# OS0 Analyticity ## Mathematical Background OS0 (Analyticity) is the first Osterwalder-Schrader axiom. It states that the generating functional $Z[f]$ depends analytically on the test function arguments. This is essential because: 1. **Wick rotation**: Analytic continuation connects Euclidean and Minkowski signatures. 2. **Correlation functions**: Derivatives of $Z$ yield Schwinger $n$-point functions analyticity ensures these are well-defined. 3. **Perturbation theory**: Taylor expansions of $Z$ give perturbative corrections. **Theorem (OS0).** For any finite collection of complex test functions $J_1, \ldots, J_n \in \mathcal{S}(\mathbb{R}^4, \mathbb{C})$, the map $$z = (z_1, \ldots, z_n) \mapsto Z\left[\sum_{i=1}^n z_i J_i\right] = \int_\Omega \exp\left(i \sum_{i=1}^n z_i \langle \omega, J_i \rangle\right) d\mu(\omega)$$ is analytic on $\mathbb{C}^n$. For the GFF, $\mu = \mu_{\mathrm{GFF}}$ is the Gaussian measure with covariance $C = (-\Delta + m^2)^{-1}$, and the generating functional has the closed form $Z[f] = \exp(-\tfrac{1}{2}\langle f, Cf \rangle)$. ## Proof Strategy The proof applies a **holomorphic integral theorem**: if the integrand $f(z, \omega) = \exp(i\sum_i z_i \langle\omega, J_i\rangle)$ satisfies appropriate measurability, analyticity, integrability, and derivative bound conditions in $z$ and $\omega$, then the integral $F(z) = \int f(z, \omega)\ d\mu(\omega)$ is holomorphic. Goursat's theorem in n dimensions then converts holomorphy to analyticity. The five hypotheses verified are: 1. Measurability of $\omega \mapsto f(z, \omega)$ for each $z$ 2. Analyticity of $z \mapsto f(z, \omega)$ for each $\omega$ (linear + exp composition) 3. Integrability of $f(z, \cdot)$ for each $z$ (Fernique's theorem) 4. Measurability of $\omega \mapsto D_z f(z, \omega)$ 5. Local integrable bounds on the Frechet derivative (Holder + Gaussian moments) **Literature**: Glimm-Jaffe Ch. 6 Hormander, "Complex Analysis in Several Variables". ## Key Declarations | Declaration | Description | |-------------|-------------| | [`gaussianFreeField_satisfies_OS0`](../OSforGFF/OS0_GFF.lean#L1120) | Main theorem: the GFF satisfies OS0 analyticity | | [`holomorphic_integral_of_locally_L1_bound`](../OSforGFF/OS0_GFF.lean#L105) | Analytic integrand + local $L^1$ bounds $\Rightarrow$ analytic integral | | [`gff_integrand_measurable`](../OSforGFF/OS0_GFF.lean#L167) | $\omega \mapsto \exp(i\langle\omega, \sum z_i J_i\rangle)$ is measurable | | [`gff_integrand_analytic`](../OSforGFF/OS0_GFF.lean#L195) | $z \mapsto \exp(i\langle\omega, \sum z_i J_i\rangle)$ is analytic for fixed $\omega$ | | [`gff_integrand_integrable`](../OSforGFF/OS0_GFF.lean#L536) | $\exp(i\langle\omega, \sum z_i J_i\rangle) \in L^1(\mu_{\mathrm{GFF}})$ | | [`gff_integrand_fderiv_measurable`](../OSforGFF/OS0_GFF.lean#L562) | $\omega \mapsto D_z \exp(i\langle\omega, \sum z_i J_i\rangle)$ is measurable | | [`gff_integrand_fderiv_bound`](../OSforGFF/OS0_GFF.lean#L681) | Local $L^1$ bound on the Frechet derivative | | [`norm_exp_I_distributionPairingℂ_real`](../OSforGFF/OS0_GFF.lean#L269) | $\lvert e^{i\langle\omega,f\rangle}\rvert = e^{-\omega(f_{\mathrm{im}})}$ | | [`gff_exp_abs_pairing_integrable`](../OSforGFF/OS0_GFF.lean#L461) | $\exp\lvert\omega(f)\rvert \in L^1(\mu_{\mathrm{GFF}})$ | | [`gff_exp_abs_pairing_memLp`](../OSforGFF/OS0_GFF.lean#L328) | $\exp\lvert\omega(f)\rvert \in L^p(\mu_{\mathrm{GFF}})$ for $p < \infty$ | | [`gff_exp_abs_sum_memLp`](../OSforGFF/OS0_GFF.lean#L469) | $\exp(\sum_i |\omega(g_i)|) \in L^2(\mu_{\mathrm{GFF}})$ | | [`gff_integrand_norm_integrable`](../OSforGFF/OS0_GFF.lean#L522) | $\lvert\exp(i\langle\omega,f\rangle)\rvert \in L^1(\mu_{\mathrm{GFF}})$ | | [`distributionPairingℂ_real_continuous`](../OSforGFF/OS0_GFF.lean#L152) | $\omega \mapsto \langle\omega, f\rangle$ is continuous | | [`differentiable_analyticAt_finDim`](../OSforGFF/OS0_GFF.lean#L86) | Goursat's theorem in $n$ dimensions: $\mathbb{C}$-differentiable $\Rightarrow$ analytic | ## Detailed Proof Outline ### Step 1: Analyticity of the integrand in $z$ For fixed $\omega \in \mathcal{S}'$, the function $z \mapsto \exp(i \sum_i z_i \langle\omega, J_i\rangle)$ is entire because: - The sum $\sum_i z_i \langle\omega, J_i\rangle$ is a linear