters ); }; THREE.SpriteCanvasMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.SpriteCanvasMaterial.prototype.clone = function () { var material = new THREE.SpriteCanvasMaterial(); THREE.Material.prototype.clone.call( this, material ); material.color.copy( this.color ); material.program = this.program; return material; }; // backwards compatibility THREE.ParticleCanvasMaterial = THREE.SpriteCanvasMaterial; // File:src/textures/Texture.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.Texture = function ( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { this.id = THREE.TextureIdCount ++; this.uuid = THREE.Math.generateUUID(); this.name = ''; this.image = image !== undefined ? image : THREE.Texture.DEFAULT_IMAGE; this.mipmaps = []; this.mapping = mapping !== undefined ? mapping : THREE.Texture.DEFAULT_MAPPING; this.wrapS = wrapS !== undefined ? wrapS : THREE.ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : THREE.ClampToEdgeWrapping; this.magFilter = magFilter !== undefined ? magFilter : THREE.LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : THREE.LinearMipMapLinearFilter; this.anisotropy = anisotropy !== undefined ? anisotropy : 1; this.format = format !== undefined ? format : THREE.RGBAFormat; this.type = type !== undefined ? type : THREE.UnsignedByteType; this.offset = new THREE.Vector2( 0, 0 ); this.repeat = new THREE.Vector2( 1, 1 ); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) this._needsUpdate = false; this.onUpdate = null; }; THREE.Texture.DEFAULT_IMAGE = undefined; THREE.Texture.DEFAULT_MAPPING = new THREE.UVMapping(); THREE.Texture.prototype = { constructor: THREE.Texture, get needsUpdate () { return this._needsUpdate; }, set needsUpdate ( value ) { if ( value === true ) this.update(); this._needsUpdate = value; }, clone: function ( texture ) { if ( texture === undefined ) texture = new THREE.Texture(); texture.image = this.image; texture.mipmaps = this.mipmaps.slice( 0 ); texture.mapping = this.mapping; texture.wrapS = this.wrapS; texture.wrapT = this.wrapT; texture.magFilter = this.magFilter; texture.minFilter = this.minFilter; texture.anisotropy = this.anisotropy; texture.format = this.format; texture.type = this.type; texture.offset.copy( this.offset ); texture.repeat.copy( this.repeat ); texture.generateMipmaps = this.generateMipmaps; texture.premultiplyAlpha = this.premultiplyAlpha; texture.flipY = this.flipY; texture.unpackAlignment = this.unpackAlignment; return texture; }, update: function () { this.dispatchEvent( { type: 'update' } ); }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.Texture.prototype ); THREE.TextureIdCount = 0; // File:src/textures/CubeTexture.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CubeTexture = function ( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { THREE.Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.images = images; }; THREE.CubeTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.CubeTexture.clone = function ( texture ) { if ( texture === undefined ) texture = new THREE.CubeTexture(); THREE.Texture.prototype.clone.call( this, texture ); texture.images = this.images; return texture; }; // File:src/textures/CompressedTexture.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.CompressedTexture = function ( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { width: width, height: height }; this.mipmaps = mipmaps; this.generateMipmaps = false; // WebGL currently can't generate mipmaps for compressed textures, they must be embedded in DDS file }; THREE.CompressedTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.CompressedTexture.prototype.clone = function () { var texture = new THREE.CompressedTexture(); THREE.Texture.prototype.clone.call( this, texture ); return texture; }; // File:src/textures/DataTexture.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.DataTexture = function ( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { data: data, width: width, height: height }; }; THREE.DataTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.DataTexture.prototype.clone = function () { var texture = new THREE.DataTexture(); THREE.Texture.prototype.clone.call( this, texture ); return texture; }; // File:src/objects/PointCloud.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.PointCloud = function ( geometry, material ) { THREE.Object3D.call( this ); this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.PointCloudMaterial( { color: Math.random() * 0xffffff } ); this.sortParticles = false; }; THREE.PointCloud.prototype = Object.create( THREE.Object3D.prototype ); THREE.PointCloud.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); return function ( raycaster, intersects ) { var object = this; var geometry = object.geometry; var threshold = raycaster.params.PointCloud.threshold; inverseMatrix.getInverse( this.matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); if ( geometry.boundingBox !== null ) { if ( ray.isIntersectionBox( geometry.boundingBox ) === false ) { return; } } var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var position = new THREE.Vector3(); var testPoint = function ( point, index ) { var rayPointDistance = ray.distanceToPoint( point ); if ( rayPointDistance < localThreshold ) { var intersectPoint = ray.closestPointToPoint( point ); intersectPoint.applyMatrix4( object.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectPoint ); intersects.push( { distance: distance, distanceToRay: rayPointDistance, point: intersectPoint.clone(), index: index, face: null, object: object } ); } }; if ( geometry instanceof THREE.BufferGeometry ) { var attributes = geometry.attributes; var positions = attributes.position.array; if ( attributes.index !== undefined ) { var indices = attributes.index.array; var offsets = geometry.offsets; if ( offsets.length === 0 ) { var offset = { start: 0, count: indices.length, index: 0 }; offsets = [ offset ]; } for ( var oi = 0, ol = offsets.length; oi < ol; ++oi ) { var start = offsets[ oi ].start; var count = offsets[ oi ].count; var index = offsets[ oi ].index; for ( var i = start, il = start + count; i < il; i ++ ) { var a = index + indices[ i ]; position.set( positions[ a * 3 ], positions[ a * 3 + 1 ], positions[ a * 3 + 2 ] ); testPoint( position, a ); } } } else { var pointCount = positions.length / 3; for ( var i = 0; i < pointCount; i ++ ) { position.set( positions[ 3 * i ], positions[ 3 * i + 1 ], positions[ 3 * i + 2 ] ); testPoint( position, i ); } } } else { var vertices = this.geometry.vertices; for ( var i = 0; i < vertices.length; i ++ ) { testPoint( vertices[ i ], i ); } } }; }() ); THREE.PointCloud.prototype.clone = function ( object ) { if ( object === undefined ) object = new THREE.PointCloud( this.geometry, this.material ); object.sortParticles = this.sortParticles; THREE.Object3D.prototype.clone.call( this, object ); return object; }; // Backwards compatibility THREE.ParticleSystem = function ( geometry, material ) { console.warn( 'THREE.ParticleSystem has been renamed to THREE.PointCloud.' ); return new THREE.PointCloud( geometry, material ); }; // File:src/objects/Line.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Line = function ( geometry, material, type ) { THREE.Object3D.call( this ); this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.LineBasicMaterial( { color: Math.random() * 0xffffff } ); this.type = ( type !== undefined ) ? type : THREE.LineStrip; }; THREE.LineStrip = 0; THREE.LinePieces = 1; THREE.Line.prototype = Object.create( THREE.Object3D.prototype ); THREE.Line.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); var sphere = new THREE.Sphere(); return function ( raycaster, intersects ) { var precision = raycaster.linePrecision; var precisionSq = precision * precision; var geometry = this.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); // Checking boundingSphere distance to ray sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( this.matrixWorld ); if ( raycaster.ray.isIntersectionSphere( sphere ) === false ) { return; } inverseMatrix.getInverse( this.matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); /* if ( geometry instanceof THREE.BufferGeometry ) { } else */ if ( geometry instanceof THREE.Geometry ) { var vertices = geometry.vertices; var nbVertices = vertices.length; var interSegment = new THREE.Vector3(); var interRay = new THREE.Vector3(); var step = this.type === THREE.LineStrip ? 1 : 2; for ( var i = 0; i < nbVertices - 1; i = i + step ) { var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment ); if ( distSq > precisionSq ) continue; var distance = ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), face: null, faceIndex: null, object: this } ); } } }; }() ); THREE.Line.prototype.clone = function ( object ) { if ( object === undefined ) object = new THREE.Line( this.geometry, this.material, this.type ); THREE.Object3D.prototype.clone.call( this, object ); return object; }; // File:src/objects/Mesh.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author jonobr1 / http://jonobr1.com/ */ THREE.Mesh = function ( geometry, material ) { THREE.Object3D.call( this ); this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.MeshBasicMaterial( { color: Math.random() * 0xffffff } ); this.updateMorphTargets(); }; THREE.Mesh.prototype = Object.create( THREE.Object3D.prototype ); THREE.Mesh.prototype.updateMorphTargets = function () { if ( this.geometry.morphTargets !== undefined && this.geometry.morphTargets.length > 0 ) { this.morphTargetBase = - 1; this.morphTargetForcedOrder = []; this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( var m = 0, ml = this.geometry.morphTargets.length; m < ml; m ++ ) { this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ this.geometry.morphTargets[ m ].name ] = m; } } }; THREE.Mesh.prototype.getMorphTargetIndexByName = function ( name ) { if ( this.morphTargetDictionary[ name ] !== undefined ) { return this.morphTargetDictionary[ name ]; } console.log( 'THREE.Mesh.getMorphTargetIndexByName: morph target ' + name + ' does not exist. Returning 0.' ); return 0; }; THREE.Mesh.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); var sphere = new THREE.Sphere(); var vA = new THREE.Vector3(); var vB = new THREE.Vector3(); var vC = new THREE.Vector3(); return function ( raycaster, intersects ) { var geometry = this.geometry; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( this.matrixWorld ); if ( raycaster.ray.isIntersectionSphere( sphere ) === false ) { return; } // Check boundingBox before continuing inverseMatrix.getInverse( this.matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); if ( geometry.boundingBox !== null ) { if ( ray.isIntersectionBox( geometry.boundingBox ) === false ) { return; } } if ( geometry instanceof THREE.BufferGeometry ) { var material = this.material; if ( material === undefined ) return; var attributes = geometry.attributes; var a, b, c; var precision = raycaster.precision; if ( attributes.index !== undefined ) { var indices = attributes.index.array; var positions = attributes.position.array; var offsets = geometry.offsets; if ( offsets.length === 0 ) { offsets = [ { start: 0, count: indices.length, index: 0 } ]; } for ( var oi = 0, ol = offsets.length; oi < ol; ++oi ) { var start = offsets[ oi ].start; var count = offsets[ oi ].count; var index = offsets[ oi ].index; for ( var i = start, il = start + count; i < il; i += 3 ) { a = index + indices[ i ]; b = index + indices[ i + 1 ]; c = index + indices[ i + 2 ]; vA.set( positions[ a * 3 ], positions[ a * 3 + 1 ], positions[ a * 3 + 2 ] ); vB.set( positions[ b * 3 ], positions[ b * 3 + 1 ], positions[ b * 3 + 2 ] ); vC.set( positions[ c * 3 ], positions[ c * 3 + 1 ], positions[ c * 3 + 2 ] ); if ( material.side === THREE.BackSide ) { var intersectionPoint = ray.intersectTriangle( vC, vB, vA, true ); } else { var intersectionPoint = ray.intersectTriangle( vA, vB, vC, material.side !== THREE.DoubleSide ); } if ( intersectionPoint === null ) continue; intersectionPoint.applyMatrix4( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectionPoint ); if ( distance < precision || distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, point: intersectionPoint, indices: [ a, b, c ], face: null, faceIndex: null, object: this } ); } } } else { var positions = attributes.position.array; for ( var i = 0, j = 0, il = positions.length; i < il; i += 3, j += 9 ) { a = i; b = i + 1; c = i + 2; vA.set( positions[ j ], positions[ j + 1 ], positions[ j + 2 ] ); vB.set( positions[ j + 3 ], positions[ j + 4 ], positions[ j + 5 ] ); vC.set( positions[ j + 6 ], positions[ j + 7 ], positions[ j + 8 ] ); if ( material.side === THREE.BackSide ) { var intersectionPoint = ray.intersectTriangle( vC, vB, vA, true ); } else { var intersectionPoint = ray.intersectTriangle( vA, vB, vC, material.side !== THREE.DoubleSide ); } if ( intersectionPoint === null ) continue; intersectionPoint.applyMatrix4( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectionPoint ); if ( distance < precision || distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, point: intersectionPoint, indices: [ a, b, c ], face: null, faceIndex: null, object: this } ); } } } else if ( geometry instanceof THREE.Geometry ) { var isFaceMaterial = this.material instanceof THREE.MeshFaceMaterial; var objectMaterials = isFaceMaterial === true ? this.material.materials : null; var a, b, c, d; var precision = raycaster.precision; var vertices = geometry.vertices; for ( var f = 0, fl = geometry.faces.length; f < fl; f ++ ) { var face = geometry.faces[ f ]; var material = isFaceMaterial === true ? objectMaterials[ face.materialIndex ] : this.material; if ( material === undefined ) continue; a = vertices[ face.a ]; b = vertices[ face.b ]; c = vertices[ face.c ]; if ( material.morphTargets === true ) { var morphTargets = geometry.morphTargets; var morphInfluences = this.morphTargetInfluences; vA.set( 0, 0, 0 ); vB.set( 0, 0, 0 ); vC.set( 0, 0, 0 ); for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) { var influence = morphInfluences[ t ]; if ( influence === 0 ) continue; var targets = morphTargets[ t ].vertices; vA.x += ( targets[ face.a ].x - a.x ) * influence; vA.y += ( targets[ face.a ].y - a.y ) * influence; vA.z += ( targets[ face.a ].z - a.z ) * influence; vB.x += ( targets[ face.b ].x - b.x ) * influence; vB.y += ( targets[ face.b ].y - b.y ) * influence; vB.z += ( targets[ face.b ].z - b.z ) * influence; vC.x += ( targets[ face.c ].x - c.x ) * influence; vC.y += ( targets[ face.c ].y - c.y ) * influence; vC.z += ( targets[ face.c ].z - c.z ) * influence; } vA.add( a ); vB.add( b ); vC.add( c ); a = vA; b = vB; c = vC; } if ( material.side === THREE.BackSide ) { var intersectionPoint = ray.intersectTriangle( c, b, a, true ); } else { var intersectionPoint = ray.intersectTriangle( a, b, c, material.side !== THREE.DoubleSide ); } if ( intersectionPoint === null ) continue; intersectionPoint.applyMatrix4( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectionPoint ); if ( distance < precision || distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, point: intersectionPoint, face: face, faceIndex: f, object: this } ); } } }; }() ); THREE.Mesh.prototype.clone = function ( object, recursive ) { if ( object === undefined ) object = new THREE.Mesh( this.geometry, this.material ); THREE.Object3D.prototype.clone.call( this, object, recursive ); return object; }; // File:src/objects/Bone.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ THREE.Bone = function ( belongsToSkin ) { THREE.Object3D.call( this ); this.skin = belongsToSkin; this.accumulatedRotWeight = 0; this.accumulatedPosWeight = 0; this.accumulatedSclWeight = 0; }; THREE.Bone.prototype = Object.create( THREE.Object3D.prototype ); THREE.Bone.prototype.updateMatrixWorld = function ( force ) { THREE.Object3D.prototype.updateMatrixWorld.call( this, force ); // Reset weights to be re-accumulated in the next frame this.accumulatedRotWeight = 0; this.accumulatedPosWeight = 0; this.accumulatedSclWeight = 0; }; // File:src/objects/Skeleton.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author michael guerrero / http://realitymeltdown.com * @author ikerr / http://verold.com */ THREE.Skeleton = function ( bones, boneInverses, useVertexTexture ) { this.useVertexTexture = useVertexTexture !== undefined ? useVertexTexture : true; this.identityMatrix = new THREE.Matrix4(); // copy the bone array bones = bones || []; this.bones = bones.slice( 0 ); // create a bone texture or an array of floats if ( this.useVertexTexture ) { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones (8 * 8 / 4) // 16x16 pixel texture max 64 bones (16 * 16 / 4) // 32x32 pixel texture max 256 bones (32 * 32 / 4) // 64x64 pixel texture max 1024 bones (64 * 64 / 4) var size; if ( this.bones.length > 256 ) size = 64; else if ( this.bones.length > 64 ) size = 32; else if ( this.bones.length > 16 ) size = 16; else size = 8; this.boneTextureWidth = size; this.boneTextureHeight = size; this.boneMatrices = new Float32Array( this.boneTextureWidth * this.boneTextureHeight * 4 ); // 4 floats per RGBA pixel this.boneTexture = new THREE.DataTexture( this.boneMatrices, this.boneTextureWidth, this.boneTextureHeight, THREE.RGBAFormat, THREE.FloatType ); this.boneTexture.minFilter = THREE.NearestFilter; this.boneTexture.magFilter = THREE.NearestFilter; this.boneTexture.generateMipmaps = false; this.boneTexture.flipY = false; } else { this.boneMatrices = new Float32Array( 16 * this.bones.length ); } // use the supplied bone inverses or calculate the inverses if ( boneInverses === undefined ) { this.calculateInverses(); } else { if ( this.bones.length === boneInverses.length ) { this.boneInverses = boneInverses.slice( 0 ); } else { console.warn( 'THREE.Skeleton bonInverses is the wrong length.' ); this.boneInverses = []; for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { this.boneInverses.push( new THREE.Matrix4() ); } } } }; THREE.Skeleton.prototype.calculateInverses = function () { this.boneInverses = []; for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { var inverse = new THREE.Matrix4(); if ( this.bones[ b ] ) { inverse.getInverse( this.bones[ b ].matrixWorld ); } this.boneInverses.push( inverse ); } }; THREE.Skeleton.prototype.pose = function () { var bone; // recover the bind-time world matrices for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { bone = this.bones[ b ]; if ( bone ) { bone.matrixWorld.getInverse( this.boneInverses[ b ] ); } } // compute the local matrices, positions, rotations and scales for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { bone = this.bones[ b ]; if ( bone ) { if ( bone.parent ) { bone.matrix.getInverse( bone.parent.matrixWorld ); bone.matrix.multiply( bone.matrixWorld ); } else { bone.matrix.copy( bone.matrixWorld ); } bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); } } }; THREE.Skeleton.prototype.update = function () { var offsetMatrix = new THREE.Matrix4(); // flatten bone matrices to array for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { // compute the offset between the current and the original transform var matrix = this.bones[ b ] ? this.bones[ b ].matrixWorld : this.identityMatrix; offsetMatrix.multiplyMatrices( matrix, this.boneInverses[ b ] ); offsetMatrix.flattenToArrayOffset( this.boneMatrices, b * 16 ); } if ( this.useVertexTexture ) { this.boneTexture.needsUpdate = true; } }; // File:src/objects/SkinnedMesh.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ THREE.SkinnedMesh = function ( geometry, material, useVertexTexture ) { THREE.Mesh.call( this, geometry, material ); this.bindMode = "attached"; this.bindMatrix = new THREE.Matrix4(); this.bindMatrixInverse = new THREE.Matrix4(); // init bones // TODO: remove bone creation as there is no reason (other than // convenience) for THREE.SkinnedMesh to do this. var bones = []; if ( this.geometry && this.geometry.bones !== undefined ) { var bone, gbone, p, q, s; for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++b ) { gbone = this.geometry.bones[ b ]; p = gbone.pos; q = gbone.rotq; s = gbone.scl; bone = new THREE.Bone( this ); bones.push( bone ); bone.name = gbone.name; bone.position.set( p[ 0 ], p[ 1 ], p[ 2 ] ); bone.quaternion.set( q[ 0 ], q[ 1 ], q[ 2 ], q[ 3 ] ); if ( s !== undefined ) { bone.scale.set( s[ 0 ], s[ 1 ], s[ 2 ] ); } else { bone.scale.set( 1, 1, 1 ); } } for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++b ) { gbone = this.geometry.bones[ b ]; if ( gbone.parent !== - 1 ) { bones[ gbone.parent ].add( bones[ b ] ); } else { this.add( bones[ b ] ); } } } this.normalizeSkinWeights(); this.updateMatrixWorld( true ); this.bind( new THREE.Skeleton( bones, undefined, useVertexTexture ) ); }; THREE.SkinnedMesh.prototype = Object.create( THREE.Mesh.prototype ); THREE.SkinnedMesh.prototype.bind = function( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.getInverse( bindMatrix ); }; THREE.SkinnedMesh.prototype.pose = function () { this.skeleton.pose(); }; THREE.SkinnedMesh.prototype.normalizeSkinWeights = function () { if ( this.geometry instanceof THREE.Geometry ) { for ( var i = 0; i < this.geometry.skinIndices.length; i ++ ) { var sw = this.geometry.skinWeights[ i ]; var scale = 1.0 / sw.lengthManhattan(); if ( scale !== Infinity ) { sw.multiplyScalar( scale ); } else { sw.set( 1 ); // this will be normalized by the shader anyway } } } else { // skinning weights assumed to be normalized for THREE.BufferGeometry } }; THREE.SkinnedMesh.prototype.updateMatrixWorld = function( force ) { THREE.Mesh.prototype.updateMatrixWorld.call( this, true ); if ( this.bindMode === "attached" ) { this.bindMatrixInverse.getInverse( this.matrixWorld ); } else if ( this.bindMode === "detached" ) { this.bindMatrixInverse.getInverse( this.bindMatrix ); } else { console.warn( 'THREE.SkinnedMesh unreckognized bindMode: ' + this.bindMode ); } }; THREE.SkinnedMesh.prototype.clone = function( object ) { if ( object === undefined ) { object = new THREE.SkinnedMesh( this.geometry, this.material, this.useVertexTexture ); } THREE.Mesh.prototype.clone.call( this, object ); return object; }; // File:src/objects/MorphAnimMesh.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.MorphAnimMesh = function ( geometry, material ) { THREE.Mesh.call( this, geometry, material ); // API this.duration = 1000; // milliseconds this.mirroredLoop = false; this.time = 0; // internals this.lastKeyframe = 0; this.currentKeyframe = 0; this.direction = 1; this.directionBackwards = false; this.setFrameRange( 0, this.geometry.morphTargets.length - 1 ); }; THREE.MorphAnimMesh.prototype = Object.create( THREE.Mesh.prototype ); THREE.MorphAnimMesh.prototype.setFrameRange = function ( start, end ) { this.startKeyframe = start; this.endKeyframe = end; this.length = this.endKeyframe - this.startKeyframe + 1; }; THREE.MorphAnimMesh.prototype.setDirectionForward = function () { this.direction = 1; this.directionBackwards = false; }; THREE.MorphAnimMesh.prototype.setDirectionBackward = function () { this.direction = - 1; this.directionBackwards = true; }; THREE.MorphAnimMesh.prototype.parseAnimations = function () { var geometry = this.geometry; if ( ! geometry.animations ) geometry.animations = {}; var firstAnimation, animations = geometry.animations; var pattern = /([a-z]+)_?(\d+)/; for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) { var morph = geometry.morphTargets[ i ]; var parts = morph.name.match( pattern ); if ( parts && parts.length > 1 ) { var label = parts[ 1 ]; var num = parts[ 2 ]; if ( ! animations[ label ] ) animations[ label ] = { start: Infinity, end: - Infinity }; var animation = animations[ label ]; if ( i < animation.start ) animation.start = i; if ( i > animation.end ) animation.end = i; if ( ! firstAnimation ) firstAnimation = label; } } geometry.firstAnimation = firstAnimation; }; THREE.MorphAnimMesh.prototype.setAnimationLabel = function ( label, start, end ) { if ( ! this.geometry.animations ) this.geometry.animations = {}; this.geometry.animations[ label ] = { start: start, end: end }; }; THREE.MorphAnimMesh.prototype.playAnimation = function ( label, fps ) { var animation = this.geometry.animations[ label ]; if ( animation ) { this.setFrameRange( animation.start, animation.end ); this.duration = 1000 * ( ( animation.end - animation.start ) / fps ); this.time = 0; } else { console.warn( 'animation[' + label + '] undefined' ); } }; THREE.MorphAnimMesh.prototype.updateAnimation = function ( delta ) { var frameTime = this.duration / this.length; this.time += this.direction * delta; if ( this.mirroredLoop ) { if ( this.time > this.duration || this.time < 0 ) { this.direction *= - 1; if ( this.time > this.duration ) { this.time = this.duration; this.directionBackwards = true; } if ( this.time < 0 ) { this.time = 0; this.directionBackwards = false; } } } else { this.time = this.time % this.duration; if ( this.time < 0 ) this.time += this.duration; } var keyframe = this.startKeyframe + THREE.Math.clamp( Math.floor( this.time / frameTime ), 0, this.length - 1 ); if ( keyframe !== this.currentKeyframe ) { this.morphTargetInfluences[ this.lastKeyframe ] = 0; this.morphTargetInfluences[ this.currentKeyframe ] = 1; this.morphTargetInfluences[ keyframe ] = 0; this.lastKeyframe = this.currentKeyframe; this.currentKeyframe = keyframe; } var mix = ( this.time % frameTime ) / frameTime; if ( this.directionBackwards ) { mix = 1 - mix; } this.morphTargetInfluences[ this.currentKeyframe ] = mix; this.morphTargetInfluences[ this.lastKeyframe ] = 1 - mix; }; THREE.MorphAnimMesh.prototype.interpolateTargets = function ( a, b, t ) { var influences = this.morphTargetInfluences; for ( var i = 0, l = influences.length; i < l; i ++ ) { influences[ i ] = 0; } if ( a > -1 ) influences[ a ] = 1 - t; if ( b > -1 ) influences[ b ] = t; }; THREE.MorphAnimMesh.prototype.clone = function ( object ) { if ( object === undefined ) object = new THREE.MorphAnimMesh( this.geometry, this.material ); object.duration = this.duration; object.mirroredLoop = this.mirroredLoop; object.time = this.time; object.lastKeyframe = this.lastKeyframe; object.currentKeyframe = this.currentKeyframe; object.direction = this.direction; object.directionBackwards = this.directionBackwards; THREE.Mesh.prototype.clone.call( this, object ); return object; }; // File:src/objects/LOD.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.LOD = function () { THREE.Object3D.call( this ); this.objects = []; }; THREE.LOD.prototype = Object.create( THREE.Object3D.prototype ); THREE.LOD.prototype.addLevel = function ( object, distance ) { if ( distance === undefined ) distance = 0; distance = Math.abs( distance ); for ( var l = 0; l < this.objects.length; l ++ ) { if ( distance < this.objects[ l ].distance ) { break; } } this.objects.splice( l, 0, { distance: distance, object: object } ); this.add( object ); }; THREE.LOD.prototype.getObjectForDistance = function ( distance ) { for ( var i = 1, l = this.objects.length; i < l; i ++ ) { if ( distance < this.objects[ i ].distance ) { break; } } return this.objects[ i - 1 ].object; }; THREE.LOD.prototype.raycast = ( function () { var matrixPosition = new THREE.Vector3(); return function ( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( matrixPosition ); this.getObjectForDistance( distance ).raycast( raycaster, intersects ); }; }() ); THREE.LOD.prototype.update = function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function ( camera ) { if ( this.objects.length > 1 ) { v1.setFromMatrixPosition( camera.matrixWorld ); v2.setFromMatrixPosition( this.matrixWorld ); var distance = v1.distanceTo( v2 ); this.objects[ 0 ].object.visible = true; for ( var i = 1, l = this.objects.length; i < l; i ++ ) { if ( distance >= this.objects[ i ].distance ) { this.objects[ i - 1 ].object.visible = false; this.objects[ i ].object.visible = true; } else { break; } } for ( ; i < l; i ++ ) { this.objects[ i ].object.visible = false; } } }; }(); THREE.LOD.prototype.clone = function ( object ) { if ( object === undefined ) object = new THREE.LOD(); THREE.Object3D.prototype.clone.call( this, object ); for ( var i = 0, l = this.objects.length; i < l; i ++ ) { var x = this.objects[ i ].object.clone(); x.visible = i === 0; object.addLevel( x, this.objects[ i ].distance ); } return object; }; // File:src/objects/Sprite.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Sprite = ( function () { var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0.5, - 0.5, 0, 0.5, 0.5, 0 ] ); var geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); return function ( material ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.SpriteMaterial(); }; } )(); THREE.Sprite.prototype = Object.create( THREE.Object3D.prototype ); THREE.Sprite.prototype.raycast = ( function () { var matrixPosition = new THREE.Vector3(); return function ( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distance = raycaster.ray.distanceToPoint( matrixPosition ); if ( distance > this.scale.x ) { return; } intersects.push( { distance: distance, point: this.position, face: null, object: this } ); }; }() ); THREE.Sprite.prototype.updateMatrix = function () { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; }; THREE.Sprite.prototype.clone = function ( object ) { if ( object === undefined ) object = new THREE.Sprite( this.material ); THREE.Object3D.prototype.clone.call( this, object ); return object; }; // Backwards compatibility THREE.Particle = THREE.Sprite; // File:src/scenes/Scene.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Scene = function () { THREE.Object3D.call( this ); this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer this.matrixAutoUpdate = false; this.__lights = []; this.__objectsAdded = []; this.__objectsRemoved = []; }; THREE.Scene.prototype = Object.create( THREE.Object3D.prototype ); THREE.Scene.prototype.__addObject = function ( object ) { if ( object instanceof THREE.Light ) { if ( this.__lights.indexOf( object ) === - 1 ) { this.__lights.push( object ); } if ( object.target && object.target.parent === undefined ) { this.add( object.target ); } } else if ( ! ( object instanceof THREE.Camera || object instanceof THREE.Bone ) ) { this.__objectsAdded.push( object ); // check if previously removed var i = this.__objectsRemoved.indexOf( object ); if ( i !== - 1 ) { this.__objectsRemoved.splice( i, 1 ); } } this.dispatchEvent( { type: 'objectAdded', object: object } ); object.dispatchEvent( { type: 'addedToScene', scene: this } ); for ( var c = 0; c < object.children.length; c ++ ) { this.__addObject( object.children[ c ] ); } }; THREE.Scene.prototype.__removeObject = function ( object ) { if ( object instanceof THREE.Light ) { var i = this.__lights.indexOf( object ); if ( i !== - 1 ) { this.__lights.splice( i, 1 ); } if ( object.shadowCascadeArray ) { for ( var x = 0; x < object.shadowCascadeArray.length; x ++ ) { this.__removeObject( object.shadowCascadeArray[ x ] ); } } } else if ( ! ( object instanceof THREE.Camera ) ) { this.__objectsRemoved.push( object ); // check if previously added var i = this.__objectsAdded.indexOf( object ); if ( i !== - 1 ) { this.__objectsAdded.splice( i, 1 ); } } this.dispatchEvent( { type: 'objectRemoved', object: object } ); object.dispatchEvent( { type: 'removedFromScene', scene: this } ); for ( var c = 0; c < object.children.length; c ++ ) { this.__removeObject( object.children[ c ] ); } }; THREE.Scene.prototype.clone = function ( object ) { if ( object === undefined ) object = new THREE.Scene(); THREE.Object3D.prototype.clone.call( this, object ); if ( this.fog !== null ) object.fog = this.fog.clone(); if ( this.overrideMaterial !== null ) object.overrideMaterial = this.overrideMaterial.clone(); object.autoUpdate = this.autoUpdate; object.matrixAutoUpdate = this.matrixAutoUpdate; return object; }; // File:src/scenes/Fog.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Fog = function ( color, near, far ) { this.name = ''; this.color = new THREE.Color( color ); this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000; }; THREE.Fog.prototype.clone = function () { return new THREE.Fog( this.color.getHex(), this.near, this.far ); }; // File:src/scenes/FogExp2.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.FogExp2 = function ( color, density ) { this.name = ''; this.color = new THREE.Color( color ); this.density = ( density !== undefined ) ? density : 0.00025; }; THREE.FogExp2.prototype.clone = function () { return new THREE.FogExp2( this.color.getHex(), this.density ); }; // File:src/renderers/CanvasRenderer.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CanvasRenderer = function ( parameters ) { console.log( 'THREE.CanvasRenderer', THREE.REVISION ); var smoothstep = THREE.Math.smoothstep; parameters = parameters || {}; var _this = this, _renderData, _elements, _lights, _projector = new THREE.Projector(), _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ), _canvasWidth = _canvas.width, _canvasHeight = _canvas.height, _canvasWidthHalf = Math.floor( _canvasWidth / 2 ), _canvasHeightHalf = Math.floor( _canvasHeight / 2 ), _viewportX = 0, _viewportY = 0, _viewportWidth = _canvasWidth, _viewportHeight = _canvasHeight, _context = _canvas.getContext( '2d', { alpha: parameters.alpha === true } ), _clearColor = new THREE.Color( 0x000000 ), _clearAlpha = 0, _contextGlobalAlpha = 1, _contextGlobalCompositeOperation = 0, _contextStrokeStyle = null, _contextFillStyle = null, _contextLineWidth = null, _contextLineCap = null, _contextLineJoin = null, _contextLineDash = [], _camera, _v1, _v2, _v3, _v4, _v5 = new THREE.RenderableVertex(), _v6 = new THREE.RenderableVertex(), _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _v4x, _v4y, _v5x, _v5y, _v6x, _v6y, _color = new THREE.Color(), _color1 = new THREE.Color(), _color2 = new THREE.Color(), _color3 = new THREE.Color(), _color4 = new THREE.Color(), _diffuseColor = new THREE.Color(), _emissiveColor = new THREE.Color(), _lightColor = new THREE.Color(), _patterns = {}, _image, _uvs, _uv1x, _uv1y, _uv2x, _uv2y, _uv3x, _uv3y, _clipBox = new THREE.Box2(), _clearBox = new THREE.Box2(), _elemBox = new THREE.Box2(), _ambientLight = new THREE.Color(), _directionalLights = new THREE.Color(), _pointLights = new THREE.Color(), _vector3 = new THREE.Vector3(), // Needed for PointLight _centroid = new THREE.Vector3(), _normal = new THREE.Vector3(), _normalViewMatrix = new THREE.Matrix3(); // dash+gap fallbacks for Firefox and everything else if ( _context.setLineDash === undefined ) { _context.setLineDash = function () {} } this.domElement = _canvas; this.devicePixelRatio = parameters.devicePixelRatio !== undefined ? parameters.devicePixelRatio : self.devicePixelRatio !== undefined ? self.devicePixelRatio : 1; this.autoClear = true; this.sortObjects = true; this.sortElements = true; this.info = { render: { vertices: 0, faces: 0 } } // WebGLRenderer compatibility this.supportsVertexTextures = function () {}; this.setFaceCulling = function () {}; this.setSize = function ( width, height, updateStyle ) { _canvasWidth = width * this.devicePixelRatio; _canvasHeight = height * this.devicePixelRatio; _canvas.width = _canvasWidth; _canvas.height = _canvasHeight; _canvasWidthHalf = Math.floor( _canvasWidth / 2 ); _canvasHeightHalf = Math.floor( _canvasHeight / 2 ); if ( updateStyle !== false ) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } _clipBox.min.set( -_canvasWidthHalf, -_canvasHeightHalf ), _clipBox.max.set( _canvasWidthHalf, _canvasHeightHalf ); _clearBox.min.set( - _canvasWidthHalf, - _canvasHeightHalf ); _clearBox.max.set( _canvasWidthHalf, _canvasHeightHalf ); _contextGlobalAlpha = 1; _contextGlobalCompositeOperation = 0; _contextStrokeStyle = null; _contextFillStyle = null; _contextLineWidth = null; _contextLineCap = null; _contextLineJoin = null; this.setViewport( 0, 0, width, height ); }; this.setViewport = function ( x, y, width, height ) { _viewportX = x * this.devicePixelRatio; _viewportY = y * this.devicePixelRatio; _viewportWidth = width * this.devicePixelRatio; _viewportHeight = height * this.devicePixelRatio; }; this.setScissor = function () {}; this.enableScissorTest = function () {}; this.setClearColor = function ( color, alpha ) { _clearColor.set( color ); _clearAlpha = alpha !== undefined ? alpha : 1; _clearBox.min.set( - _canvasWidthHalf, - _canvasHeightHalf ); _clearBox.max.set( _canvasWidthHalf, _canvasHeightHalf ); }; this.setClearColorHex = function ( hex, alpha ) { console.warn( 'THREE.CanvasRenderer: .setClearColorHex() is being removed. Use .setClearColor() instead.' ); this.setClearColor( hex, alpha ); }; this.getClearColor = function () { return _clearColor; }; this.getClearAlpha = function () { return _clearAlpha; }; this.getMaxAnisotropy = function () { return 0; }; this.clear = function () { if ( _clearBox.empty() === false ) { _clearBox.intersect( _clipBox ); _clearBox.expandByScalar( 2 ); _clearBox.min.x = _clearBox.min.x + _canvasWidthHalf; _clearBox.min.y = - _clearBox.min.y + _canvasHeightHalf; _clearBox.max.x = _clearBox.max.x + _canvasWidthHalf; _clearBox.max.y = - _clearBox.max.y + _canvasHeightHalf; if ( _clearAlpha < 1 ) { _context.clearRect( _clearBox.min.x | 0, _clearBox.min.y | 0, ( _clearBox.max.x - _clearBox.min.x ) | 0, ( _clearBox.max.y - _clearBox.min.y ) | 0 ); } if ( _clearAlpha > 0 ) { setBlending( THREE.NormalBlending ); setOpacity( 1 ); setFillStyle( 'rgba(' + Math.floor( _clearColor.r * 255 ) + ',' + Math.floor( _clearColor.g * 255 ) + ',' + Math.floor( _clearColor.b * 255 ) + ',' + _clearAlpha + ')' ); _context.fillRect( _clearBox.min.x | 0, _clearBox.min.y | 0, ( _clearBox.max.x - _clearBox.min.x ) | 0, ( _clearBox.max.y - _clearBox.min.y ) | 0 ); } _clearBox.makeEmpty(); } }; // compatibility this.clearColor = function () {}; this.clearDepth = function () {}; this.clearStencil = function () {}; this.render = function ( scene, camera ) { if ( camera instanceof THREE.Camera === false ) { console.error( 'THREE.CanvasRenderer.render: camera is not an instance of THREE.Camera.' ); return; } if ( this.autoClear === true ) this.clear(); _this.info.render.vertices = 0; _this.info.render.faces = 0; _context.setTransform( _viewportWidth / _canvasWidth, 0, 0, - _viewportHeight / _canvasHeight, _viewportX, _canvasHeight - _viewportY ); _context.translate( _canvasWidthHalf, _canvasHeightHalf ); _renderData = _projector.projectScene( scene, camera, this.sortObjects, this.sortElements ); _elements = _renderData.elements; _lights = _renderData.lights; _camera = camera; _normalViewMatrix.getNormalMatrix( camera.matrixWorldInverse ); /* DEBUG setFillStyle( 'rgba( 0, 255, 255, 0.5 )' ); _context.fillRect( _clipBox.min.x, _clipBox.min.y, _clipBox.max.x - _clipBox.min.x, _clipBox.max.y - _clipBox.min.y ); */ calculateLights(); for ( var e = 0, el = _elements.length; e < el; e ++ ) { var element = _elements[ e ]; var material = element.material; if ( material === undefined || material.opacity === 0 ) continue; _elemBox.makeEmpty(); if ( element instanceof THREE.RenderableSprite ) { _v1 = element; _v1.x *= _canvasWidthHalf; _v1.y *= _canvasHeightHalf; renderSprite( _v1, element, material ); } else if ( element instanceof THREE.RenderableLine ) { _v1 = element.v1; _v2 = element.v2; _v1.positionScreen.x *= _canvasWidthHalf; _v1.positionScreen.y *= _canvasHeightHalf; _v2.positionScreen.x *= _canvasWidthHalf; _v2.positionScreen.y *= _canvasHeightHalf; _elemBox.setFromPoints( [ _v1.positionScreen, _v2.positionScreen ] ); if ( _clipBox.isIntersectionBox( _elemBox ) === true ) { renderLine( _v1, _v2, element, material ); } } else if ( element instanceof THREE.RenderableFace ) { _v1 = element.v1; _v2 = element.v2; _v3 = element.v3; if ( _v1.positionScreen.z < - 1 || _v1.positionScreen.z > 1 ) continue; if ( _v2.positionScreen.z < - 1 || _v2.positionScreen.z > 1 ) continue; if ( _v3.positionScreen.z < - 1 || _v3.positionScreen.z > 1 ) continue; _v1.positionScreen.x *= _canvasWidthHalf; _v1.positionScreen.y *= _canvasHeightHalf; _v2.positionScreen.x *= _canvasWidthHalf; _v2.positionScreen.y *= _canvasHeightHalf; _v3.positionScreen.x *= _canvasWidthHalf; _v3.positionScreen.y *= _canvasHeightHalf; if ( material.overdraw > 0 ) { expand( _v1.positionScreen, _v2.positionScreen, material.overdraw ); expand( _v2.positionScreen, _v3.positionScreen, material.overdraw ); expand( _v3.positionScreen, _v1.positionScreen, material.overdraw ); } _elemBox.setFromPoints( [ _v1.positionScreen, _v2.positionScreen, _v3.positionScreen ] ); if ( _clipBox.isIntersectionBox( _elemBox ) === true ) { renderFace3( _v1, _v2, _v3, 0, 1, 2, element, material ); } } /* DEBUG setLineWidth( 1 ); setStrokeStyle( 'rgba( 0, 255, 0, 0.5 )' ); _context.strokeRect( _elemBox.min.x, _elemBox.min.y, _elemBox.max.x - _elemBox.min.x, _elemBox.max.y - _elemBox.min.y ); */ _clearBox.union( _elemBox ); } /* DEBUG setLineWidth( 1 ); setStrokeStyle( 'rgba( 255, 0, 0, 0.5 )' ); _context.strokeRect( _clearBox.min.x, _clearBox.min.y, _clearBox.max.x - _clearBox.min.x, _clearBox.max.y - _clearBox.min.y ); */ _context.setTransform( 1, 0, 0, 1, 0, 0 ); }; // function calculateLights() { _ambientLight.setRGB( 0, 0, 0 ); _directionalLights.setRGB( 0, 0, 0 ); _pointLights.setRGB( 0, 0, 0 ); for ( var l = 0, ll = _lights.length; l < ll; l ++ ) { var light = _lights[ l ]; var lightColor = light.color; if ( light instanceof THREE.AmbientLight ) { _ambientLight.add( lightColor ); } else if ( light instanceof THREE.DirectionalLight ) { // for sprites _directionalLights.add( lightColor ); } else if ( light instanceof THREE.PointLight ) { // for sprites _pointLights.add( lightColor ); } } } function calculateLight( position, normal, color ) { for ( var l = 0, ll = _lights.length; l < ll; l ++ ) { var light = _lights[ l ]; _lightColor.copy( light.color ); if ( light instanceof THREE.DirectionalLight ) { var lightPosition = _vector3.setFromMatrixPosition( light.matrixWorld ).normalize(); var amount = normal.dot( lightPosition ); if ( amount <= 0 ) continue; amount *= light.intensity; color.add( _lightColor.multiplyScalar( amount ) ); } else if ( light instanceof THREE.PointLight ) { var lightPosition = _vector3.setFromMatrixPosition( light.matrixWorld ); var amount = normal.dot( _vector3.subVectors( lightPosition, position ).normalize() ); if ( amount <= 0 ) continue; amount *= light.distance == 0 ? 1 : 1 - Math.min( position.distanceTo( lightPosition ) / light.distance, 1 ); if ( amount == 0 ) continue; amount *= light.intensity; color.add( _lightColor.multiplyScalar( amount ) ); } } } function renderSprite( v1, element, material ) { setOpacity( material.opacity ); setBlending( material.blending ); var scaleX = element.scale.x * _canvasWidthHalf; var scaleY = element.scale.y * _canvasHeightHalf; var dist = 0.5 * Math.sqrt( scaleX * scaleX + scaleY * scaleY ); // allow for rotated sprite _elemBox.min.set( v1.x - dist, v1.y - dist ); _elemBox.max.set( v1.x + dist, v1.y + dist ); if ( material instanceof THREE.SpriteMaterial ) { var texture = material.map; if ( texture !== null && texture.image !== undefined ) { if ( texture.hasEventListener( 'update', onTextureUpdate ) === false ) { if ( texture.image.width > 0 ) { textureToPattern( texture ); } texture.addEventListener( 'update', onTextureUpdate ); } var pattern = _patterns[ texture.id ]; if ( pattern !== undefined ) { setFillStyle( pattern ); } else { setFillStyle( 'rgba( 0, 0, 0, 1 )' ); } // var bitmap = texture.image; var ox = bitmap.width * texture.offset.x; var oy = bitmap.height * texture.offset.y; var sx = bitmap.width * texture.repeat.x; var sy = bitmap.height * texture.repeat.y; var cx = scaleX / sx; var cy = scaleY / sy; _context.save(); _context.translate( v1.x, v1.y ); if ( material.rotation !== 0 ) _context.rotate( material.rotation ); _context.translate( - scaleX / 2, - scaleY / 2 ); _context.scale( cx, cy ); _context.translate( - ox, - oy ); _context.fillRect( ox, oy, sx, sy ); _context.restore(); } else { // no texture setFillStyle( material.color.getStyle() ); _context.save(); _context.translate( v1.x, v1.y ); if ( material.rotation !== 0 ) _context.rotate( material.rotation ); _context.scale( scaleX, - scaleY ); _context.fillRect( - 0.5, - 0.5, 1, 1 ); _context.restore(); } } else if ( material instanceof THREE.SpriteCanvasMaterial ) { setStrokeStyle( material.color.getStyle() ); setFillStyle( material.color.getStyle() ); _context.save(); _context.translate( v1.x, v1.y ); if ( material.rotation !== 0 ) _context.rotate( material.rotation ); _context.scale( scaleX, scaleY ); material.program( _context ); _context.restore(); } /* DEBUG setStrokeStyle( 'rgb(255,255,0)' ); _context.beginPath(); _context.moveTo( v1.x - 10, v1.y ); _context.lineTo( v1.x + 10, v1.y ); _context.moveTo( v1.x, v1.y - 10 ); _context.lineTo( v1.x, v1.y + 10 ); _context.stroke(); */ } function renderLine( v1, v2, element, material ) { setOpacity( material.opacity ); setBlending( material.blending ); _context.beginPath(); _context.moveTo( v1.positionScreen.x, v1.positionScreen.y ); _context.lineTo( v2.positionScreen.x, v2.positionScreen.y ); if ( material instanceof THREE.LineBasicMaterial ) { setLineWidth( material.linewidth ); setLineCap( material.linecap ); setLineJoin( material.linejoin ); if ( material.vertexColors !== THREE.VertexColors ) { setStrokeStyle( material.color.getStyle() ); } else { var colorStyle1 = element.vertexColors[ 0 ].getStyle(); var colorStyle2 = element.vertexColors[ 1 ].getStyle(); if ( colorStyle1 === colorStyle2 ) { setStrokeStyle( colorStyle1 ); } else { try { var grad = _context.createLinearGradient( v1.positionScreen.x, v1.positionScreen.y, v2.positionScreen.x, v2.positionScreen.y ); grad.addColorStop( 0, colorStyle1 ); grad.addColorStop( 1, colorStyle2 ); } catch ( exception ) { grad = colorStyle1; } setStrokeStyle( grad ); } } _context.stroke(); _elemBox.expandByScalar( material.linewidth * 2 ); } else if ( material instanceof THREE.LineDashedMaterial ) { setLineWidth( material.linewidth ); setLineCap( material.linecap ); setLineJoin( material.linejoin ); setStrokeStyle( material.color.getStyle() ); setLineDash( [ material.dashSize, material.gapSize ] ); _context.stroke(); _elemBox.expandByScalar( material.linewidth * 2 ); setLineDash( [] ); } } function renderFace3( v1, v2, v3, uv1, uv2, uv3, element, material ) { _this.info.render.vertices += 3; _this.info.render.faces ++; setOpacity( material.opacity ); setBlending( material.blending ); _v1x = v1.positionScreen.x; _v1y = v1.positionScreen.y; _v2x = v2.positionScreen.x; _v2y = v2.positionScreen.y; _v3x = v3.positionScreen.x; _v3y = v3.positionScreen.y; drawTriangle( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y ); if ( ( material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshPhongMaterial ) && material.map === null ) { _diffuseColor.copy( material.color ); _emissiveColor.copy( material.emissive ); if ( material.vertexColors === THREE.FaceColors ) { _diffuseColor.multiply( element.color ); } _color.copy( _ambientLight ); _centroid.copy( v1.positionWorld ).add( v2.positionWorld ).add( v3.positionWorld ).divideScalar( 3 ); calculateLight( _centroid, element.normalModel, _color ); _color.multiply( _diffuseColor ).add( _emissiveColor ); material.wireframe === true ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color ); } else if ( material instanceof THREE.MeshBasicMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshPhongMaterial ) { if ( material.map !== null ) { if ( material.map.mapping instanceof THREE.UVMapping ) { _uvs = element.uvs; patternPath( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _uvs[ uv1 ].x, _uvs[ uv1 ].y, _uvs[ uv2 ].x, _uvs[ uv2 ].y, _uvs[ uv3 ].x, _uvs[ uv3 ].y, material.map ); } } else if ( material.envMap !== null ) { if ( material.envMap.mapping instanceof THREE.SphericalReflectionMapping ) { _normal.copy( element.vertexNormalsModel[ uv1 ] ).applyMatrix3( _normalViewMatrix ); _uv1x = 0.5 * _normal.x + 0.5; _uv1y = 0.5 * _normal.y + 0.5; _normal.copy( element.vertexNormalsModel[ uv2 ] ).applyMatrix3( _normalViewMatrix ); _uv2x = 0.5 * _normal.x + 0.5; _uv2y = 0.5 * _normal.y + 0.5; _normal.copy( element.vertexNormalsModel[ uv3 ] ).applyMatrix3( _normalViewMatrix ); _uv3x = 0.5 * _normal.x + 0.5; _uv3y = 0.5 * _normal.y + 0.5; patternPath( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _uv1x, _uv1y, _uv2x, _uv2y, _uv3x, _uv3y, material.envMap ); } else if ( material.envMap.mapping instanceof THREE.SphericalRefractionMapping ) { _normal.copy( element.vertexNormalsModel[ uv1 ] ).applyMatrix3( _normalViewMatrix ); _uv1x = - 0.5 * _normal.x + 0.5; _uv1y = - 0.5 * _normal.y + 0.5; _normal.copy( element.vertexNormalsModel[ uv2 ] ).applyMatrix3( _normalViewMatrix ); _uv2x = - 0.5 * _normal.x + 0.5; _uv2y = - 0.5 * _normal.y + 0.5; _normal.copy( element.vertexNormalsModel[ uv3 ] ).applyMatrix3( _normalViewMatrix ); _uv3x = - 0.5 * _normal.x + 0.5; _uv3y = - 0.5 * _normal.y + 0.5; patternPath( _v1x, _v1y, _v2x, _v2y, _v3x, _v3y, _uv1x, _uv1y, _uv2x, _uv2y, _uv3x, _uv3y, material.envMap ); } } else { _color.copy( material.color ); if ( material.vertexColors === THREE.FaceColors ) { _color.multiply( element.color ); } material.wireframe === true ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color ); } } else if ( material instanceof THREE.MeshDepthMaterial ) { _color.r = _color.g = _color.b = 1 - smoothstep( v1.positionScreen.z * v1.positionScreen.w, _camera.near, _camera.far ); material.wireframe === true ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color ); } else if ( material instanceof THREE.MeshNormalMaterial ) { _normal.copy( element.normalModel ).applyMatrix3( _normalViewMatrix ); _color.setRGB( _normal.x, _normal.y, _normal.z ).multiplyScalar( 0.5 ).addScalar( 0.5 ); material.wireframe === true ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color ); } else { _color.setRGB( 1, 1, 1 ); material.wireframe === true ? strokePath( _color, material.wireframeLinewidth, material.wireframeLinecap, material.wireframeLinejoin ) : fillPath( _color ); } } // function drawTriangle( x0, y0, x1, y1, x2, y2 ) { _context.beginPath(); _context.moveTo( x0, y0 ); _context.lineTo( x1, y1 ); _context.lineTo( x2, y2 ); _context.closePath(); } function strokePath( color, linewidth, linecap, linejoin ) { setLineWidth( linewidth ); setLineCap( linecap ); setLineJoin( linejoin ); setStrokeStyle( color.getStyle() ); _context.stroke(); _elemBox.expandByScalar( linewidth * 2 ); } function fillPath( color ) { setFillStyle( color.getStyle() ); _context.fill(); } function onTextureUpdate ( event ) { textureToPattern( event.target ); } function textureToPattern( texture ) { if ( texture instanceof THREE.CompressedTexture ) return; var repeatX = texture.wrapS === THREE.RepeatWrapping; var repeatY = texture.wrapT === THREE.RepeatWrapping; var image = texture.image; var canvas = document.createElement( 'canvas' ); canvas.width = image.width; canvas.height = image.height; var context = canvas.getContext( '2d' ); context.setTransform( 1, 0, 0, - 1, 0, image.height ); context.drawImage( image, 0, 0 ); _patterns[ texture.id ] = _context.createPattern( canvas, repeatX === true && repeatY === true ? 'repeat' : repeatX === true && repeatY === false ? 'repeat-x' : repeatX === false && repeatY === true ? 'repeat-y' : 'no-repeat' ); } function patternPath( x0, y0, x1, y1, x2, y2, u0, v0, u1, v1, u2, v2, texture ) { if ( texture instanceof THREE.DataTexture ) return; if ( texture.hasEventListener( 'update', onTextureUpdate ) === false ) { if ( texture.image !== undefined && texture.image.width > 0 ) { textureToPattern( texture ); } texture.addEventListener( 'update', onTextureUpdate ); } var pattern = _patterns[ texture.id ]; if ( pattern !== undefined ) { setFillStyle( pattern ); } else { setFillStyle( 'rgba(0,0,0,1)' ); _context.fill(); return; } // http://extremelysatisfactorytotalitarianism.com/blog/?p=2120 var a, b, c, d, e, f, det, idet, offsetX = texture.offset.x / texture.repeat.x, offsetY = texture.offset.y / texture.repeat.y, width = texture.image.width * texture.repeat.x, height = texture.image.height * texture.repeat.y; u0 = ( u0 + offsetX ) * width; v0 = ( v0 + offsetY ) * height; u1 = ( u1 + offsetX ) * width; v1 = ( v1 + offsetY ) * height; u2 = ( u2 + offsetX ) * width; v2 = ( v2 + offsetY ) * height; x1 -= x0; y1 -= y0; x2 -= x0; y2 -= y0; u1 -= u0; v1 -= v0; u2 -= u0; v2 -= v0; det = u1 * v2 - u2 * v1; if ( det === 0 ) return; idet = 1 / det; a = ( v2 * x1 - v1 * x2 ) * idet; b = ( v2 * y1 - v1 * y2 ) * idet; c = ( u1 * x2 - u2 * x1 ) * idet; d = ( u1 * y2 - u2 * y1 ) * idet; e = x0 - a * u0 - c * v0; f = y0 - b * u0 - d * v0; _context.save(); _context.transform( a, b, c, d, e, f ); _context.fill(); _context.restore(); } function clipImage( x0, y0, x1, y1, x2, y2, u0, v0, u1, v1, u2, v2, image ) { // http://extremelysatisfactorytotalitarianism.com/blog/?p=2120 var a, b, c, d, e, f, det, idet, width = image.width - 1, height = image.height - 1; u0 *= width; v0 *= height; u1 *= width; v1 *= height; u2 *= width; v2 *= height; x1 -= x0; y1 -= y0; x2 -= x0; y2 -= y0; u1 -= u0; v1 -= v0; u2 -= u0; v2 -= v0; det = u1 * v2 - u2 * v1; idet = 1 / det; a = ( v2 * x1 - v1 * x2 ) * idet; b = ( v2 * y1 - v1 * y2 ) * idet; c = ( u1 * x2 - u2 * x1 ) * idet; d = ( u1 * y2 - u2 * y1 ) * idet; e = x0 - a * u0 - c * v0; f = y0 - b * u0 - d * v0; _context.save(); _context.transform( a, b, c, d, e, f ); _context.clip(); _context.drawImage( image, 0, 0 ); _context.restore(); } // Hide anti-alias gaps function expand( v1, v2, pixels ) { var x = v2.x - v1.x, y = v2.y - v1.y, det = x * x + y * y, idet; if ( det === 0 ) return; idet = pixels / Math.sqrt( det ); x *= idet; y *= idet; v2.x += x; v2.y += y; v1.x -= x; v1.y -= y; } // Context cached methods. function setOpacity( value ) { if ( _contextGlobalAlpha !== value ) { _context.globalAlpha = value; _contextGlobalAlpha = value; } } function setBlending( value ) { if ( _contextGlobalCompositeOperation !== value ) { if ( value === THREE.NormalBlending ) { _context.globalCompositeOperation = 'source-over'; } else if ( value === THREE.AdditiveBlending ) { _context.globalCompositeOperation = 'lighter'; } else if ( value === THREE.SubtractiveBlending ) { _context.globalCompositeOperation = 'darker'; } _contextGlobalCompositeOperation = value; } } function setLineWidth( value ) { if ( _contextLineWidth !== value ) { _context.lineWidth = value; _contextLineWidth = value; } } function setLineCap( value ) { // "butt", "round", "square" if ( _contextLineCap !== value ) { _context.lineCap = value; _contextLineCap = value; } } function setLineJoin( value ) { // "round", "bevel", "miter" if ( _contextLineJoin !