# OS2 Euclidean Invariance ## Mathematical Background OS2 (Euclidean Invariance) requires that the quantum field theory has no preferred direction or origin in Euclidean spacetime. The generating functional must be invariant under the Euclidean group $E(4) = \mathbb{R}^4 \rtimes O(4)$, which comprises translations, rotations, and reflections. This axiom is essential because: 1. **Lorentz invariance**: After Wick rotation, Euclidean invariance becomes Poincare invariance of the Minkowski theory. 2. **Vacuum uniqueness**: The vacuum state respects all spacetime symmetries. 3. **Correlation functions**: $n$-point functions depend only on relative positions and orientations, not absolute coordinates. **Theorem (OS2).** For all $g \in E(4)$ and $f \in \mathcal{S}(\mathbb{R}^4, \mathbb{C})$: $$Z[g \cdot f] = Z[f]$$ where $(g \cdot f)(x) = f(g^{-1} x)$ is the pullback action. The Euclidean group element $g = (R, t)$ with $R \in O(4)$ and $t \in \mathbb{R}^4$ acts on spacetime as $g \cdot x = Rx + t$, and on test functions by pullback: $(g \cdot f)(x) = f(R^{-1}(x - t))$. ## Proof Strategy The proof factors into two parts: 1. **General Gaussian result**: For any Gaussian measure whose covariance is Euclidean-invariant, $Z[g \cdot f] = Z[f]$. 2. **GFF-specific**: The free GFF covariance depends only on $\|x - y\|$, which is preserved by Euclidean transformations. For the GFF with $Z[f] = \exp(-\tfrac{1}{2}\langle f, Cf\rangle_{\mathbb{C}})$, the proof reduces to showing $\langle g \cdot f, C(g \cdot f)\rangle = \langle f, Cf\rangle$, which follows from a change of variables in the double integral using the fact that Euclidean transformations preserve Lebesgue measure and distances. This is the cleanest OS axiom proof: it requires **zero project-specific axioms**. **Literature**: Glimm-Jaffe Ch. 6 standard Euclidean field theory references. ## Key Declarations | Declaration | Description | |-------------|-------------| | [`CovarianceEuclideanInvariantℂ_μ_GFF`](../OSforGFF/OS2_GFF.lean#L151) | $C(gx, gy) = C(x, y)$ for all $g \in E(4)$ (GFF covariance) | | [`freeCovarianceℂ_bilinear_euclidean_invariant`](../OSforGFF/OS2_GFF.lean#L111) | $\langle g \cdot f, C(g \cdot h)\rangle = \langle f, Ch\rangle$ | | [`euclidean_action_apply`](../OSforGFF/OS2_GFF.lean#L46) | $(g \cdot f)(x) = f(g^{-1} \cdot x)$ | | [`euclidean_pullback_eq_inv_act`](../OSforGFF/OS2_GFF.lean#L53) | $g^{-1} \cdot x = \mathrm{act}(g^{-1}, x)$ | | [`euclidean_pullback_act`](../OSforGFF/OS2_GFF.lean#L57) | $g^{-1} \cdot (g \cdot y) = y$ | | [`act_euclidean_pullback`](../OSforGFF/OS2_GFF.lean#L62) | $g \cdot (g^{-1} \cdot x) = x$ | | [`actEquiv`](../OSforGFF/OS2_GFF.lean#L70) | $x \mapsto g \cdot x$ is a measurable equivalence on $\mathbb{R}^4$ | | [`measurePreserving_actEquiv`](../OSforGFF/OS2_GFF.lean#L79) | $(g_*)\lambda = \lambda$ for $g \in E(4)$ | The master theorem `gaussian_satisfies_OS2` in `GaussianFreeField.lean` derives OS2 from Gaussianity and covariance invariance. The file `OS2_GFF.lean` proves the GFF-specific covariance invariance. ## Detailed Proof Outline ### Step 1: Euclidean group structure The Euclidean group $E(4)$ is formalized as `QFT.E` with: - A rotation/reflection $R \in O(4)$ (formalized as a `LinearIsometry`) - A translation vector $t \in \mathbb{R}^4$ The group operations are: - Multiplication: $(R_1, t_1) \cdot (R_2, t_2) = (R_1 R_2,\ R_1 t_2 + t_1)$ - Inverse: $(R, t)^{-1} = (R^{-1},\ -R^{-1} t)$ - Action: $(R, t) \cdot x = Rx + t$ The pullback action on test functions is defined as `euclidean_action g f`, where $(g \cdot f)(x) = f(\mathrm{euclidean\_pullback}\ g\ x)$ with $\mathrm{euclidean\_pullback}\ g\ x = g^{-1} \cdot x$. ### Step 2: Covariance kernel is radial The free covariance kernel is: $$C(x, y) = \frac{m}{4\pi^2 \|x - y\|} K_1(m\|x - y\|)$$ This depends only on $\|x - y\|$. Since Euclidean transformations preserve distances: $$\|g \cdot x - g \cdot y\| = \|R(x - y)\| = \|x - y\|$$ we have $C(g \cdot x, g \cdot y) = C(x, y)$. This is the content of `freeCovariance_euclidean_invariant` from `Covariance.lean`. ### Step 3: Measure preservation Lebesgue measure on $\mathbb{R}^4$ is invariant under Euclidean transformations. For translations, this is translation invariance of Lebesgue measure. For $R \in O(4)$, this follows from $|\det R| = 1$. The proof constructs a `MeasurableEquiv` (`actEquiv g`) for each group element and proves it is measure-preserving (`measurePreserving_actEquiv`). This enables the change of variables in integration. ### Step 4: Bilinear form invariance The complex covariance bilinear form is: $$\langle f, Ch\rangle_{\mathbb{C}} = \int \int \overline{f(x)}\ C(x,y)\ h(y)\ dx\ dy$$ The proof of $\langle g \cdot f, C(g \cdot h)\rangle = \langle f, Ch\rangle$ proceeds as follows: 1. **Substitute the pullback**: $\langle g \cdot f, C(g \cdot h)\rangle = \int\int \overline{f(g^{-1}x)}\ C(x,y)\ h(g^{-1}y)\ dx\ dy$. 2. **Rewrite the kernel**: Using `act_euclidean_pullback` (i.e., $g \cdot (g^{-1} \cdot x) = x$) and `freeCovariance_euclidean_invariant`: $$C(x, y) = C(g \cdot (g^{-1} \cdot x),\ g \cdot (g^{-1} \cdot y)) = C(g^{-1} \cdot x,\ g^{-1} \cdot y)$$ 3. **Recognize as composition**: The integrand is now $F(g^{-1} x, g^{-1} y)$ where $F(u, v) = \overline{f(u)}\ C(u,v)\ h(v)$. 4. **Change variables**: Apply `MeasurePreserving.integral_comp'` using `measurePreserving_actEquiv` for both integration variables: $\int\int F(g^{-1}x, g^{-1}y)\ dx\ dy = \int\int F(u,v)\ du\ dv = \langle f, Ch\rangle$. **Lean theorem**: `freeCovarianceℂ_bilinear_euclidean_invariant` ### Step 5: Connect to the GFF measure The theorem `CovarianceEuclideanInvariantℂ_μ_GFF` connects the abstract covariance of $\mu_{\mathrm{GFF}}$ to the free bilinear form using `gff_two_point_equals_covarianceℂ_free`, then applies `freeCovarianceℂ_bilinear_euclidean_invariant`. ### Step 6: Derive OS2 The general theorem `gaussian_satisfies_OS2` in `GaussianFreeField.lean` shows that for any Gaussian measure (`isGaussianGJ`) with Euclidean-invariant covariance (`CovarianceEuclideanInvariantℂ`), OS2 holds. The proof is essentially: $$Z[g \cdot f] = \exp\left(-\tfrac{1}{2}\langle g \cdot f, C(g \cdot f)\rangle\right) = \exp\left(-\tfrac{1}{2}\langle f, Cf\rangle\right) = Z[f]$$ using `h_gaussian` to rewrite $Z[f]$ in Gaussian form and `h_euclidean_invariant` for the covariance equality. ### Axioms Used **None.** The OS2 proof is fully formal with zero project-specific axioms. It uses only standard properties of the Euclidean group, measure preservation under isometries, and the radial structure of the free propagator. ## References - J. Glimm and A. Jaffe, *Quantum Physics*, Springer, 2nd ed., Ch. 6. - K. Osterwalder and R. Schrader, "Axioms for Euclidean Green's Functions I," Comm. Math. Phys. 31 (1973), 83-112. - B. Simon, *The P(phi)_2 Euclidean (Quantum) Field Theory*, Princeton, 1974 (Euclidean invariance for free fields).