# General Mathematics Results that do not depend on any project-specific definitions. These are pure extensions of Mathlib covering functional analysis, Schwartz function theory, special function integrals, and positive-definite kernels. ## 1. Functional Analysis ### Mathematical Background This section develops $L^2$ space infrastructure and properties of bilinear forms involving Schwartz functions and singular kernels. Key results include: - **$L^p$ embeddings:** Schwartz functions embed continuously into $L^2$ spaces. The embedding `schwartzToL2` sends $\mathcal{S}(\mathbb{R}^d, \mathbb{C})$ into $L^2(\mathbb{R}^d, \mathbb{C})$. - **Bounded multiplier operators:** If $|g(x)| \le C$ a.e., then $f \mapsto gf$ is a CLM on $L^2$ with $\|gf\|_2 \le C\|f\|_2$. - **Local integrability:** Functions with $|f(x)| \le C\|x\|^{-\alpha}$ and $\alpha < d$ are locally integrable in dimension $d \ge 3$. - **Double mollifier convergence:** For a kernel $C$ continuous away from the origin, the double convolution with approximate identities converges to $C(a)$ as the support shrinks to zero. ### Key Declarations (`OSforGFF/FunctionalAnalysis.lean`) | Declaration | Description | |-------------|-------------| | [`schwartzToL2`](../OSforGFF/FunctionalAnalysis.lean#L254) | $\mathcal{S}(\mathbb{R}^d,\mathbb{C}) \hookrightarrow L^2$ as CLM | | [`schwartzToL2'`](../OSforGFF/FunctionalAnalysis.lean#L260) | Variant for `EuclideanSpace` | | [`linfty_mul_L2_CLM`](../OSforGFF/FunctionalAnalysis.lean#L303) | $L^\infty$ multiplier as CLM on $L^2$ | | [`linfty_mul_L2_CLM_norm_bound`](../OSforGFF/FunctionalAnalysis.lean#L347) | $\lVert gf\rVert_2 \le C\lVert f\rVert_2$ | | [`locallyIntegrable_of_rpow_decay_real`](../OSforGFF/FunctionalAnalysis.lean#L513) | $\lvert f(x)\rvert \le C\lVert x\rVert^{-\alpha},\ \alpha < d \implies$ locally integrable ($d \ge 3$) | | [`integrableOn_ball_of_rpow_decay`](../OSforGFF/FunctionalAnalysis.lean#L408) | Integrability on balls for power-law singularity | | [`schwartz_bilinear_integrable_of_translationInvariant_L1`](../OSforGFF/FunctionalAnalysis.lean#L585) | $f(x)\ K_0(x-y)\ g(y)$ integrable when $K_0 \in L^1$ | | [`schwartz_integrable_decay`](../OSforGFF/FunctionalAnalysis.lean#L887) | $\lvert f(x)\rvert \le C(1+\lVert x\rVert)^{-N}$ for all $N$ | | [`schwartz_vanishing_linear_bound_general`](../OSforGFF/FunctionalAnalysis.lean#L758) | $f\mid_{t\le 0}=0 \implies \lvert f(t,x)\rvert \le Ct$ | | [`SchwartzMap.translate`](../OSforGFF/FunctionalAnalysis.lean#L858) | Translation of Schwartz functions | | [`double_mollifier_convergence`](../OSforGFF/FunctionalAnalysis.lean#L1045) | Double convolution with bump functions $\to$ kernel value | | [`polynomial_decay_integrable_3d`](../OSforGFF/FunctionalAnalysis.lean#L553) | $(1+\lVert x\rVert)^{-4}$ integrable in $\mathbb{R}^3$ | ### Detailed Proof Outline **Double mollifier convergence** (`double_mollifier_convergence`): Given $C$ continuous on $\{x \ne 0\}$ and $a \ne 0$, with a sequence of bump functions $\varphi_i$ whose support shrinks to zero: 1. Rewrite the double convolution as a single integral against the self-convolution `bumpSelfConv`. 