// File:src/Three.js /** * @author mrdoob / http://mrdoob.com/ */ var THREE = { REVISION: '75' }; // if ( typeof define === 'function' && define.amd ) { define( 'three', THREE ); } else if ( 'undefined' !== typeof exports && 'undefined' !== typeof module ) { module.exports = THREE; } // if ( Number.EPSILON === undefined ) { Number.EPSILON = Math.pow( 2, - 52 ); } // if ( Math.sign === undefined ) { // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign Math.sign = function ( x ) { return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x; }; } if ( Function.prototype.name === undefined && Object.defineProperty !== undefined ) { // Missing in IE9-11. // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name Object.defineProperty( Function.prototype, 'name', { get: function () { return this.toString().match( /^\s*function\s*(\S*)\s*\(/ )[ 1 ]; } } ); } if ( Object.assign === undefined ) { // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign Object.defineProperty( Object, 'assign', { writable: true, configurable: true, value: function ( target ) { 'use strict'; if ( target === undefined || target === null ) { throw new TypeError( "Cannot convert first argument to object" ); } var to = Object( target ); for ( var i = 1, n = arguments.length; i !== n; ++ i ) { var nextSource = arguments[ i ]; if ( nextSource === undefined || nextSource === null ) continue; nextSource = Object( nextSource ); var keysArray = Object.keys( nextSource ); for ( var nextIndex = 0, len = keysArray.length; nextIndex !== len; ++ nextIndex ) { var nextKey = keysArray[ nextIndex ]; var desc = Object.getOwnPropertyDescriptor( nextSource, nextKey ); if ( desc !== undefined && desc.enumerable ) { to[ nextKey ] = nextSource[ nextKey ]; } } } return to; } } ); } // https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent.button THREE.MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 }; // GL STATE CONSTANTS THREE.CullFaceNone = 0; THREE.CullFaceBack = 1; THREE.CullFaceFront = 2; THREE.CullFaceFrontBack = 3; THREE.FrontFaceDirectionCW = 0; THREE.FrontFaceDirectionCCW = 1; // SHADOWING TYPES THREE.BasicShadowMap = 0; THREE.PCFShadowMap = 1; THREE.PCFSoftShadowMap = 2; // MATERIAL CONSTANTS // side THREE.FrontSide = 0; THREE.BackSide = 1; THREE.DoubleSide = 2; // shading THREE.FlatShading = 1; THREE.SmoothShading = 2; // colors THREE.NoColors = 0; THREE.FaceColors = 1; THREE.VertexColors = 2; // blending modes THREE.NoBlending = 0; THREE.NormalBlending = 1; THREE.AdditiveBlending = 2; THREE.SubtractiveBlending = 3; THREE.MultiplyBlending = 4; THREE.CustomBlending = 5; // custom blending equations // (numbers start from 100 not to clash with other // mappings to OpenGL constants defined in Texture.js) THREE.AddEquation = 100; THREE.SubtractEquation = 101; THREE.ReverseSubtractEquation = 102; THREE.MinEquation = 103; THREE.MaxEquation = 104; // custom blending destination factors THREE.ZeroFactor = 200; THREE.OneFactor = 201; THREE.SrcColorFactor = 202; THREE.OneMinusSrcColorFactor = 203; THREE.SrcAlphaFactor = 204; THREE.OneMinusSrcAlphaFactor = 205; THREE.DstAlphaFactor = 206; THREE.OneMinusDstAlphaFactor = 207; // custom blending source factors //THREE.ZeroFactor = 200; //THREE.OneFactor = 201; //THREE.SrcAlphaFactor = 204; //THREE.OneMinusSrcAlphaFactor = 205; //THREE.DstAlphaFactor = 206; //THREE.OneMinusDstAlphaFactor = 207; THREE.DstColorFactor = 208; THREE.OneMinusDstColorFactor = 209; THREE.SrcAlphaSaturateFactor = 210; // depth modes THREE.NeverDepth = 0; THREE.AlwaysDepth = 1; THREE.LessDepth = 2; THREE.LessEqualDepth = 3; THREE.EqualDepth = 4; THREE.GreaterEqualDepth = 5; THREE.GreaterDepth = 6; THREE.NotEqualDepth = 7; // TEXTURE CONSTANTS THREE.MultiplyOperation = 0; THREE.MixOperation = 1; THREE.AddOperation = 2; // Tone Mapping modes THREE.NoToneMapping = 0; // do not do any tone mapping, not even exposure (required for special purpose passes.) THREE.LinearToneMapping = 1; // only apply exposure. THREE.ReinhardToneMapping = 2; THREE.Uncharted2ToneMapping = 3; // John Hable THREE.CineonToneMapping = 4; // optimized filmic operator by Jim Hejl and Richard Burgess-Dawson // Mapping modes THREE.UVMapping = 300; THREE.CubeReflectionMapping = 301; THREE.CubeRefractionMapping = 302; THREE.EquirectangularReflectionMapping = 303; THREE.EquirectangularRefractionMapping = 304; THREE.SphericalReflectionMapping = 305; THREE.CubeUVReflectionMapping = 306; THREE.CubeUVRefractionMapping = 307; // Wrapping modes THREE.RepeatWrapping = 1000; THREE.ClampToEdgeWrapping = 1001; THREE.MirroredRepeatWrapping = 1002; // Filters THREE.NearestFilter = 1003; THREE.NearestMipMapNearestFilter = 1004; THREE.NearestMipMapLinearFilter = 1005; THREE.LinearFilter = 1006; THREE.LinearMipMapNearestFilter = 1007; THREE.LinearMipMapLinearFilter = 1008; // Data types THREE.UnsignedByteType = 1009; THREE.ByteType = 1010; THREE.ShortType = 1011; THREE.UnsignedShortType = 1012; THREE.IntType = 1013; THREE.UnsignedIntType = 1014; THREE.FloatType = 1015; THREE.HalfFloatType = 1025; // Pixel types //THREE.UnsignedByteType = 1009; THREE.UnsignedShort4444Type = 1016; THREE.UnsignedShort5551Type = 1017; THREE.UnsignedShort565Type = 1018; // Pixel formats THREE.AlphaFormat = 1019; THREE.RGBFormat = 1020; THREE.RGBAFormat = 1021; THREE.LuminanceFormat = 1022; THREE.LuminanceAlphaFormat = 1023; // THREE.RGBEFormat handled as THREE.RGBAFormat in shaders THREE.RGBEFormat = THREE.RGBAFormat; //1024; // DDS / ST3C Compressed texture formats THREE.RGB_S3TC_DXT1_Format = 2001; THREE.RGBA_S3TC_DXT1_Format = 2002; THREE.RGBA_S3TC_DXT3_Format = 2003; THREE.RGBA_S3TC_DXT5_Format = 2004; // PVRTC compressed texture formats THREE.RGB_PVRTC_4BPPV1_Format = 2100; THREE.RGB_PVRTC_2BPPV1_Format = 2101; THREE.RGBA_PVRTC_4BPPV1_Format = 2102; THREE.RGBA_PVRTC_2BPPV1_Format = 2103; // ETC compressed texture formats THREE.RGB_ETC1_Format = 2151; // Loop styles for AnimationAction THREE.LoopOnce = 2200; THREE.LoopRepeat = 2201; THREE.LoopPingPong = 2202; // Interpolation THREE.InterpolateDiscrete = 2300; THREE.InterpolateLinear = 2301; THREE.InterpolateSmooth = 2302; // Interpolant ending modes THREE.ZeroCurvatureEnding = 2400; THREE.ZeroSlopeEnding = 2401; THREE.WrapAroundEnding = 2402; // Triangle Draw modes THREE.TrianglesDrawMode = 0; THREE.TriangleStripDrawMode = 1; THREE.TriangleFanDrawMode = 2; // Texture Encodings THREE.LinearEncoding = 3000; // No encoding at all. THREE.sRGBEncoding = 3001; THREE.GammaEncoding = 3007; // uses GAMMA_FACTOR, for backwards compatibility with WebGLRenderer.gammaInput/gammaOutput // The following Texture Encodings are for RGB-only (no alpha) HDR light emission sources. // These encodings should not specified as output encodings except in rare situations. THREE.RGBEEncoding = 3002; // AKA Radiance. THREE.LogLuvEncoding = 3003; THREE.RGBM7Encoding = 3004; THREE.RGBM16Encoding = 3005; THREE.RGBDEncoding = 3006; // MaxRange is 256. // File:src/math/Color.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Color = function ( color ) { if ( arguments.length === 3 ) { return this.fromArray( arguments ); } return this.set( color ); }; THREE.Color.prototype = { constructor: THREE.Color, r: 1, g: 1, b: 1, set: function ( value ) { if ( value instanceof THREE.Color ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } return this; }, setScalar: function ( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; }, setHex: function ( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; }, setRGB: function ( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; }, setHSL: function () { function hue2rgb( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; } return function ( h, s, l ) { // h,s,l ranges are in 0.0 - 1.0 h = THREE.Math.euclideanModulo( h, 1 ); s = THREE.Math.clamp( s, 0, 1 ); l = THREE.Math.clamp( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); var q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } return this; }; }(), setStyle: function ( style ) { function handleAlpha( string ) { if ( string === undefined ) return; if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } var m; if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) { // rgb / hsl var color; var name = m[ 1 ]; var components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; handleAlpha( color[ 5 ] ); return this; } if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; handleAlpha( color[ 5 ] ); return this; } break; case 'hsl': case 'hsla': if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) var h = parseFloat( color[ 1 ] ) / 360; var s = parseInt( color[ 2 ], 10 ) / 100; var l = parseInt( color[ 3 ], 10 ) / 100; handleAlpha( color[ 5 ] ); return this.setHSL( h, s, l ); } break; } } else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) { // hex color var hex = m[ 1 ]; var size = hex.length; if ( size === 3 ) { // #ff0 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255; return this; } else if ( size === 6 ) { // #ff0000 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255; return this; } } if ( style && style.length > 0 ) { // color keywords var hex = THREE.ColorKeywords[ style ]; if ( hex !== undefined ) { // red this.setHex( hex ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } } return this; }, clone: function () { return new this.constructor( this.r, this.g, this.b ); }, copy: function ( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; }, copyGammaToLinear: function ( color, gammaFactor ) { if ( gammaFactor === undefined ) gammaFactor = 2.0; this.r = Math.pow( color.r, gammaFactor ); this.g = Math.pow( color.g, gammaFactor ); this.b = Math.pow( color.b, gammaFactor ); return this; }, copyLinearToGamma: function ( color, gammaFactor ) { if ( gammaFactor === undefined ) gammaFactor = 2.0; var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0; this.r = Math.pow( color.r, safeInverse ); this.g = Math.pow( color.g, safeInverse ); this.b = Math.pow( color.b, safeInverse ); return this; }, convertGammaToLinear: function () { var r = this.r, g = this.g, b = this.b; this.r = r * r; this.g = g * g; this.b = b * b; return this; }, convertLinearToGamma: function () { this.r = Math.sqrt( this.r ); this.g = Math.sqrt( this.g ); this.b = Math.sqrt( this.b ); return this; }, getHex: function () { return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0; }, getHexString: function () { return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 ); }, getHSL: function ( optionalTarget ) { // h,s,l ranges are in 0.0 - 1.0 var hsl = optionalTarget || { h: 0, s: 0, l: 0 }; var r = this.r, g = this.g, b = this.b; var max = Math.max( r, g, b ); var min = Math.min( r, g, b ); var hue, saturation; var lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { var delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } hsl.h = hue; hsl.s = saturation; hsl.l = lightness; return hsl; }, getStyle: function () { return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')'; }, offsetHSL: function ( h, s, l ) { var hsl = this.getHSL(); hsl.h += h; hsl.s += s; hsl.l += l; this.setHSL( hsl.h, hsl.s, hsl.l ); return this; }, add: function ( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; }, addColors: function ( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; }, addScalar: function ( s ) { this.r += s; this.g += s; this.b += s; return this; }, multiply: function ( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; }, multiplyScalar: function ( s ) { this.r *= s; this.g *= s; this.b *= s; return this; }, lerp: function ( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; }, equals: function ( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; } }; THREE.ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; // File:src/math/Quaternion.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ THREE.Quaternion = function ( x, y, z, w ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._w = ( w !== undefined ) ? w : 1; }; THREE.Quaternion.prototype = { constructor: THREE.Quaternion, get x () { return this._x; }, set x ( value ) { this._x = value; this.onChangeCallback(); }, get y () { return this._y; }, set y ( value ) { this._y = value; this.onChangeCallback(); }, get z () { return this._z; }, set z ( value ) { this._z = value; this.onChangeCallback(); }, get w () { return this._w; }, set w ( value ) { this._w = value; this.onChangeCallback(); }, set: function ( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this.onChangeCallback(); return this; }, clone: function () { return new this.constructor( this._x, this._y, this._z, this._w ); }, copy: function ( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this.onChangeCallback(); return this; }, setFromEuler: function ( euler, update ) { if ( euler instanceof THREE.Euler === false ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var c1 = Math.cos( euler._x / 2 ); var c2 = Math.cos( euler._y / 2 ); var c3 = Math.cos( euler._z / 2 ); var s1 = Math.sin( euler._x / 2 ); var s2 = Math.sin( euler._y / 2 ); var s3 = Math.sin( euler._z / 2 ); var order = euler.order; if ( order === 'XYZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'YXZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'ZXY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'ZYX' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'YZX' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'XZY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } if ( update !== false ) this.onChangeCallback(); return this; }, setFromAxisAngle: function ( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33, s; if ( trace > 0 ) { s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this.onChangeCallback(); return this; }, setFromUnitVectors: function () { // http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final // assumes direction vectors vFrom and vTo are normalized var v1, r; var EPS = 0.000001; return function ( vFrom, vTo ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); r = vFrom.dot( vTo ) + 1; if ( r < EPS ) { r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { v1.set( - vFrom.y, vFrom.x, 0 ); } else { v1.set( 0, - vFrom.z, vFrom.y ); } } else { v1.crossVectors( vFrom, vTo ); } this._x = v1.x; this._y = v1.y; this._z = v1.z; this._w = r; this.normalize(); return this; }; }(), inverse: function () { this.conjugate().normalize(); return this; }, conjugate: function () { this._x *= - 1; this._y *= - 1; this._z *= - 1; this.onChangeCallback(); return this; }, dot: function ( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; }, lengthSq: function () { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; }, length: function () { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); }, normalize: function () { var l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this.onChangeCallback(); return this; }, multiply: function ( q, p ) { if ( p !== undefined ) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p ); } return this.multiplyQuaternions( this, q ); }, multiplyQuaternions: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this.onChangeCallback(); return this; }, slerp: function ( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); var x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this._w = 0.5 * ( w + this._w ); this._x = 0.5 * ( x + this._x ); this._y = 0.5 * ( y + this._y ); this._z = 0.5 * ( z + this._z ); return this; } var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this.onChangeCallback(); return this; }, equals: function ( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {} }; Object.assign( THREE.Quaternion, { slerp: function( qa, qb, qm, t ) { return qm.copy( qa ).slerp( qb, t ); }, slerpFlat: function( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation var x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ], x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { var s = 1 - t, cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { var sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } var tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } } ); // File:src/math/Vector2.js /** * @author mrdoob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.Vector2 = function ( x, y ) { this.x = x || 0; this.y = y || 0; }; THREE.Vector2.prototype = { constructor: THREE.Vector2, get width() { return this.x; }, set width( value ) { this.x = value; }, get height() { return this.y; }, set height( value ) { this.y = value; }, // set: function ( x, y ) { this.x = x; this.y = y; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }, multiply: function ( v ) { this.x *= v.x; this.y *= v.y; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; } else { this.x = 0; this.y = 0; } return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector2(); max = new THREE.Vector2(); } min.set( minVal, minVal ); max.set( maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length ); return this; }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y; }, lengthSq: function () { return this.x * this.x + this.y * this.y; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y ); }, lengthManhattan: function() { return Math.abs( this.x ) + Math.abs( this.y ); }, normalize: function () { return this.divideScalar( this.length() ); }, angle: function () { // computes the angle in radians with respect to the positive x-axis var angle = Math.atan2( this.y, this.x ); if ( angle < 0 ) angle += 2 * Math.PI; return angle; }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; return this; }, rotateAround: function ( center, angle ) { var c = Math.cos( angle ), s = Math.sin( angle ); var x = this.x - center.x; var y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } }; // File:src/math/Vector3.js /** * @author mrdoob / http://mrdoob.com/ * @author *kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector3 = function ( x, y, z ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; }; THREE.Vector3.prototype = { constructor: THREE.Vector3, set: function ( x, y, z ) { this.x = x; this.y = y; this.z = z; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y, this.z ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; this.z -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }, multiply: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w ); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; } else { this.x = 0; this.y = 0; this.z = 0; } return this; }, multiplyVectors: function ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }, applyEuler: function () { var quaternion; return function applyEuler( euler ) { if ( euler instanceof THREE.Euler === false ) { console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } if ( quaternion === undefined ) quaternion = new THREE.Quaternion(); this.applyQuaternion( quaternion.setFromEuler( euler ) ); return this; }; }(), applyAxisAngle: function () { var quaternion; return function applyAxisAngle( axis, angle ) { if ( quaternion === undefined ) quaternion = new THREE.Quaternion(); this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) ); return this; }; }(), applyMatrix3: function ( m ) { var x = this.x; var y = this.y; var z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; }, applyMatrix4: function ( m ) { // input: THREE.Matrix4 affine matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ]; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ]; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ]; return this; }, applyProjection: function ( m ) { // input: THREE.Matrix4 projection matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; var d = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); // perspective divide this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * d; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * d; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * d; return this; }, applyQuaternion: function ( q ) { var x = this.x; var y = this.y; var z = this.z; var qx = q.x; var qy = q.y; var qz = q.z; var qw = q.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; }, project: function () { var matrix; return function project( camera ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) ); return this.applyProjection( matrix ); }; }(), unproject: function () { var matrix; return function unproject( camera ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) ); return this.applyProjection( matrix ); }; }(), transformDirection: function ( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; this.normalize(); return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector3(); max = new THREE.Vector3(); } min.set( minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; }(), clampLength: function ( min, max ) { var length = this.length(); this.multiplyScalar( Math.max( min, Math.min( max, length ) ) / length ); return this; }, floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); return this; }, cross: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w ); } var x = this.x, y = this.y, z = this.z; this.x = y * v.z - z * v.y; this.y = z * v.x - x * v.z; this.z = x * v.y - y * v.x; return this; }, crossVectors: function ( a, b ) { var ax = a.x, ay = a.y, az = a.z; var bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; }, projectOnVector: function () { var v1, dot; return function projectOnVector( vector ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); v1.copy( vector ).normalize(); dot = this.dot( v1 ); return this.copy( v1 ).multiplyScalar( dot ); }; }(), projectOnPlane: function () { var v1; return function projectOnPlane( planeNormal ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); v1.copy( this ).projectOnVector( planeNormal ); return this.sub( v1 ); }; }(), reflect: function () { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length var v1; return function reflect( normal ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); }; }(), angleTo: function ( v ) { var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) ); // clamp, to handle numerical problems return Math.acos( THREE.Math.clamp( theta, - 1, 1 ) ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x; var dy = this.y - v.y; var dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; }, setFromSpherical: function( s ) { var sinPhiRadius = Math.sin( s.phi ) * s.radius; this.x = sinPhiRadius * Math.sin( s.theta ); this.y = Math.cos( s.phi ) * s.radius; this.z = sinPhiRadius * Math.cos( s.theta ); return this; }, setFromMatrixPosition: function ( m ) { return this.setFromMatrixColumn( m, 3 ); }, setFromMatrixScale: function ( m ) { var sx = this.setFromMatrixColumn( m, 0 ).length(); var sy = this.setFromMatrixColumn( m, 1 ).length(); var sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; }, setFromMatrixColumn: function ( m, index ) { if ( typeof m === 'number' ) { console.warn( 'THREE.Vector3: setFromMatrixColumn now expects ( matrix, index ).' ); m = arguments[ 1 ]; index = arguments[ 0 ]; } return this.fromArray( m.elements, index * 4 ); }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; this.z = attribute.array[ index + 2 ]; return this; } }; // File:src/math/Vector4.js /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector4 = function ( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Vector4.prototype = { constructor: THREE.Vector4, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, setScalar: function ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setW: function ( w ) { this.w = w; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } }, clone: function () { return new this.constructor( this.x, this.y, this.z, this.w ); }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; }, addScaledVector: function ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; }, subScalar: function ( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; }, multiplyScalar: function ( scalar ) { if ( isFinite( scalar ) ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; } else { this.x = 0; this.y = 0; this.z = 0; this.w = 0; } return this; }, applyMatrix4: function ( m ) { var x = this.x; var y = this.y; var z = this.z; var w = this.w; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; }, divideScalar: function ( scalar ) { return this.multiplyScalar( 1 / scalar ); }, setAxisAngleFromQuaternion: function ( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); var s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; }, setAxisAngleFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; var xx = ( m11 + 1 ) / 2; var yy = ( m22 + 1 ) / 2; var zz = ( m33 + 1 ) / 2; var xy = ( m12 + m21 ) / 4; var xz = ( m13 + m31 ) / 4; var yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; }, min: function ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; }, max: function ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; }, clampScalar: function () { var min, max; return function clampScalar( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector4(); max = new THREE.Vector4(); } min.set( minVal, minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; }(), floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( length ) { return this.multiplyScalar( length / this.length() ); }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; }, lerpVectors: function ( v1, v2, alpha ) { this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 ); return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; this.z = attribute.array[ index + 2 ]; this.w = attribute.array[ index + 3 ]; return this; } }; // File:src/math/Euler.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ THREE.Euler = function ( x, y, z, order ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._order = order || THREE.Euler.DefaultOrder; }; THREE.Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; THREE.Euler.DefaultOrder = 'XYZ'; THREE.Euler.prototype = { constructor: THREE.Euler, get x () { return this._x; }, set x ( value ) { this._x = value; this.onChangeCallback(); }, get y () { return this._y; }, set y ( value ) { this._y = value; this.onChangeCallback(); }, get z () { return this._z; }, set z ( value ) { this._z = value; this.onChangeCallback(); }, get order () { return this._order; }, set order ( value ) { this._order = value; this.onChangeCallback(); }, set: function ( x, y, z, order ) { this._x = x; this._y = y; this._z = z; this._order = order || this._order; this.onChangeCallback(); return this; }, clone: function () { return new this.constructor( this._x, this._y, this._z, this._order ); }, copy: function ( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m, order, update ) { var clamp = THREE.Math.clamp; // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements; var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; order = order || this._order; if ( order === 'XYZ' ) { this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.99999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } } else if ( order === 'YXZ' ) { this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.99999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } } else if ( order === 'ZXY' ) { this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.99999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } } else if ( order === 'ZYX' ) { this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.99999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } } else if ( order === 'YZX' ) { this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.99999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } } else if ( order === 'XZY' ) { this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.99999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } } else { console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order ) } this._order = order; if ( update !== false ) this.onChangeCallback(); return this; }, setFromQuaternion: function () { var matrix; return function ( q, order, update ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.makeRotationFromQuaternion( q ); this.setFromRotationMatrix( matrix, order, update ); return this; }; }(), setFromVector3: function ( v, order ) { return this.set( v.x, v.y, v.z, order || this._order ); }, reorder: function () { // WARNING: this discards revolution information -bhouston var q = new THREE.Quaternion(); return function ( newOrder ) { q.setFromEuler( this ); this.setFromQuaternion( q, newOrder ); }; }(), equals: function ( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); }, fromArray: function ( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; }, toVector3: function ( optionalResult ) { if ( optionalResult ) { return optionalResult.set( this._x, this._y, this._z ); } else { return new THREE.Vector3( this._x, this._y, this._z ); } }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {} }; // File:src/math/Line3.js /** * @author bhouston / http://clara.io */ THREE.Line3 = function ( start, end ) { this.start = ( start !== undefined ) ? start : new THREE.Vector3(); this.end = ( end !== undefined ) ? end : new THREE.Vector3(); }; THREE.Line3.prototype = { constructor: THREE.Line3, set: function ( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); }, delta: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.subVectors( this.end, this.start ); }, distanceSq: function () { return this.start.distanceToSquared( this.end ); }, distance: function () { return this.start.distanceTo( this.end ); }, at: function ( t, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, closestPointToPointParameter: function () { var startP = new THREE.Vector3(); var startEnd = new THREE.Vector3(); return function ( point, clampToLine ) { startP.subVectors( point, this.start ); startEnd.subVectors( this.end, this.start ); var startEnd2 = startEnd.dot( startEnd ); var startEnd_startP = startEnd.dot( startP ); var t = startEnd_startP / startEnd2; if ( clampToLine ) { t = THREE.Math.clamp( t, 0, 1 ); } return t; }; }(), closestPointToPoint: function ( point, clampToLine, optionalTarget ) { var t = this.closestPointToPointParameter( point, clampToLine ); var result = optionalTarget || new THREE.Vector3(); return this.delta( result ).multiplyScalar( t ).add( this.start ); }, applyMatrix4: function ( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; }, equals: function ( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); } }; // File:src/math/Box2.js /** * @author bhouston / http://clara.io */ THREE.Box2 = function ( min, max ) { this.min = ( min !== undefined ) ? min : new THREE.Vector2( + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new THREE.Vector2( - Infinity, - Infinity ); }; THREE.Box2.prototype = { constructor: THREE.Box2, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }, setFromCenterAndSize: function () { var v1 = new THREE.Vector2(); return function ( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = + Infinity; this.max.x = this.max.y = - Infinity; return this; }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, size: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { if ( point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ) { return false; } return true; }, containsBox: function ( box ) { if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) && ( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) ) { return true; } return false; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new THREE.Vector2(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) ); }, intersectsBox: function ( box ) { // using 6 splitting planes to rule out intersections. if ( box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ) { return false; } return true; }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector2(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new THREE.Vector2(); return function ( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } }; // File:src/math/Box3.js /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ THREE.Box3 = function ( min, max ) { this.min = ( min !== undefined ) ? min : new THREE.Vector3( + Infinity, + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new THREE.Vector3( - Infinity, - Infinity, - Infinity ); }; THREE.Box3.prototype = { constructor: THREE.Box3, set: function ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }, setFromArray: function ( array ) { this.makeEmpty(); var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity; var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity; for ( var i = 0, il = array.length; i < il; i += 3 ) { var x = array[ i ]; var y = array[ i + 1 ]; var z = array[ i + 2 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z; } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); }, setFromPoints: function ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }, setFromCenterAndSize: function () { var v1 = new THREE.Vector3(); return function ( center, size ) { var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; }(), setFromObject: function () { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms var box; return function ( object ) { if ( box === undefined ) box = new THREE.Box3(); var scope = this; this.makeEmpty(); object.updateMatrixWorld( true ); object.traverse( function ( node ) { var geometry = node.geometry; if ( geometry !== undefined ) { if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } if ( geometry.boundingBox.isEmpty() === false ) { box.copy( geometry.boundingBox ); box.applyMatrix4( node.matrixWorld ); scope.union( box ); } } } ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }, makeEmpty: function () { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); }, center: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }, size: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.subVectors( this.max, this.min ); }, expandByPoint: function ( point ) { this.min.min( point ); this.max.max( point ); return this; }, expandByVector: function ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }, expandByScalar: function ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }, containsPoint: function ( point ) { if ( point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ) { return false; } return true; }, containsBox: function ( box ) { if ( ( this.min.x <= box.min.x ) && ( box.max.x <= this.max.x ) && ( this.min.y <= box.min.y ) && ( box.max.y <= this.max.y ) && ( this.min.z <= box.min.z ) && ( box.max.z <= this.max.z ) ) { return true; } return false; }, getParameter: function ( point, optionalTarget ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new THREE.Vector3(); return result.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); }, intersectsBox: function ( box ) { // using 6 splitting planes to rule out intersections. if ( box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ) { return false; } return true; }, intersectsSphere: ( function () { var closestPoint; return function intersectsSphere( sphere ) { if ( closestPoint === undefined ) closestPoint = new THREE.Vector3(); // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, closestPoint ); // If that point is inside the sphere, the AABB and sphere intersect. return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); }; } )(), intersectsPlane: function ( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. var min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= plane.constant && max >= plane.constant ); }, clampPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( point ).clamp( this.min, this.max ); }, distanceToPoint: function () { var v1 = new THREE.Vector3(); return function ( point ) { var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; }(), getBoundingSphere: function () { var v1 = new THREE.Vector3(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Sphere(); result.center = this.center(); result.radius = this.size( v1 ).length() * 0.5; return result; }; }(), intersect: function ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }, union: function ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }, applyMatrix4: function () { var points = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; return function ( matrix ) { // NOTE: I am using a binary pattern to specify all 2^3 combinations below points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.makeEmpty(); this.setFromPoints( points ); return this; }; }(), translate: function ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }, equals: function ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } }; // File:src/math/Matrix3.js /** * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io * @author tschw */ THREE.Matrix3 = function () { this.elements = new Float32Array( [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] ); if ( arguments.length > 0 ) { console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' ); } }; THREE.Matrix3.prototype = { constructor: THREE.Matrix3, set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { var te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; }, identity: function () { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; }, clone: function () { return new this.constructor().fromArray( this.elements ); }, copy: function ( m ) { var me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], me[ 1 ], me[ 4 ], me[ 7 ], me[ 2 ], me[ 5 ], me[ 8 ] ); return this; }, setFromMatrix4: function( m ) { var me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; }, applyToVector3Array: function () { var v1; return function ( array, offset, length ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = array.length; for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) { v1.fromArray( array, j ); v1.applyMatrix3( this ); v1.toArray( array, j ); } return array; }; }(), applyToBuffer: function () { var v1; return function applyToBuffer( buffer, offset, length ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = buffer.length / buffer.itemSize; for ( var i = 0, j = offset; i < length; i ++, j ++ ) { v1.x = buffer.getX( j ); v1.y = buffer.getY( j ); v1.z = buffer.getZ( j ); v1.applyMatrix3( this ); buffer.setXYZ( v1.x, v1.y, v1.z ); } return buffer; }; }(), multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; }, determinant: function () { var te = this.elements; var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; }, getInverse: function ( matrix, throwOnDegenerate ) { if ( matrix instanceof THREE.Matrix4 ) { console.warn( "THREE.Matrix3.getInverse no longer takes a Matrix4 argument." ); } var me = matrix.elements, te = this.elements, n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ], n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) { var msg = "THREE.Matrix3.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnDegenerate || false ) { throw new Error( msg ); } else { console.warn( msg ); } return this.identity(); } te[ 0 ] = t11; te[ 1 ] = n31 * n23 - n33 * n21; te[ 2 ] = n32 * n21 - n31 * n22; te[ 3 ] = t12; te[ 4 ] = n33 * n11 - n31 * n13; te[ 5 ] = n31 * n12 - n32 * n11; te[ 6 ] = t13; te[ 7 ] = n21 * n13 - n23 * n11; te[ 8 ] = n22 * n11 - n21 * n12; return this.multiplyScalar( 1 / det ); }, transpose: function () { var tmp, m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; }, flattenToArrayOffset: function ( array, offset ) { var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; }, getNormalMatrix: function ( matrix4 ) { return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose(); }, transposeIntoArray: function ( r ) { var m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; }, fromArray: function ( array ) { this.elements.set( array ); return this; }, toArray: function () { var te = this.elements; return [ te[ 0 ], te[ 1 ], te[ 2 ], te[ 3 ], te[ 4 ], te[ 5 ], te[ 6 ], te[ 7 ], te[ 8 ] ]; } }; // File:src/math/Matrix4.js /** * @author mrdoob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ THREE.Matrix4 = function () { this.elements = new Float32Array( [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] ); if ( arguments.length > 0 ) { console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' ); } }; THREE.Matrix4.prototype = { constructor: THREE.Matrix4, set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; }, identity: function () { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, clone: function () { return new THREE.Matrix4().fromArray( this.elements ); }, copy: function ( m ) { this.elements.set( m.elements ); return this; }, copyPosition: function ( m ) { var te = this.elements; var me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; }, extractBasis: function ( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; }, makeBasis: function ( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; }, extractRotation: function () { var v1; return function ( m ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); var te = this.elements; var me = m.elements; var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length(); var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length(); var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; return this; }; }(), makeRotationFromEuler: function ( euler ) { if ( euler instanceof THREE.Euler === false ) { console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } var te = this.elements; var x = euler.x, y = euler.y, z = euler.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, makeRotationFromQuaternion: function ( q ) { var te = this.elements; var x = q.x, y = q.y, z = q.z, w = q.w; var x2 = x + x, y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2; te[ 0 ] = 1 - ( yy + zz ); te[ 4 ] = xy - wz; te[ 8 ] = xz + wy; te[ 1 ] = xy + wz; te[ 5 ] = 1 - ( xx + zz ); te[ 9 ] = yz - wx; te[ 2 ] = xz - wy; te[ 6 ] = yz + wx; te[ 10 ] = 1 - ( xx + yy ); // last column te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // bottom row te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }, lookAt: function () { var x, y, z; return function ( eye, target, up ) { if ( x === undefined ) x = new THREE.Vector3(); if ( y === undefined ) y = new THREE.Vector3(); if ( z === undefined ) z = new THREE.Vector3(); var te = this.elements; z.subVectors( eye, target ).normalize(); if ( z.lengthSq() === 0 ) { z.z = 1; } x.crossVectors( up, z ).normalize(); if ( x.lengthSq() === 0 ) { z.x += 0.0001; x.crossVectors( up, z ).normalize(); } y.crossVectors( z, x ); te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x; te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y; te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z; return this; }; }(), multiply: function ( m, n ) { if ( n !== undefined ) { console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); return this.multiplyMatrices( m, n ); } return this.multiplyMatrices( this, m ); }, multiplyMatrices: function ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; }, multiplyToArray: function ( a, b, r ) { var te = this.elements; this.multiplyMatrices( a, b ); r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ]; r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ]; r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ]; r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ]; return this; }, multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; }, applyToVector3Array: function () { var v1; return function ( array, offset, length ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = array.length; for ( var i = 0, j = offset; i < length; i += 3, j += 3 ) { v1.fromArray( array, j ); v1.applyMatrix4( this ); v1.toArray( array, j ); } return array; }; }(), applyToBuffer: function () { var v1; return function applyToBuffer( buffer, offset, length ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); if ( offset === undefined ) offset = 0; if ( length === undefined ) length = buffer.length / buffer.itemSize; for ( var i = 0, j = offset; i < length; i ++, j ++ ) { v1.x = buffer.getX( j ); v1.y = buffer.getY( j ); v1.z = buffer.getZ( j ); v1.applyMatrix4( this ); buffer.setXYZ( v1.x, v1.y, v1.z ); } return buffer; }; }(), determinant: function () { var te = this.elements; var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); }, transpose: function () { var te = this.elements; var tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; }, flattenToArrayOffset: function ( array, offset ) { var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; }, getPosition: function () { var v1; return function () { if ( v1 === undefined ) v1 = new THREE.Vector3(); console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); return v1.setFromMatrixColumn( this, 3 ); }; }(), setPosition: function ( v ) { var te = this.elements; te[ 12 ] = v.x; te[ 13 ] = v.y; te[ 14 ] = v.z; return this; }, getInverse: function ( m, throwOnDegenerate ) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements, me = m.elements, n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ], n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ], n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ], n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) { var msg = "THREE.Matrix4.getInverse(): can't invert matrix, determinant is 0"; if ( throwOnDegenerate || false ) { throw new Error( msg ); } else { console.warn( msg ); } return this.identity(); } te[ 0 ] = t11; te[ 1 ] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44; te[ 2 ] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44; te[ 3 ] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43; te[ 4 ] = t12; te[ 5 ] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44; te[ 6 ] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44; te[ 7 ] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43; te[ 8 ] = t13; te[ 9 ] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44; te[ 10 ] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44; te[ 11 ] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43; te[ 12 ] = t14; te[ 13 ] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34; te[ 14 ] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34; te[ 15 ] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33; return this.multiplyScalar( 1 / det ); }, scale: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; }, getMaxScaleOnAxis: function () { var te = this.elements; var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); }, makeTranslation: function ( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; }, makeRotationX: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationY: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationZ: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, makeRotationAxis: function ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; }, makeScale: function ( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; }, compose: function ( position, quaternion, scale ) { this.makeRotationFromQuaternion( quaternion ); this.scale( scale ); this.setPosition( position ); return this; }, decompose: function () { var vector, matrix; return function ( position, quaternion, scale ) { if ( vector === undefined ) vector = new THREE.Vector3(); if ( matrix === undefined ) matrix = new THREE.Matrix4(); var te = this.elements; var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale var det = this.determinant(); if ( det < 0 ) { sx = - sx; } position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part matrix.elements.set( this.elements ); // at this point matrix is incomplete so we can't use .copy() var invSX = 1 / sx; var invSY = 1 / sy; var invSZ = 1 / sz; matrix.elements[ 0 ] *= invSX; matrix.elements[ 1 ] *= invSX; matrix.elements[ 2 ] *= invSX; matrix.elements[ 4 ] *= invSY; matrix.elements[ 5 ] *= invSY; matrix.elements[ 6 ] *= invSY; matrix.elements[ 8 ] *= invSZ; matrix.elements[ 9 ] *= invSZ; matrix.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( matrix ); scale.x = sx; scale.y = sy; scale.z = sz; return this; }; }(), makeFrustum: function ( left, right, bottom, top, near, far ) { var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near ); te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; }, makePerspective: function ( fov, aspect, near, far ) { var ymax = near * Math.tan( THREE.Math.degToRad( fov * 0.5 ) ); var ymin = - ymax; var xmin = ymin * aspect; var xmax = ymax * aspect; return this.makeFrustum( xmin, xmax, ymin, ymax, near, far ); }, makeOrthographic: function ( left, right, top, bottom, near, far ) { var te = this.elements; var w = 1.0 / ( right - left ); var h = 1.0 / ( top - bottom ); var p = 1.0 / ( far - near ); var x = ( right + left ) * w; var y = ( top + bottom ) * h; var z = ( far + near ) * p; te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; }, equals: function ( matrix ) { var te = this.elements; var me = matrix.elements; for ( var i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; }, fromArray: function ( array ) { this.elements.set( array ); return this; }, toArray: function () { var te = this.elements; return [ te[ 0 ], te[ 1 ], te[ 2 ], te[ 3 ], te[ 4 ], te[ 5 ], te[ 6 ], te[ 7 ], te[ 8 ], te[ 9 ], te[ 10 ], te[ 11 ], te[ 12 ], te[ 13 ], te[ 14 ], te[ 15 ] ]; } }; // File:src/math/Ray.js /** * @author bhouston / http://clara.io */ THREE.Ray = function ( origin, direction ) { this.origin = ( origin !== undefined ) ? origin : new THREE.Vector3(); this.direction = ( direction !== undefined ) ? direction : new THREE.Vector3(); }; THREE.Ray.prototype = { constructor: THREE.Ray, set: function ( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; }, at: function ( t, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( this.direction ).multiplyScalar( t ).add( this.origin ); }, lookAt: function ( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); }, recast: function () { var v1 = new THREE.Vector3(); return function ( t ) { this.origin.copy( this.at( t, v1 ) ); return this; }; }(), closestPointToPoint: function ( point, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); result.subVectors( point, this.origin ); var directionDistance = result.dot( this.direction ); if ( directionDistance < 0 ) { return result.copy( this.origin ); } return result.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); }, distanceToPoint: function ( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); }, distanceSqToPoint: function () { var v1 = new THREE.Vector3(); return function ( point ) { var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceToSquared( point ); } v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); return v1.distanceToSquared( point ); }; }(), distanceSqToSegment: function () { var segCenter = new THREE.Vector3(); var segDir = new THREE.Vector3(); var diff = new THREE.Vector3(); return function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from http://www.geometrictools.com/LibMathematics/Distance/Wm5DistRay3Segment3.cpp // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); segDir.copy( v1 ).sub( v0 ).normalize(); diff.copy( this.origin ).sub( segCenter ); var segExtent = v0.distanceTo( v1 ) * 0.5; var a01 = - this.direction.dot( segDir ); var b0 = diff.dot( this.direction ); var b1 = - diff.dot( segDir ); var c = diff.lengthSq(); var det = Math.abs( 1 - a01 * a01 ); var s0, s1, sqrDist, extDet; if ( det > 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. var invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter ); } return sqrDist; }; }(), intersectSphere: function () { var v1 = new THREE.Vector3(); return function ( sphere, optionalTarget ) { v1.subVectors( sphere.center, this.origin ); var tca = v1.dot( this.direction ); var d2 = v1.dot( v1 ) - tca * tca; var radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; var thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere var t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere var t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, optionalTarget ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, optionalTarget ); } }(), intersectsSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) <= sphere.radius; }, distanceToPlane: function ( plane ) { var denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; }, intersectPlane: function ( plane, optionalTarget ) { var t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, optionalTarget ); }, intersectsPlane: function ( plane ) { // check if the ray lies on the plane first var distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } var denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; }, intersectBox: function ( box, optionalTarget ) { var tmin, tmax, tymin, tymax, tzmin, tzmax; var invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; var origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if ( tymin > tmin || tmin !== tmin ) tmin = tymin; if ( tymax < tmax || tmax !== tmax ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, optionalTarget ); }, intersectsBox: ( function () { var v = new THREE.Vector3(); return function ( box ) { return this.intersectBox( box, v ) !== null; }; } )(), intersectTriangle: function () { // Compute the offset origin, edges, and normal. var diff = new THREE.Vector3(); var edge1 = new THREE.Vector3(); var edge2 = new THREE.Vector3(); var normal = new THREE.Vector3(); return function ( a, b, c, backfaceCulling, optionalTarget ) { // from http://www.geometrictools.com/LibMathematics/Intersection/Wm5IntrRay3Triangle3.cpp edge1.subVectors( b, a ); edge2.subVectors( c, a ); normal.crossVectors( edge1, edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) var DdN = this.direction.dot( normal ); var sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } diff.subVectors( this.origin, a ); var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. var QdN = - sign * diff.dot( normal ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, optionalTarget ); }; }(), applyMatrix4: function ( matrix4 ) { this.direction.add( this.origin ).applyMatrix4( matrix4 ); this.origin.applyMatrix4( matrix4 ); this.direction.sub( this.origin ); this.direction.normalize(); return this; }, equals: function ( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); } }; // File:src/math/Sphere.js /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ THREE.Sphere = function ( center, radius ) { this.center = ( center !== undefined ) ? center : new THREE.Vector3(); this.radius = ( radius !== undefined ) ? radius : 0; }; THREE.Sphere.prototype = { constructor: THREE.Sphere, set: function ( center, radius ) { this.center.copy( center ); this.radius = radius; return this; }, setFromPoints: function () { var box = new THREE.Box3(); return function ( points, optionalCenter ) { var center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { box.setFromPoints( points ).center( center ); } var maxRadiusSq = 0; for ( var i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; }, empty: function () { return ( this.radius <= 0 ); }, containsPoint: function ( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); }, distanceToPoint: function ( point ) { return ( point.distanceTo( this.center ) - this.radius ); }, intersectsSphere: function ( sphere ) { var radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); }, intersectsBox: function ( box ) { return box.intersectsSphere( this ); }, intersectsPlane: function ( plane ) { // We use the following equation to compute the signed distance from // the center of the sphere to the plane. // // distance = q * n - d // // If this distance is greater than the radius of the sphere, // then there is no intersection. return Math.abs( this.center.dot( plane.normal ) - plane.constant ) <= this.radius; }, clampPoint: function ( point, optionalTarget ) { var deltaLengthSq = this.center.distanceToSquared( point ); var result = optionalTarget || new THREE.Vector3(); result.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { result.sub( this.center ).normalize(); result.multiplyScalar( this.radius ).add( this.center ); } return result; }, getBoundingBox: function ( optionalTarget ) { var box = optionalTarget || new THREE.Box3(); box.set( this.center, this.center ); box.expandByScalar( this.radius ); return box; }, applyMatrix4: function ( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; }, translate: function ( offset ) { this.center.add( offset ); return this; }, equals: function ( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); } }; // File:src/math/Frustum.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / http://clara.io */ THREE.Frustum = function ( p0, p1, p2, p3, p4, p5 ) { this.planes = [ ( p0 !== undefined ) ? p0 : new THREE.Plane(), ( p1 !== undefined ) ? p1 : new THREE.Plane(), ( p2 !== undefined ) ? p2 : new THREE.Plane(), ( p3 !== undefined ) ? p3 : new THREE.Plane(), ( p4 !== undefined ) ? p4 : new THREE.Plane(), ( p5 !== undefined ) ? p5 : new THREE.Plane() ]; }; THREE.Frustum.prototype = { constructor: THREE.Frustum, set: function ( p0, p1, p2, p3, p4, p5 ) { var planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( frustum ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; }, setFromMatrix: function ( m ) { var planes = this.planes; var me = m.elements; var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); return this; }, intersectsObject: function () { var sphere = new THREE.Sphere(); return function ( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( object.matrixWorld ); return this.intersectsSphere( sphere ); }; }(), intersectsSphere: function ( sphere ) { var planes = this.planes; var center = sphere.center; var negRadius = - sphere.radius; for ( var i = 0; i < 6; i ++ ) { var distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; }, intersectsBox: function () { var p1 = new THREE.Vector3(), p2 = new THREE.Vector3(); return function ( box ) { var planes = this.planes; for ( var i = 0; i < 6 ; i ++ ) { var plane = planes[ i ]; p1.x = plane.normal.x > 0 ? box.min.x : box.max.x; p2.x = plane.normal.x > 0 ? box.max.x : box.min.x; p1.y = plane.normal.y > 0 ? box.min.y : box.max.y; p2.y = plane.normal.y > 0 ? box.max.y : box.min.y; p1.z = plane.normal.z > 0 ? box.min.z : box.max.z; p2.z = plane.normal.z > 0 ? box.max.z : box.min.z; var d1 = plane.distanceToPoint( p1 ); var d2 = plane.distanceToPoint( p2 ); // if both outside plane, no intersection if ( d1 < 0 && d2 < 0 ) { return false; } } return true; }; }(), containsPoint: function ( point ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; } }; // File:src/math/Plane.js /** * @author bhouston / http://clara.io */ THREE.Plane = function ( normal, constant ) { this.normal = ( normal !== undefined ) ? normal : new THREE.Vector3( 1, 0, 0 ); this.constant = ( constant !== undefined ) ? constant : 0; }; THREE.Plane.prototype = { constructor: THREE.Plane, set: function ( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; }, setComponents: function ( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; }, setFromNormalAndCoplanarPoint: function ( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); // must be this.normal, not normal, as this.normal is normalized return this; }, setFromCoplanarPoints: function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function ( a, b, c ) { var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; }; }(), clone: function () { return new this.constructor().copy( this ); }, copy: function ( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; }, normalize: function () { // Note: will lead to a divide by zero if the plane is invalid. var inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; }, negate: function () { this.constant *= - 1; this.normal.negate(); return this; }, distanceToPoint: function ( point ) { return this.normal.dot( point ) + this.constant; }, distanceToSphere: function ( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; }, projectPoint: function ( point, optionalTarget ) { return this.orthoPoint( point, optionalTarget ).sub( point ).negate(); }, orthoPoint: function ( point, optionalTarget ) { var perpendicularMagnitude = this.distanceToPoint( point ); var result = optionalTarget || new THREE.Vector3(); return result.copy( this.normal ).multiplyScalar( perpendicularMagnitude ); }, intersectLine: function () { var v1 = new THREE.Vector3(); return function ( line, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); var direction = line.delta( v1 ); var denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return result.copy( line.start ); } // Unsure if this is the correct method to handle this case. return undefined; } var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return undefined; } return result.copy( direction ).multiplyScalar( t ).add( line.start ); }; }(), intersectsLine: function ( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. var startSign = this.distanceToPoint( line.start ); var endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); }, intersectsBox: function ( box ) { return box.intersectsPlane( this ); }, intersectsSphere: function ( sphere ) { return sphere.intersectsPlane( this ); }, coplanarPoint: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.copy( this.normal ).multiplyScalar( - this.constant ); }, applyMatrix4: function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var m1 = new THREE.Matrix3(); return function ( matrix, optionalNormalMatrix ) { // compute new normal based on theory here: // http://www.songho.ca/opengl/gl_normaltransform.html var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix ); var newNormal = v1.copy( this.normal ).applyMatrix3( normalMatrix ); var newCoplanarPoint = this.coplanarPoint( v2 ); newCoplanarPoint.applyMatrix4( matrix ); this.setFromNormalAndCoplanarPoint( newNormal, newCoplanarPoint ); return this; }; }(), translate: function ( offset ) { this.constant = this.constant - offset.dot( this.normal ); return this; }, equals: function ( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } }; // File:src/math/Spherical.js /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley * * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The poles (phi) are at the positive and negative y axis. * The equator starts at positive z. */ THREE.Spherical = function ( radius, phi, theta ) { this.radius = ( radius !== undefined ) ? radius : 1.0; this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere return this; }; THREE.Spherical.prototype = { constructor: THREE.Spherical, set: function ( radius, phi, theta ) { this.radius = radius; this.phi = phi; this.theta = theta; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( other ) { this.radius.copy( other.radius ); this.phi.copy( other.phi ); this.theta.copy( other.theta ); return this; }, // restrict phi to be betwee EPS and PI-EPS makeSafe: function() { var EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); }, setFromVector3: function( vec3 ) { this.radius = vec3.length(); if ( this.radius === 0 ) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis this.phi = Math.acos( THREE.Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle } return this; }, }; // File:src/math/Math.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.Math = { generateUUID: function () { // http://www.broofa.com/Tools/Math.uuid.htm var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' ); var uuid = new Array( 36 ); var rnd = 0, r; return function () { for ( var i = 0; i < 36; i ++ ) { if ( i === 8 || i === 13 || i === 18 || i === 23 ) { uuid[ i ] = '-'; } else if ( i === 14 ) { uuid[ i ] = '4'; } else { if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0; r = rnd & 0xf; rnd = rnd >> 4; uuid[ i ] = chars[ ( i === 19 ) ? ( r & 0x3 ) | 0x8 : r ]; } } return uuid.join( '' ); }; }(), clamp: function ( value, min, max ) { return Math.max( min, Math.min( max, value ) ); }, // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation euclideanModulo: function ( n, m ) { return ( ( n % m ) + m ) % m; }, // Linear mapping from range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // http://en.wikipedia.org/wiki/Smoothstep smoothstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); }, smootherstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); }, random16: function () { console.warn( 'THREE.Math.random16() has been deprecated. Use Math.random() instead.' ); return Math.random(); }, // Random integer from interval randInt: function ( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, degToRad: function () { var degreeToRadiansFactor = Math.PI / 180; return function ( degrees ) { return degrees * degreeToRadiansFactor; }; }(), radToDeg: function () { var radianToDegreesFactor = 180 / Math.PI; return function ( radians ) { return radians * radianToDegreesFactor; }; }(), isPowerOfTwo: function ( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; }, nearestPowerOfTwo: function ( value ) { return Math.pow( 2, Math.round( Math.log( value ) / Math.LN2 ) ); }, nextPowerOfTwo: function ( value ) { value --; value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; value ++; return value; } }; // File:src/math/Spline.js /** * Spline from Tween.js, slightly optimized (and trashed) * http://sole.github.com/tween.js/examples/05_spline.html * * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Spline = function ( points ) { this.points = points; var c = [], v3 = { x: 0, y: 0, z: 0 }, point, intPoint, weight, w2, w3, pa, pb, pc, pd; this.initFromArray = function ( a ) { this.points = []; for ( var i = 0; i < a.length; i ++ ) { this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] }; } }; this.getPoint = function ( k ) { point = ( this.points.length - 1 ) * k; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1; c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2; pa = this.points[ c[ 0 ] ]; pb = this.points[ c[ 1 ] ]; pc = this.points[ c[ 2 ] ]; pd = this.points[ c[ 3 ] ]; w2 = weight * weight; w3 = weight * w2; v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 ); v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 ); v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 ); return v3; }; this.getControlPointsArray = function () { var i, p, l = this.points.length, coords = []; for ( i = 0; i < l; i ++ ) { p = this.points[ i ]; coords[ i ] = [ p.x, p.y, p.z ]; } return coords; }; // approximate length by summing linear segments this.getLength = function ( nSubDivisions ) { var i, index, nSamples, position, point = 0, intPoint = 0, oldIntPoint = 0, oldPosition = new THREE.Vector3(), tmpVec = new THREE.Vector3(), chunkLengths = [], totalLength = 0; // first point has 0 length chunkLengths[ 0 ] = 0; if ( ! nSubDivisions ) nSubDivisions = 100; nSamples = this.points.length * nSubDivisions; oldPosition.copy( this.points[ 0 ] ); for ( i = 1; i < nSamples; i ++ ) { index = i / nSamples; position = this.getPoint( index ); tmpVec.copy( position ); totalLength += tmpVec.distanceTo( oldPosition ); oldPosition.copy( position ); point = ( this.points.length - 1 ) * index; intPoint = Math.floor( point ); if ( intPoint !== oldIntPoint ) { chunkLengths[ intPoint ] = totalLength; oldIntPoint = intPoint; } } // last point ends with total length chunkLengths[ chunkLengths.length ] = totalLength; return { chunks: chunkLengths, total: totalLength }; }; this.reparametrizeByArcLength = function ( samplingCoef ) { var i, j, index, indexCurrent, indexNext, realDistance, sampling, position, newpoints = [], tmpVec = new THREE.Vector3(), sl = this.getLength(); newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() ); for ( i = 1; i < this.points.length; i ++ ) { //tmpVec.copy( this.points[ i - 1 ] ); //linearDistance = tmpVec.distanceTo( this.points[ i ] ); realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ]; sampling = Math.ceil( samplingCoef * realDistance / sl.total ); indexCurrent = ( i - 1 ) / ( this.points.length - 1 ); indexNext = i / ( this.points.length - 1 ); for ( j = 1; j < sampling - 1; j ++ ) { index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent ); position = this.getPoint( index ); newpoints.push( tmpVec.copy( position ).clone() ); } newpoints.push( tmpVec.copy( this.points[ i ] ).clone() ); } this.points = newpoints; }; // Catmull-Rom function interpolate( p0, p1, p2, p3, t, t2, t3 ) { var v0 = ( p2 - p0 ) * 0.5, v1 = ( p3 - p1 ) * 0.5; return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1; } }; // File:src/math/Triangle.js /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ THREE.Triangle = function ( a, b, c ) { this.a = ( a !== undefined ) ? a : new THREE.Vector3(); this.b = ( b !== undefined ) ? b : new THREE.Vector3(); this.c = ( c !== undefined ) ? c : new THREE.Vector3(); }; THREE.Triangle.normal = function () { var v0 = new THREE.Vector3(); return function ( a, b, c, optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); result.subVectors( c, b ); v0.subVectors( a, b ); result.cross( v0 ); var resultLengthSq = result.lengthSq(); if ( resultLengthSq > 0 ) { return result.multiplyScalar( 1 / Math.sqrt( resultLengthSq ) ); } return result.set( 0, 0, 0 ); }; }(); // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html THREE.Triangle.barycoordFromPoint = function () { var v0 = new THREE.Vector3(); var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function ( point, a, b, c, optionalTarget ) { v0.subVectors( c, a ); v1.subVectors( b, a ); v2.subVectors( point, a ); var dot00 = v0.dot( v0 ); var dot01 = v0.dot( v1 ); var dot02 = v0.dot( v2 ); var dot11 = v1.dot( v1 ); var dot12 = v1.dot( v2 ); var denom = ( dot00 * dot11 - dot01 * dot01 ); var result = optionalTarget || new THREE.Vector3(); // collinear or singular triangle if ( denom === 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return result.set( - 2, - 1, - 1 ); } var invDenom = 1 / denom; var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return result.set( 1 - u - v, v, u ); }; }(); THREE.Triangle.containsPoint = function () { var v1 = new THREE.Vector3(); return function ( point, a, b, c ) { var result = THREE.Triangle.barycoordFromPoint( point, a, b, c, v1 ); return ( result.x >= 0 ) && ( result.y >= 0 ) && ( ( result.x + result.y ) <= 1 ); }; }(); THREE.Triangle.prototype = { constructor: THREE.Triangle, set: function ( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; }, setFromPointsAndIndices: function ( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; }, area: function () { var v0 = new THREE.Vector3(); var v1 = new THREE.Vector3(); return function () { v0.subVectors( this.c, this.b ); v1.subVectors( this.a, this.b ); return v0.cross( v1 ).length() * 0.5; }; }(), midpoint: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); return result.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); }, normal: function ( optionalTarget ) { return THREE.Triangle.normal( this.a, this.b, this.c, optionalTarget ); }, plane: function ( optionalTarget ) { var result = optionalTarget || new THREE.Plane(); return result.setFromCoplanarPoints( this.a, this.b, this.c ); }, barycoordFromPoint: function ( point, optionalTarget ) { return THREE.Triangle.barycoordFromPoint( point, this.a, this.b, this.c, optionalTarget ); }, containsPoint: function ( point ) { return THREE.Triangle.containsPoint( point, this.a, this.b, this.c ); }, equals: function ( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } }; // File:src/math/Interpolant.js /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * * @author tschw */ THREE.Interpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize; }; THREE.Interpolant.prototype = { constructor: THREE.Interpolant, evaluate: function( t ) { var pp = this.parameterPositions, i1 = this._cachedIndex, t1 = pp[ i1 ], t0 = pp[ i1 - 1 ]; validate_interval: { seek: { var right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) { for ( var giveUpAt = i1 + 2; ;) { if ( t1 === undefined ) { if ( t < t0 ) break forward_scan; // after end i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t, t0 ); } if ( i1 === giveUpAt ) break; // this loop t0 = t1; t1 = pp[ ++ i1 ]; if ( t < t1 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) { // looping? var t1global = pp[ 1 ]; if ( t < t1global ) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for ( var giveUpAt = i1 - 2; ;) { if ( t0 === undefined ) { // before start this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( i1 === giveUpAt ) break; // this loop t1 = t0; t0 = pp[ -- i1 - 1 ]; if ( t >= t0 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while ( i1 < right ) { var mid = ( i1 + right ) >>> 1; if ( t < pp[ mid ] ) { right = mid; } else { i1 = mid + 1; } } t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ]; // check boundary cases, again if ( t0 === undefined ) { this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( t1 === undefined ) { i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t0, t ); } } // seek this._cachedIndex = i1; this.intervalChanged_( i1, t0, t1 ); } // validate_interval return this.interpolate_( i1, t0, t, t1 ); }, settings: null, // optional, subclass-specific settings structure // Note: The indirection allows central control of many interpolants. // --- Protected interface DefaultSettings_: {}, getSettings_: function() { return this.settings || this.DefaultSettings_; }, copySampleValue_: function( index ) { // copies a sample value to the result buffer var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset + i ]; } return result; }, // Template methods for derived classes: interpolate_: function( i1, t0, t, t1 ) { throw new Error( "call to abstract method" ); // implementations shall return this.resultBuffer }, intervalChanged_: function( i1, t0, t1 ) { // empty } }; Object.assign( THREE.Interpolant.prototype, { beforeStart_: //( 0, t, t0 ), returns this.resultBuffer THREE.Interpolant.prototype.copySampleValue_, afterEnd_: //( N-1, tN-1, t ), returns this.resultBuffer THREE.Interpolant.prototype.copySampleValue_ } ); // File:src/math/interpolants/CubicInterpolant.js /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. * * @author tschw */ THREE.CubicInterpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); this._weightPrev = -0; this._offsetPrev = -0; this._weightNext = -0; this._offsetNext = -0; }; THREE.CubicInterpolant.prototype = Object.assign( Object.create( THREE.Interpolant.prototype ), { constructor: THREE.CubicInterpolant, DefaultSettings_: { endingStart: THREE.ZeroCurvatureEnding, endingEnd: THREE.ZeroCurvatureEnding }, intervalChanged_: function( i1, t0, t1 ) { var pp = this.parameterPositions, iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[ iPrev ], tNext = pp[ iNext ]; if ( tPrev === undefined ) { switch ( this.getSettings_().endingStart ) { case THREE.ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case THREE.WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if ( tNext === undefined ) { switch ( this.getSettings_().endingEnd ) { case THREE.ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case THREE.WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } var halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; }, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p; // evaluate polynomials var sP = - wP * ppp + 2 * wP * pp - wP * p; var s0 = ( 1 + wP ) * ppp + (-1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1; var s1 = (-1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; var sN = wN * ppp - wN * pp; // combine data linearly for ( var i = 0; i !== stride; ++ i ) { result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ]; } return result; } } ); // File:src/math/interpolants/DiscreteInterpolant.js /** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. * * @author tschw */ THREE.DiscreteInterpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); }; THREE.DiscreteInterpolant.prototype = Object.assign( Object.create( THREE.Interpolant.prototype ), { constructor: THREE.DiscreteInterpolant, interpolate_: function( i1, t0, t, t1 ) { return this.copySampleValue_( i1 - 1 ); } } ); // File:src/math/interpolants/LinearInterpolant.js /** * @author tschw */ THREE.LinearInterpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); }; THREE.LinearInterpolant.prototype = Object.assign( Object.create( THREE.Interpolant.prototype ), { constructor: THREE.LinearInterpolant, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1; } return result; } } ); // File:src/math/interpolants/QuaternionLinearInterpolant.js /** * Spherical linear unit quaternion interpolant. * * @author tschw */ THREE.QuaternionLinearInterpolant = function( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); }; THREE.QuaternionLinearInterpolant.prototype = Object.assign( Object.create( THREE.Interpolant.prototype ), { constructor: THREE.QuaternionLinearInterpolant, interpolate_: function( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = i1 * stride, alpha = ( t - t0 ) / ( t1 - t0 ); for ( var end = offset + stride; offset !== end; offset += 4 ) { THREE.Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); } return result; } } ); // File:src/core/Clock.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Clock = function ( autoStart ) { this.autoStart = ( autoStart !== undefined ) ? autoStart : true; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; }; THREE.Clock.prototype = { constructor: THREE.Clock, start: function () { this.startTime = performance.now(); this.oldTime = this.startTime; this.running = true; }, stop: function () { this.getElapsedTime(); this.running = false; }, getElapsedTime: function () { this.getDelta(); return this.elapsedTime; }, getDelta: function () { var diff = 0; if ( this.autoStart && ! this.running ) { this.start(); } if ( this.running ) { var newTime = performance.now(); diff = 0.001 * ( newTime - this.oldTime ); this.oldTime = newTime; this.elapsedTime += diff; } return diff; } }; // File:src/core/EventDispatcher.js /** * https://github.com/mrdoob/eventdispatcher.js/ */ THREE.EventDispatcher = function () {}; THREE.EventDispatcher.prototype = { constructor: THREE.EventDispatcher, apply: function ( object ) { object.addEventListener = THREE.EventDispatcher.prototype.addEventListener; object.hasEventListener = THREE.EventDispatcher.prototype.hasEventListener; object.removeEventListener = THREE.EventDispatcher.prototype.removeEventListener; object.dispatchEvent = THREE.EventDispatcher.prototype.dispatchEvent; }, addEventListener: function ( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; var listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } }, hasEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return false; var listeners = this._listeners; if ( listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1 ) { return true; } return false; }, removeEventListener: function ( type, listener ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { var index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } }, dispatchEvent: function ( event ) { if ( this._listeners === undefined ) return; var listeners = this._listeners; var listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; var array = []; var length = listenerArray.length; for ( var i = 0; i < length; i ++ ) { array[ i ] = listenerArray[ i ]; } for ( var i = 0; i < length; i ++ ) { array[ i ].call( this, event ); } } } }; // File:src/core/Layers.