== value ) { _context.lineJoin = value; _contextLineJoin = value; } } function setStrokeStyle( value ) { if ( _contextStrokeStyle !== value ) { _context.strokeStyle = value; _contextStrokeStyle = value; } } function setFillStyle( value ) { if ( _contextFillStyle !== value ) { _context.fillStyle = value; _contextFillStyle = value; } } function setLineDash( value ) { if ( _contextLineDash.length !== value.length ) { _context.setLineDash( value ); _contextLineDash = value; } } }; // File:src/renderers/shaders/ShaderChunk.js THREE.ShaderChunk = {}; // File:src/renderers/shaders/ShaderChunk/alphatest_fragment.glsl THREE.ShaderChunk[ 'alphatest_fragment'] = "#ifdef ALPHATEST\n\n if ( gl_FragColor.a < ALPHATEST ) discard;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_lambert_vertex.glsl THREE.ShaderChunk[ 'lights_lambert_vertex'] = "vLightFront = vec3( 0.0 );\n\n#ifdef DOUBLE_SIDED\n\n vLightBack = vec3( 0.0 );\n\n#endif\n\ntransformedNormal = normalize( transformedNormal );\n\n#if MAX_DIR_LIGHTS > 0\n\nfor( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {\n\n vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );\n vec3 dirVector = normalize( lDirection.xyz );\n\n float dotProduct = dot( transformedNormal, dirVector );\n vec3 directionalLightWeighting = vec3( max( dotProduct, 0.0 ) );\n\n #ifdef DOUBLE_SIDED\n\n vec3 directionalLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );\n\n #ifdef WRAP_AROUND\n\n vec3 directionalLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );\n\n #endif\n\n #endif\n\n #ifdef WRAP_AROUND\n\n vec3 directionalLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );\n directionalLightWeighting = mix( directionalLightWeighting, directionalLightWeightingHalf, wrapRGB );\n\n #ifdef DOUBLE_SIDED\n\n directionalLightWeightingBack = mix( directionalLightWeightingBack, directionalLightWeightingHalfBack, wrapRGB );\n\n #endif\n\n #endif\n\n vLightFront += directionalLightColor[ i ] * directionalLightWeighting;\n\n #ifdef DOUBLE_SIDED\n\n vLightBack += directionalLightColor[ i ] * directionalLightWeightingBack;\n\n #endif\n\n}\n\n#endif\n\n#if MAX_POINT_LIGHTS > 0\n\n for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {\n\n vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );\n vec3 lVector = lPosition.xyz - mvPosition.xyz;\n\n float lDistance = 1.0;\n if ( pointLightDistance[ i ] > 0.0 )\n lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );\n\n lVector = normalize( lVector );\n float dotProduct = dot( transformedNormal, lVector );\n\n vec3 pointLightWeighting = vec3( max( dotProduct, 0.0 ) );\n\n #ifdef DOUBLE_SIDED\n\n vec3 pointLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );\n\n #ifdef WRAP_AROUND\n\n vec3 pointLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );\n\n #endif\n\n #endif\n\n #ifdef WRAP_AROUND\n\n vec3 pointLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );\n pointLightWeighting = mix( pointLightWeighting, pointLightWeightingHalf, wrapRGB );\n\n #ifdef DOUBLE_SIDED\n\n pointLightWeightingBack = mix( pointLightWeightingBack, pointLightWeightingHalfBack, wrapRGB );\n\n #endif\n\n #endif\n\n vLightFront += pointLightColor[ i ] * pointLightWeighting * lDistance;\n\n #ifdef DOUBLE_SIDED\n\n vLightBack += pointLightColor[ i ] * pointLightWeightingBack * lDistance;\n\n #endif\n\n }\n\n#endif\n\n#if MAX_SPOT_LIGHTS > 0\n\n for( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {\n\n vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );\n vec3 lVector = lPosition.xyz - mvPosition.xyz;\n\n float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - worldPosition.xyz ) );\n\n if ( spotEffect > spotLightAngleCos[ i ] ) {\n\n spotEffect = max( pow( max( spotEffect, 0.0 ), spotLightExponent[ i ] ), 0.0 );\n\n float lDistance = 1.0;\n if ( spotLightDistance[ i ] > 0.0 )\n lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );\n\n lVector = normalize( lVector );\n\n float dotProduct = dot( transformedNormal, lVector );\n vec3 spotLightWeighting = vec3( max( dotProduct, 0.0 ) );\n\n #ifdef DOUBLE_SIDED\n\n vec3 spotLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );\n\n #ifdef WRAP_AROUND\n\n vec3 spotLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );\n\n #endif\n\n #endif\n\n #ifdef WRAP_AROUND\n\n vec3 spotLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );\n spotLightWeighting = mix( spotLightWeighting, spotLightWeightingHalf, wrapRGB );\n\n #ifdef DOUBLE_SIDED\n\n spotLightWeightingBack = mix( spotLightWeightingBack, spotLightWeightingHalfBack, wrapRGB );\n\n #endif\n\n #endif\n\n vLightFront += spotLightColor[ i ] * spotLightWeighting * lDistance * spotEffect;\n\n #ifdef DOUBLE_SIDED\n\n vLightBack += spotLightColor[ i ] * spotLightWeightingBack * lDistance * spotEffect;\n\n #endif\n\n }\n\n }\n\n#endif\n\n#if MAX_HEMI_LIGHTS > 0\n\n for( int i = 0; i < MAX_HEMI_LIGHTS; i ++ ) {\n\n vec4 lDirection = viewMatrix * vec4( hemisphereLightDirection[ i ], 0.0 );\n vec3 lVector = normalize( lDirection.xyz );\n\n float dotProduct = dot( transformedNormal, lVector );\n\n float hemiDiffuseWeight = 0.5 * dotProduct + 0.5;\n float hemiDiffuseWeightBack = -0.5 * dotProduct + 0.5;\n\n vLightFront += mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );\n\n #ifdef DOUBLE_SIDED\n\n vLightBack += mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeightBack );\n\n #endif\n\n }\n\n#endif\n\nvLightFront = vLightFront * diffuse + ambient * ambientLightColor + emissive;\n\n#ifdef DOUBLE_SIDED\n\n vLightBack = vLightBack * diffuse + ambient * ambientLightColor + emissive;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/map_particle_pars_fragment.glsl THREE.ShaderChunk[ 'map_particle_pars_fragment'] = "#ifdef USE_MAP\n\n uniform sampler2D map;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/default_vertex.glsl THREE.ShaderChunk[ 'default_vertex'] = "vec4 mvPosition;\n\n#ifdef USE_SKINNING\n\n mvPosition = modelViewMatrix * skinned;\n\n#endif\n\n#if !defined( USE_SKINNING ) && defined( USE_MORPHTARGETS )\n\n mvPosition = modelViewMatrix * vec4( morphed, 1.0 );\n\n#endif\n\n#if !defined( USE_SKINNING ) && ! defined( USE_MORPHTARGETS )\n\n mvPosition = modelViewMatrix * vec4( position, 1.0 );\n\n#endif\n\ngl_Position = projectionMatrix * mvPosition;"; // File:src/renderers/shaders/ShaderChunk/map_pars_fragment.glsl THREE.ShaderChunk[ 'map_pars_fragment'] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )\n\n varying vec2 vUv;\n\n#endif\n\n#ifdef USE_MAP\n\n uniform sampler2D map;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/skinnormal_vertex.glsl THREE.ShaderChunk[ 'skinnormal_vertex'] = "#ifdef USE_SKINNING\n\n mat4 skinMatrix = mat4( 0.0 );\n skinMatrix += skinWeight.x * boneMatX;\n skinMatrix += skinWeight.y * boneMatY;\n skinMatrix += skinWeight.z * boneMatZ;\n skinMatrix += skinWeight.w * boneMatW;\n skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\n #ifdef USE_MORPHNORMALS\n\n vec4 skinnedNormal = skinMatrix * vec4( morphedNormal, 0.0 );\n\n #else\n\n vec4 skinnedNormal = skinMatrix * vec4( normal, 0.0 );\n\n #endif\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_vertex.glsl THREE.ShaderChunk[ 'logdepthbuf_pars_vertex'] = "#ifdef USE_LOGDEPTHBUF\n\n #ifdef USE_LOGDEPTHBUF_EXT\n\n varying float vFragDepth;\n\n #endif\n\n uniform float logDepthBufFC;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/lightmap_pars_vertex.glsl THREE.ShaderChunk[ 'lightmap_pars_vertex'] = "#ifdef USE_LIGHTMAP\n\n varying vec2 vUv2;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/lights_phong_fragment.glsl THREE.ShaderChunk[ 'lights_phong_fragment'] = "vec3 normal = normalize( vNormal );\nvec3 viewPosition = normalize( vViewPosition );\n\n#ifdef DOUBLE_SIDED\n\n normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );\n\n#endif\n\n#ifdef USE_NORMALMAP\n\n normal = perturbNormal2Arb( -vViewPosition, normal );\n\n#elif defined( USE_BUMPMAP )\n\n normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n\n#endif\n\n#if MAX_POINT_LIGHTS > 0\n\n vec3 pointDiffuse = vec3( 0.0 );\n vec3 pointSpecular = vec3( 0.0 );\n\n for ( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {\n\n vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );\n vec3 lVector = lPosition.xyz + vViewPosition.xyz;\n\n float lDistance = 1.0;\n if ( pointLightDistance[ i ] > 0.0 )\n lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );\n\n lVector = normalize( lVector );\n\n // diffuse\n\n float dotProduct = dot( normal, lVector );\n\n #ifdef WRAP_AROUND\n\n float pointDiffuseWeightFull = max( dotProduct, 0.0 );\n float pointDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );\n\n vec3 pointDiffuseWeight = mix( vec3( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), wrapRGB );\n\n #else\n\n float pointDiffuseWeight = max( dotProduct, 0.0 );\n\n #endif\n\n pointDiffuse += diffuse * pointLightColor[ i ] * pointDiffuseWeight * lDistance;\n\n // specular\n\n vec3 pointHalfVector = normalize( lVector + viewPosition );\n float pointDotNormalHalf = max( dot( normal, pointHalfVector ), 0.0 );\n float pointSpecularWeight = specularStrength * max( pow( pointDotNormalHalf, shininess ), 0.0 );\n\n float specularNormalization = ( shininess + 2.0 ) / 8.0;\n\n vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVector, pointHalfVector ), 0.0 ), 5.0 );\n pointSpecular += schlick * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * lDistance * specularNormalization;\n\n }\n\n#endif\n\n#if MAX_SPOT_LIGHTS > 0\n\n vec3 spotDiffuse = vec3( 0.0 );\n vec3 spotSpecular = vec3( 0.0 );\n\n for ( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {\n\n vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );\n vec3 lVector = lPosition.xyz + vViewPosition.xyz;\n\n float lDistance = 1.0;\n if ( spotLightDistance[ i ] > 0.0 )\n lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );\n\n lVector = normalize( lVector );\n\n float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - vWorldPosition ) );\n\n if ( spotEffect > spotLightAngleCos[ i ] ) {\n\n spotEffect = max( pow( max( spotEffect, 0.0 ), spotLightExponent[ i ] ), 0.0 );\n\n // diffuse\n\n float dotProduct = dot( normal, lVector );\n\n #ifdef WRAP_AROUND\n\n float spotDiffuseWeightFull = max( dotProduct, 0.0 );\n float spotDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );\n\n vec3 spotDiffuseWeight = mix( vec3( spotDiffuseWeightFull ), vec3( spotDiffuseWeightHalf ), wrapRGB );\n\n #else\n\n float spotDiffuseWeight = max( dotProduct, 0.0 );\n\n #endif\n\n spotDiffuse += diffuse * spotLightColor[ i ] * spotDiffuseWeight * lDistance * spotEffect;\n\n // specular\n\n vec3 spotHalfVector = normalize( lVector + viewPosition );\n float spotDotNormalHalf = max( dot( normal, spotHalfVector ), 0.0 );\n float spotSpecularWeight = specularStrength * max( pow( spotDotNormalHalf, shininess ), 0.0 );\n\n float specularNormalization = ( shininess + 2.0 ) / 8.0;\n\n vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVector, spotHalfVector ), 0.0 ), 5.0 );\n spotSpecular += schlick * spotLightColor[ i ] * spotSpecularWeight * spotDiffuseWeight * lDistance * specularNormalization * spotEffect;\n\n }\n\n }\n\n#endif\n\n#if MAX_DIR_LIGHTS > 0\n\n vec3 dirDiffuse = vec3( 0.0 );\n vec3 dirSpecular = vec3( 0.0 );\n\n for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {\n\n vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );\n vec3 dirVector = normalize( lDirection.xyz );\n\n // diffuse\n\n float dotProduct = dot( normal, dirVector );\n\n #ifdef WRAP_AROUND\n\n float dirDiffuseWeightFull = max( dotProduct, 0.0 );\n float dirDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );\n\n vec3 dirDiffuseWeight = mix( vec3( dirDiffuseWeightFull ), vec3( dirDiffuseWeightHalf ), wrapRGB );\n\n #else\n\n float dirDiffuseWeight = max( dotProduct, 0.0 );\n\n #endif\n\n dirDiffuse += diffuse * directionalLightColor[ i ] * dirDiffuseWeight;\n\n // specular\n\n vec3 dirHalfVector = normalize( dirVector + viewPosition );\n float dirDotNormalHalf = max( dot( normal, dirHalfVector ), 0.0 );\n float dirSpecularWeight = specularStrength * max( pow( dirDotNormalHalf, shininess ), 0.0 );\n\n /*\n // fresnel term from skin shader\n const float F0 = 0.128;\n\n float base = 1.0 - dot( viewPosition, dirHalfVector );\n float exponential = pow( base, 5.0 );\n\n float fresnel = exponential + F0 * ( 1.0 - exponential );\n */\n\n /*\n // fresnel term from fresnel shader\n const float mFresnelBias = 0.08;\n const float mFresnelScale = 0.3;\n const float mFresnelPower = 5.0;\n\n float fresnel = mFresnelBias + mFresnelScale * pow( 1.0 + dot( normalize( -viewPosition ), normal ), mFresnelPower );\n */\n\n float specularNormalization = ( shininess + 2.0 ) / 8.0;\n\n // dirSpecular += specular * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization * fresnel;\n\n vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( dirVector, dirHalfVector ), 0.0 ), 5.0 );\n dirSpecular += schlick * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization;\n\n\n }\n\n#endif\n\n#if MAX_HEMI_LIGHTS > 0\n\n vec3 hemiDiffuse = vec3( 0.0 );\n vec3 hemiSpecular = vec3( 0.0 );\n\n for( int i = 0; i < MAX_HEMI_LIGHTS; i ++ ) {\n\n vec4 lDirection = viewMatrix * vec4( hemisphereLightDirection[ i ], 0.0 );\n vec3 lVector = normalize( lDirection.xyz );\n\n // diffuse\n\n float dotProduct = dot( normal, lVector );\n float hemiDiffuseWeight = 0.5 * dotProduct + 0.5;\n\n vec3 hemiColor = mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );\n\n hemiDiffuse += diffuse * hemiColor;\n\n // specular (sky light)\n\n vec3 hemiHalfVectorSky = normalize( lVector + viewPosition );\n float hemiDotNormalHalfSky = 0.5 * dot( normal, hemiHalfVectorSky ) + 0.5;\n float hemiSpecularWeightSky = specularStrength * max( pow( max( hemiDotNormalHalfSky, 0.0 ), shininess ), 0.0 );\n\n // specular (ground light)\n\n vec3 lVectorGround = -lVector;\n\n vec3 hemiHalfVectorGround = normalize( lVectorGround + viewPosition );\n float hemiDotNormalHalfGround = 0.5 * dot( normal, hemiHalfVectorGround ) + 0.5;\n float hemiSpecularWeightGround = specularStrength * max( pow( max( hemiDotNormalHalfGround, 0.0 ), shininess ), 0.0 );\n\n float dotProductGround = dot( normal, lVectorGround );\n\n float specularNormalization = ( shininess + 2.0 ) / 8.0;\n\n vec3 schlickSky = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVector, hemiHalfVectorSky ), 0.0 ), 5.0 );\n vec3 schlickGround = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVectorGround, hemiHalfVectorGround ), 0.0 ), 5.0 );\n hemiSpecular += hemiColor * specularNormalization * ( schlickSky * hemiSpecularWeightSky * max( dotProduct, 0.0 ) + schlickGround * hemiSpecularWeightGround * max( dotProductGround, 0.0 ) );\n\n }\n\n#endif\n\nvec3 totalDiffuse = vec3( 0.0 );\nvec3 totalSpecular = vec3( 0.0 );\n\n#if MAX_DIR_LIGHTS > 0\n\n totalDiffuse += dirDiffuse;\n totalSpecular += dirSpecular;\n\n#endif\n\n#if MAX_HEMI_LIGHTS > 0\n\n totalDiffuse += hemiDiffuse;\n totalSpecular += hemiSpecular;\n\n#endif\n\n#if MAX_POINT_LIGHTS > 0\n\n totalDiffuse += pointDiffuse;\n totalSpecular += pointSpecular;\n\n#endif\n\n#if MAX_SPOT_LIGHTS > 0\n\n totalDiffuse += spotDiffuse;\n totalSpecular += spotSpecular;\n\n#endif\n\n#ifdef METAL\n\n gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient + totalSpecular );\n\n#else\n\n gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient ) + totalSpecular;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/fog_pars_fragment.glsl THREE.ShaderChunk[ 'fog_pars_fragment'] = "#ifdef USE_FOG\n\n uniform vec3 fogColor;\n\n #ifdef FOG_EXP2\n\n uniform float fogDensity;\n\n #else\n\n uniform float fogNear;\n uniform float fogFar;\n #endif\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/morphnormal_vertex.glsl THREE.ShaderChunk[ 'morphnormal_vertex'] = "#ifdef USE_MORPHNORMALS\n\n vec3 morphedNormal = vec3( 0.0 );\n\n morphedNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n morphedNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n morphedNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n morphedNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n\n morphedNormal += normal;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/envmap_pars_fragment.glsl THREE.ShaderChunk[ 'envmap_pars_fragment'] = "#ifdef USE_ENVMAP\n\n uniform float reflectivity;\n uniform samplerCube envMap;\n uniform float flipEnvMap;\n uniform int combine;\n\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\n uniform bool useRefract;\n uniform float refractionRatio;\n\n #else\n\n varying vec3 vReflect;\n\n #endif\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_fragment.glsl THREE.ShaderChunk[ 'logdepthbuf_fragment'] = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\n\n gl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/normalmap_pars_fragment.glsl THREE.ShaderChunk[ 'normalmap_pars_fragment'] = "#ifdef USE_NORMALMAP\n\n uniform sampler2D normalMap;\n uniform vec2 normalScale;\n\n // Per-Pixel Tangent Space Normal Mapping\n // http://hacksoflife.blogspot.ch/2009/11/per-pixel-tangent-space-normal-mapping.html\n\n vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n\n vec3 q0 = dFdx( eye_pos.xyz );\n vec3 q1 = dFdy( eye_pos.xyz );\n vec2 st0 = dFdx( vUv.st );\n vec2 st1 = dFdy( vUv.st );\n\n vec3 S = normalize( q0 * st1.t - q1 * st0.t );\n vec3 T = normalize( -q0 * st1.s + q1 * st0.s );\n vec3 N = normalize( surf_norm );\n\n vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n mapN.xy = normalScale * mapN.xy;\n mat3 tsn = mat3( S, T, N );\n return normalize( tsn * mapN );\n\n }\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_pars_vertex.glsl THREE.ShaderChunk[ 'lights_phong_pars_vertex'] = "#if MAX_SPOT_LIGHTS > 0 || defined( USE_BUMPMAP ) || defined( USE_ENVMAP )\n\n varying vec3 vWorldPosition;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lightmap_pars_fragment.glsl THREE.ShaderChunk[ 'lightmap_pars_fragment'] = "#ifdef USE_LIGHTMAP\n\n varying vec2 vUv2;\n uniform sampler2D lightMap;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/shadowmap_vertex.glsl THREE.ShaderChunk[ 'shadowmap_vertex'] = "#ifdef USE_SHADOWMAP\n\n for( int i = 0; i < MAX_SHADOWS; i ++ ) {\n\n vShadowCoord[ i ] = shadowMatrix[ i ] * worldPosition;\n\n }\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/lights_phong_vertex.glsl THREE.ShaderChunk[ 'lights_phong_vertex'] = "#if MAX_SPOT_LIGHTS > 0 || defined( USE_BUMPMAP ) || defined( USE_ENVMAP )\n\n vWorldPosition = worldPosition.xyz;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/map_fragment.glsl THREE.ShaderChunk[ 'map_fragment'] = "#ifdef USE_MAP\n\n vec4 texelColor = texture2D( map, vUv );\n\n #ifdef GAMMA_INPUT\n\n texelColor.xyz *= texelColor.xyz;\n\n #endif\n\n gl_FragColor = gl_FragColor * texelColor;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/lightmap_vertex.glsl THREE.ShaderChunk[ 'lightmap_vertex'] = "#ifdef USE_LIGHTMAP\n\n vUv2 = uv2;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/map_particle_fragment.glsl THREE.ShaderChunk[ 'map_particle_fragment'] = "#ifdef USE_MAP\n\n gl_FragColor = gl_FragColor * texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) );\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/color_pars_fragment.glsl THREE.ShaderChunk[ 'color_pars_fragment'] = "#ifdef USE_COLOR\n\n varying vec3 vColor;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/color_vertex.glsl THREE.ShaderChunk[ 'color_vertex'] = "#ifdef USE_COLOR\n\n #ifdef GAMMA_INPUT\n\n vColor = color * color;\n\n #else\n\n vColor = color;\n\n #endif\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/skinning_vertex.glsl THREE.ShaderChunk[ 'skinning_vertex'] = "#ifdef USE_SKINNING\n\n #ifdef USE_MORPHTARGETS\n\n vec4 skinVertex = bindMatrix * vec4( morphed, 1.0 );\n\n #else\n\n vec4 skinVertex = bindMatrix * vec4( position, 1.0 );\n\n #endif\n\n vec4 skinned = vec4( 0.0 );\n skinned += boneMatX * skinVertex * skinWeight.x;\n skinned += boneMatY * skinVertex * skinWeight.y;\n skinned += boneMatZ * skinVertex * skinWeight.z;\n skinned += boneMatW * skinVertex * skinWeight.w;\n skinned = bindMatrixInverse * skinned;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_pars_vertex.glsl THREE.ShaderChunk[ 'envmap_pars_vertex'] = "#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP )\n\n varying vec3 vReflect;\n\n uniform float refractionRatio;\n uniform bool useRefract;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/linear_to_gamma_fragment.glsl THREE.ShaderChunk[ 'linear_to_gamma_fragment'] = "#ifdef GAMMA_OUTPUT\n\n gl_FragColor.xyz = sqrt( gl_FragColor.xyz );\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/color_pars_vertex.glsl THREE.ShaderChunk[ 'color_pars_vertex'] = "#ifdef USE_COLOR\n\n varying vec3 vColor;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/lights_lambert_pars_vertex.glsl THREE.ShaderChunk[ 'lights_lambert_pars_vertex'] = "uniform vec3 ambient;\nuniform vec3 diffuse;\nuniform vec3 emissive;\n\nuniform vec3 ambientLightColor;\n\n#if MAX_DIR_LIGHTS > 0\n\n uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];\n uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];\n\n#endif\n\n#if MAX_HEMI_LIGHTS > 0\n\n uniform vec3 hemisphereLightSkyColor[ MAX_HEMI_LIGHTS ];\n uniform vec3 hemisphereLightGroundColor[ MAX_HEMI_LIGHTS ];\n uniform vec3 hemisphereLightDirection[ MAX_HEMI_LIGHTS ];\n\n#endif\n\n#if MAX_POINT_LIGHTS > 0\n\n uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];\n uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];\n uniform float pointLightDistance[ MAX_POINT_LIGHTS ];\n\n#endif\n\n#if MAX_SPOT_LIGHTS > 0\n\n uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];\n uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];\n uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];\n uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];\n uniform float spotLightAngleCos[ MAX_SPOT_LIGHTS ];\n uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];\n\n#endif\n\n#ifdef WRAP_AROUND\n\n uniform vec3 wrapRGB;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/map_pars_vertex.glsl THREE.ShaderChunk[ 'map_pars_vertex'] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )\n\n varying vec2 vUv;\n uniform vec4 offsetRepeat;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_fragment.glsl THREE.ShaderChunk[ 'envmap_fragment'] = "#ifdef USE_ENVMAP\n\n vec3 reflectVec;\n\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\n vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n\n // http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transformations\n // Transforming Normal Vectors with the Inverse Transformation\n\n vec3 worldNormal = normalize( vec3( vec4( normal, 0.0 ) * viewMatrix ) );\n\n if ( useRefract ) {\n\n reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n\n } else { \n\n reflectVec = reflect( cameraToVertex, worldNormal );\n\n }\n\n #else\n\n reflectVec = vReflect;\n\n #endif\n\n #ifdef DOUBLE_SIDED\n\n float flipNormal = ( -1.0 + 2.0 * float( gl_FrontFacing ) );\n vec4 cubeColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\n #else\n\n vec4 cubeColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\n #endif\n\n #ifdef GAMMA_INPUT\n\n cubeColor.xyz *= cubeColor.xyz;\n\n #endif\n\n if ( combine == 1 ) {\n\n gl_FragColor.xyz = mix( gl_FragColor.xyz, cubeColor.xyz, specularStrength * reflectivity );\n\n } else if ( combine == 2 ) {\n\n gl_FragColor.xyz += cubeColor.xyz * specularStrength * reflectivity;\n\n } else {\n\n gl_FragColor.xyz = mix( gl_FragColor.xyz, gl_FragColor.xyz * cubeColor.xyz, specularStrength * reflectivity );\n\n }\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/specularmap_pars_fragment.glsl THREE.ShaderChunk[ 'specularmap_pars_fragment'] = "#ifdef USE_SPECULARMAP\n\n uniform sampler2D specularMap;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_vertex.glsl THREE.ShaderChunk[ 'logdepthbuf_vertex'] = "#ifdef USE_LOGDEPTHBUF\n\n gl_Position.z = log2(max(1e-6, gl_Position.w + 1.0)) * logDepthBufFC;\n\n #ifdef USE_LOGDEPTHBUF_EXT\n\n vFragDepth = 1.0 + gl_Position.w;\n\n#else\n\n gl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\n\n #endif\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/morphtarget_pars_vertex.glsl THREE.ShaderChunk[ 'morphtarget_pars_vertex'] = "#ifdef USE_MORPHTARGETS\n\n #ifndef USE_MORPHNORMALS\n\n uniform float morphTargetInfluences[ 8 ];\n\n #else\n\n uniform float morphTargetInfluences[ 4 ];\n\n #endif\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/specularmap_fragment.glsl THREE.ShaderChunk[ 'specularmap_fragment'] = "float specularStrength;\n\n#ifdef USE_SPECULARMAP\n\n vec4 texelSpecular = texture2D( specularMap, vUv );\n specularStrength = texelSpecular.r;\n\n#else\n\n specularStrength = 1.0;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/fog_fragment.glsl THREE.ShaderChunk[ 'fog_fragment'] = "#ifdef USE_FOG\n\n #ifdef USE_LOGDEPTHBUF_EXT\n\n float depth = gl_FragDepthEXT / gl_FragCoord.w;\n\n #else\n\n float depth = gl_FragCoord.z / gl_FragCoord.w;\n\n #endif\n\n #ifdef FOG_EXP2\n\n const float LOG2 = 1.442695;\n float fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );\n fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );\n\n #else\n\n float fogFactor = smoothstep( fogNear, fogFar, depth );\n\n #endif\n \n gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/bumpmap_pars_fragment.glsl THREE.ShaderChunk[ 'bumpmap_pars_fragment'] = "#ifdef USE_BUMPMAP\n\n uniform sampler2D bumpMap;\n uniform float bumpScale;\n\n // Derivative maps - bump mapping unparametrized surfaces by Morten Mikkelsen\n // http://mmikkelsen3d.blogspot.sk/2011/07/derivative-maps.html\n\n // Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2)\n\n vec2 dHdxy_fwd() {\n\n vec2 dSTdx = dFdx( vUv );\n vec2 dSTdy = dFdy( vUv );\n\n float Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\n return vec2( dBx, dBy );\n\n }\n\n vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\n vec3 vSigmaX = dFdx( surf_pos );\n vec3 vSigmaY = dFdy( surf_pos );\n vec3 vN = surf_norm; // normalized\n\n vec3 R1 = cross( vSigmaY, vN );\n vec3 R2 = cross( vN, vSigmaX );\n\n float fDet = dot( vSigmaX, R1 );\n\n vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n return normalize( abs( fDet ) * surf_norm - vGrad );\n\n }\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/defaultnormal_vertex.glsl THREE.ShaderChunk[ 'defaultnormal_vertex'] = "vec3 objectNormal;\n\n#ifdef USE_SKINNING\n\n objectNormal = skinnedNormal.xyz;\n\n#endif\n\n#if !defined( USE_SKINNING ) && defined( USE_MORPHNORMALS )\n\n objectNormal = morphedNormal;\n\n#endif\n\n#if !defined( USE_SKINNING ) && ! defined( USE_MORPHNORMALS )\n\n objectNormal = normal;\n\n#endif\n\n#ifdef FLIP_SIDED\n\n objectNormal = -objectNormal;\n\n#endif\n\nvec3 transformedNormal = normalMatrix * objectNormal;"; // File:src/renderers/shaders/ShaderChunk/lights_phong_pars_fragment.glsl THREE.ShaderChunk[ 'lights_phong_pars_fragment'] = "uniform vec3 ambientLightColor;\n\n#if MAX_DIR_LIGHTS > 0\n\n uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];\n uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];\n\n#endif\n\n#if MAX_HEMI_LIGHTS > 0\n\n uniform vec3 hemisphereLightSkyColor[ MAX_HEMI_LIGHTS ];\n uniform vec3 hemisphereLightGroundColor[ MAX_HEMI_LIGHTS ];\n uniform vec3 hemisphereLightDirection[ MAX_HEMI_LIGHTS ];\n\n#endif\n\n#if MAX_POINT_LIGHTS > 0\n\n uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];\n\n uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];\n uniform float pointLightDistance[ MAX_POINT_LIGHTS ];\n\n#endif\n\n#if MAX_SPOT_LIGHTS > 0\n\n uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];\n uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];\n uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];\n uniform float spotLightAngleCos[ MAX_SPOT_LIGHTS ];\n uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];\n\n uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];\n\n#endif\n\n#if MAX_SPOT_LIGHTS > 0 || defined( USE_BUMPMAP ) || defined( USE_ENVMAP )\n\n varying vec3 vWorldPosition;\n\n#endif\n\n#ifdef WRAP_AROUND\n\n uniform vec3 wrapRGB;\n\n#endif\n\nvarying vec3 vViewPosition;\nvarying vec3 vNormal;"; // File:src/renderers/shaders/ShaderChunk/skinbase_vertex.glsl THREE.ShaderChunk[ 'skinbase_vertex'] = "#ifdef USE_SKINNING\n\n mat4 boneMatX = getBoneMatrix( skinIndex.x );\n mat4 boneMatY = getBoneMatrix( skinIndex.y );\n mat4 boneMatZ = getBoneMatrix( skinIndex.z );\n mat4 boneMatW = getBoneMatrix( skinIndex.w );\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/map_vertex.glsl THREE.ShaderChunk[ 'map_vertex'] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )\n\n vUv = uv * offsetRepeat.zw + offsetRepeat.xy;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/lightmap_fragment.glsl THREE.ShaderChunk[ 'lightmap_fragment'] = "#ifdef USE_LIGHTMAP\n\n gl_FragColor = gl_FragColor * texture2D( lightMap, vUv2 );\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/shadowmap_pars_vertex.glsl THREE.ShaderChunk[ 'shadowmap_pars_vertex'] = "#ifdef USE_SHADOWMAP\n\n varying vec4 vShadowCoord[ MAX_SHADOWS ];\n uniform mat4 shadowMatrix[ MAX_SHADOWS ];\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/color_fragment.glsl THREE.ShaderChunk[ 'color_fragment'] = "#ifdef USE_COLOR\n\n gl_FragColor = gl_FragColor * vec4( vColor, 1.0 );\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/morphtarget_vertex.glsl THREE.ShaderChunk[ 'morphtarget_vertex'] = "#ifdef USE_MORPHTARGETS\n\n vec3 morphed = vec3( 0.0 );\n morphed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n morphed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n morphed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n morphed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n\n #ifndef USE_MORPHNORMALS\n\n morphed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n morphed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n morphed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n morphed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n\n #endif\n\n morphed += position;\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/envmap_vertex.glsl THREE.ShaderChunk[ 'envmap_vertex'] = "#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP )\n\n vec3 worldNormal = mat3( modelMatrix[ 0 ].xyz, modelMatrix[ 1 ].xyz, modelMatrix[ 2 ].xyz ) * objectNormal;\n worldNormal = normalize( worldNormal );\n\n vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\n if ( useRefract ) {\n\n vReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\n } else {\n\n vReflect = reflect( cameraToVertex, worldNormal );\n\n }\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/shadowmap_fragment.glsl THREE.ShaderChunk[ 'shadowmap_fragment'] = "#ifdef USE_SHADOWMAP\n\n #ifdef SHADOWMAP_DEBUG\n\n vec3 frustumColors[3];\n frustumColors[0] = vec3( 1.0, 0.5, 0.0 );\n frustumColors[1] = vec3( 0.0, 1.0, 0.8 );\n frustumColors[2] = vec3( 0.0, 0.5, 1.0 );\n\n #endif\n\n #ifdef SHADOWMAP_CASCADE\n\n int inFrustumCount = 0;\n\n #endif\n\n float fDepth;\n vec3 shadowColor = vec3( 1.0 );\n\n for( int i = 0; i < MAX_SHADOWS; i ++ ) {\n\n vec3 shadowCoord = vShadowCoord[ i ].xyz / vShadowCoord[ i ].w;\n\n // if ( something && something ) breaks ATI OpenGL shader compiler\n // if ( all( something, something ) ) using this instead\n\n bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n bool inFrustum = all( inFrustumVec );\n\n // don't shadow pixels outside of light frustum\n // use just first frustum (for cascades)\n // don't shadow pixels behind far plane of light frustum\n\n #ifdef SHADOWMAP_CASCADE\n\n inFrustumCount += int( inFrustum );\n bvec3 frustumTestVec = bvec3( inFrustum, inFrustumCount == 1, shadowCoord.z <= 1.0 );\n\n #else\n\n bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\n #endif\n\n bool frustumTest = all( frustumTestVec );\n\n if ( frustumTest ) {\n\n shadowCoord.z += shadowBias[ i ];\n\n #if defined( SHADOWMAP_TYPE_PCF )\n\n // Percentage-close filtering\n // (9 pixel kernel)\n // http://fabiensanglard.net/shadowmappingPCF/\n\n float shadow = 0.0;\n\n /*\n // nested loops breaks shader compiler / validator on some ATI cards when using OpenGL\n // must enroll loop manually\n\n for ( float y = -1.25; y <= 1.25; y += 1.25 )\n for ( float x = -1.25; x <= 1.25; x += 1.25 ) {\n\n vec4 rgbaDepth = texture2D( shadowMap[ i ], vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy );\n\n // doesn't seem to produce any noticeable visual difference compared to simple texture2D lookup\n //vec4 rgbaDepth = texture2DProj( shadowMap[ i ], vec4( vShadowCoord[ i ].w * ( vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy ), 0.05, vShadowCoord[ i ].w ) );\n\n float fDepth = unpackDepth( rgbaDepth );\n\n if ( fDepth < shadowCoord.z )\n shadow += 1.0;\n\n }\n\n shadow /= 9.0;\n\n */\n\n const float shadowDelta = 1.0 / 9.0;\n\n float xPixelOffset = 1.0 / shadowMapSize[ i ].x;\n float yPixelOffset = 1.0 / shadowMapSize[ i ].y;\n\n float dx0 = -1.25 * xPixelOffset;\n float dy0 = -1.25 * yPixelOffset;\n float dx1 = 1.25 * xPixelOffset;\n float dy1 = 1.25 * yPixelOffset;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );\n if ( fDepth < shadowCoord.z ) shadow += shadowDelta;\n\n shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );\n\n #elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\n // Percentage-close filtering\n // (9 pixel kernel)\n // http://fabiensanglard.net/shadowmappingPCF/\n\n float shadow = 0.0;\n\n float xPixelOffset = 1.0 / shadowMapSize[ i ].x;\n float yPixelOffset = 1.0 / shadowMapSize[ i ].y;\n\n float dx0 = -1.0 * xPixelOffset;\n float dy0 = -1.0 * yPixelOffset;\n float dx1 = 1.0 * xPixelOffset;\n float dy1 = 1.0 * yPixelOffset;\n\n mat3 shadowKernel;\n mat3 depthKernel;\n\n depthKernel[0][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );\n depthKernel[0][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );\n depthKernel[0][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );\n depthKernel[1][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );\n depthKernel[1][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );\n depthKernel[1][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );\n depthKernel[2][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );\n depthKernel[2][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );\n depthKernel[2][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );\n\n vec3 shadowZ = vec3( shadowCoord.z );\n shadowKernel[0] = vec3(lessThan(depthKernel[0], shadowZ ));\n shadowKernel[0] *= vec3(0.25);\n\n shadowKernel[1] = vec3(lessThan(depthKernel[1], shadowZ ));\n shadowKernel[1] *= vec3(0.25);\n\n shadowKernel[2] = vec3(lessThan(depthKernel[2], shadowZ ));\n shadowKernel[2] *= vec3(0.25);\n\n vec2 fractionalCoord = 1.0 - fract( shadowCoord.xy * shadowMapSize[i].xy );\n\n shadowKernel[0] = mix( shadowKernel[1], shadowKernel[0], fractionalCoord.x );\n shadowKernel[1] = mix( shadowKernel[2], shadowKernel[1], fractionalCoord.x );\n\n vec4 shadowValues;\n shadowValues.x = mix( shadowKernel[0][1], shadowKernel[0][0], fractionalCoord.y );\n shadowValues.y = mix( shadowKernel[0][2], shadowKernel[0][1], fractionalCoord.y );\n shadowValues.z = mix( shadowKernel[1][1], shadowKernel[1][0], fractionalCoord.y );\n shadowValues.w = mix( shadowKernel[1][2], shadowKernel[1][1], fractionalCoord.y );\n\n shadow = dot( shadowValues, vec4( 1.0 ) );\n\n shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );\n\n #else\n\n vec4 rgbaDepth = texture2D( shadowMap[ i ], shadowCoord.xy );\n float fDepth = unpackDepth( rgbaDepth );\n\n if ( fDepth < shadowCoord.z )\n\n // spot with multiple shadows is darker\n\n shadowColor = shadowColor * vec3( 1.0 - shadowDarkness[ i ] );\n\n // spot with multiple shadows has the same color as single shadow spot\n\n // shadowColor = min( shadowColor, vec3( shadowDarkness[ i ] ) );\n\n #endif\n\n }\n\n\n #ifdef SHADOWMAP_DEBUG\n\n #ifdef SHADOWMAP_CASCADE\n\n if ( inFrustum && inFrustumCount == 1 ) gl_FragColor.xyz *= frustumColors[ i ];\n\n #else\n\n if ( inFrustum ) gl_FragColor.xyz *= frustumColors[ i ];\n\n #endif\n\n #endif\n\n }\n\n #ifdef GAMMA_OUTPUT\n\n shadowColor *= shadowColor;\n\n #endif\n\n gl_FragColor.xyz = gl_FragColor.xyz * shadowColor;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/worldpos_vertex.glsl THREE.ShaderChunk[ 'worldpos_vertex'] = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\n\n #ifdef USE_SKINNING\n\n vec4 worldPosition = modelMatrix * skinned;\n\n #endif\n\n #if defined( USE_MORPHTARGETS ) && ! defined( USE_SKINNING )\n\n vec4 worldPosition = modelMatrix * vec4( morphed, 1.0 );\n\n #endif\n\n #if ! defined( USE_MORPHTARGETS ) && ! defined( USE_SKINNING )\n\n vec4 worldPosition = modelMatrix * vec4( position, 1.0 );\n\n #endif\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/shadowmap_pars_fragment.glsl THREE.ShaderChunk[ 'shadowmap_pars_fragment'] = "#ifdef USE_SHADOWMAP\n\n uniform sampler2D shadowMap[ MAX_SHADOWS ];\n uniform vec2 shadowMapSize[ MAX_SHADOWS ];\n\n uniform float shadowDarkness[ MAX_SHADOWS ];\n uniform float shadowBias[ MAX_SHADOWS ];\n\n varying vec4 vShadowCoord[ MAX_SHADOWS ];\n\n float unpackDepth( const in vec4 rgba_depth ) {\n\n const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );\n float depth = dot( rgba_depth, bit_shift );\n return depth;\n\n }\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/skinning_pars_vertex.glsl THREE.ShaderChunk[ 'skinning_pars_vertex'] = "#ifdef USE_SKINNING\n\n uniform mat4 bindMatrix;\n uniform mat4 bindMatrixInverse;\n\n #ifdef BONE_TEXTURE\n\n uniform sampler2D boneTexture;\n uniform int boneTextureWidth;\n uniform int boneTextureHeight;\n\n mat4 getBoneMatrix( const in float i ) {\n\n float j = i * 4.0;\n float x = mod( j, float( boneTextureWidth ) );\n float y = floor( j / float( boneTextureWidth ) );\n\n float dx = 1.0 / float( boneTextureWidth );\n float dy = 1.0 / float( boneTextureHeight );\n\n y = dy * ( y + 0.5 );\n\n vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\n mat4 bone = mat4( v1, v2, v3, v4 );\n\n return bone;\n\n }\n\n #else\n\n uniform mat4 boneGlobalMatrices[ MAX_BONES ];\n\n mat4 getBoneMatrix( const in float i ) {\n\n mat4 bone = boneGlobalMatrices[ int(i) ];\n return bone;\n\n }\n\n #endif\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_fragment.glsl THREE.ShaderChunk[ 'logdepthbuf_pars_fragment'] = "#ifdef USE_LOGDEPTHBUF\n\n uniform float logDepthBufFC;\n\n #ifdef USE_LOGDEPTHBUF_EXT\n\n #extension GL_EXT_frag_depth : enable\n varying float vFragDepth;\n\n #endif\n\n#endif"; // File:src/renderers/shaders/ShaderChunk/alphamap_fragment.glsl THREE.ShaderChunk[ 'alphamap_fragment'] = "#ifdef USE_ALPHAMAP\n\n gl_FragColor.a *= texture2D( alphaMap, vUv ).g;\n\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/alphamap_pars_fragment.glsl THREE.ShaderChunk[ 'alphamap_pars_fragment'] = "#ifdef USE_ALPHAMAP\n\n uniform sampler2D alphaMap;\n\n#endif\n"; // File:src/renderers/shaders/UniformsUtils.js /** * Uniform Utilities */ THREE.UniformsUtils = { merge: function ( uniforms ) { var u, p, tmp, merged = {}; for ( u = 0; u < uniforms.length; u ++ ) { tmp = this.clone( uniforms[ u ] ); for ( p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; }, clone: function ( uniforms_src ) { var u, p, parameter, parameter_src, uniforms_dst = {}; for ( u in uniforms_src ) { uniforms_dst[ u ] = {}; for ( p in uniforms_src[ u ] ) { parameter_src = uniforms_src[ u ][ p ]; if ( parameter_src instanceof THREE.Color || parameter_src instanceof THREE.Vector2 || parameter_src instanceof THREE.Vector3 || parameter_src instanceof THREE.Vector4 || parameter_src instanceof THREE.Matrix4 || parameter_src instanceof THREE.Texture ) { uniforms_dst[ u ][ p ] = parameter_src.clone(); } else if ( parameter_src instanceof Array ) { uniforms_dst[ u ][ p ] = parameter_src.slice(); } else { uniforms_dst[ u ][ p ] = parameter_src; } } } return uniforms_dst; } }; // File:src/renderers/shaders/UniformsLib.js /** * Uniforms library for shared webgl shaders */ THREE.UniformsLib = { common: { "diffuse" : { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity" : { type: "f", value: 1.0 }, "map" : { type: "t", value: null }, "offsetRepeat" : { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) }, "lightMap" : { type: "t", value: null }, "specularMap" : { type: "t", value: null }, "alphaMap" : { type: "t", value: null }, "envMap" : { type: "t", value: null }, "flipEnvMap" : { type: "f", value: - 1 }, "useRefract" : { type: "i", value: 0 }, "reflectivity" : { type: "f", value: 1.0 }, "refractionRatio" : { type: "f", value: 0.98 }, "combine" : { type: "i", value: 0 }, "morphTargetInfluences" : { type: "f", value: 0 } }, bump: { "bumpMap" : { type: "t", value: null }, "bumpScale" : { type: "f", value: 1 } }, normalmap: { "normalMap" : { type: "t", value: null }, "normalScale" : { type: "v2", value: new THREE.Vector2( 1, 1 ) } }, fog : { "fogDensity" : { type: "f", value: 0.00025 }, "fogNear" : { type: "f", value: 1 }, "fogFar" : { type: "f", value: 2000 }, "fogColor" : { type: "c", value: new THREE.Color( 0xffffff ) } }, lights: { "ambientLightColor" : { type: "fv", value: [] }, "directionalLightDirection" : { type: "fv", value: [] }, "directionalLightColor" : { type: "fv", value: [] }, "hemisphereLightDirection" : { type: "fv", value: [] }, "hemisphereLightSkyColor" : { type: "fv", value: [] }, "hemisphereLightGroundColor" : { type: "fv", value: [] }, "pointLightColor" : { type: "fv", value: [] }, "pointLightPosition" : { type: "fv", value: [] }, "pointLightDistance" : { type: "fv1", value: [] }, "spotLightColor" : { type: "fv", value: [] }, "spotLightPosition" : { type: "fv", value: [] }, "spotLightDirection" : { type: "fv", value: [] }, "spotLightDistance" : { type: "fv1", value: [] }, "spotLightAngleCos" : { type: "fv1", value: [] }, "spotLightExponent" : { type: "fv1", value: [] } }, particle: { "psColor" : { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity" : { type: "f", value: 1.0 }, "size" : { type: "f", value: 1.0 }, "scale" : { type: "f", value: 1.0 }, "map" : { type: "t", value: null }, "fogDensity" : { type: "f", value: 0.00025 }, "fogNear" : { type: "f", value: 1 }, "fogFar" : { type: "f", value: 2000 }, "fogColor" : { type: "c", value: new THREE.Color( 0xffffff ) } }, shadowmap: { "shadowMap": { type: "tv", value: [] }, "shadowMapSize": { type: "v2v", value: [] }, "shadowBias" : { type: "fv1", value: [] }, "shadowDarkness": { type: "fv1", value: [] }, "shadowMatrix" : { type: "m4v", value: [] } } }; // File:src/renderers/shaders/ShaderLib.js /** * Webgl Shader Library for three.js * * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.ShaderLib = { 'basic': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "shadowmap" ] ] ), vertexShader: [ THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], " #ifdef USE_ENVMAP", THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], THREE.ShaderChunk[ "defaultnormal_vertex" ], " #endif", THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "alphamap_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "specularmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " gl_FragColor = vec4( diffuse, opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphamap_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "specularmap_fragment" ], THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'lambert': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], THREE.UniformsLib[ "shadowmap" ], { "ambient" : { type: "c", value: new THREE.Color( 0xffffff ) }, "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) } } ] ), vertexShader: [ "#define LAMBERT", "varying vec3 vLightFront;", "#ifdef DOUBLE_SIDED", " varying vec3 vLightBack;", "#endif", THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "lights_lambert_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], THREE.ShaderChunk[ "defaultnormal_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "lights_lambert_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform float opacity;", "varying vec3 vLightFront;", "#ifdef DOUBLE_SIDED", " varying vec3 vLightBack;", "#endif", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "alphamap_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "specularmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " gl_FragColor = vec4( vec3( 1.0 ), opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphamap_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "specularmap_fragment" ], " #ifdef DOUBLE_SIDED", //"float isFront = float( gl_FrontFacing );", //"gl_FragColor.xyz *= isFront * vLightFront + ( 1.0 - isFront ) * vLightBack;", " if ( gl_FrontFacing )", " gl_FragColor.xyz *= vLightFront;", " else", " gl_FragColor.xyz *= vLightBack;", " #else", " gl_FragColor.xyz *= vLightFront;", " #endif", THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'phong': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "bump" ], THREE.UniformsLib[ "normalmap" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], THREE.UniformsLib[ "shadowmap" ], { "ambient" : { type: "c", value: new THREE.Color( 0xffffff ) }, "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "specular" : { type: "c", value: new THREE.Color( 0x111111 ) }, "shininess": { type: "f", value: 30 }, "wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) } } ] ), vertexShader: [ "#define PHONG", "varying vec3 vViewPosition;", "varying vec3 vNormal;", THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "lights_phong_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], THREE.ShaderChunk[ "defaultnormal_vertex" ], " vNormal = normalize( transformedNormal );", THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], " vViewPosition = -mvPosition.xyz;", THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "lights_phong_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", "uniform vec3 ambient;", "uniform vec3 emissive;", "uniform vec3 specular;", "uniform float shininess;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "alphamap_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "lights_phong_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "bumpmap_pars_fragment" ], THREE.ShaderChunk[ "normalmap_pars_fragment" ], THREE.ShaderChunk[ "specularmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " gl_FragColor = vec4( vec3( 1.0 ), opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphamap_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "specularmap_fragment" ], THREE.ShaderChunk[ "lights_phong_fragment" ], THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'particle_basic': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "particle" ], THREE.UniformsLib[ "shadowmap" ] ] ), vertexShader: [ "uniform float size;", "uniform float scale;", THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "color_vertex" ], " vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", " #ifdef USE_SIZEATTENUATION", " gl_PointSize = size * ( scale / length( mvPosition.xyz ) );", " #else", " gl_PointSize = size;", " #endif", " gl_Position = projectionMatrix * mvPosition;", THREE.ShaderChunk[ "logdepthbuf_vertex" ], THREE.ShaderChunk[ "worldpos_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 psColor;", "uniform float opacity;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_particle_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " gl_FragColor = vec4( psColor, opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "map_particle_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'dashed': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], { "scale" : { type: "f", value: 1 }, "dashSize" : { type: "f", value: 1 }, "totalSize": { type: "f", value: 2 } } ] ), vertexShader: [ "uniform float scale;", "attribute float lineDistance;", "varying float vLineDistance;", THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "color_vertex" ], " vLineDistance = scale * lineDistance;", " vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", " gl_Position = projectionMatrix * mvPosition;", THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", "uniform float dashSize;", "uniform float totalSize;", "varying float vLineDistance;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " if ( mod( vLineDistance, totalSize ) > dashSize ) {", " discard;", " }", " gl_FragColor = vec4( diffuse, opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'depth': { uniforms: { "mNear": { type: "f", value: 1.0 }, "mFar" : { type: "f", value: 2000.0 }, "opacity" : { type: "f", value: 1.0 } }, vertexShader: [ THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform float mNear;", "uniform float mFar;", "uniform float opacity;", THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", THREE.ShaderChunk[ "logdepthbuf_fragment" ], " #ifdef USE_LOGDEPTHBUF_EXT", " float depth = gl_FragDepthEXT / gl_FragCoord.w;", " #else", " float depth = gl_FragCoord.z / gl_FragCoord.w;", " #endif", " float color = 1.0 - smoothstep( mNear, mFar, depth );", " gl_FragColor = vec4( vec3( color ), opacity );", "}" ].join("\n") }, 'normal': { uniforms: { "opacity" : { type: "f", value: 1.0 } }, vertexShader: [ "varying vec3 vNormal;", THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", " vNormal = normalize( normalMatrix * normal );", THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform float opacity;", "varying vec3 vNormal;", THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " gl_FragColor = vec4( 0.5 * normalize( vNormal ) + 0.5, opacity );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], "}" ].join("\n") }, /* ------------------------------------------------------------------------- // Normal map shader // - Blinn-Phong // - normal + diffuse + specular + AO + displacement + reflection + shadow maps // - point and directional lights (use with "lights: true" material option) ------------------------------------------------------------------------- */ 'normalmap' : { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], THREE.UniformsLib[ "shadowmap" ], { "enableAO" : { type: "i", value: 0 }, "enableDiffuse" : { type: "i", value: 0 }, "enableSpecular" : { type: "i", value: 0 }, "enableReflection" : { type: "i", value: 0 }, "enableDisplacement": { type: "i", value: 0 }, "tDisplacement": { type: "t", value: null }, // must go first as this is vertex texture "tDiffuse" : { type: "t", value: null }, "tCube" : { type: "t", value: null }, "tNormal" : { type: "t", value: null }, "tSpecular" : { type: "t", value: null }, "tAO" : { type: "t", value: null }, "uNormalScale": { type: "v2", value: new THREE.Vector2( 1, 1 ) }, "uDisplacementBias": { type: "f", value: 0.0 }, "uDisplacementScale": { type: "f", value: 1.0 }, "diffuse": { type: "c", value: new THREE.Color( 0xffffff ) }, "specular": { type: "c", value: new THREE.Color( 0x111111 ) }, "ambient": { type: "c", value: new THREE.Color( 0xffffff ) }, "shininess": { type: "f", value: 30 }, "opacity": { type: "f", value: 1 }, "useRefract": { type: "i", value: 0 }, "refractionRatio": { type: "f", value: 0.98 }, "reflectivity": { type: "f", value: 0.5 }, "uOffset" : { type: "v2", value: new THREE.Vector2( 0, 0 ) }, "uRepeat" : { type: "v2", value: new THREE.Vector2( 1, 1 ) }, "wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) } } ] ), fragmentShader: [ "uniform vec3 ambient;", "uniform vec3 diffuse;", "uniform vec3 specular;", "uniform float shininess;", "uniform float opacity;", "uniform bool enableDiffuse;", "uniform bool enableSpecular;", "uniform bool enableAO;", "uniform bool enableReflection;", "uniform sampler2D tDiffuse;", "uniform sampler2D tNormal;", "uniform sampler2D tSpecular;", "uniform sampler2D tAO;", "uniform samplerCube tCube;", "uniform vec2 uNormalScale;", "uniform bool useRefract;", "uniform float refractionRatio;", "uniform float reflectivity;", "varying vec3 vTangent;", "varying vec3 vBinormal;", "varying vec3 vNormal;", "varying vec2 vUv;", "uniform vec3 ambientLightColor;", "#if MAX_DIR_LIGHTS > 0", " uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];", " uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];", "#endif", "#if MAX_HEMI_LIGHTS > 0", " uniform vec3 hemisphereLightSkyColor[ MAX_HEMI_LIGHTS ];", " uniform vec3 hemisphereLightGroundColor[ MAX_HEMI_LIGHTS ];", " uniform vec3 hemisphereLightDirection[ MAX_HEMI_LIGHTS ];", "#endif", "#if MAX_POINT_LIGHTS > 0", " uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];", " uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];", " uniform float pointLightDistance[ MAX_POINT_LIGHTS ];", "#endif", "#if MAX_SPOT_LIGHTS > 0", " uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];", " uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];", " uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];", " uniform float spotLightAngleCos[ MAX_SPOT_LIGHTS ];", " uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];", " uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];", "#endif", "#ifdef WRAP_AROUND", " uniform vec3 wrapRGB;", "#endif", "varying vec3 vWorldPosition;", "varying vec3 vViewPosition;", THREE.ShaderChunk[ "shadowmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", THREE.ShaderChunk[ "logdepthbuf_fragment" ], " gl_FragColor = vec4( vec3( 1.0 ), opacity );", " vec3 specularTex = vec3( 1.0 );", " vec3 normalTex = texture2D( tNormal, vUv ).xyz * 2.0 - 1.0;", " normalTex.xy *= uNormalScale;", " normalTex = normalize( normalTex );", " if( enableDiffuse ) {", " #ifdef GAMMA_INPUT", " vec4 texelColor = texture2D( tDiffuse, vUv );", " texelColor.xyz *= texelColor.xyz;", " gl_FragColor = gl_FragColor * texelColor;", " #else", " gl_FragColor = gl_FragColor * texture2D( tDiffuse, vUv );", " #endif", " }", " if( enableAO ) {", " #ifdef GAMMA_INPUT", " vec4 aoColor = texture2D( tAO, vUv );", " aoColor.xyz *= aoColor.xyz;", " gl_FragColor.xyz = gl_FragColor.xyz * aoColor.xyz;", " #else", " gl_FragColor.xyz = gl_FragColor.xyz * texture2D( tAO, vUv ).xyz;", " #endif", " }", THREE.ShaderChunk[ "alphatest_fragment" ], " if( enableSpecular )", " specularTex = texture2D( tSpecular, vUv ).xyz;", " mat3 tsb = mat3( normalize( vTangent ), normalize( vBinormal ), normalize( vNormal ) );", " vec3 finalNormal = tsb * normalTex;", " #ifdef FLIP_SIDED", " finalNormal = -finalNormal;", " #endif", " vec3 normal = normalize( finalNormal );", " vec3 viewPosition = normalize( vViewPosition );", // point lights " #if MAX_POINT_LIGHTS > 0", " vec3 pointDiffuse = vec3( 0.0 );", " vec3 pointSpecular = vec3( 0.0 );", " for ( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {", " vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );", " vec3 pointVector = lPosition.xyz + vViewPosition.xyz;", " float pointDistance = 1.0;", " if ( pointLightDistance[ i ] > 0.0 )", " pointDistance = 1.0 - min( ( length( pointVector ) / pointLightDistance[ i ] ), 1.0 );", " pointVector = normalize( pointVector );", // diffuse " #ifdef WRAP_AROUND", " float pointDiffuseWeightFull = max( dot( normal, pointVector ), 0.0 );", " float pointDiffuseWeightHalf = max( 0.5 * dot( normal, pointVector ) + 0.5, 0.0 );", " vec3 pointDiffuseWeight = mix( vec3( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), wrapRGB );", " #else", " float pointDiffuseWeight = max( dot( normal, pointVector ), 0.0 );", " #endif", " pointDiffuse += pointDistance * pointLightColor[ i ] * diffuse * pointDiffuseWeight;", // specular " vec3 pointHalfVector = normalize( pointVector + viewPosition );", " float pointDotNormalHalf = max( dot( normal, pointHalfVector ), 0.0 );", " float pointSpecularWeight = specularTex.r * max( pow( pointDotNormalHalf, shininess ), 0.0 );", " float specularNormalization = ( shininess + 2.0 ) / 8.0;", " vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( pointVector, pointHalfVector ), 0.0 ), 5.0 );", " pointSpecular += schlick * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * pointDistance * specularNormalization;", " }", " #endif", // spot lights " #if MAX_SPOT_LIGHTS > 0", " vec3 spotDiffuse = vec3( 0.0 );", " vec3 spotSpecular = vec3( 0.0 );", " for ( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {", " vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );", " vec3 spotVector = lPosition.xyz + vViewPosition.xyz;", " float spotDistance = 1.0;", " if ( spotLightDistance[ i ] > 0.0 )", " spotDistance = 1.0 - min( ( length( spotVector ) / spotLightDistance[ i ] ), 1.0 );", " spotVector = normalize( spotVector );", " float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - vWorldPosition ) );", " if ( spotEffect > spotLightAngleCos[ i ] ) {", " spotEffect = max( pow( max( spotEffect, 0.0 ), spotLightExponent[ i ] ), 0.0 );", // diffuse " #ifdef WRAP_AROUND", " float spotDiffuseWeightFull = max( dot( normal, spotVector ), 0.0 );", " float spotDiffuseWeightHalf = max( 0.5 * dot( normal, spotVector ) + 0.5, 0.0 );", " vec3 spotDiffuseWeight = mix( vec3( spotDiffuseWeightFull ), vec3( spotDiffuseWeightHalf ), wrapRGB );", " #else", " float spotDiffuseWeight = max( dot( normal, spotVector ), 0.0 );", " #endif", " spotDiffuse += spotDistance * spotLightColor[ i ] * diffuse * spotDiffuseWeight * spotEffect;", // specular " vec3 spotHalfVector = normalize( spotVector + viewPosition );", " float spotDotNormalHalf = max( dot( normal, spotHalfVector ), 0.0 );", " float spotSpecularWeight = specularTex.r * max( pow( spotDotNormalHalf, shininess ), 0.0 );", " float specularNormalization = ( shininess + 2.0 ) / 8.0;", " vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( spotVector, spotHalfVector ), 0.0 ), 5.0 );", " spotSpecular += schlick * spotLightColor[ i ] * spotSpecularWeight * spotDiffuseWeight * spotDistance * specularNormalization * spotEffect;", " }", " }", " #endif", // directional lights " #if MAX_DIR_LIGHTS > 0", " vec3 dirDiffuse = vec3( 0.0 );", " vec3 dirSpecular = vec3( 0.0 );", " for( int i = 0; i < MAX_DIR_LIGHTS; i++ ) {", " vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );", " vec3 dirVector = normalize( lDirection.xyz );", // diffuse " #ifdef WRAP_AROUND", " float directionalLightWeightingFull = max( dot( normal, dirVector ), 0.0 );", " float directionalLightWeightingHalf = max( 0.5 * dot( normal, dirVector ) + 0.5, 0.0 );", " vec3 dirDiffuseWeight = mix( vec3( directionalLightWeightingFull ), vec3( directionalLightWeightingHalf ), wrapRGB );", " #else", " float dirDiffuseWeight = max( dot( normal, dirVector ), 0.0 );", " #endif", " dirDiffuse += directionalLightColor[ i ] * diffuse * dirDiffuseWeight;", // specular " vec3 dirHalfVector = normalize( dirVector + viewPosition );", " float dirDotNormalHalf = max( dot( normal, dirHalfVector ), 0.0 );", " float dirSpecularWeight = specularTex.r * max( pow( dirDotNormalHalf, shininess ), 0.0 );", " float specularNormalization = ( shininess + 2.0 ) / 8.0;", " vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( dirVector, dirHalfVector ), 0.0 ), 5.0 );", " dirSpecular += schlick * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization;", " }", " #endif", // hemisphere lights " #if MAX_HEMI_LIGHTS > 0", " vec3 hemiDiffuse = vec3( 0.0 );", " vec3 hemiSpecular = vec3( 0.0 );" , " for( int i = 0; i < MAX_HEMI_LIGHTS; i ++ ) {", " vec4 lDirection = viewMatrix * vec4( hemisphereLightDirection[ i ], 0.0 );", " vec3 lVector = normalize( lDirection.xyz );", // diffuse " float dotProduct = dot( normal, lVector );", " float hemiDiffuseWeight = 0.5 * dotProduct + 0.5;", " vec3 hemiColor = mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );", " hemiDiffuse += diffuse * hemiColor;", // specular (sky light) " vec3 hemiHalfVectorSky = normalize( lVector + viewPosition );", " float hemiDotNormalHalfSky = 0.5 * dot( normal, hemiHalfVectorSky ) + 0.5;", " float hemiSpecularWeightSky = specularTex.r * max( pow( max( hemiDotNormalHalfSky, 0.0 ), shininess ), 0.0 );", // specular (ground light) " vec3 lVectorGround = -lVector;", " vec3 hemiHalfVectorGround = normalize( lVectorGround + viewPosition );", " float hemiDotNormalHalfGround = 0.5 * dot( normal, hemiHalfVectorGround ) + 0.5;", " float hemiSpecularWeightGround = specularTex.r * max( pow( max( hemiDotNormalHalfGround, 0.0 ), shininess ), 0.0 );", " float dotProductGround = dot( normal, lVectorGround );", " float specularNormalization = ( shininess + 2.0 ) / 8.0;", " vec3 schlickSky = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVector, hemiHalfVectorSky ), 0.0 ), 5.0 );", " vec3 schlickGround = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVectorGround, hemiHalfVectorGround ), 0.0 ), 5.0 );", " hemiSpecular += hemiColor * specularNormalization * ( schlickSky * hemiSpecularWeightSky * max( dotProduct, 0.0 ) + schlickGround * hemiSpecularWeightGround * max( dotProductGround, 0.0 ) );", " }", " #endif", // all lights contribution summation " vec3 totalDiffuse = vec3( 0.0 );", " vec3 totalSpecular = vec3( 0.0 );", " #if MAX_DIR_LIGHTS > 0", " totalDiffuse += dirDiffuse;", " totalSpecular += dirSpecular;", " #endif", " #if MAX_HEMI_LIGHTS > 0", " totalDiffuse += hemiDiffuse;", " totalSpecular += hemiSpecular;", " #endif", " #if MAX_POINT_LIGHTS > 0", " totalDiffuse += pointDiffuse;", " totalSpecular += pointSpecular;", " #endif", " #if MAX_SPOT_LIGHTS > 0", " totalDiffuse += spotDiffuse;", " totalSpecular += spotSpecular;", " #endif", " #ifdef METAL", " gl_FragColor.xyz = gl_FragColor.xyz * ( totalDiffuse + ambientLightColor * ambient + totalSpecular );", " #else", " gl_FragColor.xyz = gl_FragColor.xyz * ( totalDiffuse + ambientLightColor * ambient ) + totalSpecular;", " #endif", " if ( enableReflection ) {", " vec3 vReflect;", " vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );", " if ( useRefract ) {", " vReflect = refract( cameraToVertex, normal, refractionRatio );", " } else {", " vReflect = reflect( cameraToVertex, normal );", " }", " vec4 cubeColor = textureCube( tCube, vec3( -vReflect.x, vReflect.yz ) );", " #ifdef GAMMA_INPUT", " cubeColor.xyz *= cubeColor.xyz;", " #endif", " gl_FragColor.xyz = mix( gl_FragColor.xyz, cubeColor.xyz, specularTex.r * reflectivity );", " }", THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n"), vertexShader: [ "attribute vec4 tangent;", "uniform vec2 uOffset;", "uniform vec2 uRepeat;", "uniform bool enableDisplacement;", "#ifdef VERTEX_TEXTURES", " uniform sampler2D tDisplacement;", " uniform float uDisplacementScale;", " uniform float uDisplacementBias;", "#endif", "varying vec3 vTangent;", "varying vec3 vBinormal;", "varying vec3 vNormal;", "varying vec2 vUv;", "varying vec3 vWorldPosition;", "varying vec3 vViewPosition;", THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], // normal, tangent and binormal vectors " #ifdef USE_SKINNING", " vNormal = normalize( normalMatrix * skinnedNormal.xyz );", " vec4 skinnedTangent = skinMatrix * vec4( tangent.xyz, 0.0 );", " vTangent = normalize( normalMatrix * skinnedTangent.xyz );", " #else", " vNormal = normalize( normalMatrix * normal );", " vTangent = normalize( normalMatrix * tangent.xyz );", " #endif", " vBinormal = normalize( cross( vNormal, vTangent ) * tangent.w );", " vUv = uv * uRepeat + uOffset;", // displacement mapping " vec3 displacedPosition;", " #ifdef VERTEX_TEXTURES", " if ( enableDisplacement ) {", " vec3 dv = texture2D( tDisplacement, uv ).xyz;", " float df = uDisplacementScale * dv.x + uDisplacementBias;", " displacedPosition = position + normalize( normal ) * df;", " } else {", " #ifdef USE_SKINNING", " vec4 skinVertex = bindMatrix * vec4( position, 1.0 );", " vec4 skinned = vec4( 0.0 );", " skinned += boneMatX * skinVertex * skinWeight.x;", " skinned += boneMatY * skinVertex * skinWeight.y;", " skinned += boneMatZ * skinVertex * skinWeight.z;", " skinned += boneMatW * skinVertex * skinWeight.w;", " skinned = bindMatrixInverse * skinned;", " displacedPosition = skinned.xyz;", " #else", " displacedPosition = position;", " #endif", " }", " #else", " #ifdef USE_SKINNING", " vec4 skinVertex = bindMatrix * vec4( position, 1.0 );", " vec4 skinned = vec4( 0.0 );", " skinned += boneMatX * skinVertex * skinWeight.x;", " skinned += boneMatY * skinVertex * skinWeight.y;", " skinned += boneMatZ * skinVertex * skinWeight.z;", " skinned += boneMatW * skinVertex * skinWeight.w;", " skinned = bindMatrixInverse * skinned;", " displacedPosition = skinned.xyz;", " #else", " displacedPosition = position;", " #endif", " #endif", // " vec4 mvPosition = modelViewMatrix * vec4( displacedPosition, 1.0 );", " vec4 worldPosition = modelMatrix * vec4( displacedPosition, 1.0 );", " gl_Position = projectionMatrix * mvPosition;", THREE.ShaderChunk[ "logdepthbuf_vertex" ], // " vWorldPosition = worldPosition.xyz;", " vViewPosition = -mvPosition.xyz;", // shadows " #ifdef USE_SHADOWMAP", " for( int i = 0; i < MAX_SHADOWS; i ++ ) {", " vShadowCoord[ i ] = shadowMatrix[ i ] * worldPosition;", " }", " #endif", "}" ].join("\n") }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ 'cube': { uniforms: { "tCube": { type: "t", value: null }, "tFlip": { type: "f", value: - 1 } }, vertexShader: [ "varying vec3 vWorldPosition;", THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", " vec4 worldPosition = modelMatrix * vec4( position, 1.0 );", " vWorldPosition = worldPosition.xyz;", " gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform samplerCube tCube;", "uniform float tFlip;", "varying vec3 vWorldPosition;", THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "void main() {", " gl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );", THREE.ShaderChunk[ "logdepthbuf_fragment" ], "}" ].join("\n") }, /* Depth encoding into RGBA texture * * based on SpiderGL shadow map example * http://spidergl.org/example.php?id=6 * * originally from * http://www.gamedev.net/topic/442138-packing-a-float-into-a-a8r8g8b8-texture-shader/page__whichpage__1%25EF%25BF%25BD * * see also * http://aras-p.info/blog/2009/07/30/encoding-floats-to-rgba-the-final/ */ 'depthRGBA': { uniforms: {}, vertexShader: [ THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "logdepthbuf_vertex" ], "}" ].join("\n"), fragmentShader: [ THREE.ShaderChunk[ "logdepthbuf_pars_fragment" ], "vec4 pack_depth( const in float depth ) {", " const vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );", " const vec4 bit_mask = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );", " vec4 res = mod( depth * bit_shift * vec4( 255 ), vec4( 256 ) ) / vec4( 255 );", // " vec4 res = fract( depth * bit_shift );", " res -= res.xxyz * bit_mask;", " return res;", "}", "void main() {", THREE.ShaderChunk[ "logdepthbuf_fragment" ], " #ifdef USE_LOGDEPTHBUF_EXT", " gl_FragData[ 0 ] = pack_depth( gl_FragDepthEXT );", " #else", " gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z );", " #endif", //"gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z / gl_FragCoord.w );", //"float z = ( ( gl_FragCoord.z / gl_FragCoord.w ) - 3.0 ) / ( 4000.0 - 3.0 );", //"gl_FragData[ 0 ] = pack_depth( z );", //"gl_FragData[ 0 ] = vec4( z, z, z, 1.0 );", "}" ].join("\n") } }; // File:src/renderers/WebGLRenderer.js /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.WebGLRenderer = function ( parameters ) { console.log( 'THREE.WebGLRenderer', THREE.REVISION ); parameters = parameters || {}; var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ), _context = parameters.context !== undefined ? parameters.context : null, _precision = parameters.precision !== undefined ? parameters.precision : 'highp', _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _logarithmicDepthBuffer = parameters.logarithmicDepthBuffer !== undefined ? parameters.logarithmicDepthBuffer : false, _clearColor = new THREE.Color( 0x000000 ), _clearAlpha = 0; var opaqueObjects = []; var transparentObjects = []; // public properties this.domElement = _canvas; this.context = null; this.devicePixelRatio = parameters.devicePixelRatio !== undefined ? parameters.devicePixelRatio : self.devicePixelRatio !== undefined ? self.devicePixelRatio : 1; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // physically based shading this.gammaInput = false; this.gammaOutput = false; // shadow map this.shadowMapEnabled = false; this.shadowMapAutoUpdate = true; this.shadowMapType = THREE.PCFShadowMap; this.shadowMapCullFace = THREE.CullFaceFront; this.shadowMapDebug = false; this.shadowMapCascade = false; // morphs this.maxMorphTargets = 8; this.maxMorphNormals = 4; // flags this.autoScaleCubemaps = true; // custom render plugins this.renderPluginsPre = []; this.renderPluginsPost = []; // info this.info = { memory: { programs: 0, geometries: 0, textures: 0 }, render: { calls: 0, vertices: 0, faces: 0, points: 0 } }; // internal properties var _this = this, _programs = [], // internal state cache _currentProgram = null, _currentFramebuffer = null, _currentMaterialId = - 1, _currentGeometryGroupHash = null, _currentCamera = null, _usedTextureUnits = 0, // GL state cache _oldDoubleSided = - 1, _oldFlipSided = - 1, _oldBlending = - 1, _oldBlendEquation = - 1, _oldBlendSrc = - 1, _oldBlendDst = - 1, _oldDepthTest = - 1, _oldDepthWrite = - 1, _oldPolygonOffset = null, _oldPolygonOffsetFactor = null, _oldPolygonOffsetUnits = null, _oldLineWidth = null, _viewportX = 0, _viewportY = 0, _viewportWidth = _canvas.width, _viewportHeight = _canvas.height, _currentWidth = 0, _currentHeight = 0, _newAttributes = new Uint8Array( 16 ), _enabledAttributes = new Uint8Array( 16 ), // frustum _frustum = new THREE.Frustum(), // camera matrices cache _projScreenMatrix = new THREE.Matrix4(), _projScreenMatrixPS = new THREE.Matrix4(), _vector3 = new THREE.Vector3(), // light arrays cache _direction = new THREE.Vector3(), _lightsNeedUpdate = true, _lights = { ambient: [ 0, 0, 0 ], directional: { length: 0, colors:[], positions: [] }, point: { length: 0, colors: [], positions: [], distances: [] }, spot: { length: 0, colors: [], positions: [], distances: [], directions: [], anglesCos: [], exponents: [] }, hemi: { length: 0, skyColors: [], groundColors: [], positions: [] } }; // initialize var _gl; var _glExtensionTextureFloat; var _glExtensionTextureFloatLinear; var _glExtensionStandardDerivatives; var _glExtensionTextureFilterAnisotropic; var _glExtensionCompressedTextureS3TC; var _glExtensionElementIndexUint; var _glExtensionFragDepth; initGL(); setDefaultGLState(); this.context = _gl; // GPU capabilities var _maxTextures = _gl.getParameter( _gl.MAX_TEXTURE_IMAGE_UNITS ); var _maxVertexTextures = _gl.getParameter( _gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); var _maxTextureSize = _gl.getParameter( _gl.MAX_TEXTURE_SIZE ); var _maxCubemapSize = _gl.getParameter( _gl.MAX_CUBE_MAP_TEXTURE_SIZE ); var _maxAnisotropy = _glExtensionTextureFilterAnisotropic ? _gl.getParameter( _glExtensionTextureFilterAnisotropic.MAX_TEXTURE_MAX_ANISOTROPY_EXT ) : 0; var _supportsVertexTextures = ( _maxVertexTextures > 0 ); var _supportsBoneTextures = _supportsVertexTextures && _glExtensionTextureFloat; var _compressedTextureFormats = _glExtensionCompressedTextureS3TC ? _gl.getParameter( _gl.COMPRESSED_TEXTURE_FORMATS ) : []; // var _vertexShaderPrecisionHighpFloat = _gl.getShaderPrecisionFormat( _gl.VERTEX_SHADER, _gl.HIGH_FLOAT ); var _vertexShaderPrecisionMediumpFloat = _gl.getShaderPrecisionFormat( _gl.VERTEX_SHADER, _gl.MEDIUM_FLOAT ); var _vertexShaderPrecisionLowpFloat = _gl.getShaderPrecisionFormat( _gl.VERTEX_SHADER, _gl.LOW_FLOAT ); var _fragmentShaderPrecisionHighpFloat = _gl.getShaderPrecisionFormat( _gl.FRAGMENT_SHADER, _gl.HIGH_FLOAT ); var _fragmentShaderPrecisionMediumpFloat = _gl.getShaderPrecisionFormat( _gl.FRAGMENT_SHADER, _gl.MEDIUM_FLOAT ); var _fragmentShaderPrecisionLowpFloat = _gl.getShaderPrecisionFormat( _gl.FRAGMENT_SHADER, _gl.LOW_FLOAT ); // clamp precision to maximum available var highpAvailable = _vertexShaderPrecisionHighpFloat.precision > 0 && _fragmentShaderPrecisionHighpFloat.precision > 0; var mediumpAvailable = _vertexShaderPrecisionMediumpFloat.precision > 0 && _fragmentShaderPrecisionMediumpFloat.precision > 0; if ( _precision === 'highp' && ! highpAvailable ) { if ( mediumpAvailable ) { _precision = 'mediump'; console.warn( 'THREE.WebGLRenderer: highp not supported, using mediump.' ); } else { _precision = 'lowp'; console.warn( 'THREE.WebGLRenderer: highp and mediump not supported, using lowp.' ); } } if ( _precision === 'mediump' && ! mediumpAvailable ) { _precision = 'lowp'; console.warn( 'THREE.WebGLRenderer: mediump not supported, using lowp.' ); } // API this.getContext = function () { return _gl; }; this.supportsVertexTextures = function () { return _supportsVertexTextures; }; this.supportsFloatTextures = function () { return _glExtensionTextureFloat; }; this.supportsStandardDerivatives = function () { return _glExtensionStandardDerivatives; }; this.supportsCompressedTextureS3TC = function () { return _glExtensionCompressedTextureS3TC; }; this.getMaxAnisotropy = function () { return _maxAnisotropy; }; this.getPrecision = function () { return _precision; }; this.setSize = function ( width, height, updateStyle ) { _canvas.width = width * this.devicePixelRatio; _canvas.height = height * this.devicePixelRatio; if ( updateStyle !== false ) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.setViewport = function ( x, y, width, height ) { _viewportX = x * this.devicePixelRatio; _viewportY = y * this.devicePixelRatio; _viewportWidth = width * this.devicePixelRatio; _viewportHeight = height * this.devicePixelRatio; _gl.viewport( _viewportX, _viewportY, _viewportWidth, _viewportHeight ); }; this.setScissor = function ( x, y, width, height ) { _gl.scissor( x * this.devicePixelRatio, y * this.devicePixelRatio, width * this.devicePixelRatio, height * this.devicePixelRatio ); }; this.enableScissorTest = function ( enable ) { enable ? _gl.enable( _gl.SCISSOR_TEST ) : _gl.disable( _gl.SCISSOR_TEST ); }; // Clearing this.setClearColor = function ( color, alpha ) { _clearColor.set( color ); _clearAlpha = alpha !== undefined ? alpha : 1; _gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.setClearColorHex = function ( hex, alpha ) { console.warn( 'THREE.WebGLRenderer: .setClearColorHex() is being removed. Use .setClearColor() instead.' ); this.setClearColor( hex, alpha ); }; this.getClearColor = function () { return _clearColor; }; this.getClearAlpha = function () { return _clearAlpha; }; this.clear = function ( color, depth, stencil ) { var bits = 0; if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT; if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT; _gl.clear( bits ); }; this.clearColor = function () { _gl.clear( _gl.COLOR_BUFFER_BIT ); }; this.clearDepth = function () { _gl.clear( _gl.DEPTH_BUFFER_BIT ); }; this.clearStencil = function () { _gl.clear( _gl.STENCIL_BUFFER_BIT ); }; this.clearTarget = function ( renderTarget, color, depth, stencil ) { this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }; // Plugins this.addPostPlugin = function ( plugin ) { plugin.init( this ); this.renderPluginsPost.push( plugin ); }; this.addPrePlugin = function ( plugin ) { plugin.init( this ); this.renderPluginsPre.push( plugin ); }; // Rendering this.updateShadowMap = function ( scene, camera ) { _currentProgram = null; _oldBlending = - 1; _oldDepthTest = - 1; _oldDepthWrite = - 1; _currentGeometryGroupHash = - 1; _currentMaterialId = - 1; _lightsNeedUpdate = true; _oldDoubleSided = - 1; _oldFlipSided = - 1; initObjects( scene ); this.shadowMapPlugin.update( scene, camera ); }; // Internal functions // Buffer allocation function createParticleBuffers ( geometry ) { geometry.__webglVertexBuffer = _gl.createBuffer(); geometry.__webglColorBuffer = _gl.createBuffer(); _this.info.memory.geometries ++; }; function createLineBuffers ( geometry ) { geometry.__webglVertexBuffer = _gl.createBuffer(); geometry.__webglColorBuffer = _gl.createBuffer(); geometry.__webglLineDistanceBuffer = _gl.createBuffer(); _this.info.memory.geometries ++; }; function createMeshBuffers ( geometryGroup ) { geometryGroup.__webglVertexBuffer = _gl.createBuffer(); geometryGroup.__webglNormalBuffer = _gl.createBuffer(); geometryGroup.__webglTangentBuffer = _gl.createBuffer(); geometryGroup.__webglColorBuffer = _gl.createBuffer(); geometryGroup.__webglUVBuffer = _gl.createBuffer(); geometryGroup.__webglUV2Buffer = _gl.createBuffer(); geometryGroup.__webglSkinIndicesBuffer = _gl.createBuffer(); geometryGroup.__webglSkinWeightsBuffer = _gl.createBuffer(); geometryGroup.__webglFaceBuffer = _gl.createBuffer(); geometryGroup.__webglLineBuffer = _gl.createBuffer(); var m, ml; if ( geometryGroup.numMorphTargets ) { geometryGroup.__webglMorphTargetsBuffers = []; for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) { geometryGroup.__webglMorphTargetsBuffers.push( _gl.createBuffer() ); } } if ( geometryGroup.numMorphNormals ) { geometryGroup.__webglMorphNormalsBuffers = []; for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) { geometryGroup.__webglMorphNormalsBuffers.push( _gl.createBuffer() ); } } _this.info.memory.geometries ++; }; // Events var onGeometryDispose = function ( event ) { var geometry = event.target; geometry.removeEventListener( 'dispose', onGeometryDispose ); deallocateGeometry( geometry ); }; var onTextureDispose = function ( event ) { var texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); _this.info.memory.textures --; }; var onRenderTargetDispose = function ( event ) { var renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); _this.info.memory.textures --; }; var onMaterialDispose = function ( event ) { var material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); }; // Buffer deallocation var deleteBuffers = function ( geometry ) { if ( geometry.__webglVertexBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglVertexBuffer ); if ( geometry.__webglNormalBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglNormalBuffer ); if ( geometry.__webglTangentBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglTangentBuffer ); if ( geometry.__webglColorBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglColorBuffer ); if ( geometry.__webglUVBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglUVBuffer ); if ( geometry.__webglUV2Buffer !== undefined ) _gl.deleteBuffer( geometry.__webglUV2Buffer ); if ( geometry.__webglSkinIndicesBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglSkinIndicesBuffer ); if ( geometry.__webglSkinWeightsBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglSkinWeightsBuffer ); if ( geometry.__webglFaceBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglFaceBuffer ); if ( geometry.__webglLineBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglLineBuffer ); if ( geometry.__webglLineDistanceBuffer !== undefined ) _gl.deleteBuffer( geometry.__webglLineDistanceBuffer ); // custom attributes if ( geometry.__webglCustomAttributesList !== undefined ) { for ( var id in geometry.__webglCustomAttributesList ) { _gl.deleteBuffer( geometry.__webglCustomAttributesList[ id ].buffer ); } } _this.info.memory.geometries --; }; var deallocateGeometry = function ( geometry ) { geometry.__webglInit = undefined; if ( geometry instanceof THREE.BufferGeometry ) { var attributes = geometry.attributes; for ( var key in attributes ) { if ( attributes[ key ].buffer !== undefined ) { _gl.deleteBuffer( attributes[ key ].buffer ); } } _this.info.memory.geometries --; } else { if ( geometry.geometryGroups !== undefined ) { for ( var i = 0,l = geometry.geometryGroupsList.length; i 0 ) { geometryGroup.__uvArray = new Float32Array( nvertices * 2 ); } if ( geometry.faceVertexUvs.length > 1 ) { geometryGroup.__uv2Array = new Float32Array( nvertices * 2 ); } } if ( object.geometry.skinWeights.length && object.geometry.skinIndices.length ) { geometryGroup.__skinIndexArray = new Float32Array( nvertices * 4 ); geometryGroup.__skinWeightArray = new Float32Array( nvertices * 4 ); } var UintArray = _glExtensionElementIndexUint !== null && ntris > 21845 ? Uint32Array : Uint16Array; // 65535 / 3 geometryGroup.__typeArray = UintArray; geometryGroup.__faceArray = new UintArray( ntris * 3 ); geometryGroup.__lineArray = new UintArray( nlines * 2 ); var m, ml; if ( geometryGroup.numMorphTargets ) { geometryGroup.__morphTargetsArrays = []; for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) { geometryGroup.__morphTargetsArrays.push( new Float32Array( nvertices * 3 ) ); } } if ( geometryGroup.numMorphNormals ) { geometryGroup.__morphNormalsArrays = []; for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) { geometryGroup.__morphNormalsArrays.push( new Float32Array( nvertices * 3 ) ); } } geometryGroup.__webglFaceCount = ntris * 3; geometryGroup.__webglLineCount = nlines * 2; // custom attributes if ( material.attributes ) { if ( geometryGroup.__webglCustomAttributesList === undefined ) { geometryGroup.__webglCustomAttributesList = []; } for ( var a in material.attributes ) { // Do a shallow copy of the attribute object so different geometryGroup chunks use different // attribute buffers which are correctly indexed in the setMeshBuffers function var originalAttribute = material.attributes[ a ]; var attribute = {}; for ( var property in originalAttribute ) { attribute[ property ] = originalAttribute[ property ]; } if ( ! attribute.__webglInitialized || attribute.createUniqueBuffers ) { attribute.__webglInitialized = true; var size = 1; // "f" and "i" if ( attribute.type === 'v2' ) size = 2; else if ( attribute.type === 'v3' ) size = 3; else if ( attribute.type === 'v4' ) size = 4; else if ( attribute.type === 'c' ) size = 3; attribute.size = size; attribute.array = new Float32Array( nvertices * size ); attribute.buffer = _gl.createBuffer(); attribute.buffer.belongsToAttribute = a; originalAttribute.needsUpdate = true; attribute.__original = originalAttribute; } geometryGroup.__webglCustomAttributesList.push( attribute ); } } geometryGroup.__inittedArrays = true; }; function getBufferMaterial( object, geometryGroup ) { return object.material instanceof THREE.MeshFaceMaterial ? object.material.materials[ geometryGroup.materialIndex ] : object.material; }; function materialNeedsSmoothNormals ( material ) { return material && material.shading !== undefined && material.shading === THREE.SmoothShading; }; function bufferGuessNormalType ( material ) { // only MeshBasicMaterial and MeshDepthMaterial don't need normals if ( ( material instanceof THREE.MeshBasicMaterial && ! material.envMap ) || material instanceof THREE.MeshDepthMaterial ) { return false; } if ( materialNeedsSmoothNormals( material ) ) { return THREE.SmoothShading; } else { return THREE.FlatShading; } }; function bufferGuessVertexColorType( material ) { if ( material.vertexColors ) { return material.vertexColors; } return false; }; function bufferGuessUVType( material ) { // material must use some texture to require uvs if ( material.map || material.lightMap || material.bumpMap || material.normalMap || material.specularMap || material.alphaMap || material instanceof THREE.ShaderMaterial ) { return true; } return false; }; // function initDirectBuffers( geometry ) { for ( var name in geometry.attributes ) { var bufferType = ( name === 'index' ) ? _gl.ELEMENT_ARRAY_BUFFER : _gl.ARRAY_BUFFER; var attribute = geometry.attributes[ name ]; attribute.buffer = _gl.createBuffer(); _gl.bindBuffer( bufferType, attribute.buffer ); _gl.bufferData( bufferType, attribute.array, _gl.STATIC_DRAW ); } } // Buffer setting function setParticleBuffers ( geometry, hint, object ) { var v, c, vertex, offset, index, color, vertices = geometry.vertices, vl = vertices.length, colors = geometry.colors, cl = colors.length, vertexArray = geometry.__vertexArray, colorArray = geometry.__colorArray, sortArray = geometry.__sortArray, dirtyVertices = geometry.verticesNeedUpdate, dirtyElements = geometry.elementsNeedUpdate, dirtyColors = geometry.colorsNeedUpdate, customAttributes = geometry.__webglCustomAttributesList, i, il, a, ca, cal, value, customAttribute; if ( object.sortParticles ) { _projScreenMatrixPS.copy( _projScreenMatrix ); _projScreenMatrixPS.multiply( object.matrixWorld ); for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ]; _vector3.copy( vertex ); _vector3.applyProjection( _projScreenMatrixPS ); sortArray[ v ] = [ _vector3.z, v ]; } sortArray.sort( numericalSort ); for ( v = 0; v < vl; v ++ ) { vertex = vertices[ sortArray[ v ][ 1 ] ]; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } for ( c = 0; c < cl; c ++ ) { offset = c * 3; color = colors[ sortArray[ c ][ 1 ] ]; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( ! ( customAttribute.boundTo === undefined || customAttribute.boundTo === 'vertices' ) ) continue; offset = 0; cal = customAttribute.value.length; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; customAttribute.array[ ca ] = customAttribute.value[ index ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === 'c' ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } } } } else { if ( dirtyVertices ) { for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ]; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } } if ( dirtyColors ) { for ( c = 0; c < cl; c ++ ) { color = colors[ c ]; offset = c * 3; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate && ( customAttribute.boundTo === undefined || customAttribute.boundTo === 'vertices' ) ) { cal = customAttribute.value.length; offset = 0; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { customAttribute.array[ ca ] = customAttribute.value[ ca ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === 'c' ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } } } } } if ( dirtyVertices || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyColors || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } } } function setLineBuffers ( geometry, hint ) { var v, c, d, vertex, offset, color, vertices = geometry.vertices, colors = geometry.colors, lineDistances = geometry.lineDistances, vl = vertices.length, cl = colors.length, dl = lineDistances.length, vertexArray = geometry.__vertexArray, colorArray = geometry.__colorArray, lineDistanceArray = geometry.__lineDistanceArray, dirtyVertices = geometry.verticesNeedUpdate, dirtyColors = geometry.colorsNeedUpdate, dirtyLineDistances = geometry.lineDistancesNeedUpdate, customAttributes = geometry.__webglCustomAttributesList, i, il, a, ca, cal, value, customAttribute; if ( dirtyVertices ) { for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ]; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyColors ) { for ( c = 0; c < cl; c ++ ) { color = colors[ c ]; offset = c * 3; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } if ( dirtyLineDistances ) { for ( d = 0; d < dl; d ++ ) { lineDistanceArray[ d ] = lineDistances[ d ]; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglLineDistanceBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, lineDistanceArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate && ( customAttribute.boundTo === undefined || customAttribute.boundTo === 'vertices' ) ) { offset = 0; cal = customAttribute.value.length; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { customAttribute.array[ ca ] = customAttribute.value[ ca ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === 'c' ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } } } function setMeshBuffers( geometryGroup, object, hint, dispose, material ) { if ( ! geometryGroup.__inittedArrays ) { return; } var normalType = bufferGuessNormalType( material ), vertexColorType = bufferGuessVertexColorType( material ), uvType = bufferGuessUVType( material ), needsSmoothNormals = ( normalType === THREE.SmoothShading ); var f, fl, fi, face, vertexNormals, faceNormal, normal, vertexColors, faceColor, vertexTangents, uv, uv2, v1, v2, v3, v4, t1, t2, t3, t4, n1, n2, n3, n4, c1, c2, c3, sw1, sw2, sw3, sw4, si1, si2, si3, si4, sa1, sa2, sa3, sa4, sb1, sb2, sb3, sb4, m, ml, i, il, vn, uvi, uv2i, vk, vkl, vka, nka, chf, faceVertexNormals, a, vertexIndex = 0, offset = 0, offset_uv = 0, offset_uv2 = 0, offset_face = 0, offset_normal = 0, offset_tangent = 0, offset_line = 0, offset_color = 0, offset_skin = 0, offset_morphTarget = 0, offset_custom = 0, offset_customSrc = 0, value, vertexArray = geometryGroup.__vertexArray, uvArray = geometryGroup.__uvArray, uv2Array = geometryGroup.__uv2Array, normalArray = geometryGroup.__normalArray, tangentArray = geometryGroup.__tangentArray, colorArray = geometryGroup.__colorArray, skinIndexArray = geometryGroup.__skinIndexArray, skinWeightArray = geometryGroup.__skinWeightArray, morphTargetsArrays = geometryGroup.__morphTargetsArrays, morphNormalsArrays = geometryGroup.__morphNormalsArrays, customAttributes = geometryGroup.__webglCustomAttributesList, customAttribute, faceArray = geometryGroup.__faceArray, lineArray = geometryGroup.__lineArray, geometry = object.geometry, // this is shared for all chunks dirtyVertices = geometry.verticesNeedUpdate, dirtyElements = geometry.elementsNeedUpdate, dirtyUvs = geometry.uvsNeedUpdate, dirtyNormals = geometry.normalsNeedUpdate, dirtyTangents = geometry.tangentsNeedUpdate, dirtyColors = geometry.colorsNeedUpdate, dirtyMorphTargets = geometry.morphTargetsNeedUpdate, vertices = geometry.vertices, chunk_faces3 = geometryGroup.faces3, obj_faces = geometry.faces, obj_uvs = geometry.faceVertexUvs[ 0 ], obj_uvs2 = geometry.faceVertexUvs[ 1 ], obj_colors = geometry.colors, obj_skinIndices = geometry.skinIndices, obj_skinWeights = geometry.skinWeights, morphTargets = geometry.morphTargets, morphNormals = geometry.morphNormals; if ( dirtyVertices ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = vertices[ face.a ]; v2 = vertices[ face.b ]; v3 = vertices[ face.c ]; vertexArray[ offset ] = v1.x; vertexArray[ offset + 1 ] = v1.y; vertexArray[ offset + 2 ] = v1.z; vertexArray[ offset + 3 ] = v2.x; vertexArray[ offset + 4 ] = v2.y; vertexArray[ offset + 5 ] = v2.z; vertexArray[ offset + 6 ] = v3.x; vertexArray[ offset + 7 ] = v3.y; vertexArray[ offset + 8 ] = v3.z; offset += 9; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyMorphTargets ) { for ( vk = 0, vkl = morphTargets.length; vk < vkl; vk ++ ) { offset_morphTarget = 0; for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { chf = chunk_faces3[ f ]; face = obj_faces[ chf ]; // morph positions v1 = morphTargets[ vk ].vertices[ face.a ]; v2 = morphTargets[ vk ].vertices[ face.b ]; v3 = morphTargets[ vk ].vertices[ face.c ]; vka = morphTargetsArrays[ vk ]; vka[ offset_morphTarget ] = v1.x; vka[ offset_morphTarget + 1 ] = v1.y; vka[ offset_morphTarget + 2 ] = v1.z; vka[ offset_morphTarget + 3 ] = v2.x; vka[ offset_morphTarget + 4 ] = v2.y; vka[ offset_morphTarget + 5 ] = v2.z; vka[ offset_morphTarget + 6 ] = v3.x; vka[ offset_morphTarget + 7 ] = v3.y; vka[ offset_morphTarget + 8 ] = v3.z; // morph normals if ( material.morphNormals ) { if ( needsSmoothNormals ) { faceVertexNormals = morphNormals[ vk ].vertexNormals[ chf ]; n1 = faceVertexNormals.a; n2 = faceVertexNormals.b; n3 = faceVertexNormals.c; } else { n1 = morphNormals[ vk ].faceNormals[ chf ]; n2 = n1; n3 = n1; } nka = morphNormalsArrays[ vk ]; nka[ offset_morphTarget ] = n1.x; nka[ offset_morphTarget + 1 ] = n1.y; nka[ offset_morphTarget + 2 ] = n1.z; nka[ offset_morphTarget + 3 ] = n2.x; nka[ offset_morphTarget + 4 ] = n2.y; nka[ offset_morphTarget + 5 ] = n2.z; nka[ offset_morphTarget + 6 ] = n3.x; nka[ offset_morphTarget + 7 ] = n3.y; nka[ offset_morphTarget + 8 ] = n3.z; } // offset_morphTarget += 9; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ vk ] ); _gl.bufferData( _gl.ARRAY_BUFFER, morphTargetsArrays[ vk ], hint ); if ( material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ vk ] ); _gl.bufferData( _gl.ARRAY_BUFFER, morphNormalsArrays[ vk ], hint ); } } } if ( obj_skinWeights.length ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; // weights sw1 = obj_skinWeights[ face.a ]; sw2 = obj_skinWeights[ face.b ]; sw3 = obj_skinWeights[ face.c ]; skinWeightArray[ offset_skin ] = sw1.x; skinWeightArray[ offset_skin + 1 ] = sw1.y; skinWeightArray[ offset_skin + 2 ] = sw1.z; skinWeightArray[ offset_skin + 3 ] = sw1.w; skinWeightArray[ offset_skin + 4 ] = sw2.x; skinWeightArray[ offset_skin + 5 ] = sw2.y; skinWeightArray[ offset_skin + 6 ] = sw2.z; skinWeightArray[ offset_skin + 7 ] = sw2.w; skinWeightArray[ offset_skin + 8 ] = sw3.x; skinWeightArray[ offset_skin + 9 ] = sw3.y; skinWeightArray[ offset_skin + 10 ] = sw3.z; skinWeightArray[ offset_skin + 11 ] = sw3.w; // indices si1 = obj_skinIndices[ face.a ]; si2 = obj_skinIndices[ face.b ]; si3 = obj_skinIndices[ face.c ]; skinIndexArray[ offset_skin ] = si1.x; skinIndexArray[ offset_skin + 1 ] = si1.y; skinIndexArray[ offset_skin + 2 ] = si1.z; skinIndexArray[ offset_skin + 3 ] = si1.w; skinIndexArray[ offset_skin + 4 ] = si2.x; skinIndexArray[ offset_skin + 5 ] = si2.y; skinIndexArray[ offset_skin + 6 ] = si2.z; skinIndexArray[ offset_skin + 7 ] = si2.w; skinIndexArray[ offset_skin + 8 ] = si3.x; skinIndexArray[ offset_skin + 9 ] = si3.y; skinIndexArray[ offset_skin + 10 ] = si3.z; skinIndexArray[ offset_skin + 11 ] = si3.w; offset_skin += 12; } if ( offset_skin > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinIndicesBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinIndexArray, hint ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinWeightsBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinWeightArray, hint ); } } if ( dirtyColors && vertexColorType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexColors = face.vertexColors; faceColor = face.color; if ( vertexColors.length === 3 && vertexColorType === THREE.VertexColors ) { c1 = vertexColors[ 0 ]; c2 = vertexColors[ 1 ]; c3 = vertexColors[ 2 ]; } else { c1 = faceColor; c2 = faceColor; c3 = faceColor; } colorArray[ offset_color ] = c1.r; colorArray[ offset_color + 1 ] = c1.g; colorArray[ offset_color + 2 ] = c1.b; colorArray[ offset_color + 3 ] = c2.r; colorArray[ offset_color + 4 ] = c2.g; colorArray[ offset_color + 5 ] = c2.b; colorArray[ offset_color + 6 ] = c3.r; colorArray[ offset_color + 7 ] = c3.g; colorArray[ offset_color + 8 ] = c3.b; offset_color += 9; } if ( offset_color > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } } if ( dirtyTangents && geometry.hasTangents ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexTangents = face.vertexTangents; t1 = vertexTangents[ 0 ]; t2 = vertexTangents[ 1 ]; t3 = vertexTangents[ 2 ]; tangentArray[ offset_tangent ] = t1.x; tangentArray[ offset_tangent + 1 ] = t1.y; tangentArray[ offset_tangent + 2 ] = t1.z; tangentArray[ offset_tangent + 3 ] = t1.w; tangentArray[ offset_tangent + 4 ] = t2.x; tangentArray[ offset_tangent + 5 ] = t2.y; tangentArray[ offset_tangent + 6 ] = t2.z; tangentArray[ offset_tangent + 7 ] = t2.w; tangentArray[ offset_tangent + 8 ] = t3.x; tangentArray[ offset_tangent + 9 ] = t3.y; tangentArray[ offset_tangent + 10 ] = t3.z; tangentArray[ offset_tangent + 11 ] = t3.w; offset_tangent += 12; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglTangentBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, tangentArray, hint ); } if ( dirtyNormals && normalType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexNormals = face.vertexNormals; faceNormal = face.normal; if ( vertexNormals.length === 3 && needsSmoothNormals ) { for ( i = 0; i < 3; i ++ ) { vn = vertexNormals[ i ]; normalArray[ offset_normal ] = vn.x; normalArray[ offset_normal + 1 ] = vn.y; normalArray[ offset_normal + 2 ] = vn.z; offset_normal += 3; } } else { for ( i = 0; i < 3; i ++ ) { normalArray[ offset_normal ] = faceNormal.x; normalArray[ offset_normal + 1 ] = faceNormal.y; normalArray[ offset_normal + 2 ] = faceNormal.z; offset_normal += 3; } } } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglNormalBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, normalArray, hint ); } if ( dirtyUvs && obj_uvs && uvType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { fi = chunk_faces3[ f ]; uv = obj_uvs[ fi ]; if ( uv === undefined ) continue; for ( i = 0; i < 3; i ++ ) { uvi = uv[ i ]; uvArray[ offset_uv ] = uvi.x; uvArray[ offset_uv + 1 ] = uvi.y; offset_uv += 2; } } if ( offset_uv > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUVBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, uvArray, hint ); } } if ( dirtyUvs && obj_uvs2 && uvType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { fi = chunk_faces3[ f ]; uv2 = obj_uvs2[ fi ]; if ( uv2 === undefined ) continue; for ( i = 0; i < 3; i ++ ) { uv2i = uv2[ i ]; uv2Array[ offset_uv2 ] = uv2i.x; uv2Array[ offset_uv2 + 1 ] = uv2i.y; offset_uv2 += 2; } } if ( offset_uv2 > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUV2Buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, uv2Array, hint ); } } if ( dirtyElements ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { faceArray[ offset_face ] = vertexIndex; faceArray[ offset_face + 1 ] = vertexIndex + 1; faceArray[ offset_face + 2 ] = vertexIndex + 2; offset_face += 3; lineArray[ offset_line ] = vertexIndex; lineArray[ offset_line + 1 ] = vertexIndex + 1; lineArray[ offset_line + 2 ] = vertexIndex; lineArray[ offset_line + 3 ] = vertexIndex + 2; lineArray[ offset_line + 4 ] = vertexIndex + 1; lineArray[ offset_line + 5 ] = vertexIndex + 2; offset_line += 6; vertexIndex += 3; } _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglFaceBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, faceArray, hint ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglLineBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, lineArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( ! customAttribute.__original.needsUpdate ) continue; offset_custom = 0; offset_customSrc = 0; if ( customAttribute.size === 1 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === 'vertices' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; customAttribute.array[ offset_custom ] = customAttribute.value[ face.a ]; customAttribute.array[ offset_custom + 1 ] = customAttribute.value[ face.b ]; customAttribute.array[ offset_custom + 2 ] = customAttribute.value[ face.c ]; offset_custom += 3; } } else if ( customAttribute.boundTo === 'faces' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; customAttribute.array[ offset_custom ] = value; customAttribute.array[ offset_custom + 1 ] = value; customAttribute.array[ offset_custom + 2 ] = value; offset_custom += 3; } } } else if ( customAttribute.size === 2 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === 'vertices' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; offset_custom += 6; } } else if ( customAttribute.boundTo === 'faces' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; offset_custom += 6; } } } else if ( customAttribute.size === 3 ) { var pp; if ( customAttribute.type === 'c' ) { pp = [ 'r', 'g', 'b' ]; } else { pp = [ 'x', 'y', 'z' ]; } if ( customAttribute.boundTo === undefined || customAttribute.boundTo === 'vertices' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; offset_custom += 9; } } else if ( customAttribute.boundTo === 'faces' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; offset_custom += 9; } } else if ( customAttribute.boundTo === 'faceVertices' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value[ 0 ]; v2 = value[ 1 ]; v3 = value[ 2 ]; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; offset_custom += 9; } } } else if ( customAttribute.size === 4 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === 'vertices' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; offset_custom += 12; } } else if ( customAttribute.boundTo === 'faces' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; offset_custom += 12; } } else if ( customAttribute.boundTo === 'faceVertices' ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value[ 0 ]; v2 = value[ 1 ]; v3 = value[ 2 ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; offset_custom += 12; } } } _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } if ( dispose ) { delete geometryGroup.__inittedArrays; delete geometryGroup.__colorArray; delete geometryGroup.__normalArray; delete geometryGroup.__tangentArray; delete geometryGroup.__uvArray; delete geometryGroup.__uv2Array; delete geometryGroup.__faceArray; delete geometryGroup.__vertexArray; delete geometryGroup.__lineArray; delete geometryGroup.__skinIndexArray; delete geometryGroup.__skinWeightArray; } }; function setDirectBuffers( geometry, hint ) { var attributes = geometry.attributes; var attributeName, attributeItem; for ( attributeName in attributes ) { attributeItem = attributes[ attributeName ]; if ( attributeItem.needsUpdate ) { if ( attributeName === 'index' ) { _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, attributeItem.buffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, attributeItem.array, hint ); } else { _gl.bindBuffer( _gl.ARRAY_BUFFER, attributeItem.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, attributeItem.array, hint ); } attributeItem.needsUpdate = false; } } } // Buffer rendering this.renderBufferImmediate = function ( object, program, material ) { initAttributes(); if ( object.hasPositions && ! object.__webglVertexBuffer ) object.__webglVertexBuffer = _gl.createBuffer(); if ( object.hasNormals && ! object.__webglNormalBuffer ) object.__webglNormalBuffer = _gl.createBuffer(); if ( object.hasUvs && ! object.__webglUvBuffer ) object.__webglUvBuffer = _gl.createBuffer(); if ( object.hasColors && ! object.__webglColorBuffer ) object.__webglColorBuffer = _gl.createBuffer(); if ( object.hasPositions ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW ); enableAttribute( program.attributes.position ); _gl.vertexAttribPointer( program.attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglNormalBuffer ); if ( material.shading === THREE.FlatShading ) { var nx, ny, nz, nax, nbx, ncx, nay, nby, ncy, naz, nbz, ncz, normalArray, i, il = object.count * 3; for ( i = 0; i < il; i += 9 ) { normalArray = object.normalArray; nax = normalArray[ i ]; nay = normalArray[ i + 1 ]; naz = normalArray[ i + 2 ]; nbx = normalArray[ i + 3 ]; nby = normalArray[ i + 4 ]; nbz = normalArray[ i + 5 ]; ncx = normalArray[ i + 6 ]; ncy = normalArray[ i + 7 ]; ncz = normalArray[ i + 8 ]; nx = ( nax + nbx + ncx ) / 3; ny = ( nay + nby + ncy ) / 3; nz = ( naz + nbz + ncz ) / 3; normalArray[ i ] = nx; normalArray[ i + 1 ] = ny; normalArray[ i + 2 ] = nz; normalArray[ i + 3 ] = nx; normalArray[ i + 4 ] = ny; normalArray[ i + 5 ] = nz; normalArray[ i + 6 ] = nx; normalArray[ i + 7 ] = ny; normalArray[ i + 8 ] = nz; } } _gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW ); enableAttribute( program.attributes.normal ); _gl.vertexAttribPointer( program.attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasUvs && material.map ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglUvBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW ); enableAttribute( program.attributes.uv ); _gl.vertexAttribPointer( program.attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); } if ( object.hasColors && material.vertexColors !== THREE.NoColors ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW ); enableAttribute( program.attributes.color ); _gl.vertexAttribPointer( program.attributes.color, 3, _gl.FLOAT, false, 0, 0 ); } disableUnusedAttributes(); _gl.drawArrays( _gl.TRIANGLES, 0, object.count ); object.count = 0; }; function setupVertexAttributes( material, programAttributes, geometryAttributes, startIndex ) { for ( var attributeName in programAttributes ) { var attributePointer = programAttributes[ attributeName ]; var attributeItem = geometryAttributes[ attributeName ]; if ( attributePointer >= 0 ) { if ( attributeItem ) { var attributeSize = attributeItem.itemSize; _gl.bindBuffer( _gl.ARRAY_BUFFER, attributeItem.buffer ); enableAttribute( attributePointer ); _gl.vertexAttribPointer( attributePointer, attributeSize, _gl.FLOAT, false, 0, startIndex * attributeSize * 4 ); // 4 bytes per Float32 } else if ( material.defaultAttributeValues ) { if ( material.defaultAttributeValues[ attributeName ].length === 2 ) { _gl.vertexAttrib2fv( attributePointer, material.defaultAttributeValues[ attributeName ] ); } else if ( material.defaultAttributeValues[ attributeName ].length === 3 ) { _gl.vertexAttrib3fv( attributePointer, material.defaultAttributeValues[ attributeName ] ); } } } } disableUnusedAttributes(); } this.renderBufferDirect = function ( camera, lights, fog, material, geometry, object ) { if ( material.visible === false ) return; var linewidth, a, attribute; var attributeItem, attributeName, attributePointer, attributeSize; var program = setProgram( camera, lights, fog, material, object ); var programAttributes = program.attributes; var geometryAttributes = geometry.attributes; var updateBuffers = false, wireframeBit = material.wireframe ? 1 : 0, geometryHash = ( geometry.id * 0xffffff ) + ( program.id * 2 ) + wireframeBit; if ( geometryHash !== _currentGeometryGroupHash ) { _currentGeometryGroupHash = geometryHash; updateBuffers = true; } if ( updateBuffers ) { initAttributes(); } // render mesh if ( object instanceof THREE.Mesh ) { var index = geometryAttributes[ 'index' ]; if ( index ) { // indexed triangles var type, size; if ( index.array instanceof Uint32Array ) { type = _gl.UNSIGNED_INT; size = 4; } else { type = _gl.UNSIGNED_SHORT; size = 2; } var offsets = geometry.offsets; if ( offsets.length === 0 ) { if ( updateBuffers ) { setupVertexAttributes( material, programAttributes, geometryAttributes, 0 ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, index.buffer ); } _gl.drawElements( _gl.TRIANGLES, index.array.length, type, 0 ); _this.info.render.calls ++; _this.info.render.vertices += index.array.length; // not really true, here vertices can be shared _this.info.render.faces += index.array.length / 3; } else { // if there is more than 1 chunk // must set attribute pointers to use new offsets for each chunk // even if geometry and materials didn't change updateBuffers = true; for ( var i = 0, il = offsets.length; i < il; i ++ ) { var startIndex = offsets[ i ].index; if ( updateBuffers ) { setupVertexAttributes( material, programAttributes, geometryAttributes, startIndex ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, index.buffer ); } // render indexed triangles _gl.drawElements( _gl.TRIANGLES, offsets[ i ].count, type, offsets[ i ].start * size ); _this.info.render.calls ++; _this.info.render.vertices += offsets[ i ].count; // not really true, here vertices can be shared _this.info.render.faces += offsets[ i ].count / 3; } } } else { // non-indexed triangles if ( updateBuffers ) { setupVertexAttributes( material, programAttributes, geometryAttributes, 0 ); } var position = geometry.attributes[ 'position' ]; // render non-indexed triangles _gl.drawArrays( _gl.TRIANGLES, 0, position.array.length / 3 ); _this.info.render.calls ++; _this.info.render.vertices += position.array.length / 3; _this.info.render.faces += position.array.length / 9; } } else if ( object instanceof THREE.PointCloud ) { // render particles if ( updateBuffers ) { setupVertexAttributes( material, programAttributes, geometryAttributes, 0 ); } var position = geometryAttributes[ 'position' ]; // render particles _gl.drawArrays( _gl.POINTS, 0, position.array.length / 3 ); _this.info.render.calls ++; _this.info.render.points += position.array.length / 3; } else if ( object instanceof THREE.Line ) { var mode = ( object.type === THREE.LineStrip ) ? _gl.LINE_STRIP : _gl.LINES; setLineWidth( material.linewidth ); var index = geometryAttributes[ 'index' ]; if ( index ) { // indexed lines var type, size; if ( index.array instanceof Uint32Array ) { type = _gl.UNSIGNED_INT; size = 4; } else { type = _gl.UNSIGNED_SHORT; size = 2; } var offsets = geometry.offsets; if ( offsets.length === 0 ) { if ( updateBuffers ) { setupVertexAttributes( material, programAttributes, geometryAttributes, 0 ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, index.buffer ); } _gl.drawElements( mode, index.array.length, type, 0 ); // 2 bytes per Uint16Array _this.info.render.calls ++; _this.info.render.vertices += index.array.length; // not really true, here vertices can be shared } else { // if there is more than 1 chunk // must set attribute pointers to use new offsets for each chunk // even if geometry and materials didn't change if ( offsets.length > 1 ) updateBuffers = true; for ( var i = 0, il = offsets.length; i < il; i ++ ) { var startIndex = offsets[ i ].index; if ( updateBuffers ) { setupVertexAttributes( material, programAttributes, geometryAttributes, startIndex ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, index.buffer ); } // render indexed lines _gl.drawElements( mode, offsets[ i ].count, type, offsets[ i ].start * size ); // 2 bytes per Uint16Array _this.info.render.calls ++; _this.info.render.vertices += offsets[ i ].count; // not really true, here vertices can be shared } } } else { // non-indexed lines if ( updateBuffers ) { setupVertexAttributes( material, programAttributes, geometryAttributes, 0 ); } var position = geometryAttributes[ 'position' ]; _gl.drawArrays( mode, 0, position.array.length / 3 ); _this.info.render.calls ++; _this.info.render.points += position.array.length / 3; } } }; this.renderBuffer = function ( camera, lights, fog, material, geometryGroup, object ) { if ( material.visible === false ) return; var linewidth, a, attribute, i, il; var program = setProgram( camera, lights, fog, material, object ); var attributes = program.attributes; var updateBuffers = false, wireframeBit = material.wireframe ? 