/- Copyright (c) 2025 Michael R. Douglas, Sarah Hoback, Anna Mei, Ron Nissim. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael R. Douglas, Sarah Hoback, Anna Mei, Ron Nissim -/ /- Final bundling of OS axioms for the free Gaussian Free Field (GFF). This file provides a "master theorem" that assembles OS0–OS4 for the measure `gaussianFreeField_free m`, reusing the individual results proved elsewhere: - OS0 is proved in `OSforGFF/OS0_GFF.lean` via the holomorphic integral theorem (differentiation under the integral sign) - OS1 is proved in `OSforGFF/OS1_GFF.lean` via Fourier/momentum space methods - OS2 is proved in `OSforGFF/OS2_GFF.lean` via Euclidean invariance of the free covariance - OS3 is proved in `OSforGFF/OS3_GFF.lean` via the matrix/Schur–Hadamard argument - OS4 Clustering is proved in `OSforGFF/OS4_Clustering.lean` via Gaussian factorization and decay - OS4 Ergodicity is proved in `OSforGFF/OS4_Ergodicity.lean` via polynomial clustering → ergodicity We expose an unconditional master theorem: all five OS axioms hold for the free GFF. -/ import OSforGFF.GaussianFreeField import OSforGFF.OS3_GFF import OSforGFF.OS0_GFF import OSforGFF.OS1_GFF import OSforGFF.OS2_GFF import OSforGFF.OS4_Clustering import OSforGFF.OS4_Ergodicity open scoped BigOperators namespace OSforGFF noncomputable section /-! ## Master OS theorem for the free GFF -/ /-- Master theorem: the free GFF satisfies all Osterwalder-Schrader axioms. - OS0 is supplied by `QFT.gaussianFreeField_satisfies_OS0` via the holomorphic integral theorem - OS1 is supplied by `gaussianFreeField_satisfies_OS1_revised` via Fourier/momentum space methods - OS2 is supplied by `gaussian_satisfies_OS2` via Euclidean invariance of the free covariance - OS3 is supplied by `QFT.gaussianFreeField_OS3_real` via the Schur-Hadamard argument - OS4 Clustering is supplied by `QFT.gaussianFreeField_satisfies_OS4` via Gaussian factorization - OS4 Ergodicity is supplied by polynomial clustering (α=6) → ergodicity This is an unconditional theorem with no assumptions beyond m > 0. -/ theorem gaussianFreeField_satisfies_all_OS_axioms (m : ℝ) [Fact (0 < m)] : SatisfiesAllOS (μ_GFF m) where -- OS0 from the holomorphic integral theorem (differentiation under the integral) os0 := QFT.gaussianFreeField_satisfies_OS0 m -- OS1 from the free field theorem using Fourier/momentum space methods os1 := gaussianFreeField_satisfies_OS1_revised m -- OS2 from Euclidean invariance of free covariance os2 := gaussian_satisfies_OS2 (μ_GFF m) (by exact isGaussianGJ_gaussianFreeField_free m) (QFT.CovarianceEuclideanInvariantℂ_μ_GFF m) -- OS3 from the Schur-Hadamard argument os3 := QFT.gaussianFreeField_OS3_real m -- OS4 Clustering (Gaussian factorization and covariance decay) os4_clustering := QFT.gaussianFreeField_satisfies_OS4 m -- OS4 Ergodicity: polynomial clustering (α=6) implies ergodicity os4_ergodicity := OS4_Ergodicity.OS4_PolynomialClustering_implies_OS4_Ergodicity m (QFT.gaussianFreeField_satisfies_OS4_PolynomialClustering m 6 (by norm_num)) end end OSforGFF