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Layers = function () { this.mask = 1; }; THREE.Layers.prototype = { constructor: THREE.Layers, set: function ( channel ) { this.mask = 1 << channel; }, enable: function ( channel ) { this.mask |= 1 << channel; }, toggle: function ( channel ) { this.mask ^= 1 << channel; }, disable: function ( channel ) { this.mask &= ~ ( 1 << channel ); }, test: function ( layers ) { return ( this.mask & layers.mask ) !== 0; } }; // File:src/core/Raycaster.js /** * @author mrdoob / http://mrdoob.com/ * @author bhouston / http://clara.io/ * @author stephomi / http://stephaneginier.com/ */ ( function ( THREE ) { THREE.Raycaster = function ( origin, direction, near, far ) { this.ray = new THREE.Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near || 0; this.far = far || Infinity; this.params = { Mesh: {}, Line: {}, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; Object.defineProperties( this.params, { PointCloud: { get: function () { console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' ); return this.Points; } } } ); }; function ascSort( a, b ) { return a.distance - b.distance; } function intersectObject( object, raycaster, intersects, recursive ) { if ( object.visible === false ) return; object.raycast( raycaster, intersects ); if ( recursive === true ) { var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { intersectObject( children[ i ], raycaster, intersects, true ); } } } // THREE.Raycaster.prototype = { constructor: THREE.Raycaster, linePrecision: 1, set: function ( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); }, setFromCamera: function ( coords, camera ) { if ( camera instanceof THREE.PerspectiveCamera ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); } else if ( camera instanceof THREE.OrthographicCamera ) { this.ray.origin.set( coords.x, coords.y, - 1 ).unproject( camera ); this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); } else { console.error( 'THREE.Raycaster: Unsupported camera type.' ); } }, intersectObject: function ( object, recursive ) { var intersects = []; intersectObject( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; }, intersectObjects: function ( objects, recursive ) { var intersects = []; if ( Array.isArray( objects ) === false ) { console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' ); return intersects; } for ( var i = 0, l = objects.length; i < l; i ++ ) { intersectObject( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } }; }( THREE ) ); // File:src/core/Object3D.js /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author elephantatwork / www.elephantatwork.ch */ THREE.Object3D = function () { Object.defineProperty( this, 'id', { value: THREE.Object3DIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = THREE.Object3D.DefaultUp.clone(); var position = new THREE.Vector3(); var rotation = new THREE.Euler(); var quaternion = new THREE.Quaternion(); var scale = new THREE.Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation.onChange( onRotationChange ); quaternion.onChange( onQuaternionChange ); Object.defineProperties( this, { position: { enumerable: true, value: position }, rotation: { enumerable: true, value: rotation }, quaternion: { enumerable: true, value: quaternion }, scale: { enumerable: true, value: scale }, modelViewMatrix: { value: new THREE.Matrix4() }, normalMatrix: { value: new THREE.Matrix3() } } ); this.rotationAutoUpdate = true; this.matrix = new THREE.Matrix4(); this.matrixWorld = new THREE.Matrix4(); this.matrixAutoUpdate = THREE.Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new THREE.Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.userData = {}; }; THREE.Object3D.DefaultUp = new THREE.Vector3( 0, 1, 0 ); THREE.Object3D.DefaultMatrixAutoUpdate = true; THREE.Object3D.prototype = { constructor: THREE.Object3D, applyMatrix: function ( matrix ) { this.matrix.multiplyMatrices( matrix, this.matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); }, setRotationFromAxisAngle: function ( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); }, setRotationFromEuler: function ( euler ) { this.quaternion.setFromEuler( euler, true ); }, setRotationFromMatrix: function ( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); }, setRotationFromQuaternion: function ( q ) { // assumes q is normalized this.quaternion.copy( q ); }, rotateOnAxis: function () { // rotate object on axis in object space // axis is assumed to be normalized var q1 = new THREE.Quaternion(); return function ( axis, angle ) { q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( q1 ); return this; }; }(), rotateX: function () { var v1 = new THREE.Vector3( 1, 0, 0 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateY: function () { var v1 = new THREE.Vector3( 0, 1, 0 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), rotateZ: function () { var v1 = new THREE.Vector3( 0, 0, 1 ); return function ( angle ) { return this.rotateOnAxis( v1, angle ); }; }(), translateOnAxis: function () { // translate object by distance along axis in object space // axis is assumed to be normalized var v1 = new THREE.Vector3(); return function ( axis, distance ) { v1.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( v1.multiplyScalar( distance ) ); return this; }; }(), translateX: function () { var v1 = new THREE.Vector3( 1, 0, 0 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateY: function () { var v1 = new THREE.Vector3( 0, 1, 0 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), translateZ: function () { var v1 = new THREE.Vector3( 0, 0, 1 ); return function ( distance ) { return this.translateOnAxis( v1, distance ); }; }(), localToWorld: function ( vector ) { return vector.applyMatrix4( this.matrixWorld ); }, worldToLocal: function () { var m1 = new THREE.Matrix4(); return function ( vector ) { return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) ); }; }(), lookAt: function () { // This routine does not support objects with rotated and/or translated parent(s) var m1 = new THREE.Matrix4(); return function ( vector ) { m1.lookAt( vector, this.position, this.up ); this.quaternion.setFromRotationMatrix( m1 ); }; }(), add: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object ); return this; } if ( object instanceof THREE.Object3D ) { if ( object.parent !== null ) { object.parent.remove( object ); } object.parent = this; object.dispatchEvent( { type: 'added' } ); this.children.push( object ); } else { console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object ); } return this; }, remove: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } } var index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = null; object.dispatchEvent( { type: 'removed' } ); this.children.splice( index, 1 ); } }, getObjectById: function ( id ) { return this.getObjectByProperty( 'id', id ); }, getObjectByName: function ( name ) { return this.getObjectByProperty( 'name', name ); }, getObjectByProperty: function ( name, value ) { if ( this[ name ] === value ) return this; for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; var object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; }, getWorldPosition: function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); this.updateMatrixWorld( true ); return result.setFromMatrixPosition( this.matrixWorld ); }, getWorldQuaternion: function () { var position = new THREE.Vector3(); var scale = new THREE.Vector3(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Quaternion(); this.updateMatrixWorld( true ); this.matrixWorld.decompose( position, result, scale ); return result; }; }(), getWorldRotation: function () { var quaternion = new THREE.Quaternion(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Euler(); this.getWorldQuaternion( quaternion ); return result.setFromQuaternion( quaternion, this.rotation.order, false ); }; }(), getWorldScale: function () { var position = new THREE.Vector3(); var quaternion = new THREE.Quaternion(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); this.updateMatrixWorld( true ); this.matrixWorld.decompose( position, quaternion, result ); return result; }; }(), getWorldDirection: function () { var quaternion = new THREE.Quaternion(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); this.getWorldQuaternion( quaternion ); return result.set( 0, 0, 1 ).applyQuaternion( quaternion ); }; }(), raycast: function () {}, traverse: function ( callback ) { callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } }, traverseVisible: function ( callback ) { if ( this.visible === false ) return; callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } }, traverseAncestors: function ( callback ) { var parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } }, updateMatrix: function () { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; }, updateMatrixWorld: function ( force ) { if ( this.matrixAutoUpdate === true ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate === true || force === true ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].updateMatrixWorld( force ); } }, toJSON: function ( meta ) { var isRootObject = ( meta === undefined ); var output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {} }; output.metadata = { version: 4.4, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization var object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) object.name = this.name; if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; object.matrix = this.matrix.toArray(); // if ( this.geometry !== undefined ) { if ( meta.geometries[ this.geometry.uuid ] === undefined ) { meta.geometries[ this.geometry.uuid ] = this.geometry.toJSON( meta ); } object.geometry = this.geometry.uuid; } if ( this.material !== undefined ) { if ( meta.materials[ this.material.uuid ] === undefined ) { meta.materials[ this.material.uuid ] = this.material.toJSON( meta ); } object.material = this.material.uuid; } // if ( this.children.length > 0 ) { object.children = []; for ( var i = 0; i < this.children.length; i ++ ) { object.children.push( this.children[ i ].toJSON( meta ).object ); } } if ( isRootObject ) { var geometries = extractFromCache( meta.geometries ); var materials = extractFromCache( meta.materials ); var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache ( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } }, clone: function ( recursive ) { return new this.constructor().copy( this, recursive ); }, copy: function ( source, recursive ) { if ( recursive === undefined ) recursive = true; this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.rotationAutoUpdate = source.rotationAutoUpdate; this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( var i = 0; i < source.children.length; i ++ ) { var child = source.children[ i ]; this.add( child.clone() ); } } return this; } }; THREE.EventDispatcher.prototype.apply( THREE.Object3D.prototype ); THREE.Object3DIdCount = 0; // File:src/core/Face3.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Face3 = function ( a, b, c, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3(); this.vertexNormals = Array.isArray( normal ) ? normal : []; this.color = color instanceof THREE.Color ? color : new THREE.Color(); this.vertexColors = Array.isArray( color ) ? color : []; this.materialIndex = materialIndex !== undefined ? materialIndex : 0; }; THREE.Face3.prototype = { constructor: THREE.Face3, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.a = source.a; this.b = source.b; this.c = source.c; this.normal.copy( source.normal ); this.color.copy( source.color ); this.materialIndex = source.materialIndex; for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) { this.vertexNormals[ i ] = source.vertexNormals[ i ].clone(); } for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) { this.vertexColors[ i ] = source.vertexColors[ i ].clone(); } return this; } }; // File:src/core/BufferAttribute.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BufferAttribute = function ( array, itemSize ) { this.uuid = THREE.Math.generateUUID(); this.array = array; this.itemSize = itemSize; this.dynamic = false; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; }; THREE.BufferAttribute.prototype = { constructor: THREE.BufferAttribute, get count() { return this.array.length / this.itemSize; }, set needsUpdate( value ) { if ( value === true ) this.version ++; }, setDynamic: function ( value ) { this.dynamic = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.dynamic = source.dynamic; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( var i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, copyArray: function ( array ) { this.array.set( array ); return this; }, copyColorsArray: function ( colors ) { var array = this.array, offset = 0; for ( var i = 0, l = colors.length; i < l; i ++ ) { var color = colors[ i ]; if ( color === undefined ) { console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); color = new THREE.Color(); } array[ offset ++ ] = color.r; array[ offset ++ ] = color.g; array[ offset ++ ] = color.b; } return this; }, copyIndicesArray: function ( indices ) { var array = this.array, offset = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { var index = indices[ i ]; array[ offset ++ ] = index.a; array[ offset ++ ] = index.b; array[ offset ++ ] = index.c; } return this; }, copyVector2sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); vector = new THREE.Vector2(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; } return this; }, copyVector3sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); vector = new THREE.Vector3(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; } return this; }, copyVector4sArray: function ( vectors ) { var array = this.array, offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); vector = new THREE.Vector4(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; array[ offset ++ ] = vector.w; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) offset = 0; this.array.set( value, offset ); return this; }, getX: function ( index ) { return this.array[ index * this.itemSize ]; }, setX: function ( index, x ) { this.array[ index * this.itemSize ] = x; return this; }, getY: function ( index ) { return this.array[ index * this.itemSize + 1 ]; }, setY: function ( index, y ) { this.array[ index * this.itemSize + 1 ] = y; return this; }, getZ: function ( index ) { return this.array[ index * this.itemSize + 2 ]; }, setZ: function ( index, z ) { this.array[ index * this.itemSize + 2 ] = z; return this; }, getW: function ( index ) { return this.array[ index * this.itemSize + 3 ]; }, setW: function ( index, w ) { this.array[ index * this.itemSize + 3 ] = w; return this; }, setXY: function ( index, x, y ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; }, clone: function () { return new this.constructor().copy( this ); } }; // THREE.Int8Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Int8Array( array ), itemSize ); }; THREE.Uint8Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Uint8Array( array ), itemSize ); }; THREE.Uint8ClampedAttribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Uint8ClampedArray( array ), itemSize ); }; THREE.Int16Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Int16Array( array ), itemSize ); }; THREE.Uint16Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Uint16Array( array ), itemSize ); }; THREE.Int32Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Int32Array( array ), itemSize ); }; THREE.Uint32Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Uint32Array( array ), itemSize ); }; THREE.Float32Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Float32Array( array ), itemSize ); }; THREE.Float64Attribute = function ( array, itemSize ) { return new THREE.BufferAttribute( new Float64Array( array ), itemSize ); }; // Deprecated THREE.DynamicBufferAttribute = function ( array, itemSize ) { console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setDynamic( true ) instead.' ); return new THREE.BufferAttribute( array, itemSize ).setDynamic( true ); }; // File:src/core/InstancedBufferAttribute.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InstancedBufferAttribute = function ( array, itemSize, meshPerAttribute ) { THREE.BufferAttribute.call( this, array, itemSize ); this.meshPerAttribute = meshPerAttribute || 1; }; THREE.InstancedBufferAttribute.prototype = Object.create( THREE.BufferAttribute.prototype ); THREE.InstancedBufferAttribute.prototype.constructor = THREE.InstancedBufferAttribute; THREE.InstancedBufferAttribute.prototype.copy = function ( source ) { THREE.BufferAttribute.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; }; // File:src/core/InterleavedBuffer.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InterleavedBuffer = function ( array, stride ) { this.uuid = THREE.Math.generateUUID(); this.array = array; this.stride = stride; this.dynamic = false; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; }; THREE.InterleavedBuffer.prototype = { constructor: THREE.InterleavedBuffer, get length () { return this.array.length; }, get count () { return this.array.length / this.stride; }, set needsUpdate( value ) { if ( value === true ) this.version ++; }, setDynamic: function ( value ) { this.dynamic = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.stride = source.stride; this.dynamic = source.dynamic; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.stride; index2 *= attribute.stride; for ( var i = 0, l = this.stride; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) offset = 0; this.array.set( value, offset ); return this; }, clone: function () { return new this.constructor().copy( this ); } }; // File:src/core/InstancedInterleavedBuffer.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InstancedInterleavedBuffer = function ( array, stride, meshPerAttribute ) { THREE.InterleavedBuffer.call( this, array, stride ); this.meshPerAttribute = meshPerAttribute || 1; }; THREE.InstancedInterleavedBuffer.prototype = Object.create( THREE.InterleavedBuffer.prototype ); THREE.InstancedInterleavedBuffer.prototype.constructor = THREE.InstancedInterleavedBuffer; THREE.InstancedInterleavedBuffer.prototype.copy = function ( source ) { THREE.InterleavedBuffer.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; }; // File:src/core/InterleavedBufferAttribute.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InterleavedBufferAttribute = function ( interleavedBuffer, itemSize, offset ) { this.uuid = THREE.Math.generateUUID(); this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; }; THREE.InterleavedBufferAttribute.prototype = { constructor: THREE.InterleavedBufferAttribute, get length() { console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' ); return this.array.length; }, get count() { return this.data.count; }, setX: function ( index, x ) { this.data.array[ index * this.data.stride + this.offset ] = x; return this; }, setY: function ( index, y ) { this.data.array[ index * this.data.stride + this.offset + 1 ] = y; return this; }, setZ: function ( index, z ) { this.data.array[ index * this.data.stride + this.offset + 2 ] = z; return this; }, setW: function ( index, w ) { this.data.array[ index * this.data.stride + this.offset + 3 ] = w; return this; }, getX: function ( index ) { return this.data.array[ index * this.data.stride + this.offset ]; }, getY: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 1 ]; }, getZ: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 2 ]; }, getW: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 3 ]; }, setXY: function ( index, x, y ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w; return this; } }; // File:src/core/Geometry.js /** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author bhouston / http://clara.io */ THREE.Geometry = function () { Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'Geometry'; this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [ [] ]; this.morphTargets = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.verticesNeedUpdate = false; this.elementsNeedUpdate = false; this.uvsNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.lineDistancesNeedUpdate = false; this.groupsNeedUpdate = false; }; THREE.Geometry.prototype = { constructor: THREE.Geometry, applyMatrix: function ( matrix ) { var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var vertex = this.vertices[ i ]; vertex.applyMatrix4( matrix ); } for ( var i = 0, il = this.faces.length; i < il; i ++ ) { var face = this.faces[ i ]; face.normal.applyMatrix3( normalMatrix ).normalize(); for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize(); } } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } this.verticesNeedUpdate = true; this.normalsNeedUpdate = true; return this; }, rotateX: function () { // rotate geometry around world x-axis var m1; return function rotateX( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationX( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateY: function () { // rotate geometry around world y-axis var m1; return function rotateY( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationY( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateZ: function () { // rotate geometry around world z-axis var m1; return function rotateZ( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationZ( angle ); this.applyMatrix( m1 ); return this; }; }(), translate: function () { // translate geometry var m1; return function translate( x, y, z ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeTranslation( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), scale: function () { // scale geometry var m1; return function scale( x, y, z ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeScale( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), lookAt: function () { var obj; return function lookAt( vector ) { if ( obj === undefined ) obj = new THREE.Object3D(); obj.lookAt( vector ); obj.updateMatrix(); this.applyMatrix( obj.matrix ); }; }(), fromBufferGeometry: function ( geometry ) { var scope = this; var indices = geometry.index !== null ? geometry.index.array : undefined; var attributes = geometry.attributes; var positions = attributes.position.array; var normals = attributes.normal !== undefined ? attributes.normal.array : undefined; var colors = attributes.color !== undefined ? attributes.color.array : undefined; var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined; var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined; if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = []; var tempNormals = []; var tempUVs = []; var tempUVs2 = []; for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) { scope.vertices.push( new THREE.Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) ); if ( normals !== undefined ) { tempNormals.push( new THREE.Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) ); } if ( colors !== undefined ) { scope.colors.push( new THREE.Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) ); } if ( uvs !== undefined ) { tempUVs.push( new THREE.Vector2( uvs[ j ], uvs[ j + 1 ] ) ); } if ( uvs2 !== undefined ) { tempUVs2.push( new THREE.Vector2( uvs2[ j ], uvs2[ j + 1 ] ) ); } } function addFace( a, b, c, materialIndex ) { var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : []; var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : []; var face = new THREE.Face3( a, b, c, vertexNormals, vertexColors, materialIndex ); scope.faces.push( face ); if ( uvs !== undefined ) { scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] ); } if ( uvs2 !== undefined ) { scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] ); } } if ( indices !== undefined ) { var groups = geometry.groups; if ( groups.length > 0 ) { for ( var i = 0; i < groups.length; i ++ ) { var group = groups[ i ]; var start = group.start; var count = group.count; for ( var j = start, jl = start + count; j < jl; j += 3 ) { addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex ); } } } else { for ( var i = 0; i < indices.length; i += 3 ) { addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] ); } } } else { for ( var i = 0; i < positions.length / 3; i += 3 ) { addFace( i, i + 1, i + 2 ); } } this.computeFaceNormals(); if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } return this; }, center: function () { this.computeBoundingBox(); var offset = this.boundingBox.center().negate(); this.translate( offset.x, offset.y, offset.z ); return offset; }, normalize: function () { this.computeBoundingSphere(); var center = this.boundingSphere.center; var radius = this.boundingSphere.radius; var s = radius === 0 ? 1 : 1.0 / radius; var matrix = new THREE.Matrix4(); matrix.set( s, 0, 0, - s * center.x, 0, s, 0, - s * center.y, 0, 0, s, - s * center.z, 0, 0, 0, 1 ); this.applyMatrix( matrix ); return this; }, computeFaceNormals: function () { var cb = new THREE.Vector3(), ab = new THREE.Vector3(); for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; var vA = this.vertices[ face.a ]; var vB = this.vertices[ face.b ]; var vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); cb.normalize(); face.normal.copy( cb ); } }, computeVertexNormals: function ( areaWeighted ) { if ( areaWeighted === undefined ) areaWeighted = true; var v, vl, f, fl, face, vertices; vertices = new Array( this.vertices.length ); for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ] = new THREE.Vector3(); } if ( areaWeighted ) { // vertex normals weighted by triangle areas // http://www.iquilezles.org/www/articles/normals/normals.htm var vA, vB, vC; var cb = new THREE.Vector3(), ab = new THREE.Vector3(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vA = this.vertices[ face.a ]; vB = this.vertices[ face.b ]; vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); vertices[ face.a ].add( cb ); vertices[ face.b ].add( cb ); vertices[ face.c ].add( cb ); } } else { for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vertices[ face.a ].add( face.normal ); vertices[ face.b ].add( face.normal ); vertices[ face.c ].add( face.normal ); } } for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].normalize(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { vertexNormals[ 0 ].copy( vertices[ face.a ] ); vertexNormals[ 1 ].copy( vertices[ face.b ] ); vertexNormals[ 2 ].copy( vertices[ face.c ] ); } else { vertexNormals[ 0 ] = vertices[ face.a ].clone(); vertexNormals[ 1 ] = vertices[ face.b ].clone(); vertexNormals[ 2 ] = vertices[ face.c ].clone(); } } if ( this.faces.length > 0 ) { this.normalsNeedUpdate = true; } }, computeMorphNormals: function () { var i, il, f, fl, face; // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( ! face.__originalFaceNormal ) { face.__originalFaceNormal = face.normal.clone(); } else { face.__originalFaceNormal.copy( face.normal ); } if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = []; for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) { if ( ! face.__originalVertexNormals[ i ] ) { face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); } else { face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new THREE.Geometry(); tmpGeo.faces = this.faces; for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) { // create on first access if ( ! this.morphNormals[ i ] ) { this.morphNormals[ i ] = {}; this.morphNormals[ i ].faceNormals = []; this.morphNormals[ i ].vertexNormals = []; var dstNormalsFace = this.morphNormals[ i ].faceNormals; var dstNormalsVertex = this.morphNormals[ i ].vertexNormals; var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { faceNormal = new THREE.Vector3(); vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3() }; dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals ); } } var morphNormals = this.morphNormals[ i ]; // set vertices to morph target tmpGeo.vertices = this.morphTargets[ i ].vertices; // compute morph normals tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals(); // store morph normals var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = morphNormals.faceNormals[ f ]; vertexNormals = morphNormals.vertexNormals[ f ]; faceNormal.copy( face.normal ); vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); } } // restore original normals for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.normal = face.__originalFaceNormal; face.vertexNormals = face.__originalVertexNormals; } }, computeTangents: function () { console.warn( 'THREE.Geometry: .computeTangents() has been removed.' ); }, computeLineDistances: function () { var d = 0; var vertices = this.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { if ( i > 0 ) { d += vertices[ i ].distanceTo( vertices[ i - 1 ] ); } this.lineDistances[ i ] = d; } }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new THREE.Box3(); } this.boundingBox.setFromPoints( this.vertices ); }, computeBoundingSphere: function () { if ( this.boundingSphere === null ) { this.boundingSphere = new THREE.Sphere(); } this.boundingSphere.setFromPoints( this.vertices ); }, merge: function ( geometry, matrix, materialIndexOffset ) { if ( geometry instanceof THREE.Geometry === false ) { console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ); return; } var normalMatrix, vertexOffset = this.vertices.length, vertices1 = this.vertices, vertices2 = geometry.vertices, faces1 = this.faces, faces2 = geometry.faces, uvs1 = this.faceVertexUvs[ 0 ], uvs2 = geometry.faceVertexUvs[ 0 ]; if ( materialIndexOffset === undefined ) materialIndexOffset = 0; if ( matrix !== undefined ) { normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); } // vertices for ( var i = 0, il = vertices2.length; i < il; i ++ ) { var vertex = vertices2[ i ]; var vertexCopy = vertex.clone(); if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix ); vertices1.push( vertexCopy ); } // faces for ( i = 0, il = faces2.length; i < il; i ++ ) { var face = faces2[ i ], faceCopy, normal, color, faceVertexNormals = face.vertexNormals, faceVertexColors = face.vertexColors; faceCopy = new THREE.Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset ); faceCopy.normal.copy( face.normal ); if ( normalMatrix !== undefined ) { faceCopy.normal.applyMatrix3( normalMatrix ).normalize(); } for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) { normal = faceVertexNormals[ j ].clone(); if ( normalMatrix !== undefined ) { normal.applyMatrix3( normalMatrix ).normalize(); } faceCopy.vertexNormals.push( normal ); } faceCopy.color.copy( face.color ); for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) { color = faceVertexColors[ j ]; faceCopy.vertexColors.push( color.clone() ); } faceCopy.materialIndex = face.materialIndex + materialIndexOffset; faces1.push( faceCopy ); } // uvs for ( i = 0, il = uvs2.length; i < il; i ++ ) { var uv = uvs2[ i ], uvCopy = []; if ( uv === undefined ) { continue; } for ( var j = 0, jl = uv.length; j < jl; j ++ ) { uvCopy.push( uv[ j ].clone() ); } uvs1.push( uvCopy ); } }, mergeMesh: function ( mesh ) { if ( mesh instanceof THREE.Mesh === false ) { console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh ); return; } mesh.matrixAutoUpdate && mesh.updateMatrix(); this.merge( mesh.geometry, mesh.matrix ); }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function () { var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique) var unique = [], changes = []; var v, key; var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); var i, il, face; var indices, j, jl; for ( i = 0, il = this.vertices.length; i < il; i ++ ) { v = this.vertices[ i ]; key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision ); if ( verticesMap[ key ] === undefined ) { verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1; } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ]; } } // if faces are completely degenerate after merging vertices, we // have to remove them from the geometry. var faceIndicesToRemove = []; for ( i = 0, il = this.faces.length; i < il; i ++ ) { face = this.faces[ i ]; face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; indices = [ face.a, face.b, face.c ]; var dupIndex = - 1; // if any duplicate vertices are found in a Face3 // we have to remove the face as nothing can be saved for ( var n = 0; n < 3; n ++ ) { if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) { dupIndex = n; faceIndicesToRemove.push( i ); break; } } } for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) { var idx = faceIndicesToRemove[ i ]; this.faces.splice( idx, 1 ); for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) { this.faceVertexUvs[ j ].splice( idx, 1 ); } } // Use unique set of vertices var diff = this.vertices.length - unique.length; this.vertices = unique; return diff; }, sortFacesByMaterialIndex: function () { var faces = this.faces; var length = faces.length; // tag faces for ( var i = 0; i < length; i ++ ) { faces[ i ]._id = i; } // sort faces function materialIndexSort( a, b ) { return a.materialIndex - b.materialIndex; } faces.sort( materialIndexSort ); // sort uvs var uvs1 = this.faceVertexUvs[ 0 ]; var uvs2 = this.faceVertexUvs[ 1 ]; var newUvs1, newUvs2; if ( uvs1 && uvs1.length === length ) newUvs1 = []; if ( uvs2 && uvs2.length === length ) newUvs2 = []; for ( var i = 0; i < length; i ++ ) { var id = faces[ i ]._id; if ( newUvs1 ) newUvs1.push( uvs1[ id ] ); if ( newUvs2 ) newUvs2.push( uvs2[ id ] ); } if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1; if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2; }, toJSON: function () { var data = { metadata: { version: 4.4, type: 'Geometry', generator: 'Geometry.toJSON' } }; // standard Geometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } var vertices = []; for ( var i = 0; i < this.vertices.length; i ++ ) { var vertex = this.vertices[ i ]; vertices.push( vertex.x, vertex.y, vertex.z ); } var faces = []; var normals = []; var normalsHash = {}; var colors = []; var colorsHash = {}; var uvs = []; var uvsHash = {}; for ( var i = 0; i < this.faces.length; i ++ ) { var face = this.faces[ i ]; var hasMaterial = true; var hasFaceUv = false; // deprecated var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined; var hasFaceNormal = face.normal.length() > 0; var hasFaceVertexNormal = face.vertexNormals.length > 0; var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1; var hasFaceVertexColor = face.vertexColors.length > 0; var faceType = 0; faceType = setBit( faceType, 0, 0 ); // isQuad faceType = setBit( faceType, 1, hasMaterial ); faceType = setBit( faceType, 2, hasFaceUv ); faceType = setBit( faceType, 3, hasFaceVertexUv ); faceType = setBit( faceType, 4, hasFaceNormal ); faceType = setBit( faceType, 5, hasFaceVertexNormal ); faceType = setBit( faceType, 6, hasFaceColor ); faceType = setBit( faceType, 7, hasFaceVertexColor ); faces.push( faceType ); faces.push( face.a, face.b, face.c ); faces.push( face.materialIndex ); if ( hasFaceVertexUv ) { var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ]; faces.push( getUvIndex( faceVertexUvs[ 0 ] ), getUvIndex( faceVertexUvs[ 1 ] ), getUvIndex( faceVertexUvs[ 2 ] ) ); } if ( hasFaceNormal ) { faces.push( getNormalIndex( face.normal ) ); } if ( hasFaceVertexNormal ) { var vertexNormals = face.vertexNormals; faces.push( getNormalIndex( vertexNormals[ 0 ] ), getNormalIndex( vertexNormals[ 1 ] ), getNormalIndex( vertexNormals[ 2 ] ) ); } if ( hasFaceColor ) { faces.push( getColorIndex( face.color ) ); } if ( hasFaceVertexColor ) { var vertexColors = face.vertexColors; faces.push( getColorIndex( vertexColors[ 0 ] ), getColorIndex( vertexColors[ 1 ] ), getColorIndex( vertexColors[ 2 ] ) ); } } function setBit( value, position, enabled ) { return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) ); } function getNormalIndex( normal ) { var hash = normal.x.toString() + normal.y.toString() + normal.z.toString(); if ( normalsHash[ hash ] !== undefined ) { return normalsHash[ hash ]; } normalsHash[ hash ] = normals.length / 3; normals.push( normal.x, normal.y, normal.z ); return normalsHash[ hash ]; } function getColorIndex( color ) { var hash = color.r.toString() + color.g.toString() + color.b.toString(); if ( colorsHash[ hash ] !== undefined ) { return colorsHash[ hash ]; } colorsHash[ hash ] = colors.length; colors.push( color.getHex() ); return colorsHash[ hash ]; } function getUvIndex( uv ) { var hash = uv.x.toString() + uv.y.toString(); if ( uvsHash[ hash ] !== undefined ) { return uvsHash[ hash ]; } uvsHash[ hash ] = uvs.length / 2; uvs.push( uv.x, uv.y ); return uvsHash[ hash ]; } data.data = {}; data.data.vertices = vertices; data.data.normals = normals; if ( colors.length > 0 ) data.data.colors = colors; if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility data.data.faces = faces; return data; }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new THREE.Geometry().copy( this ); }, copy: function ( source ) { this.vertices = []; this.faces = []; this.faceVertexUvs = [ [] ]; var vertices = source.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { this.vertices.push( vertices[ i ].clone() ); } var faces = source.faces; for ( var i = 0, il = faces.length; i < il; i ++ ) { this.faces.push( faces[ i ].clone() ); } for ( var i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) { var faceVertexUvs = source.faceVertexUvs[ i ]; if ( this.faceVertexUvs[ i ] === undefined ) { this.faceVertexUvs[ i ] = []; } for ( var j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) { var uvs = faceVertexUvs[ j ], uvsCopy = []; for ( var k = 0, kl = uvs.length; k < kl; k ++ ) { var uv = uvs[ k ]; uvsCopy.push( uv.clone() ); } this.faceVertexUvs[ i ].push( uvsCopy ); } } return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.Geometry.prototype ); THREE.GeometryIdCount = 0; // File:src/core/DirectGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.DirectGeometry = function () { Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'DirectGeometry'; this.indices = []; this.vertices = []; this.normals = []; this.colors = []; this.uvs = []; this.uvs2 = []; this.groups = []; this.morphTargets = {}; this.skinWeights = []; this.skinIndices = []; // this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.verticesNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.uvsNeedUpdate = false; this.groupsNeedUpdate = false; }; THREE.DirectGeometry.prototype = { constructor: THREE.DirectGeometry, computeBoundingBox: THREE.Geometry.prototype.computeBoundingBox, computeBoundingSphere: THREE.Geometry.prototype.computeBoundingSphere, computeFaceNormals: function () { console.warn( 'THREE.DirectGeometry: computeFaceNormals() is not a method of this type of geometry.' ); }, computeVertexNormals: function () { console.warn( 'THREE.DirectGeometry: computeVertexNormals() is not a method of this type of geometry.' ); }, computeGroups: function ( geometry ) { var group; var groups = []; var materialIndex; var faces = geometry.faces; for ( var i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; // materials if ( face.materialIndex !== materialIndex ) { materialIndex = face.materialIndex; if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } group = { start: i * 3, materialIndex: materialIndex }; } } if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } this.groups = groups; }, fromGeometry: function ( geometry ) { var faces = geometry.faces; var vertices = geometry.vertices; var faceVertexUvs = geometry.faceVertexUvs; var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0; var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0; // morphs var morphTargets = geometry.morphTargets; var morphTargetsLength = morphTargets.length; var morphTargetsPosition; if ( morphTargetsLength > 0 ) { morphTargetsPosition = []; for ( var i = 0; i < morphTargetsLength; i ++ ) { morphTargetsPosition[ i ] = []; } this.morphTargets.position = morphTargetsPosition; } var morphNormals = geometry.morphNormals; var morphNormalsLength = morphNormals.length; var morphTargetsNormal; if ( morphNormalsLength > 0 ) { morphTargetsNormal = []; for ( var i = 0; i < morphNormalsLength; i ++ ) { morphTargetsNormal[ i ] = []; } this.morphTargets.normal = morphTargetsNormal; } // skins var skinIndices = geometry.skinIndices; var skinWeights = geometry.skinWeights; var hasSkinIndices = skinIndices.length === vertices.length; var hasSkinWeights = skinWeights.length === vertices.length; // for ( var i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] ); var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] ); } else { var normal = face.normal; this.normals.push( normal, normal, normal ); } var vertexColors = face.vertexColors; if ( vertexColors.length === 3 ) { this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] ); } else { var color = face.color; this.colors.push( color, color, color ); } if ( hasFaceVertexUv === true ) { var vertexUvs = faceVertexUvs[ 0 ][ i ]; if ( vertexUvs !== undefined ) { this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i ); this.uvs.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() ); } } if ( hasFaceVertexUv2 === true ) { var vertexUvs = faceVertexUvs[ 1 ][ i ]; if ( vertexUvs !== undefined ) { this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i ); this.uvs2.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() ); } } // morphs for ( var j = 0; j < morphTargetsLength; j ++ ) { var morphTarget = morphTargets[ j ].vertices; morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] ); } for ( var j = 0; j < morphNormalsLength; j ++ ) { var morphNormal = morphNormals[ j ].vertexNormals[ i ]; morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c ); } // skins if ( hasSkinIndices ) { this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] ); } if ( hasSkinWeights ) { this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] ); } } this.computeGroups( geometry ); this.verticesNeedUpdate = geometry.verticesNeedUpdate; this.normalsNeedUpdate = geometry.normalsNeedUpdate; this.colorsNeedUpdate = geometry.colorsNeedUpdate; this.uvsNeedUpdate = geometry.uvsNeedUpdate; this.groupsNeedUpdate = geometry.groupsNeedUpdate; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.DirectGeometry.prototype ); // File:src/core/BufferGeometry.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.BufferGeometry = function () { Object.defineProperty( this, 'id', { value: THREE.GeometryIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; }; THREE.BufferGeometry.prototype = { constructor: THREE.BufferGeometry, getIndex: function () { return this.index; }, setIndex: function ( index ) { this.index = index; }, addAttribute: function ( name, attribute ) { if ( attribute instanceof THREE.BufferAttribute === false && attribute instanceof THREE.InterleavedBufferAttribute === false ) { console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' ); this.addAttribute( name, new THREE.BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) ); return; } if ( name === 'index' ) { console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' ); this.setIndex( attribute ); return; } this.attributes[ name ] = attribute; return this; }, getAttribute: function ( name ) { return this.attributes[ name ]; }, removeAttribute: function ( name ) { delete this.attributes[ name ]; return this; }, addGroup: function ( start, count, materialIndex ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex !== undefined ? materialIndex : 0 } ); }, clearGroups: function () { this.groups = []; }, setDrawRange: function ( start, count ) { this.drawRange.start = start; this.drawRange.count = count; }, applyMatrix: function ( matrix ) { var position = this.attributes.position; if ( position !== undefined ) { matrix.applyToVector3Array( position.array ); position.needsUpdate = true; } var normal = this.attributes.normal; if ( normal !== undefined ) { var normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); normalMatrix.applyToVector3Array( normal.array ); normal.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } return this; }, rotateX: function () { // rotate geometry around world x-axis var m1; return function rotateX( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationX( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateY: function () { // rotate geometry around world y-axis var m1; return function rotateY( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationY( angle ); this.applyMatrix( m1 ); return this; }; }(), rotateZ: function () { // rotate geometry around world z-axis var m1; return function rotateZ( angle ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeRotationZ( angle ); this.applyMatrix( m1 ); return this; }; }(), translate: function () { // translate geometry var m1; return function translate( x, y, z ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeTranslation( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), scale: function () { // scale geometry var m1; return function scale( x, y, z ) { if ( m1 === undefined ) m1 = new THREE.Matrix4(); m1.makeScale( x, y, z ); this.applyMatrix( m1 ); return this; }; }(), lookAt: function () { var obj; return function lookAt( vector ) { if ( obj === undefined ) obj = new THREE.Object3D(); obj.lookAt( vector ); obj.updateMatrix(); this.applyMatrix( obj.matrix ); }; }(), center: function () { this.computeBoundingBox(); var offset = this.boundingBox.center().negate(); this.translate( offset.x, offset.y, offset.z ); return offset; }, setFromObject: function ( object ) { // console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this ); var geometry = object.geometry; if ( object instanceof THREE.Points || object instanceof THREE.Line ) { var positions = new THREE.Float32Attribute( geometry.vertices.length * 3, 3 ); var colors = new THREE.Float32Attribute( geometry.colors.length * 3, 3 ); this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) ); this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) ); if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) { var lineDistances = new THREE.Float32Attribute( geometry.lineDistances.length, 1 ); this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) ); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } } else if ( object instanceof THREE.Mesh ) { if ( geometry instanceof THREE.Geometry ) { this.fromGeometry( geometry ); } } return this; }, updateFromObject: function ( object ) { var geometry = object.geometry; if ( object instanceof THREE.Mesh ) { var direct = geometry.__directGeometry; if ( direct === undefined ) { return this.fromGeometry( geometry ); } direct.verticesNeedUpdate = geometry.verticesNeedUpdate; direct.normalsNeedUpdate = geometry.normalsNeedUpdate; direct.colorsNeedUpdate = geometry.colorsNeedUpdate; direct.uvsNeedUpdate = geometry.uvsNeedUpdate; direct.groupsNeedUpdate = geometry.groupsNeedUpdate; geometry.verticesNeedUpdate = false; geometry.normalsNeedUpdate = false; geometry.colorsNeedUpdate = false; geometry.uvsNeedUpdate = false; geometry.groupsNeedUpdate = false; geometry = direct; } if ( geometry.verticesNeedUpdate === true ) { var attribute = this.attributes.position; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.vertices ); attribute.needsUpdate = true; } geometry.verticesNeedUpdate = false; } if ( geometry.normalsNeedUpdate === true ) { var attribute = this.attributes.normal; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.normals ); attribute.needsUpdate = true; } geometry.normalsNeedUpdate = false; } if ( geometry.colorsNeedUpdate === true ) { var attribute = this.attributes.color; if ( attribute !== undefined ) { attribute.copyColorsArray( geometry.colors ); attribute.needsUpdate = true; } geometry.colorsNeedUpdate = false; } if ( geometry.uvsNeedUpdate ) { var attribute = this.attributes.uv; if ( attribute !== undefined ) { attribute.copyVector2sArray( geometry.uvs ); attribute.needsUpdate = true; } geometry.uvsNeedUpdate = false; } if ( geometry.lineDistancesNeedUpdate ) { var attribute = this.attributes.lineDistance; if ( attribute !== undefined ) { attribute.copyArray( geometry.lineDistances ); attribute.needsUpdate = true; } geometry.lineDistancesNeedUpdate = false; } if ( geometry.groupsNeedUpdate ) { geometry.computeGroups( object.geometry ); this.groups = geometry.groups; geometry.groupsNeedUpdate = false; } return this; }, fromGeometry: function ( geometry ) { geometry.__directGeometry = new THREE.DirectGeometry().fromGeometry( geometry ); return this.fromDirectGeometry( geometry.__directGeometry ); }, fromDirectGeometry: function ( geometry ) { var positions = new Float32Array( geometry.vertices.length * 3 ); this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) ); if ( geometry.normals.length > 0 ) { var normals = new Float32Array( geometry.normals.length * 3 ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) ); } if ( geometry.colors.length > 0 ) { var colors = new Float32Array( geometry.colors.length * 3 ); this.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) ); } if ( geometry.uvs.length > 0 ) { var uvs = new Float32Array( geometry.uvs.length * 2 ); this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) ); } if ( geometry.uvs2.length > 0 ) { var uvs2 = new Float32Array( geometry.uvs2.length * 2 ); this.addAttribute( 'uv2', new THREE.BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) ); } if ( geometry.indices.length > 0 ) { var TypeArray = geometry.vertices.length > 65535 ? Uint32Array : Uint16Array; var indices = new TypeArray( geometry.indices.length * 3 ); this.setIndex( new THREE.BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ) ); } // groups this.groups = geometry.groups; // morphs for ( var name in geometry.morphTargets ) { var array = []; var morphTargets = geometry.morphTargets[ name ]; for ( var i = 0, l = morphTargets.length; i < l; i ++ ) { var morphTarget = morphTargets[ i ]; var attribute = new THREE.Float32Attribute( morphTarget.length * 3, 3 ); array.push( attribute.copyVector3sArray( morphTarget ) ); } this.morphAttributes[ name ] = array; } // skinning if ( geometry.skinIndices.length > 0 ) { var skinIndices = new THREE.Float32Attribute( geometry.skinIndices.length * 4, 4 ); this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) ); } if ( geometry.skinWeights.length > 0 ) { var skinWeights = new THREE.Float32Attribute( geometry.skinWeights.length * 4, 4 ); this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) ); } // if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } return this; }, computeBoundingBox: function () { var vector = new THREE.Vector3(); return function () { if ( this.boundingBox === null ) { this.boundingBox = new THREE.Box3(); } var positions = this.attributes.position.array; if ( positions ) { this.boundingBox.setFromArray( positions ); } if ( positions === undefined || positions.length === 0 ) { this.boundingBox.min.set( 0, 0, 0 ); this.boundingBox.max.set( 0, 0, 0 ); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } }; }(), computeBoundingSphere: function () { var box = new THREE.Box3(); var vector = new THREE.Vector3(); return function () { if ( this.boundingSphere === null ) { this.boundingSphere = new THREE.Sphere(); } var positions = this.attributes.position.array; if ( positions ) { var center = this.boundingSphere.center; box.setFromArray( positions ); box.center( center ); // hoping to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case var maxRadiusSq = 0; for ( var i = 0, il = positions.length; i < il; i += 3 ) { vector.fromArray( positions, i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) ); } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } }; }(), computeFaceNormals: function () { // backwards compatibility }, computeVertexNormals: function () { var index = this.index; var attributes = this.attributes; var groups = this.groups; if ( attributes.position ) { var positions = attributes.position.array; if ( attributes.normal === undefined ) { this.addAttribute( 'normal', new THREE.BufferAttribute( new Float32Array( positions.length ), 3 ) ); } else { // reset existing normals to zero var array = attributes.normal.array; for ( var i = 0, il = array.length; i < il; i ++ ) { array[ i ] = 0; } } var normals = attributes.normal.array; var vA, vB, vC, pA = new THREE.Vector3(), pB = new THREE.Vector3(), pC = new THREE.Vector3(), cb = new THREE.Vector3(), ab = new THREE.Vector3(); // indexed elements if ( index ) { var indices = index.array; if ( groups.length === 0 ) { this.addGroup( 0, indices.length ); } for ( var j = 0, jl = groups.length; j < jl; ++ j ) { var group = groups[ j ]; var start = group.start; var count = group.count; for ( var i = start, il = start + count; i < il; i += 3 ) { vA = indices[ i + 0 ] * 3; vB = indices[ i + 1 ] * 3; vC = indices[ i + 2 ] * 3; pA.fromArray( positions, vA ); pB.fromArray( positions, vB ); pC.fromArray( positions, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ vA ] += cb.x; normals[ vA + 1 ] += cb.y; normals[ vA + 2 ] += cb.z; normals[ vB ] += cb.x; normals[ vB + 1 ] += cb.y; normals[ vB + 2 ] += cb.z; normals[ vC ] += cb.x; normals[ vC + 1 ] += cb.y; normals[ vC + 2 ] += cb.z; } } } else { // non-indexed elements (unconnected triangle soup) for ( var i = 0, il = positions.length; i < il; i += 9 ) { pA.fromArray( positions, i ); pB.fromArray( positions, i + 3 ); pC.fromArray( positions, i + 6 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normals[ i ] = cb.x; normals[ i + 1 ] = cb.y; normals[ i + 2 ] = cb.z; normals[ i + 3 ] = cb.x; normals[ i + 4 ] = cb.y; normals[ i + 5 ] = cb.z; normals[ i + 6 ] = cb.x; normals[ i + 7 ] = cb.y; normals[ i + 8 ] = cb.z; } } this.normalizeNormals(); attributes.normal.needsUpdate = true; } }, merge: function ( geometry, offset ) { if ( geometry instanceof THREE.BufferGeometry === false ) { console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); return; } if ( offset === undefined ) offset = 0; var attributes = this.attributes; for ( var key in attributes ) { if ( geometry.attributes[ key ] === undefined ) continue; var attribute1 = attributes[ key ]; var attributeArray1 = attribute1.array; var attribute2 = geometry.attributes[ key ]; var attributeArray2 = attribute2.array; var attributeSize = attribute2.itemSize; for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) { attributeArray1[ j ] = attributeArray2[ i ]; } } return this; }, normalizeNormals: function () { var normals = this.attributes.normal.array; var x, y, z, n; for ( var i = 0, il = normals.length; i < il; i += 3 ) { x = normals[ i ]; y = normals[ i + 1 ]; z = normals[ i + 2 ]; n = 1.0 / Math.sqrt( x * x + y * y + z * z ); normals[ i ] *= n; normals[ i + 1 ] *= n; normals[ i + 2 ] *= n; } }, toNonIndexed: function () { if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' ); return this; } var geometry2 = new THREE.BufferGeometry(); var indices = this.index.array; var attributes = this.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; var array = attribute.array; var itemSize = attribute.itemSize; var array2 = new array.constructor( indices.length * itemSize ); var index = 0, index2 = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { index = indices[ i ] * itemSize; for ( var j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } geometry2.addAttribute( name, new THREE.BufferAttribute( array2, itemSize ) ); } return geometry2; }, toJSON: function () { var data = { metadata: { version: 4.4, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } data.data = { attributes: {} }; var index = this.index; if ( index !== null ) { var array = Array.prototype.slice.call( index.array ); data.data.index = { type: index.array.constructor.name, array: array }; } var attributes = this.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var array = Array.prototype.slice.call( attribute.array ); data.data.attributes[ key ] = { itemSize: attribute.itemSize, type: attribute.array.constructor.name, array: array }; } var groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } var boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new THREE.BufferGeometry().copy( this ); }, copy: function ( source ) { var index = source.index; if ( index !== null ) { this.setIndex( index.clone() ); } var attributes = source.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() ); } var groups = source.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; this.addGroup( group.start, group.count ); } return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.BufferGeometry.prototype ); THREE.BufferGeometry.MaxIndex = 65535; // File:src/core/InstancedBufferGeometry.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.InstancedBufferGeometry = function () { THREE.BufferGeometry.call( this ); this.type = 'InstancedBufferGeometry'; this.maxInstancedCount = undefined; }; THREE.InstancedBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.InstancedBufferGeometry.prototype.constructor = THREE.InstancedBufferGeometry; THREE.InstancedBufferGeometry.prototype.addGroup = function ( start, count, instances ) { this.groups.push( { start: start, count: count, instances: instances } ); }; THREE.InstancedBufferGeometry.prototype.copy = function ( source ) { var index = source.index; if ( index !== null ) { this.setIndex( index.clone() ); } var attributes = source.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() ); } var groups = source.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; this.addGroup( group.start, group.count, group.instances ); } return this; }; THREE.EventDispatcher.prototype.apply( THREE.InstancedBufferGeometry.prototype ); // File:src/core/Uniform.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Uniform = function ( type, value ) { this.type = type; this.value = value; this.dynamic = false; }; THREE.Uniform.prototype = { constructor: THREE.Uniform, onUpdate: function ( callback ) { this.dynamic = true; this.onUpdateCallback = callback; return this; } }; // File:src/animation/AnimationClip.js /** * * Reusable set of Tracks that represent an animation. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ THREE.AnimationClip = function ( name, duration, tracks ) { this.name = name || THREE.Math.generateUUID(); this.tracks = tracks; this.duration = ( duration !== undefined ) ? duration : -1; // this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) { this.resetDuration(); } // maybe only do these on demand, as doing them here could potentially slow down loading // but leaving these here during development as this ensures a lot of testing of these functions this.trim(); this.optimize(); }; THREE.AnimationClip.prototype = { constructor: THREE.AnimationClip, resetDuration: function() { var tracks = this.tracks, duration = 0; for ( var i = 0, n = tracks.length; i !== n; ++ i ) { var track = this.tracks[ i ]; duration = Math.max( duration, track.times[ track.times.length - 1 ] ); } this.duration = duration; }, trim: function() { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].trim( 0, this.duration ); } return this; }, optimize: function() { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].optimize(); } return this; } }; // Static methods: Object.assign( THREE.AnimationClip, { parse: function( json ) { var tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 ); for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) { tracks.push( THREE.KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) ); } return new THREE.AnimationClip( json.name, json.duration, tracks ); }, toJSON: function( clip ) { var tracks = [], clipTracks = clip.tracks; var json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks }; for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) { tracks.push( THREE.KeyframeTrack.toJSON( clipTracks[ i ] ) ); } return json; }, CreateFromMorphTargetSequence: function( name, morphTargetSequence, fps ) { var numMorphTargets = morphTargetSequence.length; var tracks = []; for ( var i = 0; i < numMorphTargets; i ++ ) { var times = []; var values = []; times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets ); values.push( 0, 1, 0 ); var order = THREE.AnimationUtils.getKeyframeOrder( times ); times = THREE.AnimationUtils.sortedArray( times, 1, order ); values = THREE.AnimationUtils.sortedArray( values, 1, order ); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( times[ 0 ] === 0 ) { times.push( numMorphTargets ); values.push( values[ 0 ] ); } tracks.push( new THREE.NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) ); } return new THREE.AnimationClip( name, -1, tracks ); }, findByName: function( clipArray, name ) { for ( var i = 0; i < clipArray.length; i ++ ) { if ( clipArray[ i ].name === name ) { return clipArray[ i ]; } } return null; }, CreateClipsFromMorphTargetSequences: function( morphTargets, fps ) { var animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 var pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( var i = 0, il = morphTargets.length; i < il; i ++ ) { var morphTarget = morphTargets[ i ]; var parts = morphTarget.name.match( pattern ); if ( parts && parts.length > 1 ) { var name = parts[ 1 ]; var animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) { animationToMorphTargets[ name ] = animationMorphTargets = []; } animationMorphTargets.push( morphTarget ); } } var clips = []; for ( var name in animationToMorphTargets ) { clips.push( THREE.AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps ) ); } return clips; }, // parse the animation.hierarchy format parseAnimation: function( animation, bones, nodeName ) { if ( ! animation ) { console.error( " no animation in JSONLoader data" ); return null; } var addNonemptyTrack = function( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if ( animationKeys.length !== 0 ) { var times = []; var values = []; THREE.AnimationUtils.flattenJSON( animationKeys, times, values, propertyName ); // empty keys are filtered out, so check again if ( times.length !== 0 ) { destTracks.push( new trackType( trackName, times, values ) ); } } }; var tracks = []; var clipName = animation.name || 'default'; // automatic length determination in AnimationClip. var duration = animation.length || -1; var fps = animation.fps || 30; var hierarchyTracks = animation.hierarchy || []; for ( var h = 0; h < hierarchyTracks.length; h ++ ) { var animationKeys = hierarchyTracks[ h ].keys; // skip empty tracks if ( ! animationKeys || animationKeys.length == 0 ) continue; // process morph targets in a way exactly compatible // with AnimationHandler.init( animation ) if ( animationKeys[0].morphTargets ) { // figure out all morph targets used in this track var morphTargetNames = {}; for ( var k = 0; k < animationKeys.length; k ++ ) { if ( animationKeys[k].morphTargets ) { for ( var m = 0; m < animationKeys[k].morphTargets.length; m ++ ) { morphTargetNames[ animationKeys[k].morphTargets[m] ] = -1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( var morphTargetName in morphTargetNames ) { var times = []; var values = []; for ( var m = 0; m !== animationKeys[k].morphTargets.length; ++ m ) { var animationKey = animationKeys[k]; times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ) } tracks.push( new THREE.NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); } duration = morphTargetNames.length * ( fps || 1.0 ); } else { // ...assume skeletal animation var boneName = '.bones[' + bones[ h ].name + ']'; addNonemptyTrack( THREE.VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ); addNonemptyTrack( THREE.QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ); addNonemptyTrack( THREE.VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks ); } } if ( tracks.length === 0 ) { return null; } var clip = new THREE.AnimationClip( clipName, duration, tracks ); return clip; } } ); // File:src/animation/AnimationMixer.js /** * * Player for AnimationClips. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.AnimationMixer = function( root ) { this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; }; THREE.AnimationMixer.prototype = { constructor: THREE.AnimationMixer, // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction: function( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipName = ( typeof clip === 'string' ) ? clip : clip.name, clipObject = ( clip !== clipName ) ? clip : null, actionsForClip = this._actionsByClip[ clipName ], prototypeAction; if ( actionsForClip !== undefined ) { var existingAction = actionsForClip.actionByRoot[ rootUuid ]; if ( existingAction !== undefined ) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ]; // also, take the clip from the prototype action clipObject = prototypeAction._clip; if ( clip !== clipName && clip !== clipObject ) { throw new Error( "Different clips with the same name detected!" ); } } // clip must be known when specified via string if ( clipObject === null ) return null; // allocate all resources required to run it var newAction = new THREE. AnimationMixer._Action( this, clipObject, optionalRoot ); this._bindAction( newAction, prototypeAction ); // and make the action known to the memory manager this._addInactiveAction( newAction, clipName, rootUuid ); return newAction; }, // get an existing action existingAction: function( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipName = ( typeof clip === 'string' ) ? clip : clip.name, actionsForClip = this._actionsByClip[ clipName ]; if ( actionsForClip !== undefined ) { return actionsForClip.actionByRoot[ rootUuid ] || null; } return null; }, // deactivates all previously scheduled actions stopAllAction: function() { var actions = this._actions, nActions = this._nActiveActions, bindings = this._bindings, nBindings = this._nActiveBindings; this._nActiveActions = 0; this._nActiveBindings = 0; for ( var i = 0; i !== nActions; ++ i ) { actions[ i ].reset(); } for ( var i = 0; i !== nBindings; ++ i ) { bindings[ i ].useCount = 0; } return this; }, // advance the time and update apply the animation update: function( deltaTime ) { deltaTime *= this.timeScale; var actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ), accuIndex = this._accuIndex ^= 1; // run active actions for ( var i = 0; i !== nActions; ++ i ) { var action = actions[ i ]; if ( action.enabled ) { action._update( time, deltaTime, timeDirection, accuIndex ); } } // update scene graph var bindings = this._bindings, nBindings = this._nActiveBindings; for ( var i = 0; i !== nBindings; ++ i ) { bindings[ i ].apply( accuIndex ); } return this; }, // return this mixer's root target object getRoot: function() { return this._root; }, // free all resources specific to a particular clip uncacheClip: function( clip ) { var actions = this._actions, clipName = clip.name, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipName ]; if ( actionsForClip !== undefined ) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away var actionsToRemove = actionsForClip.knownActions; for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) { var action = actionsToRemove[ i ]; this._deactivateAction( action ); var cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction( action ); } delete actionsByClip[ clipName ]; } }, // free all resources specific to a particular root target object uncacheRoot: function( root ) { var rootUuid = root.uuid, actionsByClip = this._actionsByClip; for ( var clipName in actionsByClip ) { var actionByRoot = actionsByClip[ clipName ].actionByRoot, action = actionByRoot[ rootUuid ]; if ( action !== undefined ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName !== undefined ) { for ( var trackName in bindingByName ) { var binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding ); } } }, // remove a targeted clip from the cache uncacheAction: function( clip, optionalRoot ) { var action = this.existingAction( clip, optionalRoot ); if ( action !== null ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } }; THREE.EventDispatcher.prototype.apply( THREE.AnimationMixer.prototype ); THREE.AnimationMixer._Action = function( mixer, clip, localRoot ) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot || null; var tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks ); var interpolantSettings = { endingStart: THREE.ZeroCurvatureEnding, endingEnd: THREE.ZeroCurvatureEnding }; for ( var i = 0; i !== nTracks; ++ i ) { var interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks ); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = THREE.LoopRepeat; this._loopCount = -1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // false -> zero effective time scale this.enabled = true; // true -> zero effective weight this.clampWhenFinished = false; // keep feeding the last frame? this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate this.zeroSlopeAtEnd = true; // clips for start, loop and end }; THREE.AnimationMixer._Action.prototype = { constructor: THREE.AnimationMixer._Action, // State & Scheduling play: function() { this._mixer._activateAction( this ); return this; }, stop: function() { this._mixer._deactivateAction( this ); return this.reset(); }, reset: function() { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = -1; // forget previous loops this._startTime = null; // forget scheduling return this.stopFading().stopWarping(); }, isRunning: function() { var start = this._startTime; return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this ) }, // return true when play has been called isScheduled: function() { return this._mixer._isActiveAction( this ); }, startAt: function( time ) { this._startTime = time; return this; }, setLoop: function( mode, repetitions ) { this.loop = mode; this.repetitions = repetitions; return this; }, // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight: function( weight ) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); }, // return the weight considering fading and .enabled getEffectiveWeight: function() { return this._effectiveWeight; }, fadeIn: function( duration ) { return this._scheduleFading( duration, 0, 1 ); }, fadeOut: function( duration ) { return this._scheduleFading( duration, 1, 0 ); }, crossFadeFrom: function( fadeOutAction, duration, warp ) { var mixer = this._mixer; fadeOutAction.fadeOut( duration ); this.fadeIn( duration ); if( warp ) { var fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration ); } return this; }, crossFadeTo: function( fadeInAction, duration, warp ) { return fadeInAction.crossFadeFrom( this, duration, warp ); }, stopFading: function() { var weightInterpolant = this._weightInterpolant; if ( weightInterpolant !== null ) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant ); } return this; }, // Time Scale Control // set the weight stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale: function( timeScale ) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 :timeScale; return this.stopWarping(); }, // return the time scale considering warping and .paused getEffectiveTimeScale: function() { return this._effectiveTimeScale; }, setDuration: function( duration ) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); }, syncWith: function( action ) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); }, halt: function( duration ) { return this.warp( this._currentTimeScale, 0, duration ); }, warp: function( startTimeScale, endTimeScale, duration ) { var mixer = this._mixer, now = mixer.time, interpolant = this._timeScaleInterpolant, timeScale = this.timeScale; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(), this._timeScaleInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; times[ 1 ] = now + duration; values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale; return this; }, stopWarping: function() { var timeScaleInterpolant = this._timeScaleInterpolant; if ( timeScaleInterpolant !== null ) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); } return this; }, // Object Accessors getMixer: function() { return this._mixer; }, getClip: function() { return this._clip; }, getRoot: function() { return this._localRoot || this._mixer._root; }, // Interna _update: function( time, deltaTime, timeDirection, accuIndex ) { // called by the mixer var startTime = this._startTime; if ( startTime !== null ) { // check for scheduled start of action var timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) { return; // yet to come / don't decide when delta = 0 } // start this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } // apply time scale and advance time deltaTime *= this._updateTimeScale( time ); var clipTime = this._updateTime( deltaTime ); // note: _updateTime may disable the action resulting in // an effective weight of 0 var weight = this._updateWeight( time ); if ( weight > 0 ) { var interpolants = this._interpolants; var propertyMixers = this._propertyBindings; for ( var j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulate( accuIndex, weight ); } } }, _updateWeight: function( time ) { var weight = 0; if ( this.enabled ) { weight = this.weight; var interpolant = this._weightInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; weight *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopFading(); if ( interpolantValue === 0 ) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; }, _updateTimeScale: function( time ) { var timeScale = 0; if ( ! this.paused ) { timeScale = this.timeScale; var interpolant = this._timeScaleInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; timeScale *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopWarping(); if ( timeScale === 0 ) { // motion has halted, pause this.pause = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; }, _updateTime: function( deltaTime ) { var time = this.time + deltaTime; if ( deltaTime === 0 ) return time; var duration = this._clip.duration, loop = this.loop, loopCount = this._loopCount, pingPong = false; switch ( loop ) { case THREE.LoopOnce: if ( loopCount === -1 ) { // just started this.loopCount = 0; this._setEndings( true, true, false ); } if ( time >= duration ) { time = duration; } else if ( time < 0 ) { time = 0; } else break; // reached the end if ( this.clampWhenFinished ) this.pause = true; else this.enabled = false; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? -1 : 1 } ); break; case THREE.LoopPingPong: pingPong = true; case THREE.LoopRepeat: if ( loopCount === -1 ) { // just started if ( deltaTime > 0 ) { loopCount = 0; this._setEndings( true, this.repetitions === 0, pingPong ); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings( this.repetitions === 0, true, pingPong ); } } if ( time >= duration || time < 0 ) { // wrap around var loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta; loopCount += Math.abs( loopDelta ); var pending = this.repetitions - loopCount; if ( pending < 0 ) { // stop (switch state, clamp time, fire event) if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; time = deltaTime > 0 ? duration : 0; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : -1 } ); break; } else if ( pending === 0 ) { // transition to last round var atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong ); } else { this._setEndings( false, false, pingPong ); } this._loopCount = loopCount; this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } ); } if ( loop === THREE.LoopPingPong && ( loopCount & 1 ) === 1 ) { // invert time for the "pong round" this.time = time; return duration - time; } break; } this.time = time; return time; }, _setEndings: function( atStart, atEnd, pingPong ) { var settings = this._interpolantSettings; if ( pingPong ) { settings.endingStart = THREE.ZeroSlopeEnding; settings.endingEnd = THREE.ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if ( atStart ) { settings.endingStart = this.zeroSlopeAtStart ? THREE.ZeroSlopeEnding : THREE.ZeroCurvatureEnding; } else { settings.endingStart = THREE.WrapAroundEnding; } if ( atEnd ) { settings.endingEnd = this.zeroSlopeAtEnd ? THREE.ZeroSlopeEnding : THREE.ZeroCurvatureEnding; } else { settings.endingEnd = THREE.WrapAroundEnding; } } }, _scheduleFading: function( duration, weightNow, weightThen ) { var mixer = this._mixer, now = mixer.time, interpolant = this._weightInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(), this._weightInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen; return this; } }; // Implementation details: Object.assign( THREE.AnimationMixer.prototype, { _bindAction: function( action, prototypeAction ) { var root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName, bindingsByName = bindingsByRoot[ rootUuid ]; if ( bindingsByName === undefined ) { bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName; } for ( var i = 0; i !== nTracks; ++ i ) { var track = tracks[ i ], trackName = track.name, binding = bindingsByName[ trackName ]; if ( binding !== undefined ) { bindings[ i ] = binding; } else { binding = bindings[ i ]; if ( binding !