1 : 0, geometryGroupHash = ( geometryGroup.id * 0xffffff ) + ( program.id * 2 ) + wireframeBit; if ( geometryGroupHash !== _currentGeometryGroupHash ) { _currentGeometryGroupHash = geometryGroupHash; updateBuffers = true; } if ( updateBuffers ) { initAttributes(); } // vertices if ( ! material.morphTargets && attributes.position >= 0 ) { if ( updateBuffers ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); enableAttribute( attributes.position ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } } else { if ( object.morphTargetBase ) { setupMorphTargets( material, geometryGroup, object ); } } if ( updateBuffers ) { // custom attributes // Use the per-geometryGroup custom attribute arrays which are setup in initMeshBuffers if ( geometryGroup.__webglCustomAttributesList ) { for ( i = 0, il = geometryGroup.__webglCustomAttributesList.length; i < il; i ++ ) { attribute = geometryGroup.__webglCustomAttributesList[ i ]; if ( attributes[ attribute.buffer.belongsToAttribute ] >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, attribute.buffer ); enableAttribute( attributes[ attribute.buffer.belongsToAttribute ] ); _gl.vertexAttribPointer( attributes[ attribute.buffer.belongsToAttribute ], attribute.size, _gl.FLOAT, false, 0, 0 ); } } } // colors if ( attributes.color >= 0 ) { if ( object.geometry.colors.length > 0 || object.geometry.faces.length > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglColorBuffer ); enableAttribute( attributes.color ); _gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 ); } else if ( material.defaultAttributeValues ) { _gl.vertexAttrib3fv( attributes.color, material.defaultAttributeValues.color ); } } // normals if ( attributes.normal >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglNormalBuffer ); enableAttribute( attributes.normal ); _gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } // tangents if ( attributes.tangent >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglTangentBuffer ); enableAttribute( attributes.tangent ); _gl.vertexAttribPointer( attributes.tangent, 4, _gl.FLOAT, false, 0, 0 ); } // uvs if ( attributes.uv >= 0 ) { if ( object.geometry.faceVertexUvs[ 0 ] ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUVBuffer ); enableAttribute( attributes.uv ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); } else if ( material.defaultAttributeValues ) { _gl.vertexAttrib2fv( attributes.uv, material.defaultAttributeValues.uv ); } } if ( attributes.uv2 >= 0 ) { if ( object.geometry.faceVertexUvs[ 1 ] ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUV2Buffer ); enableAttribute( attributes.uv2 ); _gl.vertexAttribPointer( attributes.uv2, 2, _gl.FLOAT, false, 0, 0 ); } else if ( material.defaultAttributeValues ) { _gl.vertexAttrib2fv( attributes.uv2, material.defaultAttributeValues.uv2 ); } } if ( material.skinning && attributes.skinIndex >= 0 && attributes.skinWeight >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinIndicesBuffer ); enableAttribute( attributes.skinIndex ); _gl.vertexAttribPointer( attributes.skinIndex, 4, _gl.FLOAT, false, 0, 0 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinWeightsBuffer ); enableAttribute( attributes.skinWeight ); _gl.vertexAttribPointer( attributes.skinWeight, 4, _gl.FLOAT, false, 0, 0 ); } // line distances if ( attributes.lineDistance >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglLineDistanceBuffer ); enableAttribute( attributes.lineDistance ); _gl.vertexAttribPointer( attributes.lineDistance, 1, _gl.FLOAT, false, 0, 0 ); } } disableUnusedAttributes(); // render mesh if ( object instanceof THREE.Mesh ) { var type = geometryGroup.__typeArray === Uint32Array ? _gl.UNSIGNED_INT : _gl.UNSIGNED_SHORT; // wireframe if ( material.wireframe ) { setLineWidth( material.wireframeLinewidth ); if ( updateBuffers ) _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglLineBuffer ); _gl.drawElements( _gl.LINES, geometryGroup.__webglLineCount, type, 0 ); // triangles } else { if ( updateBuffers ) _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglFaceBuffer ); _gl.drawElements( _gl.TRIANGLES, geometryGroup.__webglFaceCount, type, 0 ); } _this.info.render.calls ++; _this.info.render.vertices += geometryGroup.__webglFaceCount; _this.info.render.faces += geometryGroup.__webglFaceCount / 3; // render lines } else if ( object instanceof THREE.Line ) { var mode = ( object.type === THREE.LineStrip ) ? _gl.LINE_STRIP : _gl.LINES; setLineWidth( material.linewidth ); _gl.drawArrays( mode, 0, geometryGroup.__webglLineCount ); _this.info.render.calls ++; // render particles } else if ( object instanceof THREE.PointCloud ) { _gl.drawArrays( _gl.POINTS, 0, geometryGroup.__webglParticleCount ); _this.info.render.calls ++; _this.info.render.points += geometryGroup.__webglParticleCount; } }; function initAttributes() { for ( var i = 0, l = _newAttributes.length; i < l; i ++ ) { _newAttributes[ i ] = 0; } } function enableAttribute( attribute ) { _newAttributes[ attribute ] = 1; if ( _enabledAttributes[ attribute ] === 0 ) { _gl.enableVertexAttribArray( attribute ); _enabledAttributes[ attribute ] = 1; } } function disableUnusedAttributes() { for ( var i = 0, l = _enabledAttributes.length; i < l; i ++ ) { if ( _enabledAttributes[ i ] !== _newAttributes[ i ] ) { _gl.disableVertexAttribArray( i ); _enabledAttributes[ i ] = 0; } } } function setupMorphTargets ( material, geometryGroup, object ) { // set base var attributes = material.program.attributes; if ( object.morphTargetBase !== - 1 && attributes.position >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ object.morphTargetBase ] ); enableAttribute( attributes.position ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } else if ( attributes.position >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); enableAttribute( attributes.position ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.morphTargetForcedOrder.length ) { // set forced order var m = 0; var order = object.morphTargetForcedOrder; var influences = object.morphTargetInfluences; while ( m < material.numSupportedMorphTargets && m < order.length ) { if ( attributes[ 'morphTarget' + m ] >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ order[ m ] ] ); enableAttribute( attributes[ 'morphTarget' + m ] ); _gl.vertexAttribPointer( attributes[ 'morphTarget' + m ], 3, _gl.FLOAT, false, 0, 0 ); } if ( attributes[ 'morphNormal' + m ] >= 0 && material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ order[ m ] ] ); enableAttribute( attributes[ 'morphNormal' + m ] ); _gl.vertexAttribPointer( attributes[ 'morphNormal' + m ], 3, _gl.FLOAT, false, 0, 0 ); } object.__webglMorphTargetInfluences[ m ] = influences[ order[ m ] ]; m ++; } } else { // find the most influencing var influence, activeInfluenceIndices = []; var influences = object.morphTargetInfluences; var i, il = influences.length; for ( i = 0; i < il; i ++ ) { influence = influences[ i ]; if ( influence > 0 ) { activeInfluenceIndices.push( [ influence, i ] ); } } if ( activeInfluenceIndices.length > material.numSupportedMorphTargets ) { activeInfluenceIndices.sort( numericalSort ); activeInfluenceIndices.length = material.numSupportedMorphTargets; } else if ( activeInfluenceIndices.length > material.numSupportedMorphNormals ) { activeInfluenceIndices.sort( numericalSort ); } else if ( activeInfluenceIndices.length === 0 ) { activeInfluenceIndices.push( [ 0, 0 ] ); }; var influenceIndex, m = 0; while ( m < material.numSupportedMorphTargets ) { if ( activeInfluenceIndices[ m ] ) { influenceIndex = activeInfluenceIndices[ m ][ 1 ]; if ( attributes[ 'morphTarget' + m ] >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ influenceIndex ] ); enableAttribute( attributes[ 'morphTarget' + m ] ); _gl.vertexAttribPointer( attributes[ 'morphTarget' + m ], 3, _gl.FLOAT, false, 0, 0 ); } if ( attributes[ 'morphNormal' + m ] >= 0 && material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ influenceIndex ] ); enableAttribute( attributes[ 'morphNormal' + m ] ); _gl.vertexAttribPointer( attributes[ 'morphNormal' + m ], 3, _gl.FLOAT, false, 0, 0 ); } object.__webglMorphTargetInfluences[ m ] = influences[ influenceIndex ]; } else { /* _gl.vertexAttribPointer( attributes[ "morphTarget" + m ], 3, _gl.FLOAT, false, 0, 0 ); if ( material.morphNormals ) { _gl.vertexAttribPointer( attributes[ "morphNormal" + m ], 3, _gl.FLOAT, false, 0, 0 ); } */ object.__webglMorphTargetInfluences[ m ] = 0; } m ++; } } // load updated influences uniform if ( material.program.uniforms.morphTargetInfluences !== null ) { _gl.uniform1fv( material.program.uniforms.morphTargetInfluences, object.__webglMorphTargetInfluences ); } }; // Sorting function painterSortStable ( a, b ) { if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } }; function reversePainterSortStable ( a, b ) { if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } }; function numericalSort ( a, b ) { return b[ 0 ] - a[ 0 ]; }; // Rendering this.render = function ( scene, camera, renderTarget, forceClear ) { if ( camera instanceof THREE.Camera === false ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } var i, il, webglObject, object, renderList, lights = scene.__lights, fog = scene.fog; // reset caching for this frame _currentMaterialId = - 1; _currentCamera = null; _lightsNeedUpdate = true; // update scene graph if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === undefined ) camera.updateMatrixWorld(); // update Skeleton objects function updateSkeletons( object ) { if ( object instanceof THREE.SkinnedMesh ) { object.skeleton.update(); } for ( var i = 0, l = object.children.length; i < l; i ++ ) { updateSkeletons( object.children[ i ] ); } } updateSkeletons( scene ); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); initObjects( scene ); opaqueObjects.length = 0; transparentObjects.length = 0; projectObject( scene, scene, camera ); if ( _this.sortObjects === true ) { opaqueObjects.sort( painterSortStable ); transparentObjects.sort( reversePainterSortStable ); } // custom render plugins (pre pass) renderPlugins( this.renderPluginsPre, scene, camera ); // _this.info.render.calls = 0; _this.info.render.vertices = 0; _this.info.render.faces = 0; _this.info.render.points = 0; this.setRenderTarget( renderTarget ); if ( this.autoClear || forceClear ) { this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil ); } // set matrices for regular objects (frustum culled) // set matrices for immediate objects renderList = scene.__webglObjectsImmediate; for ( i = 0, il = renderList.length; i < il; i ++ ) { webglObject = renderList[ i ]; object = webglObject.object; if ( object.visible ) { setupMatrices( object, camera ); unrollImmediateBufferMaterial( webglObject ); } } if ( scene.overrideMaterial ) { var material = scene.overrideMaterial; this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); this.setDepthTest( material.depthTest ); this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); renderObjects( opaqueObjects, camera, lights, fog, true, material ); renderObjects( transparentObjects, camera, lights, fog, true, material ); renderObjectsImmediate( scene.__webglObjectsImmediate, '', camera, lights, fog, false, material ); } else { var material = null; // opaque pass (front-to-back order) this.setBlending( THREE.NoBlending ); renderObjects( opaqueObjects, camera, lights, fog, false, material ); renderObjectsImmediate( scene.__webglObjectsImmediate, 'opaque', camera, lights, fog, false, material ); // transparent pass (back-to-front order) renderObjects( transparentObjects, camera, lights, fog, true, material ); renderObjectsImmediate( scene.__webglObjectsImmediate, 'transparent', camera, lights, fog, true, material ); } // custom render plugins (post pass) renderPlugins( this.renderPluginsPost, scene, camera ); // Generate mipmap if we're using any kind of mipmap filtering if ( renderTarget && renderTarget.generateMipmaps && renderTarget.minFilter !== THREE.NearestFilter && renderTarget.minFilter !== THREE.LinearFilter ) { updateRenderTargetMipmap( renderTarget ); } // Ensure depth buffer writing is enabled so it can be cleared on next render this.setDepthTest( true ); this.setDepthWrite( true ); // _gl.finish(); }; function projectObject(scene, object,camera){ if ( object.visible === false ) return; var webglObjects = scene.__webglObjects[ object.id ]; if ( webglObjects && ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) ) { updateObject( scene, object ); for ( var i = 0, l = webglObjects.length; i < l; i ++ ) { var webglObject = webglObjects[i]; unrollBufferMaterial( webglObject ); webglObject.render = true; if ( _this.sortObjects === true ) { if ( object.renderDepth !== null ) { webglObject.z = object.renderDepth; } else { _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyProjection( _projScreenMatrix ); webglObject.z = _vector3.z; } } } } for ( var i = 0, l = object.children.length; i < l; i ++ ) { projectObject( scene, object.children[ i ], camera ); } } function renderPlugins( plugins, scene, camera ) { if ( plugins.length === 0 ) return; for ( var i = 0, il = plugins.length; i < il; i ++ ) { // reset state for plugin (to start from clean slate) _currentProgram = null; _currentCamera = null; _oldBlending = - 1; _oldDepthTest = - 1; _oldDepthWrite = - 1; _oldDoubleSided = - 1; _oldFlipSided = - 1; _currentGeometryGroupHash = - 1; _currentMaterialId = - 1; _lightsNeedUpdate = true; plugins[ i ].render( scene, camera, _currentWidth, _currentHeight ); // reset state after plugin (anything could have changed) _currentProgram = null; _currentCamera = null; _oldBlending = - 1; _oldDepthTest = - 1; _oldDepthWrite = - 1; _oldDoubleSided = - 1; _oldFlipSided = - 1; _currentGeometryGroupHash = - 1; _currentMaterialId = - 1; _lightsNeedUpdate = true; } }; function renderObjects( renderList, camera, lights, fog, useBlending, overrideMaterial ) { var webglObject, object, buffer, material; for ( var i = renderList.length - 1; i !== - 1; i -- ) { webglObject = renderList[ i ]; object = webglObject.object; buffer = webglObject.buffer; setupMatrices( object, camera ); if ( overrideMaterial ) { material = overrideMaterial; } else { material = webglObject.material; if ( ! material ) continue; if ( useBlending ) _this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); _this.setDepthTest( material.depthTest ); _this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } _this.setMaterialFaces( material ); if ( buffer instanceof THREE.BufferGeometry ) { _this.renderBufferDirect( camera, lights, fog, material, buffer, object ); } else { _this.renderBuffer( camera, lights, fog, material, buffer, object ); } } }; function renderObjectsImmediate ( renderList, materialType, camera, lights, fog, useBlending, overrideMaterial ) { var webglObject, object, material, program; for ( var i = 0, il = renderList.length; i < il; i ++ ) { webglObject = renderList[ i ]; object = webglObject.object; if ( object.visible ) { if ( overrideMaterial ) { material = overrideMaterial; } else { material = webglObject[ materialType ]; if ( ! material ) continue; if ( useBlending ) _this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); _this.setDepthTest( material.depthTest ); _this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } _this.renderImmediateObject( camera, lights, fog, material, object ); } } }; this.renderImmediateObject = function ( camera, lights, fog, material, object ) { var program = setProgram( camera, lights, fog, material, object ); _currentGeometryGroupHash = - 1; _this.setMaterialFaces( material ); if ( object.immediateRenderCallback ) { object.immediateRenderCallback( program, _gl, _frustum ); } else { object.render( function ( object ) { _this.renderBufferImmediate( object, program, material ); } ); } }; function unrollImmediateBufferMaterial ( globject ) { var object = globject.object, material = object.material; if ( material.transparent ) { globject.transparent = material; globject.opaque = null; } else { globject.opaque = material; globject.transparent = null; } }; function unrollBufferMaterial ( globject ) { var object = globject.object; var buffer = globject.buffer; var geometry = object.geometry; var material = object.material; if ( material instanceof THREE.MeshFaceMaterial ) { var materialIndex = geometry instanceof THREE.BufferGeometry ? 0 : buffer.materialIndex; material = material.materials[ materialIndex ]; if ( material.transparent ) { globject.material = material; transparentObjects.push( globject ); } else { globject.material = material; opaqueObjects.push( globject ); } } else { if ( material ) { if ( material.transparent ) { globject.material = material; transparentObjects.push( globject ); } else { globject.material = material; opaqueObjects.push( globject ); } } } }; // Objects refresh var initObjects = function ( scene ) { if ( ! scene.__webglObjects ) { scene.__webglObjects = {}; scene.__webglObjectsImmediate = []; } while ( scene.__objectsAdded.length ) { addObject( scene.__objectsAdded[ 0 ], scene ); scene.__objectsAdded.splice( 0, 1 ); } while ( scene.__objectsRemoved.length ) { removeObject( scene.__objectsRemoved[ 0 ], scene ); scene.__objectsRemoved.splice( 0, 1 ); } }; // Objects adding function addObject( object, scene ) { var g, geometry, geometryGroup; if ( object.__webglInit === undefined ) { object.__webglInit = true; object._modelViewMatrix = new THREE.Matrix4(); object._normalMatrix = new THREE.Matrix3(); } geometry = object.geometry; if ( geometry === undefined ) { // ImmediateRenderObject } else if ( geometry.__webglInit === undefined ) { geometry.__webglInit = true; geometry.addEventListener( 'dispose', onGeometryDispose ); if ( geometry instanceof THREE.BufferGeometry ) { initDirectBuffers( geometry ); } else if ( object instanceof THREE.Mesh ) { if ( object.__webglActive !== undefined ) { removeObject( object, scene ); } initGeometryGroups(scene, object, geometry); } else if ( object instanceof THREE.Line ) { if ( ! geometry.__webglVertexBuffer ) { createLineBuffers( geometry ); initLineBuffers( geometry, object ); geometry.verticesNeedUpdate = true; geometry.colorsNeedUpdate = true; geometry.lineDistancesNeedUpdate = true; } } else if ( object instanceof THREE.PointCloud ) { if ( ! geometry.__webglVertexBuffer ) { createParticleBuffers( geometry ); initParticleBuffers( geometry, object ); geometry.verticesNeedUpdate = true; geometry.colorsNeedUpdate = true; } } } if ( object.__webglActive === undefined) { if ( object instanceof THREE.Mesh ) { geometry = object.geometry; if ( geometry instanceof THREE.BufferGeometry ) { addBuffer( scene.__webglObjects, geometry, object ); } else if ( geometry instanceof THREE.Geometry ) { for ( var i = 0,l = geometry.geometryGroupsList.length; i= 0; o -- ) { if ( objlist[ o ].object === object ) { objlist.splice( o, 1 ); } } }; // Materials this.initMaterial = function ( material, lights, fog, object ) { material.addEventListener( 'dispose', onMaterialDispose ); var u, a, identifiers, i, parameters, maxLightCount, maxBones, maxShadows, shaderID; if ( material instanceof THREE.MeshDepthMaterial ) { shaderID = 'depth'; } else if ( material instanceof THREE.MeshNormalMaterial ) { shaderID = 'normal'; } else if ( material instanceof THREE.MeshBasicMaterial ) { shaderID = 'basic'; } else if ( material instanceof THREE.MeshLambertMaterial ) { shaderID = 'lambert'; } else if ( material instanceof THREE.MeshPhongMaterial ) { shaderID = 'phong'; } else if ( material instanceof THREE.LineBasicMaterial ) { shaderID = 'basic'; } else if ( material instanceof THREE.LineDashedMaterial ) { shaderID = 'dashed'; } else if ( material instanceof THREE.PointCloudMaterial ) { shaderID = 'particle_basic'; } if ( shaderID ) { var shader = THREE.ShaderLib[ shaderID ]; material.__webglShader = { uniforms: THREE.UniformsUtils.clone( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader } } else { material.__webglShader = { uniforms: material.uniforms, vertexShader: material.vertexShader, fragmentShader: material.fragmentShader } } // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) maxLightCount = allocateLights( lights ); maxShadows = allocateShadows( lights ); maxBones = allocateBones( object ); parameters = { precision: _precision, supportsVertexTextures: _supportsVertexTextures, map: !! material.map, envMap: !! material.envMap, lightMap: !! material.lightMap, bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, specularMap: !! material.specularMap, alphaMap: !! material.alphaMap, vertexColors: material.vertexColors, fog: fog, useFog: material.fog, fogExp: fog instanceof THREE.FogExp2, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: _logarithmicDepthBuffer, skinning: material.skinning, maxBones: maxBones, useVertexTexture: _supportsBoneTextures && object && object.skeleton && object.skeleton.useVertexTexture, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: this.maxMorphTargets, maxMorphNormals: this.maxMorphNormals, maxDirLights: maxLightCount.directional, maxPointLights: maxLightCount.point, maxSpotLights: maxLightCount.spot, maxHemiLights: maxLightCount.hemi, maxShadows: maxShadows, shadowMapEnabled: this.shadowMapEnabled && object.receiveShadow && maxShadows > 0, shadowMapType: this.shadowMapType, shadowMapDebug: this.shadowMapDebug, shadowMapCascade: this.shadowMapCascade, alphaTest: material.alphaTest, metal: material.metal, wrapAround: material.wrapAround, doubleSided: material.side === THREE.DoubleSide, flipSided: material.side === THREE.BackSide }; // Generate code var chunks = []; if ( shaderID ) { chunks.push( shaderID ); } else { chunks.push( material.fragmentShader ); chunks.push( material.vertexShader ); } for ( var d in material.defines ) { chunks.push( d ); chunks.push( material.defines[ d ] ); } for ( var p in parameters ) { chunks.push( p ); chunks.push( parameters[ p ] ); } var code = chunks.join(); var program; // Check if code has been already compiled for ( var p = 0, pl = _programs.length; p < pl; p ++ ) { var programInfo = _programs[ p ]; if ( programInfo.code === code ) { program = programInfo; program.usedTimes ++; break; } } if ( program === undefined ) { program = new THREE.WebGLProgram( this, code, material, parameters ); _programs.push( program ); _this.info.memory.programs = _programs.length; } material.program = program; var attributes = material.program.attributes; if ( material.morphTargets ) { material.numSupportedMorphTargets = 0; var id, base = 'morphTarget'; for ( i = 0; i < this.maxMorphTargets; i ++ ) { id = base + i; if ( attributes[ id ] >= 0 ) { material.numSupportedMorphTargets ++; } } } if ( material.morphNormals ) { material.numSupportedMorphNormals = 0; var id, base = 'morphNormal'; for ( i = 0; i < this.maxMorphNormals; i ++ ) { id = base + i; if ( attributes[ id ] >= 0 ) { material.numSupportedMorphNormals ++; } } } material.uniformsList = []; for ( u in material.__webglShader.uniforms ) { var location = material.program.uniforms[ u ]; if ( location ) { material.uniformsList.push( [ material.__webglShader.uniforms[ u ], location ] ); } } }; function setProgram( camera, lights, fog, material, object ) { _usedTextureUnits = 0; if ( material.needsUpdate ) { if ( material.program ) deallocateMaterial( material ); _this.initMaterial( material, lights, fog, object ); material.needsUpdate = false; } if ( material.morphTargets ) { if ( ! object.__webglMorphTargetInfluences ) { object.__webglMorphTargetInfluences = new Float32Array( _this.maxMorphTargets ); } } var refreshProgram = false; var refreshMaterial = false; var refreshLights = false; var program = material.program, p_uniforms = program.uniforms, m_uniforms = material.__webglShader.uniforms; if ( program.id !== _currentProgram ) { _gl.useProgram( program.program ); _currentProgram = program.id; refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { if ( _currentMaterialId === -1 ) refreshLights = true; _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || camera !== _currentCamera ) { _gl.uniformMatrix4fv( p_uniforms.projectionMatrix, false, camera.projectionMatrix.elements ); if ( _logarithmicDepthBuffer ) { _gl.uniform1f( p_uniforms.logDepthBufFC, 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } if ( camera !== _currentCamera ) _currentCamera = camera; // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material instanceof THREE.ShaderMaterial || material instanceof THREE.MeshPhongMaterial || material.envMap ) { if ( p_uniforms.cameraPosition !== null ) { _vector3.setFromMatrixPosition( camera.matrixWorld ); _gl.uniform3f( p_uniforms.cameraPosition, _vector3.x, _vector3.y, _vector3.z ); } } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.ShaderMaterial || material.skinning ) { if ( p_uniforms.viewMatrix !== null ) { _gl.uniformMatrix4fv( p_uniforms.viewMatrix, false, camera.matrixWorldInverse.elements ); } } } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // not sure why, but otherwise weird things happen if ( material.skinning ) { if ( object.bindMatrix && p_uniforms.bindMatrix !== null ) { _gl.uniformMatrix4fv( p_uniforms.bindMatrix, false, object.bindMatrix.elements ); } if ( object.bindMatrixInverse && p_uniforms.bindMatrixInverse !== null ) { _gl.uniformMatrix4fv( p_uniforms.bindMatrixInverse, false, object.bindMatrixInverse.elements ); } if ( _supportsBoneTextures && object.skeleton && object.skeleton.useVertexTexture ) { if ( p_uniforms.boneTexture !== null ) { var textureUnit = getTextureUnit(); _gl.uniform1i( p_uniforms.boneTexture, textureUnit ); _this.setTexture( object.skeleton.boneTexture, textureUnit ); } if ( p_uniforms.boneTextureWidth !== null ) { _gl.uniform1i( p_uniforms.boneTextureWidth, object.skeleton.boneTextureWidth ); } if ( p_uniforms.boneTextureHeight !== null ) { _gl.uniform1i( p_uniforms.boneTextureHeight, object.skeleton.boneTextureHeight ); } } else if ( object.skeleton && object.skeleton.boneMatrices ) { if ( p_uniforms.boneGlobalMatrices !== null ) { _gl.uniformMatrix4fv( p_uniforms.boneGlobalMatrices, false, object.skeleton.boneMatrices ); } } } if ( refreshMaterial ) { // refresh uniforms common to several materials if ( fog && material.fog ) { refreshUniformsFog( m_uniforms, fog ); } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material.lights ) { if ( _lightsNeedUpdate ) { refreshLights = true; setupLights( lights ); _lightsNeedUpdate = false; } if ( refreshLights ) { refreshUniformsLights( m_uniforms, _lights ); markUniformsLightsNeedsUpdate( m_uniforms, true ); } else { markUniformsLightsNeedsUpdate( m_uniforms, false ); } } if ( material instanceof THREE.MeshBasicMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshPhongMaterial ) { refreshUniformsCommon( m_uniforms, material ); } // refresh single material specific uniforms if ( material instanceof THREE.LineBasicMaterial ) { refreshUniformsLine( m_uniforms, material ); } else if ( material instanceof THREE.LineDashedMaterial ) { refreshUniformsLine( m_uniforms, material ); refreshUniformsDash( m_uniforms, material ); } else if ( material instanceof THREE.PointCloudMaterial ) { refreshUniformsParticle( m_uniforms, material ); } else if ( material instanceof THREE.MeshPhongMaterial ) { refreshUniformsPhong( m_uniforms, material ); } else if ( material instanceof THREE.MeshLambertMaterial ) { refreshUniformsLambert( m_uniforms, material ); } else if ( material instanceof THREE.MeshDepthMaterial ) { m_uniforms.mNear.value = camera.near; m_uniforms.mFar.value = camera.far; m_uniforms.opacity.value = material.opacity; } else if ( material instanceof THREE.MeshNormalMaterial ) { m_uniforms.opacity.value = material.opacity; } if ( object.receiveShadow && ! material._shadowPass ) { refreshUniformsShadow( m_uniforms, lights ); } // load common uniforms loadUniformsGeneric( material.uniformsList ); } loadUniformsMatrices( p_uniforms, object ); if ( p_uniforms.modelMatrix !== null ) { _gl.uniformMatrix4fv( p_uniforms.modelMatrix, false, object.matrixWorld.elements ); } return program; }; // Uniforms (refresh uniforms objects) function refreshUniformsCommon ( uniforms, material ) { uniforms.opacity.value = material.opacity; if ( _this.gammaInput ) { uniforms.diffuse.value.copyGammaToLinear( material.color ); } else { uniforms.diffuse.value = material.color; } uniforms.map.value = material.map; uniforms.lightMap.value = material.lightMap; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } if ( uvScaleMap !== undefined ) { var offset = uvScaleMap.offset; var repeat = uvScaleMap.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } uniforms.envMap.value = material.envMap; uniforms.flipEnvMap.value = ( material.envMap instanceof THREE.WebGLRenderTargetCube ) ? 1 : - 1; if ( _this.gammaInput ) { //uniforms.reflectivity.value = material.reflectivity * material.reflectivity; uniforms.reflectivity.value = material.reflectivity; } else { uniforms.reflectivity.value = material.reflectivity; } uniforms.refractionRatio.value = material.refractionRatio; uniforms.combine.value = material.combine; uniforms.useRefract.value = material.envMap && material.envMap.mapping instanceof THREE.CubeRefractionMapping; }; function refreshUniformsLine ( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; }; function refreshUniformsDash ( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; }; function refreshUniformsParticle ( uniforms, material ) { uniforms.psColor.value = material.color; uniforms.opacity.value = material.opacity; uniforms.size.value = material.size; uniforms.scale.value = _canvas.height / 2.0; // TODO: Cache this. uniforms.map.value = material.map; }; function refreshUniformsFog ( uniforms, fog ) { uniforms.fogColor.value = fog.color; if ( fog instanceof THREE.Fog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog instanceof THREE.FogExp2 ) { uniforms.fogDensity.value = fog.density; } }; function refreshUniformsPhong ( uniforms, material ) { uniforms.shininess.value = material.shininess; if ( _this.gammaInput ) { uniforms.ambient.value.copyGammaToLinear( material.ambient ); uniforms.emissive.value.copyGammaToLinear( material.emissive ); uniforms.specular.value.copyGammaToLinear( material.specular ); } else { uniforms.ambient.value = material.ambient; uniforms.emissive.value = material.emissive; uniforms.specular.value = material.specular; } if ( material.wrapAround ) { uniforms.wrapRGB.value.copy( material.wrapRGB ); } }; function refreshUniformsLambert ( uniforms, material ) { if ( _this.gammaInput ) { uniforms.ambient.value.copyGammaToLinear( material.ambient ); uniforms.emissive.value.copyGammaToLinear( material.emissive ); } else { uniforms.ambient.value = material.ambient; uniforms.emissive.value = material.emissive; } if ( material.wrapAround ) { uniforms.wrapRGB.value.copy( material.wrapRGB ); } }; function refreshUniformsLights ( uniforms, lights ) { uniforms.ambientLightColor.value = lights.ambient; uniforms.directionalLightColor.value = lights.directional.colors; uniforms.directionalLightDirection.value = lights.directional.positions; uniforms.pointLightColor.value = lights.point.colors; uniforms.pointLightPosition.value = lights.point.positions; uniforms.pointLightDistance.value = lights.point.distances; uniforms.spotLightColor.value = lights.spot.colors; uniforms.spotLightPosition.value = lights.spot.positions; uniforms.spotLightDistance.value = lights.spot.distances; uniforms.spotLightDirection.value = lights.spot.directions; uniforms.spotLightAngleCos.value = lights.spot.anglesCos; uniforms.spotLightExponent.value = lights.spot.exponents; uniforms.hemisphereLightSkyColor.value = lights.hemi.skyColors; uniforms.hemisphereLightGroundColor.value = lights.hemi.groundColors; uniforms.hemisphereLightDirection.value = lights.hemi.positions; }; // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate ( uniforms, boolean ) { uniforms.ambientLightColor.needsUpdate = boolean; uniforms.directionalLightColor.needsUpdate = boolean; uniforms.directionalLightDirection.needsUpdate = boolean; uniforms.pointLightColor.needsUpdate = boolean; uniforms.pointLightPosition.needsUpdate = boolean; uniforms.pointLightDistance.needsUpdate = boolean; uniforms.spotLightColor.needsUpdate = boolean; uniforms.spotLightPosition.needsUpdate = boolean; uniforms.spotLightDistance.needsUpdate = boolean; uniforms.spotLightDirection.needsUpdate = boolean; uniforms.spotLightAngleCos.needsUpdate = boolean; uniforms.spotLightExponent.needsUpdate = boolean; uniforms.hemisphereLightSkyColor.needsUpdate = boolean; uniforms.hemisphereLightGroundColor.needsUpdate = boolean; uniforms.hemisphereLightDirection.needsUpdate = boolean; }; function refreshUniformsShadow ( uniforms, lights ) { if ( uniforms.shadowMatrix ) { var j = 0; for ( var i = 0, il = lights.length; i < il; i ++ ) { var light = lights[ i ]; if ( ! light.castShadow ) continue; if ( light instanceof THREE.SpotLight || ( light instanceof THREE.DirectionalLight && ! light.shadowCascade ) ) { uniforms.shadowMap.value[ j ] = light.shadowMap; uniforms.shadowMapSize.value[ j ] = light.shadowMapSize; uniforms.shadowMatrix.value[ j ] = light.shadowMatrix; uniforms.shadowDarkness.value[ j ] = light.shadowDarkness; uniforms.shadowBias.value[ j ] = light.shadowBias; j ++; } } } }; // Uniforms (load to GPU) function loadUniformsMatrices ( uniforms, object ) { _gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, object._modelViewMatrix.elements ); if ( uniforms.normalMatrix ) { _gl.uniformMatrix3fv( uniforms.normalMatrix, false, object._normalMatrix.elements ); } }; function getTextureUnit() { var textureUnit = _usedTextureUnits; if ( textureUnit >= _maxTextures ) { console.warn( 'WebGLRenderer: trying to use ' + textureUnit + ' texture units while this GPU supports only ' + _maxTextures ); } _usedTextureUnits += 1; return textureUnit; }; function loadUniformsGeneric ( uniforms ) { var texture, textureUnit, offset; for ( var j = 0, jl = uniforms.length; j < jl; j ++ ) { var uniform = uniforms[ j ][ 0 ]; // needsUpdate property is not added to all uniforms. if ( uniform.needsUpdate === false ) continue; var type = uniform.type; var value = uniform.value; var location = uniforms[ j ][ 1 ]; switch ( type ) { case '1i': _gl.uniform1i( location, value ); break; case '1f': _gl.uniform1f( location, value ); break; case '2f': _gl.uniform2f( location, value[ 0 ], value[ 1 ] ); break; case '3f': _gl.uniform3f( location, value[ 0 ], value[ 1 ], value[ 2 ] ); break; case '4f': _gl.uniform4f( location, value[ 0 ], value[ 1 ], value[ 2 ], value[ 3 ] ); break; case '1iv': _gl.uniform1iv( location, value ); break; case '3iv': _gl.uniform3iv( location, value ); break; case '1fv': _gl.uniform1fv( location, value ); break; case '2fv': _gl.uniform2fv( location, value ); break; case '3fv': _gl.uniform3fv( location, value ); break; case '4fv': _gl.uniform4fv( location, value ); break; case 'Matrix3fv': _gl.uniformMatrix3fv( location, false, value ); break; case 'Matrix4fv': _gl.uniformMatrix4fv( location, false, value ); break; // case 'i': // single integer _gl.uniform1i( location, value ); break; case 'f': // single float _gl.uniform1f( location, value ); break; case 'v2': // single THREE.Vector2 _gl.uniform2f( location, value.x, value.y ); break; case 'v3': // single THREE.Vector3 _gl.uniform3f( location, value.x, value.y, value.z ); break; case 'v4': // single THREE.Vector4 _gl.uniform4f( location, value.x, value.y, value.z, value.w ); break; case 'c': // single THREE.Color _gl.uniform3f( location, value.r, value.g, value.b ); break; case 'iv1': // flat array of integers (JS or typed array) _gl.uniform1iv( location, value ); break; case 'iv': // flat array of integers with 3 x N size (JS or typed array) _gl.uniform3iv( location, value ); break; case 'fv1': // flat array of floats (JS or typed array) _gl.uniform1fv( location, value ); break; case 'fv': // flat array of floats with 3 x N size (JS or typed array) _gl.uniform3fv( location, value ); break; case 'v2v': // array of THREE.Vector2 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 2 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { offset = i * 2; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; } _gl.uniform2fv( location, uniform._array ); break; case 'v3v': // array of THREE.Vector3 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 3 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { offset = i * 3; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; uniform._array[ offset + 2 ] = value[ i ].z; } _gl.uniform3fv( location, uniform._array ); break; case 'v4v': // array of THREE.Vector4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 4 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { offset = i * 4; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; uniform._array[ offset + 2 ] = value[ i ].z; uniform._array[ offset + 3 ] = value[ i ].w; } _gl.uniform4fv( location, uniform._array ); break; case 'm3': // single THREE.Matrix3 _gl.uniformMatrix3fv( location, false, value.elements ); break; case 'm3v': // array of THREE.Matrix3 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 9 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { value[ i ].flattenToArrayOffset( uniform._array, i * 9 ); } _gl.uniformMatrix3fv( location, false, uniform._array ); break; case 'm4': // single THREE.Matrix4 _gl.uniformMatrix4fv( location, false, value.elements ); break; case 'm4v': // array of THREE.Matrix4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 16 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { value[ i ].flattenToArrayOffset( uniform._array, i * 16 ); } _gl.uniformMatrix4fv( location, false, uniform._array ); break; case 't': // single THREE.Texture (2d or cube) texture = value; textureUnit = getTextureUnit(); _gl.uniform1i( location, textureUnit ); if ( ! texture ) continue; if ( texture instanceof THREE.CubeTexture || ( texture.image instanceof Array && texture.image.length === 6 ) ) { // CompressedTexture can have Array in image :/ setCubeTexture( texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTargetCube ) { setCubeTextureDynamic( texture, textureUnit ); } else { _this.setTexture( texture, textureUnit ); } break; case 'tv': // array of THREE.Texture (2d) if ( uniform._array === undefined ) { uniform._array = []; } for ( var i = 0, il = uniform.value.length; i < il; i ++ ) { uniform._array[ i ] = getTextureUnit(); } _gl.uniform1iv( location, uniform._array ); for ( var i = 0, il = uniform.value.length; i < il; i ++ ) { texture = uniform.value[ i ]; textureUnit = uniform._array[ i ]; if ( ! texture ) continue; _this.setTexture( texture, textureUnit ); } break; default: console.warn( 'THREE.WebGLRenderer: Unknown uniform type: ' + type ); } } }; function setupMatrices ( object, camera ) { object._modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object._normalMatrix.getNormalMatrix( object._modelViewMatrix ); }; // function setColorGamma( array, offset, color, intensitySq ) { array[ offset ] = color.r * color.r * intensitySq; array[ offset + 1 ] = color.g * color.g * intensitySq; array[ offset + 2 ] = color.b * color.b * intensitySq; }; function setColorLinear( array, offset, color, intensity ) { array[ offset ] = color.r * intensity; array[ offset + 1 ] = color.g * intensity; array[ offset + 2 ] = color.b * intensity; }; function setupLights ( lights ) { var l, ll, light, n, r = 0, g = 0, b = 0, color, skyColor, groundColor, intensity, intensitySq, position, distance, zlights = _lights, dirColors = zlights.directional.colors, dirPositions = zlights.directional.positions, pointColors = zlights.point.colors, pointPositions = zlights.point.positions, pointDistances = zlights.point.distances, spotColors = zlights.spot.colors, spotPositions = zlights.spot.positions, spotDistances = zlights.spot.distances, spotDirections = zlights.spot.directions, spotAnglesCos = zlights.spot.anglesCos, spotExponents = zlights.spot.exponents, hemiSkyColors = zlights.hemi.skyColors, hemiGroundColors = zlights.hemi.groundColors, hemiPositions = zlights.hemi.positions, dirLength = 0, pointLength = 0, spotLength = 0, hemiLength = 0, dirCount = 0, pointCount = 0, spotCount = 0, hemiCount = 0, dirOffset = 0, pointOffset = 0, spotOffset = 0, hemiOffset = 0; for ( l = 0, ll = lights.length; l < ll; l ++ ) { light = lights[ l ]; if ( light.onlyShadow ) continue; color = light.color; intensity = light.intensity; distance = light.distance; if ( light instanceof THREE.AmbientLight ) { if ( ! light.visible ) continue; if ( _this.gammaInput ) { r += color.r * color.r; g += color.g * color.g; b += color.b * color.b; } else { r += color.r; g += color.g; b += color.b; } } else if ( light instanceof THREE.DirectionalLight ) { dirCount += 1; if ( ! light.visible ) continue; _direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); _direction.sub( _vector3 ); _direction.normalize(); dirOffset = dirLength * 3; dirPositions[ dirOffset ] = _direction.x; dirPositions[ dirOffset + 1 ] = _direction.y; dirPositions[ dirOffset + 2 ] = _direction.z; if ( _this.gammaInput ) { setColorGamma( dirColors, dirOffset, color, intensity * intensity ); } else { setColorLinear( dirColors, dirOffset, color, intensity ); } dirLength += 1; } else if ( light instanceof THREE.PointLight ) { pointCount += 1; if ( ! light.visible ) continue; pointOffset = pointLength * 3; if ( _this.gammaInput ) { setColorGamma( pointColors, pointOffset, color, intensity * intensity ); } else { setColorLinear( pointColors, pointOffset, color, intensity ); } _vector3.setFromMatrixPosition( light.matrixWorld ); pointPositions[ pointOffset ] = _vector3.x; pointPositions[ pointOffset + 1 ] = _vector3.y; pointPositions[ pointOffset + 2 ] = _vector3.z; pointDistances[ pointLength ] = distance; pointLength += 1; } else if ( light instanceof THREE.SpotLight ) { spotCount += 1; if ( ! light.visible ) continue; spotOffset = spotLength * 3; if ( _this.gammaInput ) { setColorGamma( spotColors, spotOffset, color, intensity * intensity ); } else { setColorLinear( spotColors, spotOffset, color, intensity ); } _vector3.setFromMatrixPosition( light.matrixWorld ); spotPositions[ spotOffset ] = _vector3.x; spotPositions[ spotOffset + 1 ] = _vector3.y; spotPositions[ spotOffset + 2 ] = _vector3.z; spotDistances[ spotLength ] = distance; _direction.copy( _vector3 ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); _direction.sub( _vector3 ); _direction.normalize(); spotDirections[ spotOffset ] = _direction.x; spotDirections[ spotOffset + 1 ] = _direction.y; spotDirections[ spotOffset + 2 ] = _direction.z; spotAnglesCos[ spotLength ] = Math.cos( light.angle ); spotExponents[ spotLength ] = light.exponent; spotLength += 1; } else if ( light instanceof THREE.HemisphereLight ) { hemiCount += 1; if ( ! light.visible ) continue; _direction.setFromMatrixPosition( light.matrixWorld ); _direction.normalize(); hemiOffset = hemiLength * 3; hemiPositions[ hemiOffset ] = _direction.x; hemiPositions[ hemiOffset + 1 ] = _direction.y; hemiPositions[ hemiOffset + 2 ] = _direction.z; skyColor = light.color; groundColor = light.groundColor; if ( _this.gammaInput ) { intensitySq = intensity * intensity; setColorGamma( hemiSkyColors, hemiOffset, skyColor, intensitySq ); setColorGamma( hemiGroundColors, hemiOffset, groundColor, intensitySq ); } else { setColorLinear( hemiSkyColors, hemiOffset, skyColor, intensity ); setColorLinear( hemiGroundColors, hemiOffset, groundColor, intensity ); } hemiLength += 1; } } // null eventual remains from removed lights // (this is to avoid if in shader) for ( l = dirLength * 3, ll = Math.max( dirColors.length, dirCount * 3 ); l < ll; l ++ ) dirColors[ l ] = 0.0; for ( l = pointLength * 3, ll = Math.max( pointColors.length, pointCount * 3 ); l < ll; l ++ ) pointColors[ l ] = 0.0; for ( l = spotLength * 3, ll = Math.max( spotColors.length, spotCount * 3 ); l < ll; l ++ ) spotColors[ l ] = 0.0; for ( l = hemiLength * 3, ll = Math.max( hemiSkyColors.length, hemiCount * 3 ); l < ll; l ++ ) hemiSkyColors[ l ] = 0.0; for ( l = hemiLength * 3, ll = Math.max( hemiGroundColors.length, hemiCount * 3 ); l < ll; l ++ ) hemiGroundColors[ l ] = 0.0; zlights.directional.length = dirLength; zlights.point.length = pointLength; zlights.spot.length = spotLength; zlights.hemi.length = hemiLength; zlights.ambient[ 0 ] = r; zlights.ambient[ 1 ] = g; zlights.ambient[ 2 ] = b; }; // GL state setting this.setFaceCulling = function ( cullFace, frontFaceDirection ) { if ( cullFace === THREE.CullFaceNone ) { _gl.disable( _gl.CULL_FACE ); } else { if ( frontFaceDirection === THREE.FrontFaceDirectionCW ) { _gl.frontFace( _gl.CW ); } else { _gl.frontFace( _gl.CCW ); } if ( cullFace === THREE.CullFaceBack ) { _gl.cullFace( _gl.BACK ); } else if ( cullFace === THREE.CullFaceFront ) { _gl.cullFace( _gl.FRONT ); } else { _gl.cullFace( _gl.FRONT_AND_BACK ); } _gl.enable( _gl.CULL_FACE ); } }; this.setMaterialFaces = function ( material ) { var doubleSided = material.side === THREE.DoubleSide; var flipSided = material.side === THREE.BackSide; if ( _oldDoubleSided !== doubleSided ) { if ( doubleSided ) { _gl.disable( _gl.CULL_FACE ); } else { _gl.enable( _gl.CULL_FACE ); } _oldDoubleSided = doubleSided; } if ( _oldFlipSided !== flipSided ) { if ( flipSided ) { _gl.frontFace( _gl.CW ); } else { _gl.frontFace( _gl.CCW ); } _oldFlipSided = flipSided; } }; this.setDepthTest = function ( depthTest ) { if ( _oldDepthTest !== depthTest ) { if ( depthTest ) { _gl.enable( _gl.DEPTH_TEST ); } else { _gl.disable( _gl.DEPTH_TEST ); } _oldDepthTest = depthTest; } }; this.setDepthWrite = function ( depthWrite ) { if ( _oldDepthWrite !== depthWrite ) { _gl.depthMask( depthWrite ); _oldDepthWrite = depthWrite; } }; function setLineWidth ( width ) { if ( width !== _oldLineWidth ) { _gl.lineWidth( width ); _oldLineWidth = width; } }; function setPolygonOffset ( polygonoffset, factor, units ) { if ( _oldPolygonOffset !== polygonoffset ) { if ( polygonoffset ) { _gl.enable( _gl.POLYGON_OFFSET_FILL ); } else { _gl.disable( _gl.POLYGON_OFFSET_FILL ); } _oldPolygonOffset = polygonoffset; } if ( polygonoffset && ( _oldPolygonOffsetFactor !== factor || _oldPolygonOffsetUnits !== units ) ) { _gl.polygonOffset( factor, units ); _oldPolygonOffsetFactor = factor; _oldPolygonOffsetUnits = units; } }; this.setBlending = function ( blending, blendEquation, blendSrc, blendDst ) { if ( blending !== _oldBlending ) { if ( blending === THREE.NoBlending ) { _gl.disable( _gl.BLEND ); } else if ( blending === THREE.AdditiveBlending ) { _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.SRC_ALPHA, _gl.ONE ); } else if ( blending === THREE.SubtractiveBlending ) { // TODO: Find blendFuncSeparate() combination _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.ZERO, _gl.ONE_MINUS_SRC_COLOR ); } else if ( blending === THREE.MultiplyBlending ) { // TODO: Find blendFuncSeparate() combination _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.ZERO, _gl.SRC_COLOR ); } else if ( blending === THREE.CustomBlending ) { _gl.enable( _gl.BLEND ); } else { _gl.enable( _gl.BLEND ); _gl.blendEquationSeparate( _gl.FUNC_ADD, _gl.FUNC_ADD ); _gl.blendFuncSeparate( _gl.SRC_ALPHA, _gl.ONE_MINUS_SRC_ALPHA, _gl.ONE, _gl.ONE_MINUS_SRC_ALPHA ); } _oldBlending = blending; } if ( blending === THREE.CustomBlending ) { if ( blendEquation !== _oldBlendEquation ) { _gl.blendEquation( paramThreeToGL( blendEquation ) ); _oldBlendEquation = blendEquation; } if ( blendSrc !== _oldBlendSrc || blendDst !== _oldBlendDst ) { _gl.blendFunc( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ) ); _oldBlendSrc = blendSrc; _oldBlendDst = blendDst; } } else { _oldBlendEquation = null; _oldBlendSrc = null; _oldBlendDst = null; } }; // Textures function setTextureParameters ( textureType, texture, isImagePowerOfTwo ) { if ( isImagePowerOfTwo ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) ); } else { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) ); } if ( _glExtensionTextureFilterAnisotropic && texture.type !== THREE.FloatType ) { if ( texture.anisotropy > 1 || texture.__oldAnisotropy ) { _gl.texParameterf( textureType, _glExtensionTextureFilterAnisotropic.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, _maxAnisotropy ) ); texture.__oldAnisotropy = texture.anisotropy; } } }; this.setTexture = function ( texture, slot ) { if ( texture.needsUpdate ) { if ( ! texture.__webglInit ) { texture.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); texture.__webglTexture = _gl.createTexture(); _this.info.memory.textures ++; } _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_2D, texture.__webglTexture ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); var image = texture.image, isImagePowerOfTwo = THREE.Math.isPowerOfTwo( image.width ) && THREE.Math.isPowerOfTwo( image.height ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_2D, texture, isImagePowerOfTwo ); var mipmap, mipmaps = texture.mipmaps; if ( texture instanceof THREE.DataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isImagePowerOfTwo ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; _gl.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } texture.generateMipmaps = false; } else { _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data ); } } else if ( texture instanceof THREE.CompressedTexture ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== THREE.RGBAFormat ) { _gl.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { _gl.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isImagePowerOfTwo ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; _gl.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap ); } texture.generateMipmaps = false; } else { _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, texture.image ); } } if ( texture.generateMipmaps && isImagePowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); texture.needsUpdate = false; if ( texture.onUpdate ) texture.onUpdate(); } else { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_2D, texture.__webglTexture ); } }; function clampToMaxSize ( image, maxSize ) { if ( image.width <= maxSize && image.height <= maxSize ) { return image; } // Warning: Scaling through the canvas will only work with images that use // premultiplied alpha. var maxDimension = Math.max( image.width, image.height ); var newWidth = Math.floor( image.width * maxSize / maxDimension ); var newHeight = Math.floor( image.height * maxSize / maxDimension ); var canvas = document.createElement( 'canvas' ); canvas.width = newWidth; canvas.height = newHeight; var ctx = canvas.getContext( '2d' ); ctx.drawImage( image, 0, 0, image.width, image.height, 0, 0, newWidth, newHeight ); return canvas; } function setCubeTexture ( texture, slot ) { if ( texture.image.length === 6 ) { if ( texture.needsUpdate ) { if ( ! texture.image.__webglTextureCube ) { texture.addEventListener( 'dispose', onTextureDispose ); texture.image.__webglTextureCube = _gl.createTexture(); _this.info.memory.textures ++; } _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.image.__webglTextureCube ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); var isCompressed = texture instanceof THREE.CompressedTexture; var cubeImage = []; for ( var i = 0; i < 6; i ++ ) { if ( _this.autoScaleCubemaps && ! isCompressed ) { cubeImage[ i ] = clampToMaxSize( texture.image[ i ], _maxCubemapSize ); } else { cubeImage[ i ] = texture.image[ i ]; } } var image = cubeImage[ 0 ], isImagePowerOfTwo = THREE.Math.isPowerOfTwo( image.width ) && THREE.Math.isPowerOfTwo( image.height ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isImagePowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { if ( ! isCompressed ) { _gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] ); } else { var mipmap, mipmaps = cubeImage[ i ].mipmaps; for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) { mipmap = mipmaps[ j ]; if ( texture.format !== THREE.RGBAFormat ) { _gl.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { _gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } if ( texture.generateMipmaps && isImagePowerOfTwo ) { _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } texture.needsUpdate = false; if ( texture.onUpdate ) texture.onUpdate(); } else { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.image.__webglTextureCube ); } } }; function setCubeTextureDynamic ( texture, slot ) { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.__webglTexture ); }; // Render targets function setupFrameBuffer ( framebuffer, renderTarget, textureTarget ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureTarget, renderTarget.__webglTexture, 0 ); }; function setupRenderBuffer ( renderbuffer, renderTarget ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); /* For some reason this is not working. Defaulting to RGBA4. } else if ( ! renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.STENCIL_INDEX8, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); */ } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height ); } }; this.setRenderTarget = function ( renderTarget ) { var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); if ( renderTarget && ! renderTarget.__webglFramebuffer ) { if ( renderTarget.depthBuffer === undefined ) renderTarget.depthBuffer = true; if ( renderTarget.stencilBuffer === undefined ) renderTarget.stencilBuffer = true; renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); renderTarget.__webglTexture = _gl.createTexture(); _this.info.memory.textures ++; // Setup texture, create render and frame buffers var isTargetPowerOfTwo = THREE.Math.isPowerOfTwo( renderTarget.width ) && THREE.Math.isPowerOfTwo( renderTarget.height ), glFormat = paramThreeToGL( renderTarget.format ), glType = paramThreeToGL( renderTarget.type ); if ( isCube ) { renderTarget.__webglFramebuffer = []; renderTarget.__webglRenderbuffer = []; _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, renderTarget.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget, isTargetPowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { renderTarget.__webglFramebuffer[ i ] = _gl.createFramebuffer(); renderTarget.__webglRenderbuffer[ i ] = _gl.createRenderbuffer(); _gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); setupFrameBuffer( renderTarget.__webglFramebuffer[ i ], renderTarget, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i ); setupRenderBuffer( renderTarget.