function of $z$ (hence analytic). - Multiplication by $i$ and the exponential are entire. - Composition of analytic functions is analytic. The key identity is `pairing_linear_combo` from `ComplexTestFunction.lean`, which establishes linearity of the distributional pairing in the test function argument. **Lean theorem**: `gff_integrand_analytic` ### Step 2: Measurability in $\omega$ For fixed $z$, the map $\omega \mapsto \exp(i\langle\omega, \sum_i z_i J_i\rangle)$ is measurable because the evaluation functional $\omega \mapsto \langle\omega, f\rangle$ is continuous on the weak-* dual $\mathcal{S}'$ (`distributionPairingℂ_real_continuous`), and compositions of continuous functions with measurable operations preserve measurability. **Lean theorem**: `gff_integrand_measurable` ### Step 3: Integrability For complex test functions $f = f_{\mathrm{re}} + i f_{\mathrm{im}}$, the norm of the integrand is: $$\|\exp(i\langle\omega, f\rangle)\| = \exp(-\omega(f_{\mathrm{im}}))$$ This follows from $|e^{a+ib}| = e^a$ applied to $i\langle\omega, f\rangle = i\langle\omega, f_{\mathrm{re}}\rangle - \langle\omega, f_{\mathrm{im}}\rangle$. When $f_{\mathrm{im}} \ne 0$, the norm $\exp(-\omega(f_{\mathrm{im}}))$ can be large for field configurations where $\omega(f_{\mathrm{im}}) < 0$. Integrability then requires **Fernique's theorem**: for Gaussian measures, $\exp(\alpha \langle\omega, g\rangle^2)$ is integrable for sufficiently small $\alpha > 0$. This is established by `gaussianFreeField_pairing_expSq_integrable` in `GFFMconstruct.lean`. **Lean theorem**: `gff_integrand_integrable` ### Step 4: Frechet derivative measurability The Frechet derivative has the explicit form: $$D_z[\exp(i\langle\omega, \textstyle\sum_i z_i J_i\rangle)] = \exp(i\langle\omega, \textstyle\sum_i z_i J_i\rangle) \cdot i \cdot \sum_i \langle\omega, J_i\rangle \cdot \mathrm{proj}_i$$ This is continuous in $\omega$ as a composition of continuous functions, hence measurable. **Lean theorem**: `gff_integrand_fderiv_measurable` ### Step 5: Local integrable bound on the derivative The derivative norm is bounded by: $$\|D_z f(z, \omega)\| \le \sum_j |\langle\omega, J_j\rangle| \cdot \exp(-\omega(f_{\mathrm{im}}))$$ An integrable dominating function is constructed as: $$\mathrm{bound}(\omega) = \exp\left(|\omega(f_{\mathrm{im}}^{z_0})| + \sum_i (|\omega(J_{i,\mathrm{re}})| + |\omega(J_{i,\mathrm{im}})|)\right) \cdot \left(1 + \sum_i \|\langle\omega, J_i\rangle\|\right)$$ Integrability of this bound uses: - **Holder's inequality**: $L^2 \times L^2 \to L^1$ - **Gaussian exponential integrability** (`gff_exp_abs_sum_memLp`): the exponential factor is in $L^2$ - **Gaussian polynomial moments** (`gaussianFreeField_pairing_memLp`): the polynomial factor is in $L^2$ **Lean theorem**: `gff_integrand_fderiv_bound` ### Step 6: Assembly With all five hypotheses verified, `holomorphic_integral_of_locally_L1_bound` establishes that $z \mapsto \int \exp(i\langle\omega, \sum_i z_i J_i\rangle)\ d\mu(\omega)$ is analytic on $\mathbb{C}^n$. The intermediate step uses the axiom `differentiable_analyticAt_finDim` (Goursat's theorem in $n$ dimensions) to convert holomorphy (complex differentiability) to analyticity (convergent power series representation) in finite dimensions. **Lean theorem**: `gaussianFreeField_satisfies_OS0` ### Axioms Used The proof requires 1 project-specific axiom: | Axiom | Mathematical content | |-------|---------------------| | [`differentiable_analyticAt_finDim`](../OSforGFF/OS0_GFF.lean#L86) | Goursat's theorem in $n$ dimensions: holomorphic $\Rightarrow$ analytic in $\mathbb{C}^n$ | This is a standard result in several complex variables. It is not yet available in Mathlib because the full SCV machinery (polydisk Cauchy integral formula, etc.) has not been formalized. ## References - J. Glimm and A. Jaffe, *Quantum Physics*, Springer, 2nd ed., Ch. 6. - L. Hormander, *An Introduction to Complex Analysis in Several Variables*, North-Holland, 3rd ed., 1990 (Goursat's theorem in n dimensions). - S. G. Krantz, *Function Theory of Several Complex Variables*, AMS Chelsea, 2001. - X. Fernique, "Regularite des trajectoires des fonctions aleatoires gaussiennes," Ecole d'Ete de Probabilites de Saint-Flour IV, Springer LNM 480, 1975.