== undefined ) { // existing binding, make sure the cache knows if ( binding._cacheIndex === null ) { ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); } continue; } var path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath; binding = new THREE.PropertyMixer( THREE.PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() ); ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); bindings[ i ] = binding; } interpolants[ i ].resultBuffer = binding.buffer; } }, _activateAction: function( action ) { if ( ! this._isActiveAction( action ) ) { if ( action._cacheIndex === null ) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind var rootUuid = ( action._localRoot || this._root ).uuid, clipName = action._clip.name, actionsForClip = this._actionsByClip[ clipName ]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] ); this._addInactiveAction( action, clipName, rootUuid ); } var bindings = action._propertyBindings; // increment reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( binding.useCount ++ === 0 ) { this._lendBinding( binding ); binding.saveOriginalState(); } } this._lendAction( action ); } }, _deactivateAction: function( action ) { if ( this._isActiveAction( action ) ) { var bindings = action._propertyBindings; // decrement reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.useCount === 0 ) { binding.restoreOriginalState(); this._takeBackBinding( binding ); } } this._takeBackAction( action ); } }, // Memory manager _initMemoryManager: function() { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< _Action > - used as prototypes // actionByRoot: _Action - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; var scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; }, // Memory management for _Action objects _isActiveAction: function( action ) { var index = action._cacheIndex; return index !== null && index < this._nActiveActions; }, _addInactiveAction: function( action, clipName, rootUuid ) { var actions = this._actions, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipName ]; if ( actionsForClip === undefined ) { actionsForClip = { knownActions: [ action ], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[ clipName ] = actionsForClip; } else { var knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push( action ); } action._cacheIndex = actions.length; actions.push( action ); actionsForClip.actionByRoot[ rootUuid ] = action; }, _removeInactiveAction: function( action ) { var actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); action._cacheIndex = null; var clipName = action._clip.name, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipName ], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; var actionByRoot = actionsForClip.actionByRoot, rootUuid = ( actions._localRoot || this._root ).uuid; delete actionByRoot[ rootUuid ]; if ( knownActionsForClip.length === 0 ) { delete actionsByClip[ clipName ]; } this._removeInactiveBindingsForAction( action ); }, _removeInactiveBindingsForAction: function( action ) { var bindings = action._propertyBindings; for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.referenceCount === 0 ) { this._removeInactiveBinding( binding ); } } }, _lendAction: function( action ) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s var actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions ++, firstInactiveAction = actions[ lastActiveIndex ]; action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action; firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction; }, _takeBackAction: function( action ) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a var actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = -- this._nActiveActions, lastActiveAction = actions[ firstInactiveIndex ]; action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action; lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction; }, // Memory management for PropertyMixer objects _addInactiveBinding: function( binding, rootUuid, trackName ) { var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], bindings = this._bindings; if ( bindingByName === undefined ) { bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName; } bindingByName[ trackName ] = binding; binding._cacheIndex = bindings.length; bindings.push( binding ); }, _removeInactiveBinding: function( binding ) { var bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop(); delete bindingByName[ trackName ]; remove_empty_map: { for ( var _ in bindingByName ) break remove_empty_map; delete bindingsByRoot[ rootUuid ]; } }, _lendBinding: function( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings ++, firstInactiveBinding = bindings[ lastActiveIndex ]; binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding; }, _takeBackBinding: function( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = -- this._nActiveBindings, lastActiveBinding = bindings[ firstInactiveIndex ]; binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding; }, // Memory management of Interpolants for weight and time scale _lendControlInterpolant: function() { var interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++, interpolant = interpolants[ lastActiveIndex ]; if ( interpolant === undefined ) { interpolant = new THREE.LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, this._controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant; } return interpolant; }, _takeBackControlInterpolant: function( interpolant ) { var interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = -- this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[ firstInactiveIndex ]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant; }, _controlInterpolantsResultBuffer: new Float32Array( 1 ) } ); // File:src/animation/AnimationObjectGroup.js /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. * * @author tschw */ THREE.AnimationObjectGroup = function( var_args ) { this.uuid = THREE.Math.generateUUID(); // cached objects followed by the active ones this._objects = Array.prototype.slice.call( arguments ); this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite var indices = {}; this._indicesByUUID = indices; // for bookkeeping for ( var i = 0, n = arguments.length; i !== n; ++ i ) { indices[ arguments[ i ].uuid ] = i; } this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays var scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; }; THREE.AnimationObjectGroup.prototype = { constructor: THREE.AnimationObjectGroup, add: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index === undefined ) { // unknown object -> add it to the ACTIVE region index = nObjects ++; indicesByUUID[ uuid ] = index; objects.push( object ); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { bindings[ j ].push( new THREE.PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); } } else if ( index < nCachedObjects ) { var knownObject = objects[ index ]; // move existing object to the ACTIVE region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ]; indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; indicesByUUID[ uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = lastCached; if ( binding === undefined ) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new THREE.PropertyBinding( object, paths[ j ], parsedPaths[ j ] ); } bindingsForPath[ firstActiveIndex ] = binding; } } else if ( objects[ index ] !== knownObject) { console.error( "Different objects with the same UUID " + "detected. Clean the caches or recreate your " + "infrastructure when reloading scenes..." ); } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects; }, remove: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined && index >= nCachedObjects ) { // move existing object into the CACHED region var lastCachedIndex = nCachedObjects ++, firstActiveObject = objects[ lastCachedIndex ]; indicesByUUID[ firstActiveObject.uuid ] = index; objects[ index ] = firstActiveObject; indicesByUUID[ uuid ] = lastCachedIndex; objects[ lastCachedIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], firstActive = bindingsForPath[ lastCachedIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = firstActive; bindingsForPath[ lastCachedIndex ] = binding; } } } // for arguments this.nCachedObjects_ = nCachedObjects; }, // remove & forget uncache: function( var_args ) { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined ) { delete indicesByUUID[ uuid ]; if ( index < nCachedObjects ) { // object is cached, shrink the CACHED region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ], lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; // last cached object takes this object's place indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; // last object goes to the activated slot and pop indicesByUUID[ lastObject.uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], last = bindingsForPath[ lastIndex ]; bindingsForPath[ index ] = lastCached; bindingsForPath[ firstActiveIndex ] = last; bindingsForPath.pop(); } } else { // object is active, just swap with the last and pop var lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; indicesByUUID[ lastObject.uuid ] = index; objects[ index ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ]; bindingsForPath[ index ] = bindingsForPath[ lastIndex ]; bindingsForPath.pop(); } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects; }, // Internal interface used by befriended PropertyBinding.Composite: subscribe_: function( path, parsedPath ) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ], bindings = this._bindings; if ( index !== undefined ) return bindings[ index ]; var paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array( nObjects ); index = bindings.length; indicesByPath[ path ] = index; paths.push( path ); parsedPaths.push( parsedPath ); bindings.push( bindingsForPath ); for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) { var object = objects[ i ]; bindingsForPath[ i ] = new THREE.PropertyBinding( object, path, parsedPath ); } return bindingsForPath; }, unsubscribe_: function( path ) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ]; if ( index !== undefined ) { var paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[ lastBindingsIndex ], lastBindingsPath = path[ lastBindingsIndex ]; indicesByPath[ lastBindingsPath ] = index; bindings[ index ] = lastBindings; bindings.pop(); parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; parsedPaths.pop(); paths[ index ] = paths[ lastBindingsIndex ]; paths.pop(); } } }; // File:src/animation/AnimationUtils.js /** * @author tschw * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ THREE.AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function( array, from, to ) { if ( THREE.AnimationUtils.isTypedArray( array ) ) { return new array.constructor( array.subarray( from, to ) ); } return array.slice( from, to ); }, // converts an array to a specific type convertArray: function( array, type, forceClone ) { if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) return array; if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { return new type( array ); // create typed array } return Array.prototype.slice.call( array ); // create Array }, isTypedArray: function( object ) { return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); }, // returns an array by which times and values can be sorted getKeyframeOrder: function( times ) { function compareTime( i, j ) { return times[ i ] - times[ j ]; } var n = times.length; var result = new Array( n ); for ( var i = 0; i !== n; ++ i ) result[ i ] = i; result.sort( compareTime ); return result; }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function( values, stride, order ) { var nValues = values.length; var result = new values.constructor( nValues ); for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { var srcOffset = order[ i ] * stride; for ( var j = 0; j !== stride; ++ j ) { result[ dstOffset ++ ] = values[ srcOffset + j ]; } } return result; }, // function for parsing AOS keyframe formats flattenJSON: function( jsonKeys, times, values, valuePropertyName ) { var i = 1, key = jsonKeys[ 0 ]; while ( key !== undefined && key[ valuePropertyName ] === undefined ) { key = jsonKeys[ i ++ ]; } if ( key === undefined ) return; // no data var value = key[ valuePropertyName ]; if ( value === undefined ) return; // no data if ( Array.isArray( value ) ) { do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push.apply( values, value ); // push all elements } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else if ( value.toArray !== undefined ) { // ...assume THREE.Math-ish do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); value.toArray( values, values.length ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else { // otherwise push as-is do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push( value ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } } }; // File:src/animation/KeyframeTrack.js /** * * A timed sequence of keyframes for a specific property. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.KeyframeTrack = function ( name, times, values, interpolation ) { if( name === undefined ) throw new Error( "track name is undefined" ); if( times === undefined || times.length === 0 ) { throw new Error( "no keyframes in track named " + name ); } this.name = name; this.times = THREE.AnimationUtils.convertArray( times, this.TimeBufferType ); this.values = THREE.AnimationUtils.convertArray( values, this.ValueBufferType ); this.setInterpolation( interpolation || this.DefaultInterpolation ); this.validate(); this.optimize(); }; THREE.KeyframeTrack.prototype = { constructor: THREE.KeyframeTrack, TimeBufferType: Float32Array, ValueBufferType: Float32Array, DefaultInterpolation: THREE.InterpolateLinear, InterpolantFactoryMethodDiscrete: function( result ) { return new THREE.DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodLinear: function( result ) { return new THREE.LinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: function( result ) { return new THREE.CubicInterpolant( this.times, this.values, this.getValueSize(), result ); }, setInterpolation: function( interpolation ) { var factoryMethod = undefined; switch ( interpolation ) { case THREE.InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case THREE.InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case THREE.InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if ( factoryMethod === undefined ) { var message = "unsupported interpolation for " + this.ValueTypeName + " keyframe track named " + this.name; if ( this.createInterpolant === undefined ) { // fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) { this.setInterpolation( this.DefaultInterpolation ); } else { throw new Error( message ); // fatal, in this case } } console.warn( message ); return; } this.createInterpolant = factoryMethod; }, getInterpolation: function() { switch ( this.createInterpolant ) { case this.InterpolantFactoryMethodDiscrete: return THREE.InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return THREE.InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return THREE.InterpolateSmooth; } }, getValueSize: function() { return this.values.length / this.times.length; }, // move all keyframes either forwards or backwards in time shift: function( timeOffset ) { if( timeOffset !== 0.0 ) { var times = this.times; for( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] += timeOffset; } } return this; }, // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale: function( timeScale ) { if( timeScale !== 1.0 ) { var times = this.times; for( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] *= timeScale; } } return this; }, // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim: function( startTime, endTime ) { var times = this.times, nKeys = times.length, from = 0, to = nKeys - 1; while ( from !== nKeys && times[ from ] < startTime ) ++ from; while ( to !== -1 && times[ to ] > endTime ) -- to; ++ to; // inclusive -> exclusive bound if( from !== 0 || to !== nKeys ) { // empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) to = Math.max( to , 1 ), from = to - 1; var stride = this.getValueSize(); this.times = THREE.AnimationUtils.arraySlice( times, from, to ); this.values = THREE.AnimationUtils. arraySlice( this.values, from * stride, to * stride ); } return this; }, // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate: function() { var valid = true; var valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) { console.error( "invalid value size in track", this ); valid = false; } var times = this.times, values = this.values, nKeys = times.length; if( nKeys === 0 ) { console.error( "track is empty", this ); valid = false; } var prevTime = null; for( var i = 0; i !== nKeys; i ++ ) { var currTime = times[ i ]; if ( typeof currTime === 'number' && isNaN( currTime ) ) { console.error( "time is not a valid number", this, i, currTime ); valid = false; break; } if( prevTime !== null && prevTime > currTime ) { console.error( "out of order keys", this, i, currTime, prevTime ); valid = false; break; } prevTime = currTime; } if ( values !== undefined ) { if ( THREE.AnimationUtils.isTypedArray( values ) ) { for ( var i = 0, n = values.length; i !== n; ++ i ) { var value = values[ i ]; if ( isNaN( value ) ) { console.error( "value is not a valid number", this, i, value ); valid = false; break; } } } } return valid; }, // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize: function() { var times = this.times, values = this.values, stride = this.getValueSize(), writeIndex = 1; for( var i = 1, n = times.length - 1; i <= n; ++ i ) { var keep = false; var time = times[ i ]; var timeNext = times[ i + 1 ]; // remove adjacent keyframes scheduled at the same time if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) { // remove unnecessary keyframes same as their neighbors var offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for ( var j = 0; j !== stride; ++ j ) { var value = values[ offset + j ]; if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) { keep = true; break; } } } // in-place compaction if ( keep ) { if ( i !== writeIndex ) { times[ writeIndex ] = times[ i ]; var readOffset = i * stride, writeOffset = writeIndex * stride; for ( var j = 0; j !== stride; ++ j ) { values[ writeOffset + j ] = values[ readOffset + j ]; } } ++ writeIndex; } } if ( writeIndex !== times.length ) { this.times = THREE.AnimationUtils.arraySlice( times, 0, writeIndex ); this.values = THREE.AnimationUtils.arraySlice( values, 0, writeIndex * stride ); } return this; } }; // Static methods: Object.assign( THREE.KeyframeTrack, { // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): parse: function( json ) { if( json.type === undefined ) { throw new Error( "track type undefined, can not parse" ); } var trackType = THREE.KeyframeTrack._getTrackTypeForValueTypeName( json.type ); if ( json.times === undefined ) { console.warn( "legacy JSON format detected, converting" ); var times = [], values = []; THREE.AnimationUtils.flattenJSON( json.keys, times, values, 'value' ); json.times = times; json.values = values; } // derived classes can define a static parse method if ( trackType.parse !== undefined ) { return trackType.parse( json ); } else { // by default, we asssume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation ); } }, toJSON: function( track ) { var trackType = track.constructor; var json; // derived classes can define a static toJSON method if ( trackType.toJSON !== undefined ) { json = trackType.toJSON( track ); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': THREE.AnimationUtils.convertArray( track.times, Array ), 'values': THREE.AnimationUtils.convertArray( track.values, Array ) }; var interpolation = track.getInterpolation(); if ( interpolation !== track.DefaultInterpolation ) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; }, _getTrackTypeForValueTypeName: function( typeName ) { switch( typeName.toLowerCase() ) { case "scalar": case "double": case "float": case "number": case "integer": return THREE.NumberKeyframeTrack; case "vector": case "vector2": case "vector3": case "vector4": return THREE.VectorKeyframeTrack; case "color": return THREE.ColorKeyframeTrack; case "quaternion": return THREE.QuaternionKeyframeTrack; case "bool": case "boolean": return THREE.BooleanKeyframeTrack; case "string": return THREE.StringKeyframeTrack; }; throw new Error( "Unsupported typeName: " + typeName ); } } ); // File:src/animation/PropertyBinding.js /** * * A reference to a real property in the scene graph. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.PropertyBinding = function ( rootNode, path, parsedPath ) { this.path = path; this.parsedPath = parsedPath || THREE.PropertyBinding.parseTrackName( path ); this.node = THREE.PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode; this.rootNode = rootNode; }; THREE.PropertyBinding.prototype = { constructor: THREE.PropertyBinding, getValue: function getValue_unbound( targetArray, offset ) { this.bind(); this.getValue( targetArray, offset ); // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. }, setValue: function getValue_unbound( sourceArray, offset ) { this.bind(); this.setValue( sourceArray, offset ); }, // create getter / setter pair for a property in the scene graph bind: function() { var targetObject = this.node, parsedPath = this.parsedPath, objectName = parsedPath.objectName, propertyName = parsedPath.propertyName, propertyIndex = parsedPath.propertyIndex; if ( ! targetObject ) { targetObject = THREE.PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode; this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if ( ! targetObject ) { console.error( " trying to update node for track: " + this.path + " but it wasn't found." ); return; } if( objectName ) { var objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) { case 'materials': if( ! targetObject.material ) { console.error( ' can not bind to material as node does not have a material', this ); return; } if( ! targetObject.material.materials ) { console.error( ' can not bind to material.materials as node.material does not have a materials array', this ); return; } targetObject = targetObject.material.materials; break; case 'bones': if( ! targetObject.skeleton ) { console.error( ' can not bind to bones as node does not have a skeleton', this ); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for ( var i = 0; i < targetObject.length; i ++ ) { if ( targetObject[i].name === objectIndex ) { objectIndex = i; break; } } break; default: if ( targetObject[ objectName ] === undefined ) { console.error( ' can not bind to objectName of node, undefined', this ); return; } targetObject = targetObject[ objectName ]; } if ( objectIndex !== undefined ) { if( targetObject[ objectIndex ] === undefined ) { console.error( " trying to bind to objectIndex of objectName, but is undefined:", this, targetObject ); return; } targetObject = targetObject[ objectIndex ]; } } // resolve property var nodeProperty = targetObject[ propertyName ]; if ( ! nodeProperty ) { var nodeName = parsedPath.nodeName; console.error( " trying to update property for track: " + nodeName + '.' + propertyName + " but it wasn't found.", targetObject ); return; } // determine versioning scheme var versioning = this.Versioning.None; if ( targetObject.needsUpdate !== undefined ) { // material versioning = this.Versioning.NeedsUpdate; this.targetObject = targetObject; } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; this.targetObject = targetObject; } // determine how the property gets bound var bindingType = this.BindingType.Direct; if ( propertyIndex !== undefined ) { // access a sub element of the property array (only primitives are supported right now) if ( propertyName === "morphTargetInfluences" ) { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if ( ! targetObject.geometry ) { console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry', this ); return; } if ( ! targetObject.geometry.morphTargets ) { console.error( ' can not bind to morphTargetInfluences becasuse node does not have a geometry.morphTargets', this ); return; } for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) { if ( targetObject.geometry.morphTargets[i].name === propertyIndex ) { propertyIndex = i; break; } } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if ( nodeProperty.length !== undefined ) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; }, unbind: function() { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } }; Object.assign( THREE.PropertyBinding.prototype, { // prototype, continued // these are used to "bind" a nonexistent property _getValue_unavailable: function() {}, _setValue_unavailable: function() {}, // initial state of these methods that calls 'bind' _getValue_unbound: THREE.PropertyBinding.prototype.getValue, _setValue_unbound: THREE.PropertyBinding.prototype.setValue, BindingType: { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }, Versioning: { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }, GetterByBindingType: [ function getValue_direct( buffer, offset ) { buffer[ offset ] = this.node[ this.propertyName ]; }, function getValue_array( buffer, offset ) { var source = this.resolvedProperty; for ( var i = 0, n = source.length; i !== n; ++ i ) { buffer[ offset ++ ] = source[ i ]; } }, function getValue_arrayElement( buffer, offset ) { buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; }, function getValue_toArray( buffer, offset ) { this.resolvedProperty.toArray( buffer, offset ); } ], SetterByBindingTypeAndVersioning: [ [ // Direct function setValue_direct( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; }, function setValue_direct_setNeedsUpdate( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { this.node[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // EntireArray function setValue_array( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } }, function setValue_array_setNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.needsUpdate = true; }, function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // ArrayElement function setValue_arrayElement( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; }, function setValue_arrayElement_setNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // HasToFromArray function setValue_fromArray( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); }, function setValue_fromArray_setNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true; }, function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true; } ] ] } ); THREE.PropertyBinding.Composite = function( targetGroup, path, optionalParsedPath ) { var parsedPath = optionalParsedPath || THREE.PropertyBinding.parseTrackName( path ); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath ); }; THREE.PropertyBinding.Composite.prototype = { constructor: THREE.PropertyBinding.Composite, getValue: function( array, offset ) { this.bind(); // bind all binding var firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ]; // and only call .getValue on the first if ( binding !== undefined ) binding.getValue( array, offset ); }, setValue: function( array, offset ) { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].setValue( array, offset ); } }, bind: function() { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].bind(); } }, unbind: function() { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].unbind(); } } }; THREE.PropertyBinding.create = function( root, path, parsedPath ) { if ( ! ( root instanceof THREE.AnimationObjectGroup ) ) { return new THREE.PropertyBinding( root, path, parsedPath ); } else { return new THREE.PropertyBinding.Composite( root, path, parsedPath ); } }; THREE.PropertyBinding.parseTrackName = function( trackName ) { // matches strings in the form of: // nodeName.property // nodeName.property[accessor] // nodeName.material.property[accessor] // uuid.property[accessor] // uuid.objectName[objectIndex].propertyName[propertyIndex] // parentName/nodeName.property // parentName/parentName/nodeName.property[index] // .bone[Armature.DEF_cog].position // created and tested via https://regex101.com/#javascript var re = /^(([\w]+\/)*)([\w-\d]+)?(\.([\w]+)(\[([\w\d\[\]\_.:\- ]+)\])?)?(\.([\w.]+)(\[([\w\d\[\]\_. ]+)\])?)$/; var matches = re.exec(trackName); if( ! matches ) { throw new Error( "cannot parse trackName at all: " + trackName ); } if (matches.index === re.lastIndex) { re.lastIndex++; } var results = { // directoryName: matches[1], // (tschw) currently unused nodeName: matches[3], // allowed to be null, specified root node. objectName: matches[5], objectIndex: matches[7], propertyName: matches[9], propertyIndex: matches[11] // allowed to be null, specifies that the whole property is set. }; if( results.propertyName === null || results.propertyName.length === 0 ) { throw new Error( "can not parse propertyName from trackName: " + trackName ); } return results; }; THREE.PropertyBinding.findNode = function( root, nodeName ) { if( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === -1 || nodeName === root.name || nodeName === root.uuid ) { return root; } // search into skeleton bones. if( root.skeleton ) { var searchSkeleton = function( skeleton ) { for( var i = 0; i < skeleton.bones.length; i ++ ) { var bone = skeleton.bones[i]; if( bone.name === nodeName ) { return bone; } } return null; }; var bone = searchSkeleton( root.skeleton ); if( bone ) { return bone; } } // search into node subtree. if( root.children ) { var searchNodeSubtree = function( children ) { for( var i = 0; i < children.length; i ++ ) { var childNode = children[i]; if( childNode.name === nodeName || childNode.uuid === nodeName ) { return childNode; } var result = searchNodeSubtree( childNode.children ); if( result ) return result; } return null; }; var subTreeNode = searchNodeSubtree( root.children ); if( subTreeNode ) { return subTreeNode; } } return null; } // File:src/animation/PropertyMixer.js /** * * Buffered scene graph property that allows weighted accumulation. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.PropertyMixer = function ( binding, typeName, valueSize ) { this.binding = binding; this.valueSize = valueSize; var bufferType = Float64Array, mixFunction; switch ( typeName ) { case 'quaternion': mixFunction = this._slerp; break; case 'string': case 'bool': bufferType = Array, mixFunction = this._select; break; default: mixFunction = this._lerp; } this.buffer = new bufferType( valueSize * 4 ); // layout: [ incoming | accu0 | accu1 | orig ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property this._mixBufferRegion = mixFunction; this.cumulativeWeight = 0; this.useCount = 0; this.referenceCount = 0; }; THREE.PropertyMixer.prototype = { constructor: THREE.PropertyMixer, // accumulate data in the 'incoming' region into 'accu' accumulate: function( accuIndex, weight ) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place var buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride, currentWeight = this.cumulativeWeight; if ( currentWeight === 0 ) { // accuN := incoming * weight for ( var i = 0; i !== stride; ++ i ) { buffer[ offset + i ] = buffer[ i ]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; var mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride ); } this.cumulativeWeight = currentWeight; }, // apply the state of 'accu' to the binding when accus differ apply: function( accuIndex ) { var stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, binding = this.binding; this.cumulativeWeight = 0; if ( weight < 1 ) { // accuN := accuN + original * ( 1 - cumulativeWeight ) var originalValueOffset = stride * 3; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } for ( var i = stride, e = stride + stride; i !== e; ++ i ) { if ( buffer[ i ] !== buffer[ i + stride ] ) { // value has changed -> update scene graph binding.setValue( buffer, offset ); break; } } }, // remember the state of the bound property and copy it to both accus saveOriginalState: function() { var binding = this.binding; var buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * 3; binding.getValue( buffer, originalValueOffset ); // accu[0..1] := orig -- initially detect changes against the original for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) { buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; } this.cumulativeWeight = 0; }, // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState: function() { var originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset ); }, // mix functions _select: function( buffer, dstOffset, srcOffset, t, stride ) { if ( t >= 0.5 ) { for ( var i = 0; i !== stride; ++ i ) { buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; } } }, _slerp: function( buffer, dstOffset, srcOffset, t, stride ) { THREE.Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); }, _lerp: function( buffer, dstOffset, srcOffset, t, stride ) { var s = 1 - t; for ( var i = 0; i !== stride; ++ i ) { var j = dstOffset + i; buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; } } }; // File:src/animation/tracks/BooleanKeyframeTrack.js /** * * A Track of Boolean keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.BooleanKeyframeTrack = function ( name, times, values ) { THREE.KeyframeTrack.call( this, name, times, values ); }; THREE.BooleanKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.BooleanKeyframeTrack, ValueTypeName: 'bool', ValueBufferType: Array, DefaultInterpolation: THREE.IntepolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined // Note: Actually this track could have a optimized / compressed // representation of a single value and a custom interpolant that // computes "firstValue ^ isOdd( index )". } ); // File:src/animation/tracks/NumberKeyframeTrack.js /** * * A Track of numeric keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.NumberKeyframeTrack = function ( name, times, values, interpolation ) { THREE.KeyframeTrack.call( this, name, times, values, interpolation ); }; THREE.NumberKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.NumberKeyframeTrack, ValueTypeName: 'number', // ValueBufferType is inherited // DefaultInterpolation is inherited } ); // File:src/animation/tracks/QuaternionKeyframeTrack.js /** * * A Track of quaternion keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.QuaternionKeyframeTrack = function ( name, times, values, interpolation ) { THREE.KeyframeTrack.call( this, name, times, values, interpolation ); }; THREE.QuaternionKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.QuaternionKeyframeTrack, ValueTypeName: 'quaternion', // ValueBufferType is inherited DefaultInterpolation: THREE.InterpolateLinear, InterpolantFactoryMethodLinear: function( result ) { return new THREE.QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: undefined // not yet implemented } ); // File:src/animation/tracks/StringKeyframeTrack.js /** * * A Track that interpolates Strings * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.StringKeyframeTrack = function ( name, times, values, interpolation ) { THREE.KeyframeTrack.call( this, name, times, values, interpolation ); }; THREE.StringKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.StringKeyframeTrack, ValueTypeName: 'string', ValueBufferType: Array, DefaultInterpolation: THREE.IntepolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined } ); // File:src/animation/tracks/VectorKeyframeTrack.js /** * * A Track of vectored keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ THREE.VectorKeyframeTrack = function ( name, times, values, interpolation ) { THREE.KeyframeTrack.call( this, name, times, values, interpolation ); }; THREE.VectorKeyframeTrack.prototype = Object.assign( Object.create( THREE.KeyframeTrack.prototype ), { constructor: THREE.VectorKeyframeTrack, ValueTypeName: 'vector' // ValueBufferType is inherited // DefaultInterpolation is inherited } ); // File:src/audio/Audio.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Audio = function ( listener ) { THREE.Object3D.call( this ); this.type = 'Audio'; this.context = listener.context; this.source = this.context.createBufferSource(); this.source.onended = this.onEnded.bind( this ); this.gain = this.context.createGain(); this.gain.connect( listener.getInput() ); this.autoplay = false; this.startTime = 0; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.sourceType = 'empty'; this.filter = null; }; THREE.Audio.prototype = Object.create( THREE.Object3D.prototype ); THREE.Audio.prototype.constructor = THREE.Audio; THREE.Audio.prototype.getOutput = function () { return this.gain; }; THREE.Audio.prototype.load = function ( file ) { var buffer = new THREE.AudioBuffer( this.context ); buffer.load( file ); this.setBuffer( buffer ); return this; }; THREE.Audio.prototype.setNodeSource = function ( audioNode ) { this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect(); return this; }; THREE.Audio.prototype.setBuffer = function ( audioBuffer ) { var scope = this; audioBuffer.onReady( function( buffer ) { scope.source.buffer = buffer; scope.sourceType = 'buffer'; if ( scope.autoplay ) scope.play(); } ); return this; }; THREE.Audio.prototype.play = function () { if ( this.isPlaying === true ) { console.warn( 'THREE.Audio: Audio is already playing.' ); return; } if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } var source = this.context.createBufferSource(); source.buffer = this.source.buffer; source.loop = this.source.loop; source.onended = this.source.onended; source.start( 0, this.startTime ); source.playbackRate.value = this.playbackRate; this.isPlaying = true; this.source = source; this.connect(); }; THREE.Audio.prototype.pause = function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.stop(); this.startTime = this.context.currentTime; }; THREE.Audio.prototype.stop = function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.stop(); this.startTime = 0; }; THREE.Audio.prototype.connect = function () { if ( this.filter !== null ) { this.source.connect( this.filter ); this.filter.connect( this.getOutput() ); } else { this.source.connect( this.getOutput() ); } }; THREE.Audio.prototype.disconnect = function () { if ( this.filter !== null ) { this.source.disconnect( this.filter ); this.filter.disconnect( this.getOutput() ); } else { this.source.disconnect( this.getOutput() ); } }; THREE.Audio.prototype.getFilter = function () { return this.filter; }; THREE.Audio.prototype.setFilter = function ( value ) { if ( value === undefined ) value = null; if ( this.isPlaying === true ) { this.disconnect(); this.filter = value; this.connect(); } else { this.filter = value; } }; THREE.Audio.prototype.setPlaybackRate = function ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.playbackRate = value; if ( this.isPlaying === true ) { this.source.playbackRate.value = this.playbackRate; } }; THREE.Audio.prototype.getPlaybackRate = function () { return this.playbackRate; }; THREE.Audio.prototype.onEnded = function() { this.isPlaying = false; }; THREE.Audio.prototype.setLoop = function ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.source.loop = value; }; THREE.Audio.prototype.getLoop = function () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return false; } return this.source.loop; }; THREE.Audio.prototype.setVolume = function ( value ) { this.gain.gain.value = value; }; THREE.Audio.prototype.getVolume = function () { return this.gain.gain.value; }; // File:src/audio/AudioAnalyser.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AudioAnalyser = function ( audio, fftSize ) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048; this.data = new Uint8Array( this.analyser.frequencyBinCount ); audio.getOutput().connect( this.analyser ); }; THREE.AudioAnalyser.prototype = { constructor: THREE.AudioAnalyser, getData: function () { this.analyser.getByteFrequencyData( this.data ); return this.data; } }; // File:src/audio/AudioBuffer.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AudioBuffer = function ( context ) { this.context = context; this.ready = false; this.readyCallbacks = []; }; THREE.AudioBuffer.prototype.load = function ( file ) { var scope = this; var request = new XMLHttpRequest(); request.open( 'GET', file, true ); request.responseType = 'arraybuffer'; request.onload = function ( e ) { scope.context.decodeAudioData( this.response, function ( buffer ) { scope.buffer = buffer; scope.ready = true; for ( var i = 0; i < scope.readyCallbacks.length; i ++ ) { scope.readyCallbacks[ i ]( scope.buffer ); } scope.readyCallbacks = []; } ); }; request.send(); return this; }; THREE.AudioBuffer.prototype.onReady = function ( callback ) { if ( this.ready ) { callback( this.buffer ); } else { this.readyCallbacks.push( callback ); } }; // File:src/audio/PositionalAudio.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.PositionalAudio = function ( listener ) { THREE.Audio.call( this, listener ); this.panner = this.context.createPanner(); this.panner.connect( this.gain ); }; THREE.PositionalAudio.prototype = Object.create( THREE.Audio.prototype ); THREE.PositionalAudio.prototype.constructor = THREE.PositionalAudio; THREE.PositionalAudio.prototype.getOutput = function () { return this.panner; }; THREE.PositionalAudio.prototype.setRefDistance = function ( value ) { this.panner.refDistance = value; }; THREE.PositionalAudio.prototype.getRefDistance = function () { return this.panner.refDistance; }; THREE.PositionalAudio.prototype.setRolloffFactor = function ( value ) { this.panner.rolloffFactor = value; }; THREE.PositionalAudio.prototype.getRolloffFactor = function () { return this.panner.rolloffFactor; }; THREE.PositionalAudio.prototype.setDistanceModel = function ( value ) { this.panner.distanceModel = value; }; THREE.PositionalAudio.prototype.getDistanceModel = function () { return this.panner.distanceModel; }; THREE.PositionalAudio.prototype.setMaxDistance = function ( value ) { this.panner.maxDistance = value; }; THREE.PositionalAudio.prototype.getMaxDistance = function () { return this.panner.maxDistance; }; THREE.PositionalAudio.prototype.updateMatrixWorld = ( function () { var position = new THREE.Vector3(); return function updateMatrixWorld( force ) { THREE.Object3D.prototype.updateMatrixWorld.call( this, force ); position.setFromMatrixPosition( this.matrixWorld ); this.panner.setPosition( position.x, position.y, position.z ); }; } )(); // File:src/audio/AudioListener.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AudioListener = function () { THREE.Object3D.call( this ); this.type = 'AudioListener'; this.context = new ( window.AudioContext || window.webkitAudioContext )(); this.gain = this.context.createGain(); this.gain.connect( this.context.destination ); this.filter = null; }; THREE.AudioListener.prototype = Object.create( THREE.Object3D.prototype ); THREE.AudioListener.prototype.constructor = THREE.AudioListener; THREE.AudioListener.prototype.getInput = function () { return this.gain; }; THREE.AudioListener.prototype.removeFilter = function ( ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); this.gain.connect( this.context.destination ); this.filter = null; } }; THREE.AudioListener.prototype.setFilter = function ( value ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); } else { this.gain.disconnect( this.context.destination ); } this.filter = value; this.gain.connect( this.filter ); this.filter.connect( this.context.destination ); }; THREE.AudioListener.prototype.getFilter = function () { return this.filter; }; THREE.AudioListener.prototype.setMasterVolume = function ( value ) { this.gain.gain.value = value; }; THREE.AudioListener.prototype.getMasterVolume = function () { return this.gain.gain.value; }; THREE.AudioListener.prototype.updateMatrixWorld = ( function () { var position = new THREE.Vector3(); var quaternion = new THREE.Quaternion(); var scale = new THREE.Vector3(); var orientation = new THREE.Vector3(); return function updateMatrixWorld( force ) { THREE.Object3D.prototype.updateMatrixWorld.call( this, force ); var listener = this.context.listener; var up = this.up; this.matrixWorld.decompose( position, quaternion, scale ); orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion ); listener.setPosition( position.x, position.y, position.z ); listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z ); }; } )(); // File:src/cameras/Camera.js /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author WestLangley / http://github.com/WestLangley */ THREE.Camera = function () { THREE.Object3D.call( this ); this.type = 'Camera'; this.matrixWorldInverse = new THREE.Matrix4(); this.projectionMatrix = new THREE.Matrix4(); }; THREE.Camera.prototype = Object.create( THREE.Object3D.prototype ); THREE.Camera.prototype.constructor = THREE.Camera; THREE.Camera.prototype.getWorldDirection = function () { var quaternion = new THREE.Quaternion(); return function ( optionalTarget ) { var result = optionalTarget || new THREE.Vector3(); this.getWorldQuaternion( quaternion ); return result.set( 0, 0, - 1 ).applyQuaternion( quaternion ); }; }(); THREE.Camera.prototype.lookAt = function () { // This routine does not support cameras with rotated and/or translated parent(s) var m1 = new THREE.Matrix4(); return function ( vector ) { m1.lookAt( this.position, vector, this.up ); this.quaternion.setFromRotationMatrix( m1 ); }; }(); THREE.Camera.prototype.clone = function () { return new this.constructor().copy( this ); }; THREE.Camera.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); return this; }; // File:src/cameras/CubeCamera.js /** * Camera for rendering cube maps * - renders scene into axis-aligned cube * * @author alteredq / http://alteredqualia.com/ */ THREE.CubeCamera = function ( near, far, cubeResolution ) { THREE.Object3D.call( this ); this.type = 'CubeCamera'; var fov = 90, aspect = 1; var cameraPX = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( new THREE.Vector3( 1, 0, 0 ) ); this.add( cameraPX ); var cameraNX = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( new THREE.Vector3( - 1, 0, 0 ) ); this.add( cameraNX ); var cameraPY = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( new THREE.Vector3( 0, 1, 0 ) ); this.add( cameraPY ); var cameraNY = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( new THREE.Vector3( 0, - 1, 0 ) ); this.add( cameraNY ); var cameraPZ = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( new THREE.Vector3( 0, 0, 1 ) ); this.add( cameraPZ ); var cameraNZ = new THREE.PerspectiveCamera( fov, aspect, near, far ); cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( new THREE.Vector3( 0, 0, - 1 ) ); this.add( cameraNZ ); var options = { format: THREE.RGBFormat, magFilter: THREE.LinearFilter, minFilter: THREE.LinearFilter }; this.renderTarget = new THREE.WebGLRenderTargetCube( cubeResolution, cubeResolution, options ); this.updateCubeMap = function ( renderer, scene ) { if ( this.parent === null ) this.updateMatrixWorld(); var renderTarget = this.renderTarget; var generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderTarget.activeCubeFace = 0; renderer.render( scene, cameraPX, renderTarget ); renderTarget.activeCubeFace = 1; renderer.render( scene, cameraNX, renderTarget ); renderTarget.activeCubeFace = 2; renderer.render( scene, cameraPY, renderTarget ); renderTarget.activeCubeFace = 3; renderer.render( scene, cameraNY, renderTarget ); renderTarget.activeCubeFace = 4; renderer.render( scene, cameraPZ, renderTarget ); renderTarget.texture.generateMipmaps = generateMipmaps; renderTarget.activeCubeFace = 5; renderer.render( scene, cameraNZ, renderTarget ); renderer.setRenderTarget( null ); }; }; THREE.CubeCamera.prototype = Object.create( THREE.Object3D.prototype ); THREE.CubeCamera.prototype.constructor = THREE.CubeCamera; // File:src/cameras/OrthographicCamera.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) { THREE.Camera.call( this ); this.type = 'OrthographicCamera'; this.zoom = 1; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000; this.updateProjectionMatrix(); }; THREE.OrthographicCamera.prototype = Object.create( THREE.Camera.prototype ); THREE.OrthographicCamera.prototype.constructor = THREE.OrthographicCamera; THREE.OrthographicCamera.prototype.updateProjectionMatrix = function () { var dx = ( this.right - this.left ) / ( 2 * this.zoom ); var dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); var cx = ( this.right + this.left ) / 2; var cy = ( this.top + this.bottom ) / 2; this.projectionMatrix.makeOrthographic( cx - dx, cx + dx, cy + dy, cy - dy, this.near, this.far ); }; THREE.OrthographicCamera.prototype.copy = function ( source ) { THREE.Camera.prototype.copy.call( this, source ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; return this; }; THREE.OrthographicCamera.prototype.toJSON = function ( meta ) { var data = THREE.Object3D.prototype.toJSON.call( this, meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; return data; }; // File:src/cameras/PerspectiveCamera.js /** * @author mrdoob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.PerspectiveCamera = function ( fov, aspect, near, far ) { THREE.Camera.call( this ); this.type = 'PerspectiveCamera'; this.focalLength = 10; this.zoom = 1; this.fov = fov !== undefined ? fov : 50; this.aspect = aspect !== undefined ? aspect : 1; this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype = Object.create( THREE.Camera.prototype ); THREE.PerspectiveCamera.prototype.constructor = THREE.PerspectiveCamera; /** * Uses Focal Length (in mm) to estimate and set FOV * 35mm (full-frame) camera is used if frame size is not specified; * Formula based on http://www.bobatkins.com/photography/technical/field_of_view.html */ THREE.PerspectiveCamera.prototype.setLens = function ( focalLength, frameHeight ) { if ( frameHeight === undefined ) frameHeight = 24; this.fov = 2 * THREE.Math.radToDeg( Math.atan( frameHeight / ( focalLength * 2 ) ) ); this.updateProjectionMatrix(); }; /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ THREE.PerspectiveCamera.prototype.setViewOffset = function ( fullWidth, fullHeight, x, y, width, height ) { this.fullWidth = fullWidth; this.fullHeight = fullHeight; this.x = x; this.y = y; this.width = width; this.height = height; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype.updateProjectionMatrix = function () { var fov = THREE.Math.radToDeg( 2 * Math.atan( Math.tan( THREE.Math.degToRad( this.fov ) * 0.5 ) / this.zoom ) ); if ( this.fullWidth ) { var aspect = this.fullWidth / this.fullHeight; var top = Math.tan( THREE.Math.degToRad( fov * 0.5 ) ) * this.near; var bottom = - top; var left = aspect * bottom; var right = aspect * top; var width = Math.abs( right - left ); var height = Math.abs( top - bottom ); this.projectionMatrix.makeFrustum( left + this.x * width / this.fullWidth, left + ( this.x + this.width ) * width / this.fullWidth, top - ( this.y + this.height ) * height / this.fullHeight, top - this.y * height / this.fullHeight, this.near, this.far ); } else { this.projectionMatrix.makePerspective( fov, this.aspect, this.near, this.far ); } }; THREE.PerspectiveCamera.prototype.copy = function ( source ) { THREE.Camera.prototype.copy.call( this, source ); this.focalLength = source.focalLength; this.zoom = source.zoom; this.fov = source.fov; this.aspect = source.aspect; this.near = source.near; this.far = source.far; return this; }; THREE.PerspectiveCamera.prototype.toJSON = function ( meta ) { var data = THREE.Object3D.prototype.toJSON.call( this, meta ); data.object.focalLength = this.focalLength; data.object.zoom = this.zoom; data.object.fov = this.fov; data.object.aspect = this.aspect; data.object.near = this.near; data.object.far = this.far; return data; }; // File:src/cameras/StereoCamera.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.StereoCamera = function () { this.type = 'StereoCamera'; this.aspect = 1; this.cameraL = new THREE.PerspectiveCamera(); this.cameraL.layers.enable( 1 ); this.cameraL.matrixAutoUpdate = false; this.cameraR = new THREE.PerspectiveCamera(); this.cameraR.layers.enable( 2 ); this.cameraR.matrixAutoUpdate = false; }; THREE.StereoCamera.prototype = { constructor: THREE.StereoCamera, update: ( function () { var focalLength, fov, aspect, near, far; var eyeRight = new THREE.Matrix4(); var eyeLeft = new THREE.Matrix4(); return function update ( camera ) { var needsUpdate = focalLength !== camera.focalLength || fov !== camera.fov || aspect !== camera.aspect * this.aspect || near !== camera.near || far !== camera.far; if ( needsUpdate ) { focalLength = camera.focalLength; fov = camera.fov; aspect = camera.aspect * this.aspect; near = camera.near; far = camera.far; // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ var projectionMatrix = camera.projectionMatrix.clone(); var eyeSep = 0.064 / 2; var eyeSepOnProjection = eyeSep * near / focalLength; var ymax = near * Math.tan( THREE.Math.degToRad( fov * 0.5 ) ); var xmin, xmax; // translate xOffset eyeLeft.elements[ 12 ] = - eyeSep; eyeRight.elements[ 12 ] = eyeSep; // for left eye xmin = - ymax * aspect + eyeSepOnProjection; xmax = ymax * aspect + eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraL.projectionMatrix.copy( projectionMatrix ); // for right eye xmin = - ymax * aspect - eyeSepOnProjection; xmax = ymax * aspect - eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraR.projectionMatrix.copy( projectionMatrix ); } this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft ); this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight ); }; } )() }; // File:src/lights/Light.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Light = function ( color, intensity ) { THREE.Object3D.call( this ); this.type = 'Light'; this.color = new THREE.Color( color ); this.intensity = intensity !== undefined ? intensity : 1; this.receiveShadow = undefined; }; THREE.Light.prototype = Object.create( THREE.Object3D.prototype ); THREE.Light.prototype.constructor = THREE.Light; THREE.Light.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); this.color.copy( source.color ); this.intensity = source.intensity; return this; }; THREE.Light.prototype.toJSON = function ( meta ) { var data = THREE.Object3D.prototype.toJSON.call( this, meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra; return data; }; // File:src/lights/LightShadow.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.LightShadow = function ( camera ) { this.camera = camera; this.bias = 0; this.radius = 1; this.mapSize = new THREE.Vector2( 512, 512 ); this.map = null; this.matrix = new THREE.Matrix4(); }; THREE.LightShadow.prototype = { constructor: THREE.LightShadow, copy: function ( source ) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; }, clone: function () { return new this.constructor().copy( this ); } }; // File:src/lights/AmbientLight.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.AmbientLight = function ( color, intensity ) { THREE.Light.call( this, color, intensity ); this.type = 'AmbientLight'; this.castShadow = undefined; }; THREE.AmbientLight.prototype = Object.create( THREE.Light.prototype ); THREE.AmbientLight.prototype.constructor = THREE.AmbientLight; // File:src/lights/DirectionalLight.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.DirectionalLight = function ( color, intensity ) { THREE.Light.call( this, color, intensity ); this.type = 'DirectionalLight'; this.position.set( 0, 1, 0 ); this.updateMatrix(); this.target = new THREE.Object3D(); this.shadow = new THREE.LightShadow( new THREE.OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); }; THREE.DirectionalLight.prototype = Object.create( THREE.Light.prototype ); THREE.DirectionalLight.prototype.constructor = THREE.DirectionalLight; THREE.DirectionalLight.prototype.copy = function ( source ) { THREE.Light.prototype.copy.call( this, source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; }; // File:src/lights/HemisphereLight.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.HemisphereLight = function ( skyColor, groundColor, intensity ) { THREE.Light.call( this, skyColor, intensity ); this.type = 'HemisphereLight'; this.castShadow = undefined; this.position.set( 0, 1, 0 ); this.updateMatrix(); this.groundColor = new THREE.Color( groundColor ); }; THREE.HemisphereLight.prototype = Object.create( THREE.Light.prototype ); THREE.HemisphereLight.prototype.constructor = THREE.HemisphereLight; THREE.HemisphereLight.prototype.copy = function ( source ) { THREE.Light.prototype.copy.call( this, source ); this.groundColor.copy( source.groundColor ); return this; }; // File:src/lights/PointLight.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.PointLight = function ( color, intensity, distance, decay ) { THREE.Light.call( this, color, intensity ); this.type = 'PointLight'; this.distance = ( distance !== undefined ) ? distance : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new THREE.LightShadow( new THREE.PerspectiveCamera( 90, 1, 0.5, 500 ) ); }; THREE.PointLight.prototype = Object.create( THREE.Light.prototype ); THREE.PointLight.prototype.constructor = THREE.PointLight; Object.defineProperty( THREE.PointLight.prototype, "power", { get: function () { // intensity = power per solid angle. // ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf return this.intensity * 4 * Math.PI; }, set: function ( power ) { // intensity = power per solid angle. // ref: equation (15) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf this.intensity = power / ( 4 * Math.PI ); } } ); THREE.PointLight.prototype.copy = function ( source ) { THREE.Light.prototype.copy.call( this, source ); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; }; // File:src/lights/SpotLight.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.SpotLight = function ( color, intensity, distance, angle, penumbra, decay ) { THREE.Light.call( this, color, intensity ); this.type = 'SpotLight'; this.position.set( 0, 1, 0 ); this.updateMatrix(); this.target = new THREE.Object3D(); this.distance = ( distance !== undefined ) ? distance : 0; this.angle = ( angle !== undefined ) ? angle : Math.PI / 3; this.penumbra = ( penumbra !== undefined ) ? penumbra : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new THREE.LightShadow( new THREE.PerspectiveCamera( 50, 1, 0.5, 500 ) ); }; THREE.SpotLight.prototype = Object.create( THREE.Light.prototype ); THREE.SpotLight.prototype.constructor = THREE.SpotLight; Object.defineProperty( THREE.SpotLight.prototype, "power", { get: function () { // intensity = power per solid angle. // ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf return this.intensity * Math.PI; }, set: function ( power ) { // intensity = power per solid angle. // ref: equation (17) from http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf this.intensity = power / Math.PI; } } ); THREE.SpotLight.prototype.copy = function ( source ) { THREE.Light.prototype.copy.call( this, source ); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; }; // File:src/loaders/Cache.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; // File:src/loaders/Loader.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Loader = function () { this.onLoadStart = function () {}; this.onLoadProgress = function () {}; this.onLoadComplete = function () {}; }; THREE.Loader.prototype = { constructor: THREE.Loader, crossOrigin: undefined, extractUrlBase: function ( url ) { var parts = url.split( '/' ); if ( parts.length === 1 ) return './'; parts.pop(); return parts.join( '/' ) + '/'; }, initMaterials: function ( materials, texturePath, crossOrigin ) { var array = []; for ( var i = 0; i < materials.length; ++ i ) { array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin ); } return array; }, createMaterial: ( function () { var color, textureLoader, materialLoader; return function ( m, texturePath, crossOrigin ) { if ( color === undefined ) color = new THREE.Color(); if ( textureLoader === undefined ) textureLoader = new THREE.TextureLoader(); if ( materialLoader === undefined ) materialLoader = new THREE.MaterialLoader(); // convert from old material format var textures = {}; function loadTexture( path, repeat, offset, wrap, anisotropy ) { var fullPath = texturePath + path; var loader = THREE.Loader.Handlers.get( fullPath ); var texture; if ( loader !== null ) { texture = loader.load( fullPath ); } else { textureLoader.setCrossOrigin( crossOrigin ); texture = textureLoader.load( fullPath ); } if ( repeat !== undefined ) { texture.repeat.fromArray( repeat ); if ( repeat[ 0 ] !== 1 ) texture.wrapS = THREE.RepeatWrapping; if ( repeat[ 1 ] !== 1 ) texture.wrapT = THREE.RepeatWrapping; } if ( offset !== undefined ) { texture.offset.fromArray( offset ); } if ( wrap !== undefined ) { if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = THREE.RepeatWrapping; if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = THREE.MirroredRepeatWrapping; if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = THREE.RepeatWrapping; if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = THREE.MirroredRepeatWrapping; } if ( anisotropy !== undefined ) { texture.anisotropy = anisotropy; } var uuid = THREE.Math.generateUUID(); textures[ uuid ] = texture; return uuid; } // var json = { uuid: THREE.Math.generateUUID(), type: 'MeshLambertMaterial' }; for ( var name in m ) { var value = m[ name ]; switch ( name ) { case 'DbgColor': case 'DbgIndex': case 'opticalDensity': case 'illumination': break; case 'DbgName': json.name = value; break; case 'blending': json.blending = THREE[ value ]; break; case 'colorAmbient': case 'mapAmbient': console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' ); break; case 'colorDiffuse': json.color = color.fromArray( value ).getHex(); break; case 'colorSpecular': json.specular = color.fromArray( value ).getHex(); break; case 'colorEmissive': json.emissive = color.fromArray( value ).getHex(); break; case 'specularCoef': json.shininess = value; break; case 'shading': if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial'; if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial'; break; case 'mapDiffuse': json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy ); break; case 'mapDiffuseRepeat': case 'mapDiffuseOffset': case 'mapDiffuseWrap': case 'mapDiffuseAnisotropy': break; case 'mapLight': json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy ); break; case 'mapLightRepeat': case 'mapLightOffset': case 'mapLightWrap': case 'mapLightAnisotropy': break; case 'mapAO': json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy ); break; case 'mapAORepeat': case 'mapAOOffset': case 'mapAOWrap': case 'mapAOAnisotropy': break; case 'mapBump': json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy ); break; case 'mapBumpScale': json.bumpScale = value; break; case 'mapBumpRepeat': case 'mapBumpOffset': case 'mapBumpWrap': case 'mapBumpAnisotropy': break; case 'mapNormal': json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy ); break; case 'mapNormalFactor': json.normalScale = [ value, value ]; break; case 'mapNormalRepeat': case 'mapNormalOffset': case 'mapNormalWrap': case 'mapNormalAnisotropy': break; case 'mapSpecular': json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy ); break; case 'mapSpecularRepeat': case 'mapSpecularOffset': case 'mapSpecularWrap': case 'mapSpecularAnisotropy': break; case 'mapAlpha': json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy ); break; case 'mapAlphaRepeat': case 'mapAlphaOffset': case 'mapAlphaWrap': case 'mapAlphaAnisotropy': break; case 'flipSided': json.side = THREE.BackSide; break; case 'doubleSided': json.side = THREE.DoubleSide; break; case 'transparency': console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' ); json.opacity = value; break; case 'depthTest': case 'depthWrite': case 'colorWrite': case 'opacity': case 'reflectivity': case 'transparent': case 'visible': case 'wireframe': json[ name ] = value; break; case 'vertexColors': if ( value === true ) json.vertexColors = THREE.VertexColors; if ( value === 'face' ) json.vertexColors = THREE.FaceColors; break; default: console.error( 'THREE.Loader.createMaterial: Unsupported', name, value ); break; } } if ( json.type === 'MeshBasicMaterial' ) delete json.emissive; if ( json.type !== 'MeshPhongMaterial' ) delete json.specular; if ( json.opacity < 1 ) json.transparent = true; materialLoader.setTextures( textures ); return materialLoader.parse( json ); }; } )() }; THREE.Loader.Handlers = { handlers: [], add: function ( regex, loader ) { this.handlers.push( regex, loader ); }, get: function ( file ) { var handlers = this.handlers; for ( var i = 0, l = handlers.length; i < l; i += 2 ) { var regex = handlers[ i ]; var loader = handlers[ i + 1 ]; if ( regex.test( file ) ) { return loader; } } return null; } }; // File:src/loaders/XHRLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.XHRLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.XHRLoader.prototype = { constructor: THREE.XHRLoader, load: function ( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) url = this.path + url; var scope = this; var cached = THREE.Cache.get( url ); if ( cached !== undefined ) { if ( onLoad ) { setTimeout( function () { onLoad( cached ); }, 0 ); } return cached; } var request = new XMLHttpRequest(); request.overrideMimeType( 'text/plain' ); request.open( 'GET', url, true ); request.addEventListener( 'load', function ( event ) { var response = event.target.response; THREE.Cache.add( url, response ); if ( this.status === 200 ) { if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); } else if ( this.status === 0 ) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. console.warn( 'THREE.XHRLoader: HTTP Status 0 received.' ); if ( onLoad ) onLoad( response ); scope.manager.itemEnd( url ); } else { if ( onError ) onError( event ); scope.manager.itemError( url ); } }, false ); if ( onProgress !== undefined ) { request.addEventListener( 'progress', function ( event ) { onProgress( event ); }, false ); } request.addEventListener( 'error', function ( event ) { if ( onError ) onError( event ); scope.manager.itemError( url ); }, false ); if ( this.responseType !== undefined ) request.responseType = this.responseType; if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials; request.send( null ); scope.manager.itemStart( url ); return request; }, setPath: function ( value ) { this.path = value; }, setResponseType: function ( value ) { this.responseType = value; }, setWithCredentials: function ( value ) { this.withCredentials = value; } }; // File:src/loaders/FontLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.FontLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.FontLoader.prototype = { constructor: THREE.FontLoader, load: function ( url, onLoad, onProgress, onError ) { var loader = new THREE.XHRLoader( this.manager ); loader.load( url, function ( text ) { onLoad( new THREE.Font( JSON.parse( text.substring( 65, text.length - 2 ) ) ) ); }, onProgress, onError ); } }; // File:src/loaders/ImageLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.ImageLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.ImageLoader.prototype = { constructor: THREE.ImageLoader, load: function ( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) url = this.path + url; var scope = this; var cached = THREE.Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); if ( onLoad ) { setTimeout( function () { onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); } else { scope.manager.itemEnd( url ); } return cached; } var image = document.createElement( 'img' ); image.addEventListener( 'load', function ( event ) { THREE.Cache.add( url, this ); if ( onLoad ) onLoad( this ); scope.manager.itemEnd( url ); }, false ); if ( onProgress !== undefined ) { image.addEventListener( 'progress', function ( event ) { onProgress( event ); }, false ); } image.addEventListener( 'error', function ( event ) { if ( onError ) onError( event ); scope.manager.itemError( url ); }, false ); if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; scope.manager.itemStart( url ); image.src = url; return image; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, setPath: function ( value ) { this.path = value; } }; // File:src/loaders/JSONLoader.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.JSONLoader = function ( manager ) { if ( typeof manager === 'boolean' ) { console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' ); manager = undefined; } this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.withCredentials = false; }; THREE.JSONLoader.prototype = { constructor: THREE.JSONLoader, // Deprecated get statusDomElement () { if ( this._statusDomElement === undefined ) { this._statusDomElement = document.createElement( 'div' ); } console.warn( 'THREE.JSONLoader: .statusDomElement has been removed.' ); return this._statusDomElement; }, load: function( url, onLoad, onProgress, onError ) { var scope = this; var texturePath = this.texturePath && ( typeof this.texturePath === "string" ) ? this.texturePath : THREE.Loader.prototype.extractUrlBase( url ); var loader = new THREE.XHRLoader( this.manager ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) { var json = JSON.parse( text ); var metadata = json.metadata; if ( metadata !== undefined ) { var type = metadata.type; if ( type !== undefined ) { if ( type.toLowerCase() === 'object' ) { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' ); return; } if ( type.toLowerCase() === 'scene' ) { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' ); return; } } } var object = scope.parse( json, texturePath ); onLoad( object.geometry, object.materials ); }, onProgress, onError ); }, setTexturePath: function ( value ) { this.texturePath = value; }, parse: function ( json, texturePath ) { var geometry = new THREE.Geometry(), scale = ( json.scale !== undefined ) ? 1.0 / json.scale : 1.0; parseModel( scale ); parseSkin(); parseMorphing( scale ); parseAnimations(); geometry.computeFaceNormals(); geometry.computeBoundingSphere(); function parseModel( scale ) { function isBitSet( value, position ) { return value & ( 1 << position ); } var i, j, fi, offset, zLength, colorIndex, normalIndex, uvIndex, materialIndex, type, isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor, vertex, face, faceA, faceB, hex, normal, uvLayer, uv, u, v, faces = json.faces, vertices = json.vertices, normals = json.normals, colors = json.colors, nUvLayers = 0; if ( json.uvs !== undefined ) { // disregard empty arrays for ( i = 0; i < json.uvs.length; i ++ ) { if ( json.uvs[ i ].length ) nUvLayers ++; } for ( i = 0; i < nUvLayers; i ++ ) { geometry.faceVertexUvs[ i ] = []; } } offset = 0; zLength = vertices.length; while ( offset < zLength ) { vertex = new THREE.Vector3(); vertex.x = vertices[ offset ++ ] * scale; vertex.y = vertices[ offset ++ ] * scale; vertex.z = vertices[ offset ++ ] * scale; geometry.vertices.push( vertex ); } offset = 0; zLength = faces.length; while ( offset < zLength ) { type = faces[ offset ++ ]; isQuad = isBitSet( type, 0 ); hasMaterial = isBitSet( type, 1 ); hasFaceVertexUv = isBitSet( type, 3 ); hasFaceNormal = isBitSet( type, 4 ); hasFaceVertexNormal = isBitSet( type, 5 ); hasFaceColor = isBitSet( type, 6 ); hasFaceVertexColor = isBitSet( type, 7 ); // console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor); if ( isQuad ) { faceA = new THREE.Face3(); faceA.a = faces[ offset ]; faceA.b = faces[ offset + 1 ]; faceA.c = faces[ offset + 3 ]; faceB = new THREE.Face3(); faceB.a = faces[ offset + 1 ]; faceB.b = faces[ offset + 2 ]; faceB.c = faces[ offset + 3 ]; offset += 4; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; faceA.materialIndex = materialIndex; faceB.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; geometry.faceVertexUvs[ i ][ fi + 1 ] = []; for ( j = 0; j < 4; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new THREE.Vector2( u, v ); if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv ); if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; faceA.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); faceB.normal.copy( faceA.normal ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 4; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new THREE.Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); if ( i !== 2 ) faceA.vertexNormals.push( normal ); if ( i !== 0 ) faceB.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; faceA.color.setHex( hex ); faceB.color.setHex( hex ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 4; i ++ ) { colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ]; if ( i !== 2 ) faceA.vertexColors.push( new THREE.Color( hex ) ); if ( i !== 0 ) faceB.vertexColors.push( new THREE.Color( hex ) ); } } geometry.faces.push( faceA ); geometry.faces.push( faceB ); } else { face = new THREE.Face3(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; face.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i ++ ) { uvLayer = json.uvs[ i ]; geometry.faceVertexUvs[ i ][ fi ] = []; for ( j = 0; j < 3; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uv = new THREE.Vector2( u, v ); geometry.faceVertexUvs[ i ][ fi ].push( uv ); } } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; face.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); } if ( hasFaceVertexNormal ) { for ( i = 0; i < 3; i ++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new THREE.Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] ); face.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; face.color.setHex( colors[ colorIndex ] ); } if ( hasFaceVertexColor ) { for ( i = 0; i < 3; i ++ ) { colorIndex = faces[ offset ++ ]; face.vertexColors.push( new THREE.Color( colors[ colorIndex ] ) ); } } geometry.faces.push( face ); } } }; function parseSkin() { var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2; if ( json.skinWeights ) { for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) { var x = json.skinWeights[ i ]; var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0; var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0; var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0; geometry.skinWeights.push( new THREE.Vector4( x, y, z, w ) ); } } if ( json.skinIndices ) { for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) { var a = json.skinIndices[ i ]; var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0; var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0; var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0; geometry.skinIndices.push( new THREE.Vector4( a, b, c, d ) ); } } geometry.bones = json.bones; if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) { console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' + geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' ); } }; function parseMorphing( scale ) { if ( json.morphTargets !== undefined ) { for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) { geometry.morphTargets[ i ] = {}; geometry.morphTargets[ i ].name = json.morphTargets[ i ].name; geometry.morphTargets[ i ].vertices = []; var dstVertices = geometry.morphTargets[ i ].vertices; var srcVertices = json.morphTargets[ i ].vertices; for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) { var vertex = new THREE.Vector3(); vertex.x = srcVertices[ v ] * scale; vertex.y = srcVertices[ v + 1 ] * scale; vertex.z = srcVertices[ v + 2 ] * scale; dstVertices.push( vertex ); } } } if ( json.morphColors !== undefined && json.morphColors.length > 0 ) { console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' ); var faces = geometry.faces; var morphColors = json.morphColors[ 0 ].colors; for ( var i = 0, l = faces.length; i < l; i ++ ) { faces[ i ].color.fromArray( morphColors, i * 3 ); } } } function parseAnimations() { var outputAnimations = []; // parse old style Bone/Hierarchy animations var animations = []; if ( json.animation !== undefined ) { animations.push( json.animation ); } if ( json.animations !== undefined ) { if ( json.animations.length ) { animations = animations.concat( json.animations ); } else { animations.push( json.animations ); } } for ( var i = 0; i < animations.length; i ++ ) { var clip = THREE.AnimationClip.parseAnimation( animations[ i ], geometry.bones ); if ( clip ) outputAnimations.push( clip ); } // parse implicit morph animations if ( geometry.morphTargets ) { // TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary. var morphAnimationClips = THREE.AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 ); outputAnimations = outputAnimations.concat( morphAnimationClips ); } if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations; }; if ( json.materials === undefined || json.materials.length === 0 ) { return { geometry: geometry }; } else { var materials = THREE.Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin ); return { geometry: geometry, materials: materials }; } } }; // File:src/loaders/LoadingManager.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.LoadingManager = function ( onLoad, onProgress, onError ) { var scope = this; var isLoading = false, itemsLoaded = 0, itemsTotal = 0; this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; }; THREE.DefaultLoadingManager = new THREE.LoadingManager(); // File:src/loaders/BufferGeometryLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BufferGeometryLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.BufferGeometryLoader.prototype = { constructor: THREE.BufferGeometryLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, parse: function ( json ) { var geometry = new THREE.BufferGeometry(); var index = json.data.index; var TYPED_ARRAYS = { 'Int8Array': Int8Array, 'Uint8Array': Uint8Array, 'Uint8ClampedArray': Uint8ClampedArray, 'Int16Array': Int16Array, 'Uint16Array': Uint16Array, 'Int32Array': Int32Array, 'Uint32Array': Uint32Array, 'Float32Array': Float32Array, 'Float64Array': Float64Array }; if ( index !== undefined ) { var typedArray = new TYPED_ARRAYS[ index.type ]( index.array ); geometry.setIndex( new THREE.BufferAttribute( typedArray, 1 ) ); } var attributes = json.data.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array ); geometry.addAttribute( key, new THREE.BufferAttribute( typedArray, attribute.itemSize ) ); } var groups = json.data.groups || json.data.drawcalls || json.data.offsets; if ( groups !== undefined ) { for ( var i = 0, n = groups.length; i !== n; ++ i ) { var group = groups[ i ]; geometry.addGroup( group.start, group.count, group.materialIndex ); } } var boundingSphere = json.data.boundingSphere; if ( boundingSphere !== undefined ) { var center = new THREE.Vector3(); if ( boundingSphere.center !== undefined ) { center.fromArray( boundingSphere.center ); } geometry.boundingSphere = new THREE.Sphere( center, boundingSphere.radius ); } return geometry; } }; // File:src/loaders/MaterialLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.MaterialLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.textures = {}; }; THREE.MaterialLoader.prototype = { constructor: THREE.MaterialLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.load( url, function ( text ) { onLoad( scope.parse( JSON.parse( text ) ) ); }, onProgress, onError ); }, setTextures: function ( value ) { this.textures = value; }, getTexture: function ( name ) { var textures = this.textures; if ( textures[ name ] === undefined ) { console.warn( 'THREE.MaterialLoader: Undefined texture', name ); } return textures[ name ]; }, parse: function ( json ) { var material = new THREE[ json.type ]; if ( json.uuid !