2. Show `bumpSelfConv` is a non-negative approximate identity: integral 1, support in $B(0, 2r_{\mathrm{out}})$. 3. Apply the general approximate identity convergence theorem for continuous functions. The helper `bumpSelfConv` is the convolution of a normalized bump function with itself. Key properties proved: `bumpSelfConv_nonneg`, `bumpSelfConv_integral` (= 1), `bumpSelfConv_support_subset`, and `bumpSelfConv_support_tendsto`. --- ## 2. Schwartz Functions and Decay Estimates ### Mathematical Background This section establishes quantitative decay estimates for Schwartz functions and their bilinear pairings with singular kernels. The main results concern: - **Polynomial decay bounds:** Every $f \in \mathcal{S}$ satisfies $\|f(x)\| \le C(1+\|x\|)^{-N}$ for any $N > 0$. - **Convolution decay:** Convolutions of Schwartz functions with locally integrable kernels decay at any polynomial rate. - **Bilinear translation decay:** $\iint f(x)\ K(x-y)\ g(y-a)\ dx\ dy \to 0$ as $\|a\| \to \infty$, with polynomial rate when $K$ has exponential tail decay. ### Proof Strategy The bilinear decay proofs decompose the kernel $K$ into a singular part (supported on a ball) and a tail part: $$K(z) = K_{\mathrm{sing}}(z) + K_{\mathrm{tail}}(z)$$ where $K_{\mathrm{sing}}$ is compactly supported and $K_{\mathrm{tail}}$ is bounded. Each piece is handled separately: - **Singular part:** Compact support means the convolution with a Schwartz function inherits any polynomial decay rate. - **Tail part:** Exponential decay of $K_{\mathrm{tail}}$ combined with polynomial decay of $f$ gives polynomial decay of the convolution. The final result combines both pieces using the triangle inequality. ### Key Declarations (`OSforGFF/QuantitativeDecay.lean`) | Declaration | Description | |-------------|-------------| | [`PolynomialDecayBound`](../OSforGFF/QuantitativeDecay.lean#L58) | Structure: $\lvert f(x)\rvert \le C(1+\lVert x\rVert)^{-N}$ | | [`schwartz_has_polynomial_decay`](../OSforGFF/QuantitativeDecay.lean#L70) | Schwartz functions have polynomial decay of any integer order | | [`schwartz_has_polynomial_decay_real`](../OSforGFF/QuantitativeDecay.lean#L103) | Same for any real exponent $N > 0$ | | [`exp_decay_implies_polynomial_decay`](../OSforGFF/QuantitativeDecay.lean#L122) | $e^{-mx} \le C(1+x)^{-\alpha}$ for any $\alpha$ | | [`norm_exp_decay_implies_polynomial_decay`](../OSforGFF/QuantitativeDecay.lean#L164) | Exponential norm decay $\implies$ polynomial decay | | [`convolution_polynomial_decay`](../OSforGFF/QuantitativeDecay.lean#L276) | Polynomial decay of convolution when both factors decay | | [`convolution_compactSupport_decay`](../OSforGFF/QuantitativeDecay.lean#L440) | Convolution with compactly supported kernel inherits Schwartz decay | | [`convolution_expDecay_polynomial_decay`](../OSforGFF/QuantitativeDecay.lean#L617) | Schwartz $*$ exp-decaying kernel has polynomial decay | ### Key Declarations (`OSforGFF/SchwartzTranslationDecay.lean`) | Declaration | Description | |-------------|-------------| | [`schwartz_bilinear_translation_decay_proof`](../OSforGFF/SchwartzTranslationDecay.lean#L591) | $\iint