__webglRenderbuffer[ i ], renderTarget ); } if ( isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } else { renderTarget.__webglFramebuffer = _gl.createFramebuffer(); if ( renderTarget.shareDepthFrom ) { renderTarget.__webglRenderbuffer = renderTarget.shareDepthFrom.__webglRenderbuffer; } else { renderTarget.__webglRenderbuffer = _gl.createRenderbuffer(); } _gl.bindTexture( _gl.TEXTURE_2D, renderTarget.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, renderTarget, isTargetPowerOfTwo ); _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); setupFrameBuffer( renderTarget.__webglFramebuffer, renderTarget, _gl.TEXTURE_2D ); if ( renderTarget.shareDepthFrom ) { if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderTarget.__webglRenderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderTarget.__webglRenderbuffer ); } } else { setupRenderBuffer( renderTarget.__webglRenderbuffer, renderTarget ); } if ( isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); } // Release everything if ( isCube ) { _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { _gl.bindTexture( _gl.TEXTURE_2D, null ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } var framebuffer, width, height, vx, vy; if ( renderTarget ) { if ( isCube ) { framebuffer = renderTarget.__webglFramebuffer[ renderTarget.activeCubeFace ]; } else { framebuffer = renderTarget.__webglFramebuffer; } width = renderTarget.width; height = renderTarget.height; vx = 0; vy = 0; } else { framebuffer = null; width = _viewportWidth; height = _viewportHeight; vx = _viewportX; vy = _viewportY; } if ( framebuffer !== _currentFramebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.viewport( vx, vy, width, height ); _currentFramebuffer = framebuffer; } _currentWidth = width; _currentHeight = height; }; function updateRenderTargetMipmap ( renderTarget ) { if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) { _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, renderTarget.__webglTexture ); _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { _gl.bindTexture( _gl.TEXTURE_2D, renderTarget.__webglTexture ); _gl.generateMipmap( _gl.TEXTURE_2D ); _gl.bindTexture( _gl.TEXTURE_2D, null ); } }; // Fallback filters for non-power-of-2 textures function filterFallback ( f ) { if ( f === THREE.NearestFilter || f === THREE.NearestMipMapNearestFilter || f === THREE.NearestMipMapLinearFilter ) { return _gl.NEAREST; } return _gl.LINEAR; }; // Map three.js constants to WebGL constants function paramThreeToGL ( p ) { if ( p === THREE.RepeatWrapping ) return _gl.REPEAT; if ( p === THREE.ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE; if ( p === THREE.MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT; if ( p === THREE.NearestFilter ) return _gl.NEAREST; if ( p === THREE.NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST; if ( p === THREE.NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR; if ( p === THREE.LinearFilter ) return _gl.LINEAR; if ( p === THREE.LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST; if ( p === THREE.LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR; if ( p === THREE.UnsignedByteType ) return _gl.UNSIGNED_BYTE; if ( p === THREE.UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4; if ( p === THREE.UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1; if ( p === THREE.UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5; if ( p === THREE.ByteType ) return _gl.BYTE; if ( p === THREE.ShortType ) return _gl.SHORT; if ( p === THREE.UnsignedShortType ) return _gl.UNSIGNED_SHORT; if ( p === THREE.IntType ) return _gl.INT; if ( p === THREE.UnsignedIntType ) return _gl.UNSIGNED_INT; if ( p === THREE.FloatType ) return _gl.FLOAT; if ( p === THREE.AlphaFormat ) return _gl.ALPHA; if ( p === THREE.RGBFormat ) return _gl.RGB; if ( p === THREE.RGBAFormat ) return _gl.RGBA; if ( p === THREE.LuminanceFormat ) return _gl.LUMINANCE; if ( p === THREE.LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA; if ( p === THREE.AddEquation ) return _gl.FUNC_ADD; if ( p === THREE.SubtractEquation ) return _gl.FUNC_SUBTRACT; if ( p === THREE.ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT; if ( p === THREE.ZeroFactor ) return _gl.ZERO; if ( p === THREE.OneFactor ) return _gl.ONE; if ( p === THREE.SrcColorFactor ) return _gl.SRC_COLOR; if ( p === THREE.OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR; if ( p === THREE.SrcAlphaFactor ) return _gl.SRC_ALPHA; if ( p === THREE.OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA; if ( p === THREE.DstAlphaFactor ) return _gl.DST_ALPHA; if ( p === THREE.OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA; if ( p === THREE.DstColorFactor ) return _gl.DST_COLOR; if ( p === THREE.OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR; if ( p === THREE.SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE; if ( _glExtensionCompressedTextureS3TC !== undefined ) { if ( p === THREE.RGB_S3TC_DXT1_Format ) return _glExtensionCompressedTextureS3TC.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === THREE.RGBA_S3TC_DXT1_Format ) return _glExtensionCompressedTextureS3TC.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === THREE.RGBA_S3TC_DXT3_Format ) return _glExtensionCompressedTextureS3TC.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === THREE.RGBA_S3TC_DXT5_Format ) return _glExtensionCompressedTextureS3TC.COMPRESSED_RGBA_S3TC_DXT5_EXT; } return 0; }; // Allocations function allocateBones ( object ) { if ( _supportsBoneTextures && object && object.skeleton && object.skeleton.useVertexTexture ) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader // to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var nVertexUniforms = _gl.getParameter( _gl.MAX_VERTEX_UNIFORM_VECTORS ); var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); var maxBones = nVertexMatrices; if ( object !== undefined && object instanceof THREE.SkinnedMesh ) { maxBones = Math.min( object.skeleton.bones.length, maxBones ); if ( maxBones < object.skeleton.bones.length ) { console.warn( 'WebGLRenderer: too many bones - ' + object.skeleton.bones.length + ', this GPU supports just ' + maxBones + ' (try OpenGL instead of ANGLE)' ); } } return maxBones; } }; function allocateLights( lights ) { var dirLights = 0; var pointLights = 0; var spotLights = 0; var hemiLights = 0; for ( var l = 0, ll = lights.length; l < ll; l ++ ) { var light = lights[ l ]; if ( light.onlyShadow || light.visible === false ) continue; if ( light instanceof THREE.DirectionalLight ) dirLights ++; if ( light instanceof THREE.PointLight ) pointLights ++; if ( light instanceof THREE.SpotLight ) spotLights ++; if ( light instanceof THREE.HemisphereLight ) hemiLights ++; } return { 'directional': dirLights, 'point': pointLights, 'spot': spotLights, 'hemi': hemiLights }; }; function allocateShadows( lights ) { var maxShadows = 0; for ( var l = 0, ll = lights.length; l < ll; l ++ ) { var light = lights[ l ]; if ( ! light.castShadow ) continue; if ( light instanceof THREE.SpotLight ) maxShadows ++; if ( light instanceof THREE.DirectionalLight && ! light.shadowCascade ) maxShadows ++; } return maxShadows; }; // Initialization function initGL() { try { var attributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer }; _gl = _context || _canvas.getContext( 'webgl', attributes ) || _canvas.getContext( 'experimental-webgl', attributes ); if ( _gl === null ) { throw 'Error creating WebGL context.'; } } catch ( error ) { console.error( error ); } _glExtensionTextureFloat = _gl.getExtension( 'OES_texture_float' ); _glExtensionTextureFloatLinear = _gl.getExtension( 'OES_texture_float_linear' ); _glExtensionStandardDerivatives = _gl.getExtension( 'OES_standard_derivatives' ); _glExtensionTextureFilterAnisotropic = _gl.getExtension( 'EXT_texture_filter_anisotropic' ) || _gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || _gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); _glExtensionCompressedTextureS3TC = _gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || _gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || _gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); _glExtensionElementIndexUint = _gl.getExtension( 'OES_element_index_uint' ); if ( _glExtensionTextureFloat === null ) { console.log( 'THREE.WebGLRenderer: Float textures not supported.' ); } if ( _glExtensionStandardDerivatives === null ) { console.log( 'THREE.WebGLRenderer: Standard derivatives not supported.' ); } if ( _glExtensionTextureFilterAnisotropic === null ) { console.log( 'THREE.WebGLRenderer: Anisotropic texture filtering not supported.' ); } if ( _glExtensionCompressedTextureS3TC === null ) { console.log( 'THREE.WebGLRenderer: S3TC compressed textures not supported.' ); } if ( _glExtensionElementIndexUint === null ) { console.log( 'THREE.WebGLRenderer: elementindex as unsigned integer not supported.' ); } if ( _gl.getShaderPrecisionFormat === undefined ) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; } } if ( _logarithmicDepthBuffer ) { _glExtensionFragDepth = _gl.getExtension( 'EXT_frag_depth' ); } }; function setDefaultGLState () { _gl.clearColor( 0, 0, 0, 1 ); _gl.clearDepth( 1 ); _gl.clearStencil( 0 ); _gl.enable( _gl.DEPTH_TEST ); _gl.depthFunc( _gl.LEQUAL ); _gl.frontFace( _gl.CCW ); _gl.cullFace( _gl.BACK ); _gl.enable( _gl.CULL_FACE ); _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.SRC_ALPHA, _gl.ONE_MINUS_SRC_ALPHA ); _gl.viewport( _viewportX, _viewportY, _viewportWidth, _viewportHeight ); _gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; // default plugins (order is important) this.shadowMapPlugin = new THREE.ShadowMapPlugin(); this.addPrePlugin( this.shadowMapPlugin ); this.addPostPlugin( new THREE.SpritePlugin() ); this.addPostPlugin( new THREE.LensFlarePlugin() ); }; // File:src/renderers/WebGLRenderTarget.js /** * @author szimek / https://github.com/szimek/ * @author alteredq / http://alteredqualia.com/ */ THREE.WebGLRenderTarget = function ( width, height, options ) { this.width = width; this.height = height; options = options || {}; this.wrapS = options.wrapS !== undefined ? options.wrapS : THREE.ClampToEdgeWrapping; this.wrapT = options.wrapT !== undefined ? options.wrapT : THREE.ClampToEdgeWrapping; this.magFilter = options.magFilter !== undefined ? options.magFilter : THREE.LinearFilter; this.minFilter = options.minFilter !== undefined ? options.minFilter : THREE.LinearMipMapLinearFilter; this.anisotropy = options.anisotropy !== undefined ? options.anisotropy : 1; this.offset = new THREE.Vector2( 0, 0 ); this.repeat = new THREE.Vector2( 1, 1 ); this.format = options.format !== undefined ? options.format : THREE.RGBAFormat; this.type = options.type !== undefined ? options.type : THREE.UnsignedByteType; this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; this.generateMipmaps = true; this.shareDepthFrom = null; }; THREE.WebGLRenderTarget.prototype = { constructor: THREE.WebGLRenderTarget, setSize: function ( width, height ) { this.width = width; this.height = height; }, clone: function () { var tmp = new THREE.WebGLRenderTarget( this.width, this.height ); tmp.wrapS = this.wrapS; tmp.wrapT = this.wrapT; tmp.magFilter = this.magFilter; tmp.minFilter = this.minFilter; tmp.anisotropy = this.anisotropy; tmp.offset.copy( this.offset ); tmp.repeat.copy( this.repeat ); tmp.format = this.format; tmp.type = this.type; tmp.depthBuffer = this.depthBuffer; tmp.stencilBuffer = this.stencilBuffer; tmp.generateMipmaps = this.generateMipmaps; tmp.shareDepthFrom = this.shareDepthFrom; return tmp; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.WebGLRenderTarget.prototype ); // File:src/renderers/WebGLRenderTargetCube.js /** * @author alteredq / http://alteredqualia.com */ THREE.WebGLRenderTargetCube = function ( width, height, options ) { THREE.WebGLRenderTarget.call( this, width, height, options ); this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5 }; THREE.WebGLRenderTargetCube.prototype = Object.create( THREE.WebGLRenderTarget.prototype ); // File:src/renderers/webgl/WebGLProgram.js THREE.WebGLProgram = ( function () { var programIdCount = 0; var generateDefines = function ( defines ) { var value, chunk, chunks = []; for ( var d in defines ) { value = defines[ d ]; if ( value === false ) continue; chunk = "#define " + d + " " + value; chunks.push( chunk ); } return chunks.join( "\n" ); }; var cacheUniformLocations = function ( gl, program, identifiers ) { var uniforms = {}; for ( var i = 0, l = identifiers.length; i < l; i ++ ) { var id = identifiers[ i ]; uniforms[ id ] = gl.getUniformLocation( program, id ); } return uniforms; }; var cacheAttributeLocations = function ( gl, program, identifiers ) { var attributes = {}; for ( var i = 0, l = identifiers.length; i < l; i ++ ) { var id = identifiers[ i ]; attributes[ id ] = gl.getAttribLocation( program, id ); } return attributes; }; return function ( renderer, code, material, parameters ) { var _this = renderer; var _gl = _this.context; var defines = material.defines; var uniforms = material.__webglShader.uniforms; var attributes = material.attributes; var vertexShader = material.__webglShader.vertexShader; var fragmentShader = material.__webglShader.fragmentShader; var index0AttributeName = material.index0AttributeName; if ( index0AttributeName === undefined && parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 index0AttributeName = 'position'; } var shadowMapTypeDefine = "SHADOWMAP_TYPE_BASIC"; if ( parameters.shadowMapType === THREE.PCFShadowMap ) { shadowMapTypeDefine = "SHADOWMAP_TYPE_PCF"; } else if ( parameters.shadowMapType === THREE.PCFSoftShadowMap ) { shadowMapTypeDefine = "SHADOWMAP_TYPE_PCF_SOFT"; } // console.log( "building new program " ); // var customDefines = generateDefines( defines ); // var program = _gl.createProgram(); var prefix_vertex, prefix_fragment; if ( material instanceof THREE.RawShaderMaterial ) { prefix_vertex = ''; prefix_fragment = ''; } else { prefix_vertex = [ "precision " + parameters.precision + " float;", "precision " + parameters.precision + " int;", customDefines, parameters.supportsVertexTextures ? "#define VERTEX_TEXTURES" : "", _this.gammaInput ? "#define GAMMA_INPUT" : "", _this.gammaOutput ? "#define GAMMA_OUTPUT" : "", "#define MAX_DIR_LIGHTS " + parameters.maxDirLights, "#define MAX_POINT_LIGHTS " + parameters.maxPointLights, "#define MAX_SPOT_LIGHTS " + parameters.maxSpotLights, "#define MAX_HEMI_LIGHTS " + parameters.maxHemiLights, "#define MAX_SHADOWS " + parameters.maxShadows, "#define MAX_BONES " + parameters.maxBones, parameters.map ? "#define USE_MAP" : "", parameters.envMap ? "#define USE_ENVMAP" : "", parameters.lightMap ? "#define USE_LIGHTMAP" : "", parameters.bumpMap ? "#define USE_BUMPMAP" : "", parameters.normalMap ? "#define USE_NORMALMAP" : "", parameters.specularMap ? "#define USE_SPECULARMAP" : "", parameters.alphaMap ? "#define USE_ALPHAMAP" : "", parameters.vertexColors ? "#define USE_COLOR" : "", parameters.skinning ? "#define USE_SKINNING" : "", parameters.useVertexTexture ? "#define BONE_TEXTURE" : "", parameters.morphTargets ? "#define USE_MORPHTARGETS" : "", parameters.morphNormals ? "#define USE_MORPHNORMALS" : "", parameters.wrapAround ? "#define WRAP_AROUND" : "", parameters.doubleSided ? "#define DOUBLE_SIDED" : "", parameters.flipSided ? "#define FLIP_SIDED" : "", parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "", parameters.shadowMapEnabled ? "#define " + shadowMapTypeDefine : "", parameters.shadowMapDebug ? "#define SHADOWMAP_DEBUG" : "", parameters.shadowMapCascade ? "#define SHADOWMAP_CASCADE" : "", parameters.sizeAttenuation ? "#define USE_SIZEATTENUATION" : "", parameters.logarithmicDepthBuffer ? "#define USE_LOGDEPTHBUF" : "", //_this._glExtensionFragDepth ? "#define USE_LOGDEPTHBUF_EXT" : "", "uniform mat4 modelMatrix;", "uniform mat4 modelViewMatrix;", "uniform mat4 projectionMatrix;", "uniform mat4 viewMatrix;", "uniform mat3 normalMatrix;", "uniform vec3 cameraPosition;", "attribute vec3 position;", "attribute vec3 normal;", "attribute vec2 uv;", "attribute vec2 uv2;", "#ifdef USE_COLOR", " attribute vec3 color;", "#endif", "#ifdef USE_MORPHTARGETS", " attribute vec3 morphTarget0;", " attribute vec3 morphTarget1;", " attribute vec3 morphTarget2;", " attribute vec3 morphTarget3;", " #ifdef USE_MORPHNORMALS", " attribute vec3 morphNormal0;", " attribute vec3 morphNormal1;", " attribute vec3 morphNormal2;", " attribute vec3 morphNormal3;", " #else", " attribute vec3 morphTarget4;", " attribute vec3 morphTarget5;", " attribute vec3 morphTarget6;", " attribute vec3 morphTarget7;", " #endif", "#endif", "#ifdef USE_SKINNING", " attribute vec4 skinIndex;", " attribute vec4 skinWeight;", "#endif", "" ].join( '\n' ); prefix_fragment = [ "precision " + parameters.precision + " float;", "precision " + parameters.precision + " int;", ( parameters.bumpMap || parameters.normalMap ) ? "#extension GL_OES_standard_derivatives : enable" : "", customDefines, "#define MAX_DIR_LIGHTS " + parameters.maxDirLights, "#define MAX_POINT_LIGHTS " + parameters.maxPointLights, "#define MAX_SPOT_LIGHTS " + parameters.maxSpotLights, "#define MAX_HEMI_LIGHTS " + parameters.maxHemiLights, "#define MAX_SHADOWS " + parameters.maxShadows, parameters.alphaTest ? "#define ALPHATEST " + parameters.alphaTest: "", _this.gammaInput ? "#define GAMMA_INPUT" : "", _this.gammaOutput ? "#define GAMMA_OUTPUT" : "", ( parameters.useFog && parameters.fog ) ? "#define USE_FOG" : "", ( parameters.useFog && parameters.fogExp ) ? "#define FOG_EXP2" : "", parameters.map ? "#define USE_MAP" : "", parameters.envMap ? "#define USE_ENVMAP" : "", parameters.lightMap ? "#define USE_LIGHTMAP" : "", parameters.bumpMap ? "#define USE_BUMPMAP" : "", parameters.normalMap ? "#define USE_NORMALMAP" : "", parameters.specularMap ? "#define USE_SPECULARMAP" : "", parameters.alphaMap ? "#define USE_ALPHAMAP" : "", parameters.vertexColors ? "#define USE_COLOR" : "", parameters.metal ? "#define METAL" : "", parameters.wrapAround ? "#define WRAP_AROUND" : "", parameters.doubleSided ? "#define DOUBLE_SIDED" : "", parameters.flipSided ? "#define FLIP_SIDED" : "", parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "", parameters.shadowMapEnabled ? "#define " + shadowMapTypeDefine : "", parameters.shadowMapDebug ? "#define SHADOWMAP_DEBUG" : "", parameters.shadowMapCascade ? "#define SHADOWMAP_CASCADE" : "", parameters.logarithmicDepthBuffer ? "#define USE_LOGDEPTHBUF" : "", //_this._glExtensionFragDepth ? "#define USE_LOGDEPTHBUF_EXT" : "", "uniform mat4 viewMatrix;", "uniform vec3 cameraPosition;", "" ].join( '\n' ); } var glVertexShader = new THREE.WebGLShader( _gl, _gl.VERTEX_SHADER, prefix_vertex + vertexShader ); var glFragmentShader = new THREE.WebGLShader( _gl, _gl.FRAGMENT_SHADER, prefix_fragment + fragmentShader ); _gl.attachShader( program, glVertexShader ); _gl.attachShader( program, glFragmentShader ); if ( index0AttributeName !== undefined ) { // Force a particular attribute to index 0. // because potentially expensive emulation is done by browser if attribute 0 is disabled. // And, color, for example is often automatically bound to index 0 so disabling it _gl.bindAttribLocation( program, 0, index0AttributeName ); } _gl.linkProgram( program ); if ( _gl.getProgramParameter( program, _gl.LINK_STATUS ) === false ) { console.error( 'THREE.WebGLProgram: Could not initialise shader.' ); console.error( 'gl.VALIDATE_STATUS', _gl.getProgramParameter( program, _gl.VALIDATE_STATUS ) ); console.error( 'gl.getError()', _gl.getError() ); } if ( _gl.getProgramInfoLog( program ) !== '' ) { console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', _gl.getProgramInfoLog( program ) ); } // clean up _gl.deleteShader( glVertexShader ); _gl.deleteShader( glFragmentShader ); // cache uniform locations var identifiers = [ 'viewMatrix', 'modelViewMatrix', 'projectionMatrix', 'normalMatrix', 'modelMatrix', 'cameraPosition', 'morphTargetInfluences', 'bindMatrix', 'bindMatrixInverse' ]; if ( parameters.useVertexTexture ) { identifiers.push( 'boneTexture' ); identifiers.push( 'boneTextureWidth' ); identifiers.push( 'boneTextureHeight' ); } else { identifiers.push( 'boneGlobalMatrices' ); } if ( parameters.logarithmicDepthBuffer ) { identifiers.push('logDepthBufFC'); } for ( var u in uniforms ) { identifiers.push( u ); } this.uniforms = cacheUniformLocations( _gl, program, identifiers ); // cache attributes locations identifiers = [ "position", "normal", "uv", "uv2", "tangent", "color", "skinIndex", "skinWeight", "lineDistance" ]; for ( var i = 0; i < parameters.maxMorphTargets; i ++ ) { identifiers.push( "morphTarget" + i ); } for ( var i = 0; i < parameters.maxMorphNormals; i ++ ) { identifiers.push( "morphNormal" + i ); } for ( var a in attributes ) { identifiers.push( a ); } this.attributes = cacheAttributeLocations( _gl, program, identifiers ); // this.id = programIdCount ++; this.code = code; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; }; } )(); // File:src/renderers/webgl/WebGLShader.js THREE.WebGLShader = ( function () { var addLineNumbers = function ( string ) { var lines = string.split( '\n' ); for ( var i = 0; i < lines.length; i ++ ) { lines[ i ] = ( i + 1 ) + ': ' + lines[ i ]; } return lines.join( '\n' ); }; return function ( gl, type, string ) { var shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) { console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' ); } if ( gl.getShaderInfoLog( shader ) !== '' ) { console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', gl.getShaderInfoLog( shader ) ); console.warn( addLineNumbers( string ) ); } // --enable-privileged-webgl-extension // console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); return shader; }; } )(); // File:src/renderers/renderables/RenderableVertex.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.RenderableVertex = function () { this.position = new THREE.Vector3(); this.positionWorld = new THREE.Vector3(); this.positionScreen = new THREE.Vector4(); this.visible = true; }; THREE.RenderableVertex.prototype.copy = function ( vertex ) { this.positionWorld.copy( vertex.positionWorld ); this.positionScreen.copy( vertex.positionScreen ); }; // File:src/renderers/renderables/RenderableFace.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.RenderableFace = function () { this.id = 0; this.v1 = new THREE.RenderableVertex(); this.v2 = new THREE.RenderableVertex(); this.v3 = new THREE.RenderableVertex(); this.normalModel = new THREE.Vector3(); this.vertexNormalsModel = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; this.vertexNormalsLength = 0; this.color = new THREE.Color(); this.material = null; this.uvs = [ new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() ]; this.z = 0; }; // File:src/renderers/renderables/RenderableObject.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.RenderableObject = function () { this.id = 0; this.object = null; this.z = 0; }; // File:src/renderers/renderables/RenderableSprite.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.RenderableSprite = function () { this.id = 0; this.object = null; this.x = 0; this.y = 0; this.z = 0; this.rotation = 0; this.scale = new THREE.Vector2(); this.material = null; }; // File:src/renderers/renderables/RenderableLine.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.RenderableLine = function () { this.id = 0; this.v1 = new THREE.RenderableVertex(); this.v2 = new THREE.RenderableVertex(); this.vertexColors = [ new THREE.Color(), new THREE.Color() ]; this.material = null; this.z = 0; }; // File:src/extras/GeometryUtils.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.GeometryUtils = { merge: function ( geometry1, geometry2, materialIndexOffset ) { console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' ); var matrix; if ( geometry2 instanceof THREE.Mesh ) { geometry2.matrixAutoUpdate && geometry2.updateMatrix(); matrix = geometry2.matrix; geometry2 = geometry2.geometry; } geometry1.merge( geometry2, matrix, materialIndexOffset ); }, center: function ( geometry ) { console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' ); return geometry.center(); } }; // File:src/extras/ImageUtils.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author Daosheng Mu / https://github.com/DaoshengMu/ */ THREE.ImageUtils = { crossOrigin: undefined, loadTexture: function ( url, mapping, onLoad, onError ) { var loader = new THREE.ImageLoader(); loader.crossOrigin = this.crossOrigin; var texture = new THREE.Texture( undefined, mapping ); loader.load( url, function ( image ) { texture.image = image; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); }, undefined, function ( event ) { if ( onError ) onError( event ); } ); texture.sourceFile = url; return texture; }, loadTextureCube: function ( array, mapping, onLoad, onError ) { var images = []; var loader = new THREE.ImageLoader(); loader.crossOrigin = this.crossOrigin; var texture = new THREE.CubeTexture( images, mapping ); // no flipping needed for cube textures texture.flipY = false; var loaded = 0; var loadTexture = function ( i ) { loader.load( array[ i ], function ( image ) { texture.images[ i ] = image; loaded += 1; if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } } ); } for ( var i = 0, il = array.length; i < il; ++ i ) { loadTexture( i ); } return texture; }, loadCompressedTexture: function () { console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' ) }, loadCompressedTextureCube: function () { console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' ) }, getNormalMap: function ( image, depth ) { // Adapted from http://www.paulbrunt.co.uk/lab/heightnormal/ var cross = function ( a, b ) { return [ a[ 1 ] * b[ 2 ] - a[ 2 ] * b[ 1 ], a[ 2 ] * b[ 0 ] - a[ 0 ] * b[ 2 ], a[ 0 ] * b[ 1 ] - a[ 1 ] * b[ 0 ] ]; } var subtract = function ( a, b ) { return [ a[ 0 ] - b[ 0 ], a[ 1 ] - b[ 1 ], a[ 2 ] - b[ 2 ] ]; } var normalize = function ( a ) { var l = Math.sqrt( a[ 0 ] * a[ 0 ] + a[ 1 ] * a[ 1 ] + a[ 2 ] * a[ 2 ] ); return [ a[ 0 ] / l, a[ 1 ] / l, a[ 2 ] / l ]; } depth = depth | 1; var width = image.width; var height = image.height; var canvas = document.createElement( 'canvas' ); canvas.width = width; canvas.height = height; var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0 ); var data = context.getImageData( 0, 0, width, height ).data; var imageData = context.createImageData( width, height ); var output = imageData.data; for ( var x = 0; x < width; x ++ ) { for ( var y = 0; y < height; y ++ ) { var ly = y - 1 < 0 ? 0 : y - 1; var uy = y + 1 > height - 1 ? height - 1 : y + 1; var lx = x - 1 < 0 ? 0 : x - 1; var ux = x + 1 > width - 1 ? width - 1 : x + 1; var points = []; var origin = [ 0, 0, data[ ( y * width + x ) * 4 ] / 255 * depth ]; points.push( [ - 1, 0, data[ ( y * width + lx ) * 4 ] / 255 * depth ] ); points.push( [ - 1, - 1, data[ ( ly * width + lx ) * 4 ] / 255 * depth ] ); points.push( [ 0, - 1, data[ ( ly * width + x ) * 4 ] / 255 * depth ] ); points.push( [ 1, - 1, data[ ( ly * width + ux ) * 4 ] / 255 * depth ] ); points.push( [ 1, 0, data[ ( y * width + ux ) * 4 ] / 255 * depth ] ); points.push( [ 1, 1, data[ ( uy * width + ux ) * 4 ] / 255 * depth ] ); points.push( [ 0, 1, data[ ( uy * width + x ) * 4 ] / 255 * depth ] ); points.push( [ - 1, 1, data[ ( uy * width + lx ) * 4 ] / 255 * depth ] ); var normals = []; var num_points = points.length; for ( var i = 0; i < num_points; i ++ ) { var v1 = points[ i ]; var v2 = points[ ( i + 1 ) % num_points ]; v1 = subtract( v1, origin ); v2 = subtract( v2, origin ); normals.push( normalize( cross( v1, v2 ) ) ); } var normal = [ 0, 0, 0 ]; for ( var i = 0; i < normals.length; i ++ ) { normal[ 0 ] += normals[ i ][ 0 ]; normal[ 1 ] += normals[ i ][ 1 ]; normal[ 2 ] += normals[ i ][ 2 ]; } normal[ 0 ] /= normals.length; normal[ 1 ] /= normals.length; normal[ 2 ] /= normals.length; var idx = ( y * width + x ) * 4; output[ idx ] = ( ( normal[ 0 ] + 1.0 ) / 2.0 * 255 ) | 0; output[ idx + 1 ] = ( ( normal[ 1 ] + 1.0 ) / 2.0 * 255 ) | 0; output[ idx + 2 ] = ( normal[ 2 ] * 255 ) | 0; output[ idx + 3 ] = 255; } } context.putImageData( imageData, 0, 0 ); return canvas; }, generateDataTexture: function ( width, height, color ) { var size = width * height; var data = new Uint8Array( 3 * size ); var r = Math.floor( color.r * 255 ); var g = Math.floor( color.g * 255 ); var b = Math.floor( color.b * 255 ); for ( var i = 0; i < size; i ++ ) { data[ i * 3 ] = r; data[ i * 3 + 1 ] = g; data[ i * 3 + 2 ] = b; } var texture = new THREE.DataTexture( data, width, height, THREE.RGBFormat ); texture.needsUpdate = true; return texture; } }; // File:src/extras/SceneUtils.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.SceneUtils = { createMultiMaterialObject: function ( geometry, materials ) { var group = new THREE.Object3D(); for ( var i = 0, l = materials.length; i < l; i ++ ) { group.add( new THREE.Mesh( geometry, materials[ i ] ) ); } return group; }, detach: function ( child, parent, scene ) { child.applyMatrix( parent.matrixWorld ); parent.remove( child ); scene.add( child ); }, attach: function ( child, scene, parent ) { var matrixWorldInverse = new THREE.Matrix4(); matrixWorldInverse.getInverse( parent.matrixWorld ); child.applyMatrix( matrixWorldInverse ); scene.remove( child ); parent.add( child ); } }; // File:src/extras/FontUtils.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author alteredq / http://alteredqualia.com/ * * For Text operations in three.js (See TextGeometry) * * It uses techniques used in: * * typeface.js and canvastext * For converting fonts and rendering with javascript * http://typeface.neocracy.org * * Triangulation ported from AS3 * Simple Polygon Triangulation * http://actionsnippet.com/?p=1462 * * A Method to triangulate shapes with holes * http://www.sakri.net/blog/2009/06/12/an-approach-to-triangulating-polygons-with-holes/ * */ THREE.FontUtils = { faces: {}, // Just for now. face[weight][style] face: 'helvetiker', weight: 'normal', style: 'normal', size: 150, divisions: 10, getFace: function () { try { return this.faces[ this.face ][ this.weight ][ this.style ]; } catch (e) { throw "The font " + this.face + " with " + this.weight + " weight and " + this.style + " style is missing." }; }, loadFace: function ( data ) { var family = data.familyName.toLowerCase(); var ThreeFont = this; ThreeFont.faces[ family ] = ThreeFont.faces[ family ] || {}; ThreeFont.faces[ family ][ data.cssFontWeight ] = ThreeFont.faces[ family ][ data.cssFontWeight ] || {}; ThreeFont.faces[ family ][ data.cssFontWeight ][ data.cssFontStyle ] = data; var face = ThreeFont.faces[ family ][ data.cssFontWeight ][ data.cssFontStyle ] = data; return data; }, drawText: function ( text ) { var characterPts = [], allPts = []; // RenderText var i, p, face = this.getFace(), scale = this.size / face.resolution, offset = 0, chars = String( text ).split( '' ), length = chars.length; var fontPaths = []; for ( i = 0; i < length; i ++ ) { var path = new THREE.Path(); var ret = this.extractGlyphPoints( chars[ i ], face, scale, offset, path ); offset += ret.offset; fontPaths.push( ret.path ); } // get the width var width = offset / 2; // // for ( p = 0; p < allPts.length; p++ ) { // // allPts[ p ].x -= width; // // } //var extract = this.extractPoints( allPts, characterPts ); //extract.contour = allPts; //extract.paths = fontPaths; //extract.offset = width; return { paths: fontPaths, offset: width }; }, extractGlyphPoints: function ( c, face, scale, offset, path ) { var pts = []; var i, i2, divisions, outline, action, length, scaleX, scaleY, x, y, cpx, cpy, cpx0, cpy0, cpx1, cpy1, cpx2, cpy2, laste, glyph = face.glyphs[ c ] || face.glyphs[ '?' ]; if ( ! glyph ) return; if ( glyph.o ) { outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) ); length = outline.length; scaleX = scale; scaleY = scale; for ( i = 0; i < length; ) { action = outline[ i ++ ]; //console.log( action ); switch ( action ) { case 'm': // Move To x = outline[ i ++ ] * scaleX + offset; y = outline[ i ++ ] * scaleY; path.moveTo( x, y ); break; case 'l': // Line To x = outline[ i ++ ] * scaleX + offset; y = outline[ i ++ ] * scaleY; path.lineTo( x,y ); break; case 'q': // QuadraticCurveTo cpx = outline[ i ++ ] * scaleX + offset; cpy = outline[ i ++ ] * scaleY; cpx1 = outline[ i ++ ] * scaleX + offset; cpy1 = outline[ i ++ ] * scaleY; path.quadraticCurveTo( cpx1, cpy1, cpx, cpy ); laste = pts[ pts.length - 1 ]; if ( laste ) { cpx0 = laste.x; cpy0 = laste.y; for ( i2 = 1, divisions = this.divisions; i2 <= divisions; i2 ++ ) { var t = i2 / divisions; var tx = THREE.Shape.Utils.b2( t, cpx0, cpx1, cpx ); var ty = THREE.Shape.Utils.b2( t, cpy0, cpy1, cpy ); } } break; case 'b': // Cubic Bezier Curve cpx = outline[ i ++ ] * scaleX + offset; cpy = outline[ i ++ ] * scaleY; cpx1 = outline[ i ++ ] * scaleX + offset; cpy1 = outline[ i ++ ] * scaleY; cpx2 = outline[ i ++ ] * scaleX + offset; cpy2 = outline[ i ++ ] * scaleY; path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy ); laste = pts[ pts.length - 1 ]; if ( laste ) { cpx0 = laste.x; cpy0 = laste.y; for ( i2 = 1, divisions = this.divisions; i2 <= divisions; i2 ++ ) { var t = i2 / divisions; var tx = THREE.Shape.Utils.b3( t, cpx0, cpx1, cpx2, cpx ); var ty = THREE.Shape.Utils.b3( t, cpy0, cpy1, cpy2, cpy ); } } break; } } } return { offset: glyph.ha * scale, path:path }; } }; THREE.FontUtils.generateShapes = function ( text, parameters ) { // Parameters parameters = parameters || {}; var size = parameters.size !== undefined ? parameters.size : 100; var curveSegments = parameters.curveSegments !== undefined ? parameters.curveSegments : 4; var font = parameters.font !== undefined ? parameters.font : 'helvetiker'; var weight = parameters.weight !== undefined ? parameters.weight : 'normal'; var style = parameters.style !== undefined ? parameters.style : 'normal'; THREE.FontUtils.size = size; THREE.FontUtils.divisions = curveSegments; THREE.FontUtils.face = font; THREE.FontUtils.weight = weight; THREE.FontUtils.style = style; // Get a Font data json object var data = THREE.FontUtils.drawText( text ); var paths = data.paths; var shapes = []; for ( var p = 0, pl = paths.length; p < pl; p ++ ) { Array.prototype.push.apply( shapes, paths[ p ].toShapes() ); } return shapes; }; /** * This code is a quick port of code written in C++ which was submitted to * flipcode.com by John W. Ratcliff // July 22, 2000 * See original code and more information here: * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml * * ported to actionscript by Zevan Rosser * www.actionsnippet.com * * ported to javascript by Joshua Koo * http://www.lab4games.net/zz85/blog * */ ( function ( namespace ) { var EPSILON = 0.0000000001; // takes in an contour array and returns var process = function ( contour, indices ) { var n = contour.length; if ( n < 3 ) return null; var result = [], verts = [], vertIndices = []; /* we want a counter-clockwise polygon in verts */ var u, v, w; if ( area( contour ) > 0.0 ) { for ( v = 0; v < n; v ++ ) verts[ v ] = v; } else { for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v; } var nv = n; /* remove nv - 2 vertices, creating 1 triangle every time */ var count = 2 * nv; /* error detection */ for ( v = nv - 1; nv > 2; ) { /* if we loop, it is probably a non-simple polygon */ if ( ( count -- ) <= 0 ) { //** Triangulate: ERROR - probable bad polygon! //throw ( "Warning, unable to triangulate polygon!" ); //return null; // Sometimes warning is fine, especially polygons are triangulated in reverse. console.log( 'Warning, unable to triangulate polygon!' ); if ( indices ) return vertIndices; return result; } /* three consecutive vertices in current polygon, */ u = v; if ( nv <= u ) u = 0; /* previous */ v = u + 1; if ( nv <= v ) v = 0; /* new v */ w = v + 1; if ( nv <= w ) w = 0; /* next */ if ( snip( contour, u, v, w, nv, verts ) ) { var a, b, c, s, t; /* true names of the vertices */ a = verts[ u ]; b = verts[ v ]; c = verts[ w ]; /* output Triangle */ result.push( [ contour[ a ], contour[ b ], contour[ c ] ] ); vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] ); /* remove v from the remaining polygon */ for ( s = v, t = v + 1; t < nv; s++, t++ ) { verts[ s ] = verts[ t ]; } nv --; /* reset error detection counter */ count = 2 * nv; } } if ( indices ) return vertIndices; return result; }; // calculate area of the contour polygon var area = function ( contour ) { var n = contour.length; var a = 0.0; for ( var p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; }; var snip = function ( contour, u, v, w, n, verts ) { var p; var ax, ay, bx, by; var cx, cy, px, py; ax = contour[ verts[ u ] ].x; ay = contour[ verts[ u ] ].y; bx = contour[ verts[ v ] ].x; by = contour[ verts[ v ] ].y; cx = contour[ verts[ w ] ].x; cy = contour[ verts[ w ] ].y; if ( EPSILON > ( ( ( bx - ax ) * ( cy - ay ) ) - ( ( by - ay ) * ( cx - ax ) ) ) ) return false; var aX, aY, bX, bY, cX, cY; var apx, apy, bpx, bpy, cpx, cpy; var cCROSSap, bCROSScp, aCROSSbp; aX = cx - bx; aY = cy - by; bX = ax - cx; bY = ay - cy; cX = bx - ax; cY = by - ay; for ( p = 0; p < n; p ++ ) { px = contour[ verts[ p ] ].x py = contour[ verts[ p ] ].y if ( ( ( px === ax ) && ( py === ay ) ) || ( ( px === bx ) && ( py === by ) ) || ( ( px === cx ) && ( py === cy ) ) ) continue; apx = px - ax; apy = py - ay; bpx = px - bx; bpy = py - by; cpx = px - cx; cpy = py - cy; // see if p is inside triangle abc aCROSSbp = aX * bpy - aY * bpx; cCROSSap = cX * apy - cY * apx; bCROSScp = bX * cpy - bY * cpx; if ( ( aCROSSbp >= - EPSILON ) && ( bCROSScp >= - EPSILON ) && ( cCROSSap >= - EPSILON ) ) return false; } return true; }; namespace.Triangulate = process; namespace.Triangulate.area = area; return namespace; } )( THREE.FontUtils ); // To use the typeface.js face files, hook up the API self._typeface_js = { faces: THREE.FontUtils.faces, loadFace: THREE.FontUtils.loadFace }; THREE.typeface_js = self._typeface_js; // File:src/extras/core/Curve.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * Extensible curve object * * Some common of Curve methods * .getPoint(t), getTangent(t) * .getPointAt(u), getTagentAt(u) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following classes subclasses THREE.Curve: * * -- 2d classes -- * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.CubicBezierCurve * THREE.SplineCurve * THREE.ArcCurve * THREE.EllipseCurve * * -- 3d classes -- * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * THREE.CubicBezierCurve3 * THREE.SplineCurve3 * THREE.ClosedSplineCurve3 * * A series of curves can be represented as a THREE.CurvePath * **/ /************************************************************** * Abstract Curve base class **************************************************************/ THREE.Curve = function () { }; // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] THREE.Curve.prototype.getPoint = function ( t ) { console.log( "Warning, getPoint() not implemented!" ); return null; }; // Get point at relative position in curve according to arc length // - u [0 .. 1] THREE.Curve.prototype.getPointAt = function ( u ) { var t = this.getUtoTmapping( u ); return this.getPoint( t ); }; // Get sequence of points using getPoint( t ) THREE.Curve.prototype.getPoints = function ( divisions ) { if ( ! divisions ) divisions = 5; var d, pts = []; for ( d = 0; d <= divisions; d ++ ) { pts.push( this.getPoint( d / divisions ) ); } return pts; }; // Get sequence of points using getPointAt( u ) THREE.Curve.prototype.getSpacedPoints = function ( divisions ) { if ( ! divisions ) divisions = 5; var d, pts = []; for ( d = 0; d <= divisions; d ++ ) { pts.push( this.getPointAt( d / divisions ) ); } return pts; }; // Get total curve arc length THREE.Curve.prototype.getLength = function () { var lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; }; // Get list of cumulative segment lengths THREE.Curve.prototype.getLengths = function ( divisions ) { if ( ! divisions ) divisions = (this.__arcLengthDivisions) ? (this.__arcLengthDivisions): 200; if ( this.cacheArcLengths && ( this.cacheArcLengths.length == divisions + 1 ) && ! this.needsUpdate) { //console.log( "cached", this.cacheArcLengths ); return this.cacheArcLengths; } this.needsUpdate = false; var cache = []; var current, last = this.getPoint( 0 ); var p, sum = 0; cache.push( 0 ); for ( p = 1; p <= divisions; p ++ ) { current = this.getPoint ( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum:sum }; Sum is in the last element. }; THREE.Curve.prototype.updateArcLengths = function() { this.needsUpdate = true; this.getLengths(); }; // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equi distance THREE.Curve.prototype.getUtoTmapping = function ( u, distance ) { var arcLengths = this.getLengths(); var i = 0, il = arcLengths.length; var targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } //var time = Date.now(); // binary search for the index with largest value smaller than target u distance var low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; continue; } else if ( comparison > 0 ) { high = i - 1; continue; } else { high = i; break; // DONE } } i = high; //console.log('b' , i, low, high, Date.now()- time); if ( arcLengths[ i ] == targetArcLength ) { var t = i / ( il - 1 ); return t; } // we could get finer grain at lengths, or use simple interpolatation between two points var lengthBefore = arcLengths[ i ]; var lengthAfter = arcLengths[ i + 1 ]; var segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t var t = ( i + segmentFraction ) / ( il -1 ); return t; }; // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation THREE.Curve.prototype.getTangent = function( t ) { var delta = 0.0001; var t1 = t - delta; var t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; var pt1 = this.getPoint( t1 ); var pt2 = this.getPoint( t2 ); var vec = pt2.clone().sub(pt1); return vec.normalize(); }; THREE.Curve.prototype.getTangentAt = function ( u ) { var t = this.getUtoTmapping( u ); return this.getTangent( t ); }; /************************************************************** * Utils **************************************************************/ THREE.Curve.Utils = { tangentQuadraticBezier: function ( t, p0, p1, p2 ) { return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 ); }, // Puay Bing, thanks for helping with this derivative! tangentCubicBezier: function (t, p0, p1, p2, p3 ) { return - 3 * p0 * (1 - t) * (1 - t) + 3 * p1 * (1 - t) * (1-t) - 6 *t *p1 * (1-t) + 6 * t * p2 * (1-t) - 3 * t * t * p2 + 3 * t * t * p3; }, tangentSpline: function ( t, p0, p1, p2, p3 ) { // To check if my formulas are correct var h00 = 6 * t * t - 6 * t; // derived from 2t^3 − 3t^2 + 1 var h10 = 3 * t * t - 4 * t + 1; // t^3 − 2t^2 + t var h01 = - 6 * t * t + 6 * t; // − 2t3 + 3t2 var h11 = 3 * t * t - 2 * t; // t3 − t2 return h00 + h10 + h01 + h11; }, // Catmull-Rom interpolate: function( p0, p1, p2, p3, t ) { var v0 = ( p2 - p0 ) * 0.5; var v1 = ( p3 - p1 ) * 0.5; var t2 = t * t; var t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } }; // TODO: Transformation for Curves? /************************************************************** * 3D Curves **************************************************************/ // A Factory method for creating new curve subclasses THREE.Curve.create = function ( constructor, getPointFunc ) { constructor.prototype = Object.create( THREE.Curve.prototype ); constructor.prototype.getPoint = getPointFunc; return constructor; }; // File:src/extras/core/CurvePath.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * **/ /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ THREE.CurvePath = function () { this.curves = []; this.bends = []; this.autoClose = false; // Automatically closes the path }; THREE.CurvePath.prototype = Object.create( THREE.Curve.prototype ); THREE.CurvePath.prototype.add = function ( curve ) { this.curves.push( curve ); }; THREE.CurvePath.prototype.checkConnection = function() { // TODO // If the ending of curve is not connected to the starting // or the next curve, then, this is not a real path }; THREE.CurvePath.prototype.closePath = function() { // TODO Test // and verify for vector3 (needs to implement equals) // Add a line curve if start and end of lines are not connected var startPoint = this.curves[0].getPoint(0); var endPoint = this.curves[this.curves.length-1].getPoint(1); if (! startPoint.equals(endPoint)) { this.curves.push( new THREE.LineCurve(endPoint, startPoint) ); } }; // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') THREE.CurvePath.prototype.getPoint = function( t ) { var d = t * this.getLength(); var curveLengths = this.getCurveLengths(); var i = 0, diff, curve; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { diff = curveLengths[ i ] - d; curve = this.curves[ i ]; var u = 1 - diff / curve.getLength(); return curve.getPointAt( u ); break; } i ++; } return null; // loop where sum != 0, sum > d , sum+1 maxX ) maxX = p.x; else if ( p.x < minX ) minX = p.x; if ( p.y > maxY ) maxY = p.y; else if ( p.y < minY ) minY = p.y; if ( v3 ) { if ( p.z > maxZ ) maxZ = p.z; else if ( p.z < minZ ) minZ = p.z; } sum.add( p ); } var ret = { minX: minX, minY: minY, maxX: maxX, maxY: maxY }; if ( v3 ) { ret.maxZ = maxZ; ret.minZ = minZ; } return ret; }; /************************************************************** * Create Geometries Helpers **************************************************************/ /// Generate geometry from path points (for Line or Points objects) THREE.CurvePath.prototype.createPointsGeometry = function( divisions ) { var pts = this.getPoints( divisions, true ); return this.createGeometry( pts ); }; // Generate geometry from equidistance sampling along the path THREE.CurvePath.prototype.createSpacedPointsGeometry = function( divisions ) { var pts = this.getSpacedPoints( divisions, true ); return this.createGeometry( pts ); }; THREE.CurvePath.prototype.createGeometry = function( points ) { var geometry = new THREE.Geometry(); for ( var i = 0; i < points.length; i ++ ) { geometry.vertices.push( new THREE.Vector3( points[ i ].x, points[ i ].y, points[ i ].z || 0) ); } return geometry; }; /************************************************************** * Bend / Wrap Helper Methods **************************************************************/ // Wrap path / Bend modifiers? THREE.CurvePath.prototype.addWrapPath = function ( bendpath ) { this.bends.push( bendpath ); }; THREE.CurvePath.prototype.getTransformedPoints = function( segments, bends ) { var oldPts = this.getPoints( segments ); // getPoints getSpacedPoints var i, il; if ( ! bends ) { bends = this.bends; } for ( i = 0, il = bends.length; i < il; i ++ ) { oldPts = this.getWrapPoints( oldPts, bends[ i ] ); } return oldPts; }; THREE.CurvePath.prototype.getTransformedSpacedPoints = function( segments, bends ) { var oldPts = this.getSpacedPoints( segments ); var i, il; if ( ! bends ) { bends = this.bends; } for ( i = 0, il = bends.length; i < il; i ++ ) { oldPts = this.getWrapPoints( oldPts, bends[ i ] ); } return oldPts; }; // This returns getPoints() bend/wrapped around the contour of a path. // Read http://www.planetclegg.com/projects/WarpingTextToSplines.html THREE.CurvePath.prototype.getWrapPoints = function ( oldPts, path ) { var bounds = this.getBoundingBox(); var i, il, p, oldX, oldY, xNorm; for ( i = 0, il = oldPts.length; i < il; i ++ ) { p = oldPts[ i ]; oldX = p.x; oldY = p.y; xNorm = oldX / bounds.maxX; // If using actual distance, for length > path, requires line extrusions //xNorm = path.getUtoTmapping(xNorm, oldX); // 3 styles. 1) wrap stretched. 2) wrap stretch by arc length 3) warp by actual distance xNorm = path.getUtoTmapping( xNorm, oldX ); // check for out of bounds? var pathPt = path.getPoint( xNorm ); var normal = path.getTangent( xNorm ); normal.set( - normal.y, normal.x ).multiplyScalar( oldY ); p.x = pathPt.x + normal.x; p.y = pathPt.y + normal.y; } return oldPts; }; // File:src/extras/core/Gyroscope.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Gyroscope = function () { THREE.Object3D.call( this ); }; THREE.Gyroscope.prototype = Object.create( THREE.Object3D.prototype ); THREE.Gyroscope.prototype.updateMatrixWorld = function ( force ) { this.matrixAutoUpdate && this.updateMatrix(); // update matrixWorld if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent ) { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); this.matrixWorld.decompose( this.translationWorld, this.quaternionWorld, this.scaleWorld ); this.matrix.decompose( this.translationObject, this.quaternionObject, this.scaleObject ); this.matrixWorld.compose( this.translationWorld, this.quaternionObject, this.scaleWorld ); } else { this.matrixWorld.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].updateMatrixWorld( force ); } }; THREE.Gyroscope.prototype.translationWorld = new THREE.Vector3(); THREE.Gyroscope.prototype.translationObject = new THREE.Vector3(); THREE.Gyroscope.prototype.quaternionWorld = new THREE.Quaternion(); THREE.Gyroscope.prototype.quaternionObject = new THREE.Quaternion(); THREE.Gyroscope.prototype.scaleWorld = new THREE.Vector3(); THREE.Gyroscope.prototype.scaleObject = new THREE.Vector3(); // File:src/extras/core/Path.