== undefined ) material.uuid = json.uuid; if ( json.name !== undefined ) material.name = json.name; if ( json.color !== undefined ) material.color.setHex( json.color ); if ( json.roughness !== undefined ) material.roughness = json.roughness; if ( json.metalness !== undefined ) material.metalness = json.metalness; if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive ); if ( json.specular !== undefined ) material.specular.setHex( json.specular ); if ( json.shininess !== undefined ) material.shininess = json.shininess; if ( json.uniforms !== undefined ) material.uniforms = json.uniforms; if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader; if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors; if ( json.shading !== undefined ) material.shading = json.shading; if ( json.blending !== undefined ) material.blending = json.blending; if ( json.side !== undefined ) material.side = json.side; if ( json.opacity !== undefined ) material.opacity = json.opacity; if ( json.transparent !== undefined ) material.transparent = json.transparent; if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest; if ( json.depthTest !== undefined ) material.depthTest = json.depthTest; if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite; if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite; if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth; // for PointsMaterial if ( json.size !== undefined ) material.size = json.size; if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation; // maps if ( json.map !== undefined ) material.map = this.getTexture( json.map ); if ( json.alphaMap !== undefined ) { material.alphaMap = this.getTexture( json.alphaMap ); material.transparent = true; } if ( json.bumpMap !== undefined ) material.bumpMap = this.getTexture( json.bumpMap ); if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale; if ( json.normalMap !== undefined ) material.normalMap = this.getTexture( json.normalMap ); if ( json.normalScale !== undefined ) { var normalScale = json.normalScale; if ( Array.isArray( normalScale ) === false ) { // Blender exporter used to export a scalar. See #7459 normalScale = [ normalScale, normalScale ]; } material.normalScale = new THREE.Vector2().fromArray( normalScale ); } if ( json.displacementMap !== undefined ) material.displacementMap = this.getTexture( json.displacementMap ); if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale; if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias; if ( json.roughnessMap !== undefined ) material.roughnessMap = this.getTexture( json.roughnessMap ); if ( json.metalnessMap !== undefined ) material.metalnessMap = this.getTexture( json.metalnessMap ); if ( json.emissiveMap !== undefined ) material.emissiveMap = this.getTexture( json.emissiveMap ); if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity; if ( json.specularMap !== undefined ) material.specularMap = this.getTexture( json.specularMap ); if ( json.envMap !== undefined ) { material.envMap = this.getTexture( json.envMap ); material.combine = THREE.MultiplyOperation; } if ( json.reflectivity ) material.reflectivity = json.reflectivity; if ( json.lightMap !== undefined ) material.lightMap = this.getTexture( json.lightMap ); if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity; if ( json.aoMap !== undefined ) material.aoMap = this.getTexture( json.aoMap ); if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity; // MultiMaterial if ( json.materials !== undefined ) { for ( var i = 0, l = json.materials.length; i < l; i ++ ) { material.materials.push( this.parse( json.materials[ i ] ) ); } } return material; } }; // File:src/loaders/ObjectLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.ObjectLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.texturePath = ''; }; THREE.ObjectLoader.prototype = { constructor: THREE.ObjectLoader, load: function ( url, onLoad, onProgress, onError ) { if ( this.texturePath === '' ) { this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 ); } var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.load( url, function ( text ) { scope.parse( JSON.parse( text ), onLoad ); }, onProgress, onError ); }, setTexturePath: function ( value ) { this.texturePath = value; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, parse: function ( json, onLoad ) { var geometries = this.parseGeometries( json.geometries ); var images = this.parseImages( json.images, function () { if ( onLoad !== undefined ) onLoad( object ); } ); var textures = this.parseTextures( json.textures, images ); var materials = this.parseMaterials( json.materials, textures ); var object = this.parseObject( json.object, geometries, materials ); if ( json.animations ) { object.animations = this.parseAnimations( json.animations ); } if ( json.images === undefined || json.images.length === 0 ) { if ( onLoad !== undefined ) onLoad( object ); } return object; }, parseGeometries: function ( json ) { var geometries = {}; if ( json !== undefined ) { var geometryLoader = new THREE.JSONLoader(); var bufferGeometryLoader = new THREE.BufferGeometryLoader(); for ( var i = 0, l = json.length; i < l; i ++ ) { var geometry; var data = json[ i ]; switch ( data.type ) { case 'PlaneGeometry': case 'PlaneBufferGeometry': geometry = new THREE[ data.type ]( data.width, data.height, data.widthSegments, data.heightSegments ); break; case 'BoxGeometry': case 'BoxBufferGeometry': case 'CubeGeometry': // backwards compatible geometry = new THREE[ data.type ]( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); break; case 'CircleGeometry': case 'CircleBufferGeometry': geometry = new THREE[ data.type ]( data.radius, data.segments, data.thetaStart, data.thetaLength ); break; case 'CylinderGeometry': case 'CylinderBufferGeometry': geometry = new THREE[ data.type ]( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); break; case 'SphereGeometry': case 'SphereBufferGeometry': geometry = new THREE[ data.type ]( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); break; case 'DodecahedronGeometry': geometry = new THREE.DodecahedronGeometry( data.radius, data.detail ); break; case 'IcosahedronGeometry': geometry = new THREE.IcosahedronGeometry( data.radius, data.detail ); break; case 'OctahedronGeometry': geometry = new THREE.OctahedronGeometry( data.radius, data.detail ); break; case 'TetrahedronGeometry': geometry = new THREE.TetrahedronGeometry( data.radius, data.detail ); break; case 'RingGeometry': case 'RingBufferGeometry': geometry = new THREE[ data.type ]( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ); break; case 'TorusGeometry': case 'TorusBufferGeometry': geometry = new THREE[ data.type ]( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); break; case 'TorusKnotGeometry': case 'TorusKnotBufferGeometry': geometry = new THREE[ data.type ]( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ); break; case 'LatheGeometry': geometry = new THREE.LatheGeometry( data.points, data.segments, data.phiStart, data.phiLength ); break; case 'BufferGeometry': geometry = bufferGeometryLoader.parse( data ); break; case 'Geometry': geometry = geometryLoader.parse( data.data, this.texturePath ).geometry; break; default: console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' ); continue; } geometry.uuid = data.uuid; if ( data.name !== undefined ) geometry.name = data.name; geometries[ data.uuid ] = geometry; } } return geometries; }, parseMaterials: function ( json, textures ) { var materials = {}; if ( json !== undefined ) { var loader = new THREE.MaterialLoader(); loader.setTextures( textures ); for ( var i = 0, l = json.length; i < l; i ++ ) { var material = loader.parse( json[ i ] ); materials[ material.uuid ] = material; } } return materials; }, parseAnimations: function ( json ) { var animations = []; for ( var i = 0; i < json.length; i ++ ) { var clip = THREE.AnimationClip.parse( json[ i ] ); animations.push( clip ); } return animations; }, parseImages: function ( json, onLoad ) { var scope = this; var images = {}; function loadImage( url ) { scope.manager.itemStart( url ); return loader.load( url, function () { scope.manager.itemEnd( url ); } ); } if ( json !== undefined && json.length > 0 ) { var manager = new THREE.LoadingManager( onLoad ); var loader = new THREE.ImageLoader( manager ); loader.setCrossOrigin( this.crossOrigin ); for ( var i = 0, l = json.length; i < l; i ++ ) { var image = json[ i ]; var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url; images[ image.uuid ] = loadImage( path ); } } return images; }, parseTextures: function ( json, images ) { function parseConstant( value ) { if ( typeof( value ) === 'number' ) return value; console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); return THREE[ value ]; } var textures = {}; if ( json !== undefined ) { for ( var i = 0, l = json.length; i < l; i ++ ) { var data = json[ i ]; if ( data.image === undefined ) { console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); } if ( images[ data.image ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); } var texture = new THREE.Texture( images[ data.image ] ); texture.needsUpdate = true; texture.uuid = data.uuid; if ( data.name !== undefined ) texture.name = data.name; if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping ); if ( data.offset !== undefined ) texture.offset = new THREE.Vector2( data.offset[ 0 ], data.offset[ 1 ] ); if ( data.repeat !== undefined ) texture.repeat = new THREE.Vector2( data.repeat[ 0 ], data.repeat[ 1 ] ); if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter ); if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter ); if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy; if ( Array.isArray( data.wrap ) ) { texture.wrapS = parseConstant( data.wrap[ 0 ] ); texture.wrapT = parseConstant( data.wrap[ 1 ] ); } textures[ data.uuid ] = texture; } } return textures; }, parseObject: function () { var matrix = new THREE.Matrix4(); return function ( data, geometries, materials ) { var object; function getGeometry( name ) { if ( geometries[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); } return geometries[ name ]; } function getMaterial( name ) { if ( name === undefined ) return undefined; if ( materials[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', name ); } return materials[ name ]; } switch ( data.type ) { case 'Scene': object = new THREE.Scene(); break; case 'PerspectiveCamera': object = new THREE.PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); break; case 'OrthographicCamera': object = new THREE.OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); break; case 'AmbientLight': object = new THREE.AmbientLight( data.color, data.intensity ); break; case 'DirectionalLight': object = new THREE.DirectionalLight( data.color, data.intensity ); break; case 'PointLight': object = new THREE.PointLight( data.color, data.intensity, data.distance, data.decay ); break; case 'SpotLight': object = new THREE.SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ); break; case 'HemisphereLight': object = new THREE.HemisphereLight( data.color, data.groundColor, data.intensity ); break; case 'Mesh': var geometry = getGeometry( data.geometry ); var material = getMaterial( data.material ); if ( geometry.bones && geometry.bones.length > 0 ) { object = new THREE.SkinnedMesh( geometry, material ); } else { object = new THREE.Mesh( geometry, material ); } break; case 'LOD': object = new THREE.LOD(); break; case 'Line': object = new THREE.Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode ); break; case 'PointCloud': case 'Points': object = new THREE.Points( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'Sprite': object = new THREE.Sprite( getMaterial( data.material ) ); break; case 'Group': object = new THREE.Group(); break; default: object = new THREE.Object3D(); } object.uuid = data.uuid; if ( data.name !== undefined ) object.name = data.name; if ( data.matrix !== undefined ) { matrix.fromArray( data.matrix ); matrix.decompose( object.position, object.quaternion, object.scale ); } else { if ( data.position !== undefined ) object.position.fromArray( data.position ); if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); if ( data.scale !== undefined ) object.scale.fromArray( data.scale ); } if ( data.castShadow !== undefined ) object.castShadow = data.castShadow; if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow; if ( data.visible !== undefined ) object.visible = data.visible; if ( data.userData !== undefined ) object.userData = data.userData; if ( data.children !== undefined ) { for ( var child in data.children ) { object.add( this.parseObject( data.children[ child ], geometries, materials ) ); } } if ( data.type === 'LOD' ) { var levels = data.levels; for ( var l = 0; l < levels.length; l ++ ) { var level = levels[ l ]; var child = object.getObjectByProperty( 'uuid', level.object ); if ( child !== undefined ) { object.addLevel( child, level.distance ); } } } return object; }; }() }; // File:src/loaders/TextureLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.TextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.TextureLoader.prototype = { constructor: THREE.TextureLoader, load: function ( url, onLoad, onProgress, onError ) { var texture = new THREE.Texture(); var loader = new THREE.ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); loader.load( url, function ( image ) { texture.image = image; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, setPath: function ( value ) { this.path = value; } }; // File:src/loaders/CubeTextureLoader.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CubeTextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.CubeTextureLoader.prototype = { constructor: THREE.CubeTextureLoader, load: function ( urls, onLoad, onProgress, onError ) { var texture = new THREE.CubeTexture(); var loader = new THREE.ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); var loaded = 0; function loadTexture( i ) { loader.load( urls[ i ], function ( image ) { texture.images[ i ] = image; loaded ++; if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, undefined, onError ); } for ( var i = 0; i < urls.length; ++ i ) { loadTexture( i ); } return texture; }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, setPath: function ( value ) { this.path = value; } }; // File:src/loaders/BinaryTextureLoader.js /** * @author Nikos M. / https://github.com/foo123/ * * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) */ THREE.DataTextureLoader = THREE.BinaryTextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; // override in sub classes this._parser = null; }; THREE.BinaryTextureLoader.prototype = { constructor: THREE.BinaryTextureLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var texture = new THREE.DataTexture(); var loader = new THREE.XHRLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { var texData = scope._parser( buffer ); if ( ! texData ) return; if ( undefined !== texData.image ) { texture.image = texData.image; } else if ( undefined !== texData.data ) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : THREE.ClampToEdgeWrapping; texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : THREE.ClampToEdgeWrapping; texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : THREE.LinearFilter; texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : THREE.LinearMipMapLinearFilter; texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1; if ( undefined !== texData.format ) { texture.format = texData.format; } if ( undefined !== texData.type ) { texture.type = texData.type; } if ( undefined !== texData.mipmaps ) { texture.mipmaps = texData.mipmaps; } if ( 1 === texData.mipmapCount ) { texture.minFilter = THREE.LinearFilter; } texture.needsUpdate = true; if ( onLoad ) onLoad( texture, texData ); }, onProgress, onError ); return texture; } }; // File:src/loaders/CompressedTextureLoader.js /** * @author mrdoob / http://mrdoob.com/ * * Abstract Base class to block based textures loader (dds, pvr, ...) */ THREE.CompressedTextureLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; // override in sub classes this._parser = null; }; THREE.CompressedTextureLoader.prototype = { constructor: THREE.CompressedTextureLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var images = []; var texture = new THREE.CompressedTexture(); texture.image = images; var loader = new THREE.XHRLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); function loadTexture( i ) { loader.load( url[ i ], function ( buffer ) { var texDatas = scope._parser( buffer, true ); images[ i ] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if ( loaded === 6 ) { if ( texDatas.mipmapCount === 1 ) texture.minFilter = THREE.LinearFilter; texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, onProgress, onError ); } if ( Array.isArray( url ) ) { var loaded = 0; for ( var i = 0, il = url.length; i < il; ++ i ) { loadTexture( i ); } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function ( buffer ) { var texDatas = scope._parser( buffer, true ); if ( texDatas.isCubemap ) { var faces = texDatas.mipmaps.length / texDatas.mipmapCount; for ( var f = 0; f < faces; f ++ ) { images[ f ] = { mipmaps : [] }; for ( var i = 0; i < texDatas.mipmapCount; i ++ ) { images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); images[ f ].format = texDatas.format; images[ f ].width = texDatas.width; images[ f ].height = texDatas.height; } } } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if ( texDatas.mipmapCount === 1 ) { texture.minFilter = THREE.LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); }, onProgress, onError ); } return texture; }, setPath: function ( value ) { this.path = value; } }; // File:src/materials/Material.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Material = function () { Object.defineProperty( this, 'id', { value: THREE.MaterialIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.type = 'Material'; this.side = THREE.FrontSide; this.opacity = 1; this.transparent = false; this.blending = THREE.NormalBlending; this.blendSrc = THREE.SrcAlphaFactor; this.blendDst = THREE.OneMinusSrcAlphaFactor; this.blendEquation = THREE.AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = THREE.LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.alphaTest = 0; this.premultipliedAlpha = false; this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer this.visible = true; this._needsUpdate = true; }; THREE.Material.prototype = { constructor: THREE.Material, get needsUpdate () { return this._needsUpdate; }, set needsUpdate ( value ) { if ( value === true ) this.update(); this._needsUpdate = value; }, setValues: function ( values ) { if ( values === undefined ) return; for ( var key in values ) { var newValue = values[ key ]; if ( newValue === undefined ) { console.warn( "THREE.Material: '" + key + "' parameter is undefined." ); continue; } var currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." ); continue; } if ( currentValue instanceof THREE.Color ) { currentValue.set( newValue ); } else if ( currentValue instanceof THREE.Vector3 && newValue instanceof THREE.Vector3 ) { currentValue.copy( newValue ); } else if ( key === 'overdraw' ) { // ensure overdraw is backwards-compatible with legacy boolean type this[ key ] = Number( newValue ); } else { this[ key ] = newValue; } } }, toJSON: function ( meta ) { var isRoot = meta === undefined; if ( isRoot ) { meta = { textures: {}, images: {} }; } var data = { metadata: { version: 4.4, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.color instanceof THREE.Color ) data.color = this.color.getHex(); if ( this.roughness !== 0.5 ) data.roughness = this.roughness; if ( this.metalness !== 0.5 ) data.metalness = this.metalness; if ( this.emissive instanceof THREE.Color ) data.emissive = this.emissive.getHex(); if ( this.specular instanceof THREE.Color ) data.specular = this.specular.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( this.map instanceof THREE.Texture ) data.map = this.map.toJSON( meta ).uuid; if ( this.alphaMap instanceof THREE.Texture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( this.lightMap instanceof THREE.Texture ) data.lightMap = this.lightMap.toJSON( meta ).uuid; if ( this.bumpMap instanceof THREE.Texture ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( this.normalMap instanceof THREE.Texture ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalScale = this.normalScale.toArray(); } if ( this.displacementMap instanceof THREE.Texture ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( this.roughnessMap instanceof THREE.Texture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( this.metalnessMap instanceof THREE.Texture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; if ( this.emissiveMap instanceof THREE.Texture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( this.specularMap instanceof THREE.Texture ) data.specularMap = this.specularMap.toJSON( meta ).uuid; if ( this.envMap instanceof THREE.Texture ) { data.envMap = this.envMap.toJSON( meta ).uuid; data.reflectivity = this.reflectivity; // Scale behind envMap } if ( this.size !== undefined ) data.size = this.size; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; if ( this.vertexColors !== undefined && this.vertexColors !== THREE.NoColors ) data.vertexColors = this.vertexColors; if ( this.shading !== undefined && this.shading !== THREE.SmoothShading ) data.shading = this.shading; if ( this.blending !== undefined && this.blending !== THREE.NormalBlending ) data.blending = this.blending; if ( this.side !== undefined && this.side !== THREE.FrontSide ) data.side = this.side; if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.transparent === true ) data.transparent = this.transparent; if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha; if ( this.wireframe === true ) data.wireframe = this.wireframe; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; // TODO: Copied from Object3D.toJSON function extractFromCache ( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRoot ) { var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; } return data; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.name = source.name; this.side = source.side; this.opacity = source.opacity; this.transparent = source.transparent; this.blending = source.blending; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.alphaTest = source.alphaTest; this.premultipliedAlpha = source.premultipliedAlpha; this.overdraw = source.overdraw; this.visible = source.visible; return this; }, update: function () { this.dispatchEvent( { type: 'update' } ); }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.Material.prototype ); THREE.MaterialIdCount = 0; // File:src/materials/LineBasicMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * linewidth: , * linecap: "round", * linejoin: "round", * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * vertexColors: * * fog: * } */ THREE.LineBasicMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'LineBasicMaterial'; this.color = new THREE.Color( 0xffffff ); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.blending = THREE.NormalBlending; this.vertexColors = THREE.NoColors; this.fog = true; this.setValues( parameters ); }; THREE.LineBasicMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.LineBasicMaterial.prototype.constructor = THREE.LineBasicMaterial; THREE.LineBasicMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; this.vertexColors = source.vertexColors; this.fog = source.fog; return this; }; // File:src/materials/LineDashedMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * linewidth: , * * scale: , * dashSize: , * gapSize: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * vertexColors: THREE.NoColors / THREE.FaceColors / THREE.VertexColors * * fog: * } */ THREE.LineDashedMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'LineDashedMaterial'; this.color = new THREE.Color( 0xffffff ); this.linewidth = 1; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.blending = THREE.NormalBlending; this.vertexColors = THREE.NoColors; this.fog = true; this.setValues( parameters ); }; THREE.LineDashedMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.LineDashedMaterial.prototype.constructor = THREE.LineDashedMaterial; THREE.LineDashedMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; this.vertexColors = source.vertexColors; this.fog = source.fog; return this; }; // File:src/materials/MeshBasicMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * * fog: * } */ THREE.MeshBasicMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshBasicMaterial'; this.color = new THREE.Color( 0xffffff ); // emissive this.map = null; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.blending = THREE.NormalBlending; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.setValues( parameters ); }; THREE.MeshBasicMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshBasicMaterial.prototype.constructor = THREE.MeshBasicMaterial; THREE.MeshBasicMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.fog = source.fog; this.shading = source.shading; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; return this; }; // File:src/materials/MeshLambertMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshLambertMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshLambertMaterial'; this.color = new THREE.Color( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new THREE.Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.blending = THREE.NormalBlending; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); }; THREE.MeshLambertMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshLambertMaterial.prototype.constructor = THREE.MeshLambertMaterial; THREE.MeshLambertMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.fog = source.fog; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; // File:src/materials/MeshPhongMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshPhongMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshPhongMaterial'; this.color = new THREE.Color( 0xffffff ); // diffuse this.specular = new THREE.Color( 0x111111 ); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new THREE.Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new THREE.Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = THREE.MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.blending = THREE.NormalBlending; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); }; THREE.MeshPhongMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshPhongMaterial.prototype.constructor = THREE.MeshPhongMaterial; THREE.MeshPhongMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.fog = source.fog; this.shading = source.shading; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; // File:src/materials/MeshStandardMaterial.js /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * color: , * roughness: , * metalness: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * roughnessMap: new THREE.Texture( ), * * metalnessMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: * * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshStandardMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshStandardMaterial'; this.color = new THREE.Color( 0xffffff ); // diffuse this.roughness = 0.5; this.metalness = 0.5; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new THREE.Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalScale = new THREE.Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapIntensity = 1.0; this.refractionRatio = 0.98; this.fog = true; this.shading = THREE.SmoothShading; this.blending = THREE.NormalBlending; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.vertexColors = THREE.NoColors; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); }; THREE.MeshStandardMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshStandardMaterial.prototype.constructor = THREE.MeshStandardMaterial; THREE.MeshStandardMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity; this.refractionRatio = source.refractionRatio; this.fog = source.fog; this.shading = source.shading; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; // File:src/materials/MeshDepthMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * opacity: , * * wireframe: , * wireframeLinewidth: * } */ THREE.MeshDepthMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'MeshDepthMaterial'; this.morphTargets = false; this.wireframe = false; this.wireframeLinewidth = 1; this.setValues( parameters ); }; THREE.MeshDepthMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshDepthMaterial.prototype.constructor = THREE.MeshDepthMaterial; THREE.MeshDepthMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; }; // File:src/materials/MeshNormalMaterial.js /** * @author mrdoob / http://mrdoob.com/ * * parameters = { * opacity: , * * wireframe: , * wireframeLinewidth: * } */ THREE.MeshNormalMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); this.type = 'MeshNormalMaterial'; this.wireframe = false; this.wireframeLinewidth = 1; this.morphTargets = false; this.setValues( parameters ); }; THREE.MeshNormalMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.MeshNormalMaterial.prototype.constructor = THREE.MeshNormalMaterial; THREE.MeshNormalMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; }; // File:src/materials/MultiMaterial.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.MultiMaterial = function ( materials ) { this.uuid = THREE.Math.generateUUID(); this.type = 'MultiMaterial'; this.materials = materials instanceof Array ? materials : []; this.visible = true; }; THREE.MultiMaterial.prototype = { constructor: THREE.MultiMaterial, toJSON: function ( meta ) { var output = { metadata: { version: 4.2, type: 'material', generator: 'MaterialExporter' }, uuid: this.uuid, type: this.type, materials: [] }; var materials = this.materials; for ( var i = 0, l = materials.length; i < l; i ++ ) { var material = materials[ i ].toJSON( meta ); delete material.metadata; output.materials.push( material ); } output.visible = this.visible; return output; }, clone: function () { var material = new this.constructor(); for ( var i = 0; i < this.materials.length; i ++ ) { material.materials.push( this.materials[ i ].clone() ); } material.visible = this.visible; return material; } }; // File:src/materials/PointsMaterial.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * size: , * sizeAttenuation: , * * blending: THREE.NormalBlending, * depthTest: , * depthWrite: , * * vertexColors: , * * fog: * } */ THREE.PointsMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'PointsMaterial'; this.color = new THREE.Color( 0xffffff ); this.map = null; this.size = 1; this.sizeAttenuation = true; this.blending = THREE.NormalBlending; this.vertexColors = THREE.NoColors; this.fog = true; this.setValues( parameters ); }; THREE.PointsMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.PointsMaterial.prototype.constructor = THREE.PointsMaterial; THREE.PointsMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; this.vertexColors = source.vertexColors; this.fog = source.fog; return this; }; // File:src/materials/ShaderMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { type: "f", value: 1.0 }, "parameter2": { type: "i" value2: 2 } }, * * fragmentShader: , * vertexShader: , * * shading: THREE.SmoothShading, * * wireframe: , * wireframeLinewidth: , * * lights: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.ShaderMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}'; this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}'; this.shading = THREE.SmoothShading; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.vertexColors = THREE.NoColors; // set to use "color" attribute stream this.skinning = false; // set to use skinning attribute streams this.morphTargets = false; // set to use morph targets this.morphNormals = false; // set to use morph normals this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] }; this.index0AttributeName = undefined; if ( parameters !== undefined ) { if ( parameters.attributes !== undefined ) { console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ); } this.setValues( parameters ); } }; THREE.ShaderMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.ShaderMaterial.prototype.constructor = THREE.ShaderMaterial; THREE.ShaderMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = THREE.UniformsUtils.clone( source.uniforms ); this.defines = source.defines; this.shading = source.shading; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.fog = source.fog; this.lights = source.lights; this.vertexColors = source.vertexColors; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.extensions = source.extensions; return this; }; THREE.ShaderMaterial.prototype.toJSON = function ( meta ) { var data = THREE.Material.prototype.toJSON.call( this, meta ); data.uniforms = this.uniforms; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; return data; }; // File:src/materials/RawShaderMaterial.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.RawShaderMaterial = function ( parameters ) { THREE.ShaderMaterial.call( this, parameters ); this.type = 'RawShaderMaterial'; }; THREE.RawShaderMaterial.prototype = Object.create( THREE.ShaderMaterial.prototype ); THREE.RawShaderMaterial.prototype.constructor = THREE.RawShaderMaterial; // File:src/materials/SpriteMaterial.js /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * uvOffset: new THREE.Vector2(), * uvScale: new THREE.Vector2(), * * fog: * } */ THREE.SpriteMaterial = function ( parameters ) { THREE.Material.call( this ); this.type = 'SpriteMaterial'; this.color = new THREE.Color( 0xffffff ); this.map = null; this.rotation = 0; this.fog = false; // set parameters this.setValues( parameters ); }; THREE.SpriteMaterial.prototype = Object.create( THREE.Material.prototype ); THREE.SpriteMaterial.prototype.constructor = THREE.SpriteMaterial; THREE.SpriteMaterial.prototype.copy = function ( source ) { THREE.Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.rotation = source.rotation; this.fog = source.fog; return this; }; // File:src/textures/Texture.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.Texture = function ( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Object.defineProperty( this, 'id', { value: THREE.TextureIdCount ++ } ); this.uuid = THREE.Math.generateUUID(); this.name = ''; this.sourceFile = ''; this.image = image !== undefined ? image : THREE.Texture.DEFAULT_IMAGE; this.mipmaps = []; this.mapping = mapping !== undefined ? mapping : THREE.Texture.DEFAULT_MAPPING; this.wrapS = wrapS !== undefined ? wrapS : THREE.ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : THREE.ClampToEdgeWrapping; this.magFilter = magFilter !== undefined ? magFilter : THREE.LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : THREE.LinearMipMapLinearFilter; this.anisotropy = anisotropy !== undefined ? anisotropy : 1; this.format = format !== undefined ? format : THREE.RGBAFormat; this.type = type !== undefined ? type : THREE.UnsignedByteType; this.offset = new THREE.Vector2( 0, 0 ); this.repeat = new THREE.Vector2( 1, 1 ); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = THREE.LinearEncoding; this.version = 0; this.onUpdate = null; }; THREE.Texture.DEFAULT_IMAGE = undefined; THREE.Texture.DEFAULT_MAPPING = THREE.UVMapping; THREE.Texture.prototype = { constructor: THREE.Texture, set needsUpdate ( value ) { if ( value === true ) this.version ++; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.image = source.image; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding; return this; }, toJSON: function ( meta ) { if ( meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } function getDataURL( image ) { var canvas; if ( image.toDataURL !== undefined ) { canvas = image; } else { canvas = document.createElement( 'canvas' ); canvas.width = image.width; canvas.height = image.height; canvas.getContext( '2d' ).drawImage( image, 0, 0, image.width, image.height ); } if ( canvas.width > 2048 || canvas.height > 2048 ) { return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } var output = { metadata: { version: 4.4, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], wrap: [ this.wrapS, this.wrapT ], minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy }; if ( this.image !== undefined ) { // TODO: Move to THREE.Image var image = this.image; if ( image.uuid === undefined ) { image.uuid = THREE.Math.generateUUID(); // UGH } if ( meta.images[ image.uuid ] === undefined ) { meta.images[ image.uuid ] = { uuid: image.uuid, url: getDataURL( image ) }; } output.image = image.uuid; } meta.textures[ this.uuid ] = output; return output; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); }, transformUv: function ( uv ) { if ( this.mapping !== THREE.UVMapping ) return; uv.multiply( this.repeat ); uv.add( this.offset ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case THREE.RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case THREE.ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case THREE.MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case THREE.RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case THREE.ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case THREE.MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } } }; THREE.EventDispatcher.prototype.apply( THREE.Texture.prototype ); THREE.TextureIdCount = 0; // File:src/textures/CanvasTexture.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CanvasTexture = function ( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { THREE.Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.needsUpdate = true; }; THREE.CanvasTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.CanvasTexture.prototype.constructor = THREE.CanvasTexture; // File:src/textures/CubeTexture.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CubeTexture = function ( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : THREE.CubeReflectionMapping; THREE.Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.flipY = false; }; THREE.CubeTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.CubeTexture.prototype.constructor = THREE.CubeTexture; Object.defineProperty( THREE.CubeTexture.prototype, 'images', { get: function () { return this.image; }, set: function ( value ) { this.image = value; } } ); // File:src/textures/CompressedTexture.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.CompressedTexture = function ( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { width: width, height: height }; this.mipmaps = mipmaps; // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false; // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false; }; THREE.CompressedTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.CompressedTexture.prototype.constructor = THREE.CompressedTexture; // File:src/textures/DataTexture.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.DataTexture = function ( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { data: data, width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : THREE.NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : THREE.NearestFilter; this.flipY = false; this.generateMipmaps = false; }; THREE.DataTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.DataTexture.prototype.constructor = THREE.DataTexture; // File:src/textures/VideoTexture.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.VideoTexture = function ( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { THREE.Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.generateMipmaps = false; var scope = this; function update() { requestAnimationFrame( update ); if ( video.readyState === video.HAVE_ENOUGH_DATA ) { scope.needsUpdate = true; } } update(); }; THREE.VideoTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.VideoTexture.prototype.constructor = THREE.VideoTexture; // File:src/objects/Group.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Group = function () { THREE.Object3D.call( this ); this.type = 'Group'; }; THREE.Group.prototype = Object.create( THREE.Object3D.prototype ); THREE.Group.prototype.constructor = THREE.Group; // File:src/objects/Points.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.Points = function ( geometry, material ) { THREE.Object3D.call( this ); this.type = 'Points'; this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.PointsMaterial( { color: Math.random() * 0xffffff } ); }; THREE.Points.prototype = Object.create( THREE.Object3D.prototype ); THREE.Points.prototype.constructor = THREE.Points; THREE.Points.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); var sphere = new THREE.Sphere(); return function raycast( raycaster, intersects ) { var object = this; var geometry = this.geometry; var matrixWorld = this.matrixWorld; var threshold = raycaster.params.Points.threshold; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var localThresholdSq = localThreshold * localThreshold; var position = new THREE.Vector3(); function testPoint( point, index ) { var rayPointDistanceSq = ray.distanceSqToPoint( point ); if ( rayPointDistanceSq < localThresholdSq ) { var intersectPoint = ray.closestPointToPoint( point ); intersectPoint.applyMatrix4( matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint.clone(), index: index, face: null, object: object } ); } } if ( geometry instanceof THREE.BufferGeometry ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, il = indices.length; i < il; i ++ ) { var a = indices[ i ]; position.fromArray( positions, a * 3 ); testPoint( position, a ); } } else { for ( var i = 0, l = positions.length / 3; i < l; i ++ ) { position.fromArray( positions, i * 3 ); testPoint( position, i ); } } } else { var vertices = geometry.vertices; for ( var i = 0, l = vertices.length; i < l; i ++ ) { testPoint( vertices[ i ], i ); } } }; }() ); THREE.Points.prototype.clone = function () { return new this.constructor( this.geometry, this.material ).copy( this ); }; // File:src/objects/Line.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Line = function ( geometry, material, mode ) { if ( mode === 1 ) { console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' ); return new THREE.LineSegments( geometry, material ); } THREE.Object3D.call( this ); this.type = 'Line'; this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.LineBasicMaterial( { color: Math.random() * 0xffffff } ); }; THREE.Line.prototype = Object.create( THREE.Object3D.prototype ); THREE.Line.prototype.constructor = THREE.Line; THREE.Line.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); var sphere = new THREE.Sphere(); return function raycast( raycaster, intersects ) { var precision = raycaster.linePrecision; var precisionSq = precision * precision; var geometry = this.geometry; var matrixWorld = this.matrixWorld; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); var vStart = new THREE.Vector3(); var vEnd = new THREE.Vector3(); var interSegment = new THREE.Vector3(); var interRay = new THREE.Vector3(); var step = this instanceof THREE.LineSegments ? 2 : 1; if ( geometry instanceof THREE.BufferGeometry ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, l = indices.length - 1; i < l; i += step ) { var a = indices[ i ]; var b = indices[ i + 1 ]; vStart.fromArray( positions, a * 3 ); vEnd.fromArray( positions, b * 3 ); var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } else { for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) { vStart.fromArray( positions, 3 * i ); vEnd.fromArray( positions, 3 * i + 3 ); var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } } else if ( geometry instanceof THREE.Geometry ) { var vertices = geometry.vertices; var nbVertices = vertices.length; for ( var i = 0; i < nbVertices - 1; i += step ) { var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment ); if ( distSq > precisionSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } }; }() ); THREE.Line.prototype.clone = function () { return new this.constructor( this.geometry, this.material ).copy( this ); }; // DEPRECATED THREE.LineStrip = 0; THREE.LinePieces = 1; // File:src/objects/LineSegments.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.LineSegments = function ( geometry, material ) { THREE.Line.call( this, geometry, material ); this.type = 'LineSegments'; }; THREE.LineSegments.prototype = Object.create( THREE.Line.prototype ); THREE.LineSegments.prototype.constructor = THREE.LineSegments; // File:src/objects/Mesh.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author jonobr1 / http://jonobr1.com/ */ THREE.Mesh = function ( geometry, material ) { THREE.Object3D.call( this ); this.type = 'Mesh'; this.geometry = geometry !== undefined ? geometry : new THREE.Geometry(); this.material = material !== undefined ? material : new THREE.MeshBasicMaterial( { color: Math.random() * 0xffffff } ); this.drawMode = THREE.TrianglesDrawMode; this.updateMorphTargets(); }; THREE.Mesh.prototype = Object.create( THREE.Object3D.prototype ); THREE.Mesh.prototype.constructor = THREE.Mesh; THREE.Mesh.prototype.setDrawMode = function ( value ) { this.drawMode = value; }; THREE.Mesh.prototype.updateMorphTargets = function () { if ( this.geometry.morphTargets !== undefined && this.geometry.morphTargets.length > 0 ) { this.morphTargetBase = - 1; this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( var m = 0, ml = this.geometry.morphTargets.length; m < ml; m ++ ) { this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ this.geometry.morphTargets[ m ].name ] = m; } } }; THREE.Mesh.prototype.getMorphTargetIndexByName = function ( name ) { if ( this.morphTargetDictionary[ name ] !== undefined ) { return this.morphTargetDictionary[ name ]; } console.warn( 'THREE.Mesh.getMorphTargetIndexByName: morph target ' + name + ' does not exist. Returning 0.' ); return 0; }; THREE.Mesh.prototype.raycast = ( function () { var inverseMatrix = new THREE.Matrix4(); var ray = new THREE.Ray(); var sphere = new THREE.Sphere(); var vA = new THREE.Vector3(); var vB = new THREE.Vector3(); var vC = new THREE.Vector3(); var tempA = new THREE.Vector3(); var tempB = new THREE.Vector3(); var tempC = new THREE.Vector3(); var uvA = new THREE.Vector2(); var uvB = new THREE.Vector2(); var uvC = new THREE.Vector2(); var barycoord = new THREE.Vector3(); var intersectionPoint = new THREE.Vector3(); var intersectionPointWorld = new THREE.Vector3(); function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) { THREE.Triangle.barycoordFromPoint( point, p1, p2, p3, barycoord ); uv1.multiplyScalar( barycoord.x ); uv2.multiplyScalar( barycoord.y ); uv3.multiplyScalar( barycoord.z ); uv1.add( uv2 ).add( uv3 ); return uv1.clone(); } function checkIntersection( object, raycaster, ray, pA, pB, pC, point ) { var intersect; var material = object.material; if ( material.side === THREE.BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, material.side !== THREE.DoubleSide, point ); } if ( intersect === null ) return null; intersectionPointWorld.copy( point ); intersectionPointWorld.applyMatrix4( object.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) return null; return { distance: distance, point: intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection( object, raycaster, ray, positions, uvs, a, b, c ) { vA.fromArray( positions, a * 3 ); vB.fromArray( positions, b * 3 ); vC.fromArray( positions, c * 3 ); var intersection = checkIntersection( object, raycaster, ray, vA, vB, vC, intersectionPoint ); if ( intersection ) { if ( uvs ) { uvA.fromArray( uvs, a * 2 ); uvB.fromArray( uvs, b * 2 ); uvC.fromArray( uvs, c * 2 ); intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC ); } intersection.face = new THREE.Face3( a, b, c, THREE.Triangle.normal( vA, vB, vC ) ); intersection.faceIndex = a; } return intersection; } return function raycast( raycaster, intersects ) { var geometry = this.geometry; var material = this.material; var matrixWorld = this.matrixWorld; if ( material === undefined ) return; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( sphere ) === false ) return; // inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix ); // Check boundingBox before continuing if ( geometry.boundingBox !== null ) { if ( ray.intersectsBox( geometry.boundingBox ) === false ) return; } var uvs, intersection; if ( geometry instanceof THREE.BufferGeometry ) { var a, b, c; var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( attributes.uv !== undefined ) { uvs = attributes.uv.array; } if ( index !== null ) { var indices = index.array; for ( var i = 0, l = indices.length; i < l; i += 3 ) { a = indices[ i ]; b = indices[ i + 1 ]; c = indices[ i + 2 ]; intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indices buffer semantics intersects.push( intersection ); } } } else { for ( var i = 0, l = positions.length; i < l; i += 9 ) { a = i / 3; b = a + 1; c = a + 2; intersection = checkBufferGeometryIntersection( this, raycaster, ray, positions, uvs, a, b, c ); if ( intersection ) { intersection.index = a; // triangle number in positions buffer semantics intersects.push( intersection ); } } } } else if ( geometry instanceof THREE.Geometry ) { var fvA, fvB, fvC; var isFaceMaterial = material instanceof THREE.MultiMaterial; var materials = isFaceMaterial === true ? material.materials : null; var vertices = geometry.vertices; var faces = geometry.faces; var faceVertexUvs = geometry.faceVertexUvs[ 0 ]; if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs; for ( var f = 0, fl = faces.length; f < fl; f ++ ) { var face = faces[ f ]; var faceMaterial = isFaceMaterial === true ? materials[ face.materialIndex ] : material; if ( faceMaterial === undefined ) continue; fvA = vertices[ face.a ]; fvB = vertices[ face.b ]; fvC = vertices[ face.c ]; if ( faceMaterial.morphTargets === true ) { var morphTargets = geometry.morphTargets; var morphInfluences = this.morphTargetInfluences; vA.set( 0, 0, 0 ); vB.set( 0, 0, 0 ); vC.set( 0, 0, 0 ); for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) { var influence = morphInfluences[ t ]; if ( influence === 0 ) continue; var targets = morphTargets[ t ].vertices; vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence ); vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence ); vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence ); } vA.add( fvA ); vB.add( fvB ); vC.add( fvC ); fvA = vA; fvB = vB; fvC = vC; } intersection = checkIntersection( this, raycaster, ray, fvA, fvB, fvC, intersectionPoint ); if ( intersection ) { if ( uvs ) { var uvs_f = uvs[ f ]; uvA.copy( uvs_f[ 0 ] ); uvB.copy( uvs_f[ 1 ] ); uvC.copy( uvs_f[ 2 ] ); intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC ); } intersection.face = face; intersection.faceIndex = f; intersects.push( intersection ); } } } }; }() ); THREE.Mesh.prototype.clone = function () { return new this.constructor( this.geometry, this.material ).copy( this ); }; // File:src/objects/Bone.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ THREE.Bone = function ( skin ) { THREE.Object3D.call( this ); this.type = 'Bone'; this.skin = skin; }; THREE.Bone.prototype = Object.create( THREE.Object3D.prototype ); THREE.Bone.prototype.constructor = THREE.Bone; THREE.Bone.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); this.skin = source.skin; return this; }; // File:src/objects/Skeleton.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author michael guerrero / http://realitymeltdown.com * @author ikerr / http://verold.com */ THREE.Skeleton = function ( bones, boneInverses, useVertexTexture ) { this.useVertexTexture = useVertexTexture !== undefined ? useVertexTexture : true; this.identityMatrix = new THREE.Matrix4(); // copy the bone array bones = bones || []; this.bones = bones.slice( 0 ); // create a bone texture or an array of floats if ( this.useVertexTexture ) { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) var size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix size = THREE.Math.nextPowerOfTwo( Math.ceil( size ) ); size = Math.max( size, 4 ); this.boneTextureWidth = size; this.boneTextureHeight = size; this.boneMatrices = new Float32Array( this.boneTextureWidth * this.boneTextureHeight * 4 ); // 4 floats per RGBA pixel this.boneTexture = new THREE.DataTexture( this.boneMatrices, this.boneTextureWidth, this.boneTextureHeight, THREE.RGBAFormat, THREE.FloatType ); } else { this.boneMatrices = new Float32Array( 16 * this.bones.length ); } // use the supplied bone inverses or calculate the inverses if ( boneInverses === undefined ) { this.calculateInverses(); } else { if ( this.bones.length === boneInverses.length ) { this.boneInverses = boneInverses.slice( 0 ); } else { console.warn( 'THREE.Skeleton bonInverses is the wrong length.' ); this.boneInverses = []; for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { this.boneInverses.push( new THREE.Matrix4() ); } } } }; THREE.Skeleton.prototype.calculateInverses = function () { this.boneInverses = []; for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { var inverse = new THREE.Matrix4(); if ( this.bones[ b ] ) { inverse.getInverse( this.bones[ b ].matrixWorld ); } this.boneInverses.push( inverse ); } }; THREE.Skeleton.prototype.pose = function () { var bone; // recover the bind-time world matrices for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { bone = this.bones[ b ]; if ( bone ) { bone.matrixWorld.getInverse( this.boneInverses[ b ] ); } } // compute the local matrices, positions, rotations and scales for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { bone = this.bones[ b ]; if ( bone ) { if ( bone.parent ) { bone.matrix.getInverse( bone.parent.matrixWorld ); bone.matrix.multiply( bone.matrixWorld ); } else { bone.matrix.copy( bone.matrixWorld ); } bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); } } }; THREE.Skeleton.prototype.update = ( function () { var offsetMatrix = new THREE.Matrix4(); return function update() { // flatten bone matrices to array for ( var b = 0, bl = this.bones.length; b < bl; b ++ ) { // compute the offset between the current and the original transform var matrix = this.bones[ b ] ? this.bones[ b ].matrixWorld : this.identityMatrix; offsetMatrix.multiplyMatrices( matrix, this.boneInverses[ b ] ); offsetMatrix.flattenToArrayOffset( this.boneMatrices, b * 16 ); } if ( this.useVertexTexture ) { this.boneTexture.needsUpdate = true; } }; } )(); THREE.Skeleton.prototype.clone = function () { return new THREE.Skeleton( this.bones, this.boneInverses, this.useVertexTexture ); }; // File:src/objects/SkinnedMesh.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ THREE.SkinnedMesh = function ( geometry, material, useVertexTexture ) { THREE.Mesh.call( this, geometry, material ); this.type = 'SkinnedMesh'; this.bindMode = "attached"; this.bindMatrix = new THREE.Matrix4(); this.bindMatrixInverse = new THREE.Matrix4(); // init bones // TODO: remove bone creation as there is no reason (other than // convenience) for THREE.SkinnedMesh to do this. var bones = []; if ( this.geometry && this.geometry.bones !== undefined ) { var bone, gbone; for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) { gbone = this.geometry.bones[ b ]; bone = new THREE.Bone( this ); bones.push( bone ); bone.name = gbone.name; bone.position.fromArray( gbone.pos ); bone.quaternion.fromArray( gbone.rotq ); if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl ); } for ( var b = 0, bl = this.geometry.bones.length; b < bl; ++ b ) { gbone = this.geometry.bones[ b ]; if ( gbone.parent !== - 1 && gbone.parent !== null ) { bones[ gbone.parent ].add( bones[ b ] ); } else { this.add( bones[ b ] ); } } } this.normalizeSkinWeights(); this.updateMatrixWorld( true ); this.bind( new THREE.Skeleton( bones, undefined, useVertexTexture ), this.matrixWorld ); }; THREE.SkinnedMesh.prototype = Object.create( THREE.Mesh.prototype ); THREE.SkinnedMesh.prototype.constructor = THREE.SkinnedMesh; THREE.SkinnedMesh.prototype.bind = function( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.getInverse( bindMatrix ); }; THREE.SkinnedMesh.prototype.pose = function () { this.skeleton.pose(); }; THREE.SkinnedMesh.prototype.normalizeSkinWeights = function () { if ( this.geometry instanceof THREE.Geometry ) { for ( var i = 0; i < this.geometry.skinWeights.length; i ++ ) { var sw = this.geometry.skinWeights[ i ]; var scale = 1.0 / sw.lengthManhattan(); if ( scale !== Infinity ) { sw.multiplyScalar( scale ); } else { sw.set( 1, 0, 0, 0 ); // do something reasonable } } } else if ( this.geometry instanceof THREE.BufferGeometry ) { var vec = new THREE.Vector4(); var skinWeight = this.geometry.attributes.skinWeight; for ( var i = 0; i < skinWeight.count; i ++ ) { vec.x = skinWeight.getX( i ); vec.y = skinWeight.getY( i ); vec.z = skinWeight.getZ( i ); vec.w = skinWeight.getW( i ); var scale = 1.0 / vec.lengthManhattan(); if ( scale !== Infinity ) { vec.multiplyScalar( scale ); } else { vec.set( 1, 0, 0, 0 ); // do something reasonable } skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w ); } } }; THREE.SkinnedMesh.prototype.updateMatrixWorld = function( force ) { THREE.Mesh.prototype.updateMatrixWorld.call( this, true ); if ( this.bindMode === "attached" ) { this.bindMatrixInverse.getInverse( this.matrixWorld ); } else if ( this.bindMode === "detached" ) { this.bindMatrixInverse.getInverse( this.bindMatrix ); } else { console.warn( 'THREE.SkinnedMesh unrecognized bindMode: ' + this.bindMode ); } }; THREE.SkinnedMesh.prototype.clone = function() { return new this.constructor( this.geometry, this.material, this.useVertexTexture ).copy( this ); }; // File:src/objects/LOD.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.LOD = function () { THREE.Object3D.call( this ); this.type = 'LOD'; Object.defineProperties( this, { levels: { enumerable: true, value: [] }, objects: { get: function () { console.warn( 'THREE.LOD: .objects has been renamed to .levels.' ); return this.levels; } } } ); }; THREE.LOD.prototype = Object.create( THREE.Object3D.prototype ); THREE.LOD.prototype.constructor = THREE.LOD; THREE.LOD.prototype.addLevel = function ( object, distance ) { if ( distance === undefined ) distance = 0; distance = Math.abs( distance ); var levels = this.levels; for ( var l = 0; l < levels.length; l ++ ) { if ( distance < levels[ l ].distance ) { break; } } levels.splice( l, 0, { distance: distance, object: object } ); this.add( object ); }; THREE.LOD.prototype.getObjectForDistance = function ( distance ) { var levels = this.levels; for ( var i = 1, l = levels.length; i < l; i ++ ) { if ( distance < levels[ i ].distance ) { break; } } return levels[ i - 1 ].object; }; THREE.LOD.prototype.raycast = ( function () { var matrixPosition = new THREE.Vector3(); return function raycast( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( matrixPosition ); this.getObjectForDistance( distance ).raycast( raycaster, intersects ); }; }() ); THREE.LOD.prototype.update = function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); return function update( camera ) { var levels = this.levels; if ( levels.length > 1 ) { v1.setFromMatrixPosition( camera.matrixWorld ); v2.setFromMatrixPosition( this.matrixWorld ); var distance = v1.distanceTo( v2 ); levels[ 0 ].object.visible = true; for ( var i = 1, l = levels.length; i < l; i ++ ) { if ( distance >= levels[ i ].distance ) { levels[ i - 1 ].object.visible = false; levels[ i ].object.visible = true; } else { break; } } for ( ; i < l; i ++ ) { levels[ i ].object.visible = false; } } }; }(); THREE.LOD.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source, false ); var levels = source.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; this.addLevel( level.object.clone(), level.distance ); } return this; }; THREE.LOD.prototype.toJSON = function ( meta ) { var data = THREE.Object3D.prototype.toJSON.call( this, meta ); data.object.levels = []; var levels = this.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; data.object.levels.push( { object: level.object.uuid, distance: level.distance } ); } return data; }; // File:src/objects/Sprite.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Sprite = ( function () { var indices = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0.5, - 0.5, 0, 0.5, 0.5, 0, - 0.5, 0.5, 0 ] ); var uvs = new Float32Array( [ 0, 0, 1, 0, 1, 1, 0, 1 ] ); var geometry = new THREE.BufferGeometry(); geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) ); geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) ); return function Sprite( material ) { THREE.Object3D.call( this ); this.type = 'Sprite'; this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.SpriteMaterial(); }; } )(); THREE.Sprite.prototype = Object.create( THREE.Object3D.prototype ); THREE.Sprite.prototype.constructor = THREE.Sprite; THREE.Sprite.prototype.raycast = ( function () { var matrixPosition = new THREE.Vector3(); return function raycast( raycaster, intersects ) { matrixPosition.setFromMatrixPosition( this.matrixWorld ); var distanceSq = raycaster.ray.distanceSqToPoint( matrixPosition ); var guessSizeSq = this.scale.x * this.scale.y; if ( distanceSq > guessSizeSq ) { return; } intersects.push( { distance: Math.sqrt( distanceSq ), point: this.position, face: null, object: this } ); }; }() ); THREE.Sprite.prototype.clone = function () { return new this.constructor( this.material ).copy( this ); }; // Backwards compatibility THREE.Particle = THREE.Sprite; // File:src/objects/LensFlare.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlare = function ( texture, size, distance, blending, color ) { THREE.Object3D.call( this ); this.lensFlares = []; this.positionScreen = new THREE.Vector3(); this.customUpdateCallback = undefined; if ( texture !== undefined ) { this.add( texture, size, distance, blending, color ); } }; THREE.LensFlare.prototype = Object.create( THREE.Object3D.prototype ); THREE.LensFlare.prototype.constructor = THREE.LensFlare; /* * Add: adds another flare */ THREE.LensFlare.prototype.add = function ( texture, size, distance, blending, color, opacity ) { if ( size === undefined ) size = - 1; if ( distance === undefined ) distance = 0; if ( opacity === undefined ) opacity = 1; if ( color === undefined ) color = new THREE.Color( 0xffffff ); if ( blending === undefined ) blending = THREE.NormalBlending; distance = Math.min( distance, Math.max( 0, distance ) ); this.lensFlares.push( { texture: texture, // THREE.Texture size: size, // size in pixels (-1 = use texture.width) distance: distance, // distance (0-1) from light source (0=at light source) x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is in front z = 1 is back scale: 1, // scale rotation: 0, // rotation opacity: opacity, // opacity color: color, // color blending: blending // blending } ); }; /* * Update lens flares update positions on all flares based on the screen position * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way. */ THREE.LensFlare.prototype.updateLensFlares = function () { var f, fl = this.lensFlares.length; var flare; var vecX = - this.positionScreen.x * 2; var vecY = - this.positionScreen.y * 2; for ( f = 0; f < fl; f ++ ) { flare = this.lensFlares[ f ]; flare.x = this.positionScreen.x + vecX * flare.distance; flare.y = this.positionScreen.y + vecY * flare.distance; flare.wantedRotation = flare.x * Math.PI * 0.25; flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25; } }; THREE.LensFlare.prototype.copy = function ( source ) { THREE.Object3D.prototype.copy.call( this, source ); this.positionScreen.copy( source.positionScreen ); this.customUpdateCallback = source.customUpdateCallback; for ( var i = 0, l = source.lensFlares.length; i < l; i ++ ) { this.lensFlares.push( source.lensFlares[ i ] ); } return this; }; // File:src/scenes/Scene.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.Scene = function () { THREE.Object3D.call( this ); this.type = 'Scene'; this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer }; THREE.Scene.prototype = Object.create( THREE.Object3D.prototype ); THREE.Scene.prototype.constructor = THREE.Scene; THREE.Scene.prototype.copy = function ( source, recursive ) { THREE.Object3D.prototype.copy.call( this, source, recursive ); if ( source.fog !== null ) this.fog = source.fog.clone(); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate; return this; }; // File:src/scenes/Fog.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Fog = function ( color, near, far ) { this.name = ''; this.color = new THREE.Color( color ); this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000; }; THREE.Fog.prototype.clone = function () { return new THREE.Fog( this.color.getHex(), this.near, this.far ); }; // File:src/scenes/FogExp2.js /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.FogExp2 = function ( color, density ) { this.name = ''; this.color = new THREE.Color( color ); this.density = ( density !== undefined ) ? density : 0.00025; }; THREE.FogExp2.prototype.clone = function () { return new THREE.FogExp2( this.color.getHex(), this.density ); }; // File:src/renderers/shaders/ShaderChunk.js THREE.ShaderChunk = {}; // File:src/renderers/shaders/ShaderChunk/alphamap_fragment.glsl THREE.ShaderChunk[ 'alphamap_fragment' ] = "#ifdef USE_ALPHAMAP\n diffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/alphamap_pars_fragment.glsl THREE.ShaderChunk[ 'alphamap_pars_fragment' ] = "#ifdef USE_ALPHAMAP\n uniform sampler2D alphaMap;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/alphatest_fragment.glsl THREE.ShaderChunk[ 'alphatest_fragment' ] = "#ifdef ALPHATEST\n if ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/aomap_fragment.glsl THREE.ShaderChunk[ 'aomap_fragment' ] = "#ifdef USE_AOMAP\n float ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n reflectedLight.indirectDiffuse *= ambientOcclusion;\n #if defined( USE_ENVMAP ) && defined( STANDARD )\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/aomap_pars_fragment.glsl THREE.ShaderChunk[ 'aomap_pars_fragment' ] = "#ifdef USE_AOMAP\n uniform sampler2D aoMap;\n uniform float aoMapIntensity;\n#endif"; // File:src/renderers/shaders/ShaderChunk/begin_vertex.glsl THREE.ShaderChunk[ 'begin_vertex' ] = "\nvec3 transformed = vec3( position );\n"; // File:src/renderers/shaders/ShaderChunk/beginnormal_vertex.glsl THREE.ShaderChunk[ 'beginnormal_vertex' ] = "\nvec3 objectNormal = vec3( normal );\n"; // File:src/renderers/shaders/ShaderChunk/bsdfs.glsl THREE.ShaderChunk[ 'bsdfs' ] = "bool testLightInRange( const in float lightDistance, const in float cutoffDistance ) {\n return any( bvec2( cutoffDistance == 0.0, lightDistance < cutoffDistance ) );\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n if( decayExponent > 0.0 ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n float maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n return distanceFalloff * maxDistanceCutoffFactor;\n#else\n return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n#endif\n }\n return 1.0;\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n return RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n return ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = pow2( alpha );\n float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n return 1.0 / ( gl * gv );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n float a2 = pow2( alpha );\n float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n return RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n float alpha = pow2( roughness );\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_GGX_Smith( alpha, dotNL, dotNV );\n float D = D_GGX( alpha, dotNH );\n return F * ( G * D );\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n vec4 r = roughness * c0 + c1;\n float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n return specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n return 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n float dotNH = saturate( dot( geometry.normal, halfDir ) );\n float dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n vec3 F = F_Schlick( specularColor, dotLH );\n float G = G_BlinnPhong_Implicit( );\n float D = D_BlinnPhong( shininess, dotNH );\n return F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n return sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n"; // File:src/renderers/shaders/ShaderChunk/bumpmap_pars_fragment.glsl THREE.ShaderChunk[ 'bumpmap_pars_fragment' ] = "#ifdef USE_BUMPMAP\n uniform sampler2D bumpMap;\n uniform float bumpScale;\n vec2 dHdxy_fwd() {\n vec2 dSTdx = dFdx( vUv );\n vec2 dSTdy = dFdy( vUv );\n float Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n return vec2( dBx, dBy );\n }\n vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n vec3 vSigmaX = dFdx( surf_pos );\n vec3 vSigmaY = dFdy( surf_pos );\n vec3 vN = surf_norm;\n vec3 R1 = cross( vSigmaY, vN );\n vec3 R2 = cross( vN, vSigmaX );\n float fDet = dot( vSigmaX, R1 );\n vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n return normalize( abs( fDet ) * surf_norm - vGrad );\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/color_fragment.glsl THREE.ShaderChunk[ 'color_fragment' ] = "#ifdef USE_COLOR\n diffuseColor.rgb *= vColor;\n#endif"; // File:src/renderers/shaders/ShaderChunk/color_pars_fragment.glsl THREE.ShaderChunk[ 'color_pars_fragment' ] = "#ifdef USE_COLOR\n varying vec3 vColor;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/color_pars_vertex.glsl THREE.ShaderChunk[ 'color_pars_vertex' ] = "#ifdef USE_COLOR\n varying vec3 vColor;\n#endif"; // File:src/renderers/shaders/ShaderChunk/color_vertex.glsl THREE.ShaderChunk[ 'color_vertex' ] = "#ifdef USE_COLOR\n vColor.xyz = color.xyz;\n#endif"; // File:src/renderers/shaders/ShaderChunk/common.glsl THREE.ShaderChunk[ 'common' ] = "#define PI 3.14159\n#define PI2 6.28318\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nstruct IncidentLight {\n vec3 color;\n vec3 direction;\n bool visible;\n};\nstruct ReflectedLight {\n vec3 directDiffuse;\n vec3 directSpecular;\n vec3 indirectDiffuse;\n vec3 indirectSpecular;\n};\nstruct GeometricContext {\n vec3 position;\n vec3 normal;\n vec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n float distance = dot( planeNormal, point - pointOnPlane );\n return - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n return lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\n"; // File:src/renderers/shaders/ShaderChunk/cube_uv_reflection_fragment.glsl THREE.ShaderChunk[ 'cube_uv_reflection_fragment' ] = "#ifdef ENVMAP_TYPE_CUBE_UV\nconst float cubeUV_textureSize = 1024.0;\nint getFaceFromDirection(vec3 direction) {\n vec3 absDirection = abs(direction);\n int face = -1;\n if( absDirection.x > absDirection.z ) {\n if(absDirection.x > absDirection.y )\n face = direction.x > 0.0 ? 0 : 3;\n else\n face = direction.y > 0.0 ? 1 : 4;\n }\n else {\n if(absDirection.z > absDirection.y )\n face = direction.z > 0.0 ? 2 : 5;\n else\n face = direction.y > 0.0 ? 1 : 4;\n }\n return face;\n}\nconst float cubeUV_maxLods1 = log2(cubeUV_textureSize*0.25) - 1.0;\nconst float cubeUV_rangeClamp = exp2((6.0 - 1.0) * 2.0);\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\n float scale = exp2(cubeUV_maxLods1 - roughnessLevel);\n float dxRoughness = dFdx(roughness);\n float dyRoughness = dFdy(roughness);\n vec3 dx = dFdx( vec * scale * dxRoughness );\n vec3 dy = dFdy( vec * scale * dyRoughness );\n float d = max( dot( dx, dx ), dot( dy, dy ) );\n d = clamp(d, 1.0, cubeUV_rangeClamp);\n float mipLevel = 0.5 * log2(d);\n return vec2(floor(mipLevel), fract(mipLevel));\n}\nconst float cubeUV_maxLods2 = log2(cubeUV_textureSize*0.25) - 2.0;\nconst float cubeUV_rcpTextureSize = 1.0 / cubeUV_textureSize;\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\n mipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\n float a = 16.0 * cubeUV_rcpTextureSize;\n vec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\n vec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\n float powScale = exp2_packed.x * exp2_packed.y;\n float scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\n float mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\n bool bRes = mipLevel == 0.0;\n scale = bRes && (scale < a) ? a : scale;\n vec3 r;\n vec2 offset;\n int face = getFaceFromDirection(direction);\n float rcpPowScale = 1.0 / powScale;\n if( face == 0) {\n r = vec3(direction.x, -direction.z, direction.y);\n offset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 1) {\n r = vec3(direction.y, direction.x, direction.z);\n offset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 2) {\n r = vec3(direction.z, direction.x, direction.y);\n offset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n }\n else if( face == 3) {\n r = vec3(direction.x, direction.z, direction.y);\n offset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n else if( face == 4) {\n r = vec3(direction.y, direction.x, -direction.z);\n offset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n else {\n r = vec3(direction.z, -direction.x, direction.y);\n offset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\n offset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n }\n r = normalize(r);\n float texelOffset = 0.5 * cubeUV_rcpTextureSize;\n vec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\n vec2 base = offset + vec2( texelOffset );\n return base + s * ( scale - 2.0 * texelOffset );\n}\nconst float cubeUV_maxLods3 = log2(cubeUV_textureSize*0.25) - 3.0;\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\n float roughnessVal = roughness* cubeUV_maxLods3;\n float r1 = floor(roughnessVal);\n float r2 = r1 + 1.0;\n float t = fract(roughnessVal);\n vec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\n float s = mipInfo.y;\n float level0 = mipInfo.x;\n float level1 = level0 + 1.0;\n level1 = level1 > 5.0 ? 