f\ K\ g(\cdot - a) \to 0$ at cocompact (power-law $K$) | | [`schwartz_bilinear_translation_decay_polynomial_proof`](../OSforGFF/QuantitativeDecay.lean#L758) | Quantitative polynomial bound (exp-decaying $K$) | | [`convolution_vanishes_of_integrable_and_C0`](../OSforGFF/SchwartzTranslationDecay.lean#L279) | $L^1 * C_0 \to 0$ at infinity | | [`schwartz_bilinear_prod_integrable`](../OSforGFF/SchwartzTranslationDecay.lean#L435) | $f(x)\ K(x-y)\ g(y)$ jointly integrable | | [`kernelSingular`](../OSforGFF/SchwartzTranslationDecay.lean#L105) | Truncation of kernel to a ball | | [`kernelTail`](../OSforGFF/SchwartzTranslationDecay.lean#L109) | Kernel restricted to complement of ball | --- ## 3. Special Functions and Integrals ### Mathematical Background This section provides closed-form evaluations of special integrals arising in quantum field theory, particularly Fourier transforms of Lorentzian and exponential decay functions, and the Laplace-type integral appearing in the Schwinger representation. Key identities proved: - **Fourier transform of exponential decay:** $\displaystyle\int_{-\infty}^{\infty} e^{ikx}\ e^{-\mu|x|}\ dx = \frac{2\mu}{k^2+\mu^2}$ - **Fourier inversion for Lorentzian:** $\displaystyle\int_{-\infty}^{\infty} \frac{e^{ikx}}{k^2+\mu^2}\ dk = \frac{\pi}{\mu}\ e^{-\mu|x|}$ - **Laplace integral (Glasser's identity):** $\displaystyle\int_0^{\infty} s^{-1/2}\ e^{-a/s - bs}\ ds = \sqrt{\pi/b}\ e^{-2\sqrt{ab}}$ ### Proof Strategy **Fourier transforms:** Split the integral at 0. On each half-line, $e^{ikx \mp \mu x}$ has a decaying exponential factor whose antiderivative is computed explicitly. The results combine via $|x| = \pm x$ on each half-line. **Laplace integral:** The proof chain is: 1. Substitution $s = t^2$ reduces to an integral over $(0, \infty)$. 2. Complete the square: $a/t^2 + bt^2 = (\sqrt{a}/t - \sqrt{b}\ t)^2 + 2\sqrt{ab}$. 3. Factor out $e^{-2\sqrt{ab}}$. 4. Glasser's master theorem (a change-of-variables identity) evaluates the remaining Gaussian-like integral as $\sqrt{\pi}/(2\sqrt{b})$. ### Key Declarations (`OSforGFF/FourierTransforms.lean`) | Declaration | Description | |-------------|-------------| | [`fourier_exponential_decay`](../OSforGFF/FourierTransforms.lean#L521) | $\widehat{e^{-\mu\lvert x\rvert}} = 2\mu/(k^2+\mu^2)$ | | [`fourier_exponential_decay'`](../OSforGFF/FourierTransforms.lean#L483) | Same with opposite sign convention | | [`fourier_exp_decay_positive_halfline`](../OSforGFF/FourierTransforms.lean#L328) | $\int_0^\infty e^{ikx}\ e^{-\mu x}\ dx$ | | [`fourier_exp_decay_negative_halfline`](../OSforGFF/FourierTransforms.lean#L386) | $\int_{-\infty}^0 e^{ikx}\ e^{\mu x}\ dx$ | | [`fourier_inversion_exp_decay`](../OSforGFF/FourierTransforms.lean#L641) | $(2\pi)^{-1}\int e^{ikx}\ 2\mu/(k^2+\mu^2)\ dk$ | | [`fourier_lorentzian_1d`](../OSforGFF/FourierTransforms.lean#L723) | $\int e^{ikx}/(k^2+\mu^2)\ dk = (\pi/\mu)\ e^{-\mu\lvert x\rvert}$ | | [`integrable_exponential_decay`](../OSforGFF/FourierTransforms.lean#L138) | $e^{-\mu\lvert x\rvert} \in L^1(\mathbb{R})$ | | [`integrable_exponential_decay_fourier`](../OSforGFF/FourierTransforms.lean#L161) | $e^{ikx}\ e^{-\mu\lvert x\rvert} \in L^1(\mathbb{R})$ | | [`tendsto_cexp_atTop_zero`](../OSforGFF/FourierTransforms.lean#L224) | $e^{cx} \to 0$ as $x \to +\infty$ when $\mathrm{Re}(c) < 0$ | | [`tendsto_cexp_atBot_zero`](../OSforGFF/FourierTransforms.lean#L239) | $e^{cx} \to 0$ as $x \to -\infty$ when $\mathrm{Re}(c) > 0$ | ### Key Declarations (`OSforGFF/LaplaceIntegral.lean`) | Declaration | Description | |-------------|-------------| | [`laplace_integral_half_power`](../OSforGFF/LaplaceIntegral.lean#L542) | $\int_0^\infty s^{-1/2}\ e^{-a/s-bs}\ ds = \sqrt{\pi/b}\ e^{-2\sqrt{ab}}$ | | [`laplace_integral_half_power_nonneg`](../OSforGFF/LaplaceIntegral.lean#L558) | Extension to $a \ge 0$ | | [`glasser_gaussian_integral`](../OSforGFF/LaplaceIntegral.lean#L447) | $\int_0^\infty e^{-(c/u - u)^2}\ du = \sqrt{\pi}/2$ | | [`weighted_glasser_integral_eq_gaussian`](../OSforGFF/LaplaceIntegral.lean#L414) | $\int_0^\infty (1+c/u^2)\ e^{-(c/u-u)^2}\ du = \sqrt{\pi}$ | | [`glasser_integral_substitution_identity`](../OSforGFF/LaplaceIntegral.lean#L100) | Substitution symmetry for Glasser integrals | --- ## 4. $L^2$ Time Integral Estimates ### Mathematical Background This section provides measure-theoretic estimates for time averages of stochastic processes, used in the ergodicity arguments (OS axiom 4). The main results are: - **Cauchy-Schwarz for set integrals:** $\displaystyle\left\|\int_{[a,b]} f\right\|^2 \le (b-a)\int_{[a,b]}\|f\|^2$ - **$L^2$ time average bound:** If $\int \|A(s)\|^2\ d\mu \le M$ for all $s \in [0,T]$, then $\int \|T^{-1}\int_0^T A(s)\ ds\|^2\ d\mu \le M$. - **Product $L^2$ membership:** Joint measurability + uniform slice $L^2$ bounds $\implies$ $L^2$ membership on the product. - **Double integral polynomial decay:** $\displaystyle\int_0^T\int_0^T (1+|s-u|)^{-\alpha}\ ds\ du \le CT$ for $\alpha > 1$. ### Key Declarations (`OSforGFF/L2TimeIntegral.lean`) | Declaration | Description | |-------------|-------------| | [`sq_setIntegral_le_measure_mul_setIntegral_sq_proved`](../OSforGFF/L2TimeIntegral.lean#L86) | $\lVert\int_{[a,b]} f\rVert^2 \le (b-a)\int_{[a,b]}\lVert f\rVert^2$ | | [`L2_time_average_bound`](../OSforGFF/L2TimeIntegral.lean#L204) | $L^2$ norm of time average $\le$ sup of slicewise $L^2$ | | [`time_average_memLp_two`](../OSforGFF/OS4_Ergodicity.lean#L267) | Time average of $L^2$ process $\in L^2$ | | [`memLp_prod_of_uniform_slicewise_bound`](../OSforGFF/L2TimeIntegral.lean#L298) | Product $L^2$ from uniform slicewise bounds | | [`double_integral_polynomial_decay_bound_proved`](../OSforGFF/L2TimeIntegral.lean#L495) | $\int_0^T\int_0^T(1+\lvert s-u\rvert)^{-\alpha}\ ds\ du \le CT$ | | [`L2_variance_time_average_bound`](../OSforGFF/L2TimeIntegral.lean#L725) | $\mathrm{Var}(\text{time avg}) \le \iint \mathrm{Cov}$ | | [`L2_process_covariance_fubini_integrable`](../OSforGFF/L2TimeIntegral.lean#L875) | Fubini integrability for $L^2$ process covariance | | [`minkowski_weighted_L2_sum_proved`](../OSforGFF/L2TimeIntegral.lean#L666) | Minkowski inequality for weighted $L^2$ sums | | [`gff_covariance_norm_integrableOn_slice_proved`](../OSforGFF/L2TimeIntegral.lean#L459) | Covariance