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * Creates free form 2d path using series of points, lines or curves. * **/ THREE.Path = function ( points ) { THREE.CurvePath.call(this); this.actions = []; if ( points ) { this.fromPoints( points ); } }; THREE.Path.prototype = Object.create( THREE.CurvePath.prototype ); THREE.PathActions = { MOVE_TO: 'moveTo', LINE_TO: 'lineTo', QUADRATIC_CURVE_TO: 'quadraticCurveTo', // Bezier quadratic curve BEZIER_CURVE_TO: 'bezierCurveTo', // Bezier cubic curve CSPLINE_THRU: 'splineThru', // Catmull-rom spline ARC: 'arc', // Circle ELLIPSE: 'ellipse' }; // TODO Clean up PATH API // Create path using straight lines to connect all points // - vectors: array of Vector2 THREE.Path.prototype.fromPoints = function ( vectors ) { this.moveTo( vectors[ 0 ].x, vectors[ 0 ].y ); for ( var v = 1, vlen = vectors.length; v < vlen; v ++ ) { this.lineTo( vectors[ v ].x, vectors[ v ].y ); }; }; // startPath() endPath()? THREE.Path.prototype.moveTo = function ( x, y ) { var args = Array.prototype.slice.call( arguments ); this.actions.push( { action: THREE.PathActions.MOVE_TO, args: args } ); }; THREE.Path.prototype.lineTo = function ( x, y ) { var args = Array.prototype.slice.call( arguments ); var lastargs = this.actions[ this.actions.length - 1 ].args; var x0 = lastargs[ lastargs.length - 2 ]; var y0 = lastargs[ lastargs.length - 1 ]; var curve = new THREE.LineCurve( new THREE.Vector2( x0, y0 ), new THREE.Vector2( x, y ) ); this.curves.push( curve ); this.actions.push( { action: THREE.PathActions.LINE_TO, args: args } ); }; THREE.Path.prototype.quadraticCurveTo = function( aCPx, aCPy, aX, aY ) { var args = Array.prototype.slice.call( arguments ); var lastargs = this.actions[ this.actions.length - 1 ].args; var x0 = lastargs[ lastargs.length - 2 ]; var y0 = lastargs[ lastargs.length - 1 ]; var curve = new THREE.QuadraticBezierCurve( new THREE.Vector2( x0, y0 ), new THREE.Vector2( aCPx, aCPy ), new THREE.Vector2( aX, aY ) ); this.curves.push( curve ); this.actions.push( { action: THREE.PathActions.QUADRATIC_CURVE_TO, args: args } ); }; THREE.Path.prototype.bezierCurveTo = function( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { var args = Array.prototype.slice.call( arguments ); var lastargs = this.actions[ this.actions.length - 1 ].args; var x0 = lastargs[ lastargs.length - 2 ]; var y0 = lastargs[ lastargs.length - 1 ]; var curve = new THREE.CubicBezierCurve( new THREE.Vector2( x0, y0 ), new THREE.Vector2( aCP1x, aCP1y ), new THREE.Vector2( aCP2x, aCP2y ), new THREE.Vector2( aX, aY ) ); this.curves.push( curve ); this.actions.push( { action: THREE.PathActions.BEZIER_CURVE_TO, args: args } ); }; THREE.Path.prototype.splineThru = function( pts /*Array of Vector*/ ) { var args = Array.prototype.slice.call( arguments ); var lastargs = this.actions[ this.actions.length - 1 ].args; var x0 = lastargs[ lastargs.length - 2 ]; var y0 = lastargs[ lastargs.length - 1 ]; //--- var npts = [ new THREE.Vector2( x0, y0 ) ]; Array.prototype.push.apply( npts, pts ); var curve = new THREE.SplineCurve( npts ); this.curves.push( curve ); this.actions.push( { action: THREE.PathActions.CSPLINE_THRU, args: args } ); }; // FUTURE: Change the API or follow canvas API? THREE.Path.prototype.arc = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { var lastargs = this.actions[ this.actions.length - 1].args; var x0 = lastargs[ lastargs.length - 2 ]; var y0 = lastargs[ lastargs.length - 1 ]; this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise ); }; THREE.Path.prototype.absarc = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); }; THREE.Path.prototype.ellipse = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise ) { var lastargs = this.actions[ this.actions.length - 1].args; var x0 = lastargs[ lastargs.length - 2 ]; var y0 = lastargs[ lastargs.length - 1 ]; this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise ); }; THREE.Path.prototype.absellipse = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise ) { var args = Array.prototype.slice.call( arguments ); var curve = new THREE.EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise ); this.curves.push( curve ); var lastPoint = curve.getPoint(1); args.push(lastPoint.x); args.push(lastPoint.y); this.actions.push( { action: THREE.PathActions.ELLIPSE, args: args } ); }; THREE.Path.prototype.getSpacedPoints = function ( divisions, closedPath ) { if ( ! divisions ) divisions = 40; var points = []; for ( var i = 0; i < divisions; i ++ ) { points.push( this.getPoint( i / divisions ) ); //if( !this.getPoint( i / divisions ) ) throw "DIE"; } // if ( closedPath ) { // // points.push( points[ 0 ] ); // // } return points; }; /* Return an array of vectors based on contour of the path */ THREE.Path.prototype.getPoints = function( divisions, closedPath ) { if (this.useSpacedPoints) { console.log('tata'); return this.getSpacedPoints( divisions, closedPath ); } divisions = divisions || 12; var points = []; var i, il, item, action, args; var cpx, cpy, cpx2, cpy2, cpx1, cpy1, cpx0, cpy0, laste, j, t, tx, ty; for ( i = 0, il = this.actions.length; i < il; i ++ ) { item = this.actions[ i ]; action = item.action; args = item.args; switch( action ) { case THREE.PathActions.MOVE_TO: points.push( new THREE.Vector2( args[ 0 ], args[ 1 ] ) ); break; case THREE.PathActions.LINE_TO: points.push( new THREE.Vector2( args[ 0 ], args[ 1 ] ) ); break; case THREE.PathActions.QUADRATIC_CURVE_TO: cpx = args[ 2 ]; cpy = args[ 3 ]; cpx1 = args[ 0 ]; cpy1 = args[ 1 ]; if ( points.length > 0 ) { laste = points[ points.length - 1 ]; cpx0 = laste.x; cpy0 = laste.y; } else { laste = this.actions[ i - 1 ].args; cpx0 = laste[ laste.length - 2 ]; cpy0 = laste[ laste.length - 1 ]; } for ( j = 1; j <= divisions; j ++ ) { t = j / divisions; tx = THREE.Shape.Utils.b2( t, cpx0, cpx1, cpx ); ty = THREE.Shape.Utils.b2( t, cpy0, cpy1, cpy ); points.push( new THREE.Vector2( tx, ty ) ); } break; case THREE.PathActions.BEZIER_CURVE_TO: cpx = args[ 4 ]; cpy = args[ 5 ]; cpx1 = args[ 0 ]; cpy1 = args[ 1 ]; cpx2 = args[ 2 ]; cpy2 = args[ 3 ]; if ( points.length > 0 ) { laste = points[ points.length - 1 ]; cpx0 = laste.x; cpy0 = laste.y; } else { laste = this.actions[ i - 1 ].args; cpx0 = laste[ laste.length - 2 ]; cpy0 = laste[ laste.length - 1 ]; } for ( j = 1; j <= divisions; j ++ ) { t = j / divisions; tx = THREE.Shape.Utils.b3( t, cpx0, cpx1, cpx2, cpx ); ty = THREE.Shape.Utils.b3( t, cpy0, cpy1, cpy2, cpy ); points.push( new THREE.Vector2( tx, ty ) ); } break; case THREE.PathActions.CSPLINE_THRU: laste = this.actions[ i - 1 ].args; var last = new THREE.Vector2( laste[ laste.length - 2 ], laste[ laste.length - 1 ] ); var spts = [ last ]; var n = divisions * args[ 0 ].length; spts = spts.concat( args[ 0 ] ); var spline = new THREE.SplineCurve( spts ); for ( j = 1; j <= n; j ++ ) { points.push( spline.getPointAt( j / n ) ) ; } break; case THREE.PathActions.ARC: var aX = args[ 0 ], aY = args[ 1 ], aRadius = args[ 2 ], aStartAngle = args[ 3 ], aEndAngle = args[ 4 ], aClockwise = !! args[ 5 ]; var deltaAngle = aEndAngle - aStartAngle; var angle; var tdivisions = divisions * 2; for ( j = 1; j <= tdivisions; j ++ ) { t = j / tdivisions; if ( ! aClockwise ) { t = 1 - t; } angle = aStartAngle + t * deltaAngle; tx = aX + aRadius * Math.cos( angle ); ty = aY + aRadius * Math.sin( angle ); //console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty); points.push( new THREE.Vector2( tx, ty ) ); } //console.log(points); break; case THREE.PathActions.ELLIPSE: var aX = args[ 0 ], aY = args[ 1 ], xRadius = args[ 2 ], yRadius = args[ 3 ], aStartAngle = args[ 4 ], aEndAngle = args[ 5 ], aClockwise = !! args[ 6 ]; var deltaAngle = aEndAngle - aStartAngle; var angle; var tdivisions = divisions * 2; for ( j = 1; j <= tdivisions; j ++ ) { t = j / tdivisions; if ( ! aClockwise ) { t = 1 - t; } angle = aStartAngle + t * deltaAngle; tx = aX + xRadius * Math.cos( angle ); ty = aY + yRadius * Math.sin( angle ); //console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty); points.push( new THREE.Vector2( tx, ty ) ); } //console.log(points); break; } // end switch } // Normalize to remove the closing point by default. var lastPoint = points[ points.length - 1]; var EPSILON = 0.0000000001; if ( Math.abs(lastPoint.x - points[ 0 ].x) < EPSILON && Math.abs(lastPoint.y - points[ 0 ].y) < EPSILON) points.splice( points.length - 1, 1); if ( closedPath ) { points.push( points[ 0 ] ); } return points; }; // // Breaks path into shapes // // Assumptions (if parameter isCCW==true the opposite holds): // - solid shapes are defined clockwise (CW) // - holes are defined counterclockwise (CCW) // // If parameter noHoles==true: // - all subPaths are regarded as solid shapes // - definition order CW/CCW has no relevance // THREE.Path.prototype.toShapes = function( isCCW, noHoles ) { function extractSubpaths( inActions ) { var i, il, item, action, args; var subPaths = [], lastPath = new THREE.Path(); for ( i = 0, il = inActions.length; i < il; i ++ ) { item = inActions[ i ]; args = item.args; action = item.action; if ( action == THREE.PathActions.MOVE_TO ) { if ( lastPath.actions.length != 0 ) { subPaths.push( lastPath ); lastPath = new THREE.Path(); } } lastPath[ action ].apply( lastPath, args ); } if ( lastPath.actions.length != 0 ) { subPaths.push( lastPath ); } // console.log(subPaths); return subPaths; } function toShapesNoHoles( inSubpaths ) { var shapes = []; for ( var i = 0, il = inSubpaths.length; i < il; i ++ ) { var tmpPath = inSubpaths[ i ]; var tmpShape = new THREE.Shape(); tmpShape.actions = tmpPath.actions; tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); } //console.log("shape", shapes); return shapes; }; function isPointInsidePolygon( inPt, inPolygon ) { var EPSILON = 0.0000000001; var polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line var inside = false; for( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { var edgeLowPt = inPolygon[ p ]; var edgeHighPt = inPolygon[ q ]; var edgeDx = edgeHighPt.x - edgeLowPt.x; var edgeDy = edgeHighPt.y - edgeLowPt.y; if ( Math.abs(edgeDy) > EPSILON ) { // not parallel if ( edgeDy < 0 ) { edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; } if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue; if ( inPt.y == edgeLowPt.y ) { if ( inPt.x == edgeLowPt.x ) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { var perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y); if ( perpEdge == 0 ) return true; // inPt is on contour ? if ( perpEdge < 0 ) continue; inside = ! inside; // true intersection left of inPt } } else { // parallel or colinear if ( inPt.y != edgeLowPt.y ) continue; // parallel // egde lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! // continue; } } return inside; } var subPaths = extractSubpaths( this.actions ); if ( subPaths.length == 0 ) return []; if ( noHoles === true ) return toShapesNoHoles( subPaths ); var solid, tmpPath, tmpShape, shapes = []; if ( subPaths.length == 1) { tmpPath = subPaths[0]; tmpShape = new THREE.Shape(); tmpShape.actions = tmpPath.actions; tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes; } var holesFirst = ! THREE.Shape.Utils.isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst; // console.log("Holes first", holesFirst); var betterShapeHoles = []; var newShapes = []; var newShapeHoles = []; var mainIdx = 0; var tmpPoints; newShapes[mainIdx] = undefined; newShapeHoles[mainIdx] = []; var i, il; for ( i = 0, il = subPaths.length; i < il; i ++ ) { tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = THREE.Shape.Utils.isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid; if ( solid ) { if ( (! holesFirst ) && ( newShapes[mainIdx] ) ) mainIdx ++; newShapes[mainIdx] = { s: new THREE.Shape(), p: tmpPoints }; newShapes[mainIdx].s.actions = tmpPath.actions; newShapes[mainIdx].s.curves = tmpPath.curves; if ( holesFirst ) mainIdx ++; newShapeHoles[mainIdx] = []; //console.log('cw', i); } else { newShapeHoles[mainIdx].push( { h: tmpPath, p: tmpPoints[0] } ); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[0] ) return toShapesNoHoles( subPaths ); if ( newShapes.length > 1 ) { var ambigious = false; var toChange = []; for (var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { betterShapeHoles[sIdx] = []; } for (var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { var sh = newShapes[sIdx]; var sho = newShapeHoles[sIdx]; for (var hIdx = 0; hIdx < sho.length; hIdx ++ ) { var ho = sho[hIdx]; var hole_unassigned = true; for (var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { if ( isPointInsidePolygon( ho.p, newShapes[s2Idx].p ) ) { if ( sIdx != s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } ); if ( hole_unassigned ) { hole_unassigned = false; betterShapeHoles[s2Idx].push( ho ); } else { ambigious = true; } } } if ( hole_unassigned ) { betterShapeHoles[sIdx].push( ho ); } } } // console.log("ambigious: ", ambigious); if ( toChange.length > 0 ) { // console.log("to change: ", toChange); if (! ambigious) newShapeHoles = betterShapeHoles; } } var tmpHoles, j, jl; for ( i = 0, il = newShapes.length; i < il; i ++ ) { tmpShape = newShapes[i].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[i]; for ( j = 0, jl = tmpHoles.length; j < jl; j ++ ) { tmpShape.holes.push( tmpHoles[j].h ); } } //console.log("shape", shapes); return shapes; }; // File:src/extras/core/Shape.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * Defines a 2d shape plane using paths. **/ // STEP 1 Create a path. // STEP 2 Turn path into shape. // STEP 3 ExtrudeGeometry takes in Shape/Shapes // STEP 3a - Extract points from each shape, turn to vertices // STEP 3b - Triangulate each shape, add faces. THREE.Shape = function () { THREE.Path.apply( this, arguments ); this.holes = []; }; THREE.Shape.prototype = Object.create( THREE.Path.prototype ); // Convenience method to return ExtrudeGeometry THREE.Shape.prototype.extrude = function ( options ) { var extruded = new THREE.ExtrudeGeometry( this, options ); return extruded; }; // Convenience method to return ShapeGeometry THREE.Shape.prototype.makeGeometry = function ( options ) { var geometry = new THREE.ShapeGeometry( this, options ); return geometry; }; // Get points of holes THREE.Shape.prototype.getPointsHoles = function ( divisions ) { var i, il = this.holes.length, holesPts = []; for ( i = 0; i < il; i ++ ) { holesPts[ i ] = this.holes[ i ].getTransformedPoints( divisions, this.bends ); } return holesPts; }; // Get points of holes (spaced by regular distance) THREE.Shape.prototype.getSpacedPointsHoles = function ( divisions ) { var i, il = this.holes.length, holesPts = []; for ( i = 0; i < il; i ++ ) { holesPts[ i ] = this.holes[ i ].getTransformedSpacedPoints( divisions, this.bends ); } return holesPts; }; // Get points of shape and holes (keypoints based on segments parameter) THREE.Shape.prototype.extractAllPoints = function ( divisions ) { return { shape: this.getTransformedPoints( divisions ), holes: this.getPointsHoles( divisions ) }; }; THREE.Shape.prototype.extractPoints = function ( divisions ) { if (this.useSpacedPoints) { return this.extractAllSpacedPoints(divisions); } return this.extractAllPoints(divisions); }; // // THREE.Shape.prototype.extractAllPointsWithBend = function ( divisions, bend ) { // // return { // // shape: this.transform( bend, divisions ), // holes: this.getPointsHoles( divisions, bend ) // // }; // // }; // Get points of shape and holes (spaced by regular distance) THREE.Shape.prototype.extractAllSpacedPoints = function ( divisions ) { return { shape: this.getTransformedSpacedPoints( divisions ), holes: this.getSpacedPointsHoles( divisions ) }; }; /************************************************************** * Utils **************************************************************/ THREE.Shape.Utils = { triangulateShape: function ( contour, holes ) { function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) { // inOtherPt needs to be colinear to the inSegment if ( inSegPt1.x != inSegPt2.x ) { if ( inSegPt1.x < inSegPt2.x ) { return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) ); } else { return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) ); } } else { if ( inSegPt1.y < inSegPt2.y ) { return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) ); } else { return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) ); } } } function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) { var EPSILON = 0.0000000001; var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y; var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y; var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x; var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y; var limit = seg1dy * seg2dx - seg1dx * seg2dy; var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy; if ( Math.abs(limit) > EPSILON ) { // not parallel var perpSeg2; if ( limit > 0 ) { if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return []; } else { if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return []; } // i.e. to reduce rounding errors // intersection at endpoint of segment#1? if ( perpSeg2 == 0 ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 == 0 ) || ( perpSeg1 == limit ) ) ) return []; return [ inSeg1Pt1 ]; } if ( perpSeg2 == limit ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 == 0 ) || ( perpSeg1 == limit ) ) ) return []; return [ inSeg1Pt2 ]; } // intersection at endpoint of segment#2? if ( perpSeg1 == 0 ) return [ inSeg2Pt1 ]; if ( perpSeg1 == limit ) return [ inSeg2Pt2 ]; // return real intersection point var factorSeg1 = perpSeg2 / limit; return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx, y: inSeg1Pt1.y + factorSeg1 * seg1dy } ]; } else { // parallel or colinear if ( ( perpSeg1 != 0 ) || ( seg2dy * seg1seg2dx != seg2dx * seg1seg2dy ) ) return []; // they are collinear or degenerate var seg1Pt = ( (seg1dx == 0) && (seg1dy == 0) ); // segment1 ist just a point? var seg2Pt = ( (seg2dx == 0) && (seg2dy == 0) ); // segment2 ist just a point? // both segments are points if ( seg1Pt && seg2Pt ) { if ( (inSeg1Pt1.x != inSeg2Pt1.x) || (inSeg1Pt1.y != inSeg2Pt1.y) ) return []; // they are distinct points return [ inSeg1Pt1 ]; // they are the same point } // segment#1 is a single point if ( seg1Pt ) { if (! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2 return [ inSeg1Pt1 ]; } // segment#2 is a single point if ( seg2Pt ) { if (! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1 return [ inSeg2Pt1 ]; } // they are collinear segments, which might overlap var seg1min, seg1max, seg1minVal, seg1maxVal; var seg2min, seg2max, seg2minVal, seg2maxVal; if (seg1dx != 0) { // the segments are NOT on a vertical line if ( inSeg1Pt1.x < inSeg1Pt2.x ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x; } if ( inSeg2Pt1.x < inSeg2Pt2.x ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x; } } else { // the segments are on a vertical line if ( inSeg1Pt1.y < inSeg1Pt2.y ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y; } if ( inSeg2Pt1.y < inSeg2Pt2.y ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y; } } if ( seg1minVal <= seg2minVal ) { if ( seg1maxVal < seg2minVal ) return []; if ( seg1maxVal == seg2minVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg2min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ]; return [ seg2min, seg2max ]; } else { if ( seg1minVal > seg2maxVal ) return []; if ( seg1minVal == seg2maxVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg1min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ]; return [ seg1min, seg2max ]; } } } function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) { // The order of legs is important var EPSILON = 0.0000000001; // translation of all points, so that Vertex is at (0,0) var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y; var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y; var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y; // main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg. var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX; var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX; if ( Math.abs(from2toAngle) > EPSILON ) { // angle != 180 deg. var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX; // console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle ); if ( from2toAngle > 0 ) { // main angle < 180 deg. return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) ); } else { // main angle > 180 deg. return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) ); } } else { // angle == 180 deg. // console.log( "from2to: 180 deg., from2other: " + from2otherAngle ); return ( from2otherAngle > 0 ); } } function removeHoles( contour, holes ) { var shape = contour.concat(); // work on this shape var hole; function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) { // Check if hole point lies within angle around shape point var lastShapeIdx = shape.length - 1; var prevShapeIdx = inShapeIdx - 1; if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx; var nextShapeIdx = inShapeIdx + 1; if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0; var insideAngle = isPointInsideAngle( shape[inShapeIdx], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[inHoleIdx] ); if (! insideAngle ) { // console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y ); return false; } // Check if shape point lies within angle around hole point var lastHoleIdx = hole.length - 1; var prevHoleIdx = inHoleIdx - 1; if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx; var nextHoleIdx = inHoleIdx + 1; if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0; insideAngle = isPointInsideAngle( hole[inHoleIdx], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[inShapeIdx] ); if (! insideAngle ) { // console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y ); return false; } return true; } function intersectsShapeEdge( inShapePt, inHolePt ) { // checks for intersections with shape edges var sIdx, nextIdx, intersection; for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) { nextIdx = sIdx+1; nextIdx %= shape.length; intersection = intersect_segments_2D( inShapePt, inHolePt, shape[sIdx], shape[nextIdx], true ); if ( intersection.length > 0 ) return true; } return false; } var indepHoles = []; function intersectsHoleEdge( inShapePt, inHolePt ) { // checks for intersections with hole edges var ihIdx, chkHole, hIdx, nextIdx, intersection; for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) { chkHole = holes[indepHoles[ihIdx]]; for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) { nextIdx = hIdx+1; nextIdx %= chkHole.length; intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[hIdx], chkHole[nextIdx], true ); if ( intersection.length > 0 ) return true; } } return false; } var holeIndex, shapeIndex, shapePt, holePt, holeIdx, cutKey, failedCuts = [], tmpShape1, tmpShape2, tmpHole1, tmpHole2; for ( var h = 0, hl = holes.length; h < hl; h ++ ) { indepHoles.push( h ); } var minShapeIndex = 0; var counter = indepHoles.length * 2; while ( indepHoles.length > 0 ) { counter --; if ( counter < 0 ) { console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" ); break; } // search for shape-vertex and hole-vertex, // which can be connected without intersections for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) { shapePt = shape[ shapeIndex ]; holeIndex = - 1; // search for hole which can be reached without intersections for ( var h = 0; h < indepHoles.length; h ++ ) { holeIdx = indepHoles[h]; // prevent multiple checks cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx; if ( failedCuts[cutKey] !== undefined ) continue; hole = holes[holeIdx]; for ( var h2 = 0; h2 < hole.length; h2 ++ ) { holePt = hole[ h2 ]; if (! isCutLineInsideAngles( shapeIndex, h2 ) ) continue; if ( intersectsShapeEdge( shapePt, holePt ) ) continue; if ( intersectsHoleEdge( shapePt, holePt ) ) continue; holeIndex = h2; indepHoles.splice(h,1); tmpShape1 = shape.slice( 0, shapeIndex+1 ); tmpShape2 = shape.slice( shapeIndex ); tmpHole1 = hole.slice( holeIndex ); tmpHole2 = hole.slice( 0, holeIndex+1 ); shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 ); minShapeIndex = shapeIndex; // Debug only, to show the selected cuts // glob_CutLines.push( [ shapePt, holePt ] ); break; } if ( holeIndex >= 0 ) break; // hole-vertex found failedCuts[cutKey] = true; // remember failure } if ( holeIndex >= 0 ) break; // hole-vertex found } } return shape; /* shape with no holes */ } var i, il, f, face, key, index, allPointsMap = {}; // To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first. var allpoints = contour.concat(); for ( var h = 0, hl = holes.length; h < hl; h ++ ) { Array.prototype.push.apply( allpoints, holes[h] ); } //console.log( "allpoints",allpoints, allpoints.length ); // prepare all points map for ( i = 0, il = allpoints.length; i < il; i ++ ) { key = allpoints[ i ].x + ":" + allpoints[ i ].y; if ( allPointsMap[ key ] !== undefined ) { console.log( "Duplicate point", key ); } allPointsMap[ key ] = i; } // remove holes by cutting paths to holes and adding them to the shape var shapeWithoutHoles = removeHoles( contour, holes ); var triangles = THREE.FontUtils.Triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape //console.log( "triangles",triangles, triangles.length ); // check all face vertices against all points map for ( i = 0, il = triangles.length; i < il; i ++ ) { face = triangles[ i ]; for ( f = 0; f < 3; f ++ ) { key = face[ f ].x + ":" + face[ f ].y; index = allPointsMap[ key ]; if ( index !== undefined ) { face[ f ] = index; } } } return triangles.concat(); }, isClockWise: function ( pts ) { return THREE.FontUtils.Triangulate.area( pts ) < 0; }, // Bezier Curves formulas obtained from // http://en.wikipedia.org/wiki/B%C3%A9zier_curve // Quad Bezier Functions b2p0: function ( t, p ) { var k = 1 - t; return k * k * p; }, b2p1: function ( t, p ) { return 2 * ( 1 - t ) * t * p; }, b2p2: function ( t, p ) { return t * t * p; }, b2: function ( t, p0, p1, p2 ) { return this.b2p0( t, p0 ) + this.b2p1( t, p1 ) + this.b2p2( t, p2 ); }, // Cubic Bezier Functions b3p0: function ( t, p ) { var k = 1 - t; return k * k * k * p; }, b3p1: function ( t, p ) { var k = 1 - t; return 3 * k * k * t * p; }, b3p2: function ( t, p ) { var k = 1 - t; return 3 * k * t * t * p; }, b3p3: function ( t, p ) { return t * t * t * p; }, b3: function ( t, p0, p1, p2, p3 ) { return this.b3p0( t, p0 ) + this.b3p1( t, p1 ) + this.b3p2( t, p2 ) + this.b3p3( t, p3 ); } }; // File:src/extras/curves/LineCurve.js /************************************************************** * Line **************************************************************/ THREE.LineCurve = function ( v1, v2 ) { this.v1 = v1; this.v2 = v2; }; THREE.LineCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.LineCurve.prototype.getPoint = function ( t ) { var point = this.v2.clone().sub(this.v1); point.multiplyScalar( t ).add( this.v1 ); return point; }; // Line curve is linear, so we can overwrite default getPointAt THREE.LineCurve.prototype.getPointAt = function ( u ) { return this.getPoint( u ); }; THREE.LineCurve.prototype.getTangent = function( t ) { var tangent = this.v2.clone().sub(this.v1); return tangent.normalize(); }; // File:src/extras/curves/QuadraticBezierCurve.js /************************************************************** * Quadratic Bezier curve **************************************************************/ THREE.QuadraticBezierCurve = function ( v0, v1, v2 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; }; THREE.QuadraticBezierCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.QuadraticBezierCurve.prototype.getPoint = function ( t ) { var tx, ty; tx = THREE.Shape.Utils.b2( t, this.v0.x, this.v1.x, this.v2.x ); ty = THREE.Shape.Utils.b2( t, this.v0.y, this.v1.y, this.v2.y ); return new THREE.Vector2( tx, ty ); }; THREE.QuadraticBezierCurve.prototype.getTangent = function( t ) { var tx, ty; tx = THREE.Curve.Utils.tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x ); ty = THREE.Curve.Utils.tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y ); // returns unit vector var tangent = new THREE.Vector2( tx, ty ); tangent.normalize(); return tangent; }; // File:src/extras/curves/CubicBezierCurve.js /************************************************************** * Cubic Bezier curve **************************************************************/ THREE.CubicBezierCurve = function ( v0, v1, v2, v3 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; }; THREE.CubicBezierCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.CubicBezierCurve.prototype.getPoint = function ( t ) { var tx, ty; tx = THREE.Shape.Utils.b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ); ty = THREE.Shape.Utils.b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ); return new THREE.Vector2( tx, ty ); }; THREE.CubicBezierCurve.prototype.getTangent = function( t ) { var tx, ty; tx = THREE.Curve.Utils.tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ); ty = THREE.Curve.Utils.tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ); var tangent = new THREE.Vector2( tx, ty ); tangent.normalize(); return tangent; }; // File:src/extras/curves/SplineCurve.js /************************************************************** * Spline curve **************************************************************/ THREE.SplineCurve = function ( points /* array of Vector2 */ ) { this.points = (points == undefined) ? [] : points; }; THREE.SplineCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.SplineCurve.prototype.getPoint = function ( t ) { var v = new THREE.Vector2(); var c = []; var points = this.points, point, intPoint, weight; point = ( points.length - 1 ) * t; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint == 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > points.length - 2 ? points.length -1 : intPoint + 1; c[ 3 ] = intPoint > points.length - 3 ? points.length -1 : intPoint + 2; v.x = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].x, points[ c[ 1 ] ].x, points[ c[ 2 ] ].x, points[ c[ 3 ] ].x, weight ); v.y = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].y, points[ c[ 1 ] ].y, points[ c[ 2 ] ].y, points[ c[ 3 ] ].y, weight ); return v; }; // File:src/extras/curves/EllipseCurve.js /************************************************************** * Ellipse curve **************************************************************/ THREE.EllipseCurve = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise ) { this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; }; THREE.EllipseCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.EllipseCurve.prototype.getPoint = function ( t ) { var angle; var deltaAngle = this.aEndAngle - this.aStartAngle; if ( deltaAngle < 0 ) deltaAngle += Math.PI * 2; if ( deltaAngle > Math.PI * 2 ) deltaAngle -= Math.PI * 2; if ( this.aClockwise === true ) { angle = this.aEndAngle + ( 1 - t ) * ( Math.PI * 2 - deltaAngle ); } else { angle = this.aStartAngle + t * deltaAngle; } var tx = this.aX + this.xRadius * Math.cos( angle ); var ty = this.aY + this.yRadius * Math.sin( angle ); return new THREE.Vector2( tx, ty ); }; // File:src/extras/curves/ArcCurve.js /************************************************************** * Arc curve **************************************************************/ THREE.ArcCurve = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { THREE.EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); }; THREE.ArcCurve.prototype = Object.create( THREE.EllipseCurve.prototype ); // File:src/extras/curves/LineCurve3.js /************************************************************** * Line3D **************************************************************/ THREE.LineCurve3 = THREE.Curve.create( function ( v1, v2 ) { this.v1 = v1; this.v2 = v2; }, function ( t ) { var r = new THREE.Vector3(); r.subVectors( this.v2, this.v1 ); // diff r.multiplyScalar( t ); r.add( this.v1 ); return r; } ); // File:src/extras/curves/QuadraticBezierCurve3.js /************************************************************** * Quadratic Bezier 3D curve **************************************************************/ THREE.QuadraticBezierCurve3 = THREE.Curve.create( function ( v0, v1, v2 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; }, function ( t ) { var tx, ty, tz; tx = THREE.Shape.Utils.b2( t, this.v0.x, this.v1.x, this.v2.x ); ty = THREE.Shape.Utils.b2( t, this.v0.y, this.v1.y, this.v2.y ); tz = THREE.Shape.Utils.b2( t, this.v0.z, this.v1.z, this.v2.z ); return new THREE.Vector3( tx, ty, tz ); } ); // File:src/extras/curves/CubicBezierCurve3.js /************************************************************** * Cubic Bezier 3D curve **************************************************************/ THREE.CubicBezierCurve3 = THREE.Curve.create( function ( v0, v1, v2, v3 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; }, function ( t ) { var tx, ty, tz; tx = THREE.Shape.Utils.b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ); ty = THREE.Shape.Utils.b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ); tz = THREE.Shape.Utils.b3( t, this.v0.z, this.v1.z, this.v2.z, this.v3.z ); return new THREE.Vector3( tx, ty, tz ); } ); // File:src/extras/curves/SplineCurve3.js /************************************************************** * Spline 3D curve **************************************************************/ THREE.SplineCurve3 = THREE.Curve.create( function ( points /* array of Vector3 */) { this.points = (points == undefined) ? [] : points; }, function ( t ) { var v = new THREE.Vector3(); var c = []; var points = this.points, point, intPoint, weight; point = ( points.length - 1 ) * t; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint == 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > points.length - 2 ? points.length - 1 : intPoint + 1; c[ 3 ] = intPoint > points.length - 3 ? points.length - 1 : intPoint + 2; var pt0 = points[ c[0] ], pt1 = points[ c[1] ], pt2 = points[ c[2] ], pt3 = points[ c[3] ]; v.x = THREE.Curve.Utils.interpolate(pt0.x, pt1.x, pt2.x, pt3.x, weight); v.y = THREE.Curve.Utils.interpolate(pt0.y, pt1.y, pt2.y, pt3.y, weight); v.z = THREE.Curve.Utils.interpolate(pt0.z, pt1.z, pt2.z, pt3.z, weight); return v; } ); // THREE.SplineCurve3.prototype.getTangent = function(t) { // var v = new THREE.Vector3(); // var c = []; // var points = this.points, point, intPoint, weight; // point = ( points.length - 1 ) * t; // intPoint = Math.floor( point ); // weight = point - intPoint; // c[ 0 ] = intPoint == 0 ? intPoint : intPoint - 1; // c[ 1 ] = intPoint; // c[ 2 ] = intPoint > points.length - 2 ? points.length - 1 : intPoint + 1; // c[ 3 ] = intPoint > points.length - 3 ? points.length - 1 : intPoint + 2; // var pt0 = points[ c[0] ], // pt1 = points[ c[1] ], // pt2 = points[ c[2] ], // pt3 = points[ c[3] ]; // // t = weight; // v.x = THREE.Curve.Utils.tangentSpline( t, pt0.x, pt1.x, pt2.x, pt3.x ); // v.y = THREE.Curve.Utils.tangentSpline( t, pt0.y, pt1.y, pt2.y, pt3.y ); // v.z = THREE.Curve.Utils.tangentSpline( t, pt0.z, pt1.z, pt2.z, pt3.z ); // return v; // } // File:src/extras/curves/ClosedSplineCurve3.js /************************************************************** * Closed Spline 3D curve **************************************************************/ THREE.ClosedSplineCurve3 = THREE.Curve.create( function ( points /* array of Vector3 */) { this.points = (points == undefined) ? [] : points; }, function ( t ) { var v = new THREE.Vector3(); var c = []; var points = this.points, point, intPoint, weight; point = ( points.length - 0 ) * t; // This needs to be from 0-length +1 intPoint = Math.floor( point ); weight = point - intPoint; intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length; c[ 0 ] = ( intPoint - 1 ) % points.length; c[ 1 ] = ( intPoint ) % points.length; c[ 2 ] = ( intPoint + 1 ) % points.length; c[ 3 ] = ( intPoint + 2 ) % points.length; v.x = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].x, points[ c[ 1 ] ].x, points[ c[ 2 ] ].x, points[ c[ 3 ] ].x, weight ); v.y = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].y, points[ c[ 1 ] ].y, points[ c[ 2 ] ].y, points[ c[ 3 ] ].y, weight ); v.z = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].z, points[ c[ 1 ] ].z, points[ c[ 2 ] ].z, points[ c[ 3 ] ].z, weight ); return v; } ); // File:src/extras/animation/AnimationHandler.js /** * @author mikael emtinger / http://gomo.se/ */ THREE.AnimationHandler = { LINEAR: 0, CATMULLROM: 1, CATMULLROM_FORWARD: 2, // add: function () { console.warn( 'THREE.AnimationHandler.add() has been deprecated.' ); }, get: function () { console.warn( 'THREE.AnimationHandler.get() has been deprecated.' ); }, remove: function () { console.warn( 'THREE.AnimationHandler.remove() has been deprecated.' ); }, // animations: [], init: function ( data ) { if ( data.initialized === true ) return; // loop through all keys for ( var h = 0; h < data.hierarchy.length; h ++ ) { for ( var k = 0; k < data.hierarchy[ h ].keys.length; k ++ ) { // remove minus times if ( data.hierarchy[ h ].keys[ k ].time < 0 ) { data.hierarchy[ h ].keys[ k ].time = 0; } // create quaternions if ( data.hierarchy[ h ].keys[ k ].rot !== undefined && ! ( data.hierarchy[ h ].keys[ k ].rot instanceof THREE.Quaternion ) ) { var quat = data.hierarchy[ h ].keys[ k ].rot; data.hierarchy[ h ].keys[ k ].rot = new THREE.Quaternion().fromArray( quat ); } } // prepare morph target keys if ( data.hierarchy[ h ].keys.length && data.hierarchy[ h ].keys[ 0 ].morphTargets !== undefined ) { // get all used var usedMorphTargets = {}; for ( var k = 0; k < data.hierarchy[ h ].keys.length; k ++ ) { for ( var m = 0; m < data.hierarchy[ h ].keys[ k ].morphTargets.length; m ++ ) { var morphTargetName = data.hierarchy[ h ].keys[ k ].morphTargets[ m ]; usedMorphTargets[ morphTargetName ] = - 1; } } data.hierarchy[ h ].usedMorphTargets = usedMorphTargets; // set all used on all frames for ( var k = 0; k < data.hierarchy[ h ].keys.length; k ++ ) { var influences = {}; for ( var morphTargetName in usedMorphTargets ) { for ( var m = 0; m < data.hierarchy[ h ].keys[ k ].morphTargets.length; m ++ ) { if ( data.hierarchy[ h ].keys[ k ].morphTargets[ m ] === morphTargetName ) { influences[ morphTargetName ] = data.hierarchy[ h ].keys[ k ].morphTargetsInfluences[ m ]; break; } } if ( m === data.hierarchy[ h ].keys[ k ].morphTargets.length ) { influences[ morphTargetName ] = 0; } } data.hierarchy[ h ].keys[ k ].morphTargetsInfluences = influences; } } // remove all keys that are on the same time for ( var k = 1; k < data.hierarchy[ h ].keys.length; k ++ ) { if ( data.hierarchy[ h ].keys[ k ].time === data.hierarchy[ h ].keys[ k - 1 ].time ) { data.hierarchy[ h ].keys.splice( k, 1 ); k --; } } // set index for ( var k = 0; k < data.hierarchy[ h ].keys.length; k ++ ) { data.hierarchy[ h ].keys[ k ].index = k; } } data.initialized = true; return data; }, parse: function ( root ) { var parseRecurseHierarchy = function ( root, hierarchy ) { hierarchy.push( root ); for ( var c = 0; c < root.children.length; c ++ ) parseRecurseHierarchy( root.children[ c ], hierarchy ); }; // setup hierarchy var hierarchy = []; if ( root instanceof THREE.SkinnedMesh ) { for ( var b = 0; b < root.skeleton.bones.length; b ++ ) { hierarchy.push( root.skeleton.bones[ b ] ); } } else { parseRecurseHierarchy( root, hierarchy ); } return hierarchy; }, play: function ( animation ) { if ( this.animations.indexOf( animation ) === - 1 ) { this.animations.push( animation ); } }, stop: function ( animation ) { var index = this.animations.indexOf( animation ); if ( index !== - 1 ) { this.animations.splice( index, 1 ); } }, update: function ( deltaTimeMS ) { for ( var i = 0; i < this.animations.length; i ++ ) { this.animations[ i ].update( deltaTimeMS ); } } }; // File:src/extras/animation/Animation.js /** * @author mikael emtinger / http://gomo.se/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Animation = function ( root, data ) { this.root = root; this.data = THREE.AnimationHandler.init( data ); this.hierarchy = THREE.AnimationHandler.parse( root ); this.currentTime = 0; this.timeScale = 1; this.isPlaying = false; this.loop = true; this.weight = 0; this.interpolationType = THREE.AnimationHandler.LINEAR; }; THREE.Animation.prototype.keyTypes = [ "pos", "rot", "scl" ]; THREE.Animation.prototype.play = function ( startTime, weight ) { this.currentTime = startTime !== undefined ? startTime : 0; this.weight = weight !== undefined ? weight: 1; this.isPlaying = true; this.reset(); THREE.AnimationHandler.play( this ); }; THREE.Animation.prototype.stop = function() { this.isPlaying = false; THREE.AnimationHandler.stop( this ); }; THREE.Animation.prototype.reset = function () { for ( var h = 0, hl = this.hierarchy.length; h < hl; h ++ ) { var object = this.hierarchy[ h ]; object.matrixAutoUpdate = true; if ( object.animationCache === undefined ) { object.animationCache = {}; } if ( object.animationCache[this.data.name] === undefined ) { object.animationCache[this.data.name] = {}; object.animationCache[this.data.name].prevKey = { pos: 0, rot: 0, scl: 0 }; object.animationCache[this.data.name].nextKey = { pos: 0, rot: 0, scl: 0 }; object.animationCache[this.data.name].originalMatrix = object.matrix; } var animationCache = object.animationCache[this.data.name]; // Get keys to match our current time for ( var t = 0; t < 3; t ++ ) { var type = this.keyTypes[ t ]; var prevKey = this.data.hierarchy[ h ].keys[ 0 ]; var nextKey = this.getNextKeyWith( type, h, 1 ); while ( nextKey.time < this.currentTime && nextKey.index > prevKey.index ) { prevKey = nextKey; nextKey = this.getNextKeyWith( type, h, nextKey.index + 1 ); } animationCache.prevKey[ type ] = prevKey; animationCache.nextKey[ type ] = nextKey; } } }; THREE.Animation.prototype.update = (function(){ var points = []; var target = new THREE.Vector3(); var newVector = new THREE.Vector3(); var newQuat = new THREE.Quaternion(); // Catmull-Rom spline var interpolateCatmullRom = function ( points, scale ) { var c = [], v3 = [], point, intPoint, weight, w2, w3, pa, pb, pc, pd; point = ( points.length - 1 ) * scale; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > points.length - 2 ? intPoint : intPoint + 1; c[ 3 ] = intPoint > points.length - 3 ? intPoint : intPoint + 2; pa = points[ c[ 0 ] ]; pb = points[ c[ 1 ] ]; pc = points[ c[ 2 ] ]; pd = points[ c[ 3 ] ]; w2 = weight * weight; w3 = weight * w2; v3[ 0 ] = interpolate( pa[ 0 ], pb[ 0 ], pc[ 0 ], pd[ 0 ], weight, w2, w3 ); v3[ 1 ] = interpolate( pa[ 1 ], pb[ 1 ], pc[ 1 ], pd[ 1 ], weight, w2, w3 ); v3[ 2 ] = interpolate( pa[ 2 ], pb[ 2 ], pc[ 2 ], pd[ 2 ], weight, w2, w3 ); return v3; }; var interpolate = function ( p0, p1, p2, p3, t, t2, t3 ) { var v0 = ( p2 - p0 ) * 0.5, v1 = ( p3 - p1 ) * 0.5; return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1; }; return function ( delta ) { if ( this.isPlaying === false ) return; this.currentTime += delta * this.timeScale; if ( this.weight === 0 ) return; // var duration = this.data.length; if ( this.loop === true && this.currentTime > duration ) { this.currentTime %= duration; this.reset(); } else if ( this.loop === false && this.currentTime > duration ) { this.stop(); return; } for ( var h = 0, hl = this.hierarchy.length; h < hl; h ++ ) { var object = this.hierarchy[ h ]; var animationCache = object.animationCache[this.data.name]; // loop through pos/rot/scl for ( var t = 0; t < 3; t ++ ) { // get keys var type = this.keyTypes[ t ]; var prevKey = animationCache.prevKey[ type ]; var nextKey = animationCache.nextKey[ type ]; if ( nextKey.time <= this.currentTime ) { prevKey = this.data.hierarchy[ h ].keys[ 0 ]; nextKey = this.getNextKeyWith( type, h, 1 ); while ( nextKey.time < this.currentTime && nextKey.index > prevKey.index ) { prevKey = nextKey; nextKey = this.getNextKeyWith( type, h, nextKey.index + 1 ); } animationCache.prevKey[ type ] = prevKey; animationCache.nextKey[ type ] = nextKey; } object.matrixAutoUpdate = true; object.matrixWorldNeedsUpdate = true; var scale = ( this.currentTime - prevKey.time ) / ( nextKey.time - prevKey.time ); var prevXYZ = prevKey[ type ]; var nextXYZ = nextKey[ type ]; if ( scale < 0 ) scale = 0; if ( scale > 1 ) scale = 1; // interpolate if ( type === "pos" ) { if ( this.interpolationType === THREE.AnimationHandler.LINEAR ) { newVector.x = prevXYZ[ 0 ] + ( nextXYZ[ 0 ] - prevXYZ[ 0 ] ) * scale; newVector.y = prevXYZ[ 1 ] + ( nextXYZ[ 1 ] - prevXYZ[ 1 ] ) * scale; newVector.z = prevXYZ[ 2 ] + ( nextXYZ[ 2 ] - prevXYZ[ 2 ] ) * scale; // blend if ( object instanceof THREE.Bone ) { var proportionalWeight = this.weight / ( this.weight + object.accumulatedPosWeight ); object.position.lerp( newVector, proportionalWeight ); object.accumulatedPosWeight += this.weight; } else { object.position.copy( newVector ); } } else if ( this.interpolationType === THREE.AnimationHandler.CATMULLROM || this.interpolationType === THREE.AnimationHandler.CATMULLROM_FORWARD ) { points[ 0 ] = this.getPrevKeyWith( "pos", h, prevKey.index - 1 )[ "pos" ]; points[ 1 ] = prevXYZ; points[ 2 ] = nextXYZ; points[ 3 ] = this.getNextKeyWith( "pos", h, nextKey.index + 1 )[ "pos" ]; scale = scale * 0.33 + 0.33; var currentPoint = interpolateCatmullRom( points, scale ); var proportionalWeight = 1; if ( object instanceof THREE.Bone ) { proportionalWeight = this.weight / ( this.weight + object.accumulatedPosWeight ); object.accumulatedPosWeight += this.weight; } // blend var vector = object.position; vector.x = vector.x + ( currentPoint[ 0 ] - vector.x ) * proportionalWeight; vector.y = vector.y + ( currentPoint[ 1 ] - vector.y ) * proportionalWeight; vector.z = vector.z + ( currentPoint[ 2 ] - vector.z ) * proportionalWeight; if ( this.interpolationType === THREE.AnimationHandler.CATMULLROM_FORWARD ) { var forwardPoint = interpolateCatmullRom( points, scale * 1.01 ); target.set( forwardPoint[ 0 ], forwardPoint[ 1 ], forwardPoint[ 2 ] ); target.sub( vector ); target.y = 0; target.normalize(); var angle = Math.atan2( target.x, target.z ); object.rotation.set( 0, angle, 0 ); } } } else if ( type === "rot" ) { THREE.Quaternion.slerp( prevXYZ, nextXYZ, newQuat, scale ); // Avoid paying the cost of an additional slerp if we don't have to if ( ! ( object instanceof THREE.Bone ) ) { object.quaternion.copy(newQuat); } else if ( object.accumulatedRotWeight === 0 ) { object.quaternion.copy(newQuat); object.accumulatedRotWeight = this.weight; } else { var proportionalWeight = this.weight / ( this.weight + object.accumulatedRotWeight ); THREE.Quaternion.slerp( object.quaternion, newQuat, object.quaternion, proportionalWeight ); object.accumulatedRotWeight += this.weight; } } else if ( type === "scl" ) { newVector.x = prevXYZ[ 0 ] + ( nextXYZ[ 0 ] - prevXYZ[ 0 ] ) * scale; newVector.y = prevXYZ[ 1 ] + ( nextXYZ[ 1 ] - prevXYZ[ 1 ] ) * scale; newVector.z = prevXYZ[ 2 ] + ( nextXYZ[ 2 ] - prevXYZ[ 2 ] ) * scale; if ( object instanceof THREE.Bone ) { var proportionalWeight = this.weight / ( this.weight + object.accumulatedSclWeight); object.scale.lerp( newVector, proportionalWeight ); object.accumulatedSclWeight += this.weight; } else { object.scale.copy( newVector ); } } } } return true; }; })(); // Get next key with THREE.Animation.prototype.getNextKeyWith = function ( type, h, key ) { var keys = this.data.hierarchy[ h ].keys; if ( this.interpolationType === THREE.AnimationHandler.CATMULLROM || this.interpolationType === THREE.AnimationHandler.CATMULLROM_FORWARD ) { key = key < keys.length - 1 ? key : keys.length - 1; } else { key = key % keys.length; } for ( ; key < keys.length; key ++ ) { if ( keys[ key ][ type ] !== undefined ) { return keys[ key ]; } } return this.data.hierarchy[ h ].keys[ 0 ]; }; // Get previous key with THREE.Animation.prototype.getPrevKeyWith = function ( type, h, key ) { var keys = this.data.hierarchy[ h ].keys; if ( this.interpolationType === THREE.AnimationHandler.CATMULLROM || this.interpolationType === THREE.AnimationHandler.CATMULLROM_FORWARD ) { key = key > 0 ? key : 0; } else { key = key >= 0 ? key : key + keys.length; } for ( ; key >= 0; key -- ) { if ( keys[ key ][ type ] !== undefined ) { return keys[ key ]; } } return this.data.hierarchy[ h ].keys[ keys.length - 1 ]; }; // File:src/extras/animation/KeyFrameAnimation.js /** * @author mikael emtinger / http://gomo.se/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author khang duong * @author erik kitson */ THREE.KeyFrameAnimation = function ( data ) { this.root = data.node; this.data = THREE.AnimationHandler.init( data ); this.hierarchy = THREE.AnimationHandler.parse( this.root ); this.currentTime = 0; this.timeScale = 0.001; this.isPlaying = false; this.isPaused = true; this.loop = true; // initialize to first keyframes for ( var h = 0, hl = this.hierarchy.length; h < hl; h ++ ) { var keys = this.data.hierarchy[h].keys, sids = this.data.hierarchy[h].sids, obj = this.hierarchy[h]; if ( keys.length && sids ) { for ( var s = 0; s < sids.length; s ++ ) { var sid = sids[ s ], next = this.getNextKeyWith( sid, h, 0 ); if ( next ) { next.apply( sid ); } } obj.matrixAutoUpdate = false; this.data.hierarchy[h].node.updateMatrix(); obj.matrixWorldNeedsUpdate = true; } } }; THREE.KeyFrameAnimation.prototype.play = function ( startTime ) { this.currentTime = startTime !== undefined ? startTime : 0; if ( this.isPlaying === false ) { this.isPlaying = true; // reset key cache var h, hl = this.hierarchy.length, object, node; for ( h = 0; h < hl; h ++ ) { object = this.hierarchy[ h ]; node = this.data.hierarchy[ h ]; if ( node.animationCache === undefined ) { node.animationCache = {}; node.animationCache.prevKey = null; node.animationCache.nextKey = null; node.animationCache.originalMatrix = object.matrix; } var keys = this.data.hierarchy[h].keys; if (keys.length) { node.animationCache.prevKey = keys[ 0 ]; node.animationCache.nextKey = keys[ 1 ]; this.startTime = Math.min( keys[0].time, this.startTime ); this.endTime = Math.max( keys[keys.length - 1].time, this.endTime ); } } this.update( 0 ); } this.isPaused = false; THREE.AnimationHandler.play( this ); }; THREE.KeyFrameAnimation.prototype.stop = function() { this.isPlaying = false; this.isPaused = false; THREE.AnimationHandler.stop( this ); // reset JIT matrix and remove cache for ( var h = 0; h < this.data.hierarchy.length; h ++ ) { var obj = this.hierarchy[ h ]; var node = this.data.hierarchy[ h ]; if ( node.animationCache !== undefined ) { var original = node.animationCache.originalMatrix; original.copy( obj.matrix ); obj.matrix = original; delete node.animationCache; } } }; // Update THREE.KeyFrameAnimation.prototype.update = function ( delta ) { if ( this.isPlaying === false ) return; this.currentTime += delta * this.timeScale; // var duration = this.data.length; if ( this.loop === true && this.currentTime > duration ) { this.currentTime %= duration; } this.currentTime = Math.min( this.currentTime, duration ); for ( var h = 0, hl = this.hierarchy.length; h < hl; h ++ ) { var object = this.hierarchy[ h ]; var node = this.data.hierarchy[ h ]; var keys = node.keys, animationCache = node.animationCache; if ( keys.length ) { var prevKey = animationCache.prevKey; var nextKey = animationCache.nextKey; if ( nextKey.time <= this.currentTime ) { while ( nextKey.time < this.currentTime && nextKey.index > prevKey.index ) { prevKey = nextKey; nextKey = keys[ prevKey.index + 1 ]; } animationCache.prevKey = prevKey; animationCache.nextKey = nextKey; } if ( nextKey.time >= this.currentTime ) { prevKey.interpolate( nextKey, this.currentTime ); } else { prevKey.interpolate( nextKey, nextKey.time ); } this.data.hierarchy[ h ].node.updateMatrix(); object.matrixWorldNeedsUpdate = true; } } }; // Get next key with THREE.KeyFrameAnimation.prototype.getNextKeyWith = function( sid, h, key ) { var keys = this.data.hierarchy[ h ].keys; key = key % keys.length; for ( ; key < keys.length; key ++ ) { if ( keys[ key ].hasTarget( sid ) ) { return keys[ key ]; } } return keys[ 0 ]; }; // Get previous key with THREE.KeyFrameAnimation.prototype.getPrevKeyWith = function( sid, h, key ) { var keys = this.data.hierarchy[ h ].keys; key = key >= 0 ? key : key + keys.length; for ( ; key >= 0; key -- ) { if ( keys[ key ].hasTarget( sid ) ) { return keys[ key ]; } } return keys[ keys.length - 1 ]; }; // File:src/extras/animation/MorphAnimation.js /** * @author mrdoob / http://mrdoob.com */ THREE.MorphAnimation = function ( mesh ) { this.mesh = mesh; this.frames = mesh.morphTargetInfluences.length; this.currentTime = 0; this.duration = 1000; this.loop = true; this.isPlaying = false; }; THREE.MorphAnimation.prototype = { play: function () { this.isPlaying = true; }, pause: function () { this.isPlaying = false; }, update: ( function () { var lastFrame = 0; var currentFrame = 0; return function ( delta ) { if ( this.isPlaying === false ) return; this.currentTime += delta; if ( this.loop === true && this.currentTime > this.duration ) { this.currentTime %= this.duration; } this.currentTime = Math.min( this.currentTime, this.duration ); var interpolation = this.duration / this.frames; var frame = Math.floor( this.currentTime / interpolation ); if ( frame != currentFrame ) { this.mesh.morphTargetInfluences[ lastFrame ] = 0; this.mesh.morphTargetInfluences[ currentFrame ] = 1; this.mesh.morphTargetInfluences[ frame ] = 0; lastFrame = currentFrame; currentFrame = frame; } this.mesh.morphTargetInfluences[ frame ] = ( this.currentTime % interpolation ) / interpolation; this.mesh.morphTargetInfluences[ lastFrame ] = 1 - this.mesh.morphTargetInfluences[ frame ]; } } )() }; // File:src/extras/geometries/BoxGeometry.js /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Cube.as */ THREE.BoxGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) { THREE.Geometry.call( this ); this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; this.widthSegments = widthSegments || 1; this.heightSegments = heightSegments || 1; this.depthSegments = depthSegments || 1; var scope = this; var width_half = width / 2; var height_half = height / 2; var depth_half = depth / 2; buildPlane( 'z', 'y', - 1, - 1, depth, height, width_half, 0 ); // px buildPlane( 'z', 'y', 1, - 1, depth, height, - width_half, 1 ); // nx buildPlane( 'x', 'z', 1, 1, width, depth, height_half, 2 ); // py buildPlane( 'x', 'z', 1, - 1, width, depth, - height_half, 3 ); // ny buildPlane( 'x', 'y', 1, - 1, width, height, depth_half, 4 ); // pz buildPlane( 'x', 'y', - 1, - 1, width, height, - depth_half, 5 ); // nz function buildPlane( u, v, udir, vdir, width, height, depth, materialIndex ) { var w, ix, iy, gridX = scope.widthSegments, gridY = scope.heightSegments, width_half = width / 2, height_half = height / 2, offset = scope.vertices.length; if ( ( u === 'x' && v === 'y' ) || ( u === 'y' && v === 'x' ) ) { w = 'z'; } else if ( ( u === 'x' && v === 'z' ) || ( u === 'z' && v === 'x' ) ) { w = 'y'; gridY = scope.depthSegments; } else if ( ( u === 'z' && v === 'y' ) || ( u === 'y' && v === 'z' ) ) { w = 'x'; gridX = scope.depthSegments; } var gridX1 = gridX + 1, gridY1 = gridY + 1, segment_width = width / gridX, segment_height = height / gridY, normal = new THREE.Vector3(); normal[ w ] = depth > 0 ? 1 : - 1; for ( iy = 0; iy < gridY1; iy ++ ) { for ( ix = 0; ix < gridX1; ix ++ ) { var vector = new THREE.Vector3(); vector[ u ] = ( ix * segment_width - width_half ) * udir; vector[ v ] = ( iy * segment_height - height_half ) * vdir; vector[ w ] = depth; scope.vertices.push( vector ); } } for ( iy = 0; iy < gridY; iy ++ ) { for ( ix = 0; ix < gridX; ix ++ ) { var a = ix + gridX1 * iy; var b = ix + gridX1 * ( iy + 1 ); var c = ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = ( ix + 1 ) + gridX1 * iy; var uva = new THREE.Vector2( ix / gridX, 1 - iy / gridY ); var uvb = new THREE.Vector2( ix / gridX, 1 - ( iy + 1 ) / gridY ); var uvc = new THREE.Vector2( ( ix + 1 ) / gridX, 1 - ( iy + 1 ) / gridY ); var uvd = new THREE.Vector2( ( ix + 1 ) / gridX, 1 - iy / gridY ); var face = new THREE.Face3( a + offset, b + offset, d + offset ); face.normal.copy( normal ); face.vertexNormals.push( normal.clone(), normal.clone(), normal.clone() ); face.materialIndex = materialIndex; scope.faces.push( face ); scope.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); face = new THREE.Face3( b + offset, c + offset, d + offset ); face.normal.copy( normal ); face.vertexNormals.push( normal.clone(), normal.clone(), normal.clone() ); face.materialIndex = materialIndex; scope.faces.push( face ); scope.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } } this.mergeVertices(); }; THREE.BoxGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/CircleGeometry.js /** * @author hughes */ THREE.CircleGeometry = function ( radius, segments, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; segments = segments !== undefined ? Math.max( 3, segments ) : 8; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; var i, uvs = [], center = new THREE.Vector3(), centerUV = new THREE.Vector2( 0.5, 0.5 ); this.vertices.push(center); uvs.push( centerUV ); for ( i = 0; i <= segments; i ++ ) { var vertex = new THREE.Vector3(); var segment = thetaStart + i / segments * thetaLength; vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); this.vertices.push( vertex ); uvs.push( new THREE.Vector2( ( vertex.x / radius + 1 ) / 2, ( vertex.y / radius + 1 ) / 2 ) ); } var n = new THREE.Vector3( 0, 0, 1 ); for ( i = 1; i <= segments; i ++ ) { this.faces.push( new THREE.Face3( i, i + 1, 0, [ n.clone(), n.clone(), n.clone() ] ) ); this.faceVertexUvs[ 0 ].push( [ uvs[ i ].clone(), uvs[ i + 1 ].clone(), centerUV.clone() ] ); } this.computeFaceNormals(); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); }; THREE.CircleGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/CubeGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CubeGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) { console.warn( 'THEE.CubeGeometry has been renamed to THREE.BoxGeometry.' ); return new THREE.BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ); }; // File:src/extras/geometries/CylinderGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CylinderGeometry = function ( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded ) { THREE.Geometry.call( this ); this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded }; radiusTop = radiusTop !== undefined ? radiusTop : 20; radiusBottom = radiusBottom !== undefined ? radiusBottom : 20; height = height !== undefined ? height : 100; radialSegments = radialSegments || 8; heightSegments = heightSegments || 1; openEnded = openEnded !== undefined ? openEnded : false; var heightHalf = height / 2; var x, y, vertices = [], uvs = []; for ( y = 0; y <= heightSegments; y ++ ) { var verticesRow = []; var uvsRow = []; var v = y / heightSegments; var radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; var vertex = new THREE.Vector3(); vertex.x = radius * Math.sin( u * Math.PI * 2 ); vertex.y = - v * height + heightHalf; vertex.z = radius * Math.cos( u * Math.PI * 2 ); this.vertices.push( vertex ); verticesRow.push( this.vertices.length - 1 ); uvsRow.push( new THREE.Vector2( u, 1 - v ) ); } vertices.push( verticesRow ); uvs.push( uvsRow ); } var tanTheta = ( radiusBottom - radiusTop ) / height; var na, nb; for ( x = 0; x < radialSegments; x ++ ) { if ( radiusTop !