5.0 : level1;\n level0 += min( floor( s + 0.5 ), 5.0 );\n vec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\n vec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\n vec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\n vec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\n vec4 result = mix(color10, color20, t);\n return vec4(result.rgb, 1.0);\n}\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/defaultnormal_vertex.glsl THREE.ShaderChunk[ 'defaultnormal_vertex' ] = "#ifdef FLIP_SIDED\n objectNormal = -objectNormal;\n#endif\nvec3 transformedNormal = normalMatrix * objectNormal;\n"; // File:src/renderers/shaders/ShaderChunk/displacementmap_vertex.glsl THREE.ShaderChunk[ 'displacementmap_vertex' ] = "#ifdef USE_DISPLACEMENTMAP\n transformed += normal * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/displacementmap_pars_vertex.glsl THREE.ShaderChunk[ 'displacementmap_pars_vertex' ] = "#ifdef USE_DISPLACEMENTMAP\n uniform sampler2D displacementMap;\n uniform float displacementScale;\n uniform float displacementBias;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/emissivemap_fragment.glsl THREE.ShaderChunk[ 'emissivemap_fragment' ] = "#ifdef USE_EMISSIVEMAP\n vec4 emissiveColor = texture2D( emissiveMap, vUv );\n emissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n totalEmissiveRadiance *= emissiveColor.rgb;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/emissivemap_pars_fragment.glsl THREE.ShaderChunk[ 'emissivemap_pars_fragment' ] = "#ifdef USE_EMISSIVEMAP\n uniform sampler2D emissiveMap;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/encodings_pars_fragment.glsl THREE.ShaderChunk[ 'encodings_pars_fragment' ] = "\nvec4 LinearToLinear( in vec4 value ) {\n return value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n return vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n return vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n return vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n float maxComponent = max( max( value.r, value.g ), value.b );\n float fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n return vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.xyz * value.w * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.x, max( value.g, value.b ) );\n float M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n M = ceil( M * 255.0 ) / 255.0;\n return vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n return vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n float maxRGB = max( value.x, max( value.g, value.b ) );\n float D = max( maxRange / maxRGB, 1.0 );\n D = min( floor( D ) / 255.0, 1.0 );\n return vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n vec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\n Xp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\n vec4 vResult;\n vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n vResult.w = fract(Le);\n vResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\n return vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n float Le = value.z * 255.0 + value.w;\n vec3 Xp_Y_XYZp;\n Xp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\n Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n vec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\n return vec4( max(vRGB, 0.0), 1.0 );\n}\n"; // File:src/renderers/shaders/ShaderChunk/encodings_fragment.glsl THREE.ShaderChunk[ 'encodings_fragment' ] = " gl_FragColor = linearToOutputTexel( gl_FragColor );\n"; // File:src/renderers/shaders/ShaderChunk/envmap_fragment.glsl THREE.ShaderChunk[ 'envmap_fragment' ] = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( cameraToVertex, worldNormal );\n #else\n vec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n #else\n vec3 reflectVec = vReflect;\n #endif\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n #ifdef ENVMAP_TYPE_CUBE\n vec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n #elif defined( ENVMAP_TYPE_EQUIREC )\n vec2 sampleUV;\n sampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n vec4 envColor = texture2D( envMap, sampleUV );\n #elif defined( ENVMAP_TYPE_SPHERE )\n vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));\n vec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n #endif\n envColor = envMapTexelToLinear( envColor );\n #ifdef ENVMAP_BLENDING_MULTIPLY\n outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_MIX )\n outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_ADD )\n outgoingLight += envColor.xyz * specularStrength * reflectivity;\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_pars_fragment.glsl THREE.ShaderChunk[ 'envmap_pars_fragment' ] = "#if defined( USE_ENVMAP ) || defined( STANDARD )\n uniform float reflectivity;\n uniform float envMapIntenstiy;\n#endif\n#ifdef USE_ENVMAP\n #ifdef ENVMAP_TYPE_CUBE\n uniform samplerCube envMap;\n #else\n uniform sampler2D envMap;\n #endif\n uniform float flipEnvMap;\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( STANDARD )\n uniform float refractionRatio;\n #else\n varying vec3 vReflect;\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_pars_vertex.glsl THREE.ShaderChunk[ 'envmap_pars_vertex' ] = "#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG ) && ! defined( STANDARD )\n varying vec3 vReflect;\n uniform float refractionRatio;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/envmap_vertex.glsl THREE.ShaderChunk[ 'envmap_vertex' ] = "#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG ) && ! defined( STANDARD )\n vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vReflect = reflect( cameraToVertex, worldNormal );\n #else\n vReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/fog_fragment.glsl THREE.ShaderChunk[ 'fog_fragment' ] = "#ifdef USE_FOG\n #ifdef USE_LOGDEPTHBUF_EXT\n float depth = gl_FragDepthEXT / gl_FragCoord.w;\n #else\n float depth = gl_FragCoord.z / gl_FragCoord.w;\n #endif\n #ifdef FOG_EXP2\n float fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * depth * depth * LOG2 ) );\n #else\n float fogFactor = smoothstep( fogNear, fogFar, depth );\n #endif\n gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/fog_pars_fragment.glsl THREE.ShaderChunk[ 'fog_pars_fragment' ] = "#ifdef USE_FOG\n uniform vec3 fogColor;\n #ifdef FOG_EXP2\n uniform float fogDensity;\n #else\n uniform float fogNear;\n uniform float fogFar;\n #endif\n#endif"; // File:src/renderers/shaders/ShaderChunk/lightmap_fragment.glsl THREE.ShaderChunk[ 'lightmap_fragment' ] = "#ifdef USE_LIGHTMAP\n reflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lightmap_pars_fragment.glsl THREE.ShaderChunk[ 'lightmap_pars_fragment' ] = "#ifdef USE_LIGHTMAP\n uniform sampler2D lightMap;\n uniform float lightMapIntensity;\n#endif"; // File:src/renderers/shaders/ShaderChunk/lights_lambert_vertex.glsl THREE.ShaderChunk[ 'lights_lambert_vertex' ] = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n vLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n directLight = getPointDirectLightIrradiance( pointLights[ i ], geometry );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n directLight = getSpotDirectLightIrradiance( spotLights[ i ], geometry );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_DIR_LIGHTS > 0\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directLight = getDirectionalDirectLightIrradiance( directionalLights[ i ], geometry );\n dotNL = dot( geometry.normal, directLight.direction );\n directLightColor_Diffuse = PI * directLight.color;\n vLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n #ifdef DOUBLE_SIDED\n vLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n #endif\n }\n#endif\n#if NUM_HEMI_LIGHTS > 0\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n vLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n #ifdef DOUBLE_SIDED\n vLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n #endif\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_pars.glsl THREE.ShaderChunk[ 'lights_pars' ] = "uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n vec3 irradiance = ambientLightColor;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n return irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n struct DirectionalLight {\n vec3 direction;\n vec3 color;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n IncidentLight getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry ) {\n IncidentLight directLight;\n directLight.color = directionalLight.color;\n directLight.direction = directionalLight.direction;\n directLight.visible = true;\n return directLight;\n }\n#endif\n#if NUM_POINT_LIGHTS > 0\n struct PointLight {\n vec3 position;\n vec3 color;\n float distance;\n float decay;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n IncidentLight getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry ) {\n IncidentLight directLight;\n vec3 lVector = pointLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float lightDistance = length( lVector );\n if ( testLightInRange( lightDistance, pointLight.distance ) ) {\n directLight.color = pointLight.color;\n directLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n directLight.visible = true;\n } else {\n directLight.color = vec3( 0.0 );\n directLight.visible = false;\n }\n return directLight;\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n struct SpotLight {\n vec3 position;\n vec3 direction;\n vec3 color;\n float distance;\n float decay;\n float coneCos;\n float penumbraCos;\n int shadow;\n float shadowBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n IncidentLight getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry ) {\n IncidentLight directLight;\n vec3 lVector = spotLight.position - geometry.position;\n directLight.direction = normalize( lVector );\n float lightDistance = length( lVector );\n float angleCos = dot( directLight.direction, spotLight.direction );\n if ( all( bvec2( angleCos > spotLight.coneCos, testLightInRange( lightDistance, spotLight.distance ) ) ) ) {\n float spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n directLight.color = spotLight.color;\n directLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n directLight.visible = true;\n } else {\n directLight.color = vec3( 0.0 );\n directLight.visible = false;\n }\n return directLight;\n }\n#endif\n#if NUM_HEMI_LIGHTS > 0\n struct HemisphereLight {\n vec3 direction;\n vec3 skyColor;\n vec3 groundColor;\n };\n uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n float dotNL = dot( geometry.normal, hemiLight.direction );\n float hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n return irradiance;\n }\n#endif\n#if defined( USE_ENVMAP ) && defined( STANDARD )\n vec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n vec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n #else\n vec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n #endif\n #elif defined( ENVMAP_TYPE_CUBE_UV )\n vec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n vec4 envMapColor = textureCubeUV( queryVec, 1.0 );\n #else\n vec4 envMapColor = vec4( 0.0 );\n #endif\n envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n return PI * envMapColor.rgb * envMapIntensity;\n }\n float getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\n float maxMIPLevelScalar = float( maxMIPLevel );\n float desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\n return clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n }\n vec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\n #else\n vec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\n #endif\n #ifdef DOUBLE_SIDED\n float flipNormal = ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n #else\n float flipNormal = 1.0;\n #endif\n reflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n float specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\n #ifdef ENVMAP_TYPE_CUBE\n vec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n #else\n vec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n #endif\n #elif defined( ENVMAP_TYPE_CUBE_UV )\n vec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n vec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\n #elif defined( ENVMAP_TYPE_EQUIREC )\n vec2 sampleUV;\n sampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 );\n sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n #else\n vec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n #endif\n #elif defined( ENVMAP_TYPE_SPHERE )\n vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));\n #ifdef TEXTURE_LOD_EXT\n vec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n #else\n vec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n #endif\n #endif\n envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n return envMapColor.rgb * envMapIntensity;\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_fragment.glsl THREE.ShaderChunk[ 'lights_phong_fragment' ] = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_pars_fragment.glsl THREE.ShaderChunk[ 'lights_phong_pars_fragment' ] = "#ifdef USE_ENVMAP\n varying vec3 vWorldPosition;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n vec3 diffuseColor;\n vec3 specularColor;\n float specularShininess;\n float specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_BlinnPhong\n#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material ) (0)\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_pars_vertex.glsl THREE.ShaderChunk[ 'lights_phong_pars_vertex' ] = "#ifdef USE_ENVMAP\n varying vec3 vWorldPosition;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_phong_vertex.glsl THREE.ShaderChunk[ 'lights_phong_vertex' ] = "#ifdef USE_ENVMAP\n vWorldPosition = worldPosition.xyz;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/lights_standard_fragment.glsl THREE.ShaderChunk[ 'lights_standard_fragment' ] = "StandardMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\nmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n"; // File:src/renderers/shaders/ShaderChunk/lights_standard_pars_fragment.glsl THREE.ShaderChunk[ 'lights_standard_pars_fragment' ] = "struct StandardMaterial {\n vec3 diffuseColor;\n float specularRoughness;\n vec3 specularColor;\n};\nvoid RE_Direct_Standard( const in IncidentLight directLight, const in GeometricContext geometry, const in StandardMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n irradiance *= PI;\n #endif\n reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n}\nvoid RE_IndirectDiffuse_Standard( const in vec3 irradiance, const in GeometricContext geometry, const in StandardMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Standard( const in vec3 radiance, const in GeometricContext geometry, const in StandardMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectSpecular += radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n}\n#define RE_Direct RE_Direct_Standard\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Standard\n#define RE_IndirectSpecular RE_IndirectSpecular_Standard\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}\n"; // File:src/renderers/shaders/ShaderChunk/lights_template.glsl THREE.ShaderChunk[ 'lights_template' ] = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n PointLight pointLight;\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n directLight = getPointDirectLightIrradiance( pointLight, geometry );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n SpotLight spotLight;\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n directLight = getSpotDirectLightIrradiance( spotLight, geometry );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n DirectionalLight directionalLight;\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n directLight = getDirectionalDirectLightIrradiance( directionalLight, geometry );\n #ifdef USE_SHADOWMAP\n directLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometry, material, reflectedLight );\n }\n#endif\n#if defined( RE_IndirectDiffuse )\n vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n #ifdef USE_LIGHTMAP\n vec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n #ifndef PHYSICALLY_CORRECT_LIGHTS\n lightMapIrradiance *= PI;\n #endif\n irradiance += lightMapIrradiance;\n #endif\n #if ( NUM_HEMI_LIGHTS > 0 )\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n }\n #endif\n #if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n irradiance += getLightProbeIndirectIrradiance( geometry, 8 );\n #endif\n RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n vec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\n RE_IndirectSpecular( radiance, geometry, material, reflectedLight );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_fragment.glsl THREE.ShaderChunk[ 'logdepthbuf_fragment' ] = "#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)\n gl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;\n#endif"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_fragment.glsl THREE.ShaderChunk[ 'logdepthbuf_pars_fragment' ] = "#ifdef USE_LOGDEPTHBUF\n uniform float logDepthBufFC;\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_pars_vertex.glsl THREE.ShaderChunk[ 'logdepthbuf_pars_vertex' ] = "#ifdef USE_LOGDEPTHBUF\n #ifdef USE_LOGDEPTHBUF_EXT\n varying float vFragDepth;\n #endif\n uniform float logDepthBufFC;\n#endif"; // File:src/renderers/shaders/ShaderChunk/logdepthbuf_vertex.glsl THREE.ShaderChunk[ 'logdepthbuf_vertex' ] = "#ifdef USE_LOGDEPTHBUF\n gl_Position.z = log2(max( EPSILON, gl_Position.w + 1.0 )) * logDepthBufFC;\n #ifdef USE_LOGDEPTHBUF_EXT\n vFragDepth = 1.0 + gl_Position.w;\n #else\n gl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/map_fragment.glsl THREE.ShaderChunk[ 'map_fragment' ] = "#ifdef USE_MAP\n vec4 texelColor = texture2D( map, vUv );\n texelColor = mapTexelToLinear( texelColor );\n diffuseColor *= texelColor;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/map_pars_fragment.glsl THREE.ShaderChunk[ 'map_pars_fragment' ] = "#ifdef USE_MAP\n uniform sampler2D map;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/map_particle_fragment.glsl THREE.ShaderChunk[ 'map_particle_fragment' ] = "#ifdef USE_MAP\n vec4 mapTexel = texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) * offsetRepeat.zw + offsetRepeat.xy );\n diffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/map_particle_pars_fragment.glsl THREE.ShaderChunk[ 'map_particle_pars_fragment' ] = "#ifdef USE_MAP\n uniform vec4 offsetRepeat;\n uniform sampler2D map;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/metalnessmap_fragment.glsl THREE.ShaderChunk[ 'metalnessmap_fragment' ] = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n vec4 texelMetalness = texture2D( metalnessMap, vUv );\n metalnessFactor *= texelMetalness.r;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/metalnessmap_pars_fragment.glsl THREE.ShaderChunk[ 'metalnessmap_pars_fragment' ] = "#ifdef USE_METALNESSMAP\n uniform sampler2D metalnessMap;\n#endif"; // File:src/renderers/shaders/ShaderChunk/morphnormal_vertex.glsl THREE.ShaderChunk[ 'morphnormal_vertex' ] = "#ifdef USE_MORPHNORMALS\n objectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n objectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n objectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n objectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/morphtarget_pars_vertex.glsl THREE.ShaderChunk[ 'morphtarget_pars_vertex' ] = "#ifdef USE_MORPHTARGETS\n #ifndef USE_MORPHNORMALS\n uniform float morphTargetInfluences[ 8 ];\n #else\n uniform float morphTargetInfluences[ 4 ];\n #endif\n#endif"; // File:src/renderers/shaders/ShaderChunk/morphtarget_vertex.glsl THREE.ShaderChunk[ 'morphtarget_vertex' ] = "#ifdef USE_MORPHTARGETS\n transformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n transformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n transformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n transformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n #ifndef USE_MORPHNORMALS\n transformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n transformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n transformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n transformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/normal_fragment.glsl THREE.ShaderChunk[ 'normal_fragment' ] = "#ifdef FLAT_SHADED\n vec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n vec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n vec3 normal = normalize( cross( fdx, fdy ) );\n#else\n vec3 normal = normalize( vNormal );\n #ifdef DOUBLE_SIDED\n normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );\n #endif\n#endif\n#ifdef USE_NORMALMAP\n normal = perturbNormal2Arb( -vViewPosition, normal );\n#elif defined( USE_BUMPMAP )\n normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/normalmap_pars_fragment.glsl THREE.ShaderChunk[ 'normalmap_pars_fragment' ] = "#ifdef USE_NORMALMAP\n uniform sampler2D normalMap;\n uniform vec2 normalScale;\n vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n vec3 q0 = dFdx( eye_pos.xyz );\n vec3 q1 = dFdy( eye_pos.xyz );\n vec2 st0 = dFdx( vUv.st );\n vec2 st1 = dFdy( vUv.st );\n vec3 S = normalize( q0 * st1.t - q1 * st0.t );\n vec3 T = normalize( -q0 * st1.s + q1 * st0.s );\n vec3 N = normalize( surf_norm );\n vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n mapN.xy = normalScale * mapN.xy;\n mat3 tsn = mat3( S, T, N );\n return normalize( tsn * mapN );\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/premultiplied_alpha_fragment.glsl THREE.ShaderChunk[ 'premultiplied_alpha_fragment' ] = "#ifdef PREMULTIPLIED_ALPHA\n gl_FragColor.rgb *= gl_FragColor.a;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/project_vertex.glsl THREE.ShaderChunk[ 'project_vertex' ] = "#ifdef USE_SKINNING\n vec4 mvPosition = modelViewMatrix * skinned;\n#else\n vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\n#endif\ngl_Position = projectionMatrix * mvPosition;\n"; // File:src/renderers/shaders/ShaderChunk/roughnessmap_fragment.glsl THREE.ShaderChunk[ 'roughnessmap_fragment' ] = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n vec4 texelRoughness = texture2D( roughnessMap, vUv );\n roughnessFactor *= texelRoughness.r;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/roughnessmap_pars_fragment.glsl THREE.ShaderChunk[ 'roughnessmap_pars_fragment' ] = "#ifdef USE_ROUGHNESSMAP\n uniform sampler2D roughnessMap;\n#endif"; // File:src/renderers/shaders/ShaderChunk/shadowmap_pars_fragment.glsl THREE.ShaderChunk[ 'shadowmap_pars_fragment' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n #endif\n #if NUM_SPOT_LIGHTS > 0\n uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n #endif\n #if NUM_POINT_LIGHTS > 0\n uniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n #endif\n float unpackDepth( const in vec4 rgba_depth ) {\n const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );\n return dot( rgba_depth, bit_shift );\n }\n float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n return step( compare, unpackDepth( texture2D( depths, uv ) ) );\n }\n float texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n const vec2 offset = vec2( 0.0, 1.0 );\n vec2 texelSize = vec2( 1.0 ) / size;\n vec2 centroidUV = floor( uv * size + 0.5 ) / size;\n float lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n float lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n float rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n float rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n vec2 f = fract( uv * size + 0.5 );\n float a = mix( lb, lt, f.y );\n float b = mix( rb, rt, f.y );\n float c = mix( a, b, f.x );\n return c;\n }\n float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n shadowCoord.xyz /= shadowCoord.w;\n shadowCoord.z += shadowBias;\n bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n bool inFrustum = all( inFrustumVec );\n bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n bool frustumTest = all( frustumTestVec );\n if ( frustumTest ) {\n #if defined( SHADOWMAP_TYPE_PCF )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n return (\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 9.0 );\n #elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n return (\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 9.0 );\n #else\n return texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n #endif\n }\n return 1.0;\n }\n vec2 cubeToUV( vec3 v, float texelSizeY ) {\n vec3 absV = abs( v );\n float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n absV *= scaleToCube;\n v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n vec2 planar = v.xy;\n float almostATexel = 1.5 * texelSizeY;\n float almostOne = 1.0 - almostATexel;\n if ( absV.z >= almostOne ) {\n if ( v.z > 0.0 )\n planar.x = 4.0 - v.x;\n } else if ( absV.x >= almostOne ) {\n float signX = sign( v.x );\n planar.x = v.z * signX + 2.0 * signX;\n } else if ( absV.y >= almostOne ) {\n float signY = sign( v.y );\n planar.x = v.x + 2.0 * signY + 2.0;\n planar.y = v.z * signY - 2.0;\n }\n return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n }\n float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n vec3 lightToPosition = shadowCoord.xyz;\n vec3 bd3D = normalize( lightToPosition );\n float dp = ( length( lightToPosition ) - shadowBias ) / 1000.0;\n #if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n return (\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n ) * ( 1.0 / 9.0 );\n #else\n return texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n #endif\n }\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/shadowmap_pars_vertex.glsl THREE.ShaderChunk[ 'shadowmap_pars_vertex' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n #endif\n #if NUM_SPOT_LIGHTS > 0\n uniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n #endif\n #if NUM_POINT_LIGHTS > 0\n uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/shadowmap_vertex.glsl THREE.ShaderChunk[ 'shadowmap_vertex' ] = "#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n }\n #endif\n #if NUM_SPOT_LIGHTS > 0\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n vSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n }\n #endif\n #if NUM_POINT_LIGHTS > 0\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n }\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/shadowmask_pars_fragment.glsl THREE.ShaderChunk[ 'shadowmask_pars_fragment' ] = "float getShadowMask() {\n float shadow = 1.0;\n #ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHTS > 0\n DirectionalLight directionalLight;\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n shadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #if NUM_SPOT_LIGHTS > 0\n SpotLight spotLight;\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n shadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #if NUM_POINT_LIGHTS > 0\n PointLight pointLight;\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n shadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ] ) : 1.0;\n }\n #endif\n #endif\n return shadow;\n}\n"; // File:src/renderers/shaders/ShaderChunk/skinbase_vertex.glsl THREE.ShaderChunk[ 'skinbase_vertex' ] = "#ifdef USE_SKINNING\n mat4 boneMatX = getBoneMatrix( skinIndex.x );\n mat4 boneMatY = getBoneMatrix( skinIndex.y );\n mat4 boneMatZ = getBoneMatrix( skinIndex.z );\n mat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; // File:src/renderers/shaders/ShaderChunk/skinning_pars_vertex.glsl THREE.ShaderChunk[ 'skinning_pars_vertex' ] = "#ifdef USE_SKINNING\n uniform mat4 bindMatrix;\n uniform mat4 bindMatrixInverse;\n #ifdef BONE_TEXTURE\n uniform sampler2D boneTexture;\n uniform int boneTextureWidth;\n uniform int boneTextureHeight;\n mat4 getBoneMatrix( const in float i ) {\n float j = i * 4.0;\n float x = mod( j, float( boneTextureWidth ) );\n float y = floor( j / float( boneTextureWidth ) );\n float dx = 1.0 / float( boneTextureWidth );\n float dy = 1.0 / float( boneTextureHeight );\n y = dy * ( y + 0.5 );\n vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n mat4 bone = mat4( v1, v2, v3, v4 );\n return bone;\n }\n #else\n uniform mat4 boneGlobalMatrices[ MAX_BONES ];\n mat4 getBoneMatrix( const in float i ) {\n mat4 bone = boneGlobalMatrices[ int(i) ];\n return bone;\n }\n #endif\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/skinning_vertex.glsl THREE.ShaderChunk[ 'skinning_vertex' ] = "#ifdef USE_SKINNING\n vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n vec4 skinned = vec4( 0.0 );\n skinned += boneMatX * skinVertex * skinWeight.x;\n skinned += boneMatY * skinVertex * skinWeight.y;\n skinned += boneMatZ * skinVertex * skinWeight.z;\n skinned += boneMatW * skinVertex * skinWeight.w;\n skinned = bindMatrixInverse * skinned;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/skinnormal_vertex.glsl THREE.ShaderChunk[ 'skinnormal_vertex' ] = "#ifdef USE_SKINNING\n mat4 skinMatrix = mat4( 0.0 );\n skinMatrix += skinWeight.x * boneMatX;\n skinMatrix += skinWeight.y * boneMatY;\n skinMatrix += skinWeight.z * boneMatZ;\n skinMatrix += skinWeight.w * boneMatW;\n skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/specularmap_fragment.glsl THREE.ShaderChunk[ 'specularmap_fragment' ] = "float specularStrength;\n#ifdef USE_SPECULARMAP\n vec4 texelSpecular = texture2D( specularMap, vUv );\n specularStrength = texelSpecular.r;\n#else\n specularStrength = 1.0;\n#endif"; // File:src/renderers/shaders/ShaderChunk/specularmap_pars_fragment.glsl THREE.ShaderChunk[ 'specularmap_pars_fragment' ] = "#ifdef USE_SPECULARMAP\n uniform sampler2D specularMap;\n#endif"; // File:src/renderers/shaders/ShaderChunk/tonemapping_fragment.glsl THREE.ShaderChunk[ 'tonemapping_fragment' ] = "#if defined( TONE_MAPPING )\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/tonemapping_pars_fragment.glsl THREE.ShaderChunk[ 'tonemapping_pars_fragment' ] = "#define saturate(a) clamp( a, 0.0, 1.0 )\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n return toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n color = max( vec3( 0.0 ), color - 0.004 );\n return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\n"; // File:src/renderers/shaders/ShaderChunk/uv2_pars_fragment.glsl THREE.ShaderChunk[ 'uv2_pars_fragment' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n varying vec2 vUv2;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv2_pars_vertex.glsl THREE.ShaderChunk[ 'uv2_pars_vertex' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n attribute vec2 uv2;\n varying vec2 vUv2;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv2_vertex.glsl THREE.ShaderChunk[ 'uv2_vertex' ] = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n vUv2 = uv2;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv_pars_fragment.glsl THREE.ShaderChunk[ 'uv_pars_fragment' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n varying vec2 vUv;\n#endif"; // File:src/renderers/shaders/ShaderChunk/uv_pars_vertex.glsl THREE.ShaderChunk[ 'uv_pars_vertex' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n varying vec2 vUv;\n uniform vec4 offsetRepeat;\n#endif\n"; // File:src/renderers/shaders/ShaderChunk/uv_vertex.glsl THREE.ShaderChunk[ 'uv_vertex' ] = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n vUv = uv * offsetRepeat.zw + offsetRepeat.xy;\n#endif"; // File:src/renderers/shaders/ShaderChunk/worldpos_vertex.glsl THREE.ShaderChunk[ 'worldpos_vertex' ] = "#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( STANDARD ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )\n #ifdef USE_SKINNING\n vec4 worldPosition = modelMatrix * skinned;\n #else\n vec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n #endif\n#endif\n"; // File:src/renderers/shaders/UniformsUtils.js /** * Uniform Utilities */ THREE.UniformsUtils = { merge: function ( uniforms ) { var merged = {}; for ( var u = 0; u < uniforms.length; u ++ ) { var tmp = this.clone( uniforms[ u ] ); for ( var p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; }, clone: function ( uniforms_src ) { var uniforms_dst = {}; for ( var u in uniforms_src ) { uniforms_dst[ u ] = {}; for ( var p in uniforms_src[ u ] ) { var parameter_src = uniforms_src[ u ][ p ]; if ( parameter_src instanceof THREE.Color || parameter_src instanceof THREE.Vector2 || parameter_src instanceof THREE.Vector3 || parameter_src instanceof THREE.Vector4 || parameter_src instanceof THREE.Matrix3 || parameter_src instanceof THREE.Matrix4 || parameter_src instanceof THREE.Texture ) { uniforms_dst[ u ][ p ] = parameter_src.clone(); } else if ( Array.isArray( parameter_src ) ) { uniforms_dst[ u ][ p ] = parameter_src.slice(); } else { uniforms_dst[ u ][ p ] = parameter_src; } } } return uniforms_dst; } }; // File:src/renderers/shaders/UniformsLib.js /** * Uniforms library for shared webgl shaders */ THREE.UniformsLib = { common: { "diffuse": { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity": { type: "f", value: 1.0 }, "map": { type: "t", value: null }, "offsetRepeat": { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) }, "specularMap": { type: "t", value: null }, "alphaMap": { type: "t", value: null }, "envMap": { type: "t", value: null }, "flipEnvMap": { type: "f", value: - 1 }, "reflectivity": { type: "f", value: 1.0 }, "refractionRatio": { type: "f", value: 0.98 } }, aomap: { "aoMap": { type: "t", value: null }, "aoMapIntensity": { type: "f", value: 1 } }, lightmap: { "lightMap": { type: "t", value: null }, "lightMapIntensity": { type: "f", value: 1 } }, emissivemap: { "emissiveMap": { type: "t", value: null } }, bumpmap: { "bumpMap": { type: "t", value: null }, "bumpScale": { type: "f", value: 1 } }, normalmap: { "normalMap": { type: "t", value: null }, "normalScale": { type: "v2", value: new THREE.Vector2( 1, 1 ) } }, displacementmap: { "displacementMap": { type: "t", value: null }, "displacementScale": { type: "f", value: 1 }, "displacementBias": { type: "f", value: 0 } }, roughnessmap: { "roughnessMap": { type: "t", value: null } }, metalnessmap: { "metalnessMap": { type: "t", value: null } }, fog: { "fogDensity": { type: "f", value: 0.00025 }, "fogNear": { type: "f", value: 1 }, "fogFar": { type: "f", value: 2000 }, "fogColor": { type: "c", value: new THREE.Color( 0xffffff ) } }, lights: { "ambientLightColor": { type: "fv", value: [] }, "directionalLights": { type: "sa", value: [], properties: { "direction": { type: "v3" }, "color": { type: "c" }, "shadow": { type: "i" }, "shadowBias": { type: "f" }, "shadowRadius": { type: "f" }, "shadowMapSize": { type: "v2" } } }, "directionalShadowMap": { type: "tv", value: [] }, "directionalShadowMatrix": { type: "m4v", value: [] }, "spotLights": { type: "sa", value: [], properties: { "color": { type: "c" }, "position": { type: "v3" }, "direction": { type: "v3" }, "distance": { type: "f" }, "coneCos": { type: "f" }, "penumbraCos": { type: "f" }, "decay": { type: "f" }, "shadow": { type: "i" }, "shadowBias": { type: "f" }, "shadowRadius": { type: "f" }, "shadowMapSize": { type: "v2" } } }, "spotShadowMap": { type: "tv", value: [] }, "spotShadowMatrix": { type: "m4v", value: [] }, "pointLights": { type: "sa", value: [], properties: { "color": { type: "c" }, "position": { type: "v3" }, "decay": { type: "f" }, "distance": { type: "f" }, "shadow": { type: "i" }, "shadowBias": { type: "f" }, "shadowRadius": { type: "f" }, "shadowMapSize": { type: "v2" } } }, "pointShadowMap": { type: "tv", value: [] }, "pointShadowMatrix": { type: "m4v", value: [] }, "hemisphereLights": { type: "sa", value: [], properties: { "direction": { type: "v3" }, "skyColor": { type: "c" }, "groundColor": { type: "c" } } } }, points: { "diffuse": { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity": { type: "f", value: 1.0 }, "size": { type: "f", value: 1.0 }, "scale": { type: "f", value: 1.0 }, "map": { type: "t", value: null }, "offsetRepeat": { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) } } }; // File:src/renderers/shaders/ShaderLib/cube_frag.glsl THREE.ShaderChunk[ 'cube_frag' ] = "uniform samplerCube tCube;\nuniform float tFlip;\nvarying vec3 vWorldPosition;\n#include \n#include \nvoid main() {\n gl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/cube_vert.glsl THREE.ShaderChunk[ 'cube_vert' ] = "varying vec3 vWorldPosition;\n#include \n#include \nvoid main() {\n vWorldPosition = transformDirection( position, modelMatrix );\n gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/depth_frag.glsl THREE.ShaderChunk[ 'depth_frag' ] = "uniform float mNear;\nuniform float mFar;\nuniform float opacity;\n#include \n#include \nvoid main() {\n #include \n #ifdef USE_LOGDEPTHBUF_EXT\n float depth = gl_FragDepthEXT / gl_FragCoord.w;\n #else\n float depth = gl_FragCoord.z / gl_FragCoord.w;\n #endif\n float color = 1.0 - smoothstep( mNear, mFar, depth );\n gl_FragColor = vec4( vec3( color ), opacity );\n}\n"; // File:src/renderers/shaders/ShaderLib/depth_vert.glsl THREE.ShaderChunk[ 'depth_vert' ] = "#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/depthRGBA_frag.glsl THREE.ShaderChunk[ 'depthRGBA_frag' ] = "#include \n#include \nvec4 pack_depth( const in float depth ) {\n const vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );\n const vec4 bit_mask = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );\n vec4 res = mod( depth * bit_shift * vec4( 255 ), vec4( 256 ) ) / vec4( 255 );\n res -= res.xxyz * bit_mask;\n return res;\n}\nvoid main() {\n #include \n #ifdef USE_LOGDEPTHBUF_EXT\n gl_FragData[ 0 ] = pack_depth( gl_FragDepthEXT );\n #else\n gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z );\n #endif\n}\n"; // File:src/renderers/shaders/ShaderLib/depthRGBA_vert.glsl THREE.ShaderChunk[ 'depthRGBA_vert' ] = "#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/distanceRGBA_frag.glsl THREE.ShaderChunk[ 'distanceRGBA_frag' ] = "uniform vec3 lightPos;\nvarying vec4 vWorldPosition;\n#include \nvec4 pack1K ( float depth ) {\n depth /= 1000.0;\n const vec4 bitSh = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );\n const vec4 bitMsk = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );\n vec4 res = mod( depth * bitSh * vec4( 255 ), vec4( 256 ) ) / vec4( 255 );\n res -= res.xxyz * bitMsk;\n return res;\n}\nfloat unpack1K ( vec4 color ) {\n const vec4 bitSh = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );\n return dot( color, bitSh ) * 1000.0;\n}\nvoid main () {\n gl_FragColor = pack1K( length( vWorldPosition.xyz - lightPos.xyz ) );\n}\n"; // File:src/renderers/shaders/ShaderLib/distanceRGBA_vert.glsl THREE.ShaderChunk[ 'distanceRGBA_vert' ] = "varying vec4 vWorldPosition;\n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n vWorldPosition = worldPosition;\n}\n"; // File:src/renderers/shaders/ShaderLib/equirect_frag.glsl THREE.ShaderChunk[ 'equirect_frag' ] = "uniform sampler2D tEquirect;\nuniform float tFlip;\nvarying vec3 vWorldPosition;\n#include \n#include \nvoid main() {\n vec3 direction = normalize( vWorldPosition );\n vec2 sampleUV;\n sampleUV.y = saturate( tFlip * direction.y * -0.5 + 0.5 );\n sampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n gl_FragColor = texture2D( tEquirect, sampleUV );\n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/equirect_vert.glsl THREE.ShaderChunk[ 'equirect_vert' ] = "varying vec3 vWorldPosition;\n#include \n#include \nvoid main() {\n vWorldPosition = transformDirection( position, modelMatrix );\n gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/linedashed_frag.glsl THREE.ShaderChunk[ 'linedashed_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \nvoid main() {\n if ( mod( vLineDistance, totalSize ) > dashSize ) {\n discard;\n }\n vec3 outgoingLight = vec3( 0.0 );\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n #include \n outgoingLight = diffuseColor.rgb;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/linedashed_vert.glsl THREE.ShaderChunk[ 'linedashed_vert' ] = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \nvoid main() {\n #include \n vLineDistance = scale * lineDistance;\n vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\n gl_Position = projectionMatrix * mvPosition;\n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/meshbasic_frag.glsl THREE.ShaderChunk[ 'meshbasic_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n #include \n #include \n #include \n #include \n #include \n ReflectedLight reflectedLight;\n reflectedLight.directDiffuse = vec3( 0.0 );\n reflectedLight.directSpecular = vec3( 0.0 );\n reflectedLight.indirectDiffuse = diffuseColor.rgb;\n reflectedLight.indirectSpecular = vec3( 0.0 );\n #include \n vec3 outgoingLight = reflectedLight.indirectDiffuse;\n #include \n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/meshbasic_vert.glsl THREE.ShaderChunk[ 'meshbasic_vert' ] = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #ifdef USE_ENVMAP\n #include \n #include \n #include \n #include \n #endif\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/meshlambert_frag.glsl THREE.ShaderChunk[ 'meshlambert_frag' ] = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n varying vec3 vLightBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n reflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\n #include \n reflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n #ifdef DOUBLE_SIDED\n reflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n #else\n reflectedLight.directDiffuse = vLightFront;\n #endif\n reflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n #include \n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n #include \n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/meshlambert_vert.glsl THREE.ShaderChunk[ 'meshlambert_vert' ] = "#define LAMBERT\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n varying vec3 vLightBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/meshphong_frag.glsl THREE.ShaderChunk[ 'meshphong_frag' ] = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n #include \n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/meshphong_vert.glsl THREE.ShaderChunk[ 'meshphong_vert' ] = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n#ifndef FLAT_SHADED\n vNormal = normalize( transformedNormal );\n#endif\n #include \n #include \n #include \n #include \n #include \n #include \n vViewPosition = - mvPosition.xyz;\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/meshstandard_frag.glsl THREE.ShaderChunk[ 'meshstandard_frag' ] = "#define STANDARD\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\nuniform float envMapIntensity;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/meshstandard_vert.glsl THREE.ShaderChunk[ 'meshstandard_vert' ] = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n#ifndef FLAT_SHADED\n vNormal = normalize( transformedNormal );\n#endif\n #include \n #include \n #include \n #include \n #include \n #include \n vViewPosition = - mvPosition.xyz;\n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/normal_frag.glsl THREE.ShaderChunk[ 'normal_frag' ] = "uniform float opacity;\nvarying vec3 vNormal;\n#include \n#include \nvoid main() {\n gl_FragColor = vec4( 0.5 * normalize( vNormal ) + 0.5, opacity );\n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/normal_vert.glsl THREE.ShaderChunk[ 'normal_vert' ] = "varying vec3 vNormal;\n#include \n#include \n#include \nvoid main() {\n vNormal = normalize( normalMatrix * normal );\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/points_frag.glsl THREE.ShaderChunk[ 'points_frag' ] = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec3 outgoingLight = vec3( 0.0 );\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n #include \n #include \n #include \n outgoingLight = diffuseColor.rgb;\n gl_FragColor = vec4( outgoingLight, diffuseColor.a );\n #include \n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib/points_vert.glsl THREE.ShaderChunk[ 'points_vert' ] = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #ifdef USE_SIZEATTENUATION\n gl_PointSize = size * ( scale / - mvPosition.z );\n #else\n gl_PointSize = size;\n #endif\n #include \n #include \n #include \n}\n"; // File:src/renderers/shaders/ShaderLib.js /** * Webgl Shader Library for three.js * * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.ShaderLib = { 'basic': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "aomap" ], THREE.UniformsLib[ "fog" ] ] ), vertexShader: THREE.ShaderChunk['meshbasic_vert'], fragmentShader: THREE.ShaderChunk['meshbasic_frag'] }, 'lambert': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "aomap" ], THREE.UniformsLib[ "lightmap" ], THREE.UniformsLib[ "emissivemap" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], { "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) } } ] ), vertexShader: THREE.ShaderChunk['meshlambert_vert'], fragmentShader: THREE.ShaderChunk['meshlambert_frag'] }, 'phong': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "aomap" ], THREE.UniformsLib[ "lightmap" ], THREE.UniformsLib[ "emissivemap" ], THREE.UniformsLib[ "bumpmap" ], THREE.UniformsLib[ "normalmap" ], THREE.UniformsLib[ "displacementmap" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], { "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "specular" : { type: "c", value: new THREE.Color( 0x111111 ) }, "shininess": { type: "f", value: 30 } } ] ), vertexShader: THREE.ShaderChunk['meshphong_vert'], fragmentShader: THREE.ShaderChunk['meshphong_frag'] }, 'standard': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "aomap" ], THREE.UniformsLib[ "lightmap" ], THREE.UniformsLib[ "emissivemap" ], THREE.UniformsLib[ "bumpmap" ], THREE.UniformsLib[ "normalmap" ], THREE.UniformsLib[ "displacementmap" ], THREE.UniformsLib[ "roughnessmap" ], THREE.UniformsLib[ "metalnessmap" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], { "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "roughness": { type: "f", value: 0.5 }, "metalness": { type: "f", value: 0 }, "envMapIntensity" : { type: "f", value: 1 } // temporary } ] ), vertexShader: THREE.ShaderChunk['meshstandard_vert'], fragmentShader: THREE.ShaderChunk['meshstandard_frag'] }, 'points': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "points" ], THREE.UniformsLib[ "fog" ] ] ), vertexShader: THREE.ShaderChunk['points_vert'], fragmentShader: THREE.ShaderChunk['points_frag'] }, 'dashed': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], { "scale" : { type: "f", value: 1 }, "dashSize" : { type: "f", value: 1 }, "totalSize": { type: "f", value: 2 } } ] ), vertexShader: THREE.ShaderChunk['linedashed_vert'], fragmentShader: THREE.ShaderChunk['linedashed_frag'] }, 'depth': { uniforms: { "mNear": { type: "f", value: 1.0 }, "mFar" : { type: "f", value: 2000.0 }, "opacity" : { type: "f", value: 1.0 } }, vertexShader: THREE.ShaderChunk['depth_vert'], fragmentShader: THREE.ShaderChunk['depth_frag'] }, 'normal': { uniforms: { "opacity" : { type: "f", value: 1.0 } }, vertexShader: THREE.ShaderChunk['normal_vert'], fragmentShader: THREE.ShaderChunk['normal_frag'] }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ 'cube': { uniforms: { "tCube": { type: "t", value: null }, "tFlip": { type: "f", value: - 1 } }, vertexShader: THREE.ShaderChunk['cube_vert'], fragmentShader: THREE.ShaderChunk['cube_frag'] }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ 'equirect': { uniforms: { "tEquirect": { type: "t", value: null }, "tFlip": { type: "f", value: - 1 } }, vertexShader: THREE.ShaderChunk['equirect_vert'], fragmentShader: THREE.ShaderChunk['equirect_frag'] }, /* Depth encoding into RGBA texture * * based on SpiderGL shadow map example * http://spidergl.org/example.php?id=6 * * originally from * http://www.gamedev.net/topic/442138-packing-a-float-into-a-a8r8g8b8-texture-shader/page__whichpage__1%25EF%25BF%25BD * * see also * http://aras-p.info/blog/2009/07/30/encoding-floats-to-rgba-the-final/ */ 'depthRGBA': { uniforms: {}, vertexShader: THREE.ShaderChunk['depthRGBA_vert'], fragmentShader: THREE.ShaderChunk['depthRGBA_frag'] }, 'distanceRGBA': { uniforms: { "lightPos": { type: "v3", value: new THREE.Vector3( 0, 0, 0 ) } }, vertexShader: THREE.ShaderChunk['distanceRGBA_vert'], fragmentShader: THREE.ShaderChunk['distanceRGBA_frag'] } }; // File:src/renderers/WebGLRenderer.js /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.WebGLRenderer = function ( parameters ) { console.log( 'THREE.WebGLRenderer', THREE.REVISION ); parameters = parameters || {}; var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ), _context = parameters.context !== undefined ? parameters.context : null, _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false; var lights = []; var opaqueObjects = []; var opaqueObjectsLastIndex = - 1; var transparentObjects = []; var transparentObjectsLastIndex = - 1; var morphInfluences = new Float32Array( 8 ); var sprites = []; var lensFlares = []; // public properties this.domElement = _canvas; this.context = null; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // physically based shading this.gammaFactor = 2.0; // for backwards compatibility this.gammaInput = false; this.gammaOutput = false; // physical lights this.physicallyCorrectLights = false; // tone mapping this.toneMapping = THREE.LinearToneMapping; this.toneMappingExposure = 1.0; this.toneMappingWhitePoint = 1.0; // morphs this.maxMorphTargets = 8; this.maxMorphNormals = 4; // flags this.autoScaleCubemaps = true; // internal properties var _this = this, // internal state cache _currentProgram = null, _currentRenderTarget = null, _currentFramebuffer = null, _currentMaterialId = - 1, _currentGeometryProgram = '', _currentCamera = null, _currentScissor = new THREE.Vector4(), _currentScissorTest = null, _currentViewport = new THREE.Vector4(), // _usedTextureUnits = 0, // _clearColor = new THREE.Color( 0x000000 ), _clearAlpha = 0, _width = _canvas.width, _height = _canvas.height, _pixelRatio = 1, _scissor = new THREE.Vector4( 0, 0, _width, _height ), _scissorTest = false, _viewport = new THREE.Vector4( 0, 0, _width, _height ), // frustum _frustum = new THREE.Frustum(), // camera matrices cache _projScreenMatrix = new THREE.Matrix4(), _vector3 = new THREE.Vector3(), // light arrays cache _lights = { hash: '', ambient: [ 0, 0, 0 ], directional: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadowMap: [], spotShadowMatrix: [], point: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [], shadows: [], shadowsPointLight: 0 }, // info _infoMemory = { geometries: 0, textures: 0 }, _infoRender = { calls: 0, vertices: 0, faces: 0, points: 0 }; this.info = { render: _infoRender, memory: _infoMemory, programs: null }; // initialize var _gl; try { var attributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer }; _gl = _context || _canvas.getContext( 'webgl', attributes ) || _canvas.getContext( 'experimental-webgl', attributes ); if ( _gl === null ) { if ( _canvas.getContext( 'webgl' ) !== null ) { throw 'Error creating WebGL context with your selected attributes.'; } else { throw 'Error creating WebGL context.'; } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if ( _gl.getShaderPrecisionFormat === undefined ) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; }; } _canvas.addEventListener( 'webglcontextlost', onContextLost, false ); } catch ( error ) { console.error( 'THREE.WebGLRenderer: ' + error ); } var extensions = new THREE.WebGLExtensions( _gl ); extensions.get( 'OES_texture_float' ); extensions.get( 'OES_texture_float_linear' ); extensions.get( 'OES_texture_half_float' ); extensions.get( 'OES_texture_half_float_linear' ); extensions.get( 'OES_standard_derivatives' ); extensions.get( 'ANGLE_instanced_arrays' ); if ( extensions.get( 'OES_element_index_uint' ) ) { THREE.BufferGeometry.MaxIndex = 4294967296; } var capabilities = new THREE.WebGLCapabilities( _gl, extensions, parameters ); var state = new THREE.WebGLState( _gl, extensions, paramThreeToGL ); var properties = new THREE.WebGLProperties(); var objects = new THREE.WebGLObjects( _gl, properties, this.info ); var programCache = new THREE.WebGLPrograms( this, capabilities ); var lightCache = new THREE.WebGLLights(); this.info.programs = programCache.programs; var bufferRenderer = new THREE.WebGLBufferRenderer( _gl, extensions, _infoRender ); var indexedBufferRenderer = new THREE.WebGLIndexedBufferRenderer( _gl, extensions, _infoRender ); // function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } function glClearColor( r, g, b, a ) { if ( _premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } state.clearColor( r, g, b, a ); } function setDefaultGLState() { state.init(); state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) ); state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) ); glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); } function resetGLState() { _currentProgram = null; _currentCamera = null; _currentGeometryProgram = ''; _currentMaterialId = - 1; state.reset(); } setDefaultGLState(); this.context = _gl; this.capabilities = capabilities; this.extensions = extensions; this.properties = properties; this.state = state; // shadow map var shadowMap = new THREE.WebGLShadowMap( this, _lights, objects ); this.shadowMap = shadowMap; // Plugins var spritePlugin = new THREE.SpritePlugin( this, sprites ); var lensFlarePlugin = new THREE.LensFlarePlugin( this, lensFlares ); // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { extensions.get( 'WEBGL_lose_context' ).loseContext(); }; this.getMaxAnisotropy = ( function () { var value; return function getMaxAnisotropy() { if ( value !== undefined ) return value; var extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension !== null ) { value = _gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { value = 0; } return value; }; } )(); this.getPrecision = function () { return capabilities.precision; }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) return; _pixelRatio = value; this.setSize( _viewport.z, _viewport.w, false ); }; this.getSize = function () { return { width: _width, height: _height }; }; this.setSize = function ( width, height, updateStyle ) { _width = width; _height = height; _canvas.width = width * _pixelRatio; _canvas.height = height * _pixelRatio; if ( updateStyle !== false ) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.setViewport = function ( x, y, width, height ) { state.viewport( _viewport.set( x, y, width, height ) ); }; this.setScissor = function ( x, y, width, height ) { state.scissor( _scissor.set( x, y, width, height ) ); }; this.setScissorTest = function ( boolean ) { state.setScissorTest( _scissorTest = boolean ); }; // Clearing this.getClearColor = function () { return _clearColor; }; this.setClearColor = function ( color, alpha ) { _clearColor.set( color ); _clearAlpha = alpha !== undefined ? alpha : 1; glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.getClearAlpha = function () { return _clearAlpha; }; this.setClearAlpha = function ( alpha ) { _clearAlpha = alpha; glClearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.clear = function ( color, depth, stencil ) { var bits = 0; if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT; if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT; _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; this.clearTarget = function ( renderTarget, color, depth, stencil ) { this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }; // Reset this.resetGLState = resetGLState; this.dispose = function() { _canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); }; // Events function onContextLost( event ) { event.preventDefault(); resetGLState(); setDefaultGLState(); properties.clear(); } function onTextureDispose( event ) { var texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); _infoMemory.textures --; } function onRenderTargetDispose( event ) { var renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); _infoMemory.textures --; } function onMaterialDispose( event ) { var material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateTexture( texture ) { var textureProperties = properties.get( texture ); if ( texture.image && textureProperties.__image__webglTextureCube ) { // cube texture _gl.deleteTexture( textureProperties.__image__webglTextureCube ); } else { // 2D texture if ( textureProperties.__webglInit === undefined ) return; _gl.deleteTexture( textureProperties.__webglTexture ); } // remove all webgl properties properties.delete( texture ); } function deallocateRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); if ( ! renderTarget || textureProperties.__webglTexture === undefined ) return; _gl.deleteTexture( textureProperties.__webglTexture ); if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) { for ( var i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); } properties.delete( renderTarget.texture ); properties.delete( renderTarget ); } function deallocateMaterial( material ) { releaseMaterialProgramReference( material ); properties.delete( material ); } function releaseMaterialProgramReference( material ) { var programInfo = properties.get( material ).program; material.program = undefined; if ( programInfo !== undefined ) { programCache.releaseProgram( programInfo ); } } // Buffer rendering this.renderBufferImmediate = function ( object, program, material ) { state.initAttributes(); var buffers = properties.get( object ); if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer(); if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer(); if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer(); if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer(); var attributes = program.getAttributes(); if ( object.hasPositions ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position ); _gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.position ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal ); if ( material.type !== 'MeshPhongMaterial' && material.type !== 'MeshStandardMaterial' && material.shading === THREE.FlatShading ) { for ( var i = 0, l = object.count * 3; i < l; i += 9 ) { var array = object.normalArray; var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3; var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3; var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3; array[ i + 0 ] = nx; array[ i + 1 ] = ny; array[ i + 2 ] = nz; array[ i + 3 ] = nx; array[ i + 4 ] = ny; array[ i + 5 ] = nz; array[ i + 6 ] = nx; array[ i + 7 ] = ny; array[ i + 8 ] = nz; } } _gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.normal ); _gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasUvs && material.map ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv ); _gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.uv ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); } if ( object.hasColors && material.vertexColors !== THREE.NoColors ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color ); _gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW ); state.enableAttribute( attributes.color ); _gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 ); } state.disableUnusedAttributes(); _gl.drawArrays( _gl.TRIANGLES, 0, object.count ); object.count = 0; }; this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) { setMaterial( material ); var program = setProgram( camera, fog, material, object ); var updateBuffers = false; var geometryProgram = geometry.id + '_' + program.id + '_' + material.wireframe; if ( geometryProgram !== _currentGeometryProgram ) { _currentGeometryProgram = geometryProgram; updateBuffers = true; } // morph targets var morphTargetInfluences = object.morphTargetInfluences; if ( morphTargetInfluences !== undefined ) { var activeInfluences = []; for ( var i = 0, l = morphTargetInfluences.length; i < l; i ++ ) { var influence = morphTargetInfluences[ i ]; activeInfluences.push( [ influence, i ] ); } activeInfluences.sort( absNumericalSort ); if ( activeInfluences.length > 8 ) { activeInfluences.length = 8; } var morphAttributes = geometry.morphAttributes; for ( var i = 0, l = activeInfluences.length; i < l; i ++ ) { var influence = activeInfluences[ i ]; morphInfluences[ i ] = influence[ 0 ]; if ( influence[ 0 ] !== 0 ) { var index = influence[ 1 ]; if ( material.morphTargets === true && morphAttributes.position ) geometry.addAttribute( 'morphTarget' + i, morphAttributes.position[ index ] ); if ( material.morphNormals === true && morphAttributes.normal ) geometry.addAttribute( 'morphNormal' + i, morphAttributes.normal[ index ] ); } else { if ( material.morphTargets === true ) geometry.removeAttribute( 'morphTarget' + i ); if ( material.morphNormals === true ) geometry.removeAttribute( 'morphNormal' + i ); } } var uniforms = program.getUniforms(); if ( uniforms.morphTargetInfluences !== null ) { _gl.uniform1fv( uniforms.morphTargetInfluences, morphInfluences ); } updateBuffers = true; } // var index = geometry.index; var position = geometry.attributes.position; if ( material.wireframe === true ) { index = objects.getWireframeAttribute( geometry ); } var renderer; if ( index !== null ) { renderer = indexedBufferRenderer; renderer.setIndex( index ); } else { renderer = bufferRenderer; } if ( updateBuffers ) { setupVertexAttributes( material, program, geometry ); if ( index !== null ) { _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, objects.getAttributeBuffer( index ) ); } } // var dataStart = 0; var dataCount = Infinity; if ( index !== null ) { dataCount = index.count; } else if ( position !== undefined ) { dataCount = position.count; } var rangeStart = geometry.drawRange.start; var rangeCount = geometry.drawRange.count; var groupStart = group !== null ? group.start : 0; var groupCount = group !== null ? group.count : Infinity; var drawStart = Math.max( dataStart, rangeStart, groupStart ); var drawEnd = Math.min( dataStart + dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1; var drawCount = Math.max( 0, drawEnd - drawStart + 1 ); // if ( object instanceof THREE.Mesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( _gl.LINES ); } else { switch ( object.drawMode ) { case THREE.TrianglesDrawMode: renderer.setMode( _gl.TRIANGLES ); break; case THREE.TriangleStripDrawMode: renderer.setMode( _gl.TRIANGLE_STRIP ); break; case THREE.TriangleFanDrawMode: renderer.setMode( _gl.TRIANGLE_FAN ); break; } } } else if ( object instanceof THREE.Line ) { var lineWidth = material.linewidth; if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object instanceof THREE.LineSegments ) { renderer.setMode( _gl.LINES ); } else { renderer.setMode( _gl.LINE_STRIP ); } } else if ( object instanceof THREE.Points ) { renderer.setMode( _gl.POINTS ); } if ( geometry instanceof THREE.InstancedBufferGeometry ) { if ( geometry.maxInstancedCount > 0 ) { renderer.renderInstances( geometry, drawStart, drawCount ); } } else { renderer.render( drawStart, drawCount ); } }; function setupVertexAttributes( material, program, geometry, startIndex ) { var extension; if ( geometry instanceof THREE.InstancedBufferGeometry ) { extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } if ( startIndex === undefined ) startIndex = 0; state.initAttributes(); var geometryAttributes = geometry.attributes; var programAttributes = program.getAttributes(); var materialDefaultAttributeValues = material.defaultAttributeValues; for ( var name in programAttributes ) { var programAttribute = programAttributes[ name ]; if ( programAttribute >= 0 ) { var geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute !== undefined ) { var size = geometryAttribute.itemSize; var buffer = objects.getAttributeBuffer( geometryAttribute ); if ( geometryAttribute instanceof THREE.InterleavedBufferAttribute ) { var data = geometryAttribute.data; var stride = data.stride; var offset = geometryAttribute.offset; if ( data instanceof THREE.InstancedInterleavedBuffer ) { state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute, extension ); if ( geometry.maxInstancedCount === undefined ) { geometry.maxInstancedCount = data.meshPerAttribute * data.count; } } else { state.enableAttribute( programAttribute ); } _gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, _gl.FLOAT, false, stride * data.array.BYTES_PER_ELEMENT, ( startIndex * stride + offset ) * data.array.BYTES_PER_ELEMENT ); } else { if ( geometryAttribute instanceof THREE.InstancedBufferAttribute ) { state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute, extension ); if ( geometry.maxInstancedCount === undefined ) { geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { state.enableAttribute( programAttribute ); } _gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, _gl.FLOAT, false, 0, startIndex * size * 4 ); // 4 bytes per Float32 } } else if ( materialDefaultAttributeValues !== undefined ) { var value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: _gl.vertexAttrib2fv( programAttribute, value ); break; case 3: _gl.vertexAttrib3fv( programAttribute, value ); break; case 4: _gl.vertexAttrib4fv( programAttribute, value ); break; default: _gl.vertexAttrib1fv( programAttribute, value ); } } } } } state.disableUnusedAttributes(); } // Sorting function absNumericalSort( a, b ) { return Math.abs( b[ 0 ] ) - Math.abs( a[ 0 ] ); } function painterSortStable ( a, b ) { if ( a.object.renderOrder !== b.object.renderOrder ) { return a.object.renderOrder - b.object.renderOrder; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable ( a, b ) { if ( a.object.renderOrder !== b.object.renderOrder ) { return a.object.renderOrder - b.object.renderOrder; } if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } // Rendering this.render = function ( scene, camera, renderTarget, forceClear ) { if ( camera instanceof THREE.Camera === false ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } var fog = scene.fog; // reset caching for this frame _currentGeometryProgram = ''; _currentMaterialId = - 1; _currentCamera = null; // update scene graph if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === null ) camera.updateMatrixWorld(); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); lights.length = 0; opaqueObjectsLastIndex = - 1; transparentObjectsLastIndex = - 1; sprites.length = 0; lensFlares.length = 0; projectObject( scene, camera ); opaqueObjects.length = opaqueObjectsLastIndex + 1; transparentObjects.length = transparentObjectsLastIndex + 1; if ( _this.sortObjects === true ) { opaqueObjects.sort( painterSortStable ); transparentObjects.sort( reversePainterSortStable ); } setupLights( lights, camera ); // shadowMap.render( scene, camera ); // _infoRender.calls = 0; _infoRender.vertices = 0; _infoRender.faces = 0; _infoRender.points = 0; if ( renderTarget === undefined ) { renderTarget = null; } this.setRenderTarget( renderTarget ); if ( this.autoClear || forceClear ) { this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil ); } // if ( scene.overrideMaterial ) { var overrideMaterial = scene.overrideMaterial; renderObjects( opaqueObjects, camera, fog, overrideMaterial ); renderObjects( transparentObjects, camera, fog, overrideMaterial ); } else { // opaque pass (front-to-back order) state.setBlending( THREE.NoBlending ); renderObjects( opaqueObjects, camera, fog ); // transparent pass (back-to-front order) renderObjects( transparentObjects, camera, fog ); } // custom render plugins (post pass) spritePlugin.render( scene, camera ); lensFlarePlugin.render( scene, camera, _currentViewport ); // Generate mipmap if we're using any kind of mipmap filtering if ( renderTarget ) { var texture = renderTarget.texture; if ( texture.generateMipmaps && isPowerOfTwo( renderTarget ) && texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) { updateRenderTargetMipmap( renderTarget ); } } // Ensure depth buffer writing is enabled so it can be cleared on next render state.setDepthTest( true ); state.setDepthWrite( true ); state.setColorWrite( true ); // _gl.finish(); }; function pushRenderItem( object, geometry, material, z, group ) { var array, index; // allocate the next position in the appropriate array if ( material.transparent ) { array = transparentObjects; index = ++ transparentObjectsLastIndex; } else { array = opaqueObjects; index = ++ opaqueObjectsLastIndex; } // recycle existing render item or grow the array var renderItem = array[ index ]; if ( renderItem !== undefined ) { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.z = _vector3.z; renderItem.group = group; } else { renderItem = { id: object.id, object: object, geometry: geometry, material: material, z: _vector3.z, group: group }; // assert( index === array.length ); array.push( renderItem ); } } function projectObject( object, camera ) { if ( object.visible === false ) return; if ( object.layers.test( camera.layers ) ) { if ( object instanceof THREE.Light ) { lights.push( object ); } else if ( object instanceof THREE.Sprite ) { if ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) { sprites.push( object ); } } else if ( object instanceof THREE.LensFlare ) { lensFlares.push( object ); } else if ( object instanceof THREE.ImmediateRenderObject ) { if ( _this.sortObjects === true ) { _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyProjection( _projScreenMatrix ); } pushRenderItem( object, null, object.material, _vector3.z, null ); } else if ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Points ) { if ( object instanceof THREE.SkinnedMesh ) { object.skeleton.update(); } if ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) { var material = object.material; if ( material.visible === true ) { if ( _this.sortObjects === true ) { _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyProjection( _projScreenMatrix ); } var geometry = objects.update( object ); if ( material instanceof THREE.MultiMaterial ) { var groups = geometry.groups; var materials = material.materials; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; var groupMaterial = materials[ group.materialIndex ]; if ( groupMaterial.visible === true ) { pushRenderItem( object, geometry, groupMaterial, _vector3.z, group ); } } } else { pushRenderItem( object, geometry, material, _vector3.z, null ); } } } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera ); } } function renderObjects( renderList, camera, fog, overrideMaterial ) { for ( var i = 0, l = renderList.length; i < l; i ++ ) { var renderItem = renderList[ i ]; var object = renderItem.object; var geometry = renderItem.geometry; var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial; var group = renderItem.group; object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); if ( object instanceof THREE.ImmediateRenderObject ) { setMaterial( material ); var program = setProgram( camera, fog, material, object ); _currentGeometryProgram = ''; object.render( function ( object ) { _this.renderBufferImmediate( object, program, material ); } ); } else { _this.renderBufferDirect( camera, fog, geometry, material, object, group ); } } } function initMaterial( material, fog, object ) { var materialProperties = properties.get( material ); var parameters = programCache.getParameters( material, _lights, fog, object ); var code = programCache.getProgramCode( material, parameters ); var program = materialProperties.program; var programChange = true; if ( program === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); } else if ( program.code !== code ) { // changed glsl or parameters releaseMaterialProgramReference( material ); } else if ( parameters.shaderID !== undefined ) { // same glsl and uniform list return; } else { // only rebuild uniform list programChange = false; } if ( programChange ) { if ( parameters.shaderID ) { var shader = THREE.ShaderLib[ parameters.shaderID ]; materialProperties.__webglShader = { name: material.type, uniforms: THREE.UniformsUtils.clone( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader }; } else { materialProperties.__webglShader = { name: material.type, uniforms: material.uniforms, vertexShader: material.vertexShader, fragmentShader: material.fragmentShader }; } material.__webglShader = materialProperties.__webglShader; program = programCache.acquireProgram( material, parameters, code ); materialProperties.program = program; material.program = program; } var attributes = program.getAttributes(); if ( material.morphTargets ) { material.numSupportedMorphTargets = 0; for ( var i = 0; i < _this.maxMorphTargets; i ++ ) { if ( attributes[ 'morphTarget' + i ] >= 0 ) { material.numSupportedMorphTargets ++; } } } if ( material.morphNormals ) { material.numSupportedMorphNormals = 0; for ( var i = 0; i < _this.maxMorphNormals; i ++ ) { if ( attributes[ 'morphNormal' + i ] >= 0 ) { material.numSupportedMorphNormals ++; } } } materialProperties.uniformsList = []; var uniforms = materialProperties.__webglShader.uniforms, uniformLocations = materialProperties.program.getUniforms(); for ( var u in uniforms ) { var location = uniformLocations[ u ]; if ( location ) { materialProperties.uniformsList.push( [ materialProperties.__webglShader.uniforms[ u ], location ] ); } } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshStandardMaterial || material.lights ) { // store the light setup it was created for materialProperties.lightsHash = _lights.hash; // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = _lights.ambient; uniforms.directionalLights.value = _lights.directional; uniforms.spotLights.value = _lights.spot; uniforms.pointLights.value = _lights.point; uniforms.hemisphereLights.value = _lights.hemi; uniforms.directionalShadowMap.value = _lights.directionalShadowMap; uniforms.directionalShadowMatrix.value = _lights.directionalShadowMatrix; uniforms.spotShadowMap.value = _lights.spotShadowMap; uniforms.spotShadowMatrix.value = _lights.spotShadowMatrix; uniforms.pointShadowMap.value = _lights.pointShadowMap; uniforms.pointShadowMatrix.value = _lights.pointShadowMatrix; } // detect dynamic uniforms materialProperties.hasDynamicUniforms = false; for ( var j = 0, jl = materialProperties.uniformsList.length; j < jl; j ++ ) { var uniform = materialProperties.uniformsList[ j ][ 0 ]; if ( uniform.dynamic === true ) { materialProperties.hasDynamicUniforms = true; break; } } } function setMaterial( material ) { setMaterialFaces( material ); if ( material.transparent === true ) { state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ); } else { state.setBlending( THREE.NoBlending ); } state.setDepthFunc( material.depthFunc ); state.setDepthTest( material.depthTest ); state.setDepthWrite( material.depthWrite ); state.setColorWrite( material.colorWrite ); state.setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } function setMaterialFaces( material ) { material.side !== THREE.DoubleSide ? state.enable( _gl.CULL_FACE ) : state.disable( _gl.CULL_FACE ); state.setFlipSided( material.side === THREE.BackSide ); } function setProgram( camera, fog, material, object ) { _usedTextureUnits = 0; var materialProperties = properties.get( material ); if ( materialProperties.program === undefined ) { material.needsUpdate = true; } if ( materialProperties.lightsHash !== undefined && materialProperties.lightsHash !== _lights.hash ) { material.needsUpdate = true; } if ( material.needsUpdate ) { initMaterial( material, fog, object ); material.needsUpdate = false; } var refreshProgram = false; var refreshMaterial = false; var refreshLights = false; var program = materialProperties.program, p_uniforms = program.getUniforms(), m_uniforms = materialProperties.__webglShader.uniforms; if ( program.id !== _currentProgram ) { _gl.useProgram( program.program ); _currentProgram = program.id; refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || camera !== _currentCamera ) { _gl.uniformMatrix4fv( p_uniforms.projectionMatrix, false, camera.projectionMatrix.elements ); if ( capabilities.logarithmicDepthBuffer ) { _gl.uniform1f( p_uniforms.logDepthBufFC, 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } if ( camera !== _currentCamera ) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material instanceof THREE.ShaderMaterial || material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshStandardMaterial || material.envMap ) { if ( p_uniforms.cameraPosition !== undefined ) { _vector3.setFromMatrixPosition( camera.matrixWorld ); _gl.uniform3f( p_uniforms.cameraPosition, _vector3.x, _vector3.y, _vector3.z ); } } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshBasicMaterial || material instanceof THREE.MeshStandardMaterial || material instanceof THREE.ShaderMaterial || material.skinning ) { if ( p_uniforms.viewMatrix !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.viewMatrix, false, camera.matrixWorldInverse.elements ); } } if ( p_uniforms.toneMappingExposure !== undefined ) { _gl.uniform1f( p_uniforms.toneMappingExposure, _this.toneMappingExposure ); } if ( p_uniforms.toneMappingWhitePoint !== undefined ) { _gl.uniform1f( p_uniforms.toneMappingWhitePoint, _this.toneMappingWhitePoint ); } } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // not sure why, but otherwise weird things happen if ( material.skinning ) { if ( object.bindMatrix && p_uniforms.bindMatrix !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.bindMatrix, false, object.bindMatrix.elements ); } if ( object.bindMatrixInverse && p_uniforms.bindMatrixInverse !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.bindMatrixInverse, false, object.bindMatrixInverse.elements ); } if ( capabilities.floatVertexTextures && object.skeleton && object.skeleton.useVertexTexture ) { if ( p_uniforms.boneTexture !== undefined ) { var textureUnit = getTextureUnit(); _gl.uniform1i( p_uniforms.boneTexture, textureUnit ); _this.setTexture( object.skeleton.boneTexture, textureUnit ); } if ( p_uniforms.boneTextureWidth !== undefined ) { _gl.uniform1i( p_uniforms.boneTextureWidth, object.skeleton.boneTextureWidth ); } if ( p_uniforms.boneTextureHeight !== undefined ) { _gl.uniform1i( p_uniforms.boneTextureHeight, object.skeleton.boneTextureHeight ); } } else if ( object.skeleton && object.skeleton.boneMatrices ) { if ( p_uniforms.boneGlobalMatrices !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.boneGlobalMatrices, false, object.skeleton.boneMatrices ); } } } if ( refreshMaterial ) { if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshStandardMaterial || material.lights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog ) { refreshUniformsFog( m_uniforms, fog ); } if ( material instanceof THREE.MeshBasicMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshStandardMaterial ) { refreshUniformsCommon( m_uniforms, material ); } // refresh single material specific uniforms if ( material instanceof THREE.LineBasicMaterial ) { refreshUniformsLine( m_uniforms, material ); } else if ( material instanceof THREE.LineDashedMaterial ) { refreshUniformsLine( m_uniforms, material ); refreshUniformsDash( m_uniforms, material ); } else if ( material instanceof THREE.PointsMaterial ) { refreshUniformsPoints( m_uniforms, material ); } else if ( material instanceof THREE.MeshLambertMaterial ) { refreshUniformsLambert( m_uniforms, material ); } else if ( material instanceof THREE.MeshPhongMaterial ) { refreshUniformsPhong( m_uniforms, material ); } else if ( material instanceof THREE.MeshStandardMaterial ) { refreshUniformsStandard( m_uniforms, material ); } else if ( material instanceof THREE.MeshDepthMaterial ) { m_uniforms.mNear.value = camera.near; m_uniforms.mFar.value = camera.far; m_uniforms.opacity.value = material.opacity; } else if ( material instanceof THREE.MeshNormalMaterial ) { m_uniforms.opacity.value = material.opacity; } // load common uniforms loadUniformsGeneric( materialProperties.uniformsList ); } loadUniformsMatrices( p_uniforms, object ); if ( p_uniforms.modelMatrix !== undefined ) { _gl.uniformMatrix4fv( p_uniforms.modelMatrix, false, object.matrixWorld.elements ); } if ( materialProperties.hasDynamicUniforms === true ) { updateDynamicUniforms( materialProperties.uniformsList, object, camera ); } return program; } function updateDynamicUniforms ( uniforms, object, camera ) { var dynamicUniforms = []; for ( var j = 0, jl = uniforms.length; j < jl; j ++ ) { var uniform = uniforms[ j ][ 0 ]; var onUpdateCallback = uniform.onUpdateCallback; if ( onUpdateCallback !== undefined ) { onUpdateCallback.bind( uniform )( object, camera ); dynamicUniforms.push( uniforms[ j ] ); } } loadUniformsGeneric( dynamicUniforms ); } // Uniforms (refresh uniforms objects) function refreshUniformsCommon ( uniforms, material ) { uniforms.opacity.value = material.opacity; uniforms.diffuse.value = material.color; if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.roughnessMap ) { uvScaleMap = material.roughnessMap; } else if ( material.metalnessMap ) { uvScaleMap = material.metalnessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } if ( uvScaleMap !== undefined ) { if ( uvScaleMap instanceof THREE.WebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } var offset = uvScaleMap.offset; var repeat = uvScaleMap.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } uniforms.envMap.value = material.envMap; uniforms.flipEnvMap.value = ( material.envMap instanceof THREE.WebGLRenderTargetCube ) ? 1 : - 1; uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio; } function refreshUniformsLine ( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; } function refreshUniformsDash ( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints ( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * _pixelRatio; uniforms.scale.value = _canvas.clientHeight / 2.0; // TODO: Cache this. uniforms.map.value = material.map; if ( material.map !