norm integrable on time slices | --- ## 5. Positive-Definite Kernels and Matrix Theory ### Mathematical Background This section develops the theory of positive-definite functions and matrices needed for the Gaussian measure construction. The main results are: - **Schur product theorem:** $A \circ B \succeq 0$ when $A, B \succeq 0$ (Hadamard product). - **Hadamard exponential:** $\exp_\circ(R) \succeq 0$ when $R \succeq 0$, proved via the series expansion $\exp_\circ = \sum R^{\circ k}/k!$ and the Schur product theorem. - **Gaussian RBF positive definiteness:** $h \mapsto e^{-\|h\|^2/2}$ is positive definite on any inner product space. - **Abstract positive definiteness:** The type class `IsPositiveDefinite` for translation-invariant positive-definite functions on groups. ### Key Declarations (`OSforGFF/SchurProduct.lean`) | Declaration | Description | |-------------|-------------| | [`schur_product_posDef`](../OSforGFF/SchurProduct.lean#L491) | $A \circ B \succeq 0$ when $A, B \succeq 0$ (Schur product) | | [`kronLike_posDef`](../OSforGFF/SchurProduct.lean#L383) | Kronecker-like product of PosDef matrices is PosDef | ### Key Declarations (`OSforGFF/HadamardExp.lean`) | Declaration | Description | |-------------|-------------| | [`entrywiseExp`](../OSforGFF/HadamardExp.lean#L38) | Entrywise exponential $(\exp_\circ R)_{ij} = e^{R_{ij}}$ | | [`posDef_entrywiseExp_hadamardSeries_of_posDef`](../OSforGFF/HadamardExp.lean#L310) | $R \succ 0 \implies \exp_\circ(R) \succ 0$ | | [`posSemidef_entrywiseExp_hadamardSeries_of_posSemidef`](../OSforGFF/HadamardExp.lean#L425) | $R \succeq 0 \implies \exp_\circ(R) \succeq 0$ | | [`hadamardPow_posDef_of_posDef`](../OSforGFF/HadamardExp.lean#L141) | $R \succ 0 \implies R^{\circ k} \succ 0$ | ### Key Declarations (`OSforGFF/PositiveDefinite.lean`, `OSforGFF/GaussianRBF.lean`) | Declaration | Description | |-------------|-------------| | [`IsPositiveDefinite`](../OSforGFF/PositiveDefinite.lean#L36) | Positive-definite function on an additive group | | [`IsPositiveDefiniteKernel`](../OSforGFF/GaussianRBF.lean#L24) | Positive-definite kernel $K(x,y)$ | | [`gaussian_rbf_pd_innerProduct_proof`](../OSforGFF/GaussianRBF.lean#L223) | $h \mapsto e^{-\lVert h\rVert^2/2}$ is positive definite | --- ## 6. Nuclear Space Axiom ### Mathematical Background A small number of standard mathematical results are assumed as axioms (via `axiom`) because their proofs would require substantial Mathlib extensions. ### Key Declarations (`OSforGFF/NuclearSpace.lean`) | Declaration | Description | |-------------|-------------| | [`NuclearSpace`](../OSforGFF/NuclearSpace.lean#L126) | Nuclear space via Hilbert-Schmidt embedding characterization | | [`schwartz_nuclear`](../OSforGFF/NuclearSpace.lean#L145) | $\mathcal{S}$ is nuclear (assumed) | ## References - Reed, M. and Simon, B. *Methods of Modern Mathematical Physics*, Vol. I-II. - Folland, G. *Real Analysis: Modern Techniques and Their Applications*. - Rudin, W. *Functional Analysis*. - Glimm, J. and Jaffe, A. *Quantum Physics: A Functional Integral Point of View*. - Schilling, R. *Measures, Integrals and Martingales*.