== 0 ) { na = this.vertices[ vertices[ 0 ][ x ] ].clone(); nb = this.vertices[ vertices[ 0 ][ x + 1 ] ].clone(); } else { na = this.vertices[ vertices[ 1 ][ x ] ].clone(); nb = this.vertices[ vertices[ 1 ][ x + 1 ] ].clone(); } na.setY( Math.sqrt( na.x * na.x + na.z * na.z ) * tanTheta ).normalize(); nb.setY( Math.sqrt( nb.x * nb.x + nb.z * nb.z ) * tanTheta ).normalize(); for ( y = 0; y < heightSegments; y ++ ) { var v1 = vertices[ y ][ x ]; var v2 = vertices[ y + 1 ][ x ]; var v3 = vertices[ y + 1 ][ x + 1 ]; var v4 = vertices[ y ][ x + 1 ]; var n1 = na.clone(); var n2 = na.clone(); var n3 = nb.clone(); var n4 = nb.clone(); var uv1 = uvs[ y ][ x ].clone(); var uv2 = uvs[ y + 1 ][ x ].clone(); var uv3 = uvs[ y + 1 ][ x + 1 ].clone(); var uv4 = uvs[ y ][ x + 1 ].clone(); this.faces.push( new THREE.Face3( v1, v2, v4, [ n1, n2, n4 ] ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv4 ] ); this.faces.push( new THREE.Face3( v2, v3, v4, [ n2.clone(), n3, n4.clone() ] ) ); this.faceVertexUvs[ 0 ].push( [ uv2.clone(), uv3, uv4.clone() ] ); } } // top cap if ( openEnded === false && radiusTop > 0 ) { this.vertices.push( new THREE.Vector3( 0, heightHalf, 0 ) ); for ( x = 0; x < radialSegments; x ++ ) { var v1 = vertices[ 0 ][ x ]; var v2 = vertices[ 0 ][ x + 1 ]; var v3 = this.vertices.length - 1; var n1 = new THREE.Vector3( 0, 1, 0 ); var n2 = new THREE.Vector3( 0, 1, 0 ); var n3 = new THREE.Vector3( 0, 1, 0 ); var uv1 = uvs[ 0 ][ x ].clone(); var uv2 = uvs[ 0 ][ x + 1 ].clone(); var uv3 = new THREE.Vector2( uv2.x, 0 ); this.faces.push( new THREE.Face3( v1, v2, v3, [ n1, n2, n3 ] ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3 ] ); } } // bottom cap if ( openEnded === false && radiusBottom > 0 ) { this.vertices.push( new THREE.Vector3( 0, - heightHalf, 0 ) ); for ( x = 0; x < radialSegments; x ++ ) { var v1 = vertices[ y ][ x + 1 ]; var v2 = vertices[ y ][ x ]; var v3 = this.vertices.length - 1; var n1 = new THREE.Vector3( 0, - 1, 0 ); var n2 = new THREE.Vector3( 0, - 1, 0 ); var n3 = new THREE.Vector3( 0, - 1, 0 ); var uv1 = uvs[ y ][ x + 1 ].clone(); var uv2 = uvs[ y ][ x ].clone(); var uv3 = new THREE.Vector2( uv2.x, 1 ); this.faces.push( new THREE.Face3( v1, v2, v3, [ n1, n2, n3 ] ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3 ] ); } } this.computeFaceNormals(); } THREE.CylinderGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/ExtrudeGeometry.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segements of extrude spline too * amount: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline is bevel * bevelSegments: , // number of bevel layers * * extrudePath: // 3d spline path to extrude shape along. (creates Frames if .frames aren't defined) * frames: // containing arrays of tangents, normals, binormals * * material: // material index for front and back faces * extrudeMaterial: // material index for extrusion and beveled faces * uvGenerator: // object that provides UV generator functions * * } **/ THREE.ExtrudeGeometry = function ( shapes, options ) { if ( typeof( shapes ) === "undefined" ) { shapes = []; return; } THREE.Geometry.call( this ); shapes = shapes instanceof Array ? shapes : [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); // can't really use automatic vertex normals // as then front and back sides get smoothed too // should do separate smoothing just for sides //this.computeVertexNormals(); //console.log( "took", ( Date.now() - startTime ) ); }; THREE.ExtrudeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.ExtrudeGeometry.prototype.addShapeList = function ( shapes, options ) { var sl = shapes.length; for ( var s = 0; s < sl; s ++ ) { var shape = shapes[ s ]; this.addShape( shape, options ); } }; THREE.ExtrudeGeometry.prototype.addShape = function ( shape, options ) { var amount = options.amount !== undefined ? options.amount : 100; var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10 var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8 var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var steps = options.steps !== undefined ? options.steps : 1; var extrudePath = options.extrudePath; var extrudePts, extrudeByPath = false; var material = options.material; var extrudeMaterial = options.extrudeMaterial; // Use default WorldUVGenerator if no UV generators are specified. var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : THREE.ExtrudeGeometry.WorldUVGenerator; var splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // Reuse TNB from TubeGeomtry for now. // TODO1 - have a .isClosed in spline? splineTube = options.frames !== undefined ? options.frames : new THREE.TubeGeometry.FrenetFrames(extrudePath, steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new THREE.Vector3(); normal = new THREE.Vector3(); position2 = new THREE.Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; } // Variables initalization var ahole, h, hl; // looping of holes var scope = this; var bevelPoints = []; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! THREE.Shape.Utils.isClockWise( vertices ) ; if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; if ( THREE.Shape.Utils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)! } var faces = THREE.Shape.Utils.triangulateShape ( vertices, holes ); /* Vertices */ var contour = vertices; // vertices has all points but contour has only points of circumference for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2 ( pt, vec, size ) { if ( ! vec ) console.log( "die" ); return vec.clone().multiplyScalar( size ).add( pt ); } var b, bs, t, z, vert, vlen = vertices.length, face, flen = faces.length, cont, clen = contour.length; // Find directions for point movement var RAD_TO_DEGREES = 180 / Math.PI; function getBevelVec( inPt, inPrev, inNext ) { var EPSILON = 0.0000000001; var sign = THREE.Math.sign; // computes for inPt the corresponding point inPt' on a new contour // shiftet by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. var v_trans_x, v_trans_y, shrink_by = 1; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for colinear edges var colinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( colinear0 ) > EPSILON ) { // not colinear // length of vectors for normalizing var v_prev_len = Math.sqrt( v_prev_lensq ); var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); var ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ) if ( v_trans_lensq <= 2 ) { return new THREE.Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of colinear edges var direction_eq = false; // assumes: opposite if ( v_prev_x > EPSILON ) { if ( v_next_x > EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - EPSILON ) { if ( v_next_x < - EPSILON ) { direction_eq = true; } } else { if ( sign(v_prev_y) == sign(v_next_y) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new THREE.Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } var contourMovements = []; for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) var pt_i = contour[ i ]; var pt_j = contour[ j ]; var pt_k = contour[ k ]; contourMovements[ i ]= getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat(); for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = []; for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ]= getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { t = b / bevelSegments; z = bevelThickness * ( 1 - t ); //z = bevelThickness * t; bs = bevelSize * ( Math.sin ( t * Math.PI/2 ) ) ; // curved //bs = bevelSize * t ; // linear // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } bs = bevelSize; // Back facing vertices for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[0] ).multiplyScalar(vert.x); binormal.copy( splineTube.binormals[0] ).multiplyScalar(vert.y); position2.copy( extrudePts[0] ).add(normal).add(binormal); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices var s; for ( s = 1; s <= steps; s ++ ) { for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, amount / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[s] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[s] ).multiplyScalar( vert.y ); position2.copy( extrudePts[s] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( b = bevelSegments - 1; b >= 0; b -- ) { t = b / bevelSegments; z = bevelThickness * ( 1 - t ); //bs = bevelSize * ( 1-Math.sin ( ( 1 - t ) * Math.PI/2 ) ); bs = bevelSize * Math.sin ( t * Math.PI/2 ) ; // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, amount + z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, amount + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { if ( bevelEnabled ) { var layer = 0 ; // steps + 1 var offset = vlen * layer; // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ]+ offset, face[ 1 ]+ offset, face[ 0 ] + offset, true ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset, false ); } } else { // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ], true ); } // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps, false ); } } } // Create faces for the z-sides of the shape function buildSideFaces() { var layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } } function sidewalls( contour, layeroffset ) { var j, k; i = contour.length; while ( --i >= 0 ) { j = i; k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); var s = 0, sl = steps + bevelSegments * 2; for ( s = 0; s < sl; s ++ ) { var slen1 = vlen * s; var slen2 = vlen * ( s + 1 ); var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d, contour, s, sl, j, k ); } } } function v( x, y, z ) { scope.vertices.push( new THREE.Vector3( x, y, z ) ); } function f3( a, b, c, isBottom ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; // normal, color, material scope.faces.push( new THREE.Face3( a, b, c, null, null, material ) ); var uvs = isBottom ? uvgen.generateBottomUV( scope, shape, options, a, b, c ) : uvgen.generateTopUV( scope, shape, options, a, b, c ); scope.faceVertexUvs[ 0 ].push( uvs ); } function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; d += shapesOffset; scope.faces.push( new THREE.Face3( a, b, d, null, null, extrudeMaterial ) ); scope.faces.push( new THREE.Face3( b, c, d, null, null, extrudeMaterial ) ); var uvs = uvgen.generateSideWallUV( scope, shape, wallContour, options, a, b, c, d, stepIndex, stepsLength, contourIndex1, contourIndex2 ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 0 ], uvs[ 1 ], uvs[ 3 ] ] ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 1 ], uvs[ 2 ], uvs[ 3 ] ] ); } }; THREE.ExtrudeGeometry.WorldUVGenerator = { generateTopUV: function( geometry, extrudedShape, extrudeOptions, indexA, indexB, indexC ) { var ax = geometry.vertices[ indexA ].x, ay = geometry.vertices[ indexA ].y, bx = geometry.vertices[ indexB ].x, by = geometry.vertices[ indexB ].y, cx = geometry.vertices[ indexC ].x, cy = geometry.vertices[ indexC ].y; return [ new THREE.Vector2( ax, ay ), new THREE.Vector2( bx, by ), new THREE.Vector2( cx, cy ) ]; }, generateBottomUV: function( geometry, extrudedShape, extrudeOptions, indexA, indexB, indexC ) { return this.generateTopUV( geometry, extrudedShape, extrudeOptions, indexA, indexB, indexC ); }, generateSideWallUV: function( geometry, extrudedShape, wallContour, extrudeOptions, indexA, indexB, indexC, indexD, stepIndex, stepsLength, contourIndex1, contourIndex2 ) { var ax = geometry.vertices[ indexA ].x, ay = geometry.vertices[ indexA ].y, az = geometry.vertices[ indexA ].z, bx = geometry.vertices[ indexB ].x, by = geometry.vertices[ indexB ].y, bz = geometry.vertices[ indexB ].z, cx = geometry.vertices[ indexC ].x, cy = geometry.vertices[ indexC ].y, cz = geometry.vertices[ indexC ].z, dx = geometry.vertices[ indexD ].x, dy = geometry.vertices[ indexD ].y, dz = geometry.vertices[ indexD ].z; if ( Math.abs( ay - by ) < 0.01 ) { return [ new THREE.Vector2( ax, 1 - az ), new THREE.Vector2( bx, 1 - bz ), new THREE.Vector2( cx, 1 - cz ), new THREE.Vector2( dx, 1 - dz ) ]; } else { return [ new THREE.Vector2( ay, 1 - az ), new THREE.Vector2( by, 1 - bz ), new THREE.Vector2( cy, 1 - cz ), new THREE.Vector2( dy, 1 - dz ) ]; } } }; THREE.ExtrudeGeometry.__v1 = new THREE.Vector2(); THREE.ExtrudeGeometry.__v2 = new THREE.Vector2(); THREE.ExtrudeGeometry.__v3 = new THREE.Vector2(); THREE.ExtrudeGeometry.__v4 = new THREE.Vector2(); THREE.ExtrudeGeometry.__v5 = new THREE.Vector2(); THREE.ExtrudeGeometry.__v6 = new THREE.Vector2(); // File:src/extras/geometries/ShapeGeometry.js /** * @author jonobr1 / http://jonobr1.com * * Creates a one-sided polygonal geometry from a path shape. Similar to * ExtrudeGeometry. * * parameters = { * * curveSegments: , // number of points on the curves. NOT USED AT THE MOMENT. * * material: // material index for front and back faces * uvGenerator: // object that provides UV generator functions * * } **/ THREE.ShapeGeometry = function ( shapes, options ) { THREE.Geometry.call( this ); if ( shapes instanceof Array === false ) shapes = [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); }; THREE.ShapeGeometry.prototype = Object.create( THREE.Geometry.prototype ); /** * Add an array of shapes to THREE.ShapeGeometry. */ THREE.ShapeGeometry.prototype.addShapeList = function ( shapes, options ) { for ( var i = 0, l = shapes.length; i < l; i ++ ) { this.addShape( shapes[ i ], options ); } return this; }; /** * Adds a shape to THREE.ShapeGeometry, based on THREE.ExtrudeGeometry. */ THREE.ShapeGeometry.prototype.addShape = function ( shape, options ) { if ( options === undefined ) options = {}; var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var material = options.material; var uvgen = options.UVGenerator === undefined ? THREE.ExtrudeGeometry.WorldUVGenerator : options.UVGenerator; // var i, l, hole, s; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! THREE.Shape.Utils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe... for ( i = 0, l = holes.length; i < l; i ++ ) { hole = holes[ i ]; if ( THREE.Shape.Utils.isClockWise( hole ) ) { holes[ i ] = hole.reverse(); } } reverse = false; } var faces = THREE.Shape.Utils.triangulateShape( vertices, holes ); // Vertices var contour = vertices; for ( i = 0, l = holes.length; i < l; i ++ ) { hole = holes[ i ]; vertices = vertices.concat( hole ); } // var vert, vlen = vertices.length; var face, flen = faces.length; var cont, clen = contour.length; for ( i = 0; i < vlen; i ++ ) { vert = vertices[ i ]; this.vertices.push( new THREE.Vector3( vert.x, vert.y, 0 ) ); } for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; var a = face[ 0 ] + shapesOffset; var b = face[ 1 ] + shapesOffset; var c = face[ 2 ] + shapesOffset; this.faces.push( new THREE.Face3( a, b, c, null, null, material ) ); this.faceVertexUvs[ 0 ].push( uvgen.generateBottomUV( this, shape, options, a, b, c ) ); } }; // File:src/extras/geometries/LatheGeometry.js /** * @author astrodud / http://astrodud.isgreat.org/ * @author zz85 / https://github.com/zz85 * @author bhouston / http://exocortex.com */ // points - to create a closed torus, one must use a set of points // like so: [ a, b, c, d, a ], see first is the same as last. // segments - the number of circumference segments to create // phiStart - the starting radian // phiLength - the radian (0 to 2*PI) range of the lathed section // 2*pi is a closed lathe, less than 2PI is a portion. THREE.LatheGeometry = function ( points, segments, phiStart, phiLength ) { THREE.Geometry.call( this ); segments = segments || 12; phiStart = phiStart || 0; phiLength = phiLength || 2 * Math.PI; var inversePointLength = 1.0 / ( points.length - 1 ); var inverseSegments = 1.0 / segments; for ( var i = 0, il = segments; i <= il; i ++ ) { var phi = phiStart + i * inverseSegments * phiLength; var c = Math.cos( phi ), s = Math.sin( phi ); for ( var j = 0, jl = points.length; j < jl; j ++ ) { var pt = points[ j ]; var vertex = new THREE.Vector3(); vertex.x = c * pt.x - s * pt.y; vertex.y = s * pt.x + c * pt.y; vertex.z = pt.z; this.vertices.push( vertex ); } } var np = points.length; for ( var i = 0, il = segments; i < il; i ++ ) { for ( var j = 0, jl = points.length - 1; j < jl; j ++ ) { var base = j + np * i; var a = base; var b = base + np; var c = base + 1 + np; var d = base + 1; var u0 = i * inverseSegments; var v0 = j * inversePointLength; var u1 = u0 + inverseSegments; var v1 = v0 + inversePointLength; this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ new THREE.Vector2( u0, v0 ), new THREE.Vector2( u1, v0 ), new THREE.Vector2( u0, v1 ) ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ new THREE.Vector2( u1, v0 ), new THREE.Vector2( u1, v1 ), new THREE.Vector2( u0, v1 ) ] ); } } this.mergeVertices(); this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.LatheGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/PlaneGeometry.js /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as */ THREE.PlaneGeometry = function ( width, height, widthSegments, heightSegments ) { THREE.Geometry.call( this ); this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; var ix, iz; var width_half = width / 2; var height_half = height / 2; var gridX = widthSegments || 1; var gridZ = heightSegments || 1; var gridX1 = gridX + 1; var gridZ1 = gridZ + 1; var segment_width = width / gridX; var segment_height = height / gridZ; var normal = new THREE.Vector3( 0, 0, 1 ); for ( iz = 0; iz < gridZ1; iz ++ ) { var y = iz * segment_height - height_half; for ( ix = 0; ix < gridX1; ix ++ ) { var x = ix * segment_width - width_half; this.vertices.push( new THREE.Vector3( x, - y, 0 ) ); } } for ( iz = 0; iz < gridZ; iz ++ ) { for ( ix = 0; ix < gridX; ix ++ ) { var a = ix + gridX1 * iz; var b = ix + gridX1 * ( iz + 1 ); var c = ( ix + 1 ) + gridX1 * ( iz + 1 ); var d = ( ix + 1 ) + gridX1 * iz; var uva = new THREE.Vector2( ix / gridX, 1 - iz / gridZ ); var uvb = new THREE.Vector2( ix / gridX, 1 - ( iz + 1 ) / gridZ ); var uvc = new THREE.Vector2( ( ix + 1 ) / gridX, 1 - ( iz + 1 ) / gridZ ); var uvd = new THREE.Vector2( ( ix + 1 ) / gridX, 1 - iz / gridZ ); var face = new THREE.Face3( a, b, d ); face.normal.copy( normal ); face.vertexNormals.push( normal.clone(), normal.clone(), normal.clone() ); this.faces.push( face ); this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); face = new THREE.Face3( b, c, d ); face.normal.copy( normal ); face.vertexNormals.push( normal.clone(), normal.clone(), normal.clone() ); this.faces.push( face ); this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } }; THREE.PlaneGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/RingGeometry.js /** * @author Kaleb Murphy */ THREE.RingGeometry = function ( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { THREE.Geometry.call( this ); innerRadius = innerRadius || 0; outerRadius = outerRadius || 50; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8; phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 8; var i, o, uvs = [], radius = innerRadius, radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); for ( i = 0; i < phiSegments + 1; i ++ ) { // concentric circles inside ring for ( o = 0; o < thetaSegments + 1; o ++ ) { // number of segments per circle var vertex = new THREE.Vector3(); var segment = thetaStart + o / thetaSegments * thetaLength; vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); this.vertices.push( vertex ); uvs.push( new THREE.Vector2( ( vertex.x / outerRadius + 1 ) / 2, ( vertex.y / outerRadius + 1 ) / 2 ) ); } radius += radiusStep; } var n = new THREE.Vector3( 0, 0, 1 ); for ( i = 0; i < phiSegments; i ++ ) { // concentric circles inside ring var thetaSegment = i * (thetaSegments + 1); for ( o = 0; o < thetaSegments ; o ++ ) { // number of segments per circle var segment = o + thetaSegment; var v1 = segment; var v2 = segment + thetaSegments + 1; var v3 = segment + thetaSegments + 2; this.faces.push( new THREE.Face3( v1, v2, v3, [ n.clone(), n.clone(), n.clone() ] ) ); this.faceVertexUvs[ 0 ].push( [ uvs[ v1 ].clone(), uvs[ v2 ].clone(), uvs[ v3 ].clone() ]); v1 = segment; v2 = segment + thetaSegments + 2; v3 = segment + 1; this.faces.push( new THREE.Face3( v1, v2, v3, [ n.clone(), n.clone(), n.clone() ] ) ); this.faceVertexUvs[ 0 ].push( [ uvs[ v1 ].clone(), uvs[ v2 ].clone(), uvs[ v3 ].clone() ]); } } this.computeFaceNormals(); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); }; THREE.RingGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/SphereGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.SphereGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 ); heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 ); phiStart = phiStart !== undefined ? phiStart : 0; phiLength = phiLength !== undefined ? phiLength : Math.PI * 2; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI; var x, y, vertices = [], uvs = []; for ( y = 0; y <= heightSegments; y ++ ) { var verticesRow = []; var uvsRow = []; for ( x = 0; x <= widthSegments; x ++ ) { var u = x / widthSegments; var v = y / heightSegments; var vertex = new THREE.Vector3(); vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); this.vertices.push( vertex ); verticesRow.push( this.vertices.length - 1 ); uvsRow.push( new THREE.Vector2( u, 1 - v ) ); } vertices.push( verticesRow ); uvs.push( uvsRow ); } for ( y = 0; y < heightSegments; y ++ ) { for ( x = 0; x < widthSegments; x ++ ) { var v1 = vertices[ y ][ x + 1 ]; var v2 = vertices[ y ][ x ]; var v3 = vertices[ y + 1 ][ x ]; var v4 = vertices[ y + 1 ][ x + 1 ]; var n1 = this.vertices[ v1 ].clone().normalize(); var n2 = this.vertices[ v2 ].clone().normalize(); var n3 = this.vertices[ v3 ].clone().normalize(); var n4 = this.vertices[ v4 ].clone().normalize(); var uv1 = uvs[ y ][ x + 1 ].clone(); var uv2 = uvs[ y ][ x ].clone(); var uv3 = uvs[ y + 1 ][ x ].clone(); var uv4 = uvs[ y + 1 ][ x + 1 ].clone(); if ( Math.abs( this.vertices[ v1 ].y ) === radius ) { uv1.x = ( uv1.x + uv2.x ) / 2; this.faces.push( new THREE.Face3( v1, v3, v4, [ n1, n3, n4 ] ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv3, uv4 ] ); } else if ( Math.abs( this.vertices[ v3 ].y ) === radius ) { uv3.x = ( uv3.x + uv4.x ) / 2; this.faces.push( new THREE.Face3( v1, v2, v3, [ n1, n2, n3 ] ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv3 ] ); } else { this.faces.push( new THREE.Face3( v1, v2, v4, [ n1, n2, n4 ] ) ); this.faceVertexUvs[ 0 ].push( [ uv1, uv2, uv4 ] ); this.faces.push( new THREE.Face3( v2, v3, v4, [ n2.clone(), n3, n4.clone() ] ) ); this.faceVertexUvs[ 0 ].push( [ uv2.clone(), uv3, uv4.clone() ] ); } } } this.computeFaceNormals(); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); }; THREE.SphereGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/TextGeometry.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author alteredq / http://alteredqualia.com/ * * For creating 3D text geometry in three.js * * Text = 3D Text * * parameters = { * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * font: , // font name * weight: , // font weight (normal, bold) * style: , // font style (normal, italics) * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: , // how far from text outline is bevel * } * */ /* Usage Examples // TextGeometry wrapper var text3d = new TextGeometry( text, options ); // Complete manner var textShapes = THREE.FontUtils.generateShapes( text, options ); var text3d = new ExtrudeGeometry( textShapes, options ); */ THREE.TextGeometry = function ( text, parameters ) { parameters = parameters || {}; var textShapes = THREE.FontUtils.generateShapes( text, parameters ); // translate parameters to ExtrudeGeometry API parameters.amount = parameters.height !== undefined ? parameters.height : 50; // defaults if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10; if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8; if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false; THREE.ExtrudeGeometry.call( this, textShapes, parameters ); }; THREE.TextGeometry.prototype = Object.create( THREE.ExtrudeGeometry.prototype ); // File:src/extras/geometries/TorusGeometry.js /** * @author oosmoxiecode * @author mrdoob / http://mrdoob.com/ * based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3DLite/src/away3dlite/primitives/Torus.as?r=2888 */ THREE.TorusGeometry = function ( radius, tube, radialSegments, tubularSegments, arc ) { THREE.Geometry.call( this ); this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radius = radius || 100; tube = tube || 40; radialSegments = radialSegments || 8; tubularSegments = tubularSegments || 6; arc = arc || Math.PI * 2; var center = new THREE.Vector3(), uvs = [], normals = []; for ( var j = 0; j <= radialSegments; j ++ ) { for ( var i = 0; i <= tubularSegments; i ++ ) { var u = i / tubularSegments * arc; var v = j / radialSegments * Math.PI * 2; center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); var vertex = new THREE.Vector3(); vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v ); this.vertices.push( vertex ); uvs.push( new THREE.Vector2( i / tubularSegments, j / radialSegments ) ); normals.push( vertex.clone().sub( center ).normalize() ); } } for ( var j = 1; j <= radialSegments; j ++ ) { for ( var i = 1; i <= tubularSegments; i ++ ) { var a = ( tubularSegments + 1 ) * j + i - 1; var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; var c = ( tubularSegments + 1 ) * ( j - 1 ) + i; var d = ( tubularSegments + 1 ) * j + i; var face = new THREE.Face3( a, b, d, [ normals[ a ].clone(), normals[ b ].clone(), normals[ d ].clone() ] ); this.faces.push( face ); this.faceVertexUvs[ 0 ].push( [ uvs[ a ].clone(), uvs[ b ].clone(), uvs[ d ].clone() ] ); face = new THREE.Face3( b, c, d, [ normals[ b ].clone(), normals[ c ].clone(), normals[ d ].clone() ] ); this.faces.push( face ); this.faceVertexUvs[ 0 ].push( [ uvs[ b ].clone(), uvs[ c ].clone(), uvs[ d ].clone() ] ); } } this.computeFaceNormals(); }; THREE.TorusGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/TorusKnotGeometry.js /** * @author oosmoxiecode * based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3D/src/away3d/primitives/TorusKnot.as?spec=svn2473&r=2473 */ THREE.TorusKnotGeometry = function ( radius, tube, radialSegments, tubularSegments, p, q, heightScale ) { THREE.Geometry.call( this ); this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, p: p, q: q, heightScale: heightScale }; radius = radius || 100; tube = tube || 40; radialSegments = radialSegments || 64; tubularSegments = tubularSegments || 8; p = p || 2; q = q || 3; heightScale = heightScale || 1; var grid = new Array( radialSegments ); var tang = new THREE.Vector3(); var n = new THREE.Vector3(); var bitan = new THREE.Vector3(); for ( var i = 0; i < radialSegments; ++ i ) { grid[ i ] = new Array( tubularSegments ); var u = i / radialSegments * 2 * p * Math.PI; var p1 = getPos( u, q, p, radius, heightScale ); var p2 = getPos( u + 0.01, q, p, radius, heightScale ); tang.subVectors( p2, p1 ); n.addVectors( p2, p1 ); bitan.crossVectors( tang, n ); n.crossVectors( bitan, tang ); bitan.normalize(); n.normalize(); for ( var j = 0; j < tubularSegments; ++ j ) { var v = j / tubularSegments * 2 * Math.PI; var cx = - tube * Math.cos( v ); // TODO: Hack: Negating it so it faces outside. var cy = tube * Math.sin( v ); var pos = new THREE.Vector3(); pos.x = p1.x + cx * n.x + cy * bitan.x; pos.y = p1.y + cx * n.y + cy * bitan.y; pos.z = p1.z + cx * n.z + cy * bitan.z; grid[ i ][ j ] = this.vertices.push( pos ) - 1; } } for ( var i = 0; i < radialSegments; ++ i ) { for ( var j = 0; j < tubularSegments; ++ j ) { var ip = ( i + 1 ) % radialSegments; var jp = ( j + 1 ) % tubularSegments; var a = grid[ i ][ j ]; var b = grid[ ip ][ j ]; var c = grid[ ip ][ jp ]; var d = grid[ i ][ jp ]; var uva = new THREE.Vector2( i / radialSegments, j / tubularSegments ); var uvb = new THREE.Vector2( ( i + 1 ) / radialSegments, j / tubularSegments ); var uvc = new THREE.Vector2( ( i + 1 ) / radialSegments, ( j + 1 ) / tubularSegments ); var uvd = new THREE.Vector2( i / radialSegments, ( j + 1 ) / tubularSegments ); this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } this.computeFaceNormals(); this.computeVertexNormals(); function getPos( u, in_q, in_p, radius, heightScale ) { var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = in_q / in_p * u; var cs = Math.cos( quOverP ); var tx = radius * ( 2 + cs ) * 0.5 * cu; var ty = radius * ( 2 + cs ) * su * 0.5; var tz = heightScale * radius * Math.sin( quOverP ) * 0.5; return new THREE.Vector3( tx, ty, tz ); } }; THREE.TorusKnotGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/TubeGeometry.js /** * @author WestLangley / https://github.com/WestLangley * @author zz85 / https://github.com/zz85 * @author miningold / https://github.com/miningold * * Modified from the TorusKnotGeometry by @oosmoxiecode * * Creates a tube which extrudes along a 3d spline * * Uses parallel transport frames as described in * http://www.cs.indiana.edu/pub/techreports/TR425.pdf */ THREE.TubeGeometry = function ( path, segments, radius, radialSegments, closed ) { THREE.Geometry.call( this ); this.parameters = { path: path, segments: segments, radius: radius, radialSegments: radialSegments, closed: closed }; segments = segments || 64; radius = radius || 1; radialSegments = radialSegments || 8; closed = closed || false; var grid = []; var scope = this, tangent, normal, binormal, numpoints = segments + 1, x, y, z, tx, ty, tz, u, v, cx, cy, pos, pos2 = new THREE.Vector3(), i, j, ip, jp, a, b, c, d, uva, uvb, uvc, uvd; var frames = new THREE.TubeGeometry.FrenetFrames( path, segments, closed ), tangents = frames.tangents, normals = frames.normals, binormals = frames.binormals; // proxy internals this.tangents = tangents; this.normals = normals; this.binormals = binormals; function vert( x, y, z ) { return scope.vertices.push( new THREE.Vector3( x, y, z ) ) - 1; } // consruct the grid for ( i = 0; i < numpoints; i ++ ) { grid[ i ] = []; u = i / ( numpoints - 1 ); pos = path.getPointAt( u ); tangent = tangents[ i ]; normal = normals[ i ]; binormal = binormals[ i ]; for ( j = 0; j < radialSegments; j ++ ) { v = j / radialSegments * 2 * Math.PI; cx = - radius * Math.cos( v ); // TODO: Hack: Negating it so it faces outside. cy = radius * Math.sin( v ); pos2.copy( pos ); pos2.x += cx * normal.x + cy * binormal.x; pos2.y += cx * normal.y + cy * binormal.y; pos2.z += cx * normal.z + cy * binormal.z; grid[ i ][ j ] = vert( pos2.x, pos2.y, pos2.z ); } } // construct the mesh for ( i = 0; i < segments; i ++ ) { for ( j = 0; j < radialSegments; j ++ ) { ip = ( closed ) ? (i + 1) % segments : i + 1; jp = (j + 1) % radialSegments; a = grid[ i ][ j ]; // *** NOT NECESSARILY PLANAR ! *** b = grid[ ip ][ j ]; c = grid[ ip ][ jp ]; d = grid[ i ][ jp ]; uva = new THREE.Vector2( i / segments, j / radialSegments ); uvb = new THREE.Vector2( ( i + 1 ) / segments, j / radialSegments ); uvc = new THREE.Vector2( ( i + 1 ) / segments, ( j + 1 ) / radialSegments ); uvd = new THREE.Vector2( i / segments, ( j + 1 ) / radialSegments ); this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.TubeGeometry.prototype = Object.create( THREE.Geometry.prototype ); // For computing of Frenet frames, exposing the tangents, normals and binormals the spline THREE.TubeGeometry.FrenetFrames = function ( path, segments, closed ) { var tangent = new THREE.Vector3(), normal = new THREE.Vector3(), binormal = new THREE.Vector3(), tangents = [], normals = [], binormals = [], vec = new THREE.Vector3(), mat = new THREE.Matrix4(), numpoints = segments + 1, theta, epsilon = 0.0001, smallest, tx, ty, tz, i, u, v; // expose internals this.tangents = tangents; this.normals = normals; this.binormals = binormals; // compute the tangent vectors for each segment on the path for ( i = 0; i < numpoints; i ++ ) { u = i / ( numpoints - 1 ); tangents[ i ] = path.getTangentAt( u ); tangents[ i ].normalize(); } initialNormal3(); /* function initialNormal1(lastBinormal) { // fixed start binormal. Has dangers of 0 vectors normals[ 0 ] = new THREE.Vector3(); binormals[ 0 ] = new THREE.Vector3(); if (lastBinormal===undefined) lastBinormal = new THREE.Vector3( 0, 0, 1 ); normals[ 0 ].crossVectors( lastBinormal, tangents[ 0 ] ).normalize(); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize(); } function initialNormal2() { // This uses the Frenet-Serret formula for deriving binormal var t2 = path.getTangentAt( epsilon ); normals[ 0 ] = new THREE.Vector3().subVectors( t2, tangents[ 0 ] ).normalize(); binormals[ 0 ] = new THREE.Vector3().crossVectors( tangents[ 0 ], normals[ 0 ] ); normals[ 0 ].crossVectors( binormals[ 0 ], tangents[ 0 ] ).normalize(); // last binormal x tangent binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize(); } */ function initialNormal3() { // select an initial normal vector perpenicular to the first tangent vector, // and in the direction of the smallest tangent xyz component normals[ 0 ] = new THREE.Vector3(); binormals[ 0 ] = new THREE.Vector3(); smallest = Number.MAX_VALUE; tx = Math.abs( tangents[ 0 ].x ); ty = Math.abs( tangents[ 0 ].y ); tz = Math.abs( tangents[ 0 ].z ); if ( tx <= smallest ) { smallest = tx; normal.set( 1, 0, 0 ); } if ( ty <= smallest ) { smallest = ty; normal.set( 0, 1, 0 ); } if ( tz <= smallest ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); } // compute the slowly-varying normal and binormal vectors for each segment on the path for ( i = 1; i < numpoints; i ++ ) { normals[ i ] = normals[ i-1 ].clone(); binormals[ i ] = binormals[ i-1 ].clone(); vec.crossVectors( tangents[ i-1 ], tangents[ i ] ); if ( vec.length() > epsilon ) { vec.normalize(); theta = Math.acos( THREE.Math.clamp( tangents[ i-1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed ) { theta = Math.acos( THREE.Math.clamp( normals[ 0 ].dot( normals[ numpoints-1 ] ), - 1, 1 ) ); theta /= ( numpoints - 1 ); if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ numpoints-1 ] ) ) > 0 ) { theta = - theta; } for ( i = 1; i < numpoints; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } }; // File:src/extras/geometries/PolyhedronGeometry.js /** * @author clockworkgeek / https://github.com/clockworkgeek * @author timothypratley / https://github.com/timothypratley * @author WestLangley / http://github.com/WestLangley */ THREE.PolyhedronGeometry = function ( vertices, indices, radius, detail ) { THREE.Geometry.call( this ); radius = radius || 1; detail = detail || 0; var that = this; for ( var i = 0, l = vertices.length; i < l; i += 3 ) { prepare( new THREE.Vector3( vertices[ i ], vertices[ i + 1 ], vertices[ i + 2 ] ) ); } var midpoints = [], p = this.vertices; var faces = []; for ( var i = 0, j = 0, l = indices.length; i < l; i += 3, j ++ ) { var v1 = p[ indices[ i ] ]; var v2 = p[ indices[ i + 1 ] ]; var v3 = p[ indices[ i + 2 ] ]; faces[ j ] = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ] ); } var centroid = new THREE.Vector3(); for ( var i = 0, l = faces.length; i < l; i ++ ) { subdivide( faces[ i ], detail ); } // Handle case when face straddles the seam for ( var i = 0, l = this.faceVertexUvs[ 0 ].length; i < l; i ++ ) { var uvs = this.faceVertexUvs[ 0 ][ i ]; var x0 = uvs[ 0 ].x; var x1 = uvs[ 1 ].x; var x2 = uvs[ 2 ].x; var max = Math.max( x0, Math.max( x1, x2 ) ); var min = Math.min( x0, Math.min( x1, x2 ) ); if ( max > 0.9 && min < 0.1 ) { // 0.9 is somewhat arbitrary if ( x0 < 0.2 ) uvs[ 0 ].x += 1; if ( x1 < 0.2 ) uvs[ 1 ].x += 1; if ( x2 < 0.2 ) uvs[ 2 ].x += 1; } } // Apply radius for ( var i = 0, l = this.vertices.length; i < l; i ++ ) { this.vertices[ i ].multiplyScalar( radius ); } // Merge vertices this.mergeVertices(); this.computeFaceNormals(); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); // Project vector onto sphere's surface function prepare( vector ) { var vertex = vector.normalize().clone(); vertex.index = that.vertices.push( vertex ) - 1; // Texture coords are equivalent to map coords, calculate angle and convert to fraction of a circle. var u = azimuth( vector ) / 2 / Math.PI + 0.5; var v = inclination( vector ) / Math.PI + 0.5; vertex.uv = new THREE.Vector2( u, 1 - v ); return vertex; } // Approximate a curved face with recursively sub-divided triangles. function make( v1, v2, v3 ) { var face = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ] ); that.faces.push( face ); centroid.copy( v1 ).add( v2 ).add( v3 ).divideScalar( 3 ); var azi = azimuth( centroid ); that.faceVertexUvs[ 0 ].push( [ correctUV( v1.uv, v1, azi ), correctUV( v2.uv, v2, azi ), correctUV( v3.uv, v3, azi ) ] ); } // Analytically subdivide a face to the required detail level. function subdivide( face, detail ) { var cols = Math.pow(2, detail); var cells = Math.pow(4, detail); var a = prepare( that.vertices[ face.a ] ); var b = prepare( that.vertices[ face.b ] ); var c = prepare( that.vertices[ face.c ] ); var v = []; // Construct all of the vertices for this subdivision. for ( var i = 0 ; i <= cols; i ++ ) { v[ i ] = []; var aj = prepare( a.clone().lerp( c, i / cols ) ); var bj = prepare( b.clone().lerp( c, i / cols ) ); var rows = cols - i; for ( var j = 0; j <= rows; j ++) { if ( j == 0 && i == cols ) { v[ i ][ j ] = aj; } else { v[ i ][ j ] = prepare( aj.clone().lerp( bj, j / rows ) ); } } } // Construct all of the faces. for ( var i = 0; i < cols ; i ++ ) { for ( var j = 0; j < 2 * (cols - i) - 1; j ++ ) { var k = Math.floor( j / 2 ); if ( j % 2 == 0 ) { make( v[ i ][ k + 1], v[ i + 1 ][ k ], v[ i ][ k ] ); } else { make( v[ i ][ k + 1 ], v[ i + 1][ k + 1], v[ i + 1 ][ k ] ); } } } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth( vector ) { return Math.atan2( vector.z, - vector.x ); } // Angle above the XZ plane. function inclination( vector ) { return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); } // Texture fixing helper. Spheres have some odd behaviours. function correctUV( uv, vector, azimuth ) { if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) uv = new THREE.Vector2( uv.x - 1, uv.y ); if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) uv = new THREE.Vector2( azimuth / 2 / Math.PI + 0.5, uv.y ); return uv.clone(); } }; THREE.PolyhedronGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/IcosahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.IcosahedronGeometry = function ( radius, detail ) { this.parameters = { radius: radius, detail: detail }; var t = ( 1 + Math.sqrt( 5 ) ) / 2; var vertices = [ - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 ]; var indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); }; THREE.IcosahedronGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/OctahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.OctahedronGeometry = function ( radius, detail ) { this.parameters = { radius: radius, detail: detail }; var vertices = [ 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0,- 1, 0, 0, 0, 1, 0, 0,- 1 ]; var indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); }; THREE.OctahedronGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/TetrahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.TetrahedronGeometry = function ( radius, detail ) { var vertices = [ 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 ]; var indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); }; THREE.TetrahedronGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/geometries/ParametricGeometry.js /** * @author zz85 / https://github.com/zz85 * Parametric Surfaces Geometry * based on the brilliant article by @prideout http://prideout.net/blog/?p=44 * * new THREE.ParametricGeometry( parametricFunction, uSegments, ySegements ); * */ THREE.ParametricGeometry = function ( func, slices, stacks ) { THREE.Geometry.call( this ); var verts = this.vertices; var faces = this.faces; var uvs = this.faceVertexUvs[ 0 ]; var i, il, j, p; var u, v; var stackCount = stacks + 1; var sliceCount = slices + 1; for ( i = 0; i <= stacks; i ++ ) { v = i / stacks; for ( j = 0; j <= slices; j ++ ) { u = j / slices; p = func( u, v ); verts.push( p ); } } var a, b, c, d; var uva, uvb, uvc, uvd; for ( i = 0; i < stacks; i ++ ) { for ( j = 0; j < slices; j ++ ) { a = i * sliceCount + j; b = i * sliceCount + j + 1; c = (i + 1) * sliceCount + j + 1; d = (i + 1) * sliceCount + j; uva = new THREE.Vector2( j / slices, i / stacks ); uvb = new THREE.Vector2( ( j + 1 ) / slices, i / stacks ); uvc = new THREE.Vector2( ( j + 1 ) / slices, ( i + 1 ) / stacks ); uvd = new THREE.Vector2( j / slices, ( i + 1 ) / stacks ); faces.push( new THREE.Face3( a, b, d ) ); uvs.push( [ uva, uvb, uvd ] ); faces.push( new THREE.Face3( b, c, d ) ); uvs.push( [ uvb.clone(), uvc, uvd.clone() ] ); } } // console.log(this); // magic bullet // var diff = this.mergeVertices(); // console.log('removed ', diff, ' vertices by merging'); this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.ParametricGeometry.prototype = Object.create( THREE.Geometry.prototype ); // File:src/extras/helpers/AxisHelper.js /** * @author sroucheray / http://sroucheray.org/ * @author mrdoob / http://mrdoob.com/ */ THREE.AxisHelper = function ( size ) { size = size || 1; var vertices = new Float32Array( [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ] ); var colors = new Float32Array( [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ] ); var geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) ); var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } ); THREE.Line.call( this, geometry, material, THREE.LinePieces ); }; THREE.AxisHelper.prototype = Object.create( THREE.Line.prototype ); // File:src/extras/helpers/ArrowHelper.js /** * @author WestLangley / http://github.com/WestLangley * @author zz85 / http://github.com/zz85 * @author bhouston / http://exocortex.com * * Creates an arrow for visualizing directions * * Parameters: * dir - Vector3 * origin - Vector3 * length - Number * color - color in hex value * headLength - Number * headWidth - Number */ THREE.ArrowHelper = ( function () { var lineGeometry = new THREE.Geometry(); lineGeometry.vertices.push( new THREE.Vector3( 0, 0, 0 ), new THREE.Vector3( 0, 1, 0 ) ); var coneGeometry = new THREE.CylinderGeometry( 0, 0.5, 1, 5, 1 ); coneGeometry.applyMatrix( new THREE.Matrix4().makeTranslation( 0, - 0.5, 0 ) ); return function ( dir, origin, length, color, headLength, headWidth ) { // dir is assumed to be normalized THREE.Object3D.call( this ); if ( color === undefined ) color = 0xffff00; if ( length === undefined ) length = 1; if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength; this.position.copy( origin ); this.line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color: color } ) ); this.line.matrixAutoUpdate = false; this.add( this.line ); this.cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color: color } ) ); this.cone.matrixAutoUpdate = false; this.add( this.cone ); this.setDirection( dir ); this.setLength( length, headLength, headWidth ); } }() ); THREE.ArrowHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.ArrowHelper.prototype.setDirection = ( function () { var axis = new THREE.Vector3(); var radians; return function ( dir ) { // dir is assumed to be normalized if ( dir.y > 0.99999 ) { this.quaternion.set( 0, 0, 0, 1 ); } else if ( dir.y < - 0.99999 ) { this.quaternion.set( 1, 0, 0, 0 ); } else { axis.set( dir.z, 0, - dir.x ).normalize(); radians = Math.acos( dir.y ); this.quaternion.setFromAxisAngle( axis, radians ); } }; }() ); THREE.ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) { if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength; this.line.scale.set( 1, length, 1 ); this.line.updateMatrix(); this.cone.scale.set( headWidth, headLength, headWidth ); this.cone.position.y = length; this.cone.updateMatrix(); }; THREE.ArrowHelper.prototype.setColor = function ( color ) { this.line.material.color.set( color ); this.cone.material.color.set( color ); }; // File:src/extras/helpers/BoxHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BoxHelper = function ( object ) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'position', new THREE.BufferAttribute( new Float32Array( 72 ), 3 ) ); THREE.Line.call( this, geometry, new THREE.LineBasicMaterial( { color: 0xffff00 } ), THREE.LinePieces ); if ( object !== undefined ) { this.update( object ); } }; THREE.BoxHelper.prototype = Object.create( THREE.Line.prototype ); THREE.BoxHelper.prototype.update = function ( object ) { var geometry = object.geometry; if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } var min = geometry.boundingBox.min; var max = geometry.boundingBox.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ var vertices = this.geometry.attributes.position.array; vertices[ 0 ] = max.x; vertices[ 1 ] = max.y; vertices[ 2 ] = max.z; vertices[ 3 ] = min.x; vertices[ 4 ] = max.y; vertices[ 5 ] = max.z; vertices[ 6 ] = min.x; vertices[ 7 ] = max.y; vertices[ 8 ] = max.z; vertices[ 9 ] = min.x; vertices[ 10 ] = min.y; vertices[ 11 ] = max.z; vertices[ 12 ] = min.x; vertices[ 13 ] = min.y; vertices[ 14 ] = max.z; vertices[ 15 ] = max.x; vertices[ 16 ] = min.y; vertices[ 17 ] = max.z; vertices[ 18 ] = max.x; vertices[ 19 ] = min.y; vertices[ 20 ] = max.z; vertices[ 21 ] = max.x; vertices[ 22 ] = max.y; vertices[ 23 ] = max.z; // vertices[ 24 ] = max.x; vertices[ 25 ] = max.y; vertices[ 26 ] = min.z; vertices[ 27 ] = min.x; vertices[ 28 ] = max.y; vertices[ 29 ] = min.z; vertices[ 30 ] = min.x; vertices[ 31 ] = max.y; vertices[ 32 ] = min.z; vertices[ 33 ] = min.x; vertices[ 34 ] = min.y; vertices[ 35 ] = min.z; vertices[ 36 ] = min.x; vertices[ 37 ] = min.y; vertices[ 38 ] = min.z; vertices[ 39 ] = max.x; vertices[ 40 ] = min.y; vertices[ 41 ] = min.z; vertices[ 42 ] = max.x; vertices[ 43 ] = min.y; vertices[ 44 ] = min.z; vertices[ 45 ] = max.x; vertices[ 46 ] = max.y; vertices[ 47 ] = min.z; // vertices[ 48 ] = max.x; vertices[ 49 ] = max.y; vertices[ 50 ] = max.z; vertices[ 51 ] = max.x; vertices[ 52 ] = max.y; vertices[ 53 ] = min.z; vertices[ 54 ] = min.x; vertices[ 55 ] = max.y; vertices[ 56 ] = max.z; vertices[ 57 ] = min.x; vertices[ 58 ] = max.y; vertices[ 59 ] = min.z; vertices[ 60 ] = min.x; vertices[ 61 ] = min.y; vertices[ 62 ] = max.z; vertices[ 63 ] = min.x; vertices[ 64 ] = min.y; vertices[ 65 ] = min.z; vertices[ 66 ] = max.x; vertices[ 67 ] = min.y; vertices[ 68 ] = max.z; vertices[ 69 ] = max.x; vertices[ 70 ] = min.y; vertices[ 71 ] = min.z; this.geometry.attributes.position.needsUpdate = true; this.geometry.computeBoundingSphere(); this.matrixAutoUpdate = false; this.matrixWorld = object.matrixWorld; }; // File:src/extras/helpers/BoundingBoxHelper.js /** * @author WestLangley / http://github.com/WestLangley */ // a helper to show the world-axis-aligned bounding box for an object THREE.BoundingBoxHelper = function ( object, hex ) { var color = ( hex !== undefined ) ? hex : 0x888888; this.object = object; this.box = new THREE.Box3(); THREE.Mesh.call( this, new THREE.BoxGeometry( 1, 1, 1 ), new THREE.MeshBasicMaterial( { color: color, wireframe: true } ) ); }; THREE.BoundingBoxHelper.prototype = Object.create( THREE.Mesh.prototype ); THREE.BoundingBoxHelper.prototype.update = function () { this.box.setFromObject( this.object ); this.box.size( this.scale ); this.box.center( this.position ); }; // File:src/extras/helpers/CameraHelper.js /** * @author alteredq / http://alteredqualia.com/ * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ THREE.CameraHelper = function ( camera ) { var geometry = new THREE.Geometry(); var material = new THREE.LineBasicMaterial( { color: 0xffffff, vertexColors: THREE.FaceColors } ); var pointMap = {}; // colors var hexFrustum = 0xffaa00; var hexCone = 0xff0000; var hexUp = 0x00aaff; var hexTarget = 0xffffff; var hexCross = 0x333333; // near addLine( "n1", "n2", hexFrustum ); addLine( "n2", "n4", hexFrustum ); addLine( "n4", "n3", hexFrustum ); addLine( "n3", "n1", hexFrustum ); // far addLine( "f1", "f2", hexFrustum ); addLine( "f2", "f4", hexFrustum ); addLine( "f4", "f3", hexFrustum ); addLine( "f3", "f1", hexFrustum ); // sides addLine( "n1", "f1", hexFrustum ); addLine( "n2", "f2", hexFrustum ); addLine( "n3", "f3", hexFrustum ); addLine( "n4", "f4", hexFrustum ); // cone addLine( "p", "n1", hexCone ); addLine( "p", "n2", hexCone ); addLine( "p", "n3", hexCone ); addLine( "p", "n4", hexCone ); // up addLine( "u1", "u2", hexUp ); addLine( "u2", "u3", hexUp ); addLine( "u3", "u1", hexUp ); // target addLine( "c", "t", hexTarget ); addLine( "p", "c", hexCross ); // cross addLine( "cn1", "cn2", hexCross ); addLine( "cn3", "cn4", hexCross ); addLine( "cf1", "cf2", hexCross ); addLine( "cf3", "cf4", hexCross ); function addLine( a, b, hex ) { addPoint( a, hex ); addPoint( b, hex ); } function addPoint( id, hex ) { geometry.vertices.push( new THREE.Vector3() ); geometry.colors.push( new THREE.Color( hex ) ); if ( pointMap[ id ] === undefined ) { pointMap[ id ] = []; } pointMap[ id ].push( geometry.vertices.length - 1 ); } THREE.Line.call( this, geometry, material, THREE.LinePieces ); this.camera = camera; this.matrixWorld = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); }; THREE.CameraHelper.prototype = Object.create( THREE.Line.prototype ); THREE.CameraHelper.prototype.update = function () { var vector = new THREE.Vector3(); var camera = new THREE.Camera(); var projector = new THREE.Projector(); return function () { var scope = this; var w = 1, h = 1; // we need just camera projection matrix // world matrix must be identity camera.projectionMatrix.copy( this.camera.projectionMatrix ); // center / target setPoint( "c", 0, 0, - 1 ); setPoint( "t", 0, 0, 1 ); // near setPoint( "n1", - w, - h, - 1 ); setPoint( "n2", w, - h, - 1 ); setPoint( "n3", - w, h, - 1 ); setPoint( "n4", w, h, - 1 ); // far setPoint( "f1", - w, - h, 1 ); setPoint( "f2", w, - h, 1 ); setPoint( "f3", - w, h, 1 ); setPoint( "f4", w, h, 1 ); // up setPoint( "u1", w * 0.7, h * 1.1, - 1 ); setPoint( "u2", - w * 0.7, h * 1.1, - 1 ); setPoint( "u3", 0, h * 2, - 1 ); // cross setPoint( "cf1", - w, 0, 1 ); setPoint( "cf2", w, 0, 1 ); setPoint( "cf3", 0, - h, 1 ); setPoint( "cf4", 0, h, 1 ); setPoint( "cn1", - w, 0, - 1 ); setPoint( "cn2", w, 0, - 1 ); setPoint( "cn3", 0, - h, - 1 ); setPoint( "cn4", 0, h, - 1 ); function setPoint( point, x, y, z ) { vector.set( x, y, z ); projector.unprojectVector( vector, camera ); var points = scope.pointMap[ point ]; if ( points !== undefined ) { for ( var i = 0, il = points.length; i < il; i ++ ) { scope.geometry.vertices[ points[ i ] ].copy( vector ); } } } this.geometry.verticesNeedUpdate = true; }; }(); // File:src/extras/helpers/DirectionalLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.DirectionalLightHelper = function ( light, size ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrixWorld = light.matrixWorld; this.matrixAutoUpdate = false; size = size || 1; var geometry = new THREE.Geometry(); geometry.vertices.push( new THREE.Vector3( - size, size, 0 ), new THREE.Vector3( size, size, 0 ), new THREE.Vector3( size, - size, 0 ), new THREE.Vector3( - size, - size, 0 ), new THREE.Vector3( - size, size, 0 ) ); var material = new THREE.LineBasicMaterial( { fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.lightPlane = new THREE.Line( geometry, material ); this.add( this.lightPlane ); geometry = new THREE.Geometry(); geometry.vertices.push( new THREE.Vector3(), new THREE.Vector3() ); material = new THREE.LineBasicMaterial( { fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.targetLine = new THREE.Line( geometry, material ); this.add( this.targetLine ); this.update(); }; THREE.DirectionalLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.DirectionalLightHelper.prototype.dispose = function () { this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose(); }; THREE.DirectionalLightHelper.prototype.update = function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var v3 = new THREE.Vector3(); return function () { v1.setFromMatrixPosition( this.light.matrixWorld ); v2.setFromMatrixPosition( this.light.target.matrixWorld ); v3.subVectors( v2, v1 ); this.lightPlane.lookAt( v3 ); this.lightPlane.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.targetLine.geometry.vertices[ 1 ].copy( v3 ); this.targetLine.geometry.verticesNeedUpdate = true; this.targetLine.material.color.copy( this.lightPlane.material.color ); } }(); // File:src/extras/helpers/EdgesHelper.js /** * @author WestLangley / http://github.com/WestLangley */ THREE.EdgesHelper = function ( object, hex ) { var color = ( hex !== undefined ) ? hex : 0xffffff; var edge = [ 0, 0 ], hash = {}; var sortFunction = function ( a, b ) { return a - b }; var keys = [ 'a', 'b', 'c' ]; var geometry = new THREE.BufferGeometry(); var geometry2 = object.geometry.clone(); geometry2.mergeVertices(); geometry2.computeFaceNormals(); var vertices = geometry2.vertices; var faces = geometry2.faces; var numEdges = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = face[ keys[ j ] ]; edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { hash[ key ] = { vert1: edge[ 0 ], vert2: edge[ 1 ], face1: i, face2: undefined }; numEdges ++; } else { hash[ key ].face2 = i; } } } geometry.addAttribute( 'position', new THREE.Float32Attribute( numEdges * 2 * 3, 3 ) ); var coords = geometry.attributes.position.array; var index = 0; for ( var key in hash ) { var h = hash[ key ]; if ( h.face2 === undefined || faces[ h.face1 ].normal.dot( faces[ h.face2 ].normal ) < 0.9999 ) { // hardwired const OK var vertex = vertices[ h.vert1 ]; coords[ index ++ ] = vertex.x; coords[ index ++ ] = vertex.y; coords[ index ++ ] = vertex.z; vertex = vertices[ h.vert2 ]; coords[ index ++ ] = vertex.x; coords[ index ++ ] = vertex.y; coords[ index ++ ] = vertex.z; } } THREE.Line.call( this, geometry, new THREE.LineBasicMaterial( { color: color } ), THREE.LinePieces ); this.matrixAutoUpdate = false; this.matrixWorld = object.matrixWorld; }; THREE.EdgesHelper.prototype = Object.create( THREE.Line.prototype ); // File:src/extras/helpers/FaceNormalsHelper.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.FaceNormalsHelper = function ( object, size, hex, linewidth ) { this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xffff00; var width = ( linewidth !== undefined ) ? linewidth : 1; var geometry = new THREE.Geometry(); var faces = this.object.geometry.faces; for ( var i = 0, l = faces.length; i < l; i ++ ) { geometry.vertices.push( new THREE.Vector3(), new THREE.Vector3() ); } THREE.Line.