== null ) { var offset = material.map.offset; var repeat = material.map.repeat; uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y ); } } function refreshUniformsFog ( uniforms, fog ) { uniforms.fogColor.value = fog.color; if ( fog instanceof THREE.Fog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog instanceof THREE.FogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshUniformsLambert ( uniforms, material ) { if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } } function refreshUniformsPhong ( uniforms, material ) { uniforms.specular.value = material.specular; uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsStandard ( uniforms, material ) { uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; } if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; } if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } if ( material.envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate ( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } // Uniforms (load to GPU) function loadUniformsMatrices ( uniforms, object ) { _gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, object.modelViewMatrix.elements ); if ( uniforms.normalMatrix ) { _gl.uniformMatrix3fv( uniforms.normalMatrix, false, object.normalMatrix.elements ); } } function getTextureUnit() { var textureUnit = _usedTextureUnits; if ( textureUnit >= capabilities.maxTextures ) { console.warn( 'WebGLRenderer: trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures ); } _usedTextureUnits += 1; return textureUnit; } function loadUniform( uniform, type, location, value ) { var texture, textureUnit; if ( type === '1i' ) { _gl.uniform1i( location, value ); } else if ( type === '1f' ) { _gl.uniform1f( location, value ); } else if ( type === '2f' ) { _gl.uniform2f( location, value[ 0 ], value[ 1 ] ); } else if ( type === '3f' ) { _gl.uniform3f( location, value[ 0 ], value[ 1 ], value[ 2 ] ); } else if ( type === '4f' ) { _gl.uniform4f( location, value[ 0 ], value[ 1 ], value[ 2 ], value[ 3 ] ); } else if ( type === '1iv' ) { _gl.uniform1iv( location, value ); } else if ( type === '3iv' ) { _gl.uniform3iv( location, value ); } else if ( type === '1fv' ) { _gl.uniform1fv( location, value ); } else if ( type === '2fv' ) { _gl.uniform2fv( location, value ); } else if ( type === '3fv' ) { _gl.uniform3fv( location, value ); } else if ( type === '4fv' ) { _gl.uniform4fv( location, value ); } else if ( type === 'Matrix2fv' ) { _gl.uniformMatrix2fv( location, false, value ); } else if ( type === 'Matrix3fv' ) { _gl.uniformMatrix3fv( location, false, value ); } else if ( type === 'Matrix4fv' ) { _gl.uniformMatrix4fv( location, false, value ); // } else if ( type === 'i' ) { // single integer _gl.uniform1i( location, value ); } else if ( type === 'f' ) { // single float _gl.uniform1f( location, value ); } else if ( type === 'v2' ) { // single THREE.Vector2 _gl.uniform2f( location, value.x, value.y ); } else if ( type === 'v3' ) { // single THREE.Vector3 _gl.uniform3f( location, value.x, value.y, value.z ); } else if ( type === 'v4' ) { // single THREE.Vector4 _gl.uniform4f( location, value.x, value.y, value.z, value.w ); } else if ( type === 'c' ) { // single THREE.Color _gl.uniform3f( location, value.r, value.g, value.b ); } else if ( type === 's' ) { // TODO: Optimize this var properties = uniform.properties; for ( var name in properties ) { var property = properties[ name ]; var locationProperty = location[ name ]; var valueProperty = value[ name ]; loadUniform( property, property.type, locationProperty, valueProperty ); } } else if ( type === 'sa' ) { // TODO: Optimize this var properties = uniform.properties; for ( var i = 0, l = value.length; i < l; i ++ ) { for ( var name in properties ) { var property = properties[ name ]; var locationProperty = location[ i ][ name ]; var valueProperty = value[ i ][ name ]; loadUniform( property, property.type, locationProperty, valueProperty ); } } } else if ( type === 'iv1' ) { // flat array of integers (JS or typed array) _gl.uniform1iv( location, value ); } else if ( type === 'iv' ) { // flat array of integers with 3 x N size (JS or typed array) _gl.uniform3iv( location, value ); } else if ( type === 'fv1' ) { // flat array of floats (JS or typed array) _gl.uniform1fv( location, value ); } else if ( type === 'fv' ) { // flat array of floats with 3 x N size (JS or typed array) _gl.uniform3fv( location, value ); } else if ( type === 'v2v' ) { // array of THREE.Vector2 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 2 * value.length ); } for ( var i = 0, i2 = 0, il = value.length; i < il; i ++, i2 += 2 ) { uniform._array[ i2 + 0 ] = value[ i ].x; uniform._array[ i2 + 1 ] = value[ i ].y; } _gl.uniform2fv( location, uniform._array ); } else if ( type === 'v3v' ) { // array of THREE.Vector3 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 3 * value.length ); } for ( var i = 0, i3 = 0, il = value.length; i < il; i ++, i3 += 3 ) { uniform._array[ i3 + 0 ] = value[ i ].x; uniform._array[ i3 + 1 ] = value[ i ].y; uniform._array[ i3 + 2 ] = value[ i ].z; } _gl.uniform3fv( location, uniform._array ); } else if ( type === 'v4v' ) { // array of THREE.Vector4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 4 * value.length ); } for ( var i = 0, i4 = 0, il = value.length; i < il; i ++, i4 += 4 ) { uniform._array[ i4 + 0 ] = value[ i ].x; uniform._array[ i4 + 1 ] = value[ i ].y; uniform._array[ i4 + 2 ] = value[ i ].z; uniform._array[ i4 + 3 ] = value[ i ].w; } _gl.uniform4fv( location, uniform._array ); } else if ( type === 'm2' ) { // single THREE.Matrix2 _gl.uniformMatrix2fv( location, false, value.elements ); } else if ( type === 'm3' ) { // single THREE.Matrix3 _gl.uniformMatrix3fv( location, false, value.elements ); } else if ( type === 'm3v' ) { // array of THREE.Matrix3 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 9 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { value[ i ].flattenToArrayOffset( uniform._array, i * 9 ); } _gl.uniformMatrix3fv( location, false, uniform._array ); } else if ( type === 'm4' ) { // single THREE.Matrix4 _gl.uniformMatrix4fv( location, false, value.elements ); } else if ( type === 'm4v' ) { // array of THREE.Matrix4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 16 * value.length ); } for ( var i = 0, il = value.length; i < il; i ++ ) { value[ i ].flattenToArrayOffset( uniform._array, i * 16 ); } _gl.uniformMatrix4fv( location, false, uniform._array ); } else if ( type === 't' ) { // single THREE.Texture (2d or cube) texture = value; textureUnit = getTextureUnit(); _gl.uniform1i( location, textureUnit ); if ( ! texture ) return; if ( texture instanceof THREE.CubeTexture || ( Array.isArray( texture.image ) && texture.image.length === 6 ) ) { // CompressedTexture can have Array in image :/ setCubeTexture( texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTargetCube ) { setCubeTextureDynamic( texture.texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTarget ) { _this.setTexture( texture.texture, textureUnit ); } else { _this.setTexture( texture, textureUnit ); } } else if ( type === 'tv' ) { // array of THREE.Texture (2d or cube) if ( uniform._array === undefined ) { uniform._array = []; } for ( var i = 0, il = uniform.value.length; i < il; i ++ ) { uniform._array[ i ] = getTextureUnit(); } _gl.uniform1iv( location, uniform._array ); for ( var i = 0, il = uniform.value.length; i < il; i ++ ) { texture = uniform.value[ i ]; textureUnit = uniform._array[ i ]; if ( ! texture ) continue; if ( texture instanceof THREE.CubeTexture || ( texture.image instanceof Array && texture.image.length === 6 ) ) { // CompressedTexture can have Array in image :/ setCubeTexture( texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTarget ) { _this.setTexture( texture.texture, textureUnit ); } else if ( texture instanceof THREE.WebGLRenderTargetCube ) { setCubeTextureDynamic( texture.texture, textureUnit ); } else { _this.setTexture( texture, textureUnit ); } } } else { console.warn( 'THREE.WebGLRenderer: Unknown uniform type: ' + type ); } } function loadUniformsGeneric( uniforms ) { for ( var i = 0, l = uniforms.length; i < l; i ++ ) { var uniform = uniforms[ i ][ 0 ]; // needsUpdate property is not added to all uniforms. if ( uniform.needsUpdate === false ) continue; var type = uniform.type; var location = uniforms[ i ][ 1 ]; var value = uniform.value; loadUniform( uniform, type, location, value ); } } function setupLights ( lights, camera ) { var l, ll, light, r = 0, g = 0, b = 0, color, intensity, distance, viewMatrix = camera.matrixWorldInverse, directionalLength = 0, pointLength = 0, spotLength = 0, hemiLength = 0, shadowsLength = 0; _lights.shadowsPointLight = 0; for ( l = 0, ll = lights.length; l < ll; l ++ ) { light = lights[ l ]; color = light.color; intensity = light.intensity; distance = light.distance; if ( light instanceof THREE.AmbientLight ) { r += color.r * intensity; g += color.g * intensity; b += color.b * intensity; } else if ( light instanceof THREE.DirectionalLight ) { var uniforms = lightCache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( _vector3 ); uniforms.direction.transformDirection( viewMatrix ); uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; _lights.shadows[ shadowsLength ++ ] = light; } _lights.directionalShadowMap[ directionalLength ] = light.shadow.map; _lights.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; _lights.directional[ directionalLength ++ ] = uniforms; } else if ( light instanceof THREE.SpotLight ) { var uniforms = lightCache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.distance = distance; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); _vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( _vector3 ); uniforms.direction.transformDirection( viewMatrix ); uniforms.coneCos = Math.cos( light.angle ); uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay; uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; _lights.shadows[ shadowsLength ++ ] = light; } _lights.spotShadowMap[ spotLength ] = light.shadow.map; _lights.spotShadowMatrix[ spotLength ] = light.shadow.matrix; _lights.spot[ spotLength ++ ] = uniforms; } else if ( light instanceof THREE.PointLight ) { var uniforms = lightCache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.distance = light.distance; uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay; uniforms.shadow = light.castShadow; if ( light.castShadow ) { uniforms.shadowBias = light.shadow.bias; uniforms.shadowRadius = light.shadow.radius; uniforms.shadowMapSize = light.shadow.mapSize; _lights.shadows[ shadowsLength ++ ] = light; } _lights.pointShadowMap[ pointLength ] = light.shadow.map; if ( _lights.pointShadowMatrix[ pointLength ] === undefined ) { _lights.pointShadowMatrix[ pointLength ] = new THREE.Matrix4(); } // for point lights we set the shadow matrix to be a translation-only matrix // equal to inverse of the light's position _vector3.setFromMatrixPosition( light.matrixWorld ).negate(); _lights.pointShadowMatrix[ pointLength ].identity().setPosition( _vector3 ); _lights.point[ pointLength ++ ] = uniforms; } else if ( light instanceof THREE.HemisphereLight ) { var uniforms = lightCache.get( light ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); uniforms.direction.normalize(); uniforms.skyColor.copy( light.color ).multiplyScalar( intensity ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity ); _lights.hemi[ hemiLength ++ ] = uniforms; } } _lights.ambient[ 0 ] = r; _lights.ambient[ 1 ] = g; _lights.ambient[ 2 ] = b; _lights.directional.length = directionalLength; _lights.spot.length = spotLength; _lights.point.length = pointLength; _lights.hemi.length = hemiLength; _lights.shadows.length = shadowsLength; _lights.hash = directionalLength + ',' + pointLength + ',' + spotLength + ',' + hemiLength + ',' + shadowsLength; } // GL state setting this.setFaceCulling = function ( cullFace, frontFaceDirection ) { if ( cullFace === THREE.CullFaceNone ) { state.disable( _gl.CULL_FACE ); } else { if ( frontFaceDirection === THREE.FrontFaceDirectionCW ) { _gl.frontFace( _gl.CW ); } else { _gl.frontFace( _gl.CCW ); } if ( cullFace === THREE.CullFaceBack ) { _gl.cullFace( _gl.BACK ); } else if ( cullFace === THREE.CullFaceFront ) { _gl.cullFace( _gl.FRONT ); } else { _gl.cullFace( _gl.FRONT_AND_BACK ); } state.enable( _gl.CULL_FACE ); } }; // Textures function setTextureParameters ( textureType, texture, isPowerOfTwoImage ) { var extension; if ( isPowerOfTwoImage ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) ); } else { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture ); } _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) ); if ( texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture ); } } extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension ) { if ( texture.type === THREE.FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return; if ( texture.type === THREE.HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return; if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, _this.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function uploadTexture( textureProperties, texture, slot ) { if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__webglTexture = _gl.createTexture(); _infoMemory.textures ++; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); var image = clampToMaxSize( texture.image, capabilities.maxTextureSize ); if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) { image = makePowerOfTwo( image ); } var isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage ); var mipmap, mipmaps = texture.mipmaps; if ( texture instanceof THREE.DataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isPowerOfTwoImage ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } texture.generateMipmaps = false; } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data ); } } else if ( texture instanceof THREE.CompressedTexture ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== THREE.RGBAFormat && texture.format !== THREE.RGBFormat ) { if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) { state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()" ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && isPowerOfTwoImage ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap ); } texture.generateMipmaps = false; } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image ); } } if ( texture.generateMipmaps && isPowerOfTwoImage ) _gl.generateMipmap( _gl.TEXTURE_2D ); textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } this.setTexture = function ( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { var image = texture.image; if ( image === undefined ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture ); return; } if ( image.complete === false ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture ); return; } uploadTexture( textureProperties, texture, slot ); return; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); }; function clampToMaxSize ( image, maxSize ) { if ( image.width > maxSize || image.height > maxSize ) { // Warning: Scaling through the canvas will only work with images that use // premultiplied alpha. var scale = maxSize / Math.max( image.width, image.height ); var canvas = document.createElement( 'canvas' ); canvas.width = Math.floor( image.width * scale ); canvas.height = Math.floor( image.height * scale ); var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height ); console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image ); return canvas; } return image; } function isPowerOfTwo( image ) { return THREE.Math.isPowerOfTwo( image.width ) && THREE.Math.isPowerOfTwo( image.height ); } function textureNeedsPowerOfTwo( texture ) { if ( texture.wrapS !== THREE.ClampToEdgeWrapping || texture.wrapT !== THREE.ClampToEdgeWrapping ) return true; if ( texture.minFilter !== THREE.NearestFilter && texture.minFilter !== THREE.LinearFilter ) return true; return false; } function makePowerOfTwo( image ) { if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement ) { var canvas = document.createElement( 'canvas' ); canvas.width = THREE.Math.nearestPowerOfTwo( image.width ); canvas.height = THREE.Math.nearestPowerOfTwo( image.height ); var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, canvas.width, canvas.height ); console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image ); return canvas; } return image; } function setCubeTexture ( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.image.length === 6 ) { if ( texture.version > 0 && textureProperties.__version !== texture.version ) { if ( ! textureProperties.__image__webglTextureCube ) { texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__image__webglTextureCube = _gl.createTexture(); _infoMemory.textures ++; } state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); var isCompressed = texture instanceof THREE.CompressedTexture; var isDataTexture = texture.image[ 0 ] instanceof THREE.DataTexture; var cubeImage = []; for ( var i = 0; i < 6; i ++ ) { if ( _this.autoScaleCubemaps && ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } } var image = cubeImage[ 0 ], isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage ); for ( var i = 0; i < 6; i ++ ) { if ( ! isCompressed ) { if ( isDataTexture ) { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] ); } } else { var mipmap, mipmaps = cubeImage[ i ].mipmaps; for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) { mipmap = mipmaps[ j ]; if ( texture.format !== THREE.RGBAFormat && texture.format !== THREE.RGBFormat ) { if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) { state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( "THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setCubeTexture()" ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } if ( texture.generateMipmaps && isPowerOfTwoImage ) { _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } else { state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube ); } } } function setCubeTextureDynamic ( texture, slot ) { state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture ); } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture ( framebuffer, renderTarget, attachment, textureTarget ) { var glFormat = paramThreeToGL( renderTarget.texture.format ); var glType = paramThreeToGL( renderTarget.texture.type ); state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage ( renderbuffer, renderTarget ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else { // FIXME: We don't support !depth !stencil _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( var i = 0; i < 6; i ++ ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget ); } } else { _gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget ); } _gl.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); textureProperties.__webglTexture = _gl.createTexture(); _infoMemory.textures ++; var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); var isTargetPowerOfTwo = THREE.Math.isPowerOfTwo( renderTarget.width ) && THREE.Math.isPowerOfTwo( renderTarget.height ); // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( var i = 0; i < 6; i ++ ) { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); } // Setup color buffer if ( isCube ) { state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i ); } if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D ); if ( renderTarget.texture.generateMipmaps && isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); state.bindTexture( _gl.TEXTURE_2D, null ); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } this.getCurrentRenderTarget = function() { return _currentRenderTarget; } this.setRenderTarget = function ( renderTarget ) { _currentRenderTarget = renderTarget; if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) { setupRenderTarget( renderTarget ); } var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); var framebuffer; if ( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); if ( isCube ) { framebuffer = renderTargetProperties.__webglFramebuffer[ renderTarget.activeCubeFace ]; } else { framebuffer = renderTargetProperties.__webglFramebuffer; } _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; _currentViewport.copy( renderTarget.viewport ); } else { framebuffer = null; _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ); _currentScissorTest = _scissorTest; _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ); } if ( _currentFramebuffer !== framebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _currentFramebuffer = framebuffer; } state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); state.viewport( _currentViewport ); if ( isCube ) { var textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel ); } }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) { if ( renderTarget instanceof THREE.WebGLRenderTarget === false ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } var framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( framebuffer ) { var restore = false; if ( framebuffer !== _currentFramebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); restore = true; } try { var texture = renderTarget.texture; if ( texture.format !== THREE.RGBAFormat && paramThreeToGL( texture.format ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } if ( texture.type !== THREE.UnsignedByteType && paramThreeToGL( texture.type ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && ! ( texture.type === THREE.FloatType && extensions.get( 'WEBGL_color_buffer_float' ) ) && ! ( texture.type === THREE.HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) { _gl.readPixels( x, y, width, height, paramThreeToGL( texture.format ), paramThreeToGL( texture.type ), buffer ); } else { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' ); } } finally { if ( restore ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer ); } } } }; function updateRenderTargetMipmap( renderTarget ) { var target = renderTarget instanceof THREE.WebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; var texture = properties.get( renderTarget.texture ).__webglTexture; state.bindTexture( target, texture ); _gl.generateMipmap( target ); state.bindTexture( target, null ); } // Fallback filters for non-power-of-2 textures function filterFallback ( f ) { if ( f === THREE.NearestFilter || f === THREE.NearestMipMapNearestFilter || f === THREE.NearestMipMapLinearFilter ) { return _gl.NEAREST; } return _gl.LINEAR; } // Map three.js constants to WebGL constants function paramThreeToGL ( p ) { var extension; if ( p === THREE.RepeatWrapping ) return _gl.REPEAT; if ( p === THREE.ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE; if ( p === THREE.MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT; if ( p === THREE.NearestFilter ) return _gl.NEAREST; if ( p === THREE.NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST; if ( p === THREE.NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR; if ( p === THREE.LinearFilter ) return _gl.LINEAR; if ( p === THREE.LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST; if ( p === THREE.LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR; if ( p === THREE.UnsignedByteType ) return _gl.UNSIGNED_BYTE; if ( p === THREE.UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4; if ( p === THREE.UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1; if ( p === THREE.UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5; if ( p === THREE.ByteType ) return _gl.BYTE; if ( p === THREE.ShortType ) return _gl.SHORT; if ( p === THREE.UnsignedShortType ) return _gl.UNSIGNED_SHORT; if ( p === THREE.IntType ) return _gl.INT; if ( p === THREE.UnsignedIntType ) return _gl.UNSIGNED_INT; if ( p === THREE.FloatType ) return _gl.FLOAT; extension = extensions.get( 'OES_texture_half_float' ); if ( extension !== null ) { if ( p === THREE.HalfFloatType ) return extension.HALF_FLOAT_OES; } if ( p === THREE.AlphaFormat ) return _gl.ALPHA; if ( p === THREE.RGBFormat ) return _gl.RGB; if ( p === THREE.RGBAFormat ) return _gl.RGBA; if ( p === THREE.LuminanceFormat ) return _gl.LUMINANCE; if ( p === THREE.LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA; if ( p === THREE.AddEquation ) return _gl.FUNC_ADD; if ( p === THREE.SubtractEquation ) return _gl.FUNC_SUBTRACT; if ( p === THREE.ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT; if ( p === THREE.ZeroFactor ) return _gl.ZERO; if ( p === THREE.OneFactor ) return _gl.ONE; if ( p === THREE.SrcColorFactor ) return _gl.SRC_COLOR; if ( p === THREE.OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR; if ( p === THREE.SrcAlphaFactor ) return _gl.SRC_ALPHA; if ( p === THREE.OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA; if ( p === THREE.DstAlphaFactor ) return _gl.DST_ALPHA; if ( p === THREE.OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA; if ( p === THREE.DstColorFactor ) return _gl.DST_COLOR; if ( p === THREE.OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR; if ( p === THREE.SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE; extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === THREE.RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === THREE.RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === THREE.RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === THREE.RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === THREE.RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === THREE.RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === THREE.RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === THREE.RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); if ( extension !== null ) { if ( p === THREE.RGB_ETC1_Format ) return extension.COMPRESSED_RGB_ETC1_WEBGL; } extension = extensions.get( 'EXT_blend_minmax' ); if ( extension !== null ) { if ( p === THREE.MinEquation ) return extension.MIN_EXT; if ( p === THREE.MaxEquation ) return extension.MAX_EXT; } return 0; } }; // File:src/renderers/WebGLRenderTarget.js /** * @author szimek / https://github.com/szimek/ * @author alteredq / http://alteredqualia.com/ * @author Marius Kintel / https://github.com/kintel */ /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ THREE.WebGLRenderTarget = function ( width, height, options ) { this.uuid = THREE.Math.generateUUID(); this.width = width; this.height = height; this.scissor = new THREE.Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new THREE.Vector4( 0, 0, width, height ); options = options || {}; if ( options.minFilter === undefined ) options.minFilter = THREE.LinearFilter; this.texture = new THREE.Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy ); this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; }; THREE.WebGLRenderTarget.prototype = { constructor: THREE.WebGLRenderTarget, setSize: function ( width, height ) { if ( this.width !== width || this.height !== height ) { this.width = width; this.height = height; this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.width = source.width; this.height = source.height; this.viewport.copy( source.viewport ); this.texture = source.texture.clone(); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } }; THREE.EventDispatcher.prototype.apply( THREE.WebGLRenderTarget.prototype ); // File:src/renderers/WebGLRenderTargetCube.js /** * @author alteredq / http://alteredqualia.com */ THREE.WebGLRenderTargetCube = function ( width, height, options ) { THREE.WebGLRenderTarget.call( this, width, height, options ); this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5 this.activeMipMapLevel = 0; }; THREE.WebGLRenderTargetCube.prototype = Object.create( THREE.WebGLRenderTarget.prototype ); THREE.WebGLRenderTargetCube.prototype.constructor = THREE.WebGLRenderTargetCube; // File:src/renderers/webgl/WebGLBufferRenderer.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLBufferRenderer = function ( _gl, extensions, _infoRender ) { var mode; function setMode( value ) { mode = value; } function render( start, count ) { _gl.drawArrays( mode, start, count ); _infoRender.calls ++; _infoRender.vertices += count; if ( mode === _gl.TRIANGLES ) _infoRender.faces += count / 3; } function renderInstances( geometry ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } var position = geometry.attributes.position; var count = 0; if ( position instanceof THREE.InterleavedBufferAttribute ) { count = position.data.count; extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount ); } else { count = position.count; extension.drawArraysInstancedANGLE( mode, 0, count, geometry.maxInstancedCount ); } _infoRender.calls ++; _infoRender.vertices += count * geometry.maxInstancedCount; if ( mode === _gl.TRIANGLES ) _infoRender.faces += geometry.maxInstancedCount * count / 3; } this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; }; // File:src/renderers/webgl/WebGLIndexedBufferRenderer.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLIndexedBufferRenderer = function ( _gl, extensions, _infoRender ) { var mode; function setMode( value ) { mode = value; } var type, size; function setIndex( index ) { if ( index.array instanceof Uint32Array && extensions.get( 'OES_element_index_uint' ) ) { type = _gl.UNSIGNED_INT; size = 4; } else { type = _gl.UNSIGNED_SHORT; size = 2; } } function render( start, count ) { _gl.drawElements( mode, count, type, start * size ); _infoRender.calls ++; _infoRender.vertices += count; if ( mode === _gl.TRIANGLES ) _infoRender.faces += count / 3; } function renderInstances( geometry, start, count ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } extension.drawElementsInstancedANGLE( mode, count, type, start * size, geometry.maxInstancedCount ); _infoRender.calls ++; _infoRender.vertices += count * geometry.maxInstancedCount; if ( mode === _gl.TRIANGLES ) _infoRender.faces += geometry.maxInstancedCount * count / 3; } this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; }; // File:src/renderers/webgl/WebGLExtensions.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLExtensions = function ( gl ) { var extensions = {}; this.get = function ( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ]; } var extension; switch ( name ) { case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; case 'WEBGL_compressed_texture_etc1': extension = gl.getExtension( 'WEBGL_compressed_texture_etc1' ); break; default: extension = gl.getExtension( name ); } if ( extension === null ) { console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } extensions[ name ] = extension; return extension; }; }; // File:src/renderers/webgl/WebGLCapabilities.js THREE.WebGLCapabilities = function ( gl, extensions, parameters ) { function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } this.getMaxPrecision = getMaxPrecision; this.precision = parameters.precision !== undefined ? parameters.precision : 'highp', this.logarithmicDepthBuffer = parameters.logarithmicDepthBuffer !== undefined ? parameters.logarithmicDepthBuffer : false; this.maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); this.maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); this.maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE ); this.maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE ); this.maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); this.maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS ); this.maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS ); this.maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS ); this.vertexTextures = this.maxVertexTextures > 0; this.floatFragmentTextures = !! extensions.get( 'OES_texture_float' ); this.floatVertexTextures = this.vertexTextures && this.floatFragmentTextures; var _maxPrecision = getMaxPrecision( this.precision ); if ( _maxPrecision !== this.precision ) { console.warn( 'THREE.WebGLRenderer:', this.precision, 'not supported, using', _maxPrecision, 'instead.' ); this.precision = _maxPrecision; } if ( this.logarithmicDepthBuffer ) { this.logarithmicDepthBuffer = !! extensions.get( 'EXT_frag_depth' ); } }; // File:src/renderers/webgl/WebGLGeometries.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLGeometries = function ( gl, properties, info ) { var geometries = {}; function get( object ) { var geometry = object.geometry; if ( geometries[ geometry.id ] !== undefined ) { return geometries[ geometry.id ]; } geometry.addEventListener( 'dispose', onGeometryDispose ); var buffergeometry; if ( geometry instanceof THREE.BufferGeometry ) { buffergeometry = geometry; } else if ( geometry instanceof THREE.Geometry ) { if ( geometry._bufferGeometry === undefined ) { geometry._bufferGeometry = new THREE.BufferGeometry().setFromObject( object ); } buffergeometry = geometry._bufferGeometry; } geometries[ geometry.id ] = buffergeometry; info.memory.geometries ++; return buffergeometry; } function onGeometryDispose( event ) { var geometry = event.target; var buffergeometry = geometries[ geometry.id ]; if ( buffergeometry.index !== null ) { deleteAttribute( buffergeometry.index ); } deleteAttributes( buffergeometry.attributes ); geometry.removeEventListener( 'dispose', onGeometryDispose ); delete geometries[ geometry.id ]; // TODO var property = properties.get( geometry ); if ( property.wireframe ) { deleteAttribute( property.wireframe ); } properties.delete( geometry ); var bufferproperty = properties.get( buffergeometry ); if ( bufferproperty.wireframe ) { deleteAttribute( bufferproperty.wireframe ); } properties.delete( buffergeometry ); // info.memory.geometries --; } function getAttributeBuffer( attribute ) { if ( attribute instanceof THREE.InterleavedBufferAttribute ) { return properties.get( attribute.data ).__webglBuffer; } return properties.get( attribute ).__webglBuffer; } function deleteAttribute( attribute ) { var buffer = getAttributeBuffer( attribute ); if ( buffer !== undefined ) { gl.deleteBuffer( buffer ); removeAttributeBuffer( attribute ); } } function deleteAttributes( attributes ) { for ( var name in attributes ) { deleteAttribute( attributes[ name ] ); } } function removeAttributeBuffer( attribute ) { if ( attribute instanceof THREE.InterleavedBufferAttribute ) { properties.delete( attribute.data ); } else { properties.delete( attribute ); } } this.get = get; }; // File:src/renderers/webgl/WebGLLights.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLLights = function () { var lights = {}; this.get = function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } var uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new THREE.Vector3(), color: new THREE.Color(), shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new THREE.Vector2() }; break; case 'SpotLight': uniforms = { position: new THREE.Vector3(), direction: new THREE.Vector3(), color: new THREE.Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new THREE.Vector2() }; break; case 'PointLight': uniforms = { position: new THREE.Vector3(), color: new THREE.Color(), distance: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new THREE.Vector2() }; break; case 'HemisphereLight': uniforms = { direction: new THREE.Vector3(), skyColor: new THREE.Color(), groundColor: new THREE.Color() }; break; } lights[ light.id ] = uniforms; return uniforms; }; }; // File:src/renderers/webgl/WebGLObjects.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLObjects = function ( gl, properties, info ) { var geometries = new THREE.WebGLGeometries( gl, properties, info ); // function update( object ) { // TODO: Avoid updating twice (when using shadowMap). Maybe add frame counter. var geometry = geometries.get( object ); if ( object.geometry instanceof THREE.Geometry ) { geometry.updateFromObject( object ); } var index = geometry.index; var attributes = geometry.attributes; if ( index !== null ) { updateAttribute( index, gl.ELEMENT_ARRAY_BUFFER ); } for ( var name in attributes ) { updateAttribute( attributes[ name ], gl.ARRAY_BUFFER ); } // morph targets var morphAttributes = geometry.morphAttributes; for ( var name in morphAttributes ) { var array = morphAttributes[ name ]; for ( var i = 0, l = array.length; i < l; i ++ ) { updateAttribute( array[ i ], gl.ARRAY_BUFFER ); } } return geometry; } function updateAttribute( attribute, bufferType ) { var data = ( attribute instanceof THREE.InterleavedBufferAttribute ) ? attribute.data : attribute; var attributeProperties = properties.get( data ); if ( attributeProperties.__webglBuffer === undefined ) { createBuffer( attributeProperties, data, bufferType ); } else if ( attributeProperties.version !== data.version ) { updateBuffer( attributeProperties, data, bufferType ); } } function createBuffer( attributeProperties, data, bufferType ) { attributeProperties.__webglBuffer = gl.createBuffer(); gl.bindBuffer( bufferType, attributeProperties.__webglBuffer ); var usage = data.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW; gl.bufferData( bufferType, data.array, usage ); attributeProperties.version = data.version; } function updateBuffer( attributeProperties, data, bufferType ) { gl.bindBuffer( bufferType, attributeProperties.__webglBuffer ); if ( data.dynamic === false || data.updateRange.count === - 1 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, data.array ); } else if ( data.updateRange.count === 0 ) { console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' ); } else { gl.bufferSubData( bufferType, data.updateRange.offset * data.array.BYTES_PER_ELEMENT, data.array.subarray( data.updateRange.offset, data.updateRange.offset + data.updateRange.count ) ); data.updateRange.count = 0; // reset range } attributeProperties.version = data.version; } function getAttributeBuffer( attribute ) { if ( attribute instanceof THREE.InterleavedBufferAttribute ) { return properties.get( attribute.data ).__webglBuffer; } return properties.get( attribute ).__webglBuffer; } function getWireframeAttribute( geometry ) { var property = properties.get( geometry ); if ( property.wireframe !== undefined ) { return property.wireframe; } var indices = []; var index = geometry.index; var attributes = geometry.attributes; var position = attributes.position; // console.time( 'wireframe' ); if ( index !== null ) { var edges = {}; var array = index.array; for ( var i = 0, l = array.length; i < l; i += 3 ) { var a = array[ i + 0 ]; var b = array[ i + 1 ]; var c = array[ i + 2 ]; if ( checkEdge( edges, a, b ) ) indices.push( a, b ); if ( checkEdge( edges, b, c ) ) indices.push( b, c ); if ( checkEdge( edges, c, a ) ) indices.push( c, a ); } } else { var array = attributes.position.array; for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { var a = i + 0; var b = i + 1; var c = i + 2; indices.push( a, b, b, c, c, a ); } } // console.timeEnd( 'wireframe' ); var TypeArray = position.count > 65535 ? Uint32Array : Uint16Array; var attribute = new THREE.BufferAttribute( new TypeArray( indices ), 1 ); updateAttribute( attribute, gl.ELEMENT_ARRAY_BUFFER ); property.wireframe = attribute; return attribute; } function checkEdge( edges, a, b ) { if ( a > b ) { var tmp = a; a = b; b = tmp; } var list = edges[ a ]; if ( list === undefined ) { edges[ a ] = [ b ]; return true; } else if ( list.indexOf( b ) === -1 ) { list.push( b ); return true; } return false; } this.getAttributeBuffer = getAttributeBuffer; this.getWireframeAttribute = getWireframeAttribute; this.update = update; }; // File:src/renderers/webgl/WebGLProgram.js THREE.WebGLProgram = ( function () { var programIdCount = 0; // TODO: Combine the regex var structRe = /^([\w\d_]+)\.([\w\d_]+)$/; var arrayStructRe = /^([\w\d_]+)\[(\d+)\]\.([\w\d_]+)$/; var arrayRe = /^([\w\d_]+)\[0\]$/; function getEncodingComponents( encoding ) { switch ( encoding ) { case THREE.LinearEncoding: return [ 'Linear','( value )' ]; case THREE.sRGBEncoding: return [ 'sRGB','( value )' ]; case THREE.RGBEEncoding: return [ 'RGBE','( value )' ]; case THREE.RGBM7Encoding: return [ 'RGBM','( value, 7.0 )' ]; case THREE.RGBM16Encoding: return [ 'RGBM','( value, 16.0 )' ]; case THREE.RGBDEncoding: return [ 'RGBD','( value, 256.0 )' ]; case THREE.GammaEncoding: return [ 'Gamma','( value, float( GAMMA_FACTOR ) )' ]; default: throw new Error( 'unsupported encoding: ' + encoding ); } } function getTexelDecodingFunction( functionName, encoding ) { var components = getEncodingComponents( encoding ); return "vec4 " + functionName + "( vec4 value ) { return " + components[ 0 ] + "ToLinear" + components[ 1 ] + "; }"; } function getTexelEncodingFunction( functionName, encoding ) { var components = getEncodingComponents( encoding ); return "vec4 " + functionName + "( vec4 value ) { return LinearTo" + components[ 0 ] + components[ 1 ] + "; }"; } function getToneMappingFunction( functionName, toneMapping ) { var toneMappingName; switch ( toneMapping ) { case THREE.LinearToneMapping: toneMappingName = "Linear"; break; case THREE.ReinhardToneMapping: toneMappingName = "Reinhard"; break; case THREE.Uncharted2ToneMapping: toneMappingName = "Uncharted2"; break; case THREE.CineonToneMapping: toneMappingName = "OptimizedCineon"; break; default: throw new Error( 'unsupported toneMapping: ' + toneMapping ); } return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }"; } function generateExtensions( extensions, parameters, rendererExtensions ) { extensions = extensions || {}; var chunks = [ ( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '', ( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '', ( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '', ( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : '', ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { var chunks = []; for ( var name in defines ) { var value = defines[ name ]; if ( value === false ) continue; chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchUniformLocations( gl, program, identifiers ) { var uniforms = {}; var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS ); for ( var i = 0; i < n; i ++ ) { var info = gl.getActiveUniform( program, i ); var name = info.name; var location = gl.getUniformLocation( program, name ); //console.log("THREE.WebGLProgram: ACTIVE UNIFORM:", name); var matches = structRe.exec( name ); if ( matches ) { var structName = matches[ 1 ]; var structProperty = matches[ 2 ]; var uniformsStruct = uniforms[ structName ]; if ( ! uniformsStruct ) { uniformsStruct = uniforms[ structName ] = {}; } uniformsStruct[ structProperty ] = location; continue; } matches = arrayStructRe.exec( name ); if ( matches ) { var arrayName = matches[ 1 ]; var arrayIndex = matches[ 2 ]; var arrayProperty = matches[ 3 ]; var uniformsArray = uniforms[ arrayName ]; if ( ! uniformsArray ) { uniformsArray = uniforms[ arrayName ] = []; } var uniformsArrayIndex = uniformsArray[ arrayIndex ]; if ( ! uniformsArrayIndex ) { uniformsArrayIndex = uniformsArray[ arrayIndex ] = {}; } uniformsArrayIndex[ arrayProperty ] = location; continue; } matches = arrayRe.exec( name ); if ( matches ) { var arrayName = matches[ 1 ]; uniforms[ arrayName ] = location; continue; } uniforms[ name ] = location; } return uniforms; } function fetchAttributeLocations( gl, program, identifiers ) { var attributes = {}; var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES ); for ( var i = 0; i < n; i ++ ) { var info = gl.getActiveAttrib( program, i ); var name = info.name; // console.log("THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:", name, i ); attributes[ name ] = gl.getAttribLocation( program, name ); } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ); } function parseIncludes( string ) { var pattern = /#include +<([\w\d.]+)>/g; function replace( match, include ) { var replace = THREE.ShaderChunk[ include ]; if ( replace === undefined ) { throw new Error( 'Can not resolve #include <' + include + '>' ); } return parseIncludes( replace ); } return string.replace( pattern, replace ); } function unrollLoops( string ) { var pattern = /for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; function replace( match, start, end, snippet ) { var unroll = ''; for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) { unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' ); } return unroll; } return string.replace( pattern, replace ); } return function WebGLProgram( renderer, code, material, parameters ) { var gl = renderer.context; var extensions = material.extensions; var defines = material.defines; var vertexShader = material.__webglShader.vertexShader; var fragmentShader = material.__webglShader.fragmentShader; var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === THREE.PCFShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === THREE.PCFSoftShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } var envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; var envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; if ( parameters.envMap ) { switch ( material.envMap.mapping ) { case THREE.CubeReflectionMapping: case THREE.CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case THREE.CubeUVReflectionMapping: case THREE.CubeUVRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; case THREE.EquirectangularReflectionMapping: case THREE.EquirectangularRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC'; break; case THREE.SphericalReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_SPHERE'; break; } switch ( material.envMap.mapping ) { case THREE.CubeRefractionMapping: case THREE.EquirectangularRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } switch ( material.combine ) { case THREE.MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case THREE.MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case THREE.AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0; // console.log( 'building new program ' ); // var customExtensions = generateExtensions( extensions, parameters, renderer.extensions ); var customDefines = generateDefines( defines ); // var program = gl.createProgram(); var prefixVertex, prefixFragment; if ( material instanceof THREE.RawShaderMaterial ) { prefixVertex = ''; prefixFragment = ''; } else { prefixVertex = [ 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + material.__webglShader.name, customDefines, parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.pointLightShadows > 0 ? '#define POINT_LIGHT_SHADOWS' : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_COLOR', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + material.__webglShader.name, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.pointLightShadows > 0 ? '#define POINT_LIGHT_SHADOWS' : '', parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : '', parameters.physicallyCorrectLights ? "#define PHYSICALLY_CORRECT_LIGHTS" : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && renderer.extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '', parameters.envMap && renderer.extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', ( parameters.toneMapping !== THREE.NoToneMapping ) ? "#define TONE_MAPPING" : '', ( parameters.toneMapping !== THREE.NoToneMapping ) ? THREE.ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== THREE.NoToneMapping ) ? getToneMappingFunction( "toneMapping", parameters.toneMapping ) : '', ( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? THREE.ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '', parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '', parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '', parameters.outputEncoding ? getTexelEncodingFunction( "linearToOutputTexel", parameters.outputEncoding ) : '', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = parseIncludes( vertexShader, parameters ); vertexShader = replaceLightNums( vertexShader, parameters ); fragmentShader = parseIncludes( fragmentShader, parameters ); fragmentShader = replaceLightNums( fragmentShader, parameters ); if ( material instanceof THREE.ShaderMaterial === false ) { vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); } var vertexGlsl = prefixVertex + vertexShader; var fragmentGlsl = prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); var glVertexShader = THREE.WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl ); var glFragmentShader = THREE.WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( material.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, material.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); var programLog = gl.getProgramInfoLog( program ); var vertexLog = gl.getShaderInfoLog( glVertexShader ); var fragmentLog = gl.getShaderInfoLog( glFragmentShader ); var runnable = true; var haveDiagnostics = true; // console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) ); // console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) ); if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) { runnable = false; console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog ); } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { this.diagnostics = { runnable: runnable, material: material, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } // clean up gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); // set up caching for uniform locations var cachedUniforms; this.getUniforms = function() { if ( cachedUniforms === undefined ) { cachedUniforms = fetchUniformLocations( gl, program ); } return cachedUniforms; }; // set up caching for attribute locations var cachedAttributes; this.getAttributes = function() { if ( cachedAttributes === undefined ) { cachedAttributes = fetchAttributeLocations( gl, program ); } return cachedAttributes; }; // free resource this.destroy = function() { gl.deleteProgram( program ); this.program = undefined; }; // DEPRECATED Object.defineProperties( this, { uniforms: { get: function() { console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' ); return this.getUniforms(); } }, attributes: { get: function() { console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' ); return this.getAttributes(); } } } ); // this.id = programIdCount ++; this.code = code; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; }; } )(); // File:src/renderers/webgl/WebGLPrograms.js THREE.WebGLPrograms = function ( renderer, capabilities ) { var programs = []; var shaderIDs = { MeshDepthMaterial: 'depth', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshStandardMaterial: 'standard', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points' }; var parameterNames = [ "precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding", "lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap", "roughnessMap", "metalnessMap", "alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp", "flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning", "maxBones", "useVertexTexture", "morphTargets", "morphNormals", "maxMorphTargets", "maxMorphNormals", "premultipliedAlpha", "numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "shadowMapEnabled", "pointLightShadows", "toneMapping", 'physicallyCorrectLights', "shadowMapType", "alphaTest", "doubleSided", "flipSided" ]; function allocateBones ( object ) { if ( capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture ) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var nVertexUniforms = capabilities.maxVertexUniforms; var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); var maxBones = nVertexMatrices; if ( object !== undefined && object instanceof THREE.SkinnedMesh ) { maxBones = Math.min( object.skeleton.bones.length, maxBones ); if ( maxBones < object.skeleton.bones.length ) { console.warn( 'WebGLRenderer: too many bones - ' + object.skeleton.bones.length + ', this GPU supports just ' + maxBones + ' (try OpenGL instead of ANGLE)' ); } } return maxBones; } } function getTextureEncodingFromMap( map, gammaOverrideLinear ) { var encoding; if ( ! map ) { encoding = THREE.LinearEncoding; } else if ( map instanceof THREE.Texture ) { encoding = map.encoding; } else if ( map instanceof THREE.WebGLRenderTarget ) { encoding = map.texture.encoding; } // add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point. if ( encoding === THREE.LinearEncoding && gammaOverrideLinear ) { encoding = THREE.GammaEncoding; } return encoding; } this.getParameters = function ( material, lights, fog, object ) { var shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) var maxBones = allocateBones( object ); var precision = renderer.getPrecision(); if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } var parameters = { shaderID: shaderID, precision: precision, supportsVertexTextures: capabilities.vertexTextures, outputEncoding: getTextureEncodingFromMap( renderer.getCurrentRenderTarget(), renderer.gammaOutput ), map: !! material.map, mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ), envMap: !! material.envMap, envMapMode: material.envMap && material.envMap.mapping, envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ), envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === THREE.CubeUVReflectionMapping ) || ( material.envMap.mapping === THREE.CubeUVRefractionMapping ) ), lightMap: !! material.lightMap, aoMap: !! material.aoMap, emissiveMap: !! material.emissiveMap, emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ), bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, displacementMap: !! material.displacementMap, roughnessMap: !! material.roughnessMap, metalnessMap: !! material.metalnessMap, specularMap: !! material.specularMap, alphaMap: !! material.alphaMap, combine: material.combine, vertexColors: material.vertexColors, fog: fog, useFog: material.fog, fogExp: fog instanceof THREE.FogExp2, flatShading: material.shading === THREE.FlatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer, skinning: material.skinning, maxBones: maxBones, useVertexTexture: capabilities.floatVertexTextures && object && object.skeleton && object.skeleton.useVertexTexture, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: renderer.maxMorphTargets, maxMorphNormals: renderer.maxMorphNormals, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numHemiLights: lights.hemi.length, pointLightShadows: lights.shadowsPointLight, shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && lights.shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: renderer.toneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, alphaTest: material.alphaTest, doubleSided: material.side === THREE.DoubleSide, flipSided: material.side === THREE.BackSide }; return parameters; }; this.getProgramCode = function ( material, parameters ) { var chunks = []; if ( parameters.shaderID ) { chunks.push( parameters.shaderID ); } else { chunks.push( material.fragmentShader ); chunks.push( material.vertexShader ); } if ( material.defines !== undefined ) { for ( var name in material.defines ) { chunks.push( name ); chunks.push( material.defines[ name ] ); } } for ( var i = 0; i < parameterNames.length; i ++ ) { var parameterName = parameterNames[ i ]; chunks.push( parameterName ); chunks.push( parameters[ parameterName ] ); } return chunks.join(); }; this.acquireProgram = function ( material, parameters, code ) { var program; // Check if code has been already compiled for ( var p = 0, pl = programs.length; p < pl; p ++ ) { var programInfo = programs[ p ]; if ( programInfo.code === code ) { program = programInfo; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new THREE.WebGLProgram( renderer, code, material, parameters ); programs.push( program ); } return program; }; this.releaseProgram = function( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set var i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } }; // Exposed for resource monitoring & error feedback via renderer.info: this.programs = programs; }; // File:src/renderers/webgl/WebGLProperties.js /** * @author fordacious / fordacious.github.io */ THREE.WebGLProperties = function () { var properties = {}; this.get = function ( object ) { var uuid = object.uuid; var map = properties[ uuid ]; if ( map === undefined ) { map = {}; properties[ uuid ] = map; } return map; }; this.delete = function ( object ) { delete properties[ object.uuid ]; }; this.clear = function () { properties = {}; }; }; // File:src/renderers/webgl/WebGLShader.js THREE.WebGLShader = ( function () { function addLineNumbers( string ) { var lines = string.split( '\n' ); for ( var i = 0; i < lines.length; i ++ ) { lines[ i ] = ( i + 1 ) + ': ' + lines[ i ]; } return lines.join( '\n' ); } return function WebGLShader( gl, type, string ) { var shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) { console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' ); } if ( gl.getShaderInfoLog( shader ) !== '' ) { console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) ); } // --enable-privileged-webgl-extension // console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); return shader; }; } )(); // File:src/renderers/webgl/WebGLShadowMap.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLShadowMap = function ( _renderer, _lights, _objects ) { var _gl = _renderer.context, _state = _renderer.state, _frustum = new THREE.Frustum(), _projScreenMatrix = new THREE.Matrix4(), _shadowMapSize = new THREE.Vector2(), _lookTarget = new THREE.Vector3(), _lightPositionWorld = new THREE.Vector3(), _renderList = [], _MorphingFlag = 1, _SkinningFlag = 2, _NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1, _depthMaterials = new Array( _NumberOfMaterialVariants ), _distanceMaterials = new Array( _NumberOfMaterialVariants ); var cubeDirections = [ new THREE.Vector3( 1, 0, 0 ), new THREE.Vector3( - 1, 0, 0 ), new THREE.Vector3( 0, 0, 1 ), new THREE.Vector3( 0, 0, - 1 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, - 1, 0 ) ]; var cubeUps = [ new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 0, 1 ), new THREE.Vector3( 0, 0, - 1 ) ]; var cube2DViewPorts = [ new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4() ]; // init var depthShader = THREE.ShaderLib[ "depthRGBA" ]; var depthUniforms = THREE.UniformsUtils.clone( depthShader.uniforms ); var distanceShader = THREE.ShaderLib[ "distanceRGBA" ]; var distanceUniforms = THREE.UniformsUtils.clone( distanceShader.uniforms ); for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) { var useMorphing = ( i & _MorphingFlag ) !== 0; var useSkinning = ( i & _SkinningFlag ) !== 0; var depthMaterial = new THREE.ShaderMaterial( { uniforms: depthUniforms, vertexShader: depthShader.vertexShader, fragmentShader: depthShader.fragmentShader, morphTargets: useMorphing, skinning: useSkinning } ); _depthMaterials[ i ] = depthMaterial; var distanceMaterial = new THREE.ShaderMaterial( { defines: { 'USE_SHADOWMAP': '' }, uniforms: distanceUniforms, vertexShader: distanceShader.vertexShader, fragmentShader: distanceShader.fragmentShader, morphTargets: useMorphing, skinning: useSkinning } ); _distanceMaterials[ i ] = distanceMaterial; } // var scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = THREE.PCFShadowMap; this.cullFace = THREE.CullFaceFront; this.render = function ( scene, camera ) { var faceCount, isPointLight; var shadows = _lights.shadows; if ( shadows.length === 0 ) return; if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; // Set GL state for depth map. _state.clearColor( 1, 1, 1, 1 ); _state.disable( _gl.BLEND ); _state.enable( _gl.CULL_FACE ); _gl.frontFace( _gl.CCW ); _gl.cullFace( scope.cullFace === THREE.CullFaceFront ? _gl.FRONT : _gl.BACK ); _state.setDepthTest( true ); _state.setScissorTest( false ); // render depth map for ( var i = 0, il = shadows.length; i < il; i ++ ) { var light = shadows[ i ]; var shadow = light.shadow; var shadowCamera = shadow.camera; _shadowMapSize.copy( shadow.mapSize ); if ( light instanceof THREE.PointLight ) { faceCount = 6; isPointLight = true; var vpWidth = _shadowMapSize.x; var vpHeight = _shadowMapSize.y; // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight ); // negative X cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight ); // positive Z cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight ); // negative Z cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight ); // positive Y cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight ); // negative Y cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight ); _shadowMapSize.x *= 4.0; _shadowMapSize.y *= 2.0; } else { faceCount = 1; isPointLight = false; } if ( shadow.map === null ) { var pars = { minFilter: THREE.NearestFilter, magFilter: THREE.NearestFilter, format: THREE.RGBAFormat }; shadow.map = new THREE.WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); // if ( light instanceof THREE.SpotLight ) { shadowCamera.aspect = _shadowMapSize.x / _shadowMapSize.y; } shadowCamera.updateProjectionMatrix(); } var shadowMap = shadow.map; var shadowMatrix = shadow.matrix; _lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld ); _renderer.setRenderTarget( shadowMap ); _renderer.clear(); // render shadow map for each cube face (if omni-directional) or // run a single pass if not for ( var face = 0; face < faceCount; face ++ ) { if ( isPointLight ) { _lookTarget.copy( shadowCamera.position ); _lookTarget.add( cubeDirections[ face ] ); shadowCamera.up.copy( cubeUps[ face ] ); shadowCamera.lookAt( _lookTarget ); var vpDimensions = cube2DViewPorts[ face ]; _state.viewport( vpDimensions ); } else { _lookTarget.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget ); } shadowCamera.updateMatrixWorld(); shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld ); // compute shadow matrix shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); // update camera matrices and frustum _projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // set object matrices & frustum culling _renderList.length = 0; projectObject( scene, camera, shadowCamera ); // render shadow map // render regular objects for ( var j = 0, jl = _renderList.length; j < jl; j ++ ) { var object = _renderList[ j ]; var geometry = _objects.update( object ); var material = object.material; if ( material instanceof THREE.MultiMaterial ) { var groups = geometry.groups; var materials = material.materials; for ( var k = 0, kl = groups.length; k < kl; k ++ ) { var group = groups[ k ]; var groupMaterial = materials[ group.materialIndex ]; if ( groupMaterial.visible === true ) { var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); } } } else { var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); } } } } // Restore GL state. var clearColor = _renderer.getClearColor(), clearAlpha = _renderer.getClearAlpha(); _renderer.setClearColor( clearColor, clearAlpha ); _state.enable( _gl.BLEND ); if ( scope.cullFace === THREE.CullFaceFront ) { _gl.cullFace( _gl.BACK ); } scope.needsUpdate = false; }; function getDepthMaterial( object, material, isPointLight, lightPositionWorld ) { var geometry = object.geometry; var newMaterial = null; var materialVariants = _depthMaterials; var customMaterial = object.customDepthMaterial; if ( isPointLight ) { materialVariants = _distanceMaterials; customMaterial = object.customDistanceMaterial; } if ( ! customMaterial ) { var useMorphing = geometry.morphTargets !== undefined && geometry.morphTargets.length > 0 && material.morphTargets; var useSkinning = object instanceof THREE.SkinnedMesh && material.skinning; var variantIndex = 0; if ( useMorphing ) variantIndex |= _MorphingFlag; if ( useSkinning ) variantIndex |= _SkinningFlag; newMaterial = materialVariants[ variantIndex ]; } else { newMaterial = customMaterial; } newMaterial.visible = material.visible; newMaterial.wireframe = material.wireframe; newMaterial.wireframeLinewidth = material.wireframeLinewidth; if ( isPointLight && newMaterial.uniforms.lightPos !== undefined ) { newMaterial.uniforms.lightPos.value.copy( lightPositionWorld ); } return newMaterial; } function projectObject( object, camera, shadowCamera ) { if ( object.visible === false ) return; if ( object.layers.test( camera.layers ) && ( object instanceof THREE.Mesh || object instanceof THREE.Line || object instanceof THREE.Points ) ) { if ( object.castShadow && ( object.frustumCulled === false || _frustum.intersectsObject( object ) === true ) ) { var material = object.material; if ( material.visible === true ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); _renderList.push( object ); } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera, shadowCamera ); } } }; // File:src/renderers/webgl/WebGLState.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WebGLState = function ( gl, extensions, paramThreeToGL ) { var _this = this; var color = new THREE.Vector4(); var newAttributes = new Uint8Array( 16 ); var enabledAttributes = new Uint8Array( 16 ); var attributeDivisors = new Uint8Array( 16 ); var capabilities = {}; var compressedTextureFormats = null; var currentBlending = null; var currentBlendEquation = null; var currentBlendSrc = null; var currentBlendDst = null; var currentBlendEquationAlpha = null; var currentBlendSrcAlpha = null; var currentBlendDstAlpha = null; var currentPremultipledAlpha = false; var currentDepthFunc = null; var currentDepthWrite = null; var currentColorWrite = null; var currentStencilWrite = null; var currentStencilFunc = null; var currentStencilRef = null; var currentStencilMask = null; var currentStencilFail = null; var currentStencilZFail = null; var currentStencilZPass = null; var currentFlipSided = null; var currentLineWidth = null; var currentPolygonOffsetFactor = null; var currentPolygonOffsetUnits = null; var currentScissorTest = null; var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); var currentTextureSlot = undefined; var currentBoundTextures = {}; var currentClearColor = new THREE.Vector4(); var currentClearDepth = null; var currentClearStencil = null; var currentScissor = new THREE.Vector4(); var currentViewport = new THREE.Vector4(); var emptyTexture = gl.createTexture(); gl.bindTexture( gl.TEXTURE_2D, emptyTexture ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 1, 1, 0, gl.RGB, gl.UNSIGNED_BYTE, new Uint8Array( 3 ) ); this.init = function () { this.clearColor( 0, 0, 0, 1 ); this.clearDepth( 1 ); this.clearStencil( 0 ); this.enable( gl.DEPTH_TEST ); gl.depthFunc( gl.LEQUAL ); gl.frontFace( gl.CCW ); gl.cullFace( gl.BACK ); this.enable( gl.CULL_FACE ); this.enable( gl.BLEND ); gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA ); }; this.initAttributes = function () { for ( var i = 0, l = newAttributes.length; i < l; i ++ ) { newAttributes[ i ] = 0; } }; this.enableAttribute = function ( attribute ) { newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== 0 ) { var extension = extensions.get( 'ANGLE_instanced_arrays' ); extension.vertexAttribDivisorANGLE( attribute, 0 ); attributeDivisors[ attribute ] = 0; } }; this.enableAttributeAndDivisor = function ( attribute, meshPerAttribute, extension ) { newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } }; this.disableUnusedAttributes = function () { for ( var i = 0, l = enabledAttributes.length; i < l; i ++ ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } }; this.enable = function ( id ) { if ( capabilities[ id ] !== true ) { gl.enable( id ); capabilities[ id ] = true; } }; this.disable = function ( id ) { if ( capabilities[ id ] !== false ) { gl.disable( id ); capabilities[ id ] = false; } }; this.getCompressedTextureFormats = function () { if ( compressedTextureFormats === null ) { compressedTextureFormats = []; if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) || extensions.get( 'WEBGL_compressed_texture_s3tc' ) || extensions.get( 'WEBGL_compressed_texture_etc1' ) ) { var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS ); for ( var i = 0; i < formats.length; i ++ ) { compressedTextureFormats.push( formats[ i ] ); } } } return compressedTextureFormats; }; this.setBlending = function ( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { if ( blending === THREE.NoBlending ) { this.disable( gl.BLEND ); } else { this.enable( gl.BLEND ); } if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { if ( blending === THREE.AdditiveBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ONE, gl.ONE, gl.ONE, gl.ONE ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); } } else if ( blending === THREE.SubtractiveBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR ); } } else if ( blending === THREE.MultiplyBlending ) { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.SRC_COLOR, gl.SRC_ALPHA ); } else { gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); } } else { if ( premultipliedAlpha ) { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); } else { gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD ); gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); } } currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } if ( blending === THREE.CustomBlending ) { blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( paramThreeToGL( blendEquation ), paramThreeToGL( blendEquationAlpha ) ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ), paramThreeToGL( blendSrcAlpha ), paramThreeToGL( blendDstAlpha ) ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } } else { currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; } }; this.setDepthFunc = function ( depthFunc ) { if ( currentDepthFunc !== depthFunc ) { if ( depthFunc ) { switch ( depthFunc ) { case THREE.NeverDepth: gl.depthFunc( gl.NEVER ); break; case THREE.AlwaysDepth: gl.depthFunc( gl.ALWAYS ); break; case THREE.LessDepth: gl.depthFunc( gl.LESS ); break; case THREE.LessEqualDepth: gl.depthFunc( gl.LEQUAL ); break; case THREE.EqualDepth: gl.depthFunc( gl.EQUAL ); break; case THREE.GreaterEqualDepth: gl.depthFunc( gl.GEQUAL ); break; case THREE.GreaterDepth: gl.depthFunc( gl.GREATER ); break; case THREE.NotEqualDepth: gl.depthFunc( gl.NOTEQUAL ); break; default: gl.depthFunc( gl.LEQUAL ); } } else { gl.depthFunc( gl.LEQUAL ); } currentDepthFunc = depthFunc; } }; this.setDepthTest = function ( depthTest ) { if ( depthTest ) { this.enable( gl.DEPTH_TEST ); } else { this.disable( gl.DEPTH_TEST ); } }; this.setDepthWrite = function ( depthWrite ) { // TODO: Rename to setDepthMask if ( currentDepthWrite !== depthWrite ) { gl.depthMask( depthWrite ); currentDepthWrite = depthWrite; } }; this.setColorWrite = function ( colorWrite ) { // TODO: Rename to setColorMask if ( currentColorWrite !== colorWrite ) { gl.colorMask( colorWrite, colorWrite, colorWrite, colorWrite ); currentColorWrite = colorWrite; } }; this.setStencilFunc = function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilMask = stencilMask; } }; this.setStencilOp = function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }; this.setStencilTest = function ( stencilTest ) { if ( stencilTest ) { this.enable( gl.STENCIL_TEST ); } else { this.disable( gl.STENCIL_TEST ); } }; this.setStencilWrite = function ( stencilWrite ) { // TODO: Rename to setStencilMask if ( currentStencilWrite !== stencilWrite ) { gl.stencilMask( stencilWrite ); currentStencilWrite = stencilWrite; } }; this.setFlipSided = function ( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( gl.CW ); } else { gl.frontFace( gl.CCW ); } currentFlipSided = flipSided; } }; this.setLineWidth = function ( width ) { if ( width !== currentLineWidth ) { gl.lineWidth( width ); currentLineWidth = width; } }; this.setPolygonOffset = function ( polygonOffset, factor, units ) { if ( polygonOffset ) { this.enable( gl.POLYGON_OFFSET_FILL ); } else { this.disable( gl.POLYGON_OFFSET_FILL ); } if ( polygonOffset && ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } }; this.getScissorTest = function () { return currentScissorTest; }; this.setScissorTest = function ( scissorTest ) { currentScissorTest = scissorTest; if ( scissorTest ) { this.enable( gl.SCISSOR_TEST ); } else { this.disable( gl.SCISSOR_TEST ); } }; // texture this.activeTexture = function ( webglSlot ) { if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } }; this.bindTexture = function ( webglType, webglTexture ) { if ( currentTextureSlot === undefined ) { _this.activeTexture(); } var boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ currentTextureSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { gl.bindTexture( webglType, webglTexture || emptyTexture ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } }; this.compressedTexImage2D = function () { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( error ); } }; this.texImage2D = function () { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( error ); } }; // clear values this.clearColor = function ( r, g, b, a ) { color.set( r, g, b, a ); if ( currentClearColor.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentClearColor.copy( color ); } }; this.clearDepth = function ( depth ) { if ( currentClearDepth !== depth ) { gl.clearDepth( depth ); currentClearDepth = depth; } }; this.clearStencil = function ( stencil ) { if ( currentClearStencil !== stencil ) { gl.clearStencil( stencil ); currentClearStencil = stencil; } }; // this.scissor = function ( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } }; this.viewport = function ( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } }; // this.reset = function () { for ( var i = 0; i < enabledAttributes.length; i ++ ) { if ( enabledAttributes[ i ] === 1 ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } capabilities = {}; compressedTextureFormats = null; currentTextureSlot = undefined; currentBoundTextures = {}; currentBlending = null; currentColorWrite = null; currentDepthWrite = null; currentStencilWrite = null; currentFlipSided = null; }; }; // File:src/renderers/webgl/plugins/LensFlarePlugin.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlarePlugin = function ( renderer, flares ) { var gl = renderer.context; var state = renderer.state; var vertexBuffer, elementBuffer; var program, attributes, uniforms; var hasVertexTexture; var tempTexture, occlusionTexture; function init() { var vertices = new Float32Array( [ - 1, - 1, 0, 0, 1, - 1, 1, 0, 1, 1, 1, 1, - 1, 1, 0, 1 ] ); var faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); // buffers vertexBuffer = gl.createBuffer(); elementBuffer = gl.createBuffer(); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW ); // textures tempTexture = gl.createTexture(); occlusionTexture = gl.createTexture(); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGB, 16, 16, 0, gl.RGB, gl.UNSIGNED_BYTE, null ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); state.bindTexture( gl.TEXTURE_2D, occlusionTexture ); gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 16, 16, 0, gl.RGBA, gl.UNSIGNED_BYTE, null ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); hasVertexTexture = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ) > 0; var shader; if ( hasVertexTexture ) { shader = { vertexShader: [ "uniform lowp int renderType;", "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform sampler2D occlusionMap;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if ( renderType == 2 ) {", "vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.1 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.9 ) );", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) );", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.5 ) );", "vVisibility = visibility.r / 9.0;", "vVisibility *= 1.0 - visibility.g / 9.0;", "vVisibility *= visibility.b / 9.0;", "vVisibility *= 1.0 - visibility.a / 9.0;", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "uniform lowp int renderType;", "uniform sampler2D map;", "uniform float opacity;", "uniform vec3 color;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", // pink square "if ( renderType == 0 ) {", "gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );", // restore "} else if ( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * vVisibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }; } else { shader = { vertexShader: [ "uniform lowp int renderType;", "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if ( renderType == 2 ) {", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform lowp int renderType;", "uniform sampler2D map;", "uniform sampler2D occlusionMap;", "uniform float opacity;", "uniform vec3 color;", "varying vec2 vUV;", "void main() {", // pink square "if ( renderType == 0 ) {", "gl_FragColor = vec4( texture2D( map, vUV ).rgb, 0.0 );", // restore "} else if ( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "float visibility = texture2D( occlusionMap, vec2( 0.5, 0.1 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.9, 0.5 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.5, 0.9 ) ).a;", "visibility += texture2D( occlusionMap, vec2( 0.1, 0.5 ) ).a;", "visibility = ( 1.0 - visibility / 4.0 );", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * visibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }; } program = createProgram( shader ); attributes = { vertex: gl.getAttribLocation ( program, "position" ), uv: gl.getAttribLocation ( program, "uv" ) }; uniforms = { renderType: gl.getUniformLocation( program, "renderType" ), map: gl.getUniformLocation( program, "map" ), occlusionMap: gl.getUniformLocation( program, "occlusionMap" ), opacity: gl.getUniformLocation( program, "opacity" ), color: gl.getUniformLocation( program, "color" ), scale: gl.getUniformLocation( program, "scale" ), rotation: gl.getUniformLocation( program, "rotation" ), screenPosition: gl.getUniformLocation( program, "screenPosition" ) }; } /* * Render lens flares * Method: renders 16x16 0xff00ff-colored points scattered over the light source area, * reads these back and calculates occlusion. */ this.render = function ( scene, camera, viewport ) { if ( flares.length === 0 ) return; var tempPosition = new THREE.Vector3(); var invAspect = viewport.w / viewport.z, halfViewportWidth = viewport.z * 0.5, halfViewportHeight = viewport.w * 0.5; var size = 16 / viewport.w, scale = new THREE.Vector2( size * invAspect, size ); var screenPosition = new THREE.Vector3( 1, 1, 0 ), screenPositionPixels = new THREE.Vector2( 1, 1 ); if ( program === undefined ) { init(); } gl.useProgram( program ); state.initAttributes(); state.enableAttribute( attributes.vertex ); state.enableAttribute( attributes.uv ); state.disableUnusedAttributes(); // loop through all lens flares to update their occlusion and positions // setup gl and common used attribs/uniforms gl.uniform1i( uniforms.occlusionMap, 0 ); gl.uniform1i( uniforms.map, 1 ); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.vertexAttribPointer( attributes.vertex, 2, gl.FLOAT, false, 2 * 8, 0 ); gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); state.disable( gl.CULL_FACE ); state.setDepthWrite( false ); for ( var i = 0, l = flares.length; i < l; i ++ ) { size = 16 / viewport.w; scale.set( size * invAspect, size ); // calc object screen position var flare = flares[ i ]; tempPosition.set( flare.matrixWorld.elements[ 12 ], flare.matrixWorld.elements[ 13 ], flare.matrixWorld.elements[ 14 ] ); tempPosition.applyMatrix4( camera.matrixWorldInverse ); tempPosition.applyProjection( camera.projectionMatrix ); // setup arrays for gl programs screenPosition.copy( tempPosition ); screenPositionPixels.x = screenPosition.x * halfViewportWidth + halfViewportWidth; screenPositionPixels.y = screenPosition.y * halfViewportHeight + halfViewportHeight; // screen cull if ( hasVertexTexture || ( screenPositionPixels.x > 0 && screenPositionPixels.x < viewport.z && screenPositionPixels.y > 0 && screenPositionPixels.y < viewport.w ) ) { // save current RGB to temp texture state.activeTexture( gl.TEXTURE0 ); state.bindTexture( gl.TEXTURE_2D, null ); state.activeTexture( gl.TEXTURE1 ); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGB, viewport.x + screenPositionPixels.x - 8, viewport.y + screenPositionPixels.y - 8, 16, 16, 0 ); // render pink quad gl.uniform1i( uniforms.renderType, 0 ); gl.uniform2f( uniforms.scale, scale.x, scale.y ); gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); state.disable( gl.BLEND ); state.enable( gl.DEPTH_TEST ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); // copy result to occlusionMap state.activeTexture( gl.TEXTURE0 ); state.bindTexture( gl.TEXTURE_2D, occlusionTexture ); gl.copyTexImage2D( gl.TEXTURE_2D, 0, gl.RGBA, viewport.x + screenPositionPixels.x - 8, viewport.y + screenPositionPixels.y - 8, 16, 16, 0 ); // restore graphics gl.uniform1i( uniforms.renderType, 1 ); state.disable( gl.DEPTH_TEST ); state.activeTexture( gl.TEXTURE1 ); state.bindTexture( gl.TEXTURE_2D, tempTexture ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); // update object positions flare.positionScreen.copy( screenPosition ); if ( flare.customUpdateCallback ) { flare.customUpdateCallback( flare ); } else { flare.updateLensFlares(); } // render flares gl.uniform1i( uniforms.renderType, 2 ); state.enable( gl.BLEND ); for ( var j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) { var sprite = flare.lensFlares[ j ]; if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) { screenPosition.x = sprite.x; screenPosition.y = sprite.y; screenPosition.z = sprite.z; size = sprite.size * sprite.scale / viewport.w; scale.x = size * invAspect; scale.y = size; gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); gl.uniform2f( uniforms.scale, scale.x, scale.y ); gl.uniform1f( uniforms.rotation, sprite.rotation ); gl.uniform1f( uniforms.opacity, sprite.opacity ); gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); state.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); renderer.setTexture( sprite.texture, 1 ); gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); } } } } // restore gl state.enable( gl.CULL_FACE ); state.enable( gl.DEPTH_TEST ); state.setDepthWrite( true ); renderer.resetGLState(); }; function createProgram ( shader ) { var program = gl.createProgram(); var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER ); var vertexShader = gl.createShader( gl.VERTEX_SHADER ); var prefix = "precision " + renderer.getPrecision() + " float;\n"; gl.shaderSource( fragmentShader, prefix + shader.fragmentShader ); gl.shaderSource( vertexShader, prefix + shader.vertexShader ); gl.compileShader( fragmentShader ); gl.compileShader( vertexShader ); gl.attachShader( program, fragmentShader ); gl.attachShader( program, vertexShader ); gl.linkProgram( program ); return program; } }; // File:src/renderers/webgl/plugins/SpritePlugin.js /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.SpritePlugin = function ( renderer, sprites ) { var gl = renderer.context; var state = renderer.state; var vertexBuffer, elementBuffer; var program, attributes, uniforms; var texture; // decompose matrixWorld var spritePosition = new THREE.Vector3(); var spriteRotation = new THREE.Quaternion(); var spriteScale = new THREE.Vector3(); function init() { var vertices = new Float32Array( [ - 0.5, - 0.5, 0, 0, 0.5, - 0.5, 1, 0, 0.5, 0.5, 1, 1, - 0.5, 0.5, 0, 1 ] ); var faces = new Uint16Array( [ 0, 1, 2, 0, 2, 3 ] ); vertexBuffer = gl.createBuffer(); elementBuffer = gl.createBuffer(); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW ); program = createProgram(); attributes = { position: gl.getAttribLocation ( program, 'position' ), uv: gl.getAttribLocation ( program, 'uv' ) }; uniforms = { uvOffset: gl.getUniformLocation( program, 'uvOffset' ), uvScale: gl.getUniformLocation( program, 'uvScale' ), rotation: gl.getUniformLocation( program, 'rotation' ), scale: gl.getUniformLocation( program, 'scale' ), color: gl.getUniformLocation( program, 'color' ), map: gl.getUniformLocation( program, 'map' ), opacity: gl.getUniformLocation( program, 'opacity' ), modelViewMatrix: gl.getUniformLocation( program, 'modelViewMatrix' ), projectionMatrix: gl.getUniformLocation( program, 'projectionMatrix' ), fogType: gl.getUniformLocation( program, 'fogType' ), fogDensity: gl.getUniformLocation( program, 'fogDensity' ), fogNear: gl.getUniformLocation( program, 'fogNear' ), fogFar: gl.getUniformLocation( program, 'fogFar' ), fogColor: gl.getUniformLocation( program, 'fogColor' ), alphaTest: gl.getUniformLocation( program, 'alphaTest' ) }; var canvas = document.createElement( 'canvas' ); canvas.width = 8; canvas.height = 8; var context = canvas.getContext( '2d' ); context.fillStyle = 'white'; context.fillRect( 0, 0, 8, 8 ); texture = new THREE.Texture( canvas ); texture.needsUpdate = true; } this.render = function ( scene, camera ) { if ( sprites.length === 0 ) return; // setup gl if ( program === undefined ) { init(); } gl.useProgram( program ); state.initAttributes(); state.enableAttribute( attributes.position ); state.enableAttribute( attributes.uv ); state.disableUnusedAttributes(); state.disable( gl.CULL_FACE ); state.enable( gl.BLEND ); gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer ); gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 ); gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 ); gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer ); gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements ); state.activeTexture( gl.TEXTURE0 ); gl.uniform1i( uniforms.map, 0 ); var oldFogType = 0; var sceneFogType = 0; var fog = scene.fog; if ( fog ) { gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b ); if ( fog instanceof THREE.Fog ) { gl.uniform1f( uniforms.fogNear, fog.near ); gl.uniform1f( uniforms.fogFar, fog.far ); gl.uniform1i( uniforms.fogType, 1 ); oldFogType = 1; sceneFogType = 1; } else if ( fog instanceof THREE.FogExp2 ) { gl.uniform1f( uniforms.fogDensity, fog.density ); gl.uniform1i( uniforms.fogType, 2 ); oldFogType = 2; sceneFogType = 2; } } else { gl.uniform1i( uniforms.fogType, 0 ); oldFogType = 0; sceneFogType = 0; } // update positions and sort for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld ); sprite.z = - sprite.modelViewMatrix.elements[ 14 ]; } sprites.sort( painterSortStable ); // render all sprites var scale = []; for ( var i = 0, l = sprites.length; i < l; i ++ ) { var sprite = sprites[ i ]; var material = sprite.material; gl.uniform1f( uniforms.alphaTest, material.alphaTest ); gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements ); sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale ); scale[ 0 ] = spriteScale.x; scale[ 1 ] = spriteScale.y; var fogType = 0; if ( scene.fog && material.fog ) { fogType = sceneFogType; } if ( oldFogType !== fogType ) { gl.uniform1i( uniforms.fogType, fogType ); oldFogType = fogType; } if ( material.map !== null ) { gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y ); gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y ); } else { gl.uniform2f( uniforms.uvOffset, 0, 0 ); gl.uniform2f( uniforms.uvScale, 1, 1 ); } gl.uniform1f( uniforms.opacity, material.opacity ); gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b ); gl.uniform1f( uniforms.rotation, material.rotation ); gl.uniform2fv( uniforms.scale, scale ); state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); state.setDepthTest( material.depthTest ); state.setDepthWrite( material.depthWrite ); if ( material.map && material.map.image && material.map.image.width ) { renderer.setTexture( material.map, 0 ); } else { renderer.setTexture( texture, 0 ); } gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 ); } // restore gl state.enable( gl.CULL_FACE ); renderer.resetGLState(); }; function createProgram () { var program = gl.createProgram(); var vertexShader = gl.createShader( gl.VERTEX_SHADER ); var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER ); gl.shaderSource( vertexShader, [ 'precision ' + renderer.getPrecision() + ' float;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform float rotation;', 'uniform vec2 scale;', 'uniform vec2 uvOffset;', 'uniform vec2 uvScale;', 'attribute vec2 position;', 'attribute vec2 uv;', 'varying vec2 vUV;', 'void main() {', 'vUV = uvOffset + uv * uvScale;', 'vec2 alignedPosition = position * scale;', 'vec2 rotatedPosition;', 'rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;', 'rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;', 'vec4 finalPosition;', 'finalPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );', 'finalPosition.xy += rotatedPosition;', 'finalPosition = projectionMatrix * finalPosition;', 'gl_Position = finalPosition;', '}' ].join( '\n' ) ); gl.shaderSource( fragmentShader, [ 'precision ' + renderer.getPrecision() + ' float;', 'uniform vec3 color;', 'uniform sampler2D map;', 'uniform float opacity;', 'uniform int fogType;', 'uniform vec3 fogColor;', 'uniform float fogDensity;', 'uniform float fogNear;', 'uniform float fogFar;', 'uniform float alphaTest;', 'varying vec2 vUV;', 'void main() {', 'vec4 texture = texture2D( map, vUV );', 'if ( texture.a < alphaTest ) discard;', 'gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );', 'if ( fogType > 0 ) {', 'float depth = gl_FragCoord.z / gl_FragCoord.w;', 'float fogFactor = 0.0;', 'if ( fogType == 1 ) {', 'fogFactor = smoothstep( fogNear, fogFar, depth );', '} else {', 'const float LOG2 = 1.442695;', 'fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );', 'fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );', '}', 'gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );', '}', '}' ].join( '\n' ) ); gl.compileShader( vertexShader ); gl.compileShader( fragmentShader ); gl.attachShader( program, vertexShader ); gl.attachShader( program, fragmentShader ); gl.linkProgram( program ); return program; } function painterSortStable ( a, b ) { if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return b.id - a.id; } } }; // File:src/Three.Legacy.js /** * @author mrdoob / http://mrdoob.com/ */ Object.defineProperties( THREE.Box2.prototype, { empty: { value: function () { console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); } }, isIntersectionBox: { value: function ( box ) { console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); } } } ); Object.defineProperties( THREE.Box3.prototype, { empty: { value: function () { console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); } }, isIntersectionBox: { value: function ( box ) { console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); } }, isIntersectionSphere: { value: function ( sphere ) { console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); } } } ); Object.defineProperties( THREE.Matrix3.prototype, { multiplyVector3: { value: function ( vector ) { console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); return vector.applyMatrix3( this ); } }, multiplyVector3Array: { value: function ( a ) { console.warn( 'THREE.Matrix3: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' ); return this.applyToVector3Array( a ); } } } ); Object.defineProperties( THREE.Matrix4.prototype, { extractPosition: { value: function ( m ) { console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' ); return this.copyPosition( m ); } }, setRotationFromQuaternion: { value: function ( q ) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q ); } }, multiplyVector3: { value: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) or vector.applyProjection( matrix ) instead.' ); return vector.applyProjection( this ); } }, multiplyVector4: { value: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); } }, multiplyVector3Array: { value: function ( a ) { console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' ); return this.applyToVector3Array( a ); } }, rotateAxis: { value: function ( v ) { console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this ); } }, crossVector: { value: function ( vector ) { console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); } }, translate: { value: function ( v ) { console.error( 'THREE.Matrix4: .translate() has been removed.' ); } }, rotateX: { value: function ( angle ) { console.error( 'THREE.Matrix4: .rotateX() has been removed.' ); } }, rotateY: { value: function ( angle ) { console.error( 'THREE.Matrix4: .rotateY() has been removed.' ); } }, rotateZ: { value: function ( angle ) { console.error( 'THREE.Matrix4: .rotateZ() has been removed.' ); } }, rotateByAxis: { value: function ( axis, angle ) { console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); } } } ); Object.defineProperties( THREE.Plane.prototype, { isIntersectionLine: { value: function ( line ) { console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' ); return this.intersectsLine( line ); } } } ); Object.defineProperties( THREE.Quaternion.prototype, { multiplyVector3: { value: function ( vector ) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this ); } } } ); Object.defineProperties( THREE.Ray.prototype, { isIntersectionBox: { value: function ( box ) { console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); } }, isIntersectionPlane: { value: function ( plane ) { console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' ); return this.intersectsPlane( plane ); } }, isIntersectionSphere: { value: function ( sphere ) { console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); } } } ); Object.defineProperties( THREE.Vector3.prototype, { setEulerFromRotationMatrix: { value: function () { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); } }, setEulerFromQuaternion: { value: function () { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); } }, getPositionFromMatrix: { value: function ( m ) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m ); } }, getScaleFromMatrix: { value: function ( m ) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m ); } }, getColumnFromMatrix: { value: function ( index, matrix ) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( index, matrix ); } } } ); // THREE.Face4 = function ( a, b, c, d, normal, color, materialIndex ) { console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' ); return new THREE.Face3( a, b, c, normal, color, materialIndex ); }; THREE.Vertex = function ( x, y, z ) { console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' ); return new THREE.Vector3( x, y, z ); }; // Object.defineProperties( THREE.Object3D.prototype, { eulerOrder: { get: function () { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); return this.rotation.order; }, set: function ( value ) { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); this.rotation.order = value; } }, getChildByName: { value: function ( name ) { console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); return this.getObjectByName( name ); } }, renderDepth: { set: function ( value ) { console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' ); } }, translate: { value: function ( distance, axis ) { console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); return this.translateOnAxis( axis, distance ); } }, useQuaternion: { get: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); }, set: function ( value ) { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); } } } ); // Object.defineProperties( THREE, { PointCloud: { value: function ( geometry, material ) { console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' ); return new THREE.Points( geometry, material ); } }, ParticleSystem: { value: function ( geometry, material ) { console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' ); return new THREE.Points( geometry, material ); } } } ); // Object.defineProperties( THREE.Light.prototype, { onlyShadow: { set: function ( value ) { console.warn( 'THREE.Light: .onlyShadow has been removed.' ); } }, shadowCameraFov: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' ); this.shadow.camera.fov = value; } }, shadowCameraLeft: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' ); this.shadow.camera.left = value; } }, shadowCameraRight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' ); this.shadow.camera.right = value; } }, shadowCameraTop: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' ); this.shadow.camera.top = value; } }, shadowCameraBottom: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' ); this.shadow.camera.bottom = value; } }, shadowCameraNear: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' ); this.shadow.camera.near = value; } }, shadowCameraFar: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' ); this.shadow.camera.far = value; } }, shadowCameraVisible: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' ); } }, shadowBias: { set: function ( value ) { console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' ); this.shadow.bias = value; } }, shadowDarkness: { set: function ( value ) { console.warn( 'THREE.Light: .shadowDarkness has been removed.' ); } }, shadowMapWidth: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' ); this.shadow.mapSize.width = value; } }, shadowMapHeight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' ); this.shadow.mapSize.height = value; } } } ); // Object.defineProperties( THREE.BufferAttribute.prototype, { length: { get: function () { console.warn( 'THREE.BufferAttribute: .length has been deprecated. Please use .count.' ); return this.array.length; } } } ); Object.defineProperties( THREE.BufferGeometry.prototype, { drawcalls: { get: function () { console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' ); return this.groups; } }, offsets: { get: function () { console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' ); return this.groups; } }, addIndex: { value: function ( index ) { console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' ); this.setIndex( index ); } }, addDrawCall: { value: function ( start, count, indexOffset ) { if ( indexOffset !== undefined ) { console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' ); } console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' ); this.addGroup( start, count ); } }, clearDrawCalls: { value: function () { console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' ); this.clearGroups(); } }, computeTangents: { value: function () { console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' ); } }, computeOffsets: { value: function () { console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' ); } } } ); // Object.defineProperties( THREE.Material.prototype, { wrapAround: { get: function () { console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' ); }, set: function ( value ) { console.warn( 'THREE.' + this.type + ': .wrapAround has been removed.' ); } }, wrapRGB: { get: function () { console.warn( 'THREE.' + this.type + ': .wrapRGB has been removed.' ); return new THREE.Color(); } } } ); Object.defineProperties( THREE, { PointCloudMaterial: { value: function ( parameters ) { console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' ); return new THREE.PointsMaterial( parameters ); } }, ParticleBasicMaterial: { value: function ( parameters ) { console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' ); return new THREE.PointsMaterial( parameters ); } }, ParticleSystemMaterial:{ value: function ( parameters ) { console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' ); return new THREE.PointsMaterial( parameters ); } } } ); Object.defineProperties( THREE.MeshPhongMaterial.prototype, { metal: { get: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' ); return false; }, set: function ( value ) { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' ); } } } ); Object.defineProperties( THREE.ShaderMaterial.prototype, { derivatives: { get: function () { console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); return this.extensions.derivatives; }, set: function ( value ) { console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); this.extensions.derivatives = value; } } } ); // Object.defineProperties( THREE.WebGLRenderer.prototype, { supportsFloatTextures: { value: function () { console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' ); return this.extensions.get( 'OES_texture_float' ); } }, supportsHalfFloatTextures: { value: function () { console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' ); return this.extensions.get( 'OES_texture_half_float' ); } }, supportsStandardDerivatives: { value: function () { console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' ); return this.extensions.get( 'OES_standard_derivatives' ); } }, supportsCompressedTextureS3TC: { value: function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_s3tc' ); } }, supportsCompressedTexturePVRTC: { value: function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' ); } }, supportsBlendMinMax: { value: function () { console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' ); return this.extensions.get( 'EXT_blend_minmax' ); } }, supportsVertexTextures: { value: function () { return this.capabilities.vertexTextures; } }, supportsInstancedArrays: { value: function () { console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' ); return this.extensions.get( 'ANGLE_instanced_arrays' ); } }, enableScissorTest: { value: function ( boolean ) { console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' ); this.setScissorTest( boolean ); } }, initMaterial: { value: function () { console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' ); } }, addPrePlugin: { value: function () { console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' ); } }, addPostPlugin: { value: function () { console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' ); } }, updateShadowMap: { value: function () { console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' ); } }, shadowMapEnabled: { get: function () { return this.shadowMap.enabled; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' ); this.shadowMap.enabled = value; } }, shadowMapType: { get: function () { return this.shadowMap.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' ); this.shadowMap.type = value; } }, shadowMapCullFace: { get: function () { return this.shadowMap.cullFace; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace is now .shadowMap.cullFace.' ); this.shadowMap.cullFace = value; } } } ); // Object.defineProperties( THREE.WebGLRenderTarget.prototype, { wrapS: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); return this.texture.wrapS; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); this.texture.wrapS = value; } }, wrapT: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); return this.texture.wrapT; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); this.texture.wrapT = value; } }, magFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); return this.texture.magFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); this.texture.magFilter = value; } }, minFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); return this.texture.minFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); this.texture.minFilter = value; } }, anisotropy: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); return this.texture.anisotropy; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); this.texture.anisotropy = value; } }, offset: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); return this.texture.offset; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); this.texture.offset = value; } }, repeat: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); return this.texture.repeat; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); this.texture.repeat = value; } }, format: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); return this.texture.format; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); this.texture.format = value; } }, type: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); return this.texture.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); this.texture.type = value; } }, generateMipmaps: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); return this.texture.generateMipmaps; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); this.texture.generateMipmaps = value; } } } ); // THREE.GeometryUtils = { merge: function ( geometry1, geometry2, materialIndexOffset ) { console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' ); var matrix; if ( geometry2 instanceof THREE.Mesh ) { geometry2.matrixAutoUpdate && geometry2.updateMatrix(); matrix = geometry2.matrix; geometry2 = geometry2.geometry; } geometry1.merge( geometry2, matrix, materialIndexOffset ); }, center: function ( geometry ) { console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' ); return geometry.center(); } }; THREE.ImageUtils = { crossOrigin: undefined, loadTexture: function ( url, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' ); var loader = new THREE.TextureLoader(); loader.setCrossOrigin( this.crossOrigin ); var texture = loader.load( url, onLoad, undefined, onError ); if ( mapping ) texture.mapping = mapping; return texture; }, loadTextureCube: function ( urls, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' ); var loader = new THREE.CubeTextureLoader(); loader.setCrossOrigin( this.crossOrigin ); var texture = loader.load( urls, onLoad, undefined, onError ); if ( mapping ) texture.mapping = mapping; return texture; }, loadCompressedTexture: function () { console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' ); }, loadCompressedTextureCube: function () { console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' ); } }; // THREE.Projector = function () { console.error( 'THREE.Projector has been moved to /examples/js/renderers/Projector.js.' ); this.projectVector = function ( vector, camera ) { console.warn( 'THREE.Projector: .projectVector() is now vector.project().' ); vector.project( camera ); }; this.unprojectVector = function ( vector, camera ) { console.warn( 'THREE.Projector: .unprojectVector() is now vector.unproject().' ); vector.unproject( camera ); }; this.pickingRay = function ( vector, camera ) { console.error( 'THREE.Projector: .pickingRay() is now raycaster.setFromCamera().' ); }; }; // THREE.CanvasRenderer = function () { console.error( 'THREE.CanvasRenderer has been moved to /examples/js/renderers/CanvasRenderer.js' ); this.domElement = document.createElement( 'canvas' ); this.clear = function () {}; this.render = function () {}; this.setClearColor = function () {}; this.setSize = function () {}; }; // THREE.MeshFaceMaterial = THREE.MultiMaterial; // File:src/extras/CurveUtils.js /** * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.CurveUtils = { tangentQuadraticBezier: function ( t, p0, p1, p2 ) { return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 ); }, // Puay Bing, thanks for helping with this derivative! tangentCubicBezier: function ( t, p0, p1, p2, p3 ) { return - 3 * p0 * ( 1 - t ) * ( 1 - t ) + 3 * p1 * ( 1 - t ) * ( 1 - t ) - 6 * t * p1 * ( 1 - t ) + 6 * t * p2 * ( 1 - t ) - 3 * t * t * p2 + 3 * t * t * p3; }, tangentSpline: function ( t, p0, p1, p2, p3 ) { // To check if my formulas are correct var h00 = 6 * t * t - 6 * t; // derived from 2t^3 − 3t^2 + 1 var h10 = 3 * t * t - 4 * t + 1; // t^3 − 2t^2 + t var h01 = - 6 * t * t + 6 * t; // − 2t3 + 3t2 var h11 = 3 * t * t - 2 * t; // t3 − t2 return h00 + h10 + h01 + h11; }, // Catmull-Rom interpolate: function( p0, p1, p2, p3, t ) { var v0 = ( p2 - p0 ) * 0.5; var v1 = ( p3 - p1 ) * 0.5; var t2 = t * t; var t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } }; // File:src/extras/SceneUtils.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.SceneUtils = { createMultiMaterialObject: function ( geometry, materials ) { var group = new THREE.Group(); for ( var i = 0, l = materials.length; i < l; i ++ ) { group.add( new THREE.Mesh( geometry, materials[ i ] ) ); } return group; }, detach: function ( child, parent, scene ) { child.applyMatrix( parent.matrixWorld ); parent.remove( child ); scene.add( child ); }, attach: function ( child, scene, parent ) { var matrixWorldInverse = new THREE.Matrix4(); matrixWorldInverse.getInverse( parent.matrixWorld ); child.applyMatrix( matrixWorldInverse ); scene.remove( child ); parent.add( child ); } }; // File:src/extras/ShapeUtils.js /** * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.ShapeUtils = { // calculate area of the contour polygon area: function ( contour ) { var n = contour.length; var a = 0.0; for ( var p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; }, triangulate: ( function () { /** * This code is a quick port of code written in C++ which was submitted to * flipcode.com by John W. Ratcliff // July 22, 2000 * See original code and more information here: * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml * * ported to actionscript by Zevan Rosser * www.actionsnippet.com * * ported to javascript by Joshua Koo * http://www.lab4games.net/zz85/blog * */ function snip( contour, u, v, w, n, verts ) { var p; var ax, ay, bx, by; var cx, cy, px, py; ax = contour[ verts[ u ] ].x; ay = contour[ verts[ u ] ].y; bx = contour[ verts[ v ] ].x; by = contour[ verts[ v ] ].y; cx = contour[ verts[ w ] ].x; cy = contour[ verts[ w ] ].y; if ( Number.EPSILON > ( ( ( bx - ax ) * ( cy - ay ) ) - ( ( by - ay ) * ( cx - ax ) ) ) ) return false; var aX, aY, bX, bY, cX, cY; var apx, apy, bpx, bpy, cpx, cpy; var cCROSSap, bCROSScp, aCROSSbp; aX = cx - bx; aY = cy - by; bX = ax - cx; bY = ay - cy; cX = bx - ax; cY = by - ay; for ( p = 0; p < n; p ++ ) { px = contour[ verts[ p ] ].x; py = contour[ verts[ p ] ].y; if ( ( ( px === ax ) && ( py === ay ) ) || ( ( px === bx ) && ( py === by ) ) || ( ( px === cx ) && ( py === cy ) ) ) continue; apx = px - ax; apy = py - ay; bpx = px - bx; bpy = py - by; cpx = px - cx; cpy = py - cy; // see if p is inside triangle abc aCROSSbp = aX * bpy - aY * bpx; cCROSSap = cX * apy - cY * apx; bCROSScp = bX * cpy - bY * cpx; if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false; } return true; } // takes in an contour array and returns return function ( contour, indices ) { var n = contour.length; if ( n < 3 ) return null; var result = [], verts = [], vertIndices = []; /* we want a counter-clockwise polygon in verts */ var u, v, w; if ( THREE.ShapeUtils.area( contour ) > 0.0 ) { for ( v = 0; v < n; v ++ ) verts[ v ] = v; } else { for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v; } var nv = n; /* remove nv - 2 vertices, creating 1 triangle every time */ var count = 2 * nv; /* error detection */ for ( v = nv - 1; nv > 2; ) { /* if we loop, it is probably a non-simple polygon */ if ( ( count -- ) <= 0 ) { //** Triangulate: ERROR - probable bad polygon! //throw ( "Warning, unable to triangulate polygon!" ); //return null; // Sometimes warning is fine, especially polygons are triangulated in reverse. console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' ); if ( indices ) return vertIndices; return result; } /* three consecutive vertices in current polygon, */ u = v; if ( nv <= u ) u = 0; /* previous */ v = u + 1; if ( nv <= v ) v = 0; /* new v */ w = v + 1; if ( nv <= w ) w = 0; /* next */ if ( snip( contour, u, v, w, nv, verts ) ) { var a, b, c, s, t; /* true names of the vertices */ a = verts[ u ]; b = verts[ v ]; c = verts[ w ]; /* output Triangle */ result.push( [ contour[ a ], contour[ b ], contour[ c ] ] ); vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] ); /* remove v from the remaining polygon */ for ( s = v, t = v + 1; t < nv; s ++, t ++ ) { verts[ s ] = verts[ t ]; } nv --; /* reset error detection counter */ count = 2 * nv; } } if ( indices ) return vertIndices; return result; } } )(), triangulateShape: function ( contour, holes ) { function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) { // inOtherPt needs to be collinear to the inSegment if ( inSegPt1.x !== inSegPt2.x ) { if ( inSegPt1.x < inSegPt2.x ) { return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) ); } else { return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) ); } } else { if ( inSegPt1.y < inSegPt2.y ) { return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) ); } else { return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) ); } } } function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) { var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y; var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y; var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x; var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y; var limit = seg1dy * seg2dx - seg1dx * seg2dy; var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy; if ( Math.abs( limit ) > Number.EPSILON ) { // not parallel var perpSeg2; if ( limit > 0 ) { if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return []; } else { if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return []; perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy; if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return []; } // i.e. to reduce rounding errors // intersection at endpoint of segment#1? if ( perpSeg2 === 0 ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return []; return [ inSeg1Pt1 ]; } if ( perpSeg2 === limit ) { if ( ( inExcludeAdjacentSegs ) && ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return []; return [ inSeg1Pt2 ]; } // intersection at endpoint of segment#2? if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ]; if ( perpSeg1 === limit ) return [ inSeg2Pt2 ]; // return real intersection point var factorSeg1 = perpSeg2 / limit; return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx, y: inSeg1Pt1.y + factorSeg1 * seg1dy } ]; } else { // parallel or collinear if ( ( perpSeg1 !== 0 ) || ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return []; // they are collinear or degenerate var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point? var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point? // both segments are points if ( seg1Pt && seg2Pt ) { if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) || ( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points return [ inSeg1Pt1 ]; // they are the same point } // segment#1 is a single point if ( seg1Pt ) { if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2 return [ inSeg1Pt1 ]; } // segment#2 is a single point if ( seg2Pt ) { if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1 return [ inSeg2Pt1 ]; } // they are collinear segments, which might overlap var seg1min, seg1max, seg1minVal, seg1maxVal; var seg2min, seg2max, seg2minVal, seg2maxVal; if ( seg1dx !== 0 ) { // the segments are NOT on a vertical line if ( inSeg1Pt1.x < inSeg1Pt2.x ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x; } if ( inSeg2Pt1.x < inSeg2Pt2.x ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x; } } else { // the segments are on a vertical line if ( inSeg1Pt1.y < inSeg1Pt2.y ) { seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y; seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y; } else { seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y; seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y; } if ( inSeg2Pt1.y < inSeg2Pt2.y ) { seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y; seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y; } else { seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y; seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y; } } if ( seg1minVal <= seg2minVal ) { if ( seg1maxVal < seg2minVal ) return []; if ( seg1maxVal === seg2minVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg2min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ]; return [ seg2min, seg2max ]; } else { if ( seg1minVal > seg2maxVal ) return []; if ( seg1minVal === seg2maxVal ) { if ( inExcludeAdjacentSegs ) return []; return [ seg1min ]; } if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ]; return [ seg1min, seg2max ]; } } } function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) { // The order of legs is important // translation of all points, so that Vertex is at (0,0) var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y; var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y; var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y; // main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg. var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX; var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX; if ( Math.abs( from2toAngle ) > Number.EPSILON ) { // angle != 180 deg. var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX; // console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle ); if ( from2toAngle > 0 ) { // main angle < 180 deg. return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) ); } else { // main angle > 180 deg. return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) ); } } else { // angle == 180 deg. // console.log( "from2to: 180 deg., from2other: " + from2otherAngle ); return ( from2otherAngle > 0 ); } } function removeHoles( contour, holes ) { var shape = contour.concat(); // work on this shape var hole; function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) { // Check if hole point lies within angle around shape point var lastShapeIdx = shape.length - 1; var prevShapeIdx = inShapeIdx - 1; if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx; var nextShapeIdx = inShapeIdx + 1; if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0; var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] ); if ( ! insideAngle ) { // console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y ); return false; } // Check if shape point lies within angle around hole point var lastHoleIdx = hole.length - 1; var prevHoleIdx = inHoleIdx - 1; if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx; var nextHoleIdx = inHoleIdx + 1; if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0; insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] ); if ( ! insideAngle ) { // console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y ); return false; } return true; } function intersectsShapeEdge( inShapePt, inHolePt ) { // checks for intersections with shape edges var sIdx, nextIdx, intersection; for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) { nextIdx = sIdx + 1; nextIdx %= shape.length; intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true ); if ( intersection.length > 0 ) return true; } return false; } var indepHoles = []; function intersectsHoleEdge( inShapePt, inHolePt ) { // checks for intersections with hole edges var ihIdx, chkHole, hIdx, nextIdx, intersection; for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) { chkHole = holes[ indepHoles[ ihIdx ]]; for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) { nextIdx = hIdx + 1; nextIdx %= chkHole.length; intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true ); if ( intersection.length > 0 ) return true; } } return false; } var holeIndex, shapeIndex, shapePt, holePt, holeIdx, cutKey, failedCuts = [], tmpShape1, tmpShape2, tmpHole1, tmpHole2; for ( var h = 0, hl = holes.length; h < hl; h ++ ) { indepHoles.push( h ); } var minShapeIndex = 0; var counter = indepHoles.length * 2; while ( indepHoles.length > 0 ) { counter --; if ( counter < 0 ) { console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" ); break; } // search for shape-vertex and hole-vertex, // which can be connected without intersections for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) { shapePt = shape[ shapeIndex ]; holeIndex = - 1; // search for hole which can be reached without intersections for ( var h = 0; h < indepHoles.length; h ++ ) { holeIdx = indepHoles[ h ]; // prevent multiple checks cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx; if ( failedCuts[ cutKey ] !== undefined ) continue; hole = holes[ holeIdx ]; for ( var h2 = 0; h2 < hole.length; h2 ++ ) { holePt = hole[ h2 ]; if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue; if ( intersectsShapeEdge( shapePt, holePt ) ) continue; if ( intersectsHoleEdge( shapePt, holePt ) ) continue; holeIndex = h2; indepHoles.splice( h, 1 ); tmpShape1 = shape.slice( 0, shapeIndex + 1 ); tmpShape2 = shape.slice( shapeIndex ); tmpHole1 = hole.slice( holeIndex ); tmpHole2 = hole.slice( 0, holeIndex + 1 ); shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 ); minShapeIndex = shapeIndex; // Debug only, to show the selected cuts // glob_CutLines.push( [ shapePt, holePt ] ); break; } if ( holeIndex >= 0 ) break; // hole-vertex found failedCuts[ cutKey ] = true; // remember failure } if ( holeIndex >= 0 ) break; // hole-vertex found } } return shape; /* shape with no holes */ } var i, il, f, face, key, index, allPointsMap = {}; // To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first. var allpoints = contour.concat(); for ( var h = 0, hl = holes.length; h < hl; h ++ ) { Array.prototype.push.apply( allpoints, holes[ h ] ); } //console.log( "allpoints",allpoints, allpoints.length ); // prepare all points map for ( i = 0, il = allpoints.length; i < il; i ++ ) { key = allpoints[ i ].x + ":" + allpoints[ i ].y; if ( allPointsMap[ key ] !== undefined ) { console.warn( "THREE.Shape: Duplicate point", key ); } allPointsMap[ key ] = i; } // remove holes by cutting paths to holes and adding them to the shape var shapeWithoutHoles = removeHoles( contour, holes ); var triangles = THREE.ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape //console.log( "triangles",triangles, triangles.length ); // check all face vertices against all points map for ( i = 0, il = triangles.length; i < il; i ++ ) { face = triangles[ i ]; for ( f = 0; f < 3; f ++ ) { key = face[ f ].x + ":" + face[ f ].y; index = allPointsMap[ key ]; if ( index !== undefined ) { face[ f ] = index; } } } return triangles.concat(); }, isClockWise: function ( pts ) { return THREE.ShapeUtils.area( pts ) < 0; }, // Bezier Curves formulas obtained from // http://en.wikipedia.org/wiki/B%C3%A9zier_curve // Quad Bezier Functions b2: ( function () { function b2p0( t, p ) { var k = 1 - t; return k * k * p; } function b2p1( t, p ) { return 2 * ( 1 - t ) * t * p; } function b2p2( t, p ) { return t * t * p; } return function ( t, p0, p1, p2 ) { return b2p0( t, p0 ) + b2p1( t, p1 ) + b2p2( t, p2 ); }; } )(), // Cubic Bezier Functions b3: ( function () { function b3p0( t, p ) { var k = 1 - t; return k * k * k * p; } function b3p1( t, p ) { var k = 1 - t; return 3 * k * k * t * p; } function b3p2( t, p ) { var k = 1 - t; return 3 * k * t * t * p; } function b3p3( t, p ) { return t * t * t * p; } return function ( t, p0, p1, p2, p3 ) { return b3p0( t, p0 ) + b3p1( t, p1 ) + b3p2( t, p2 ) + b3p3( t, p3 ); }; } )() }; // File:src/extras/core/Curve.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * Extensible curve object * * Some common of Curve methods * .getPoint(t), getTangent(t) * .getPointAt(u), getTagentAt(u) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following classes subclasses THREE.Curve: * * -- 2d classes -- * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.CubicBezierCurve * THREE.SplineCurve * THREE.ArcCurve * THREE.EllipseCurve * * -- 3d classes -- * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * THREE.CubicBezierCurve3 * THREE.SplineCurve3 * THREE.ClosedSplineCurve3 * * A series of curves can be represented as a THREE.CurvePath * **/ /************************************************************** * Abstract Curve base class **************************************************************/ THREE.Curve = function () { }; THREE.Curve.prototype = { constructor: THREE.Curve, // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint: function ( t ) { console.warn( "THREE.Curve: Warning, getPoint() not implemented!" ); return null; }, // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getPoint( t ); }, // Get sequence of points using getPoint( t ) getPoints: function ( divisions ) { if ( ! divisions ) divisions = 5; var d, pts = []; for ( d = 0; d <= divisions; d ++ ) { pts.push( this.getPoint( d / divisions ) ); } return pts; }, // Get sequence of points using getPointAt( u ) getSpacedPoints: function ( divisions ) { if ( ! divisions ) divisions = 5; var d, pts = []; for ( d = 0; d <= divisions; d ++ ) { pts.push( this.getPointAt( d / divisions ) ); } return pts; }, // Get total curve arc length getLength: function () { var lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; }, // Get list of cumulative segment lengths getLengths: function ( divisions ) { if ( ! divisions ) divisions = ( this.__arcLengthDivisions ) ? ( this.__arcLengthDivisions ) : 200; if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { //console.log( "cached", this.cacheArcLengths ); return this.cacheArcLengths; } this.needsUpdate = false; var cache = []; var current, last = this.getPoint( 0 ); var p, sum = 0; cache.push( 0 ); for ( p = 1; p <= divisions; p ++ ) { current = this.getPoint ( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum:sum }; Sum is in the last element. }, updateArcLengths: function() { this.needsUpdate = true; this.getLengths(); }, // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping: function ( u, distance ) { var arcLengths = this.getLengths(); var i = 0, il = arcLengths.length; var targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } //var time = Date.now(); // binary search for the index with largest value smaller than target u distance var low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; //console.log('b' , i, low, high, Date.now()- time); if ( arcLengths[ i ] === targetArcLength ) { var t = i / ( il - 1 ); return t; } // we could get finer grain at lengths, or use simple interpolation between two points var lengthBefore = arcLengths[ i ]; var lengthAfter = arcLengths[ i + 1 ]; var segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t var t = ( i + segmentFraction ) / ( il - 1 ); return t; }, // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent: function( t ) { var delta = 0.0001; var t1 = t - delta; var t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; var pt1 = this.getPoint( t1 ); var pt2 = this.getPoint( t2 ); var vec = pt2.clone().sub( pt1 ); return vec.normalize(); }, getTangentAt: function ( u ) { var t = this.getUtoTmapping( u ); return this.getTangent( t ); } }; // TODO: Transformation for Curves? /************************************************************** * 3D Curves **************************************************************/ // A Factory method for creating new curve subclasses THREE.Curve.create = function ( constructor, getPointFunc ) { constructor.prototype = Object.create( THREE.Curve.prototype ); constructor.prototype.constructor = constructor; constructor.prototype.getPoint = getPointFunc; return constructor; }; // File:src/extras/core/CurvePath.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * **/ /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ THREE.CurvePath = function () { this.curves = []; this.autoClose = false; // Automatically closes the path }; THREE.CurvePath.prototype = Object.create( THREE.Curve.prototype ); THREE.CurvePath.prototype.constructor = THREE.CurvePath; THREE.CurvePath.prototype.add = function ( curve ) { this.curves.push( curve ); }; /* THREE.CurvePath.prototype.checkConnection = function() { // TODO // If the ending of curve is not connected to the starting // or the next curve, then, this is not a real path }; */ THREE.CurvePath.prototype.closePath = function() { // TODO Test // and verify for vector3 (needs to implement equals) // Add a line curve if start and end of lines are not connected var startPoint = this.curves[ 0 ].getPoint( 0 ); var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); if ( ! startPoint.equals( endPoint ) ) { this.curves.push( new THREE.LineCurve( endPoint, startPoint ) ); } }; // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') THREE.CurvePath.prototype.getPoint = function( t ) { var d = t * this.getLength(); var curveLengths = this.getCurveLengths(); var i = 0; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { var diff = curveLengths[ i ] - d; var curve = this.curves[ i ]; var u = 1 - diff / curve.getLength(); return curve.getPointAt( u ); } i ++; } return null; // loop where sum != 0, sum > d , sum+1 0 ) { laste = points[ points.length - 1 ]; cpx0 = laste.x; cpy0 = laste.y; } else { laste = this.actions[ i - 1 ].args; cpx0 = laste[ laste.length - 2 ]; cpy0 = laste[ laste.length - 1 ]; } for ( var j = 1; j <= divisions; j ++ ) { var t = j / divisions; tx = b2( t, cpx0, cpx1, cpx ); ty = b2( t, cpy0, cpy1, cpy ); points.push( new THREE.Vector2( tx, ty ) ); } break; case 'bezierCurveTo': cpx = args[ 4 ]; cpy = args[ 5 ]; cpx1 = args[ 0 ]; cpy1 = args[ 1 ]; cpx2 = args[ 2 ]; cpy2 = args[ 3 ]; if ( points.length > 0 ) { laste = points[ points.length - 1 ]; cpx0 = laste.x; cpy0 = laste.y; } else { laste = this.actions[ i - 1 ].args; cpx0 = laste[ laste.length - 2 ]; cpy0 = laste[ laste.length - 1 ]; } for ( var j = 1; j <= divisions; j ++ ) { var t = j / divisions; tx = b3( t, cpx0, cpx1, cpx2, cpx ); ty = b3( t, cpy0, cpy1, cpy2, cpy ); points.push( new THREE.Vector2( tx, ty ) ); } break; case 'splineThru': laste = this.actions[ i - 1 ].args; var last = new THREE.Vector2( laste[ laste.length - 2 ], laste[ laste.length - 1 ] ); var spts = [ last ]; var n = divisions * args[ 0 ].length; spts = spts.concat( args[ 0 ] ); var spline = new THREE.SplineCurve( spts ); for ( var j = 1; j <= n; j ++ ) { points.push( spline.getPointAt( j / n ) ); } break; case 'arc': var aX = args[ 0 ], aY = args[ 1 ], aRadius = args[ 2 ], aStartAngle = args[ 3 ], aEndAngle = args[ 4 ], aClockwise = !! args[ 5 ]; var deltaAngle = aEndAngle - aStartAngle; var angle; var tdivisions = divisions * 2; for ( var j = 1; j <= tdivisions; j ++ ) { var t = j / tdivisions; if ( ! aClockwise ) { t = 1 - t; } angle = aStartAngle + t * deltaAngle; tx = aX + aRadius * Math.cos( angle ); ty = aY + aRadius * Math.sin( angle ); //console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty); points.push( new THREE.Vector2( tx, ty ) ); } //console.log(points); break; case 'ellipse': var aX = args[ 0 ], aY = args[ 1 ], xRadius = args[ 2 ], yRadius = args[ 3 ], aStartAngle = args[ 4 ], aEndAngle = args[ 5 ], aClockwise = !! args[ 6 ], aRotation = args[ 7 ]; var deltaAngle = aEndAngle - aStartAngle; var angle; var tdivisions = divisions * 2; var cos, sin; if ( aRotation !== 0 ) { cos = Math.cos( aRotation ); sin = Math.sin( aRotation ); } for ( var j = 1; j <= tdivisions; j ++ ) { var t = j / tdivisions; if ( ! aClockwise ) { t = 1 - t; } angle = aStartAngle + t * deltaAngle; tx = aX + xRadius * Math.cos( angle ); ty = aY + yRadius * Math.sin( angle ); if ( aRotation !== 0 ) { var x = tx, y = ty; // Rotate the point about the center of the ellipse. tx = ( x - aX ) * cos - ( y - aY ) * sin + aX; ty = ( x - aX ) * sin + ( y - aY ) * cos + aY; } //console.log('t', t, 'angle', angle, 'tx', tx, 'ty', ty); points.push( new THREE.Vector2( tx, ty ) ); } //console.log(points); break; } // end switch } // Normalize to remove the closing point by default. var lastPoint = points[ points.length - 1 ]; if ( Math.abs( lastPoint.x - points[ 0 ].x ) < Number.EPSILON && Math.abs( lastPoint.y - points[ 0 ].y ) < Number.EPSILON ) points.splice( points.length - 1, 1 ); if ( this.autoClose ) { points.push( points[ 0 ] ); } return points; }; // // Breaks path into shapes // // Assumptions (if parameter isCCW==true the opposite holds): // - solid shapes are defined clockwise (CW) // - holes are defined counterclockwise (CCW) // // If parameter noHoles==true: // - all subPaths are regarded as solid shapes // - definition order CW/CCW has no relevance // THREE.Path.prototype.toShapes = function( isCCW, noHoles ) { function extractSubpaths( inActions ) { var subPaths = [], lastPath = new THREE.Path(); for ( var i = 0, l = inActions.length; i < l; i ++ ) { var item = inActions[ i ]; var args = item.args; var action = item.action; if ( action === 'moveTo' ) { if ( lastPath.actions.length !== 0 ) { subPaths.push( lastPath ); lastPath = new THREE.Path(); } } lastPath[ action ].apply( lastPath, args ); } if ( lastPath.actions.length !== 0 ) { subPaths.push( lastPath ); } // console.log(subPaths); return subPaths; } function toShapesNoHoles( inSubpaths ) { var shapes = []; for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) { var tmpPath = inSubpaths[ i ]; var tmpShape = new THREE.Shape(); tmpShape.actions = tmpPath.actions; tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); } //console.log("shape", shapes); return shapes; } function isPointInsidePolygon( inPt, inPolygon ) { var polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line var inside = false; for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { var edgeLowPt = inPolygon[ p ]; var edgeHighPt = inPolygon[ q ]; var edgeDx = edgeHighPt.x - edgeLowPt.x; var edgeDy = edgeHighPt.y - edgeLowPt.y; if ( Math.abs( edgeDy ) > Number.EPSILON ) { // not parallel if ( edgeDy < 0 ) { edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; } if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue; if ( inPt.y === edgeLowPt.y ) { if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); if ( perpEdge === 0 ) return true; // inPt is on contour ? if ( perpEdge < 0 ) continue; inside = ! inside; // true intersection left of inPt } } else { // parallel or collinear if ( inPt.y !== edgeLowPt.y ) continue; // parallel // edge lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! // continue; } } return inside; } var isClockWise = THREE.ShapeUtils.isClockWise; var subPaths = extractSubpaths( this.actions ); if ( subPaths.length === 0 ) return []; if ( noHoles === true ) return toShapesNoHoles( subPaths ); var solid, tmpPath, tmpShape, shapes = []; if ( subPaths.length === 1 ) { tmpPath = subPaths[ 0 ]; tmpShape = new THREE.Shape(); tmpShape.actions = tmpPath.actions; tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes; } var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst; // console.log("Holes first", holesFirst); var betterShapeHoles = []; var newShapes = []; var newShapeHoles = []; var mainIdx = 0; var tmpPoints; newShapes[ mainIdx ] = undefined; newShapeHoles[ mainIdx ] = []; for ( var i = 0, l = subPaths.length; i < l; i ++ ) { tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid; if ( solid ) { if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++; newShapes[ mainIdx ] = { s: new THREE.Shape(), p: tmpPoints }; newShapes[ mainIdx ].s.actions = tmpPath.actions; newShapes[ mainIdx ].s.curves = tmpPath.curves; if ( holesFirst ) mainIdx ++; newShapeHoles[ mainIdx ] = []; //console.log('cw', i); } else { newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths ); if ( newShapes.length > 1 ) { var ambiguous = false; var toChange = []; for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { betterShapeHoles[ sIdx ] = []; } for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { var sho = newShapeHoles[ sIdx ]; for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) { var ho = sho[ hIdx ]; var hole_unassigned = true; for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } ); if ( hole_unassigned ) { hole_unassigned = false; betterShapeHoles[ s2Idx ].push( ho ); } else { ambiguous = true; } } } if ( hole_unassigned ) { betterShapeHoles[ sIdx ].push( ho ); } } } // console.log("ambiguous: ", ambiguous); if ( toChange.length > 0 ) { // console.log("to change: ", toChange); if ( ! ambiguous ) newShapeHoles = betterShapeHoles; } } var tmpHoles; for ( var i = 0, il = newShapes.length; i < il; i ++ ) { tmpShape = newShapes[ i ].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[ i ]; for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) { tmpShape.holes.push( tmpHoles[ j ].h ); } } //console.log("shape", shapes); return shapes; }; // File:src/extras/core/Shape.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * Defines a 2d shape plane using paths. **/ // STEP 1 Create a path. // STEP 2 Turn path into shape. // STEP 3 ExtrudeGeometry takes in Shape/Shapes // STEP 3a - Extract points from each shape, turn to vertices // STEP 3b - Triangulate each shape, add faces. THREE.Shape = function () { THREE.Path.apply( this, arguments ); this.holes = []; }; THREE.Shape.prototype = Object.create( THREE.Path.prototype ); THREE.Shape.prototype.constructor = THREE.Shape; // Convenience method to return ExtrudeGeometry THREE.Shape.prototype.extrude = function ( options ) { return new THREE.ExtrudeGeometry( this, options ); }; // Convenience method to return ShapeGeometry THREE.Shape.prototype.makeGeometry = function ( options ) { return new THREE.ShapeGeometry( this, options ); }; // Get points of holes THREE.Shape.prototype.getPointsHoles = function ( divisions ) { var holesPts = []; for ( var i = 0, l = this.holes.length; i < l; i ++ ) { holesPts[ i ] = this.holes[ i ].getPoints( divisions ); } return holesPts; }; // Get points of shape and holes (keypoints based on segments parameter) THREE.Shape.prototype.extractAllPoints = function ( divisions ) { return { shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions ) }; }; THREE.Shape.prototype.extractPoints = function ( divisions ) { return this.extractAllPoints( divisions ); }; // File:src/extras/curves/LineCurve.js /************************************************************** * Line **************************************************************/ THREE.LineCurve = function ( v1, v2 ) { this.v1 = v1; this.v2 = v2; }; THREE.LineCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.LineCurve.prototype.constructor = THREE.LineCurve; THREE.LineCurve.prototype.getPoint = function ( t ) { var point = this.v2.clone().sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); return point; }; // Line curve is linear, so we can overwrite default getPointAt THREE.LineCurve.prototype.getPointAt = function ( u ) { return this.getPoint( u ); }; THREE.LineCurve.prototype.getTangent = function( t ) { var tangent = this.v2.clone().sub( this.v1 ); return tangent.normalize(); }; // File:src/extras/curves/QuadraticBezierCurve.js /************************************************************** * Quadratic Bezier curve **************************************************************/ THREE.QuadraticBezierCurve = function ( v0, v1, v2 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; }; THREE.QuadraticBezierCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.QuadraticBezierCurve.prototype.constructor = THREE.QuadraticBezierCurve; THREE.QuadraticBezierCurve.prototype.getPoint = function ( t ) { var b2 = THREE.ShapeUtils.b2; return new THREE.Vector2( b2( t, this.v0.x, this.v1.x, this.v2.x ), b2( t, this.v0.y, this.v1.y, this.v2.y ) ); }; THREE.QuadraticBezierCurve.prototype.getTangent = function( t ) { var tangentQuadraticBezier = THREE.CurveUtils.tangentQuadraticBezier; return new THREE.Vector2( tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x ), tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y ) ).normalize(); }; // File:src/extras/curves/CubicBezierCurve.js /************************************************************** * Cubic Bezier curve **************************************************************/ THREE.CubicBezierCurve = function ( v0, v1, v2, v3 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; }; THREE.CubicBezierCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.CubicBezierCurve.prototype.constructor = THREE.CubicBezierCurve; THREE.CubicBezierCurve.prototype.getPoint = function ( t ) { var b3 = THREE.ShapeUtils.b3; return new THREE.Vector2( b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ) ); }; THREE.CubicBezierCurve.prototype.getTangent = function( t ) { var tangentCubicBezier = THREE.CurveUtils.tangentCubicBezier; return new THREE.Vector2( tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ) ).normalize(); }; // File:src/extras/curves/SplineCurve.js /************************************************************** * Spline curve **************************************************************/ THREE.SplineCurve = function ( points /* array of Vector2 */ ) { this.points = ( points == undefined ) ? [] : points; }; THREE.SplineCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.SplineCurve.prototype.constructor = THREE.SplineCurve; THREE.SplineCurve.prototype.getPoint = function ( t ) { var points = this.points; var point = ( points.length - 1 ) * t; var intPoint = Math.floor( point ); var weight = point - intPoint; var point0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; var point1 = points[ intPoint ]; var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; var interpolate = THREE.CurveUtils.interpolate; return new THREE.Vector2( interpolate( point0.x, point1.x, point2.x, point3.x, weight ), interpolate( point0.y, point1.y, point2.y, point3.y, weight ) ); }; // File:src/extras/curves/EllipseCurve.js /************************************************************** * Ellipse curve **************************************************************/ THREE.EllipseCurve = function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation || 0; }; THREE.EllipseCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.EllipseCurve.prototype.constructor = THREE.EllipseCurve; THREE.EllipseCurve.prototype.getPoint = function ( t ) { var deltaAngle = this.aEndAngle - this.aStartAngle; if ( deltaAngle < 0 ) deltaAngle += Math.PI * 2; if ( deltaAngle > Math.PI * 2 ) deltaAngle -= Math.PI * 2; var angle; if ( this.aClockwise === true ) { angle = this.aEndAngle + ( 1 - t ) * ( Math.PI * 2 - deltaAngle ); } else { angle = this.aStartAngle + t * deltaAngle; } var x = this.aX + this.xRadius * Math.cos( angle ); var y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { var cos = Math.cos( this.aRotation ); var sin = Math.sin( this.aRotation ); var tx = x, ty = y; // Rotate the point about the center of the ellipse. x = ( tx - this.aX ) * cos - ( ty - this.aY ) * sin + this.aX; y = ( tx - this.aX ) * sin + ( ty - this.aY ) * cos + this.aY; } return new THREE.Vector2( x, y ); }; // File:src/extras/curves/ArcCurve.js /************************************************************** * Arc curve **************************************************************/ THREE.ArcCurve = function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { THREE.EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); }; THREE.ArcCurve.prototype = Object.create( THREE.EllipseCurve.prototype ); THREE.ArcCurve.prototype.constructor = THREE.ArcCurve; // File:src/extras/curves/LineCurve3.js /************************************************************** * Line3D **************************************************************/ THREE.LineCurve3 = THREE.Curve.create( function ( v1, v2 ) { this.v1 = v1; this.v2 = v2; }, function ( t ) { var vector = new THREE.Vector3(); vector.subVectors( this.v2, this.v1 ); // diff vector.multiplyScalar( t ); vector.add( this.v1 ); return vector; } ); // File:src/extras/curves/QuadraticBezierCurve3.js /************************************************************** * Quadratic Bezier 3D curve **************************************************************/ THREE.QuadraticBezierCurve3 = THREE.Curve.create( function ( v0, v1, v2 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; }, function ( t ) { var b2 = THREE.ShapeUtils.b2; return new THREE.Vector3( b2( t, this.v0.x, this.v1.x, this.v2.x ), b2( t, this.v0.y, this.v1.y, this.v2.y ), b2( t, this.v0.z, this.v1.z, this.v2.z ) ); } ); // File:src/extras/curves/CubicBezierCurve3.js /************************************************************** * Cubic Bezier 3D curve **************************************************************/ THREE.CubicBezierCurve3 = THREE.Curve.create( function ( v0, v1, v2, v3 ) { this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; }, function ( t ) { var b3 = THREE.ShapeUtils.b3; return new THREE.Vector3( b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x ), b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y ), b3( t, this.v0.z, this.v1.z, this.v2.z, this.v3.z ) ); } ); // File:src/extras/curves/SplineCurve3.js /************************************************************** * Spline 3D curve **************************************************************/ THREE.SplineCurve3 = THREE.Curve.create( function ( points /* array of Vector3 */ ) { console.warn( 'THREE.SplineCurve3 will be deprecated. Please use THREE.CatmullRomCurve3' ); this.points = ( points == undefined ) ? [] : points; }, function ( t ) { var points = this.points; var point = ( points.length - 1 ) * t; var intPoint = Math.floor( point ); var weight = point - intPoint; var point0 = points[ intPoint == 0 ? intPoint : intPoint - 1 ]; var point1 = points[ intPoint ]; var point2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var point3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; var interpolate = THREE.CurveUtils.interpolate; return new THREE.Vector3( interpolate( point0.x, point1.x, point2.x, point3.x, weight ), interpolate( point0.y, point1.y, point2.y, point3.y, weight ), interpolate( point0.z, point1.z, point2.z, point3.z, weight ) ); } ); // File:src/extras/curves/CatmullRomCurve3.js /** * @author zz85 https://github.com/zz85 * * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ THREE.CatmullRomCurve3 = ( function() { var tmp = new THREE.Vector3(), px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly(); /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { } /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ CubicPoly.prototype.init = function( x0, x1, t0, t1 ) { this.c0 = x0; this.c1 = t0; this.c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; this.c3 = 2 * x0 - 2 * x1 + t0 + t1; }; CubicPoly.prototype.initNonuniformCatmullRom = function( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; // initCubicPoly this.init( x1, x2, t1, t2 ); }; // standard Catmull-Rom spline: interpolate between x1 and x2 with previous/following points x1/x4 CubicPoly.prototype.initCatmullRom = function( x0, x1, x2, x3, tension ) { this.init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }; CubicPoly.prototype.calc = function( t ) { var t2 = t * t; var t3 = t2 * t; return this.c0 + this.c1 * t + this.c2 * t2 + this.c3 * t3; }; // Subclass Three.js curve return THREE.Curve.create( function ( p /* array of Vector3 */ ) { this.points = p || []; this.closed = false; }, function ( t ) { var points = this.points, point, intPoint, weight, l; l = points.length; if ( l < 2 ) console.log( 'duh, you need at least 2 points' ); point = ( l - ( this.closed ? 0 : 1 ) ) * t; intPoint = Math.floor( point ); weight = point - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / points.length ) + 1 ) * points.length; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } var p0, p1, p2, p3; // 4 points if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } p1 = points[ intPoint % l ]; p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom var pow = this.type === 'chordal' ? 0.5 : 0.25; var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1; px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.type === 'catmullrom' ) { var tension = this.tension !== undefined ? this.tension : 0.5; px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension ); } var v = new THREE.Vector3( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); return v; } ); } )(); // File:src/extras/curves/ClosedSplineCurve3.js /************************************************************** * Closed Spline 3D curve **************************************************************/ THREE.ClosedSplineCurve3 = function ( points ) { console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Please use THREE.CatmullRomCurve3.' ); THREE.CatmullRomCurve3.call( this, points ); this.type = 'catmullrom'; this.closed = true; }; THREE.ClosedSplineCurve3.prototype = Object.create( THREE.CatmullRomCurve3.prototype ); // File:src/extras/geometries/BoxGeometry.js /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Cube.as */ THREE.BoxGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) { THREE.Geometry.call( this ); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; this.fromBufferGeometry( new THREE.BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) ); this.mergeVertices(); }; THREE.BoxGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.BoxGeometry.prototype.constructor = THREE.BoxGeometry; THREE.CubeGeometry = THREE.BoxGeometry; // File:src/extras/geometries/BoxBufferGeometry.js /** * @author Mugen87 / https://github.com/Mugen87 */ THREE.BoxBufferGeometry = function ( width, height, depth, widthSegments, heightSegments, depthSegments ) { THREE.BufferGeometry.call( this ); this.type = 'BoxBufferGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; var scope = this; // segments widthSegments = Math.floor( widthSegments ) || 1; heightSegments = Math.floor( heightSegments ) || 1; depthSegments = Math.floor( depthSegments ) || 1; // these are used to calculate buffer length var vertexCount = calculateVertexCount( widthSegments, heightSegments, depthSegments ); var indexCount = ( vertexCount / 4 ) * 6; // buffers var indices = new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ); var vertices = new Float32Array( vertexCount * 3 ); var normals = new Float32Array( vertexCount * 3 ); var uvs = new Float32Array( vertexCount * 2 ); // offset variables var vertexBufferOffset = 0; var uvBufferOffset = 0; var indexBufferOffset = 0; var numberOfVertices = 0; // group variables var groupStart = 0; // build each side of the box geometry buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz // build geometry this.setIndex( new THREE.BufferAttribute( indices, 1 ) ); this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) ); // helper functions function calculateVertexCount ( w, h, d ) { var segments = 0; // calculate the amount of segments for each side segments += w * h * 2; // xy segments += w * d * 2; // xz segments += d * h * 2; // zy return segments * 4; // four vertices per segments } function buildPlane ( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { var segmentWidth = width / gridX; var segmentHeight = height / gridY; var widthHalf = width / 2; var heightHalf = height / 2; var depthHalf = depth / 2; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var vertexCounter = 0; var groupCount = 0; var vector = new THREE.Vector3(); // generate vertices, normals and uvs for ( var iy = 0; iy < gridY1; iy ++ ) { var y = iy * segmentHeight - heightHalf; for ( var ix = 0; ix < gridX1; ix ++ ) { var x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf; // now apply vector to vertex buffer vertices[ vertexBufferOffset ] = vector.x; vertices[ vertexBufferOffset + 1 ] = vector.y; vertices[ vertexBufferOffset + 2 ] = vector.z; // set values to correct vector component vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : - 1; // now apply vector to normal buffer normals[ vertexBufferOffset ] = vector.x; normals[ vertexBufferOffset + 1 ] = vector.y; normals[ vertexBufferOffset + 2 ] = vector.z; // uvs uvs[ uvBufferOffset ] = ix / gridX; uvs[ uvBufferOffset + 1 ] = 1 - ( iy / gridY ); // update offsets and counters vertexBufferOffset += 3; uvBufferOffset += 2; vertexCounter += 1; } } // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for ( iy = 0; iy < gridY; iy ++ ) { for ( ix = 0; ix < gridX; ix ++ ) { // indices var a = numberOfVertices + ix + gridX1 * iy; var b = numberOfVertices + ix + gridX1 * ( iy + 1 ); var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy; // face one indices[ indexBufferOffset ] = a; indices[ indexBufferOffset + 1 ] = b; indices[ indexBufferOffset + 2 ] = d; // face two indices[ indexBufferOffset + 3 ] = b; indices[ indexBufferOffset + 4 ] = c; indices[ indexBufferOffset + 5 ] = d; // update offsets and counters indexBufferOffset += 6; groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, materialIndex ); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } }; THREE.BoxBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.BoxBufferGeometry.prototype.constructor = THREE.BoxBufferGeometry; // File:src/extras/geometries/CircleGeometry.js /** * @author hughes */ THREE.CircleGeometry = function ( radius, segments, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.type = 'CircleGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new THREE.CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) ); }; THREE.CircleGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.CircleGeometry.prototype.constructor = THREE.CircleGeometry; // File:src/extras/geometries/CircleBufferGeometry.js /** * @author benaadams / https://twitter.com/ben_a_adams */ THREE.CircleBufferGeometry = function ( radius, segments, thetaStart, thetaLength ) { THREE.BufferGeometry.call( this ); this.type = 'CircleBufferGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; segments = segments !== undefined ? Math.max( 3, segments ) : 8; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; var vertices = segments + 2; var positions = new Float32Array( vertices * 3 ); var normals = new Float32Array( vertices * 3 ); var uvs = new Float32Array( vertices * 2 ); // center data is already zero, but need to set a few extras normals[ 2 ] = 1.0; uvs[ 0 ] = 0.5; uvs[ 1 ] = 0.5; for ( var s = 0, i = 3, ii = 2 ; s <= segments; s ++, i += 3, ii += 2 ) { var segment = thetaStart + s / segments * thetaLength; positions[ i ] = radius * Math.cos( segment ); positions[ i + 1 ] = radius * Math.sin( segment ); normals[ i + 2 ] = 1; // normal z uvs[ ii ] = ( positions[ i ] / radius + 1 ) / 2; uvs[ ii + 1 ] = ( positions[ i + 1 ] / radius + 1 ) / 2; } var indices = []; for ( var i = 1; i <= segments; i ++ ) { indices.push( i, i + 1, 0 ); } this.setIndex( new THREE.BufferAttribute( new Uint16Array( indices ), 1 ) ); this.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) ); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); }; THREE.CircleBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.CircleBufferGeometry.prototype.constructor = THREE.CircleBufferGeometry; // File:src/extras/geometries/CylinderBufferGeometry.js /** * @author Mugen87 / https://github.com/Mugen87 */ THREE.CylinderBufferGeometry = function ( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { THREE.BufferGeometry.call( this ); this.type = 'CylinderBufferGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; radiusTop = radiusTop !== undefined ? radiusTop : 20; radiusBottom = radiusBottom !== undefined ? radiusBottom : 20; height = height !== undefined ? height : 100; radialSegments = Math.floor( radialSegments ) || 8; heightSegments = Math.floor( heightSegments ) || 1; openEnded = openEnded !== undefined ? openEnded : false; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : 2 * Math.PI; // used to calculate buffer length var vertexCount = calculateVertexCount(); var indexCount = calculateIndexCount(); // buffers var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 ); var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // helper variables var index = 0, indexOffset = 0, indexArray = [], halfHeight = height / 2; // generate geometry generateTorso(); if( openEnded === false ) { if( radiusTop > 0 ) { generateCap( true ); } if( radiusBottom > 0 ) { generateCap( false ); } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); // helper functions function calculateVertexCount () { var count = ( radialSegments + 1 ) * ( heightSegments + 1 ); if ( openEnded === false ) { count += ( ( radialSegments + 1 ) * 2 ) + ( radialSegments * 2 ); } return count; } function calculateIndexCount () { var count = radialSegments * heightSegments * 2 * 3; if ( openEnded === false ) { count += radialSegments * 2 * 3; } return count; } function generateTorso () { var x, y; var normal = new THREE.Vector3(); var vertex = new THREE.Vector3(); // this will be used to calculate the normal var tanTheta = ( radiusBottom - radiusTop ) / height; // generate vertices, normals and uvs for ( y = 0; y <= heightSegments; y ++ ) { var indexRow = []; var v = y / heightSegments; // calculate the radius of the current row var radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; // vertex vertex.x = radius * Math.sin( u * thetaLength + thetaStart ); vertex.y = - v * height + halfHeight; vertex.z = radius * Math.cos( u * thetaLength + thetaStart ); vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal normal.copy( vertex ); // handle special case if radiusTop/radiusBottom is zero if( ( radiusTop === 0 && y === 0 ) || ( radiusBottom === 0 && y === heightSegments ) ) { normal.x = Math.sin( u * thetaLength + thetaStart ); normal.z = Math.cos( u * thetaLength + thetaStart ); } normal.setY( Math.sqrt( normal.x * normal.x + normal.z * normal.z ) * tanTheta ).normalize(); normals.setXYZ( index, normal.x, normal.y, normal.z ); // uv uvs.setXY( index, u, 1 - v ); // save index of vertex in respective row indexRow.push( index ); // increase index index ++; } // now save vertices of the row in our index array indexArray.push( indexRow ); } // generate indices for ( x = 0; x < radialSegments; x ++ ) { for ( y = 0; y < heightSegments; y ++ ) { // we use the index array to access the correct indices var i1 = indexArray[ y ][ x ]; var i2 = indexArray[ y + 1 ][ x ]; var i3 = indexArray[ y + 1 ][ x + 1 ]; var i4 = indexArray[ y ][ x + 1 ]; // face one indices.setX( indexOffset, i1 ); indexOffset++; indices.setX( indexOffset, i2 ); indexOffset++; indices.setX( indexOffset, i4 ); indexOffset++; // face two indices.setX( indexOffset, i2 ); indexOffset++; indices.setX( indexOffset, i3 ); indexOffset++; indices.setX( indexOffset, i4 ); indexOffset++; } } } function generateCap ( top ) { var x, centerIndexStart, centerIndexEnd; var uv = new THREE.Vector2(); var vertex = new THREE.Vector3(); var radius = ( top === true ) ? radiusTop : radiusBottom; var sign = ( top === true ) ? 