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ), THREE.LinePieces ); this.matrixAutoUpdate = false; this.normalMatrix = new THREE.Matrix3(); this.update(); }; THREE.FaceNormalsHelper.prototype = Object.create( THREE.Line.prototype ); THREE.FaceNormalsHelper.prototype.update = function () { var vertices = this.geometry.vertices; var object = this.object; var objectVertices = object.geometry.vertices; var objectFaces = object.geometry.faces; var objectWorldMatrix = object.matrixWorld; object.updateMatrixWorld( true ); this.normalMatrix.getNormalMatrix( objectWorldMatrix ); for ( var i = 0, i2 = 0, l = objectFaces.length; i < l; i ++, i2 += 2 ) { var face = objectFaces[ i ]; vertices[ i2 ].copy( objectVertices[ face.a ] ) .add( objectVertices[ face.b ] ) .add( objectVertices[ face.c ] ) .divideScalar( 3 ) .applyMatrix4( objectWorldMatrix ); vertices[ i2 + 1 ].copy( face.normal ) .applyMatrix3( this.normalMatrix ) .normalize() .multiplyScalar( this.size ) .add( vertices[ i2 ] ); } this.geometry.verticesNeedUpdate = true; return this; }; // File:src/extras/helpers/GridHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.GridHelper = function ( size, step ) { var geometry = new THREE.Geometry(); var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } ); this.color1 = new THREE.Color( 0x444444 ); this.color2 = new THREE.Color( 0x888888 ); for ( var i = - size; i <= size; i += step ) { geometry.vertices.push( new THREE.Vector3( - size, 0, i ), new THREE.Vector3( size, 0, i ), new THREE.Vector3( i, 0, - size ), new THREE.Vector3( i, 0, size ) ); var color = i === 0 ? this.color1 : this.color2; geometry.colors.push( color, color, color, color ); } THREE.Line.call( this, geometry, material, THREE.LinePieces ); }; THREE.GridHelper.prototype = Object.create( THREE.Line.prototype ); THREE.GridHelper.prototype.setColors = function( colorCenterLine, colorGrid ) { this.color1.set( colorCenterLine ); this.color2.set( colorGrid ); this.geometry.colorsNeedUpdate = true; } // File:src/extras/helpers/HemisphereLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.HemisphereLightHelper = function ( light, sphereSize, arrowLength, domeSize ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrixWorld = light.matrixWorld; this.matrixAutoUpdate = false; this.colors = [ new THREE.Color(), new THREE.Color() ]; var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 ); geometry.applyMatrix( new THREE.Matrix4().makeRotationX( - Math.PI / 2 ) ); for ( var i = 0, il = 8; i < il; i ++ ) { geometry.faces[ i ].color = this.colors[ i < 4 ? 0 : 1 ]; } var material = new THREE.MeshBasicMaterial( { vertexColors: THREE.FaceColors, wireframe: true } ); this.lightSphere = new THREE.Mesh( geometry, material ); this.add( this.lightSphere ); this.update(); }; THREE.HemisphereLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.HemisphereLightHelper.prototype.dispose = function () { this.lightSphere.geometry.dispose(); this.lightSphere.material.dispose(); }; THREE.HemisphereLightHelper.prototype.update = function () { var vector = new THREE.Vector3(); return function () { this.colors[ 0 ].copy( this.light.color ).multiplyScalar( this.light.intensity ); this.colors[ 1 ].copy( this.light.groundColor ).multiplyScalar( this.light.intensity ); this.lightSphere.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() ); this.lightSphere.geometry.colorsNeedUpdate = true; } }(); // File:src/extras/helpers/PointLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.PointLightHelper = function ( light, sphereSize ) { this.light = light; this.light.updateMatrixWorld(); var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 ); var material = new THREE.MeshBasicMaterial( { wireframe: true, fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); THREE.Mesh.call( this, geometry, material ); this.matrixWorld = this.light.matrixWorld; this.matrixAutoUpdate = false; /* var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); var d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ }; THREE.PointLightHelper.prototype = Object.create( THREE.Mesh.prototype ); THREE.PointLightHelper.prototype.dispose = function () { this.geometry.dispose(); this.material.dispose(); }; THREE.PointLightHelper.prototype.update = function () { this.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); /* var d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ }; // File:src/extras/helpers/SkeletonHelper.js /** * @author Sean Griffin / http://twitter.com/sgrif * @author Michael Guerrero / http://realitymeltdown.com * @author mrdoob / http://mrdoob.com/ * @author ikerr / http://verold.com */ THREE.SkeletonHelper = function ( object ) { this.bones = this.getBoneList( object ); var geometry = new THREE.Geometry(); for ( var i = 0; i < this.bones.length; i ++ ) { var bone = this.bones[ i ]; if ( bone.parent instanceof THREE.Bone ) { geometry.vertices.push( new THREE.Vector3() ); geometry.vertices.push( new THREE.Vector3() ); geometry.colors.push( new THREE.Color( 0, 0, 1 ) ); geometry.colors.push( new THREE.Color( 0, 1, 0 ) ); } } var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors, depthTest: false, depthWrite: false, transparent: true } ); THREE.Line.call( this, geometry, material, THREE.LinePieces ); this.root = object; this.matrixWorld = object.matrixWorld; this.matrixAutoUpdate = false; this.update(); }; THREE.SkeletonHelper.prototype = Object.create( THREE.Line.prototype ); THREE.SkeletonHelper.prototype.getBoneList = function( object ) { var boneList = []; if ( object instanceof THREE.Bone ) { boneList.push( object ); } for ( var i = 0; i < object.children.length; i ++ ) { boneList.push.apply( boneList, this.getBoneList( object.children[ i ] ) ); } return boneList; }; THREE.SkeletonHelper.prototype.update = function () { var geometry = this.geometry; var matrixWorldInv = new THREE.Matrix4().getInverse( this.root.matrixWorld ); var boneMatrix = new THREE.Matrix4(); var j = 0; for ( var i = 0; i < this.bones.length; i ++ ) { var bone = this.bones[ i ]; if ( bone.parent instanceof THREE.Bone ) { boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld ); geometry.vertices[ j ].setFromMatrixPosition( boneMatrix ); boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld ); geometry.vertices[ j + 1 ].setFromMatrixPosition( boneMatrix ); j += 2; } } geometry.verticesNeedUpdate = true; geometry.computeBoundingSphere(); }; // File:src/extras/helpers/SpotLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.SpotLightHelper = function ( light ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrixWorld = light.matrixWorld; this.matrixAutoUpdate = false; var geometry = new THREE.CylinderGeometry( 0, 1, 1, 8, 1, true ); geometry.applyMatrix( new THREE.Matrix4().makeTranslation( 0, - 0.5, 0 ) ); geometry.applyMatrix( new THREE.Matrix4().makeRotationX( - Math.PI / 2 ) ); var material = new THREE.MeshBasicMaterial( { wireframe: true, fog: false } ); this.cone = new THREE.Mesh( geometry, material ); this.add( this.cone ); this.update(); }; THREE.SpotLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.SpotLightHelper.prototype.dispose = function () { this.cone.geometry.dispose(); this.cone.material.dispose(); }; THREE.SpotLightHelper.prototype.update = function () { var vector = new THREE.Vector3(); var vector2 = new THREE.Vector3(); return function () { var coneLength = this.light.distance ? this.light.distance : 10000; var coneWidth = coneLength * Math.tan( this.light.angle ); this.cone.scale.set( coneWidth, coneWidth, coneLength ); vector.setFromMatrixPosition( this.light.matrixWorld ); vector2.setFromMatrixPosition( this.light.target.matrixWorld ); this.cone.lookAt( vector2.sub( vector ) ); this.cone.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); }; }(); // File:src/extras/helpers/VertexNormalsHelper.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.VertexNormalsHelper = function ( object, size, hex, linewidth ) { this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xff0000; var width = ( linewidth !== undefined ) ? linewidth : 1; var geometry = new THREE.Geometry(); var vertices = object.geometry.vertices; var faces = object.geometry.faces; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { geometry.vertices.push( new THREE.Vector3(), new THREE.Vector3() ); } } THREE.Line.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ), THREE.LinePieces ); this.matrixAutoUpdate = false; this.normalMatrix = new THREE.Matrix3(); this.update(); }; THREE.VertexNormalsHelper.prototype = Object.create( THREE.Line.prototype ); THREE.VertexNormalsHelper.prototype.update = ( function ( object ) { var v1 = new THREE.Vector3(); return function( object ) { var keys = [ 'a', 'b', 'c', 'd' ]; this.object.updateMatrixWorld( true ); this.normalMatrix.getNormalMatrix( this.object.matrixWorld ); var vertices = this.geometry.vertices; var verts = this.object.geometry.vertices; var faces = this.object.geometry.faces; var worldMatrix = this.object.matrixWorld; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { var vertexId = face[ keys[ j ] ]; var vertex = verts[ vertexId ]; var normal = face.vertexNormals[ j ]; vertices[ idx ].copy( vertex ).applyMatrix4( worldMatrix ); v1.copy( normal ).applyMatrix3( this.normalMatrix ).normalize().multiplyScalar( this.size ); v1.add( vertices[ idx ] ); idx = idx + 1; vertices[ idx ].copy( v1 ); idx = idx + 1; } } this.geometry.verticesNeedUpdate = true; return this; } }()); // File:src/extras/helpers/VertexTangentsHelper.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.VertexTangentsHelper = function ( object, size, hex, linewidth ) { this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0x0000ff; var width = ( linewidth !== undefined ) ? linewidth : 1; var geometry = new THREE.Geometry(); var vertices = object.geometry.vertices; var faces = object.geometry.faces; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0, jl = face.vertexTangents.length; j < jl; j ++ ) { geometry.vertices.push( new THREE.Vector3() ); geometry.vertices.push( new THREE.Vector3() ); } } THREE.Line.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ), THREE.LinePieces ); this.matrixAutoUpdate = false; this.update(); }; THREE.VertexTangentsHelper.prototype = Object.create( THREE.Line.prototype ); THREE.VertexTangentsHelper.prototype.update = ( function ( object ) { var v1 = new THREE.Vector3(); return function( object ) { var keys = [ 'a', 'b', 'c', 'd' ]; this.object.updateMatrixWorld( true ); var vertices = this.geometry.vertices; var verts = this.object.geometry.vertices; var faces = this.object.geometry.faces; var worldMatrix = this.object.matrixWorld; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0, jl = face.vertexTangents.length; j < jl; j ++ ) { var vertexId = face[ keys[ j ] ]; var vertex = verts[ vertexId ]; var tangent = face.vertexTangents[ j ]; vertices[ idx ].copy( vertex ).applyMatrix4( worldMatrix ); v1.copy( tangent ).transformDirection( worldMatrix ).multiplyScalar( this.size ); v1.add( vertices[ idx ] ); idx = idx + 1; vertices[ idx ].copy( v1 ); idx = idx + 1; } } this.geometry.verticesNeedUpdate = true; return this; } }()); // File:src/extras/helpers/WireframeHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WireframeHelper = function ( object, hex ) { var color = ( hex !== undefined ) ? hex : 0xffffff; var edge = [ 0, 0 ], hash = {}; var sortFunction = function ( a, b ) { return a - b }; var keys = [ 'a', 'b', 'c' ]; var geometry = new THREE.BufferGeometry(); if ( object.geometry instanceof THREE.Geometry ) { var vertices = object.geometry.vertices; var faces = object.geometry.faces; var numEdges = 0; // allocate maximal size var edges = new Uint32Array( 6 * faces.length ); for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = face[ keys[ j ] ]; edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { edges[ 2 * numEdges ] = edge[ 0 ]; edges[ 2 * numEdges + 1 ] = edge[ 1 ]; hash[ key ] = true; numEdges ++; } } } var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numEdges; i < l; i ++ ) { for ( var j = 0; j < 2; j ++ ) { var vertex = vertices[ edges [ 2 * i + j] ]; var index = 6 * i + 3 * j; coords[ index + 0 ] = vertex.x; coords[ index + 1 ] = vertex.y; coords[ index + 2 ] = vertex.z; } } geometry.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } else if ( object.geometry instanceof THREE.BufferGeometry ) { if ( object.geometry.attributes.index !== undefined ) { // Indexed BufferGeometry var vertices = object.geometry.attributes.position.array; var indices = object.geometry.attributes.index.array; var offsets = object.geometry.offsets; var numEdges = 0; // allocate maximal size var edges = new Uint32Array( 2 * indices.length ); for ( var o = 0, ol = offsets.length; o < ol; ++ o ) { var start = offsets[ o ].start; var count = offsets[ o ].count; var index = offsets[ o ].index; for ( var i = start, il = start + count; i < il; i += 3 ) { for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = index + indices[ i + j ]; edge[ 1 ] = index + indices[ i + ( j + 1 ) % 3 ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { edges[ 2 * numEdges ] = edge[ 0 ]; edges[ 2 * numEdges + 1 ] = edge[ 1 ]; hash[ key ] = true; numEdges ++; } } } } var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numEdges; i < l; i ++ ) { for ( var j = 0; j < 2; j ++ ) { var index = 6 * i + 3 * j; var index2 = 3 * edges[ 2 * i + j]; coords[ index + 0 ] = vertices[ index2 ]; coords[ index + 1 ] = vertices[ index2 + 1 ]; coords[ index + 2 ] = vertices[ index2 + 2 ]; } } geometry.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } else { // non-indexed BufferGeometry var vertices = object.geometry.attributes.position.array; var numEdges = vertices.length / 3; var numTris = numEdges / 3; var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numTris; i < l; i ++ ) { for ( var j = 0; j < 3; j ++ ) { var index = 18 * i + 6 * j; var index1 = 9 * i + 3 * j; coords[ index + 0 ] = vertices[ index1 ]; coords[ index + 1 ] = vertices[ index1 + 1 ]; coords[ index + 2 ] = vertices[ index1 + 2 ]; var index2 = 9 * i + 3 * ( ( j + 1 ) % 3 ); coords[ index + 3 ] = vertices[ index2 ]; coords[ index + 4 ] = vertices[ index2 + 1 ]; coords[ index + 5 ] = vertices[ index2 + 2 ]; } } geometry.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } } THREE.Line.call( this, geometry, new THREE.LineBasicMaterial( { color: color } ), THREE.LinePieces ); this.matrixAutoUpdate = false; this.matrixWorld = object.matrixWorld; }; THREE.WireframeHelper.prototype = Object.create( THREE.Line.prototype ); // File:src/extras/objects/ImmediateRenderObject.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.ImmediateRenderObject = function () { THREE.Object3D.call( this ); this.render = function ( renderCallback ) {}; }; THREE.ImmediateRenderObject.prototype = Object.create( THREE.Object3D.prototype ); // File:src/extras/objects/LensFlare.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlare = function ( texture, size, distance, blending, color ) { THREE.Object3D.call( this ); this.lensFlares = []; this.positionScreen = new THREE.Vector3(); this.customUpdateCallback = undefined; if( texture !== undefined ) { this.add( texture, size, distance, blending, color ); } }; THREE.LensFlare.prototype = Object.create( THREE.Object3D.prototype ); /* * Add: adds another flare */ THREE.LensFlare.prototype.add = function ( texture, size, distance, blending, color, opacity ) { if( size === undefined ) size = - 1; if( distance === undefined ) distance = 0; if( opacity === undefined ) opacity = 1; if( color === undefined ) color = new THREE.Color( 0xffffff ); if( blending === undefined ) blending = THREE.NormalBlending; distance = Math.min( distance, Math.max( 0, distance ) ); this.lensFlares.push( { texture: texture, // THREE.Texture size: size, // size in pixels (-1 = use texture.width) distance: distance, // distance (0-1) from light source (0=at light source) x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is ontop z = 1 is back scale: 1, // scale rotation: 1, // rotation opacity: opacity, // opacity color: color, // color blending: blending } ); // blending }; /* * Update lens flares update positions on all flares based on the screen position * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way. */ THREE.LensFlare.prototype.updateLensFlares = function () { var f, fl = this.lensFlares.length; var flare; var vecX = - this.positionScreen.x * 2; var vecY = - this.positionScreen.y * 2; for( f = 0; f < fl; f ++ ) { flare = this.lensFlares[ f ]; flare.x = this.positionScreen.x + vecX * flare.distance; flare.y = this.positionScreen.y + vecY * flare.distance; flare.wantedRotation = flare.x * Math.PI * 0.25; flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25; } }; // File:src/extras/objects/MorphBlendMesh.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.MorphBlendMesh = function( geometry, material ) { THREE.Mesh.call( this, geometry, material ); this.animationsMap = {}; this.animationsList = []; // prepare default animation // (all frames played together in 1 second) var numFrames = this.geometry.morphTargets.length; var name = "__default"; var startFrame = 0; var endFrame = numFrames - 1; var fps = numFrames / 1; this.createAnimation( name, startFrame, endFrame, fps ); this.setAnimationWeight( name, 1 ); }; THREE.MorphBlendMesh.prototype = Object.create( THREE.Mesh.prototype ); THREE.MorphBlendMesh.prototype.createAnimation = function ( name, start, end, fps ) { var animation = { startFrame: start, endFrame: end, length: end - start + 1, fps: fps, duration: ( end - start ) / fps, lastFrame: 0, currentFrame: 0, active: false, time: 0, direction: 1, weight: 1, directionBackwards: false, mirroredLoop: false }; this.animationsMap[ name ] = animation; this.animationsList.push( animation ); }; THREE.MorphBlendMesh.prototype.autoCreateAnimations = function ( fps ) { var pattern = /([a-z]+)_?(\d+)/; var firstAnimation, frameRanges = {}; var geometry = this.geometry; for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) { var morph = geometry.morphTargets[ i ]; var chunks = morph.name.match( pattern ); if ( chunks && chunks.length > 1 ) { var name = chunks[ 1 ]; var num = chunks[ 2 ]; if ( ! frameRanges[ name ] ) frameRanges[ name ] = { start: Infinity, end: - Infinity }; var range = frameRanges[ name ]; if ( i < range.start ) range.start = i; if ( i > range.end ) range.end = i; if ( ! firstAnimation ) firstAnimation = name; } } for ( var name in frameRanges ) { var range = frameRanges[ name ]; this.createAnimation( name, range.start, range.end, fps ); } this.firstAnimation = firstAnimation; }; THREE.MorphBlendMesh.prototype.setAnimationDirectionForward = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.direction = 1; animation.directionBackwards = false; } }; THREE.MorphBlendMesh.prototype.setAnimationDirectionBackward = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.direction = - 1; animation.directionBackwards = true; } }; THREE.MorphBlendMesh.prototype.setAnimationFPS = function ( name, fps ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.fps = fps; animation.duration = ( animation.end - animation.start ) / animation.fps; } }; THREE.MorphBlendMesh.prototype.setAnimationDuration = function ( name, duration ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.duration = duration; animation.fps = ( animation.end - animation.start ) / animation.duration; } }; THREE.MorphBlendMesh.prototype.setAnimationWeight = function ( name, weight ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.weight = weight; } }; THREE.MorphBlendMesh.prototype.setAnimationTime = function ( name, time ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.time = time; } }; THREE.MorphBlendMesh.prototype.getAnimationTime = function ( name ) { var time = 0; var animation = this.animationsMap[ name ]; if ( animation ) { time = animation.time; } return time; }; THREE.MorphBlendMesh.prototype.getAnimationDuration = function ( name ) { var duration = - 1; var animation = this.animationsMap[ name ]; if ( animation ) { duration = animation.duration; } return duration; }; THREE.MorphBlendMesh.prototype.playAnimation = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.time = 0; animation.active = true; } else { console.warn( "animation[" + name + "] undefined" ); } }; THREE.MorphBlendMesh.prototype.stopAnimation = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.active = false; } }; THREE.MorphBlendMesh.prototype.update = function ( delta ) { for ( var i = 0, il = this.animationsList.length; i < il; i ++ ) { var animation = this.animationsList[ i ]; if ( ! animation.active ) continue; var frameTime = animation.duration / animation.length; animation.time += animation.direction * delta; if ( animation.mirroredLoop ) { if ( animation.time > animation.duration || animation.time < 0 ) { animation.direction *= - 1; if ( animation.time > animation.duration ) { animation.time = animation.duration; animation.directionBackwards = true; } if ( animation.time < 0 ) { animation.time = 0; animation.directionBackwards = false; } } } else { animation.time = animation.time % animation.duration; if ( animation.time < 0 ) animation.time += animation.duration; } var keyframe = animation.startFrame + THREE.Math.clamp( Math.floor( animation.time / frameTime ), 0, animation.length - 1 ); var weight = animation.weight; if ( keyframe !== animation.currentFrame ) { this.morphTargetInfluences[ animation.lastFrame ] = 0; this.morphTargetInfluences[ animation.currentFrame ] = 1 * weight; this.morphTargetInfluences[ keyframe ] = 0; animation.lastFrame = animation.currentFrame; animation.currentFrame = keyframe; } var mix = ( animation.time % frameTime ) / frameTime; if ( animation.directionBackwards ) mix = 1 - mix; this.morphTargetInfluences[ animation.currentFrame ] = mix * weight; this.morphTargetInfluences[ animation.lastFrame ] = ( 1 - mix ) * weight; } }; // File:src/extras/renderers/plugins/LensFlarePlugin.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlarePlugin = function () { var flares = []; var _gl, _renderer, _precision, _lensFlare = {}; this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; _precision = renderer.getPrecision(); _lensFlare.vertices = new Float32Array( 8 + 8 ); _lensFlare.faces = new Uint16Array( 6 ); var i = 0; _lensFlare.vertices[ i ++ ] = - 1; _lensFlare.vertices[ i ++ ] = - 1; // vertex _lensFlare.vertices[ i ++ ] = 0; _lensFlare.vertices[ i ++ ] = 0; // uv... etc. _lensFlare.vertices[ i ++ ] = 1; _lensFlare.vertices[ i ++ ] = - 1; _lensFlare.vertices[ i ++ ] = 1; _lensFlare.vertices[ i ++ ] = 0; _lensFlare.vertices[ i ++ ] = 1; _lensFlare.vertices[ i ++ ] = 1; _lensFlare.vertices[ i ++ ] = 1; _lensFlare.vertices[ i ++ ] = 1; _lensFlare.vertices[ i ++ ] = - 1; _lensFlare.vertices[ i ++ ] = 1; _lensFlare.vertices[ i ++ ] = 0; _lensFlare.vertices[ i ++ ] = 1; i = 0; _lensFlare.faces[ i ++ ] = 0; _lensFlare.faces[ i ++ ] = 1; _lensFlare.faces[ i ++ ] = 2; _lensFlare.faces[ i ++ ] = 0; _lensFlare.faces[ i ++ ] = 2; _lensFlare.faces[ i ++ ] = 3; // buffers _lensFlare.vertexBuffer = _gl.createBuffer(); _lensFlare.elementBuffer = _gl.createBuffer(); _gl.bindBuffer( _gl.ARRAY_BUFFER, _lensFlare.vertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, _lensFlare.vertices, _gl.STATIC_DRAW ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.elementBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.faces, _gl.STATIC_DRAW ); // textures _lensFlare.tempTexture = _gl.createTexture(); _lensFlare.occlusionTexture = _gl.createTexture(); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.texImage2D( _gl.TEXTURE_2D, 0, _gl.RGB, 16, 16, 0, _gl.RGB, _gl.UNSIGNED_BYTE, null ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MAG_FILTER, _gl.NEAREST ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MIN_FILTER, _gl.NEAREST ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.occlusionTexture ); _gl.texImage2D( _gl.TEXTURE_2D, 0, _gl.RGBA, 16, 16, 0, _gl.RGBA, _gl.UNSIGNED_BYTE, null ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MAG_FILTER, _gl.NEAREST ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MIN_FILTER, _gl.NEAREST ); if ( _gl.getParameter( _gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ) <= 0 ) { _lensFlare.hasVertexTexture = false; _lensFlare.program = createProgram( THREE.ShaderFlares[ "lensFlare" ], _precision ); } else { _lensFlare.hasVertexTexture = true; _lensFlare.program = createProgram( THREE.ShaderFlares[ "lensFlareVertexTexture" ], _precision ); } _lensFlare.attributes = {}; _lensFlare.uniforms = {}; _lensFlare.attributes.vertex = _gl.getAttribLocation ( _lensFlare.program, "position" ); _lensFlare.attributes.uv = _gl.getAttribLocation ( _lensFlare.program, "uv" ); _lensFlare.uniforms.renderType = _gl.getUniformLocation( _lensFlare.program, "renderType" ); _lensFlare.uniforms.map = _gl.getUniformLocation( _lensFlare.program, "map" ); _lensFlare.uniforms.occlusionMap = _gl.getUniformLocation( _lensFlare.program, "occlusionMap" ); _lensFlare.uniforms.opacity = _gl.getUniformLocation( _lensFlare.program, "opacity" ); _lensFlare.uniforms.color = _gl.getUniformLocation( _lensFlare.program, "color" ); _lensFlare.uniforms.scale = _gl.getUniformLocation( _lensFlare.program, "scale" ); _lensFlare.uniforms.rotation = _gl.getUniformLocation( _lensFlare.program, "rotation" ); _lensFlare.uniforms.screenPosition = _gl.getUniformLocation( _lensFlare.program, "screenPosition" ); }; /* * Render lens flares * Method: renders 16x16 0xff00ff-colored points scattered over the light source area, * reads these back and calculates occlusion. * Then _lensFlare.update_lensFlares() is called to re-position and * update transparency of flares. Then they are rendered. * */ this.render = function ( scene, camera, viewportWidth, viewportHeight ) { flares.length = 0; scene.traverseVisible( function ( child ) { if ( child instanceof THREE.LensFlare ) { flares.push( child ); } } ); if ( flares.length === 0 ) return; var tempPosition = new THREE.Vector3(); var invAspect = viewportHeight / viewportWidth, halfViewportWidth = viewportWidth * 0.5, halfViewportHeight = viewportHeight * 0.5; var size = 16 / viewportHeight, scale = new THREE.Vector2( size * invAspect, size ); var screenPosition = new THREE.Vector3( 1, 1, 0 ), screenPositionPixels = new THREE.Vector2( 1, 1 ); var uniforms = _lensFlare.uniforms, attributes = _lensFlare.attributes; // set _lensFlare program and reset blending _gl.useProgram( _lensFlare.program ); _gl.enableVertexAttribArray( _lensFlare.attributes.vertex ); _gl.enableVertexAttribArray( _lensFlare.attributes.uv ); // loop through all lens flares to update their occlusion and positions // setup gl and common used attribs/unforms _gl.uniform1i( uniforms.occlusionMap, 0 ); _gl.uniform1i( uniforms.map, 1 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, _lensFlare.vertexBuffer ); _gl.vertexAttribPointer( attributes.vertex, 2, _gl.FLOAT, false, 2 * 8, 0 ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 2 * 8, 8 ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.elementBuffer ); _gl.disable( _gl.CULL_FACE ); _gl.depthMask( false ); for ( var i = 0, l = flares.length; i < l; i ++ ) { size = 16 / viewportHeight; scale.set( size * invAspect, size ); // calc object screen position var flare = flares[ i ]; tempPosition.set( flare.matrixWorld.elements[12], flare.matrixWorld.elements[13], flare.matrixWorld.elements[14] ); tempPosition.applyMatrix4( camera.matrixWorldInverse ); tempPosition.applyProjection( camera.projectionMatrix ); // setup arrays for gl programs screenPosition.copy( tempPosition ) screenPositionPixels.x = screenPosition.x * halfViewportWidth + halfViewportWidth; screenPositionPixels.y = screenPosition.y * halfViewportHeight + halfViewportHeight; // screen cull if ( _lensFlare.hasVertexTexture || ( screenPositionPixels.x > 0 && screenPositionPixels.x < viewportWidth && screenPositionPixels.y > 0 && screenPositionPixels.y < viewportHeight ) ) { // save current RGB to temp texture _gl.activeTexture( _gl.TEXTURE1 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.copyTexImage2D( _gl.TEXTURE_2D, 0, _gl.RGB, screenPositionPixels.x - 8, screenPositionPixels.y - 8, 16, 16, 0 ); // render pink quad _gl.uniform1i( uniforms.renderType, 0 ); _gl.uniform2f( uniforms.scale, scale.x, scale.y ); _gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); _gl.disable( _gl.BLEND ); _gl.enable( _gl.DEPTH_TEST ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); // copy result to occlusionMap _gl.activeTexture( _gl.TEXTURE0 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.occlusionTexture ); _gl.copyTexImage2D( _gl.TEXTURE_2D, 0, _gl.RGBA, screenPositionPixels.x - 8, screenPositionPixels.y - 8, 16, 16, 0 ); // restore graphics _gl.uniform1i( uniforms.renderType, 1 ); _gl.disable( _gl.DEPTH_TEST ); _gl.activeTexture( _gl.TEXTURE1 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); // update object positions flare.positionScreen.copy( screenPosition ) if ( flare.customUpdateCallback ) { flare.customUpdateCallback( flare ); } else { flare.updateLensFlares(); } // render flares _gl.uniform1i( uniforms.renderType, 2 ); _gl.enable( _gl.BLEND ); for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) { var sprite = flare.lensFlares[ j ]; if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) { screenPosition.x = sprite.x; screenPosition.y = sprite.y; screenPosition.z = sprite.z; size = sprite.size * sprite.scale / viewportHeight; scale.x = size * invAspect; scale.y = size; _gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); _gl.uniform2f( uniforms.scale, scale.x, scale.y ); _gl.uniform1f( uniforms.rotation, sprite.rotation ); _gl.uniform1f( uniforms.opacity, sprite.opacity ); _gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); _renderer.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); _renderer.setTexture( sprite.texture, 1 ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); } } } } // restore gl _gl.enable( _gl.CULL_FACE ); _gl.enable( _gl.DEPTH_TEST ); _gl.depthMask( true ); }; function createProgram ( shader, precision ) { var program = _gl.createProgram(); var fragmentShader = _gl.createShader( _gl.FRAGMENT_SHADER ); var vertexShader = _gl.createShader( _gl.VERTEX_SHADER ); var prefix = "precision " + precision + " float;\n"; _gl.shaderSource( fragmentShader, prefix + shader.fragmentShader ); _gl.shaderSource( vertexShader, prefix + shader.vertexShader ); _gl.compileShader( fragmentShader ); _gl.compileShader( vertexShader ); _gl.attachShader( program, fragmentShader ); _gl.attachShader( program, vertexShader ); _gl.linkProgram( program ); return program; }; }; // File:src/extras/renderers/plugins/ShadowMapPlugin.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.ShadowMapPlugin = function () { var _gl, _renderer, _depthMaterial, _depthMaterialMorph, _depthMaterialSkin, _depthMaterialMorphSkin, _frustum = new THREE.Frustum(), _projScreenMatrix = new THREE.Matrix4(), _min = new THREE.Vector3(), _max = new THREE.Vector3(), _matrixPosition = new THREE.Vector3(), _renderList = []; this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; var depthShader = THREE.ShaderLib[ "depthRGBA" ]; var depthUniforms = THREE.UniformsUtils.clone( depthShader.uniforms ); _depthMaterial = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms } ); _depthMaterialMorph = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, morphTargets: true } ); _depthMaterialSkin = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, skinning: true } ); _depthMaterialMorphSkin = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, morphTargets: true, skinning: true } ); _depthMaterial._shadowPass = true; _depthMaterialMorph._shadowPass = true; _depthMaterialSkin._shadowPass = true; _depthMaterialMorphSkin._shadowPass = true; }; this.render = function ( scene, camera ) { if ( ! ( _renderer.shadowMapEnabled && _renderer.shadowMapAutoUpdate ) ) return; this.update( scene, camera ); }; this.update = function ( scene, camera ) { var i, il, j, jl, n, shadowMap, shadowMatrix, shadowCamera, program, buffer, material, webglObject, object, light, lights = [], k = 0, fog = null; // set GL state for depth map _gl.clearColor( 1, 1, 1, 1 ); _gl.disable( _gl.BLEND ); _gl.enable( _gl.CULL_FACE ); _gl.frontFace( _gl.CCW ); if ( _renderer.shadowMapCullFace === THREE.CullFaceFront ) { _gl.cullFace( _gl.FRONT ); } else { _gl.cullFace( _gl.BACK ); } _renderer.setDepthTest( true ); // preprocess lights // - skip lights that are not casting shadows // - create virtual lights for cascaded shadow maps for ( i = 0, il = scene.__lights.length; i < il; i ++ ) { light = scene.__lights[ i ]; if ( ! light.castShadow ) continue; if ( ( light instanceof THREE.DirectionalLight ) && light.shadowCascade ) { for ( n = 0; n < light.shadowCascadeCount; n ++ ) { var virtualLight; if ( ! light.shadowCascadeArray[ n ] ) { virtualLight = createVirtualLight( light, n ); virtualLight.originalCamera = camera; var gyro = new THREE.Gyroscope(); gyro.position.copy( light.shadowCascadeOffset ); gyro.add( virtualLight ); gyro.add( virtualLight.target ); camera.add( gyro ); light.shadowCascadeArray[ n ] = virtualLight; console.log( "Created virtualLight", virtualLight ); } else { virtualLight = light.shadowCascadeArray[ n ]; } updateVirtualLight( light, n ); lights[ k ] = virtualLight; k ++; } } else { lights[ k ] = light; k ++; } } // render depth map for ( i = 0, il = lights.length; i < il; i ++ ) { light = lights[ i ]; if ( ! light.shadowMap ) { var shadowFilter = THREE.LinearFilter; if ( _renderer.shadowMapType === THREE.PCFSoftShadowMap ) { shadowFilter = THREE.NearestFilter; } var pars = { minFilter: shadowFilter, magFilter: shadowFilter, format: THREE.RGBAFormat }; light.shadowMap = new THREE.WebGLRenderTarget( light.shadowMapWidth, light.shadowMapHeight, pars ); light.shadowMapSize = new THREE.Vector2( light.shadowMapWidth, light.shadowMapHeight ); light.shadowMatrix = new THREE.Matrix4(); } if ( ! light.shadowCamera ) { if ( light instanceof THREE.SpotLight ) { light.shadowCamera = new THREE.PerspectiveCamera( light.shadowCameraFov, light.shadowMapWidth / light.shadowMapHeight, light.shadowCameraNear, light.shadowCameraFar ); } else if ( light instanceof THREE.DirectionalLight ) { light.shadowCamera = new THREE.OrthographicCamera( light.shadowCameraLeft, light.shadowCameraRight, light.shadowCameraTop, light.shadowCameraBottom, light.shadowCameraNear, light.shadowCameraFar ); } else { console.error( "Unsupported light type for shadow" ); continue; } scene.add( light.shadowCamera ); if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); } if ( light.shadowCameraVisible && ! light.cameraHelper ) { light.cameraHelper = new THREE.CameraHelper( light.shadowCamera ); light.shadowCamera.add( light.cameraHelper ); } if ( light.isVirtual && virtualLight.originalCamera == camera ) { updateShadowCamera( camera, light ); } shadowMap = light.shadowMap; shadowMatrix = light.shadowMatrix; shadowCamera = light.shadowCamera; shadowCamera.position.setFromMatrixPosition( light.matrixWorld ); _matrixPosition.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _matrixPosition ); shadowCamera.updateMatrixWorld(); shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld ); if ( light.cameraHelper ) light.cameraHelper.visible = light.shadowCameraVisible; if ( light.shadowCameraVisible ) light.cameraHelper.update(); // compute shadow matrix shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); // update camera matrices and frustum _projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // render shadow map _renderer.setRenderTarget( shadowMap ); _renderer.clear(); // set object matrices & frustum culling _renderList.length = 0; projectObject(scene,scene,shadowCamera); // render regular objects var objectMaterial, useMorphing, useSkinning; for ( j = 0, jl = _renderList.length; j < jl; j ++ ) { webglObject = _renderList[ j ]; object = webglObject.object; buffer = webglObject.buffer; // culling is overriden globally for all objects // while rendering depth map // need to deal with MeshFaceMaterial somehow // in that case just use the first of material.materials for now // (proper solution would require to break objects by materials // similarly to regular rendering and then set corresponding // depth materials per each chunk instead of just once per object) objectMaterial = getObjectMaterial( object ); useMorphing = object.geometry.morphTargets !== undefined && object.geometry.morphTargets.length > 0 && objectMaterial.morphTargets; useSkinning = object instanceof THREE.SkinnedMesh && objectMaterial.skinning; if ( object.customDepthMaterial ) { material = object.customDepthMaterial; } else if ( useSkinning ) { material = useMorphing ? _depthMaterialMorphSkin : _depthMaterialSkin; } else if ( useMorphing ) { material = _depthMaterialMorph; } else { material = _depthMaterial; } _renderer.setMaterialFaces( objectMaterial ); if ( buffer instanceof THREE.BufferGeometry ) { _renderer.renderBufferDirect( shadowCamera, scene.__lights, fog, material, buffer, object ); } else { _renderer.renderBuffer( shadowCamera, scene.__lights, fog, material, buffer, object ); } } // set matrices and render immediate objects var renderList = scene.__webglObjectsImmediate; for ( j = 0, jl = renderList.length; j < jl; j ++ ) { webglObject = renderList[ j ]; object = webglObject.object; if ( object.visible && object.castShadow ) { object._modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); _renderer.renderImmediateObject( shadowCamera, scene.__lights, fog, _depthMaterial, object ); } } } // restore GL state var clearColor = _renderer.getClearColor(), clearAlpha = _renderer.getClearAlpha(); _gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearAlpha ); _gl.enable( _gl.BLEND ); if ( _renderer.shadowMapCullFace === THREE.CullFaceFront ) { _gl.cullFace( _gl.BACK ); } }; function projectObject(scene, object,shadowCamera){ if ( object.visible ) { var webglObjects = scene.__webglObjects[object.id]; if (webglObjects && object.castShadow && (object.frustumCulled === false || _frustum.intersectsObject( object ) === true) ) { for (var i = 0, l = webglObjects.length; i < l; i++){ var webglObject = webglObjects[i]; object._modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); _renderList.push(webglObject); } } for(var i = 0, l = object.children.length; i < l; i++) { projectObject(scene, object.children[i],shadowCamera); } } } function createVirtualLight( light, cascade ) { var virtualLight = new THREE.DirectionalLight(); virtualLight.isVirtual = true; virtualLight.onlyShadow = true; virtualLight.castShadow = true; virtualLight.shadowCameraNear = light.shadowCameraNear; virtualLight.shadowCameraFar = light.shadowCameraFar; virtualLight.shadowCameraLeft = light.shadowCameraLeft; virtualLight.shadowCameraRight = light.shadowCameraRight; virtualLight.shadowCameraBottom = light.shadowCameraBottom; virtualLight.shadowCameraTop = light.shadowCameraTop; virtualLight.shadowCameraVisible = light.shadowCameraVisible; virtualLight.shadowDarkness = light.shadowDarkness; virtualLight.shadowBias = light.shadowCascadeBias[ cascade ]; virtualLight.shadowMapWidth = light.shadowCascadeWidth[ cascade ]; virtualLight.shadowMapHeight = light.shadowCascadeHeight[ cascade ]; virtualLight.pointsWorld = []; virtualLight.pointsFrustum = []; var pointsWorld = virtualLight.pointsWorld, pointsFrustum = virtualLight.pointsFrustum; for ( var i = 0; i < 8; i ++ ) { pointsWorld[ i ] = new THREE.Vector3(); pointsFrustum[ i ] = new THREE.Vector3(); } var nearZ = light.shadowCascadeNearZ[ cascade ]; var farZ = light.shadowCascadeFarZ[ cascade ]; pointsFrustum[ 0 ].set( - 1, - 1, nearZ ); pointsFrustum[ 1 ].set( 1, - 1, nearZ ); pointsFrustum[ 2 ].set( - 1, 1, nearZ ); pointsFrustum[ 3 ].set( 1, 1, nearZ ); pointsFrustum[ 4 ].set( - 1, - 1, farZ ); pointsFrustum[ 5 ].set( 1, - 1, farZ ); pointsFrustum[ 6 ].set( - 1, 1, farZ ); pointsFrustum[ 7 ].set( 1, 1, farZ ); return virtualLight; } // Synchronize virtual light with the original light function updateVirtualLight( light, cascade ) { var virtualLight = light.shadowCascadeArray[ cascade ]; virtualLight.position.copy( light.position ); virtualLight.target.position.copy( light.target.position ); virtualLight.lookAt( virtualLight.target ); virtualLight.shadowCameraVisible = light.shadowCameraVisible; virtualLight.shadowDarkness = light.shadowDarkness; virtualLight.shadowBias = light.shadowCascadeBias[ cascade ]; var nearZ = light.shadowCascadeNearZ[ cascade ]; var farZ = light.shadowCascadeFarZ[ cascade ]; var pointsFrustum = virtualLight.pointsFrustum; pointsFrustum[ 0 ].z = nearZ; pointsFrustum[ 1 ].z = nearZ; pointsFrustum[ 2 ].z = nearZ; pointsFrustum[ 3 ].z = nearZ; pointsFrustum[ 4 ].z = farZ; pointsFrustum[ 5 ].z = farZ; pointsFrustum[ 6 ].z = farZ; pointsFrustum[ 7 ].z = farZ; } // Fit shadow camera's ortho frustum to camera frustum function updateShadowCamera( camera, light ) { var shadowCamera = light.shadowCamera, pointsFrustum = light.pointsFrustum, pointsWorld = light.pointsWorld; _min.set( Infinity, Infinity, Infinity ); _max.set( - Infinity, - Infinity, - Infinity ); for ( var i = 0; i < 8; i ++ ) { var p = pointsWorld[ i ]; p.copy( pointsFrustum[ i ] ); THREE.ShadowMapPlugin.__projector.unprojectVector( p, camera ); p.applyMatrix4( shadowCamera.matrixWorldInverse ); if ( p.x < _min.x ) _min.x = p.x; if ( p.x > _max.x ) _max.x = p.x; if ( p.y < _min.y ) _min.y = p.y; if ( p.y > _max.y ) _max.y = p.y; if ( p.z < _min.z ) _min.z = p.z; if ( p.z > _max.z ) _max.z = p.z; } shadowCamera.left = _min.x; shadowCamera.right = _max.x; shadowCamera.top = _max.y; shadowCamera.bottom = _min.y; // can't really fit near/far //shadowCamera.near = _min.z; //shadowCamera.far = _max.z; shadowCamera.updateProjectionMatrix(); } // For the moment just ignore objects that have multiple materials with different animation methods // Only the first material will be taken into account for deciding which depth material to use for shadow maps function getObjectMaterial( object ) { return object.material instanceof THREE.MeshFaceMaterial ? object.material.materials[ 0 ] : object.material; }; }; THREE.ShadowMapPlugin.__projector = new THREE.Projector(); // File:src/extras/renderers/plugins/SpritePlugin.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.SpritePlugin = function () { var _gl, _renderer, _texture; var sprites = []; var vertices, faces, vertexBuffer, elementBuffer; var program, attributes, uniforms; this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0, 0.5, - 0.5, 1, 0, 0.5, 0.5, 1, 1, - 0.5, 0.5, 0, 1 ] ); faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); vertexBuffer = _gl.createBuffer(); elementBuffer = _gl.createBuffer(); _gl.bindBuffer( _gl.ARRAY_BUFFER, vertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertices, _gl.STATIC_DRAW ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, faces, _gl.STATIC_DRAW ); program = createProgram(); attributes = { position: _gl.getAttribLocation ( program, 'position' ), uv: _gl.getAttribLocation ( program, 'uv' ) }; uniforms = { uvOffset: _gl.getUniformLocation( program, 'uvOffset' ), uvScale: _gl.getUniformLocation( program, 'uvScale' ), rotation: _gl.getUniformLocation( program, 'rotation' ), scale: _gl.getUniformLocation( program, 'scale' ), color: _gl.getUniformLocation( program, 'color' ), map: _gl.getUniformLocation( program, 'map' ), opacity: _gl.getUniformLocation( program, 'opacity' ), modelViewMatrix: _gl.getUniformLocation( program, 'modelViewMatrix' ), projectionMatrix: _gl.getUniformLocation( program, 'projectionMatrix' ), fogType: _gl.getUniformLocation( program, 'fogType' ), fogDensity: _gl.getUniformLocation( program, 'fogDensity' ), fogNear: _gl.getUniformLocation( program, 'fogNear' ), fogFar: _gl.getUniformLocation( program, 'fogFar' ), fogColor: _gl.getUniformLocation( program, 'fogColor' ), alphaTest: _gl.getUniformLocation( program, 'alphaTest' ) }; var canvas = document.createElement( 'canvas' ); canvas.width = 8; canvas.height = 8; var context = canvas.getContext( '2d' ); context.fillStyle = 'white'; context.fillRect( 0, 0, 8, 8 ); _texture = new THREE.Texture( canvas ); _texture.needsUpdate = true; }; this.render = function ( scene, camera, viewportWidth, viewportHeight ) { sprites.length = 0; scene.traverseVisible( function ( child ) { if ( child instanceof THREE.Sprite ) { sprites.push( child ); } } ); if ( sprites.length === 0 ) return; // setup gl _gl.useProgram( program ); _gl.enableVertexAttribArray( attributes.position ); _gl.enableVertexAttribArray( attributes.uv ); _gl.disable( _gl.CULL_FACE ); _gl.enable( _gl.BLEND ); _gl.bindBuffer( _gl.ARRAY_BUFFER, vertexBuffer ); _gl.vertexAttribPointer( attributes.position, 2, _gl.FLOAT, false, 2 * 8, 0 ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 2 * 8, 8 ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); _gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements ); _gl.activeTexture( _gl.TEXTURE0 ); _gl.uniform1i( uniforms.map, 0 ); var oldFogType = 0; var sceneFogType = 0; var fog = scene.fog; if ( fog ) { _gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b ); if ( fog instanceof THREE.Fog ) { _gl.uniform1f( uniforms.fogNear, fog.near ); _gl.uniform1f( uniforms.fogFar, fog.far ); _gl.uniform1i( uniforms.fogType, 1 ); oldFogType = 1; sceneFogType = 1; } else if ( fog instanceof THREE.FogExp2 ) { _gl.uniform1f( uniforms.fogDensity, fog.density ); _gl.uniform1i( uniforms.fogType, 2 ); oldFogType = 2; sceneFogType = 2; } } else { _gl.uniform1i( uniforms.fogType, 0 ); oldFogType = 0; sceneFogType = 0; } // update positions and sort for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; var material = sprite.material; sprite._modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld ); sprite.z = - sprite._modelViewMatrix.elements[ 14 ]; } sprites.sort( painterSortStable ); // render all sprites var scale = []; for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; var material = sprite.material; _gl.uniform1f( uniforms.alphaTest, material.alphaTest ); _gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite._modelViewMatrix.elements ); scale[ 0 ] = sprite.scale.x; scale[ 1 ] = sprite.scale.y; var fogType = 0; if ( scene.fog && material.fog ) { fogType = sceneFogType; } if ( oldFogType !== fogType ) { _gl.uniform1i( uniforms.fogType, fogType ); oldFogType = fogType; } if ( material.map !== null ) { _gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y ); _gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y ); } else { _gl.uniform2f( uniforms.uvOffset, 0, 0 ); _gl.uniform2f( uniforms.uvScale, 1, 1 ); } _gl.uniform1f( uniforms.opacity, material.opacity ); _gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b ); _gl.uniform1f( uniforms.rotation, material.rotation ); _gl.uniform2fv( uniforms.scale, scale ); _renderer.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); _renderer.setDepthTest( material.depthTest ); _renderer.setDepthWrite( material.depthWrite ); if ( material.map && material.map.image && material.map.image.width ) { _renderer.setTexture( material.map, 0 ); } else { _renderer.setTexture( _texture, 0 ); } _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); } // restore gl _gl.enable( _gl.CULL_FACE ); }; function createProgram () { var program = _gl.createProgram(); var vertexShader = _gl.createShader( _gl.VERTEX_SHADER ); var fragmentShader = _gl.createShader( _gl.FRAGMENT_SHADER ); _gl.shaderSource( vertexShader, [ 'precision ' + _renderer.getPrecision() + ' float;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform float rotation;', 'uniform vec2 scale;', 'uniform vec2 uvOffset;', 'uniform vec2 uvScale;', 'attribute vec2 position;', 'attribute vec2 uv;', 'varying vec2 vUV;', 'void main() {', 'vUV = uvOffset + uv * uvScale;', 'vec2 alignedPosition = position * scale;', 'vec2 rotatedPosition;', 'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;', 'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;', 'vec4 finalPosition;', 'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );', 'finalPosition.xy += rotatedPosition;', 'finalPosition = projectionMatrix * finalPosition;', 'gl_Position = finalPosition;', '}' ].join( '\n' ) ); _gl.shaderSource( fragmentShader, [ 'precision ' + _renderer.getPrecision() + ' float;', 'uniform vec3 color;', 'uniform sampler2D map;', 'uniform float opacity;', 'uniform int fogType;', 'uniform vec3 fogColor;', 'uniform float fogDensity;', 'uniform float fogNear;', 'uniform float fogFar;', 'uniform float alphaTest;', 'varying vec2 vUV;', 'void main() {', 'vec4 texture = texture2D( map, vUV );', 'if ( texture.a < alphaTest ) discard;', 'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );', 'if ( fogType > 0 ) {', 'float depth = gl_FragCoord.z / gl_FragCoord.w;', 'float fogFactor = 0.0;', 'if ( fogType == 1 ) {', 'fogFactor = smoothstep( fogNear, fogFar, depth );', '} else {', 'const float LOG2 = 1.442695;', 'float fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );', 'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );', '}', 'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );', '}', '}' ].join( '\n' ) ); _gl.compileShader( vertexShader ); _gl.compileShader( fragmentShader ); _gl.attachShader( program, vertexShader ); _gl.attachShader( program, fragmentShader ); _gl.linkProgram( program ); return program; }; function painterSortStable ( a, b ) { if ( a.z !== b.z ) { return b.z - a.z; } else { return b.id - a.id; } }; }; // File:src/extras/renderers/plugins/DepthPassPlugin.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.DepthPassPlugin = function () { this.enabled = false; this.renderTarget = null; var _gl, _renderer, _depthMaterial, _depthMaterialMorph, _depthMaterialSkin, _depthMaterialMorphSkin, _frustum = new THREE.Frustum(), _projScreenMatrix = new THREE.Matrix4(), _renderList = []; this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; var depthShader = THREE.ShaderLib[ "depthRGBA" ]; var depthUniforms = THREE.UniformsUtils.clone( depthShader.uniforms ); _depthMaterial = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms } ); _depthMaterialMorph = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, morphTargets: true } ); _depthMaterialSkin = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, skinning: true } ); _depthMaterialMorphSkin = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, morphTargets: true, skinning: true } ); _depthMaterial._shadowPass = true; _depthMaterialMorph._shadowPass = true; _depthMaterialSkin._shadowPass = true; _depthMaterialMorphSkin._shadowPass = true; }; this.render = function ( scene, camera ) { if ( ! this.enabled ) return; this.update( scene, camera ); }; this.update = function ( scene, camera ) { var i, il, j, jl, n, program, buffer, material, webglObject, object, light, renderList, fog = null; // set GL state for depth map _gl.clearColor( 1, 1, 1, 1 ); _gl.disable( _gl.BLEND ); _renderer.setDepthTest( true ); // update scene if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // render depth map _renderer.setRenderTarget( this.renderTarget ); _renderer.clear(); // set object matrices & frustum culling _renderList.length = 0; projectObject(scene,scene,camera); // render regular objects var objectMaterial, useMorphing, useSkinning; for ( j = 0, jl = _renderList.length; j < jl; j ++ ) { webglObject = _renderList[ j ]; object = webglObject.object; buffer = webglObject.buffer; // todo: create proper depth material for particles if ( object instanceof THREE.PointCloud && ! object.customDepthMaterial ) continue; objectMaterial = getObjectMaterial( object ); if ( objectMaterial ) _renderer.setMaterialFaces( object.material ); useMorphing = object.geometry.morphTargets !== undefined && object.geometry.morphTargets.length > 0 && objectMaterial.morphTargets; useSkinning = object instanceof THREE.SkinnedMesh && objectMaterial.skinning; if ( object.customDepthMaterial ) { material = object.customDepthMaterial; } else if ( useSkinning ) { material = useMorphing ? _depthMaterialMorphSkin : _depthMaterialSkin; } else if ( useMorphing ) { material = _depthMaterialMorph; } else { material = _depthMaterial; } if ( buffer instanceof THREE.BufferGeometry ) { _renderer.renderBufferDirect( camera, scene.__lights, fog, material, buffer, object ); } else { _renderer.renderBuffer( camera, scene.__lights, fog, material, buffer, object ); } } // set matrices and render immediate objects renderList = scene.__webglObjectsImmediate; for ( j = 0, jl = renderList.length; j < jl; j ++ ) { webglObject = renderList[ j ]; object = webglObject.object; if ( object.visible ) { object._modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); _renderer.renderImmediateObject( camera, scene.__lights, fog, _depthMaterial, object ); } } // restore GL state var clearColor = _renderer.getClearColor(), clearAlpha = _renderer.getClearAlpha(); _gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearAlpha ); _gl.enable( _gl.BLEND ); }; function projectObject(scene, object,camera){ if ( object.visible ) { var webglObjects = scene.__webglObjects[object.id]; if (webglObjects && (object.frustumCulled === false || _frustum.intersectsObject( object ) === true) ) { for (var i = 0, l = webglObjects.length; i < l; i++){ var webglObject = webglObjects[i]; object._modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); _renderList.push(webglObject); } } for(var i = 0, l = object.children.length; i < l; i++) { projectObject(scene, object.children[i], camera); } } } // For the moment just ignore objects that have multiple materials with different animation methods // Only the first material will be taken into account for deciding which depth material to use function getObjectMaterial( object ) { return object.material instanceof THREE.MeshFaceMaterial ? object.material.materials[ 0 ] : object.material; }; }; // File:src/extras/shaders/ShaderFlares.js /** * @author mikael emtinger / http://gomo.se/ */ THREE.ShaderFlares = { 'lensFlareVertexTexture': { vertexShader: [ "uniform lowp int renderType;", "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform sampler2D occlusionMap;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if( renderType == 2 ) {", "vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );", "vVisibility = visibility.r / 9.0;", "vVisibility *= 1.0 - visibility.g / 9.0;", "vVisibility *= visibility.b / 9.0;", "vVisibility *= 1.0 - visibility.a / 9.0;", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "uniform lowp int renderType;", "uniform sampler2D map;", "uniform float opacity;", "uniform vec3 color;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", // pink square "if( renderType == 0 ) {", "gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );", // restore "} else if( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * vVisibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }, 'lensFlare': { vertexShader: [ "uniform lowp int renderType;", "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if( renderType == 2 ) {", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform lowp int renderType;", "uniform sampler2D map;", "uniform sampler2D occlusionMap;", "uniform float opacity;", "uniform vec3 color;", "varying vec2 vUV;", "void main() {", // pink square "if( renderType == 0 ) {", "gl_FragColor = vec4( texture2D( map, vUV ).rgb, 0.0 );", // restore "} else if( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "float visibility = texture2D( occlusionMap, vec2( 0.5, 0.1 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) ).a;", "visibility = ( 1.0 - visibility / 4.0 );", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * visibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) } };