1 : - 1; // save the index of the first center vertex centerIndexStart = index; // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for ( x = 1; x <= radialSegments; x ++ ) { // vertex vertices.setXYZ( index, 0, halfHeight * sign, 0 ); // normal normals.setXYZ( index, 0, sign, 0 ); // uv if( top === true ) { uv.x = x / radialSegments; uv.y = 0; } else { uv.x = ( x - 1 ) / radialSegments; uv.y = 1; } uvs.setXY( index, uv.x, uv.y ); // increase index index++; } // save the index of the last center vertex centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs for ( x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; // vertex vertex.x = radius * Math.sin( u * thetaLength + thetaStart ); vertex.y = halfHeight * sign; vertex.z = radius * Math.cos( u * thetaLength + thetaStart ); vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal normals.setXYZ( index, 0, sign, 0 ); // uv uvs.setXY( index, u, ( top === true ) ? 1 : 0 ); // increase index index ++; } // generate indices for ( x = 0; x < radialSegments; x ++ ) { var c = centerIndexStart + x; var i = centerIndexEnd + x; if( top === true ) { // face top indices.setX( indexOffset, i ); indexOffset++; indices.setX( indexOffset, i + 1 ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; } else { // face bottom indices.setX( indexOffset, i + 1); indexOffset++; indices.setX( indexOffset, i ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; } } } }; THREE.CylinderBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.CylinderBufferGeometry.prototype.constructor = THREE.CylinderBufferGeometry; // File:src/extras/geometries/CylinderGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.CylinderGeometry = function ( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new THREE.CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) ); this.mergeVertices(); }; THREE.CylinderGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.CylinderGeometry.prototype.constructor = THREE.CylinderGeometry; // File:src/extras/geometries/EdgesGeometry.js /** * @author WestLangley / http://github.com/WestLangley */ THREE.EdgesGeometry = function ( geometry, thresholdAngle ) { THREE.BufferGeometry.call( this ); thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1; var thresholdDot = Math.cos( THREE.Math.degToRad( thresholdAngle ) ); var edge = [ 0, 0 ], hash = {}; function sortFunction( a, b ) { return a - b; } var keys = [ 'a', 'b', 'c' ]; var geometry2; if ( geometry instanceof THREE.BufferGeometry ) { geometry2 = new THREE.Geometry(); geometry2.fromBufferGeometry( geometry ); } else { geometry2 = geometry.clone(); } geometry2.mergeVertices(); geometry2.computeFaceNormals(); var vertices = geometry2.vertices; var faces = geometry2.faces; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = face[ keys[ j ] ]; edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { hash[ key ] = { vert1: edge[ 0 ], vert2: edge[ 1 ], face1: i, face2: undefined }; } else { hash[ key ].face2 = i; } } } var coords = []; for ( var key in hash ) { var h = hash[ key ]; if ( h.face2 === undefined || faces[ h.face1 ].normal.dot( faces[ h.face2 ].normal ) <= thresholdDot ) { var vertex = vertices[ h.vert1 ]; coords.push( vertex.x ); coords.push( vertex.y ); coords.push( vertex.z ); vertex = vertices[ h.vert2 ]; coords.push( vertex.x ); coords.push( vertex.y ); coords.push( vertex.z ); } } this.addAttribute( 'position', new THREE.BufferAttribute( new Float32Array( coords ), 3 ) ); }; THREE.EdgesGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.EdgesGeometry.prototype.constructor = THREE.EdgesGeometry; // File:src/extras/geometries/ExtrudeGeometry.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * amount: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline is bevel * bevelSegments: , // number of bevel layers * * extrudePath: // 3d spline path to extrude shape along. (creates Frames if .frames aren't defined) * frames: // containing arrays of tangents, normals, binormals * * uvGenerator: // object that provides UV generator functions * * } **/ THREE.ExtrudeGeometry = function ( shapes, options ) { if ( typeof( shapes ) === "undefined" ) { shapes = []; return; } THREE.Geometry.call( this ); this.type = 'ExtrudeGeometry'; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); // can't really use automatic vertex normals // as then front and back sides get smoothed too // should do separate smoothing just for sides //this.computeVertexNormals(); //console.log( "took", ( Date.now() - startTime ) ); }; THREE.ExtrudeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.ExtrudeGeometry.prototype.constructor = THREE.ExtrudeGeometry; THREE.ExtrudeGeometry.prototype.addShapeList = function ( shapes, options ) { var sl = shapes.length; for ( var s = 0; s < sl; s ++ ) { var shape = shapes[ s ]; this.addShape( shape, options ); } }; THREE.ExtrudeGeometry.prototype.addShape = function ( shape, options ) { var amount = options.amount !== undefined ? options.amount : 100; var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10 var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8 var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var steps = options.steps !== undefined ? options.steps : 1; var extrudePath = options.extrudePath; var extrudePts, extrudeByPath = false; // Use default WorldUVGenerator if no UV generators are specified. var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : THREE.ExtrudeGeometry.WorldUVGenerator; var splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // Reuse TNB from TubeGeomtry for now. // TODO1 - have a .isClosed in spline? splineTube = options.frames !== undefined ? options.frames : new THREE.TubeGeometry.FrenetFrames( extrudePath, steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new THREE.Vector3(); normal = new THREE.Vector3(); position2 = new THREE.Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; } // Variables initialization var ahole, h, hl; // looping of holes var scope = this; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! THREE.ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; if ( THREE.ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)! } var faces = THREE.ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ var contour = vertices; // vertices has all points but contour has only points of circumference for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2 ( pt, vec, size ) { if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" ); return vec.clone().multiplyScalar( size ).add( pt ); } var b, bs, t, z, vert, vlen = vertices.length, face, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. var v_trans_x, v_trans_y, shrink_by = 1; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing var v_prev_len = Math.sqrt( v_prev_lensq ); var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); var ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new THREE.Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges var direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new THREE.Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } var contourMovements = []; for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat(); for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = []; for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { t = b / bevelSegments; z = bevelThickness * ( 1 - t ); //z = bevelThickness * t; bs = bevelSize * ( Math.sin ( t * Math.PI / 2 ) ); // curved //bs = bevelSize * t; // linear // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } bs = bevelSize; // Back facing vertices for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices var s; for ( s = 1; s <= steps; s ++ ) { for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, amount / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( b = bevelSegments - 1; b >= 0; b -- ) { t = b / bevelSegments; z = bevelThickness * ( 1 - t ); //bs = bevelSize * ( 1-Math.sin ( ( 1 - t ) * Math.PI/2 ) ); bs = bevelSize * Math.sin ( t * Math.PI / 2 ); // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, amount + z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, amount + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { if ( bevelEnabled ) { var layer = 0; // steps + 1 var offset = vlen * layer; // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } } // Create faces for the z-sides of the shape function buildSideFaces() { var layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } } function sidewalls( contour, layeroffset ) { var j, k; i = contour.length; while ( -- i >= 0 ) { j = i; k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); var s = 0, sl = steps + bevelSegments * 2; for ( s = 0; s < sl; s ++ ) { var slen1 = vlen * s; var slen2 = vlen * ( s + 1 ); var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d, contour, s, sl, j, k ); } } } function v( x, y, z ) { scope.vertices.push( new THREE.Vector3( x, y, z ) ); } function f3( a, b, c ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; scope.faces.push( new THREE.Face3( a, b, c, null, null, 0 ) ); var uvs = uvgen.generateTopUV( scope, a, b, c ); scope.faceVertexUvs[ 0 ].push( uvs ); } function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; d += shapesOffset; scope.faces.push( new THREE.Face3( a, b, d, null, null, 1 ) ); scope.faces.push( new THREE.Face3( b, c, d, null, null, 1 ) ); var uvs = uvgen.generateSideWallUV( scope, a, b, c, d ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 0 ], uvs[ 1 ], uvs[ 3 ] ] ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 1 ], uvs[ 2 ], uvs[ 3 ] ] ); } }; THREE.ExtrudeGeometry.WorldUVGenerator = { generateTopUV: function ( geometry, indexA, indexB, indexC ) { var vertices = geometry.vertices; var a = vertices[ indexA ]; var b = vertices[ indexB ]; var c = vertices[ indexC ]; return [ new THREE.Vector2( a.x, a.y ), new THREE.Vector2( b.x, b.y ), new THREE.Vector2( c.x, c.y ) ]; }, generateSideWallUV: function ( geometry, indexA, indexB, indexC, indexD ) { var vertices = geometry.vertices; var a = vertices[ indexA ]; var b = vertices[ indexB ]; var c = vertices[ indexC ]; var d = vertices[ indexD ]; if ( Math.abs( a.y - b.y ) < 0.01 ) { return [ new THREE.Vector2( a.x, 1 - a.z ), new THREE.Vector2( b.x, 1 - b.z ), new THREE.Vector2( c.x, 1 - c.z ), new THREE.Vector2( d.x, 1 - d.z ) ]; } else { return [ new THREE.Vector2( a.y, 1 - a.z ), new THREE.Vector2( b.y, 1 - b.z ), new THREE.Vector2( c.y, 1 - c.z ), new THREE.Vector2( d.y, 1 - d.z ) ]; } } }; // File:src/extras/geometries/ShapeGeometry.js /** * @author jonobr1 / http://jonobr1.com * * Creates a one-sided polygonal geometry from a path shape. Similar to * ExtrudeGeometry. * * parameters = { * * curveSegments: , // number of points on the curves. NOT USED AT THE MOMENT. * * material: // material index for front and back faces * uvGenerator: // object that provides UV generator functions * * } **/ THREE.ShapeGeometry = function ( shapes, options ) { THREE.Geometry.call( this ); this.type = 'ShapeGeometry'; if ( Array.isArray( shapes ) === false ) shapes = [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); }; THREE.ShapeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.ShapeGeometry.prototype.constructor = THREE.ShapeGeometry; /** * Add an array of shapes to THREE.ShapeGeometry. */ THREE.ShapeGeometry.prototype.addShapeList = function ( shapes, options ) { for ( var i = 0, l = shapes.length; i < l; i ++ ) { this.addShape( shapes[ i ], options ); } return this; }; /** * Adds a shape to THREE.ShapeGeometry, based on THREE.ExtrudeGeometry. */ THREE.ShapeGeometry.prototype.addShape = function ( shape, options ) { if ( options === undefined ) options = {}; var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var material = options.material; var uvgen = options.UVGenerator === undefined ? THREE.ExtrudeGeometry.WorldUVGenerator : options.UVGenerator; // var i, l, hole; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! THREE.ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe... for ( i = 0, l = holes.length; i < l; i ++ ) { hole = holes[ i ]; if ( THREE.ShapeUtils.isClockWise( hole ) ) { holes[ i ] = hole.reverse(); } } reverse = false; } var faces = THREE.ShapeUtils.triangulateShape( vertices, holes ); // Vertices for ( i = 0, l = holes.length; i < l; i ++ ) { hole = holes[ i ]; vertices = vertices.concat( hole ); } // var vert, vlen = vertices.length; var face, flen = faces.length; for ( i = 0; i < vlen; i ++ ) { vert = vertices[ i ]; this.vertices.push( new THREE.Vector3( vert.x, vert.y, 0 ) ); } for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; var a = face[ 0 ] + shapesOffset; var b = face[ 1 ] + shapesOffset; var c = face[ 2 ] + shapesOffset; this.faces.push( new THREE.Face3( a, b, c, null, null, material ) ); this.faceVertexUvs[ 0 ].push( uvgen.generateTopUV( this, a, b, c ) ); } }; // File:src/extras/geometries/LatheBufferGeometry.js /** * @author Mugen87 / https://github.com/Mugen87 */ // points - to create a closed torus, one must use a set of points // like so: [ a, b, c, d, a ], see first is the same as last. // segments - the number of circumference segments to create // phiStart - the starting radian // phiLength - the radian (0 to 2PI) range of the lathed section // 2PI is a closed lathe, less than 2PI is a portion. THREE.LatheBufferGeometry = function ( points, segments, phiStart, phiLength ) { THREE.BufferGeometry.call( this ); this.type = 'LatheBufferGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; segments = Math.floor( segments ) || 12; phiStart = phiStart || 0; phiLength = phiLength || Math.PI * 2; // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = THREE.Math.clamp( phiLength, 0, Math.PI * 2 ); // these are used to calculate buffer length var vertexCount = ( segments + 1 ) * points.length; var indexCount = segments * points.length * 2 * 3; // buffers var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 ); var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // helper variables var index = 0, indexOffset = 0, base; var inversePointLength = 1.0 / ( points.length - 1 ); var inverseSegments = 1.0 / segments; var vertex = new THREE.Vector3(); var uv = new THREE.Vector2(); var i, j; // generate vertices and uvs for ( i = 0; i <= segments; i ++ ) { var phi = phiStart + i * inverseSegments * phiLength; var sin = Math.sin( phi ); var cos = Math.cos( phi ); for ( j = 0; j <= ( points.length - 1 ); j ++ ) { // vertex vertex.x = points[ j ].x * sin; vertex.y = points[ j ].y; vertex.z = points[ j ].x * cos; vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // uv uv.x = i / segments; uv.y = j / ( points.length - 1 ); uvs.setXY( index, uv.x, uv.y ); // increase index index ++; } } // generate indices for ( i = 0; i < segments; i ++ ) { for ( j = 0; j < ( points.length - 1 ); j ++ ) { base = j + i * points.length; // indices var a = base; var b = base + points.length; var c = base + points.length + 1; var d = base + 1; // face one indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; // face two indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'uv', uvs ); // generate normals this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam. // because the corresponding vertices are identical (but still have different UVs). if( phiLength === Math.PI * 2 ) { var normals = this.attributes.normal.array; var n1 = new THREE.Vector3(); var n2 = new THREE.Vector3(); var n = new THREE.Vector3(); // this is the buffer offset for the last line of vertices base = segments * points.length * 3; for( i = 0, j = 0; i < points.length; i ++, j += 3 ) { // select the normal of the vertex in the first line n1.x = normals[ j + 0 ]; n1.y = normals[ j + 1 ]; n1.z = normals[ j + 2 ]; // select the normal of the vertex in the last line n2.x = normals[ base + j + 0 ]; n2.y = normals[ base + j + 1 ]; n2.z = normals[ base + j + 2 ]; // average normals n.addVectors( n1, n2 ).normalize(); // assign the new values to both normals normals[ j + 0 ] = normals[ base + j + 0 ] = n.x; normals[ j + 1 ] = normals[ base + j + 1 ] = n.y; normals[ j + 2 ] = normals[ base + j + 2 ] = n.z; } // next row } }; THREE.LatheBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.LatheBufferGeometry.prototype.constructor = THREE.LatheBufferGeometry; // File:src/extras/geometries/LatheGeometry.js /** * @author astrodud / http://astrodud.isgreat.org/ * @author zz85 / https://github.com/zz85 * @author bhouston / http://clara.io */ // points - to create a closed torus, one must use a set of points // like so: [ a, b, c, d, a ], see first is the same as last. // segments - the number of circumference segments to create // phiStart - the starting radian // phiLength - the radian (0 to 2PI) range of the lathed section // 2PI is a closed lathe, less than 2PI is a portion. THREE.LatheGeometry = function ( points, segments, phiStart, phiLength ) { THREE.Geometry.call( this ); this.type = 'LatheGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; this.fromBufferGeometry( new THREE.LatheBufferGeometry( points, segments, phiStart, phiLength ) ); this.mergeVertices(); }; THREE.LatheGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.LatheGeometry.prototype.constructor = THREE.LatheGeometry; // File:src/extras/geometries/PlaneGeometry.js /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as */ THREE.PlaneGeometry = function ( width, height, widthSegments, heightSegments ) { THREE.Geometry.call( this ); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; this.fromBufferGeometry( new THREE.PlaneBufferGeometry( width, height, widthSegments, heightSegments ) ); }; THREE.PlaneGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.PlaneGeometry.prototype.constructor = THREE.PlaneGeometry; // File:src/extras/geometries/PlaneBufferGeometry.js /** * @author mrdoob / http://mrdoob.com/ * based on http://papervision3d.googlecode.com/svn/trunk/as3/trunk/src/org/papervision3d/objects/primitives/Plane.as */ THREE.PlaneBufferGeometry = function ( width, height, widthSegments, heightSegments ) { THREE.BufferGeometry.call( this ); this.type = 'PlaneBufferGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; var width_half = width / 2; var height_half = height / 2; var gridX = Math.floor( widthSegments ) || 1; var gridY = Math.floor( heightSegments ) || 1; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var segment_width = width / gridX; var segment_height = height / gridY; var vertices = new Float32Array( gridX1 * gridY1 * 3 ); var normals = new Float32Array( gridX1 * gridY1 * 3 ); var uvs = new Float32Array( gridX1 * gridY1 * 2 ); var offset = 0; var offset2 = 0; for ( var iy = 0; iy < gridY1; iy ++ ) { var y = iy * segment_height - height_half; for ( var ix = 0; ix < gridX1; ix ++ ) { var x = ix * segment_width - width_half; vertices[ offset ] = x; vertices[ offset + 1 ] = - y; normals[ offset + 2 ] = 1; uvs[ offset2 ] = ix / gridX; uvs[ offset2 + 1 ] = 1 - ( iy / gridY ); offset += 3; offset2 += 2; } } offset = 0; var indices = new ( ( vertices.length / 3 ) > 65535 ? Uint32Array : Uint16Array )( gridX * gridY * 6 ); for ( var iy = 0; iy < gridY; iy ++ ) { for ( var ix = 0; ix < gridX; ix ++ ) { var a = ix + gridX1 * iy; var b = ix + gridX1 * ( iy + 1 ); var c = ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = ( ix + 1 ) + gridX1 * iy; indices[ offset ] = a; indices[ offset + 1 ] = b; indices[ offset + 2 ] = d; indices[ offset + 3 ] = b; indices[ offset + 4 ] = c; indices[ offset + 5 ] = d; offset += 6; } } this.setIndex( new THREE.BufferAttribute( indices, 1 ) ); this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) ); }; THREE.PlaneBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.PlaneBufferGeometry.prototype.constructor = THREE.PlaneBufferGeometry; // File:src/extras/geometries/RingBufferGeometry.js /** * @author Mugen87 / https://github.com/Mugen87 */ THREE.RingBufferGeometry = function ( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { THREE.BufferGeometry.call( this ); this.type = 'RingBufferGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; innerRadius = innerRadius || 20; outerRadius = outerRadius || 50; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8; phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1; // these are used to calculate buffer length var vertexCount = ( thetaSegments + 1 ) * ( phiSegments + 1 ); var indexCount = thetaSegments * phiSegments * 2 * 3; // buffers var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 ); var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // some helper variables var index = 0, indexOffset = 0, segment; var radius = innerRadius; var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); var vertex = new THREE.Vector3(); var uv = new THREE.Vector2(); var j, i; // generate vertices, normals and uvs // values are generate from the inside of the ring to the outside for ( j = 0; j <= phiSegments; j ++ ) { for ( i = 0; i <= thetaSegments; i ++ ) { segment = thetaStart + i / thetaSegments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal normals.setXYZ( index, 0, 0, 1 ); // uv uv.x = ( vertex.x / outerRadius + 1 ) / 2; uv.y = ( vertex.y / outerRadius + 1 ) / 2; uvs.setXY( index, uv.x, uv.y ); // increase index index++; } // increase the radius for next row of vertices radius += radiusStep; } // generate indices for ( j = 0; j < phiSegments; j ++ ) { var thetaSegmentLevel = j * ( thetaSegments + 1 ); for ( i = 0; i < thetaSegments; i ++ ) { segment = i + thetaSegmentLevel; // indices var a = segment; var b = segment + thetaSegments + 1; var c = segment + thetaSegments + 2; var d = segment + 1; // face one indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; // face two indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); }; THREE.RingBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.RingBufferGeometry.prototype.constructor = THREE.RingBufferGeometry; // File:src/extras/geometries/RingGeometry.js /** * @author Kaleb Murphy */ THREE.RingGeometry = function ( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.type = 'RingGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new THREE.RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) ); }; THREE.RingGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.RingGeometry.prototype.constructor = THREE.RingGeometry; // File:src/extras/geometries/SphereGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.SphereGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { THREE.Geometry.call( this ); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new THREE.SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) ); }; THREE.SphereGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.SphereGeometry.prototype.constructor = THREE.SphereGeometry; // File:src/extras/geometries/SphereBufferGeometry.js /** * @author benaadams / https://twitter.com/ben_a_adams * based on THREE.SphereGeometry */ THREE.SphereBufferGeometry = function ( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { THREE.BufferGeometry.call( this ); this.type = 'SphereBufferGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 50; widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 ); heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 ); phiStart = phiStart !== undefined ? phiStart : 0; phiLength = phiLength !== undefined ? phiLength : Math.PI * 2; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI; var thetaEnd = thetaStart + thetaLength; var vertexCount = ( ( widthSegments + 1 ) * ( heightSegments + 1 ) ); var positions = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); var index = 0, vertices = [], normal = new THREE.Vector3(); for ( var y = 0; y <= heightSegments; y ++ ) { var verticesRow = []; var v = y / heightSegments; for ( var x = 0; x <= widthSegments; x ++ ) { var u = x / widthSegments; var px = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); var py = radius * Math.cos( thetaStart + v * thetaLength ); var pz = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); normal.set( px, py, pz ).normalize(); positions.setXYZ( index, px, py, pz ); normals.setXYZ( index, normal.x, normal.y, normal.z ); uvs.setXY( index, u, 1 - v ); verticesRow.push( index ); index ++; } vertices.push( verticesRow ); } var indices = []; for ( var y = 0; y < heightSegments; y ++ ) { for ( var x = 0; x < widthSegments; x ++ ) { var v1 = vertices[ y ][ x + 1 ]; var v2 = vertices[ y ][ x ]; var v3 = vertices[ y + 1 ][ x ]; var v4 = vertices[ y + 1 ][ x + 1 ]; if ( y !== 0 || thetaStart > 0 ) indices.push( v1, v2, v4 ); if ( y !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( v2, v3, v4 ); } } this.setIndex( new ( positions.count > 65535 ? THREE.Uint32Attribute : THREE.Uint16Attribute )( indices, 1 ) ); this.addAttribute( 'position', positions ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); }; THREE.SphereBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.SphereBufferGeometry.prototype.constructor = THREE.SphereBufferGeometry; // File:src/extras/geometries/TextGeometry.js /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author alteredq / http://alteredqualia.com/ * * Text = 3D Text * * parameters = { * font: , // font * * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: // how far from text outline is bevel * } */ THREE.TextGeometry = function ( text, parameters ) { parameters = parameters || {}; var font = parameters.font; if ( font instanceof THREE.Font === false ) { console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' ); return new THREE.Geometry(); } var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments ); // translate parameters to ExtrudeGeometry API parameters.amount = parameters.height !== undefined ? parameters.height : 50; // defaults if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10; if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8; if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false; THREE.ExtrudeGeometry.call( this, shapes, parameters ); this.type = 'TextGeometry'; }; THREE.TextGeometry.prototype = Object.create( THREE.ExtrudeGeometry.prototype ); THREE.TextGeometry.prototype.constructor = THREE.TextGeometry; // File:src/extras/geometries/TorusBufferGeometry.js /** * @author Mugen87 / https://github.com/Mugen87 */ THREE.TorusBufferGeometry = function ( radius, tube, radialSegments, tubularSegments, arc ) { THREE.BufferGeometry.call( this ); this.type = 'TorusBufferGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radius = radius || 100; tube = tube || 40; radialSegments = Math.floor( radialSegments ) || 8; tubularSegments = Math.floor( tubularSegments ) || 6; arc = arc || Math.PI * 2; // used to calculate buffer length var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) ); var indexCount = radialSegments * tubularSegments * 2 * 3; // buffers var indices = new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ); var vertices = new Float32Array( vertexCount * 3 ); var normals = new Float32Array( vertexCount * 3 ); var uvs = new Float32Array( vertexCount * 2 ); // offset variables var vertexBufferOffset = 0; var uvBufferOffset = 0; var indexBufferOffset = 0; // helper variables var center = new THREE.Vector3(); var vertex = new THREE.Vector3(); var normal = new THREE.Vector3(); var j, i; // generate vertices, normals and uvs for ( j = 0; j <= radialSegments; j ++ ) { for ( i = 0; i <= tubularSegments; i ++ ) { var u = i / tubularSegments * arc; var v = j / radialSegments * Math.PI * 2; // vertex vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v ); vertices[ vertexBufferOffset ] = vertex.x; vertices[ vertexBufferOffset + 1 ] = vertex.y; vertices[ vertexBufferOffset + 2 ] = vertex.z; // this vector is used to calculate the normal center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); // normal normal.subVectors( vertex, center ).normalize(); normals[ vertexBufferOffset ] = normal.x; normals[ vertexBufferOffset + 1 ] = normal.y; normals[ vertexBufferOffset + 2 ] = normal.z; // uv uvs[ uvBufferOffset ] = i / tubularSegments; uvs[ uvBufferOffset + 1 ] = j / radialSegments; // update offsets vertexBufferOffset += 3; uvBufferOffset += 2; } } // generate indices for ( j = 1; j <= radialSegments; j ++ ) { for ( i = 1; i <= tubularSegments; i ++ ) { // indices var a = ( tubularSegments + 1 ) * j + i - 1; var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; var c = ( tubularSegments + 1 ) * ( j - 1 ) + i; var d = ( tubularSegments + 1 ) * j + i; // face one indices[ indexBufferOffset ] = a; indices[ indexBufferOffset + 1 ] = b; indices[ indexBufferOffset + 2 ] = d; // face two indices[ indexBufferOffset + 3 ] = b; indices[ indexBufferOffset + 4 ] = c; indices[ indexBufferOffset + 5 ] = d; // update offset indexBufferOffset += 6; } } // build geometry this.setIndex( new THREE.BufferAttribute( indices, 1 ) ); this.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) ); }; THREE.TorusBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.TorusBufferGeometry.prototype.constructor = THREE.TorusBufferGeometry; // File:src/extras/geometries/TorusGeometry.js /** * @author oosmoxiecode * @author mrdoob / http://mrdoob.com/ * based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3DLite/src/away3dlite/primitives/Torus.as?r=2888 */ THREE.TorusGeometry = function ( radius, tube, radialSegments, tubularSegments, arc ) { THREE.Geometry.call( this ); this.type = 'TorusGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; this.fromBufferGeometry( new THREE.TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) ); }; THREE.TorusGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.TorusGeometry.prototype.constructor = THREE.TorusGeometry; // File:src/extras/geometries/TorusKnotBufferGeometry.js /** * @author Mugen87 / https://github.com/Mugen87 * * see: http://www.blackpawn.com/texts/pqtorus/ */ THREE.TorusKnotBufferGeometry = function ( radius, tube, tubularSegments, radialSegments, p, q ) { THREE.BufferGeometry.call( this ); this.type = 'TorusKnotBufferGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; radius = radius || 100; tube = tube || 40; tubularSegments = Math.floor( tubularSegments ) || 64; radialSegments = Math.floor( radialSegments ) || 8; p = p || 2; q = q || 3; // used to calculate buffer length var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) ); var indexCount = radialSegments * tubularSegments * 2 * 3; // buffers var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 ); var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // helper variables var i, j, index = 0, indexOffset = 0; var vertex = new THREE.Vector3(); var normal = new THREE.Vector3(); var uv = new THREE.Vector2(); var P1 = new THREE.Vector3(); var P2 = new THREE.Vector3(); var B = new THREE.Vector3(); var T = new THREE.Vector3(); var N = new THREE.Vector3(); // generate vertices, normals and uvs for ( i = 0; i <= tubularSegments; ++ i ) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segement var u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); // calculate orthonormal basis T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T ); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for ( j = 0; j <= radialSegments; ++ j ) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. var v = j / radialSegments * Math.PI * 2; var cx = - tube * Math.cos( v ); var cy = tube * Math.sin( v ); // now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z ); // vertex vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors( vertex, P1 ).normalize(); normals.setXYZ( index, normal.x, normal.y, normal.z ); // uv uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.setXY( index, uv.x, uv.y ); // increase index index ++; } } // generate indices for ( j = 1; j <= tubularSegments; j ++ ) { for ( i = 1; i <= radialSegments; i ++ ) { // indices var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i; // face one indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; // face two indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); // this function calculates the current position on the torus curve function calculatePositionOnCurve( u, p, q, radius, position ) { var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = q / p * u; var cs = Math.cos( quOverP ); position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5; } }; THREE.TorusKnotBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.TorusKnotBufferGeometry.prototype.constructor = THREE.TorusKnotBufferGeometry; // File:src/extras/geometries/TorusKnotGeometry.js /** * @author oosmoxiecode */ THREE.TorusKnotGeometry = function ( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) { THREE.Geometry.call( this ); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; if( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' ); this.fromBufferGeometry( new THREE.TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) ); this.mergeVertices(); }; THREE.TorusKnotGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.TorusKnotGeometry.prototype.constructor = THREE.TorusKnotGeometry; // File:src/extras/geometries/TubeGeometry.js /** * @author WestLangley / https://github.com/WestLangley * @author zz85 / https://github.com/zz85 * @author miningold / https://github.com/miningold * @author jonobr1 / https://github.com/jonobr1 * * Modified from the TorusKnotGeometry by @oosmoxiecode * * Creates a tube which extrudes along a 3d spline * * Uses parallel transport frames as described in * http://www.cs.indiana.edu/pub/techreports/TR425.pdf */ THREE.TubeGeometry = function ( path, segments, radius, radialSegments, closed, taper ) { THREE.Geometry.call( this ); this.type = 'TubeGeometry'; this.parameters = { path: path, segments: segments, radius: radius, radialSegments: radialSegments, closed: closed, taper: taper }; segments = segments || 64; radius = radius || 1; radialSegments = radialSegments || 8; closed = closed || false; taper = taper || THREE.TubeGeometry.NoTaper; var grid = []; var scope = this, tangent, normal, binormal, numpoints = segments + 1, u, v, r, cx, cy, pos, pos2 = new THREE.Vector3(), i, j, ip, jp, a, b, c, d, uva, uvb, uvc, uvd; var frames = new THREE.TubeGeometry.FrenetFrames( path, segments, closed ), tangents = frames.tangents, normals = frames.normals, binormals = frames.binormals; // proxy internals this.tangents = tangents; this.normals = normals; this.binormals = binormals; function vert( x, y, z ) { return scope.vertices.push( new THREE.Vector3( x, y, z ) ) - 1; } // construct the grid for ( i = 0; i < numpoints; i ++ ) { grid[ i ] = []; u = i / ( numpoints - 1 ); pos = path.getPointAt( u ); tangent = tangents[ i ]; normal = normals[ i ]; binormal = binormals[ i ]; r = radius * taper( u ); for ( j = 0; j < radialSegments; j ++ ) { v = j / radialSegments * 2 * Math.PI; cx = - r * Math.cos( v ); // TODO: Hack: Negating it so it faces outside. cy = r * Math.sin( v ); pos2.copy( pos ); pos2.x += cx * normal.x + cy * binormal.x; pos2.y += cx * normal.y + cy * binormal.y; pos2.z += cx * normal.z + cy * binormal.z; grid[ i ][ j ] = vert( pos2.x, pos2.y, pos2.z ); } } // construct the mesh for ( i = 0; i < segments; i ++ ) { for ( j = 0; j < radialSegments; j ++ ) { ip = ( closed ) ? ( i + 1 ) % segments : i + 1; jp = ( j + 1 ) % radialSegments; a = grid[ i ][ j ]; // *** NOT NECESSARILY PLANAR ! *** b = grid[ ip ][ j ]; c = grid[ ip ][ jp ]; d = grid[ i ][ jp ]; uva = new THREE.Vector2( i / segments, j / radialSegments ); uvb = new THREE.Vector2( ( i + 1 ) / segments, j / radialSegments ); uvc = new THREE.Vector2( ( i + 1 ) / segments, ( j + 1 ) / radialSegments ); uvd = new THREE.Vector2( i / segments, ( j + 1 ) / radialSegments ); this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.TubeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.TubeGeometry.prototype.constructor = THREE.TubeGeometry; THREE.TubeGeometry.NoTaper = function ( u ) { return 1; }; THREE.TubeGeometry.SinusoidalTaper = function ( u ) { return Math.sin( Math.PI * u ); }; // For computing of Frenet frames, exposing the tangents, normals and binormals the spline THREE.TubeGeometry.FrenetFrames = function ( path, segments, closed ) { var normal = new THREE.Vector3(), tangents = [], normals = [], binormals = [], vec = new THREE.Vector3(), mat = new THREE.Matrix4(), numpoints = segments + 1, theta, smallest, tx, ty, tz, i, u; // expose internals this.tangents = tangents; this.normals = normals; this.binormals = binormals; // compute the tangent vectors for each segment on the path for ( i = 0; i < numpoints; i ++ ) { u = i / ( numpoints - 1 ); tangents[ i ] = path.getTangentAt( u ); tangents[ i ].normalize(); } initialNormal3(); /* function initialNormal1(lastBinormal) { // fixed start binormal. Has dangers of 0 vectors normals[ 0 ] = new THREE.Vector3(); binormals[ 0 ] = new THREE.Vector3(); if (lastBinormal===undefined) lastBinormal = new THREE.Vector3( 0, 0, 1 ); normals[ 0 ].crossVectors( lastBinormal, tangents[ 0 ] ).normalize(); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize(); } function initialNormal2() { // This uses the Frenet-Serret formula for deriving binormal var t2 = path.getTangentAt( epsilon ); normals[ 0 ] = new THREE.Vector3().subVectors( t2, tangents[ 0 ] ).normalize(); binormals[ 0 ] = new THREE.Vector3().crossVectors( tangents[ 0 ], normals[ 0 ] ); normals[ 0 ].crossVectors( binormals[ 0 ], tangents[ 0 ] ).normalize(); // last binormal x tangent binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ).normalize(); } */ function initialNormal3() { // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the smallest tangent xyz component normals[ 0 ] = new THREE.Vector3(); binormals[ 0 ] = new THREE.Vector3(); smallest = Number.MAX_VALUE; tx = Math.abs( tangents[ 0 ].x ); ty = Math.abs( tangents[ 0 ].y ); tz = Math.abs( tangents[ 0 ].z ); if ( tx <= smallest ) { smallest = tx; normal.set( 1, 0, 0 ); } if ( ty <= smallest ) { smallest = ty; normal.set( 0, 1, 0 ); } if ( tz <= smallest ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); } // compute the slowly-varying normal and binormal vectors for each segment on the path for ( i = 1; i < numpoints; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); theta = Math.acos( THREE.Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed ) { theta = Math.acos( THREE.Math.clamp( normals[ 0 ].dot( normals[ numpoints - 1 ] ), - 1, 1 ) ); theta /= ( numpoints - 1 ); if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ numpoints - 1 ] ) ) > 0 ) { theta = - theta; } for ( i = 1; i < numpoints; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } }; // File:src/extras/geometries/PolyhedronGeometry.js /** * @author clockworkgeek / https://github.com/clockworkgeek * @author timothypratley / https://github.com/timothypratley * @author WestLangley / http://github.com/WestLangley */ THREE.PolyhedronGeometry = function ( vertices, indices, radius, detail ) { THREE.Geometry.call( this ); this.type = 'PolyhedronGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; radius = radius || 1; detail = detail || 0; var that = this; for ( var i = 0, l = vertices.length; i < l; i += 3 ) { prepare( new THREE.Vector3( vertices[ i ], vertices[ i + 1 ], vertices[ i + 2 ] ) ); } var p = this.vertices; var faces = []; for ( var i = 0, j = 0, l = indices.length; i < l; i += 3, j ++ ) { var v1 = p[ indices[ i ] ]; var v2 = p[ indices[ i + 1 ] ]; var v3 = p[ indices[ i + 2 ] ]; faces[ j ] = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ], undefined, j ); } var centroid = new THREE.Vector3(); for ( var i = 0, l = faces.length; i < l; i ++ ) { subdivide( faces[ i ], detail ); } // Handle case when face straddles the seam for ( var i = 0, l = this.faceVertexUvs[ 0 ].length; i < l; i ++ ) { var uvs = this.faceVertexUvs[ 0 ][ i ]; var x0 = uvs[ 0 ].x; var x1 = uvs[ 1 ].x; var x2 = uvs[ 2 ].x; var max = Math.max( x0, x1, x2 ); var min = Math.min( x0, x1, x2 ); if ( max > 0.9 && min < 0.1 ) { // 0.9 is somewhat arbitrary if ( x0 < 0.2 ) uvs[ 0 ].x += 1; if ( x1 < 0.2 ) uvs[ 1 ].x += 1; if ( x2 < 0.2 ) uvs[ 2 ].x += 1; } } // Apply radius for ( var i = 0, l = this.vertices.length; i < l; i ++ ) { this.vertices[ i ].multiplyScalar( radius ); } // Merge vertices this.mergeVertices(); this.computeFaceNormals(); this.boundingSphere = new THREE.Sphere( new THREE.Vector3(), radius ); // Project vector onto sphere's surface function prepare( vector ) { var vertex = vector.normalize().clone(); vertex.index = that.vertices.push( vertex ) - 1; // Texture coords are equivalent to map coords, calculate angle and convert to fraction of a circle. var u = azimuth( vector ) / 2 / Math.PI + 0.5; var v = inclination( vector ) / Math.PI + 0.5; vertex.uv = new THREE.Vector2( u, 1 - v ); return vertex; } // Approximate a curved face with recursively sub-divided triangles. function make( v1, v2, v3, materialIndex ) { var face = new THREE.Face3( v1.index, v2.index, v3.index, [ v1.clone(), v2.clone(), v3.clone() ], undefined, materialIndex ); that.faces.push( face ); centroid.copy( v1 ).add( v2 ).add( v3 ).divideScalar( 3 ); var azi = azimuth( centroid ); that.faceVertexUvs[ 0 ].push( [ correctUV( v1.uv, v1, azi ), correctUV( v2.uv, v2, azi ), correctUV( v3.uv, v3, azi ) ] ); } // Analytically subdivide a face to the required detail level. function subdivide( face, detail ) { var cols = Math.pow( 2, detail ); var a = prepare( that.vertices[ face.a ] ); var b = prepare( that.vertices[ face.b ] ); var c = prepare( that.vertices[ face.c ] ); var v = []; var materialIndex = face.materialIndex; // Construct all of the vertices for this subdivision. for ( var i = 0 ; i <= cols; i ++ ) { v[ i ] = []; var aj = prepare( a.clone().lerp( c, i / cols ) ); var bj = prepare( b.clone().lerp( c, i / cols ) ); var rows = cols - i; for ( var j = 0; j <= rows; j ++ ) { if ( j === 0 && i === cols ) { v[ i ][ j ] = aj; } else { v[ i ][ j ] = prepare( aj.clone().lerp( bj, j / rows ) ); } } } // Construct all of the faces. for ( var i = 0; i < cols ; i ++ ) { for ( var j = 0; j < 2 * ( cols - i ) - 1; j ++ ) { var k = Math.floor( j / 2 ); if ( j % 2 === 0 ) { make( v[ i ][ k + 1 ], v[ i + 1 ][ k ], v[ i ][ k ], materialIndex ); } else { make( v[ i ][ k + 1 ], v[ i + 1 ][ k + 1 ], v[ i + 1 ][ k ], materialIndex ); } } } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth( vector ) { return Math.atan2( vector.z, - vector.x ); } // Angle above the XZ plane. function inclination( vector ) { return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); } // Texture fixing helper. Spheres have some odd behaviours. function correctUV( uv, vector, azimuth ) { if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) uv = new THREE.Vector2( uv.x - 1, uv.y ); if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) uv = new THREE.Vector2( azimuth / 2 / Math.PI + 0.5, uv.y ); return uv.clone(); } }; THREE.PolyhedronGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.PolyhedronGeometry.prototype.constructor = THREE.PolyhedronGeometry; // File:src/extras/geometries/DodecahedronGeometry.js /** * @author Abe Pazos / https://hamoid.com */ THREE.DodecahedronGeometry = function ( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var r = 1 / t; var vertices = [ // (±1, ±1, ±1) - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, - r, - t, 0, - r, t, 0, r, - t, 0, r, t, // (±1/φ, ±φ, 0) - r, - t, 0, - r, t, 0, r, - t, 0, r, t, 0, // (±φ, 0, ±1/φ) - t, 0, - r, t, 0, - r, - t, 0, r, t, 0, r ]; var indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); this.type = 'DodecahedronGeometry'; this.parameters = { radius: radius, detail: detail }; }; THREE.DodecahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype ); THREE.DodecahedronGeometry.prototype.constructor = THREE.DodecahedronGeometry; // File:src/extras/geometries/IcosahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.IcosahedronGeometry = function ( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var vertices = [ - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 ]; var indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); this.type = 'IcosahedronGeometry'; this.parameters = { radius: radius, detail: detail }; }; THREE.IcosahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype ); THREE.IcosahedronGeometry.prototype.constructor = THREE.IcosahedronGeometry; // File:src/extras/geometries/OctahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.OctahedronGeometry = function ( radius, detail ) { var vertices = [ 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1 ]; var indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); this.type = 'OctahedronGeometry'; this.parameters = { radius: radius, detail: detail }; }; THREE.OctahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype ); THREE.OctahedronGeometry.prototype.constructor = THREE.OctahedronGeometry; // File:src/extras/geometries/TetrahedronGeometry.js /** * @author timothypratley / https://github.com/timothypratley */ THREE.TetrahedronGeometry = function ( radius, detail ) { var vertices = [ 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 ]; var indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; THREE.PolyhedronGeometry.call( this, vertices, indices, radius, detail ); this.type = 'TetrahedronGeometry'; this.parameters = { radius: radius, detail: detail }; }; THREE.TetrahedronGeometry.prototype = Object.create( THREE.PolyhedronGeometry.prototype ); THREE.TetrahedronGeometry.prototype.constructor = THREE.TetrahedronGeometry; // File:src/extras/geometries/ParametricGeometry.js /** * @author zz85 / https://github.com/zz85 * Parametric Surfaces Geometry * based on the brilliant article by @prideout http://prideout.net/blog/?p=44 * * new THREE.ParametricGeometry( parametricFunction, uSegments, ySegements ); * */ THREE.ParametricGeometry = function ( func, slices, stacks ) { THREE.Geometry.call( this ); this.type = 'ParametricGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; var verts = this.vertices; var faces = this.faces; var uvs = this.faceVertexUvs[ 0 ]; var i, j, p; var u, v; var sliceCount = slices + 1; for ( i = 0; i <= stacks; i ++ ) { v = i / stacks; for ( j = 0; j <= slices; j ++ ) { u = j / slices; p = func( u, v ); verts.push( p ); } } var a, b, c, d; var uva, uvb, uvc, uvd; for ( i = 0; i < stacks; i ++ ) { for ( j = 0; j < slices; j ++ ) { a = i * sliceCount + j; b = i * sliceCount + j + 1; c = ( i + 1 ) * sliceCount + j + 1; d = ( i + 1 ) * sliceCount + j; uva = new THREE.Vector2( j / slices, i / stacks ); uvb = new THREE.Vector2( ( j + 1 ) / slices, i / stacks ); uvc = new THREE.Vector2( ( j + 1 ) / slices, ( i + 1 ) / stacks ); uvd = new THREE.Vector2( j / slices, ( i + 1 ) / stacks ); faces.push( new THREE.Face3( a, b, d ) ); uvs.push( [ uva, uvb, uvd ] ); faces.push( new THREE.Face3( b, c, d ) ); uvs.push( [ uvb.clone(), uvc, uvd.clone() ] ); } } // console.log(this); // magic bullet // var diff = this.mergeVertices(); // console.log('removed ', diff, ' vertices by merging'); this.computeFaceNormals(); this.computeVertexNormals(); }; THREE.ParametricGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.ParametricGeometry.prototype.constructor = THREE.ParametricGeometry; // File:src/extras/geometries/WireframeGeometry.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WireframeGeometry = function ( geometry ) { THREE.BufferGeometry.call( this ); var edge = [ 0, 0 ], hash = {}; function sortFunction( a, b ) { return a - b; } var keys = [ 'a', 'b', 'c' ]; if ( geometry instanceof THREE.Geometry ) { var vertices = geometry.vertices; var faces = geometry.faces; var numEdges = 0; // allocate maximal size var edges = new Uint32Array( 6 * faces.length ); for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = face[ keys[ j ] ]; edge[ 1 ] = face[ keys[ ( j + 1 ) % 3 ] ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { edges[ 2 * numEdges ] = edge[ 0 ]; edges[ 2 * numEdges + 1 ] = edge[ 1 ]; hash[ key ] = true; numEdges ++; } } } var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numEdges; i < l; i ++ ) { for ( var j = 0; j < 2; j ++ ) { var vertex = vertices[ edges [ 2 * i + j ] ]; var index = 6 * i + 3 * j; coords[ index + 0 ] = vertex.x; coords[ index + 1 ] = vertex.y; coords[ index + 2 ] = vertex.z; } } this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } else if ( geometry instanceof THREE.BufferGeometry ) { if ( geometry.index !== null ) { // Indexed BufferGeometry var indices = geometry.index.array; var vertices = geometry.attributes.position; var groups = geometry.groups; var numEdges = 0; if ( groups.length === 0 ) { geometry.addGroup( 0, indices.length ); } // allocate maximal size var edges = new Uint32Array( 2 * indices.length ); for ( var o = 0, ol = groups.length; o < ol; ++ o ) { var group = groups[ o ]; var start = group.start; var count = group.count; for ( var i = start, il = start + count; i < il; i += 3 ) { for ( var j = 0; j < 3; j ++ ) { edge[ 0 ] = indices[ i + j ]; edge[ 1 ] = indices[ i + ( j + 1 ) % 3 ]; edge.sort( sortFunction ); var key = edge.toString(); if ( hash[ key ] === undefined ) { edges[ 2 * numEdges ] = edge[ 0 ]; edges[ 2 * numEdges + 1 ] = edge[ 1 ]; hash[ key ] = true; numEdges ++; } } } } var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numEdges; i < l; i ++ ) { for ( var j = 0; j < 2; j ++ ) { var index = 6 * i + 3 * j; var index2 = edges[ 2 * i + j ]; coords[ index + 0 ] = vertices.getX( index2 ); coords[ index + 1 ] = vertices.getY( index2 ); coords[ index + 2 ] = vertices.getZ( index2 ); } } this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } else { // non-indexed BufferGeometry var vertices = geometry.attributes.position.array; var numEdges = vertices.length / 3; var numTris = numEdges / 3; var coords = new Float32Array( numEdges * 2 * 3 ); for ( var i = 0, l = numTris; i < l; i ++ ) { for ( var j = 0; j < 3; j ++ ) { var index = 18 * i + 6 * j; var index1 = 9 * i + 3 * j; coords[ index + 0 ] = vertices[ index1 ]; coords[ index + 1 ] = vertices[ index1 + 1 ]; coords[ index + 2 ] = vertices[ index1 + 2 ]; var index2 = 9 * i + 3 * ( ( j + 1 ) % 3 ); coords[ index + 3 ] = vertices[ index2 ]; coords[ index + 4 ] = vertices[ index2 + 1 ]; coords[ index + 5 ] = vertices[ index2 + 2 ]; } } this.addAttribute( 'position', new THREE.BufferAttribute( coords, 3 ) ); } } }; THREE.WireframeGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.WireframeGeometry.prototype.constructor = THREE.WireframeGeometry; // File:src/extras/helpers/AxisHelper.js /** * @author sroucheray / http://sroucheray.org/ * @author mrdoob / http://mrdoob.com/ */ THREE.AxisHelper = function ( size ) { size = size || 1; var vertices = new Float32Array( [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ] ); var colors = new Float32Array( [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ] ); var geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) ); var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } ); THREE.LineSegments.call( this, geometry, material ); }; THREE.AxisHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.AxisHelper.prototype.constructor = THREE.AxisHelper; // File:src/extras/helpers/ArrowHelper.js /** * @author WestLangley / http://github.com/WestLangley * @author zz85 / http://github.com/zz85 * @author bhouston / http://clara.io * * Creates an arrow for visualizing directions * * Parameters: * dir - Vector3 * origin - Vector3 * length - Number * color - color in hex value * headLength - Number * headWidth - Number */ THREE.ArrowHelper = ( function () { var lineGeometry = new THREE.Geometry(); lineGeometry.vertices.push( new THREE.Vector3( 0, 0, 0 ), new THREE.Vector3( 0, 1, 0 ) ); var coneGeometry = new THREE.CylinderGeometry( 0, 0.5, 1, 5, 1 ); coneGeometry.translate( 0, - 0.5, 0 ); return function ArrowHelper( dir, origin, length, color, headLength, headWidth ) { // dir is assumed to be normalized THREE.Object3D.call( this ); if ( color === undefined ) color = 0xffff00; if ( length === undefined ) length = 1; if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength; this.position.copy( origin ); this.line = new THREE.Line( lineGeometry, new THREE.LineBasicMaterial( { color: color } ) ); this.line.matrixAutoUpdate = false; this.add( this.line ); this.cone = new THREE.Mesh( coneGeometry, new THREE.MeshBasicMaterial( { color: color } ) ); this.cone.matrixAutoUpdate = false; this.add( this.cone ); this.setDirection( dir ); this.setLength( length, headLength, headWidth ); } }() ); THREE.ArrowHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.ArrowHelper.prototype.constructor = THREE.ArrowHelper; THREE.ArrowHelper.prototype.setDirection = ( function () { var axis = new THREE.Vector3(); var radians; return function setDirection( dir ) { // dir is assumed to be normalized if ( dir.y > 0.99999 ) { this.quaternion.set( 0, 0, 0, 1 ); } else if ( dir.y < - 0.99999 ) { this.quaternion.set( 1, 0, 0, 0 ); } else { axis.set( dir.z, 0, - dir.x ).normalize(); radians = Math.acos( dir.y ); this.quaternion.setFromAxisAngle( axis, radians ); } }; }() ); THREE.ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) { if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength; this.line.scale.set( 1, Math.max( 0, length - headLength ), 1 ); this.line.updateMatrix(); this.cone.scale.set( headWidth, headLength, headWidth ); this.cone.position.y = length; this.cone.updateMatrix(); }; THREE.ArrowHelper.prototype.setColor = function ( color ) { this.line.material.color.set( color ); this.cone.material.color.set( color ); }; // File:src/extras/helpers/BoxHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.BoxHelper = function ( object ) { var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); var positions = new Float32Array( 8 * 3 ); var geometry = new THREE.BufferGeometry(); geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) ); geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: 0xffff00 } ) ); if ( object !== undefined ) { this.update( object ); } }; THREE.BoxHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.BoxHelper.prototype.constructor = THREE.BoxHelper; THREE.BoxHelper.prototype.update = ( function () { var box = new THREE.Box3(); return function ( object ) { box.setFromObject( object ); if ( box.isEmpty() ) return; var min = box.min; var max = box.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ var position = this.geometry.attributes.position; var array = position.array; array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); }; } )(); // File:src/extras/helpers/BoundingBoxHelper.js /** * @author WestLangley / http://github.com/WestLangley */ // a helper to show the world-axis-aligned bounding box for an object THREE.BoundingBoxHelper = function ( object, hex ) { var color = ( hex !== undefined ) ? hex : 0x888888; this.object = object; this.box = new THREE.Box3(); THREE.Mesh.call( this, new THREE.BoxGeometry( 1, 1, 1 ), new THREE.MeshBasicMaterial( { color: color, wireframe: true } ) ); }; THREE.BoundingBoxHelper.prototype = Object.create( THREE.Mesh.prototype ); THREE.BoundingBoxHelper.prototype.constructor = THREE.BoundingBoxHelper; THREE.BoundingBoxHelper.prototype.update = function () { this.box.setFromObject( this.object ); this.box.size( this.scale ); this.box.center( this.position ); }; // File:src/extras/helpers/CameraHelper.js /** * @author alteredq / http://alteredqualia.com/ * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ THREE.CameraHelper = function ( camera ) { var geometry = new THREE.Geometry(); var material = new THREE.LineBasicMaterial( { color: 0xffffff, vertexColors: THREE.FaceColors } ); var pointMap = {}; // colors var hexFrustum = 0xffaa00; var hexCone = 0xff0000; var hexUp = 0x00aaff; var hexTarget = 0xffffff; var hexCross = 0x333333; // near addLine( "n1", "n2", hexFrustum ); addLine( "n2", "n4", hexFrustum ); addLine( "n4", "n3", hexFrustum ); addLine( "n3", "n1", hexFrustum ); // far addLine( "f1", "f2", hexFrustum ); addLine( "f2", "f4", hexFrustum ); addLine( "f4", "f3", hexFrustum ); addLine( "f3", "f1", hexFrustum ); // sides addLine( "n1", "f1", hexFrustum ); addLine( "n2", "f2", hexFrustum ); addLine( "n3", "f3", hexFrustum ); addLine( "n4", "f4", hexFrustum ); // cone addLine( "p", "n1", hexCone ); addLine( "p", "n2", hexCone ); addLine( "p", "n3", hexCone ); addLine( "p", "n4", hexCone ); // up addLine( "u1", "u2", hexUp ); addLine( "u2", "u3", hexUp ); addLine( "u3", "u1", hexUp ); // target addLine( "c", "t", hexTarget ); addLine( "p", "c", hexCross ); // cross addLine( "cn1", "cn2", hexCross ); addLine( "cn3", "cn4", hexCross ); addLine( "cf1", "cf2", hexCross ); addLine( "cf3", "cf4", hexCross ); function addLine( a, b, hex ) { addPoint( a, hex ); addPoint( b, hex ); } function addPoint( id, hex ) { geometry.vertices.push( new THREE.Vector3() ); geometry.colors.push( new THREE.Color( hex ) ); if ( pointMap[ id ] === undefined ) { pointMap[ id ] = []; } pointMap[ id ].push( geometry.vertices.length - 1 ); } THREE.LineSegments.call( this, geometry, material ); this.camera = camera; this.camera.updateProjectionMatrix(); this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); }; THREE.CameraHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.CameraHelper.prototype.constructor = THREE.CameraHelper; THREE.CameraHelper.prototype.update = function () { var geometry, pointMap; var vector = new THREE.Vector3(); var camera = new THREE.Camera(); function setPoint( point, x, y, z ) { vector.set( x, y, z ).unproject( camera ); var points = pointMap[ point ]; if ( points !== undefined ) { for ( var i = 0, il = points.length; i < il; i ++ ) { geometry.vertices[ points[ i ] ].copy( vector ); } } } return function () { geometry = this.geometry; pointMap = this.pointMap; var w = 1, h = 1; // we need just camera projection matrix // world matrix must be identity camera.projectionMatrix.copy( this.camera.projectionMatrix ); // center / target setPoint( "c", 0, 0, - 1 ); setPoint( "t", 0, 0, 1 ); // near setPoint( "n1", - w, - h, - 1 ); setPoint( "n2", w, - h, - 1 ); setPoint( "n3", - w, h, - 1 ); setPoint( "n4", w, h, - 1 ); // far setPoint( "f1", - w, - h, 1 ); setPoint( "f2", w, - h, 1 ); setPoint( "f3", - w, h, 1 ); setPoint( "f4", w, h, 1 ); // up setPoint( "u1", w * 0.7, h * 1.1, - 1 ); setPoint( "u2", - w * 0.7, h * 1.1, - 1 ); setPoint( "u3", 0, h * 2, - 1 ); // cross setPoint( "cf1", - w, 0, 1 ); setPoint( "cf2", w, 0, 1 ); setPoint( "cf3", 0, - h, 1 ); setPoint( "cf4", 0, h, 1 ); setPoint( "cn1", - w, 0, - 1 ); setPoint( "cn2", w, 0, - 1 ); setPoint( "cn3", 0, - h, - 1 ); setPoint( "cn4", 0, h, - 1 ); geometry.verticesNeedUpdate = true; }; }(); // File:src/extras/helpers/DirectionalLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.DirectionalLightHelper = function ( light, size ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; size = size || 1; var geometry = new THREE.Geometry(); geometry.vertices.push( new THREE.Vector3( - size, size, 0 ), new THREE.Vector3( size, size, 0 ), new THREE.Vector3( size, - size, 0 ), new THREE.Vector3( - size, - size, 0 ), new THREE.Vector3( - size, size, 0 ) ); var material = new THREE.LineBasicMaterial( { fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.lightPlane = new THREE.Line( geometry, material ); this.add( this.lightPlane ); geometry = new THREE.Geometry(); geometry.vertices.push( new THREE.Vector3(), new THREE.Vector3() ); material = new THREE.LineBasicMaterial( { fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.targetLine = new THREE.Line( geometry, material ); this.add( this.targetLine ); this.update(); }; THREE.DirectionalLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.DirectionalLightHelper.prototype.constructor = THREE.DirectionalLightHelper; THREE.DirectionalLightHelper.prototype.dispose = function () { this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose(); }; THREE.DirectionalLightHelper.prototype.update = function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var v3 = new THREE.Vector3(); return function () { v1.setFromMatrixPosition( this.light.matrixWorld ); v2.setFromMatrixPosition( this.light.target.matrixWorld ); v3.subVectors( v2, v1 ); this.lightPlane.lookAt( v3 ); this.lightPlane.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); this.targetLine.geometry.vertices[ 1 ].copy( v3 ); this.targetLine.geometry.verticesNeedUpdate = true; this.targetLine.material.color.copy( this.lightPlane.material.color ); }; }(); // File:src/extras/helpers/EdgesHelper.js /** * @author WestLangley / http://github.com/WestLangley * @param object THREE.Mesh whose geometry will be used * @param hex line color * @param thresholdAngle the minimum angle (in degrees), * between the face normals of adjacent faces, * that is required to render an edge. A value of 10 means * an edge is only rendered if the angle is at least 10 degrees. */ THREE.EdgesHelper = function ( object, hex, thresholdAngle ) { var color = ( hex !== undefined ) ? hex : 0xffffff; THREE.LineSegments.call( this, new THREE.EdgesGeometry( object.geometry, thresholdAngle ), new THREE.LineBasicMaterial( { color: color } ) ); this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; }; THREE.EdgesHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.EdgesHelper.prototype.constructor = THREE.EdgesHelper; // File:src/extras/helpers/FaceNormalsHelper.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.FaceNormalsHelper = function ( object, size, hex, linewidth ) { // FaceNormalsHelper only supports THREE.Geometry this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xffff00; var width = ( linewidth !== undefined ) ? linewidth : 1; // var nNormals = 0; var objGeometry = this.object.geometry; if ( objGeometry instanceof THREE.Geometry ) { nNormals = objGeometry.faces.length; } else { console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' ); } // var geometry = new THREE.BufferGeometry(); var positions = new THREE.Float32Attribute( nNormals * 2 * 3, 3 ); geometry.addAttribute( 'position', positions ); THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ) ); // this.matrixAutoUpdate = false; this.update(); }; THREE.FaceNormalsHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.FaceNormalsHelper.prototype.constructor = THREE.FaceNormalsHelper; THREE.FaceNormalsHelper.prototype.update = ( function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var normalMatrix = new THREE.Matrix3(); return function update() { this.object.updateMatrixWorld( true ); normalMatrix.getNormalMatrix( this.object.matrixWorld ); var matrixWorld = this.object.matrixWorld; var position = this.geometry.attributes.position; // var objGeometry = this.object.geometry; var vertices = objGeometry.vertices; var faces = objGeometry.faces; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; var normal = face.normal; v1.copy( vertices[ face.a ] ) .add( vertices[ face.b ] ) .add( vertices[ face.c ] ) .divideScalar( 3 ) .applyMatrix4( matrixWorld ); v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } position.needsUpdate = true; return this; } }() ); // File:src/extras/helpers/GridHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.GridHelper = function ( size, step ) { var geometry = new THREE.Geometry(); var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors } ); this.color1 = new THREE.Color( 0x444444 ); this.color2 = new THREE.Color( 0x888888 ); for ( var i = - size; i <= size; i += step ) { geometry.vertices.push( new THREE.Vector3( - size, 0, i ), new THREE.Vector3( size, 0, i ), new THREE.Vector3( i, 0, - size ), new THREE.Vector3( i, 0, size ) ); var color = i === 0 ? this.color1 : this.color2; geometry.colors.push( color, color, color, color ); } THREE.LineSegments.call( this, geometry, material ); }; THREE.GridHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.GridHelper.prototype.constructor = THREE.GridHelper; THREE.GridHelper.prototype.setColors = function( colorCenterLine, colorGrid ) { this.color1.set( colorCenterLine ); this.color2.set( colorGrid ); this.geometry.colorsNeedUpdate = true; }; // File:src/extras/helpers/HemisphereLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.HemisphereLightHelper = function ( light, sphereSize ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.colors = [ new THREE.Color(), new THREE.Color() ]; var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 ); geometry.rotateX( - Math.PI / 2 ); for ( var i = 0, il = 8; i < il; i ++ ) { geometry.faces[ i ].color = this.colors[ i < 4 ? 0 : 1 ]; } var material = new THREE.MeshBasicMaterial( { vertexColors: THREE.FaceColors, wireframe: true } ); this.lightSphere = new THREE.Mesh( geometry, material ); this.add( this.lightSphere ); this.update(); }; THREE.HemisphereLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.HemisphereLightHelper.prototype.constructor = THREE.HemisphereLightHelper; THREE.HemisphereLightHelper.prototype.dispose = function () { this.lightSphere.geometry.dispose(); this.lightSphere.material.dispose(); }; THREE.HemisphereLightHelper.prototype.update = function () { var vector = new THREE.Vector3(); return function () { this.colors[ 0 ].copy( this.light.color ).multiplyScalar( this.light.intensity ); this.colors[ 1 ].copy( this.light.groundColor ).multiplyScalar( this.light.intensity ); this.lightSphere.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() ); this.lightSphere.geometry.colorsNeedUpdate = true; } }(); // File:src/extras/helpers/PointLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.PointLightHelper = function ( light, sphereSize ) { this.light = light; this.light.updateMatrixWorld(); var geometry = new THREE.SphereGeometry( sphereSize, 4, 2 ); var material = new THREE.MeshBasicMaterial( { wireframe: true, fog: false } ); material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); THREE.Mesh.call( this, geometry, material ); this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false; /* var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); var d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ }; THREE.PointLightHelper.prototype = Object.create( THREE.Mesh.prototype ); THREE.PointLightHelper.prototype.constructor = THREE.PointLightHelper; THREE.PointLightHelper.prototype.dispose = function () { this.geometry.dispose(); this.material.dispose(); }; THREE.PointLightHelper.prototype.update = function () { this.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); /* var d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ }; // File:src/extras/helpers/SkeletonHelper.js /** * @author Sean Griffin / http://twitter.com/sgrif * @author Michael Guerrero / http://realitymeltdown.com * @author mrdoob / http://mrdoob.com/ * @author ikerr / http://verold.com */ THREE.SkeletonHelper = function ( object ) { this.bones = this.getBoneList( object ); var geometry = new THREE.Geometry(); for ( var i = 0; i < this.bones.length; i ++ ) { var bone = this.bones[ i ]; if ( bone.parent instanceof THREE.Bone ) { geometry.vertices.push( new THREE.Vector3() ); geometry.vertices.push( new THREE.Vector3() ); geometry.colors.push( new THREE.Color( 0, 0, 1 ) ); geometry.colors.push( new THREE.Color( 0, 1, 0 ) ); } } geometry.dynamic = true; var material = new THREE.LineBasicMaterial( { vertexColors: THREE.VertexColors, depthTest: false, depthWrite: false, transparent: true } ); THREE.LineSegments.call( this, geometry, material ); this.root = object; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; this.update(); }; THREE.SkeletonHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.SkeletonHelper.prototype.constructor = THREE.SkeletonHelper; THREE.SkeletonHelper.prototype.getBoneList = function( object ) { var boneList = []; if ( object instanceof THREE.Bone ) { boneList.push( object ); } for ( var i = 0; i < object.children.length; i ++ ) { boneList.push.apply( boneList, this.getBoneList( object.children[ i ] ) ); } return boneList; }; THREE.SkeletonHelper.prototype.update = function () { var geometry = this.geometry; var matrixWorldInv = new THREE.Matrix4().getInverse( this.root.matrixWorld ); var boneMatrix = new THREE.Matrix4(); var j = 0; for ( var i = 0; i < this.bones.length; i ++ ) { var bone = this.bones[ i ]; if ( bone.parent instanceof THREE.Bone ) { boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld ); geometry.vertices[ j ].setFromMatrixPosition( boneMatrix ); boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld ); geometry.vertices[ j + 1 ].setFromMatrixPosition( boneMatrix ); j += 2; } } geometry.verticesNeedUpdate = true; geometry.computeBoundingSphere(); }; // File:src/extras/helpers/SpotLightHelper.js /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.SpotLightHelper = function ( light ) { THREE.Object3D.call( this ); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; var geometry = new THREE.CylinderGeometry( 0, 1, 1, 8, 1, true ); geometry.translate( 0, - 0.5, 0 ); geometry.rotateX( - Math.PI / 2 ); var material = new THREE.MeshBasicMaterial( { wireframe: true, fog: false } ); this.cone = new THREE.Mesh( geometry, material ); this.add( this.cone ); this.update(); }; THREE.SpotLightHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.SpotLightHelper.prototype.constructor = THREE.SpotLightHelper; THREE.SpotLightHelper.prototype.dispose = function () { this.cone.geometry.dispose(); this.cone.material.dispose(); }; THREE.SpotLightHelper.prototype.update = function () { var vector = new THREE.Vector3(); var vector2 = new THREE.Vector3(); return function () { var coneLength = this.light.distance ? this.light.distance : 10000; var coneWidth = coneLength * Math.tan( this.light.angle ); this.cone.scale.set( coneWidth, coneWidth, coneLength ); vector.setFromMatrixPosition( this.light.matrixWorld ); vector2.setFromMatrixPosition( this.light.target.matrixWorld ); this.cone.lookAt( vector2.sub( vector ) ); this.cone.material.color.copy( this.light.color ).multiplyScalar( this.light.intensity ); }; }(); // File:src/extras/helpers/VertexNormalsHelper.js /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.VertexNormalsHelper = function ( object, size, hex, linewidth ) { this.object = object; this.size = ( size !== undefined ) ? size : 1; var color = ( hex !== undefined ) ? hex : 0xff0000; var width = ( linewidth !== undefined ) ? linewidth : 1; // var nNormals = 0; var objGeometry = this.object.geometry; if ( objGeometry instanceof THREE.Geometry ) { nNormals = objGeometry.faces.length * 3; } else if ( objGeometry instanceof THREE.BufferGeometry ) { nNormals = objGeometry.attributes.normal.count } // var geometry = new THREE.BufferGeometry(); var positions = new THREE.Float32Attribute( nNormals * 2 * 3, 3 ); geometry.addAttribute( 'position', positions ); THREE.LineSegments.call( this, geometry, new THREE.LineBasicMaterial( { color: color, linewidth: width } ) ); // this.matrixAutoUpdate = false; this.update(); }; THREE.VertexNormalsHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.VertexNormalsHelper.prototype.constructor = THREE.VertexNormalsHelper; THREE.VertexNormalsHelper.prototype.update = ( function () { var v1 = new THREE.Vector3(); var v2 = new THREE.Vector3(); var normalMatrix = new THREE.Matrix3(); return function update() { var keys = [ 'a', 'b', 'c' ]; this.object.updateMatrixWorld( true ); normalMatrix.getNormalMatrix( this.object.matrixWorld ); var matrixWorld = this.object.matrixWorld; var position = this.geometry.attributes.position; // var objGeometry = this.object.geometry; if ( objGeometry instanceof THREE.Geometry ) { var vertices = objGeometry.vertices; var faces = objGeometry.faces; var idx = 0; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { var vertex = vertices[ face[ keys[ j ] ] ]; var normal = face.vertexNormals[ j ]; v1.copy( vertex ).applyMatrix4( matrixWorld ); v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } } } else if ( objGeometry instanceof THREE.BufferGeometry ) { var objPos = objGeometry.attributes.position; var objNorm = objGeometry.attributes.normal; var idx = 0; // for simplicity, ignore index and drawcalls, and render every normal for ( var j = 0, jl = objPos.count; j < jl; j ++ ) { v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld ); v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) ); v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 ); position.setXYZ( idx, v1.x, v1.y, v1.z ); idx = idx + 1; position.setXYZ( idx, v2.x, v2.y, v2.z ); idx = idx + 1; } } position.needsUpdate = true; return this; } }() ); // File:src/extras/helpers/WireframeHelper.js /** * @author mrdoob / http://mrdoob.com/ */ THREE.WireframeHelper = function ( object, hex ) { var color = ( hex !== undefined ) ? hex : 0xffffff; THREE.LineSegments.call( this, new THREE.WireframeGeometry( object.geometry ), new THREE.LineBasicMaterial( { color: color } ) ); this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; }; THREE.WireframeHelper.prototype = Object.create( THREE.LineSegments.prototype ); THREE.WireframeHelper.prototype.constructor = THREE.WireframeHelper; // File:src/extras/objects/ImmediateRenderObject.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.ImmediateRenderObject = function ( material ) { THREE.Object3D.call( this ); this.material = material; this.render = function ( renderCallback ) {}; }; THREE.ImmediateRenderObject.prototype = Object.create( THREE.Object3D.prototype ); THREE.ImmediateRenderObject.prototype.constructor = THREE.ImmediateRenderObject; // File:src/extras/objects/MorphBlendMesh.js /** * @author alteredq / http://alteredqualia.com/ */ THREE.MorphBlendMesh = function( geometry, material ) { THREE.Mesh.call( this, geometry, material ); this.animationsMap = {}; this.animationsList = []; // prepare default animation // (all frames played together in 1 second) var numFrames = this.geometry.morphTargets.length; var name = "__default"; var startFrame = 0; var endFrame = numFrames - 1; var fps = numFrames / 1; this.createAnimation( name, startFrame, endFrame, fps ); this.setAnimationWeight( name, 1 ); }; THREE.MorphBlendMesh.prototype = Object.create( THREE.Mesh.prototype ); THREE.MorphBlendMesh.prototype.constructor = THREE.MorphBlendMesh; THREE.MorphBlendMesh.prototype.createAnimation = function ( name, start, end, fps ) { var animation = { start: start, end: end, length: end - start + 1, fps: fps, duration: ( end - start ) / fps, lastFrame: 0, currentFrame: 0, active: false, time: 0, direction: 1, weight: 1, directionBackwards: false, mirroredLoop: false }; this.animationsMap[ name ] = animation; this.animationsList.push( animation ); }; THREE.MorphBlendMesh.prototype.autoCreateAnimations = function ( fps ) { var pattern = /([a-z]+)_?(\d+)/i; var firstAnimation, frameRanges = {}; var geometry = this.geometry; for ( var i = 0, il = geometry.morphTargets.length; i < il; i ++ ) { var morph = geometry.morphTargets[ i ]; var chunks = morph.name.match( pattern ); if ( chunks && chunks.length > 1 ) { var name = chunks[ 1 ]; if ( ! frameRanges[ name ] ) frameRanges[ name ] = { start: Infinity, end: - Infinity }; var range = frameRanges[ name ]; if ( i < range.start ) range.start = i; if ( i > range.end ) range.end = i; if ( ! firstAnimation ) firstAnimation = name; } } for ( var name in frameRanges ) { var range = frameRanges[ name ]; this.createAnimation( name, range.start, range.end, fps ); } this.firstAnimation = firstAnimation; }; THREE.MorphBlendMesh.prototype.setAnimationDirectionForward = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.direction = 1; animation.directionBackwards = false; } }; THREE.MorphBlendMesh.prototype.setAnimationDirectionBackward = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.direction = - 1; animation.directionBackwards = true; } }; THREE.MorphBlendMesh.prototype.setAnimationFPS = function ( name, fps ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.fps = fps; animation.duration = ( animation.end - animation.start ) / animation.fps; } }; THREE.MorphBlendMesh.prototype.setAnimationDuration = function ( name, duration ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.duration = duration; animation.fps = ( animation.end - animation.start ) / animation.duration; } }; THREE.MorphBlendMesh.prototype.setAnimationWeight = function ( name, weight ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.weight = weight; } }; THREE.MorphBlendMesh.prototype.setAnimationTime = function ( name, time ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.time = time; } }; THREE.MorphBlendMesh.prototype.getAnimationTime = function ( name ) { var time = 0; var animation = this.animationsMap[ name ]; if ( animation ) { time = animation.time; } return time; }; THREE.MorphBlendMesh.prototype.getAnimationDuration = function ( name ) { var duration = - 1; var animation = this.animationsMap[ name ]; if ( animation ) { duration = animation.duration; } return duration; }; THREE.MorphBlendMesh.prototype.playAnimation = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.time = 0; animation.active = true; } else { console.warn( "THREE.MorphBlendMesh: animation[" + name + "] undefined in .playAnimation()" ); } }; THREE.MorphBlendMesh.prototype.stopAnimation = function ( name ) { var animation = this.animationsMap[ name ]; if ( animation ) { animation.active = false; } }; THREE.MorphBlendMesh.prototype.update = function ( delta ) { for ( var i = 0, il = this.animationsList.length; i < il; i ++ ) { var animation = this.animationsList[ i ]; if ( ! animation.active ) continue; var frameTime = animation.duration / animation.length; animation.time += animation.direction * delta; if ( animation.mirroredLoop ) { if ( animation.time > animation.duration || animation.time < 0 ) { animation.direction *= - 1; if ( animation.time > animation.duration ) { animation.time = animation.duration; animation.directionBackwards = true; } if ( animation.time < 0 ) { animation.time = 0; animation.directionBackwards = false; } } } else { animation.time = animation.time % animation.duration; if ( animation.time < 0 ) animation.time += animation.duration; } var keyframe = animation.start + THREE.Math.clamp( Math.floor( animation.time / frameTime ), 0, animation.length - 1 ); var weight = animation.weight; if ( keyframe !== animation.currentFrame ) { this.morphTargetInfluences[ animation.lastFrame ] = 0; this.morphTargetInfluences[ animation.currentFrame ] = 1 * weight; this.morphTargetInfluences[ keyframe ] = 0; animation.lastFrame = animation.currentFrame; animation.currentFrame = keyframe; } var mix = ( animation.time % frameTime ) / frameTime; if ( animation.directionBackwards ) mix = 1 - mix; if ( animation.currentFrame !== animation.lastFrame ) { this.morphTargetInfluences[ animation.currentFrame ] = mix * weight; this.morphTargetInfluences[ animation.lastFrame ] = ( 1 - mix ) * weight; } else { this.morphTargetInfluences[ animation.currentFrame ] = weight; } } };